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RESEARCH ARTICLE
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Abstract

Neurons require a nearly constant supply of ATP. Glucose is the predominant source of

brain ATP, but the direct effects of prolonged glucose deprivation on neuronal viability and

function remain unclear. In sparse rat hippocampal microcultures, neurons were surprisingly

resilient to 16 h glucose removal in the absence of secondary excitotoxicity. Neuronal sur-

vival and synaptic transmission were unaffected by prolonged removal of exogenous glu-

cose. Inhibition of lactate transport decreased microculture neuronal survival during

concurrent glucose deprivation, suggesting that endogenously released lactate is important

for tolerance to glucose deprivation. Tandem depolarization and glucose deprivation also

reduced neuronal survival, and trace glucose concentrations afforded neuroprotection.

Mass cultures, in contrast to microcultures, were insensitive to depolarizing glucose depriva-

tion, a difference attributable to increased extracellular lactate levels. Removal of local

astrocyte support did not reduce survival in response to glucose deprivation or alter evoked

excitatory transmission, suggesting that on-demand, local lactate shuttling is not necessary

for neuronal tolerance to prolonged glucose removal. Taken together, these data suggest

that endogenously produced lactate available globally in the extracellular milieu sustains

neurons in the absence of glucose. A better understanding of resilience mechanisms in

reduced preparations could lead to therapeutic strategies aimed to bolster these mecha-

nisms in vulnerable neuronal populations.

Introduction

The human brain represents only 2% of total body mass, yet it accounts for a disproportion-

ately large amount of total energy consumption. The energy requirements of the mammalian

brain are largely met by the metabolism of glucose. To produce ATP necessary for central
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nervous system function, glucose is broken down via glycolysis and the TCA cycle/oxidative

phosphorylation (OXPHOS). Neurons are tasked with the upkeep of many energetically

expensive functions such as maintaining ion gradients, generating and propagating action

potentials, and fueling synaptic transmission, all of which require a significant amount of ATP

[1]. Synaptic transmission is considered the most metabolically expensive neuronal function

[2] and is especially sensitive to disruptions in glucose availability and subsequent ATP pro-

duction. Neurons lose the ability to communicate within minutes of inhibiting ATP produc-

tion[3–9]. Unlike neighboring astrocytes, neurons canonically do not possess glycogen[10]

(though see[11,12]) and have limited phosphocreatine reserves to supply ATP. Thus, they rely

heavily on the availability of extracellular metabolic substrates[13].

The cumulative effects of glucose deprivation have been previously studied, predominantly

as a model for pathological conditions such as tight insulin control in diabetes or in the context

of cerebral ischemia[14–16]. Brain hypoglycemia is associated with overstimulation of gluta-

mate receptors and excitotoxic death of neurons[17–21]. This excitotoxicity is secondary to

small decreases in ATP and clouds the core consequences of glucose deprivation on neuronal

survival and signaling. Thus, although other studies have investigated the effects of acute glu-

cose removal and alternative substrates on neuronal physiology[4–8,22–24], the direct impact

of glucose deprivation on aspects of synaptic communication remain unclear. To isolate and

manipulate neuron-glia interactions and explore susceptibility, a reductionist approach is war-

ranted. In the present study, we use rat co-cultures of hippocampal neurons and astrocytes to

investigate the effect of prolonged glucose deprivation on neuronal survival and synaptic func-

tion. To focus on core, local cellular interactions, we employed microcultures, local units of a

few astrocytes and neurons, to probe fuel sources for neurons. Our results suggest that neuro-

nal survival and synaptic function are both surprisingly resilient to prolonged loss of glucose.

During glucose deprivation, OXPHOS is apparently adequately maintained in the absence of

exogenous glucose to support survival and signaling. Although this resiliency is sustained pre-

dominately by ambient extracellular lactate derived from astrocytes, local on-demand lactate

shuttling does not meaningfully contribute to the ATP generation that sustains survival and

synaptic function.

Materials and methods

Hippocampal cell culture

Neuron-astrocyte co-cultures were created and maintained as previously described[25,26]

Briefly, postnatal day 1–4 Sprague-Dawley rat hippocampal (neuron) and cortical (astrocyte)

tissue were harvested using protocols approved by the Washington University Animal Studies

Committee and in accordance with relevant guidelines and regulations. The tissue was

digested by 1 mg/ml papain, and mechanically dispersed. For microculture preparations,

astrocytes were first plated on top of collagen microdots in Eagle’s medium (Life Technologies)

supplemented with 5% heat-inactivated horse serum, 5% fetal bovine serum, 17 mM D-glu-

cose, 400 μM glutamine, 500 U/ml penicillin, and 50 μg/ml streptomycin. They were main-

tained at 37˚C in a humidified incubator (5% CO2/95% air) and treated with 10 μM cytosine

arabinoside to halt proliferation before neuronal plating. Neurons were plated at a low density

(~100 cells/mm-2). Microcultures containing (+astrocyte) or lacking (-astrocyte) an astrocyte

layer on the collagen microdot were prepared as previously described[27]. Briefly, 25-mm

glass coverslips were stamped with a polydimethylsiloxane microstamp coated with 0.5 mg/ml

collagen to create 150–200 μm diameter microdots. Coverslips were then backfilled with the

non-permissive substrate poly-L-lysine grafted polyethylene glycol (PLL(20 kDa)-g[3.5]-PEG

(2 kDa); Surface Solutions, Dübendorf, Switzerland) at 10 μg/ml in PBS for 1 hour and then
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washed with 1x PBS. A sample of +astrocyte microcultures, evaluated by Hoechst staining of

nuclei, was found to have 12.3 ± 1.7 astrocytes per microculture, suggesting ample opportunity

for local interaction with resident neurons. Mass cultures were prepared by seeding astrocytes

and neurons (~650 cells/mm2) onto a coverslip coated with poly-D-lysine and laminin. Astro-

cyte-only mass cultures were produced by dissociating mass cultures of glia and neurons via

trypsinization at DIV 5–6. These cultures were then allowed to recover for 6–7 days prior to

removal of glucose. Unless otherwise stated, experiments were performed 9–14 days in vitro.

