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A microRNA feedback loop regulates global microRNA
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ABSTRACT

Expression levels of many microRNAs (miRNAs) change during aging, notably declining globally in a number of organisms and
tissues across taxa. However, little is known about the mechanisms or the biological relevance for this change. We investigated
the network of genes that controls miRNA transcription and processing during C. elegans aging. We found that miRNA
biogenesis genes are highly networked with transcription factors and aging-associated miRNAs. In particular, miR-71, known to
influence life span and itself up-regulated during aging, represses alg-1/Argonaute expression post-transcriptionally during aging.
Increased ALG-1 abundance in mir-71 loss-of-function mutants led to globally increased miRNA expression. Interestingly, these
mutants demonstrated widespread mRNA expression dysregulation and diminished levels of variability both in gene expression
and in overall life span. Thus, the progressive molecular decline often thought to be the result of accumulated damage over an
organism’s life may be partially explained by a miRNA-directed mechanism of age-associated decline.
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INTRODUCTION

Many microRNAs (miRNAs) are dynamically expressed dur-
ing aging, fulfilling important regulatory roles. A handful of
specific miRNAs have been shown to affect normal life
span by targeting genetic pathways that are important for
normal aging (Boehm and Slack 2005; de Lencastre et al.
2010; Boulias and Horvitz 2012; Lucanic et al. 2013). In
particular, miR-71 promotes longevity in the nematode
Caenorhabditis elegans by interacting with multiple aging-as-
sociated pathways including insulin signaling and germline
signaling (de Lencastre et al. 2010; Boulias and Horvitz
2012). However, most miRNAs individually have no appar-
ent effect on normal life span (Boulias and Horvitz 2012).
MiRNAs can have broad, if diffuse, impacts across complex

multi-pathway processes: MiRNAs recognize targets through
imperfect complementarity allowing individual miRNAs to
target multiple mRNAs, and multiple miRNAs to target the
same mRNA (Krek et al. 2005; Lewis et al. 2005). Thus, al-
though themost widely studied role of miRNAs is in targeting

one or a few specific mRNAs, miRNAs can also modulate
and integrate across a large number of biological inputs and
outputs. Indeed, miRNAs have been proposed to act as medi-
ators of crosstalk between pathways and as “noise buffers” to
canalize specific fates (Hornstein and Shomron2006;Herranz
and Cohen 2010; Inui et al. 2010). It is possible that miRNAs
collectively assume roles that impact general gene expression,
despite the notable difficulty in assigning clear phenotypes to
many individual miRNAs or even miRNA families (Miska
et al. 2007; Alvarez-Saavedra and Horvitz 2010).
The regulation of miRNAs during aging is similarly poorly

understood. A global decline in miRNA abundance with
age has been observed in a number of organisms and tissues
(Ibañez-Ventoso et al. 2006; de Lencastre et al. 2010; Noren
Hooten et al. 2010; Inukai et al. 2012). This decline was pre-
viously linked to age-related decreases in miRNA biogenesis,
and could be prevented by life span-extending interventions
such as dietary restriction (Mori et al. 2012). Thus, while
global changes in miRNA expression are linked to aging,
the mechanism of this process remains unclear.
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In this study, we investigated the regulatory network sur-
rounding miRNA biogenesis genes, which led us to identify
one possible mechanism for the aging-associated decline in
miRNA abundance in C. elegans. Our bioinformatically de-
rived network pointed to a central role for alg-1/Argonaute
in feedback regulation of global miRNA biogenesis, with
many transcription factors and miRNAs putatively targeting
this gene. We experimentally demonstrate that miR-71,
a particularly highly connected node in the network, regu-
lates alg-1 expression post-transcriptionally through direct
binding to the alg-1 3′ untranslated region (UTR). This reg-
ulatory relationship affects global miRNA abundance during
aging and likely contributes to global alterations in mRNA
expression. Further, we find significant changes in gene ex-
pression variability and life span variability in the absence
of mir-71 gene expression. These results show a previously
unexpected complexity to the regulation of miRNA biogene-
sis, and demonstrate mechanisms by which miRNAs have
global impacts on gene expression and phenotypic outcomes
during aging.

RESULTS

Building a miRNA-centric gene regulatory network

We attempted to infer the gene regulatory network en-
compassing aging-associated miRNAs, select transcription
factors (TFs), and miRNA biogenesis genes from experimen-
tal results and computational predictions: TF-to-gene interac-
tions were retrieved from TF binding data collected during
development by the modENCODE project (Gerstein et al.
2010; Zhong et al. 2010; Niu et al. 2011), and miRNA-to-
gene interactions were predicted by mirWIP (Hammell et al.
2008). We previously used a similar, though sparser, network
to show that miRNAs and TFs regulate each other via direct
feedback regulation during aging (Smith-Vikos et al. 2014).
We have now expanded this network to investigate the role
in aging of miRNA biogenesis genes and their regulators.

The current network comprises 90 TFs for which binding
data were available through the modENCODE project, com-
pared with 21 previously (Gerstein et al. 2010; Zhong et al.
2010; Niu et al. 2011); 81 aging-associated miRNAs (the
union of those found in Ibañez-Ventoso et al. 2006; de
Lencastre et al. 2010; Kato et al. 2011); and eight genes in
the canonical C. elegans miRNA biogenesis pathway. The
network represents a total of 5780 interactions (5039 TF-
to-gene interactions and 741 miRNA-to-gene interactions)
(Supplemental Table S1; Supplemental Fig. S1A). Note that
miRNA biogenesis genes in this network lack outgoing edges,
which would represent the regulatory interaction that they
presumably exert on all miRNAs. These edges were omitted
because they would otherwise bias the connectivity of the
network in a nonproductive manner.