Neuronal survival

To test the effects of prolonged glucose deprivation on neuronal survival, culture medium of

microcultures and high density mass cultures were either removed and replaced with 1 mL of

incubation saline (1x wash) or washed twice (15 s each) with fresh aliquots of 1 mL of incuba-

tion saline before final incubation in 1 mL of incubation saline (3x wash). We estimated that

99% of conditioned medium was removed with 1x wash. The incubation saline solution con-

sisted of (in mM): 111.31 sodium chloride, 3.33 potassium chloride, 20 sodium bicarbonate, 10

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 2 calcium chloride, 1 magne-

sium chloride, 0.001 2,3-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide

(NBQX, Tocris), 0.05 D-(-)-2-Amino-5-phosphonopentanoic acid (D-APV, Tocris). High K+

incubation saline was made by equimolar exchange of 30 mM sodium chloride with potassium

chloride. Cultures were then placed in a humidified incubator (37˚C, 5% CO2/95% air) for 16

h. Neuronal survival was then assessed by incubating dishes for 30 minutes with Hoechst

33342 (5 μM) to label all nuclei and propidium iodide (3 μM) to identify neurons with com-

promised membranes, interpreted as cell death. Ten 20x fields were chosen semi-randomly

(must have at least one identifiable viable or non-viable neuron via phase microscopy) for each

condition, yielding ~50 cells total per condition. Cell counts were performed using ImageJ

(ImageJ Software; NIH, Bethesda, MD) thresholding and counting algorithms. Survival was

quantified as the ratio of propidium iodide-negative cells to the total number of neurons

(times 100%). Survival experiments were conducted as a dependent sample design; sibling cul-

tures from the same litter were simultaneously seeded and treated, and means of independent

replicate experiments were compared by repeated measures statistics.

Electrophysiology

Whole-cell electrophysiological recordings were performed at room temperature on the stage

of an Eclipse TE2000-S inverted microscope. Data were collected using a Multiclamp 700B

amplifier and Digidata 1550 data acquisition board (Molecular Devices) using pClamp 10 soft-

ware. Experiments studying evoked autaptic excitatory postsynaptic currents (EPSCs) used an

intracellular pipette solution consisting of (in mM): 140 potassium gluconate, 4 NaCl, 10

HEPES, 5 Ethylene glycol-bis(2-aminoethylether)-N,N,N0,N0-tetraacetic acid (EGTA, Sigma),

and 0.5 CaCl2. The pH was adjusted to 7.25 with KOH. Exogenous ATP, MgATP, and glucose

were not added to the whole-cell pipette solution. Following incubation in incubation saline

solution for ~16 hours, culture medium was exchanged with an extracellular recording solu-

tion for electrophysiological studies. Extracellular solution during voltage-clamp recordings

typically consisted of (in mM): 138 NaCl, 4 KCl, 10 HEPES, 2 CaCl2, 1 MgCl2, and 0.01

D-APV, pH 7.25, adjusted with NaOH.

Whole-cell recording pipettes were pulled from borosilicate glass capillary tubes (World

Precision Instruments) and exhibited 2–6 MO final open-tip resistances. Unless otherwise

stated, neurons in voltage-clamp mode were held at -70 mV. Access resistance was compen-

sated to 90–95% for evoked autaptic PSC recordings. Evoked autaptic PSCs were elicited with
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a 1.5 ms depolarizing pulse to 0 mV and data were sampled at 20 kHz, filtered at 10 kHz for

PSC recordings. Methods to monitor the recovery of EPSCs following vesicle depletion have

been described previously [9]. Briefly, after patching a solitary glutamatergic autaptic neuron,

autaptic EPSCs were evoked every 25 seconds until a stable baseline was achieved. Neurons

were then challenged with 90 mM KCl (equimolar substitution with NaCl) for 30 s to deplete

the total recycling vesicle pool. Immediately after high K+ application EPSCs were recorded

every 25 sec for at least 5 sweeps. The charge transfer of evoked EPSCs at each time point fol-

lowing vesicle depletion was normalized to the charge transfer of the averaged baseline EPSC.

Glycogen and lactate measurements

Glycogen content of cultures was determined by using a commercial kit (Abcam ab65620) fol-

lowing the manufacturer’s instructions. In brief, cells were rinsed with PBS, homogenized, and

centrifuged. Aliquots of supernatant were stored for glycogen and BCA protein assays (Thermo

Scientific). Glycogen values were normalized to the amount of protein in each sample.

Lactate concentration in the conditioned saline following prolonged glucose deprivation

was measured using the YSI 2900 analyzer (YSI Incorporated, Yellow Springs, OH) as per

manufactures directions. Conditioned saline (50 μl) was collected following incubation and

stored at -20˚C for ~1–2 weeks prior to measurement.

Data analysis

Data was analyzed and plotted using MetaMorph 7, Clampfit 10 (Molecular Devices), Excel

2011 (Microsoft), Prism 6 (GraphPad), and ImageJ. Unless otherwise stated, data in figures

and text are given as mean ± SEM. Student’s two-tailed unpaired t test was used to compare 2

groups unless otherwise noted. If more than 2 parameters were compared between 2 groups, a

Bonferroni correction was applied unless otherwise noted. A one-way ANOVA was used if

comparing more than two experimental conditions and a two-way ANOVA was implemented

when comparing the effects of at least two conditions over time or two distinct conditions

under at least two treatments. Significance was defined as a corrected p-value < 0.05. The

reported n refers to the number of neurons in each group within a particular experiment,

except in imaging/neuronal survival experiments where it refers the number of independent

culture platings. In all cases at least 3 independent cultures were surveyed, each contributing

equally to final N values.

Materials

D-APV, NBQX, and TTX were obtained from Tocris Biosciences. All materials without identi-

fied suppliers above were obtained from Sigma-Aldrich.

Results

Hippocampal neurons are resilient to prolonged glucose deprivation

To test the effect of prolonged glucose deprivation on neuronal survival, we incubated DIV

12–15 rat hippocampal microcultures for 16 h at 37˚C in defined, incubation saline solution

lacking glucose and trophic factors but containing glutamate receptor blockers to prevent sec-

ondary excitotoxicity (see Methods). We deemed this necessary because in pilot experiments

on 6 cultures challenged with glucose deprivation with and without glutamate receptor antago-

nists, we found significant blocker protection in half the experiments. The evidence for vari-

able excitotoxicity prompted us to perform all successive experiments in glutamate receptor

antagonists to mitigate excitotoxicity and focus results on core metabolic susceptibility. As
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schematized in Fig 1A, neuronal cell death was quantified with the fluorescent marker, propi-

dium iodide (Fig 1B, red fluorescence overlay). We were surprised to find that neither a simple

exchange of conditioned growth medium with 0-glucose saline (1x) nor multiple washes with

0-glucose saline to remove trace conditioned medium prior to prolonged glucose deprivation

(3x) resulted in significant cell death (Fig 1B and 1C). By comparison, survival in cultures

with no medium exchanges was 83 ± 6% (n = 3). The results of Fig 1 suggest that hippocampal

neuronal survival is quite tolerant of glucose deprivation in the absence of secondary excito-

toxicity. As expected, glycogen content in the cultures decreased with overnight glucose depri-

vation (S1 Fig), likely providing at least a partial explanation for the resilience.

By pharmacologically inhibiting glutamate receptors and circumventing excitotoxicity, we

isolated core contributions to neuroenergetic demise. However, this also decreased electrical

activity in the networks, which may aid neuroenergetic resilience. Synaptic transmission

accounts for the majority of ATP consumption,[1,2] and presynaptic ATP is quickly depleted

in an activity-dependent manner[8,28]. We reasoned that neuronal cell loss might be hastened

by a concurrent depolarization in the glucose-free saline (0 glucose + 30 mM KCl), which

Fig 1. Neuronal viability is resilient to prolonged glucose deprivation. (A) Schematization of survival protocol.

Culture medium was either exchanged for glucose-free saline prior to prolonged incubation (1x), or cultures were

washed twice in glucose-free saline prior to prolonged incubation in the 3rd application of glucose-free saline for 16 h

(3x). In some cases alterations were made to the incubation solution, such as the addition of 30 mM KCl, glucose, etc.

Following prolonged incubation, propidium iodide was used to identify nuclei of compromised neurons. (B) Sample

phase-contrast images of microcultures overlaid with red fluorescent propidium iodide stain (arrows) following

prolonged incubation in conditioned medium, 3x glucose deprivation, 3x glucose deprivation + K+, and 3x glucose

deprivation + K+, 250 μM glucose. Scale bar = 20 μm. (C) Summary of neuronal survival expressed as the percentage of

propidium iodide-negative neurons in 10 semi-randomly chosen fields (see Materials and Methods). Symbols are color

coded to indicate sibling cultures; different colors represent independent platings. (p<0.05, One-way ANOVA with

Dunnett’s multiple comparisons test with 3x glucose deprivation as control). Data are represented as mean ± SEM.
�p<0.05.

https://doi.org/10.1371/journal.pone.0195520.g001
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would simulate neuronal electrical activity and stimulate synaptic vesicle cycling, among other

energetic demands associated with depolarization[29–31]. Consistent with this idea, we found

that 3x medium exchange with glucose-free saline and 30 mM K+ produced significant neuro-

nal loss (Fig 1B and 1C). Interestingly, simple medium exchange with depolarizing glucose-

free saline resulted in no significant loss (Fig 1C). Addition of a 1:100 dilution of conditioned

medium to the 3x depolarizing glucose-free saline condition protected against death (Fig 1C),

verifying that cell survival in the 1x condition likely results from trace amounts of medium lin-

gering after the solution exchange. Similar protection was achieved by adding 250 μM glucose

(1:100 of that in culture medium) to the 3x depolarizing glucose-free saline, suggesting that

death resulted from glucose deprivation rather than from loss of trophic support (Fig 1C).