Overall, this network is densely connected and contains
many feedback loops (Supplemental Fig. S1B; Supplemental

Table S1): Nodes are highly interconnected, with two second-
neighbor genes sharing 64.1% of their first-neighbor nodes
on average. MiRNA biogenesis genes stand out in this net-
work as some of the most connected genes (despite the omit-
ted outgoing edges) (Supplemental Fig. S1C) and have more
unique neighbors than do TFs or miRNAs (69 versus 58 and
58, respectively). Previous studies have reported that non-TF
genes are less targeted by miRNAs (Shalgi et al. 2007; Cheng
et al. 2011). In our network, miRNA biogenesis genes are tar-
geted by miRNAs to the same extent that TFs are (Wilcoxon
rank sum test, P = 0.1513). Conversely, TFs target miRNA
biogenesis genes to the same extent that TFs target miRNAs
(P = 0.5429. See also Materials and Methods). Additionally,
miRNA biogenesis genes are regulated by 1704 interacting
miRNA–TF pairs (i.e., TF regulated by a miRNA and vice
versa, together forming feedforward loops with the miRNA
biogenesis gene), which correspond to over one-third of all
TF–miRNA pairs (4789). These findings suggest that
miRNA biogenesis genes are key nodes for regulation by
both miRNAs and TFs.
The C. elegans homolog of the miRNA-specific Argonaute

gene, alg-1, is particularly highly networked: It has the high-
est number of unique neighbors in the network (72 TFs and
26 miRNAs), the highest number of incoming edges (Fig. 1A;
Supplemental Table S2), and the third most densely miRNA-
targeted 3′ UTR after daf-16 and daf-2 (Fig. 1B; Supplemental
Table S3). The 1550-nt 3′ UTR of alg-1 is considerably longer
than that of most other genes in the network, and of C. ele-
gans genes in general, which have an average 3′ UTR length
of ∼200 nt (Fig. 1C, alg-1 shown in pink) (Mangone et al.
2010). Since 3′ UTR evolution is driven by avoiding or re-
taining miRNA regulation (Stark et al. 2005; Cheng et al.
2009), its long 3′ UTR harboring many miRNA target sites
suggests that miRNA-mediated regulation of alg-1 is biolog-
ically relevant. Additionally, alg-1 has a high betweenness
centrality index, reflecting the importance of a node in influ-
encing the interactions of other nodes and modules in the
network (Fig. 1D; Supplemental Fig. S1D; Doncheva et al.
2012). While betweenness centrality and the number of
neighbors are positively correlated, alg-1 is a clear outlier
(Fig. 1D, arrow). Our new finding of the relationship of
alg-1 to aging associated miRNAs points to an important
role for alg-1 in regulating gene expression during aging
and is consistent with the finding that adult-specific knock-
down of alg-1 expression affects life span (Kato et al. 2011).
Our findings of alg-1 are in stark contrast to those for alg-2:

No aging-associated miRNAs are predicted to target alg-2
in our network. While alg-2 is also an Argonaute gene impli-
cated in miRNA biogenesis, alg-1 and alg-2 are not complete-
ly redundant, preferentially associating with distinct sets of
miRNAs during development and demonstrating distinct
mutant phenotypes (Bukhari et al. 2012; Vasquez-Rifo
et al. 2012). The regulatory relationships shown here may
reflect possible molecular functional divergence of these
genes.
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miR-71 post-transcriptionally regulates alg-1
expression during aging

The long 3′ UTR and the number of miRNAs targeting alg-1
prompted us to investigate miRNA-mediated regulation of

alg-1. In particular, we were interested in the potential regu-
lation by miR-71, which has the highest number of predicted
target sites for alg-1 (Fig. 1B). Despite shortcomings of
miRNA target prediction software, specific miR-71 target
sites are consistently found by multiple programs, fall within

FIGURE 1. alg-1 is an important node in the regulatory gene network during aging. (A) alg-1 and its first neighbors, ordered by highest connectivity
(number of unique edges) from 6 o’clock counterclockwise. alg-1 is shown in the center in red. Seventy-two TFs and 26 miRNAs target alg-1. (Yellow
nodes) TFs; (blue nodes) aging-associated miRNAs; (pink edges) miRNA-to-gene regulation; (blue edges) TF-to-gene regulation. (B) alg-1 is targeted
by 26 different miRNAs through a total of 69 sites. (Left) Edge width reflects the number of target sites for each miRNA in the alg-1 3′ UTR. Nodes
ordered by the number of target sites, as in A. (Right) Numeric representation of graphical data on left. (C) 3′ UTR length versus the number of aging-
associated miRNA target sites. MiRNA target site numbers retrieved from mirWIP (Hammell et al. 2008). alg-1 is shown by the pink dot. (Red line)
Linear fit. (D) Betweenness centrality distribution of nodes. The table (inset) shows the top 10 genes by betweenness centrality index. (Red line) Power-
law fit. See also Supplemental Figure S1 and Supplemental Tables S1–S3.
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conserved regions of the nematode genome, and overlap
known ALG-1 binding sites in the alg-1 3′ UTR during devel-
opment (Fig. 2A, arrowheads; Enright et al. 2003; Krek et al.
2005; Lewis et al. 2005; Siepel et al. 2005; Zisoulis et al. 2010).
These findings are particularly interesting in light of the

known functions of miR-71 during aging. Work in our lab-
oratory and others has shown that miR-71 promotes longev-
ity by mediating signals from several known aging-associated
pathways (de Lencastre et al. 2010; Boulias and Horvitz 2012;
Lucanic et al. 2013). Within our network, miR-71 is the most

FIGURE 2. miR-71 directly regulates alg-1 post-transcriptionally. (A) Multiple miRNA target prediction algorithms predict miR-71 target sites in the
alg-1 3′ UTR. Black arrowheads indicate miR-71 binding sites that are predicted by >3 algorithms, fall in conserved regions of the nematode genome,
and overlap with known ALG-1 binding sites. ALG-1 binding sites (Zisoulis et al. 2010) and PhastCons nematode conservation track (Siepel et al.
2005) retrieved via UCSC Genome Browser (ce6). iCLIP-determined miR-71 binding sites during mid-L4 from Broughton et al. (2016). (B) alg-1
mRNA expression during aging in N2 wild-type background shown as mean ± s.e.m. (n = 2 biological replicates) (normalized to Y45F10D.4 expres-
sion). (C–E) alg-1 expression in N2 versusmir-71(n4115) background. (Blue) N2 wild-type or control; (red)mir-71(n4115). (C) alg-1mRNA expres-
sion on Day 3 of adulthood (mean ± s.e.m. [n = 2 biological replicates], normalized to N2 expression levels). (D) Normalized mean GFP reporter
expression over whole body at Day 3 of adulthood for control versus mir-71(n4115) background ([∗] unpaired t-test, P < 0.01) (mean ± s.d.).
(Top) Schematic of GFP reporter construct. miR-71 binding sites indicated by blue boxes. Similarly significantly higher GFP reporter expression
was observed in the mir-71(n4115) background on Days 1–9. (E) Protein ALG-1 expression on Days 2 and 5 of adulthood. Protein expression nor-
malized to β-tubulin or actin abundance. (F) (Top) Schematic of 3′ UTR regulation reporter constructs. Control 3′ UTR with wild-type miR-71 bind-
ing sites indicated by blue boxes, as in D. Experimental 3′ UTR with mutated miR-71 binding sites indicated by red x. (Bottom) Quantification of
reporter expression. Normalized mean GFP signal over whole body at Day 3 of adulthood. Each is average of two integrated strains. GFP reporter
expression is significantly higher for mutant 3′ UTR reporter compared with control (unpaired t-test, P < 1 × 10−9). Mean ± s.d. is shown. Similar
results observed for Days 1 and 5 of adulthood. See also Supplemental Figure S2.
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connected node with respect to the total number of edges (in-
coming and outgoing) (Supplemental Table S2), suggesting a
key regulatory role for miR-71.
We next profiled alg-1 expression during aging via qRT-

PCR. alg-1 mRNA levels sharply decrease between early-
and mid-adulthood (Fig. 2B). This expression profile is
consistent with those of published studies (Mori et al.
2012;Walther et al. 2015). Notably, this alg-1 expression pro-
file is opposite to that observed for mir-71 promoter activity:
Amir-71-promoter::GFP reporter increases in expression be-
tween young to mid-adulthood and declines gradually there-
after (de Lencastre et al. 2010).
We thus investigated whether miR-71 affects alg-1 expres-

sion. We found that alg-1mRNA expression is higher inmir-
71(n4115) animals which lack miR-71 expression (Fig. 2C).
Similarly, a GFP reporter containing the alg-1 3′ UTR se-
quence [gfp::alg-1(zaIs5)], demonstrated increased expres-
sion throughout aging in mir-71(n4115) compared to a
wild-type background (Fig. 2D). ALG-1 protein abundance
was also elevated in the mir-71(n4115) strain (Fig. 2E).
To determine if the observed miR-71-mediated regulation

was direct, we investigated whether mutating the two putative
miR-71 binding sites indicated in Figure 2A would affect ex-
pression of the alg-1 GFP reporter construct. The sequences
corresponding to these two miRNA seed binding sites were
replaced with a sequence determined computationally to
not affect binding by other miRNAs. Four independently
generated integrated transgenic lines (two mutant, two con-
trol) were tested, and the GFP signal was consistently higher
in animals carrying reporter constructs with mutated miR-71
binding sites (Fig. 2F). These findings provide evidence that
miR-71 regulation of alg-1 is direct and mediated through
specific miR-71 binding sites in the alg-1 3′ UTR.
Recently published biochemical data support the direct

targeting of alg-1 by miR-71. Pasquinelli and colleagues
found ∼5000 reproducible miRNA–target chimeric reads
from their iCLIP (individual-nucleotide resolution crosslink-
ing immunoprecipitation) method, corresponding to endog-
enous miRNA–target interactions (Broughton et al. 2016).
Two miR-71 target sites are found in the alg-1 3′ UTR, one
overlapping a site we mutated in our reporter construct
and the other very near the second site we mutated (Fig.
2A, in red). These findings support our reporter construct re-
sults that miR-71 regulates alg-1 through direct interaction
with at least one of the two sites we mutated. Additional ge-
nome editing in the future would constitute the ultimate con-
firmation of these interactions.
To directly test for a genetic interaction, we asked whether

alg-1 expression affects the short life span of mir-71(n4115)
animals (Supplemental Fig. S2A,B). Overexpression of alg-1
via a transgene suppresses the short life span of mir-71
(n4115) animals (Supplemental Fig. S2A,C) while not affect-
ing animal development, including brood size (Supplemental
Fig. S2D). In addition, alg-1 RNAi, which shortens the life
span of wild-type animals (Kato et al. 2011), did not further

shorten the life span of mir-71(n4115) animals (Supplemen-
tal Fig. S2B). These findings are consistent with alg-1 func-
tioning downstream from mir-71. Taken together with the
requirement for alg-1 in miR-71 processing and function
(Hammell et al. 2009; Vasquez-Rifo et al. 2012), these find-
ings show thatmir-71 and alg-1 form a direct regulatory loop.