The other major component of culture medium that could readily serve as a source of ATP

production is pyruvate. However, dilute pyruvate (1:100; 0.0022 mM), did not significantly

increase survival during depolarizing glucose deprivation, indicating that pyruvate is unlikely

to account for the effect of dilute culture medium (Fig 1C). On the other hand, the full pyru-

vate concentration found in culture medium provided full protection (S2 Fig), consistent with

the idea that pyruvate is an effective neuronal energetic substrate. None of the treatments

depicted in Fig 1 produced notable propidium iodide staining in astrocytes or consistently

altered the morphological appearance of astrocytes (Fig 1B).

It is interesting that a significant fraction of neurons survived following the depolarizing

glucose deprivation condition. However, we found in three independent experiments that all

neurons and most astrocytes died following 16 h co-incubation in glucose-deprived medium

with 1 μM oligomycin to inhibit OXPHOS, regardless of the presence of depolarizing potas-

sium (S3 Fig). Thus, cells are indeed dependent on the combination of glycolysis and

OXPHOS during the 16 h period.

Synaptic transmission is unaffected by prolonged glucose deprivation

Although neuronal survival was maintained following prolonged glucose deprivation, synaptic

transmission may be more sensitive than survival as a result of the outsized ATP consumption

of neurotransmission[2,32]. To test tolerance of synaptic transmission to prolonged glucose

deprivation compared to glucose-incubated controls, we measured the charge transfer of

evoked EPSCs (Fig 2A and 2B black traces). In this experiment and throughout the rest of this

report, glucose deprivation is defined as the 3x wash condition applied for 16 h, and recordings

were performed in the same glycemic state. Like survival, EPSC charge transfer was unaffected

by prolonged glucose deprivation (Fig 2C). In addition, 16 h glucose deprivation did not alter

passive properties of neurons (S4 Fig). These data suggest that low-frequency, basal evoked

synaptic transmission tolerates prolonged glucose deprivation.

Previously, we found that a more energetically demanding synaptic task is sensitive to inhibi-

tion of OXPHOS[9]. During this high-demand task we measured recovery of evoked EPSCs fol-

lowing application of 90 mM KCl for 30 s, a protocol that depletes the total vesicle pool [33,34]

and found can be fueled by either neuronal glycolysis or by extracelluarly derived monocarbox-

ylates[9]. In the absence of glucose in the present work, it seems likely that monocarboxylates

would be the only remaining fuel source, but it is not clear whether endogenous levels following

glucose deprivation can sustain a high-demand task. We found that prolonged glucose depriva-

tion did not alter EPSC recovery after total vesicle depletion compared to sibling controls (Fig

2A and 2B gray traces 2D). These data show both basal and high-demand synaptic transmission

are unaffected by prolonged glucose deprivation. Taken together, these results suggest that neu-

ronal OXPHOS may still be intact following prolonged glucose deprivation and reflects another

facet of impressive neuronal resilience under stark, controlled conditions.

Tolerance to glucose deprivation
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Neuronal resilience during glucose deprivation is supported by endogenous

monocarboxylate shuttling

Because the composition of the cell culture medium during prolonged glucose deprivation was

defined and minimalist, we reasoned that the substrate available for neurons must be provided

by an endogenous, cellularly derived fuel source. Prevailing views suggest that astrocyte-

derived lactate, perhaps released in response to neuronal activity, is important for neuronal

OXPHOS and for sustaining ATP levels [35]. To test whether endogenously released monocar-

boxylates, such as lactate, account for neuronal resilience in the stark microculture environ-

ment, we obstructed monocarboxylate shuttling with the monocarboxylate transporter (MCT)

inhibitor, 4-CIN (100 μM), during 16 h glucose deprivation.

Co-incubation of neurons in 4-CIN and 0 glucose significantly reduced neuronal survival

(Fig 3A). Either trace (0.25 mM) or full (25 mM) glucose preserved neuronal survival in the

presence of 4-CIN, suggesting that cell death was unlikely due to off-target effects of the drug

(Fig 3A). These data also suggest that cells may be able to utilize even trace glucose to promote

neuronal survival, even when monocarboxylate transport is inhibited.

We also tested whether basal and high-demand synaptic transmission were compromised

by monocarboxylate transport inhibition (Fig 3B and 3C). We found that 16 h glucose depriva-

tion combined with 2 h monocarboxylate transport inhibition (to avoid cell loss observed in

Fig 2. Synaptic transmission is intact following prolonged glucose deprivation. (A,B) Representative baseline action

potential evoked EPSCs (black traces) and subsequent EPSC recovery following vesicle depletion (gray traces)

following control incubation in conditioned medium (A) and following prolonged glucose deprivation (B). (C)

Summary of baseline charge transfer following control incubation (black bar/symbols) or glucose deprivation (red bar/

symbols; p> 0.05, Student’s t-test). (D) Summary of recovery EPSCs following vesicle depletion protocol (90 mM KCl

applied for 30 sec) for conditioned medium (Control; black trace) compared to glucose deprivation (red trace;

p> 0.05; Two-way repeated measures ANOVA). Data are represented as mean ± SEM. n.s, non-significant.

https://doi.org/10.1371/journal.pone.0195520.g002
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Fig 3A) produced no deficit in basal transmission (Fig 3B) but compromised the ability of

evoked EPSCs to recover following K+-induced depolarization and vesicle depletion, as

described earlier (Fig 3C). These results suggest that neurons utilize monocarboxylate trans-

port to supply OXPHOS needed for neuronal survival and synaptic transmission following

prolonged glucose deprivation.