miR-71 affects global miRNA abundance during aging

Argonaute proteins have been shown to stabilize mature
miRNA expression post-transcriptionally (Diederichs and
Haber 2007). We hypothesized that the increased alg-1 ex-
pression in mir-71(n4115) mutant animals would result in
globally increased miRNA expression. We therefore profiled
miRNA expression in wild-type and mir-71(n4115) animals
during aging by small RNA-seq (Fig. 3). We chose Day 0 of
adulthood as the “young” time point since alg-1 expression
drops rapidly soon after (Fig. 2B). Day 5 of adulthood was
chosen as the “old” time point based on the mir-71(n4115)
animal mean life span which is 8.7 ± 0.1 d at 20°C (de
Lencastre et al. 2010); at Day 5, most animals would still
be alive even in the short-lived mir-71(n4115) strain. Our
laboratory has shown that expression levels of specific
genes vary within isogenic populations in correlation with
the animals’ eventual life span; for example, animals that ex-
press more miR-71 at Day 3 of adulthood eventually live lon-
ger lives than do siblings that express less miR-71 (Pincus
et al. 2011). By choosing a time point at which most animals
are still alive, we avoided the possibility of survivorship bias.
In total, 213 miRNAs were detected across twelve samples
(miRBase release 20, [Kozomara and Griffiths-Jones 2014]).
In agreement with other studies, miRNA abundance in

wild-type animals shows a trend of decline in expression
with age, with 69% of miRNAs showing a negative expression
change (at adjustedP < 0.1, there are 19 up- and 61 down-reg-
ulated miRNAs) (Fig. 3A [in blue], 3B top [in blue], and
Supplemental Table S4) (Ibañez-Ventoso et al. 2006; de
Lencastre et al. 2010; Mori et al. 2012). In aging mir-71
(n4115) animals, however, miRNA expression generally in-
creased, with only 37% of miRNAs showing negative expres-
sion changes (at adjusted P < 0.1, 25 up- and 18 down-
regulated miRNAs) (Fig. 3A [in red], 3B top [in red], and
Supplemental Table S5). This is in agreement with the
TaqMan qRT-PCR validation of 13 miRNAs (Fig. 3C). The
differences in miRNA expression fold change distributions
are statistically significantly different (Welch two sample t-
test, P = 3.01 × 10−7) (Supplemental Fig. S3A). In contrast,
no obvious shift in miRNA abundance was observed in the
short-lived daf-16(mu86) animals (Supplemental Fig. S3B),
suggesting that increased miRNA abundance is not a general
hallmark of a short life span but a direct result of increased alg-
1 expression inmir-71(n4115) animals. There are also no oth-
er consistently predicted or experimentally detected target
sites for miRNAs up-regulated with aging in the alg-1 3′

UTR, suggesting this mechanism to be specific to miR-71.

microRNA regulation in aging
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The widespread shift toward increased miRNA abundance
in aging mir-71(n4115) animals is most striking when com-
paring the significantly differentially expressed miRNAs (ad-
justed P < 0.1) between control and mutant animals at Day
5. Note that 102 miRNAs are more abundant in the absence
of mir-71 expression, whereas the only two miRNAs that
were less abundant in the mutant animals were those
deleted in mir-71(n4115): miR-71-5p and miR-71-3p
(Supplemental Table S6). These findings suggest that miR-
71 acts specifically during aging to down-regulate alg-1 ex-

pression, which decreases the global output of the miRNA
biogenesis pathway.

mRNA expression is de-regulated in the absence
of mir-71 expression

MiRNAs are predicted to target a large proportion of the
transcriptome (Lewis et al. 2005). Thus, we next examined
how the globally shifted miRNA expression affected mRNA
expression by conducting RNA-seq on the same samples

FIGURE 3. mir-71 affects global miRNA abundance. (A) Waterfall plot of miRNA expression fold change during aging in N2 wild-type (blue)
versus mir-71(n4115) animals (red). MiRNAs ordered from left to right by magnitude of expression fold change (most positive to most negative)
in N2. Corresponding miRNAs are shown in the overlapping position. (B) Histograms of expression fold changes during aging between N2 and
mir-71(n4115) animals for microRNAs (top) and mRNAs (bottom). MicroRNA expression shifts globally, with a Spearman’s rank correlation co-
efficient between N2 and mir-71(n4115) of 0.83 (Pearson correlation coefficient = 0.85). mRNA expression does not shift globally but appears to be
de-regulated in mir-71(n4115) compared with N2 (Spearman’s rank correlation coefficient = 0.55; Pearson correlation coefficient = 0.66). (C)
Validation of miRNA expression during aging in N2 versus mir-71(n4115) animals by qRT-PCR. Expression levels were normalized to U18 and
respective Day 0/1 time points. (Mean ± s.e.m. n = 2 biological replicates.) Note, y-axis is log scale. See also Supplemental Figure S3 and
Supplemental Tables S4–S6.
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that were used for small RNA-seq. Unlike the case with
miRNAs, there was no global shift in mRNA expression
fold change with age between wild-type and mir-71(n4115)
animals (Fig. 3B, bottom). Indeed, many of the mRNAs dif-
ferentially expressed between young and old animals (adjust-
ed P < 0.01; corresponding to ∼10% of detected mRNAs,
Supplemental Tables S7, S8) are the same in the mir-71
(n4115) and wild-type backgrounds (Fig. 4A). Among the

most differentially expressed are collagen-related cuticle
genes and major sperm protein genes.
We further investigated what functions these differentially

expressed mRNAs represent by testing for Gene Ontology
(GO) term enrichment. Most of the enriched GO terms for
down-regulated mRNAs overlap between wild-type and
mir-71(n4115) animals (Fig. 4B; Supplemental Table S9).
These terms included protein and phosphorous metabolic

FIGURE 4. mRNA expression is dysregulated in aging mir-71(n4115) animals. (A) Comparisons of differentially expressed mRNAs during aging
between N2 wild-type (blue) and mir-71(n4115) (red) (P < 0.01). (Left) Venn diagram of up-regulated genes during aging. (Right) Venn diagram
of down-regulated genes during aging. (B) Enriched GO terms for differentially expressed genes during aging. Overlay of GO terms for genes up-reg-
ulated in N2 (dark blue), genes down-regulated in N2 (green), genes up-regulated in mir-71(n4115) (magenta), and genes down-regulated in mir-71
(n4115) (cyan). Y-axis is the log of fractional difference between observed numbers of genes vs. expected numbers of genes. Positive values indicate
enrichment and negative values indicate depletion. Statistically significant enrichment of GO term in a given experimental condition indicated by
asterisk (∗) (hypergeometric test, Benjamini–Hochberg adjusted P < 0.001). Image generated in PANTHER (Mi et al. 2013). (C) Adapted waterfall
plot of mRNA expression fold change during aging in N2 wild-type (blue) versusmir-71(n4115) (red). Genes ordered from left to right by magnitude
of expression fold change (most positive to most negative) in N2. Corresponding genes are shown in the overlapping position. See also Supplemental
Tables S7 and S8.
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processes and protein/macromolecule modification process-
es. The GO terms for mRNAs that are up-regulated in old
compared to young animals, on the other hand, were distinct
between wild-type and mir-71(n4115) animals (Supplemen-
tal Table S10). For example, GO terms for mRNAs up-regu-
lated in old mir-71(n4115) animals include terms related to
oxidative respiration, which are often enriched in aging stud-
ies (McCarroll et al. 2004; Hamilton et al. 2005; Kim 2007).
We did not detect enrichment in oxidative respiration in old
wild-type animals, however. The genes that correspond to
GO terms enriched in mir-71(n4115) versus wild-type are
not particularly enriched for miR-71 targets or for targets
of down-regulated miRNAs. Thus, the enrichment of these
terms may be reflecting, in general, the age-related stress ex-
perienced by these short-lived animals rather than specifi-
cally from changes in miRNA expression.

While global mRNA expression did not appear at first to be
affected by the altered miRNA milieu in mir-71(n4115) ani-
mals compared with wild-type animals, we found dramatic
differences between the two strains in the specific mRNAs
that increase or decrease expression over time (Fig. 4C).
Indeed, unlike formiRNAs, there is no discernible correlation
between the direction or magnitude of mRNA expression
changes through time in wild-type animals versus in mutant
animals (Figs. 3B [legend], 4C). These findings are consistent
with generally dysregulated mRNA expression in mir-71
(n4115) animals, perhaps as a result of globally altered
miRNA expression.

mir-71 affects gene expression variability
between populations during aging

MiRNAs have been proposed to function as gene expression
noise buffers, acting to decrease interindividual variability in
gene expression levels (Hornstein and Shomron 2006; Li
et al. 2009; Herranz and Cohen 2010; Ebert and Sharp
2012). Thus, we hypothesized that if the miRNA transcrip-
tome were perturbed, as in mir-71(n4115) animals, this may
be revealed as alterations in noise buffering. We investigated
this by examining gene expression variability between popula-
tions in the mRNA-seq data described above. Often, gene ex-
pression variability, or “noise,” is measured directly by
examining the variance of the distribution of gene expression
levels across individual cells/organisms. In this case, however,
we had only replicate measures of the mean gene expression
level of a population. Fortunately, the variance in the means
of replicate samples (i.e., standard error) has a simple relation-
ship to the variance of the underlying sampling distribution.
This relation has been used by others to analyze cell-to-cell
variation in gene expression with population-level analyses
(Anderson et al. 2014). Thus, while our data set represents
population averages and contains a small number of replicates
(n = 3, each consisting of RNA from approximately 400 indi-
viduals),wedetermined that it is feasible to conduct an explor-
atory investigation of gene expression variability over aging.

We calculated two different measures of gene expression
variability, or “noise,” within our replicate sets (three repli-
cates for each genotype and age), and compared these be-
tween N2 wild-type and mir-71(n4115) animals (Fig. 5A;
Supplemental Fig. S4A,B) (coefficient of variation [CV]
and power law-corrected noise, as in Vallania et al. 2014;
see Materials and Methods). Our data suggest that gene ex-
pression becomes slightly noisier with increased age, as
∼4% more genes show increases in intersample variability
in the Day 5 samples (Fig. 5A, left panel). This small bias is
nevertheless statistically significant (binomial test, P =
0.004). Some studies have reported that gene expression be-
comes more heterogeneous within populations with age
(Bahar et al. 2006; Somel et al. 2006), while others have re-
ported results to the contrary (Golden and Melov 2004).
Our results suggest while there is a modest increase in
gene-expression heterogeneity with age in wild-type animals,
it is likely of small magnitude.
In contrast, mir-71(n4115) animals show a remarkable

shift toward decreased gene expression noise with increased
age. In this genetic background, more than twice as many
genes have decreased intersample variability, in older animals
compared to younger, than have increased variability (de-
creased/increased = 2.09, binomial test, P < 2.2 × 10−16)
(Fig. 5A, middle and right panels). This trend toward de-
creased noise in old mir-71(n4115) animals is consistent
across either of the common definitions of gene-expression
variability (variance scaled by the mean, or by a power-law
fit to the empirical relationship between mean and variance;
see Materials and Methods). Furthermore, these trends re-
main true even when we include additional RNA-seq data
sets that were generated independently of the first three bio-
logical replicates (Supplemental Fig. S4C,D). This phenome-
non of decreased gene expression noise seems to be
adulthood-specific, based on our comparison of noise be-
tween mir-71(n4115) and wild-type animals at each time
point (Fig. 5B).
Further, as determined by fluorescent microscopy, gfp::alg-

1 expression variability between individuals declines more
steeply with age in mir-71(n4115) animals than in controls
(Supplemental Fig. S5C). These findings are consistent with
an increased capacity for noise buffering due to increases in
global miRNA abundance in aged mir-71(n4115) animals.
In contrast, under decreased global miRNA abundance, as
has been observed in alg-1 loss-of-function animals
(Zisoulis et al. 2010), gene expression noise is greater than
in wild-type animals at L4 stage using the same metric
(Supplemental Fig. S5D), further supporting the contribu-
tions of miRNAs in gene expression variability.

miR-71 is associated with life span variability
within populations

Individuals in a population of ostensibly isogenic C. elegans
animals grown under identical conditions exhibit a variation
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of life spans that are correlated with the expression levels of
specific miRNA genes like miR-71 (Pincus et al. 2011). Our
observations above led us to investigate whether gene expres-
sion variability was similarly connected to life span variabil-
ity. We calculated life span variability as the CV of animal life

spans in a population and compared this
value between mir-71 mutant and wild-
type animals (Fig. 5C; Supplemental
Fig. S5A). We consistently observe re-
duced life span variability in mir-71
(n4115) animals compared with wild-
type. While we have not explored the
gene expression variability of animals
that overexpress miR-71, such animals’
life spans are more variable than those
of mir-71(n4115) (Supplemental Fig.
S5A). Taken together, this evidence sug-
gests a possible link between miR-71 ex-
pression variability, gene expression
variability, and life span variability.