Local astrocyte support does not affect neuronal resilience to prolonged

glucose deprivation

The sensitivity of neurons to monocarboxylate transport inhibition suggests that endogenously

released monocarboxylates, perhaps lactate from neighboring astrocytes, may participate in

neuroenergetic resilience[35–37]. To test the role of local astrocyte lactate shuttling in neuro-

nal tolerance to glucose deprivation, we utilized our cell culture system which allows us to

grow neurons on either a bed of astrocytes (+astrocyte microcultures) or a bed of collagen,

void of local astrocyte support (-astrocyte microcultures) within the same cell culture dish and

Fig 3. Monocarboxylate shuttling underlies neuronal resilience during prolonged glucose deprivation. (A)

Neuronal survival was measured following prolonged incubation in indicated treatment conditions. The ‘+’ and ‘-’

indicate presence and absence, respectively. Data points represent individual cultures, color coded to indicate siblings

(one-way ANOVA with Dunnett’s multiple comparisons test). (B) Basal evoked EPSCs are not affected by the absence

(black bar/symbols) or presence (red bar/symbols) of monocarboxylate transport inhibitor, 4-CIN (100 μM for 2 h

preceding recording), following prolonged glucose deprivation (p> 0.05 Student’s t-test). (C) Cells from B were

subjected to K+-induced vesicle depletion, as in Fig 2D. EPSCs subjected to glucose deprivation without (black trace)

and with 4-CIN (red traces; p<0.05, Two-way repeated measures ANOVA). Summary data are represented as

mean ± SEM. �p<0.05. n.s., non-significant.

https://doi.org/10.1371/journal.pone.0195520.g003
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under the same global conditions[27]. We first examined neuronal survival on +astrocyte

microcultures compared to -astrocyte microcultures. In pooled results from 11 independent

culture platings, we found that survival within the same cell culture dish was 81 ± 4.4% (-astro-

cyte neurons) vs. 68 ± 5.4% (+astrocyte neurons) at baseline. In 0 glucose, similar results were

obtained in glucose deprived cultures (74 ± 4.1% survival in -astrocyte neurons vs. 64 ± 6.7%

survival in +astrocyte neuron counterparts). A two-way ANOVA revealed unexpected lower

overall survival in +astrocyte microcultures (p = 0.039), in contrast with local astrocyte support

hypothesis. The loss was evident in both glucose-containing medium as well with glucose dep-

rivation, suggesting the difference is unrelated to glucose-deprivation. Instead, this astrocyte-

associated loss could represent previously characterized astrocyte-associated neuronal apopto-

sis[38].Taken together, these data suggest that loss of local astrocyte support does not nega-

tively affect neuronal survival following prolonged glucose deprivation.

The astrocyte-neuron lactate shuttle hypothesis predicts that in response to glutamate

release from neurons, astrocytes increase glycolysis as a result of the Na+-dependent clearance

of glutamate from the synaptic cleft, resulting ultimately in lactate production and shuttling to

neurons to sustain excitatory neurotransmission[35]. To test the importance of local astrocyte

support in sustaining synaptic transmission in the context of glucose deprivation, we com-

pared basal and high-demand synaptic transmission of neurons grown without underlying

astrocytes (-astrocyte EPSCs) following prolonged incubation in control medium or glucose-

free saline. We previously showed that removal of local astrocytes does not affect either basal

or high-demand synaptic transmission when glucose is present[9].

Following prolonged glucose deprivation, basal evoked EPSCs from -astrocyte neurons

showed no decrement in total postsynaptic charge transfer relative to EPSCs from -astrocyte

glutamatergic neurons incubated in control conditions (Fig 4A–4C). Furthermore, glucose

deprivation did not alter -astrocyte EPSC recovery following K+-mediated vesicle depletion

(Fig 4A, 4B and 4D). Because of the previously reported importance of OXPHOS to EPSC

recovery, this result suggests that absence of local astrocyte support does not impair OXPHOS

enough to reduce transmission during this high-demand task. Taken together, these findings

suggest that local, glutamate-stimulated astrocyte shuttling is not responsible for sustaining

OXPHOS-dependent presynaptic demand, even following prolonged glucose deprivation.

Rather, it is possible that global ambient lactate is important for neuroenergetic resilience of

synaptic transmission.

Increased extracellular lactate mediates neuronal resilience during

prolonged glucose deprivation

The results above suggest that global monocarboxylate concentration, not local, on-demand

shuttling, might participate in neuroenergetic resilience observed under reduced conditions.

To study lactate’s potential role in survival, we tested differences in neuronal survival between

mass cultures and microcultures, reasoning that lactate levels in conventional mass cultures,

which contain larger numbers of astrocytes (schematized in Fig 5A)[38], may exhibit more lac-

tate output. As observed in Fig 1, microculture neuronal survival was sensitive to depolarizing

glucose deprivation. However, mass cultures were resistant to the same treatment (Fig 5B).

Lactate measurements from the two culture environments revealed that lactate concentrations

were significantly higher in mass cultures compared to microcultures. Within each group, lac-

tate concentrations were similar in depolarizing or non-depolarizing saline (Fig 5C). We were

surprised that any lactate could be produced and maintained for 16 h in the absence of glucose.

Indeed, following 16 h incubation in glucose-containing saline (10 mM), mass cultures exhib-

ited much higher extracellular lactate (2.70 ± 0.14 mM; N = 3 cultures), so lactate levels were
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compromised following prolonged glucose deprivation, but not abolished. Further, we mea-

sured lactate at early time points following the switch from conditioned medium. These results

revealed a rapid increase in extracellular lactate but failed to reveal an effect of depolarization

on lactate at any time point (S5 Fig).