DISCUSSION

MiRNA-mediated regulation
of age-dependent miRNA decline

Many studies in a variety of organisms
have reported global miRNA decline
during aging (Ibañez-Ventoso et al.
2006; de Lencastre et al. 2010; Noren
Hooten et al. 2010; Inukai et al. 2012;
Mori et al. 2012). Kahn and colleagues
previously showed that expressions of
miRNA biogenesis genes also decline
with age (Mori et al. 2012), though the
specific molecular mechanisms that af-
fect aging-associated decline in miRNA
biogenesis genes were not explored.
Using a computational approach to in-
ferring gene regulatory networks com-
bined with experimental methods, we
found that miRNA biogenesis genes are
highly targeted by miRNAs and TFs,
many of which have known roles associ-
ated with aging. In particular, our find-
ings suggest one mechanism that
establishes a central role for miR-71 in
down-regulating global miRNA expres-
sion during aging, which produces a
concomitant increase in mRNA expres-
sion variability during aging (Fig. 6).
Based on the short life span phenotype
of mir-71 loss-of-function animals (de
Lencastre et al. 2010), we speculate that
failure to decrease miRNA expression

during mid-adulthood may be detrimental to normal aging.
We propose that one function of miR-71 in promoting nor-
mal life span may be to directly repress the expression of alg-
1 and thus indirectly decreasing miRNA abundance and/or
activity and increasing gene expression noise.

FIGURE 5. Gene expression variability during aging and life span variability is diminished in
mir-71(n4115) animals. (A) Histogram of noise difference between Day 5 versus Day 0 (Day
5–Day 0) in N2 (left panel) versus mir-71(n4115) (middle panel) (right panel is composite). Y-
axis is shown as density rather than counts. Slightly more genes demonstrate positive gene expres-
sion noise difference in N2 (+4%, binomial test P = 0.004). More genes demonstrate negative
noise difference in mir-71(n4115) (+109%, binomial test, P < 2.2 × 10−16). (B) Histogram of
noise difference between mir-71(n4115) and N2 wild-type [mir-71(n4115) −N2] at Day 0 (left
panel) versus Day 5 (middle panel) (right panel is composite). Noise was calculated as (σ2)/
(µ1.549275). (C) Life span variability of different strains plotted as CV of life span. Each dot rep-
resents a biological replicate experiment. See also Supplemental Figures S4 and S5.
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The life span phenotypes of alg-1 andmir-71 loss-of-func-
tion and overexpression mutants cannot be adequately inter-
preted in the framework of a simple two-factor alg-1–mir-71
feedback system. For example, in a simple two-factor system,
alg-1 overexpression would be expected to increase life span;
however, this is not what we observe (Supplemental Fig.
S2A). It is possible that in the absence of mir-71 expression,
the level of alg-1 overexpression is restricted by the concom-
itantly increased expressions of other miRNAs; this is consis-
tent with our observation of only modest ALG-1 protein
expression increase. It is likely that there is a narrow range
of optimal alg-1 expression, which is heavily regulated by
multiple factors.

miR-71 has been studied extensively in the context of ag-
ing. Whereas most miRNAs decline with age, miR-71 is
strongly up-regulated during early-to-middle adulthood
(Ibañez-Ventoso et al. 2006; de Lencastre et al. 2010; Kato
et al. 2011), and it is thought to function specifically in adults
on aging-associated pathways to promote longevity (de
Lencastre et al. 2010; Pincus et al. 2011; Boulias and
Horvitz 2012; Nehammer et al. 2015). miR-71 is expressed
throughout development (Kato et al. 2009), and based on
its adult-specific activities, it is possible that the signals that
regulate it during development and adulthood are distinct.
Some aging-associated pathways that lie upstream of miR-
71 genetically have been identified and include DNA damage
response and calorie restriction; the influences of these up-
stream regulators are convoluted by the fact that they are of-
ten feedback regulated by miR-71 (de Lencastre et al. 2010;
Pincus et al. 2011; Smith-Vikos et al. 2014). It is possible
that miR-71 functions through different combinations of
pathways in different tissues/cell types: Though broadly ex-
pressed, miR-71 activity in neurons was shown to be required
for germline-mediated longevity (Boulias and Horvitz 2012).
It remains to be determined whether the impacts of miR-71–
alg-1 interaction are similarly tissue context-dependent. Our
network also had many feedback interactions between miR-
71 and TFs. Thus, miR-71 regulation appears to involve a
complex interplay between multiple inputs and outputs.

Like in C. elegans, the 3′ UTRs of many miRNA-specific
Argonaute genes in mammals are long. While miR-71 is
not known in mammals, mammalian Argonaute genes
also have many predicted miRNA target sites. We thus pre-
dict that feedback mechanisms exist in mammals to regu-

late global miRNA expression via Argonaute, perhaps in
the course of aging as in C. elegans, and/or perhaps in novel
contexts.