Neuronal survival was diminished in mass cultures when monocarboxylate transport was

inhibited during prolonged glucose deprivation (Fig 5D). However, neuronal death was not as

pronounced at either 100 μM or 300 μM 4-CIN in mass cultures compared to microcultures

treated with 100 μM 4-CIN (Fig 3). The difference seems likely due to higher levels of lactate

and the competitive nature of 4-CIN antagonism. Based on these results, we hypothesized that

mass-culture concentrations of lactate are neuroprotective against depolarizing glucose depri-

vation while concentrations of lactate in microculture cannot sustain resilience.

To verify that the observed lactate originates from astrocytes, we compared lactate levels of

astrocyte cultures lacking neurons following incubation in glucose-free saline (Fig 5E, black

bars) and depolarizing glucose-free saline (Fig 5E, gray bars) with that found in sibling neu-

ron-astrocyte co-cultures. Astrocyte-only mass cultures and neuron-astrocyte co-cultures

were matched for astrocyte numbers (co-cultures: 66.6 ± 19.6 glia per field; astrocyte-only cul-

tures: 77.3 ± 27.4 glia per field; N = 4 cultures). Lactate concentrations observed in astrocyte-

only cultures were not significantly different than those measured from co-cultures in both

glucose-free and depolarizing glucose-free saline (Fig 5E). These data suggest that extracellular

Fig 4. Loss of local astrocyte support does not affect basal or high-demand transmission following prolonged

glucose deprivation. (A,B) Representative baseline evoked EPSCs (black traces) and subsequent recovery following

K+-evoked vesicle depletion (gray traces) of -astrocyte neurons incubated in conditioned medium (A, Control) and

following prolonged glucose deprivation (B, 0 Glucose). (C) Summary of baseline charge transfer following prolonged

incubation in either conditioned medium (Control; black bar/symbols) or glucose deprivation (red bar/symbols;

p> 0.05, Student’s t-test). (D) Summary of recovery of evoked EPSCs following K+-induced vesicle depletion for

conditioned medium controls (black trace) compared to glucose deprivation (red trace; p> 0.05; Two-way repeated

measures ANOVA). Data are represented as mean ± SEM. n.s., non-significant.

https://doi.org/10.1371/journal.pone.0195520.g004
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lactate following prolonged incubation in glucose-free saline, with or without concurrent

depolarization, originates from astrocytes. As a test of whether protective lactate in mass cul-

tures originates from glutamate-stimulated lactate release, we inhibited glutamate uptake with

50 μM D,L-TBOA. This treatment did not affect neuronal survival (S6 Fig), consistent with the

idea that lactate efflux is not ‘on-demand’ under these conditions

To test the hypothesis that ambient lactate differences underlie the differences in resilience

between mass cultures and microcultures, we added 0.35 mM lactate to microculture glucose-

free saline to match the concentration found in mass cultures. Lactate imparted survival toler-

ance to microcultures during depolarizing glucose deprivation (Fig 5F and 5G). Taken

together, these data suggest that increased concentrations of extracellular lactate released by

the global population of astrocytes increases neuronal resilience to prolonged glucose depriva-

tion, even when energetic demands are increased by depolarization.

Discussion

In this study we investigated the effects of prolonged glucose deprivation on neuronal survival

and synaptic physiology in a reduced, controlled environment. After 16 h incubation in glu-

cose-free saline, both neuronal viability and synaptic function were preserved. Depolarization

decreased survival during glucose deprivation, but trace amounts of glucose in the incubation

saline restored tolerance. Inhibition of monocarboxylate transport, which supplies substrates

to the TCA cycle/OXPHOS, also significantly decreased neuronal survival, and trace glucose

overcame this effect. Recovery of synaptic transmission following vesicle depletion, a task pre-

viously found to be sustained preferentially by OXPHOS[9], remained intact following pro-

longed glucose deprivation. Interestingly, local lactate shuttling from astrocytes in immediate

contact with neurons was not required for resilience of survival or synaptic signaling. Instead,

bulk lactate maintained the OXPHOS required for high-demand transmission. Overall, our

work demonstrates that ambient lactate can preserve neuronal survival and synaptic transmis-

sion even in the absence of glucose.

We previously demonstrated that neurons flexibly source substrates available in the extra-

cellular milieu to maintain presynaptic function[9]. When ATP production is acutely inhib-

ited, synaptic transmission is completely abolished, demonstrating the importance of ongoing

Fig 5. Ongoing, global lactate release supports neuronal resilience to glucose deprivation. (A) Schematic of

microcultures and high-density mass cultures. Compared with mass cultures (right), microcultures (left) typically

contain fewer neurons (black dots) and fewer astrocytes overall (blue circles), but with similar local density of

astrocytes [38]. (B) Survival of microcultures and mass cultures, incubated in either glucose-free saline (0 glucose,

black dots) or in glucose-free depolarizing saline (+KCl, gray dots). Lines connect sibling cultures. Two-way ANOVA

with repeated measures for depolarization state showed a significant interaction between culture condition and

depolarization state (p< 0.001). Results of post-hoc, Bonferroni-corrected multiple comparisons are indicated above

symbols. (C) Summary of lactate concentrations measured from microcultures and mass cultures following prolonged

incubation in glucose-free saline (black bars) or glucose-free depolarizing saline (gray bars; Two-way ANOVA with no

significant difference between glucose deprivation ± KCl and p< 0.001 between microculture and mass culture). (D)