A miRNA-mediated mechanism that affects global
gene expression

Our work further suggests that a miRNA-directed mecha-
nism can explain at least some of the aging-associated molec-
ular dysregulation often thought to be the result of
accumulated damage over an organism’s life. This notion is
consistent with that of a recent proteomics study which sug-
gested that observed increases in protein abundance during
aging are likely due in part to de-repression of miRNA-medi-
ated regulation (Walther et al. 2015). miR-71 up-regulation
in adult life is consistently observed, and while the signals
governing miR-71 expression are not known, miR-71 and
miRNAs clearly play a role in propelling normal age-associ-
ated molecular decline.

miR-71 and gene expression variability

We find evidence of decreased interindividual variability in
gene expression in mir-71 mutant populations compared to
wild-type. As we have shown that miR-71 acts to decrease
miRNA expression later in adulthood, we speculate that the
reduced variance among mir-71 mutants is directly due to
the global increase in miRNA expression. This is consistent
with theoretical and experimental evidence that suggests
that higher levels of microRNA targeting can decrease inter-
individual variability by providing robustness against fluctu-
ations in mRNA levels (Hornstein and Shomron 2006; Osella
et al. 2011; Ebert and Sharp 2012; Schmiedel et al. 2015).
Essentially, in the presence of miRNA regulation, a higher
transcription rate is required to achieve any given steady-state
level of a target mRNA than without miRNAs present. With
high transcription rates and thus a large transcribed pool,
mRNA levels are proportionally less affected by short-time-
scale fluctuations in transcription due to “bursting” or other
stochastic events, or due to fluctuations in intra- or extracel-
lular transactivation signals.
The decrease in variability in life span in mir-71 mutants

(and increase in life span variability inmir-71 overexpressers)
further suggests that gene-expression variability may have
consequences on phenotypic variability. Why might a mech-
anism such as miR-71, acting to increase interindividual var-
iability, evolve? One possibility is that, asmuch of the increase
in variance occurs in post-reproductive animals, this trait was
not under selective pressure. Alternately, interindividual var-
iability may reflect variability in the micro-environments that
each individual experiences; with too many miRNAs around
(e.g., absent miR-71), individuals may be hampered in their
ability to respond to rapidly changing external signals.
Finally, phenotypic variability per se may be an adaptive
“bet-hedging” strategy, allowing a population of genetically

FIGURE 6. Amodel for miR-71-mediated regulation of miRNAs. miR-
71 is in a composite feedback loop with alg-1. This interaction, by affect-
ing alg-1/Argonaute expression, influences the expression of other
miRNAs. Altered miRNA expression seems to in turn affect target
mRNA expression and gene expression noise, ultimately affecting
longevity.
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identical individuals to confront an uncertain future by tak-
ing on a distribution of phenotypes (Martin 2009).
We take no position on which of these possibilities is most

likely. Nevertheless, we have demonstrated a central role for
miR-71 in down-regulating global miRNA expression during
aging, with a concomitant increase in mRNA expression
noise (Fig. 6). We propose that miR-71 promotes normal
life span by directly repressing the expression of alg-1 and
thus indirectly decreasing miRNA abundance and/or activity,
and increasing gene expression noise. Overall, this study
demonstrates the far-reaching impacts of miRNAs and
miRNA regulation on gene expression during aging.

MATERIALS AND METHODS

Network construction

The network of regulatory factors was constructed as described pre-
viously (Smith-Vikos et al. 2014). MiRNA gene coordinates were re-
trieved from miRBase (release 21) (Kozomara and Griffiths-Jones
2014). A total of 225 TF ChIP-seq data sets, representing 90 inde-
pendent TFs, were retrieved from the modENCODE project
(Gerstein et al. 2010). MiRNA target predictions were retrieved
from mirWIP (Hammell et al. 2008). Some TFs were not included
in the mirWIP database. Relevant miRNA target sites and TF bind-
ing sites were retrieved using a custom Python script. Visualization
and quantitative analyses of network topology were performed in
Cytoscape (version 3.2.1) (Cline et al. 2007).
To addresswhether the densemiRNA targeting ofmiRNAbiogen-

esis genes, matching that of TFs, was an artifact of mirWIP’s predic-
tions, we conducted a separate analysis using TargetScan’s “most
conserved sites” as the list of miRNA target sites (Friedman et al.
2009). We compared miRNA targeting of miRNA biogenesis genes,
TFs, and non-TF/non-miRNA biogenesis genes by randomly sam-
pling sets of eight genes (5000 samplings) from TFs and non-TF/
non-miRNA biogenesis genes to match the number of miRNA bio-
genesis genes.Using this approach,miRNAbiogenesis geneswere sig-
nificantly more targeted than TFs (P < 2.2−16, binomial test) and
non-TF/non-miRNA biogenesis genes (P < 2.2−16, binomial test).
A list of C. elegans TFs was retrieved from Reece-Hoyes et al. (2005)
(restricting to 583 genes with gene names), and all remaining genes
were retrieved from those annotated in WS235 (total 30,379 genes).

Animal strains

All animals were reared at 20°C. The following strains were used in
this study: N2 Bristol (wild-type), mir-71(n4115) (MT12993), gfp::
alg-1(zaIs5) (CT20), and daf-16(mu86). N2, mir-71(n4115), and
daf-16(mu86) strains were provided by the Caenorhabditis Genetics
Center; gfp::alg-1(zaIs5) was generated in our laboratory, as de-
scribed in Chan and Slack (2009). Other strains generated for this
study are described below. Hermaphrodites were used in this study.

Animal sample collection

For time course experiments, animals were transferred to culture
plates containing 0.1 mg/mL 5-fluorodeoxyuridine shortly after

L4/adult molt to prevent eggs from hatching. Young adult animals
within 8 h post L4 molt (when most animals do not contain embry-
os) were collected as Day 0 adults. Animals were randomly assigned
to time course sample groups.

Fluorescent microscopy analysis

The gfp::alg-1(CT20) strain was crossed intomir-71(n4115) animals
to generate the gfp::alg-1;mir-71 strain. Fluorescent microscopy
images were acquired on Days 1, 2, 3, 4, 5, 7, 8, and 9 of adulthood.
gfp::alg-1 n = 5, 5, 7, 7, 5, 7, 5, 7, respectively. gfp::alg-1;mir-71 n = 8,
6, 7, 7, 7, 5, 5, 5, respectively.
The mutant and control alg-1 3′ UTR GFP reporter strains were

constructed using pBS-F48gfp (Dr. Craig Mello, University of
Massachusetts Medical School). This plasmid contains a GFP re-
porter fused to the 5′ of the alg-1CDS and is driven by the alg-1 pro-
moter sequence followed by the alg-1 3′ UTR sequence. The alg-1
CDS was omitted from the construct so as to function only as a re-
porter. To generate mutant alg-1 3′ UTR GFP reporter strains, pre-
dicted miR-71 binding site seed sequences (TCTTTC) were changed
to CCCCCC via site-directed mutagenesis. The constructs were mi-
croinjected into N2 wild-type young adult animals as described in
Mello and Fire (1995), integrated, and backcrossed 6× prior to fur-
ther analysis. Fluorescent microscopy images were acquired on Days
1, 3, and 5 of adulthood. Control 3′ UTR n = 25, 31, 32, respectively.
Mutant 3′ UTR n = 30, 44, 45, respectively.
Microscopy images were captured using a Zeiss AxioCam MRm

camera on an Axioskop2 Plus microscope using AxioVision soft-
ware (Release 4.8.2). Acquired GFP images were flat-field- and in-
tensity-corrected (to calibrate between days) using custom
software. Mean pixel intensity was taken as the measurement for
that animal.

Comparison with iCLIP data

iCLIP findings were reported in ce10/WS220 genome assembly
(Broughton et al. 2016). Because previously reported ALG-1 bind-
ing sites (Zisoulis et al. 2010) were shown in the ce6/WS190 assem-
bly, we converted the iCLIP miR-71 binding sites to ce6 coordinates
using the NCBI Remap tool (https://www.ncbi.nlm.nih.gov/
genome/tools/remap).

Western blotting

Extracted protein was probed with anti-ALG-1 (1:5000, Pierce, PA1-
031) and anti-β-tubulin (1:5000, Sigma-Aldrich, T4026) primary
antibodies followed by goat α-rabbit IgG-HRP (1:5000, Santa
Cruz Biotechnology, sc-2004) and goat α-mouse IgG-HRP
(1:5000, Santa Cruz Biotechnology, sc-2031) secondary antibodies.

RNA-seq experiments

Young and old (Day 0 and Day 5 of adulthood, respectively) animals
were collected in biological triplicate for N2 wild-type and mir-71
(n4115) animals. “Day 0” is immediately after L4 molt, and embryos
are still largely absent from animals; at Day 5, most embryos have
already been laid. Total RNA was extracted from whole animals.
For small RNA-seq, RNA libraries were size selected, multiplexed,
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and run on HiSeq2500 (Illumina) (single-ended, 50-bp reads). For
mRNA-seq, RNA was poly(A) selected, multiplexed, and run on
HiSeq2500 (single-ended, 75-bp reads) (N = 3); additional, inde-
pendently generated biological replicate mRNA-seq data sets were
run on HiSeq2000 (single-ended, 50-bp reads) (N = 2) (A de
Lencastre and FJ Slack, unpubl.).

Sequencing reads were mapped to the C. elegans reference ge-
nome (WBcel235 assembly) using STAR (version 2.4.0h) (Dobin
et al. 2013). For small RNA-seq, miRNAs were annotated against
miRBase release 20 (http://www.mirbase.org/) (Kozomara and
Griffiths-Jones 2014) using SeqBuster (Pantano et al. 2010).
MiRNAs that were omitted from release 21 were manually removed
from further analyses. For mRNA-seq, data processing and analysis
was performed primarily using the bcbio-nextgen pipeline (https://
bcbio-nextgen.readthedocs.org/). Differential expression for both
small RNA- and mRNA-seq data was tested using DESeq2; P-values
were adjusted for multiple testing by Benjamini–Hochberg method
(Benjamini and Hochberg 1995; Love et al. 2014). For small RNA-
seq, size factor calculation was conducted against the number of se-
quences excluding those mapping to rRNA and repeat sequences.

GO term enrichment was tested in WebGestalt2 and PANTHER
(Duncan et al. 2010; Mi et al. 2013). Enrichment was determined by
the hypergeometric test, corrected for multiple testing, with an ad-
justed P-value threshold of <0.001.

Gene expression variability analysis

The linear regression of variance given expression mean for each
gene across biological replicates was used to estimate the exponent
value in the power law-like relationship between these values, as
in Vallania et al. (2014) (Supplemental Fig. S3B). The average expo-
nent value across the four experimental conditions was used to cal-
culate noise (=σ2/µexponent). For each gene, we then evaluated the
changes in noise between old (Day 5) and young (Day 0) animals
by subtracting Day 0 noise from Day 5 noise. Similarly, using fold
change ratios rather than differences in the noise measures does
not change these findings (data not shown). We also examined ex-
pression range ([maximum−minimum]/read count) as a proxy for
noise; findings were unchanged (data not shown). We also calculat-
ed noise including two additional, independently generated, biolog-
ical replicate RNA-seq data sets (N = 5) (Supplemental Fig. S3C,D).

Life span assays

Animals were reared at 20°C for at least three generations prior to
the commencement of egg prep for life span assays. Animals were
placed on each plate containing FUdR at Day 0 of adulthood.
Experiments were conducted in biological triplicate.

Code availability

Custom Python and R scripts used for data mining and noise anal-
yses are available upon request.

DATA DEPOSITION

Small RNA-seq and mRNA-seq data have been deposited in NCBI’s
Gene Expression Omnibus (Edgar et al. 2002) and are accessible

through GEO Series accession number GSE72234. Microarray
data of N2 and alg-1(gk214) animals from Zisoulis et al. (2010)
were accessed via GEO (GSE19138).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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