4-CIN induces neuronal loss in mass cultures at both 100 μM (teal dots) and 300 μM (burgundy dots). Lines connect

sibling cultures. One-way repeated measures ANOVA with Dunnett’s multiple comparisons test with glucose

deprivation as control. (E) Lactate concentration measured in mass cultures in the absence of neurons does not differ

from that measured in the presence of neurons. Black bars indicate prolonged glucose deprivation and gray bars

indicate prolonged depolarizing glucose deprivation (+KCl; p> 0.05, Two-way ANOVA). (F) Summary of neuronal

survival for microcultures incubated in glucose-free saline with or without 0.35 mM lactate added to mimic mass

culture lactate. Two-way ANOVA with repeated measures for depolarization state revealed a significant interaction

between lactate and depolarization state (p < 0.05). Results of post-hoc Bonferroni corrected multiple comparisons are

indicated above symbols. (G) Summary of lactate concentrations measured from microcultures with or without added

lactate, confirming persistence of lactate addition (Two-way ANOVA with no significant difference between glucose

deprivation ± KCl and p< 0.0001 between microculture ± lactate). Data are represented as mean ± SEM. �p<0.05.
��p<0.01. ���p<0.001. ����p<0.0001. n.s., non-significant.

https://doi.org/10.1371/journal.pone.0195520.g005
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ATP production for presynaptic function. Despite the need for ongoing ATP production, here

we show that neurons can survive and function many hours in the absence of glucose. We

have previously shown that either glycolysis or OXPHOS alone can sustain low-frequency neu-

rotransmission. However recovery of EPSCs after vesicle depletion is sensitive to perturbations

in OXPHOS[9]. Our data suggest that OXPHOS can sustain high-demand neurotransmission

through endogenous factors produced during glucose-free incubation. Exogenous fuels cannot

explain resilience because the incubation medium contained no fuels, including monocarbox-

ylates or amino acids.

Our initial work focused on the importance of lactate mediating neuronal resilience to pro-

longed glucose deprivation. This was driven by previous studies demonstrating lactate’s release

into the extracellular space during synaptic activity[36,39–41] and lactate’s ability to sustain

neurotransmission in the absence of glucose[4–6,22,40,42–46]. Although our results show that

lactate can affect neuronal viability and function following prolonged glucose deprivation, our

work did not directly assess the source of lactate. Astrocytes contain glycogen reserves that are

utilized during limited glucose availability (S1 Fig)[4,7,13,47,48]. However these stores are rap-

idly depleted in intact systems following glucose deprivation[13]. Perhaps the high glucose

concentrations found in cell culture media enable astrocytes to store more glycogen or glucose

itself, compared to intact systems[49], thus allowing astrocytes to sustain extracellular lactate

levels longer. It is also possible that astrocytes utilize other endogenously produced substrates,

such as organic acids, nucleosides, amino acids like glutamate[50–52], fatty acids and ketone

bodies[23,51,53–55]. Glutamate in particular is an interesting candidate because it can be con-

verted into α-ketogluterate and then metabolized through pyruvate recycling[56,57] and

OXPHOS[52,58–60]. These substrates were not constituants of the defined culture medium

used to challenge cells in our experiments, but it is conceivable that endogenous supplies par-

ticipate in sustaining neurons. Future work can test the contribution of these metabolic sub-

strates contributes to the resilience of neuronal survival and function.

Lactate utilization in the brain has been highly debated, but a cornerstone has been the

astrocyte-neuron lactate shuttle hypothesis[35]. By this hypothesis, release of glutamate trig-

gers in succession: astrocytic glutamate uptake, intracellular sodium elevation, Na+/K+ ATPase

activity, astrocyte glycolysis, and lactate efflux. Unfortunately, the relevance of the local shuttle

is difficult to test directly because of the obstacle of removing local astrocyte support in most

experimental preparations. Despite their limitations, microcultures offer perhaps a unique

opportunity to compare neurotransmission directly with and without local astrocyte support,

while leaving global factors unperturbed[27]. Although microcultures may not recapitulate all

of the details of local interactions found in vivo, neuronal processes are often enveloped by

astrocytes[61], and astrocyte glutamate uptake during synaptic signaling is similar to in situ
hippocampal preparations[62,63]. These observations suggest that the reduced preparation

retains key local interactions that could support local shuttling. Nevertheless, local astrocyte

absence had no effect on a high-demand, OXPHOS-dependent presynaptic task (Fig 4).

Instead, our results suggest that astrocyte support from unstimulated, global lactate efflux is

sufficient to sustain neuronal function during glucose deprivation. Of course, we cannot

exclude the possibility that in the more complex, three-dimensional context of the brain, cellu-

lar interactions could differ, including more prominent local interactions.

Neuronal viability was compromised by depolarizing glucose deprivation in microcultures

but not mass cultures. Increased astrocyte numbers in the mass cultures imparted a higher

extracellular lactate concentration than microcultures, a concentration difference of 0.2 mM

vs. 0.5 mM (Fig 5D and 5E). By comparison, basal interstitial lactate concentrations in human

brain are ~0.6 mM, with activity dependent rises in the range of 0.3–0.9 mM[41,64]. On the

other hand basal lactate levels in rodent visual cortex measured electrochemically are<0.1
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mM[65]. It is interesting to consider that survival resilience may vary by species and/or by

brain region in part due to extracellularly available lactate.

The presence or absence of neurons did not significantly affect ambient lactate (Fig 5E).

The lack of a detectable difference in lactate concentration between mass cultures with or with-

out neurons may be due to the absence of postsynaptic receptor activation during prolonged

glucose deprivation. Postsynaptic activation adds a large energetic load[1,2], and the absence

of this energy sink in our experiments may account for the lack of detectable bulk lactate con-

sumption by neurons. Indeed, our experiments lacked explicit exploration of the role of post-

synaptic receptor function in neuroenergetic vulnerability and focused on presynaptic

demands[8,28,66,67]. Experimental study of postsynaptic receptor contributions to energetic

demand is challenging because of the positive feedback nature of postsynaptic excitation and

glutamate release[68–70], but perhaps future studies will consider clever methods to interrupt

runaway excitation to probe the energetic cost of postsynaptic receptor activation.

The prolonged glucose deprivation and concurrent depolarization required for vulnerabil-

ity not only depolarizes neurons but also affects astrocytes. Elevated extracellular [K+] rapidly

stimulates astrocyte glycolysis[29,39,71–74] which underlies increased lactate release[39,75].

We were therefore surprised to observe no significant change in lactate concentrations in

either microcultures or mass cultures following prolonged incubation in depolarizing glucose-

free saline compared to non-depolarizing glucose deprivation (Fig 5). The timing of lactate

measurements following depolarization could influence the ability to detect a depolarization-

related component of lactate efflux. In our study, lactate was typically measured following a 16

h incubation compared to< 1 h[75] or< 20 min[39,73,74,76]. However, measurements of lac-

tate soon after depolarization still failed to achieve significant differences (S5 Fig), so the basis

of this discrepancy remains unresolved.

Resilience to depolarizing glucose deprivation and to glucose deprivation + 4-CIN was re-

established in microcultures with as little as 250 μM glucose (Figs 1C and 3A). Glucose was

effective in the presence of monocarboxylate transport inhibition, suggesting that trace glucose

may be directly utilized by neurons. On the other hand, 4-CIN is a low-potency antagonist

(Fig 5D). Thus, it is possible that trace glucose, in the presence of a non-saturating 4-CIN con-

centration, triggers sufficient astrocyte glycolysis and lactate efflux to provide neuroprotection.

Regardless of whether direct neuronal utilization or indirect astrocyte participation explains

survival resilience in trace glucose, because 250 μM glucose is well below the Kd value for even

high affinity glucose transporters[77], it appears that very modest glucose uptake is sufficient

to support survival resilience.

Finally, we acknowledge that resilience studied in the present work could be influenced by the

conditions under which the cells were cultivated. For instance, culture preparations are typically

prepared and maintained under high-glucose conditions[78,79]. Developmental glucose levels, or

levels of any number of factors present in culture medium, could affect neuroenergetic tolerance.

Resilience could also represent a feature of the immature cellular state inherent to cultures. There-

fore, resilience may represent what neurons are capable of but not necessarily what they normally

do. It should be noted that other in vitro preparations generally regarded as ‘intact’ also come with

caveats, including metabolic disturbances in brain slices as a result of preparation [80]. The molec-

ular mechanisms identified here, because they demonstrate the capabilities of neurons, are worthy

of further exploration, with the aim of imparting facets of this resilience to neurons in more com-

plex contexts in vivo, where neurons may exhibit more vulnerability.

In summary, our results highlight the high tolerance of neuronal survival and presynaptic

function when deprived of glucose. We found that glucose-stimulated, local astrocyte lactate

shuttling does not account for the resilience of synaptic transmission, however global extracel-

lular lactate supports neuronal viability and signaling.
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Supporting information

S1 Fig. Glycogen depletion with glucose derivation. Glycogen measurements were per-

formed from mass cultures by commercial fluorometric assay according to the manufacturer’s

instructions (Abcam catalogue number ab65620). Protein content was determined by BCA.

Lines connect pairs of sibling cultures. Results showed a significant reduction in glycogen with

glucose deprivation (p = 0.03, n = 6, Wilcoxon signed rank test). The inset shows values nor-

malized to the corresponding 10 mM value.

(TIF)

S2 Fig. High pyruvate concentration (0.22 mM) provides full neuroprotection. Colors cor-

respond to sibling cultures. One-way ANOVA with Dunnett’s multiple comparisons. Data are

represented as mean ± SEM. �p<0.05, n.s non-significant.

(TIF)

S3 Fig. Oligomycin added to glucose deprivation devastates neuronal survival. A. Survival

of neurons following glucose deprivation. B. Neurons and most astrocytes were eliminated by

addition of 1 μM oligomycin to the incubation solution. Photomicrographs are representative

of 3 independent experiments. Scale bar, 25 μm.

(TIF)

S4 Fig. Passive properties after glucose deprivation. Experimental conditions were 0 glucose

and 10 mM glucose conditions were incubated in defined saline solution containing the indi-

cated glucose for 16 h prior to recording in the same glucose condition. No effect of glucose

deprivation was detected on any parameter. Holding current (Hold) was current at -70 mV.

(TIF)

S5 Fig. Extracellular lactate measurements at early time points following glucose depriva-

tion in mass cultures.

(TIF)

S6 Fig. Effect of 50 μM D,L-TBOA on survival of mass culture neurons in 4 independent

experiments. Incubations in all treatments were for 16 h. K+ concentration was 30 mM.

(TIF)

S1 Data. Supporting information. Data for all figures and supplemental figures.

(XLSX)
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