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Abstract

Background

Anti-inflammatory drug development efforts for lung disease have been hampered in part by

the lack of noninvasive inflammation biomarkers and the limited ability of animal models to

predict efficacy in humans. We used 18F-fluorodeoxyglucose (18F-FDG) positron emission

tomography (PET) in a human model of lung inflammation to assess whether pioglitazone, a

peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, and zileuton, a 5-lipoxygen-

ase inhibitor, reduce lung inflammation.

Methods

For this single center, single-blind, placebo-controlled cohort study, we enrolled healthy vol-

unteers sequentially into the following treatment cohorts (N = 6 per cohort): pioglitazone

plus placebo, zileuton plus placebo, or dual placebo prior to bronchoscopic endotoxin instil-

lation. 18F-FDG uptake pre- and post-endotoxin was quantified as the Patlak graphical anal-

ysis-determined Ki (primary outcome measure). Secondary outcome measures included

the mean standard uptake value (SUVmean), post-endotoxin bronchoalveolar lavage (BAL)

cell counts and differentials and blood adiponectin and urinary leukotriene E4 (LTE4) levels,
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determined by enzyme-linked immunosorbent assay, to verify treatment compliance. One-

or two-way analysis of variance assessed for differences among cohorts in the outcome

measures (expressed as mean ± standard deviation).

Results

Ten females and eight males (29±6 years of age) completed all study procedures except for

one volunteer who did not complete the post-endotoxin BAL. Ki and SUVmean increased in

all cohorts after endotoxin instillation (Ki increased by 0.0021±0.0019, 0.0023±0.0017, and

0.0024±0.0020 and SUVmean by 0.47±0.14, 0.55±0.15, and 0.54±0.38 in placebo, pioglita-

zone, and zileuton cohorts, respectively, p<0.001) with no differences among treatment

cohorts (p = 0.933). Adiponectin levels increased as expected with pioglitazone treatment

but not urinary LTE4 levels as expected with zileuton treatment. BAL cell counts (p = 0.442)

and neutrophil percentage (p = 0.773) were similar among the treatment cohorts.

Conclusions

Endotoxin-induced lung inflammation in humans is not responsive to pioglitazone or zileu-

ton, highlighting the challenge in translating anti-inflammatory drug efficacy results from

murine models to humans.

Trial registration

ClinicalTrials.gov NCT01174056.

Introduction

Lung diseases contribute significantly to overall morbidity and mortality. Chronic lower respi-

ratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma, are the

third leading cause of death in the US [1]. In COPD and asthma, as well as acute respiratory

distress syndrome (ARDS), increased neutrophils are seen in the lungs, and increasing num-

bers of lung neutrophils correlate with disease severity [2–11]. Inhaled and systemic corticoste-

roid therapy has therefore been a mainstay for treating these diseases; however, certain

phenotypes of these disease are insensitive to steroid therapy [12]. Efforts to identify new anti-

inflammatory treatments to overcome such treatment resistance or to reduce the functional

impact of lung disease, however, have met with limited success [13–16].

Two factors contribute in part to the limited successes of lung anti-inflammatory drug

development. One is the inability of animal models to predict whether pulmonary anti-inflam-

matory drugs will be effective in humans has contributed in part to the difficulties of drug

development in this area [17, 18]. Therefore, human models would potentially be of greater

value for studying inflammatory pathways and may better predict the efficacy of pulmonary

anti-inflammatory drugs. One such model of experimentally induced lung inflammation using

endobronchially instilled endotoxin in healthy volunteers was developed for this purpose [19].

In this model, the endotoxin leads to a self-limited, neutrophilic inflammatory response that

exhibits proteomic responses similar to those seen in ARDS patients [20]. Therefore, this

model could be used to assess the effects of anti-inflammatory drugs in humans.

Another is the lack of noninvasive, quantitative biomarkers that accurately reflect the bur-

den of inflammation in the lungs further hampers anti-inflammatory drug development efforts
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[13]. PET imaging with 18F-fluorodeoxyglucose (18F-FDG) has been used to image the lungs’

inflammatory burden in ARDS and COPD patients [21–24]. PET imaging of 18F-FDG uptake

can also detect the mild lung inflammation induced by endobronchial-instilled endotoxin in

healthy volunteers [25] and has been used to demonstrate the anti-inflammatory effect of the

cholesterol-lowering drug lovastatin in this model [26]. Therefore, using this human model

with 18F-FDG PET imaging could be a useful way to screen drugs for anti-inflammatory effi-

cacy prior to evaluation in larger and more complicated patient clinical trials.

Multiple studies suggest that the peroxisome proliferator-activated receptor-γ (PPAR-γ)

agonist pioglitazone reduces inflammation in animal models of lung injury, at least in part by

blocking the production of the neutrophil chemoattractant and activator IL-8 [27–31]. Treat-

ment with the 5-lipoxygenase inhibitor zileuton has also been shown to reduce inflammation

by blocking the production of the neutrophil chemoattractant leukotriene B4 (LTB4) [32, 33].

Given that drug pharmacokinetics are known to vary among animals and humans [34, 35], we

designed this study to determine whether these anti-inflammatory effects observed in animal

models would also be observed in humans. This study tested whether pioglitazone or zileuton

as single agents could reduce endotoxin-induced lung inflammation in healthy volunteers.
18F-FDG uptake, quantified as the Ki determined by Patlak graphical analysis, was the primary

outcome measure. BAL cell counts and peripheral blood clinical parameters were secondary

outcome measures, and mean standard uptake value (SUVmean) for quantifying 18F-FDG

uptake and BAL fluid assays were exploratory outcome measures.

Materials and methods

Ethics, consent, and permissions

This study was approved by the Washington University Institutional Review Board (protocol

#201101731) and conducted under Investigational New Drug application #100042 for endo-

toxin. All volunteers gave written informed consent to participate. This trial was registered on

clinicaltrials.gov (#NCT01174056) and conducted according to the principles expressed in the

Declaration of Helsinki.

Study design, participant and procedure flow

This study was approved by the Washington University Institutional Review Board (protocol

#201101731) and conducted under Investigational New Drug application #100042 for endo-

toxin. All volunteers provided written informed consent to participate. We conducted a sin-

gle-center, single-blind, placebo-controlled cohort study from February 2012 to March 2014

with volunteers enrolled sequentially into the following treatment groups, in order: 1) pioglita-

zone plus matching placebo for zileuton (pioglitazone cohort), 2) matching placebo for piogli-

tazone plus zileuton (zileuton cohort), 3) placebo plus placebo (placebo cohort). Eligible

participants had no history of cardiopulmonary disease and normal results on screening spi-

rometry, chest radiograph, electrocardiogram, and bloodwork. Fig 1 shows the study proce-

dure outline. FDG-PET imaging was performed the day before and at approximately 24 hours

after endotoxin instillation. See S1 File for additional methods.

This study was originally designed with a fourth cohort to test combined treatment with

pioglitazone and zileuton based on data showing that 5-lipoxygenase inhibition blocked rosi-

glitazone’s anti-inflammatory effect in a rodent stroke model [36]. To reduce unnecessary

study drug exposure in healthy volunteers in the event that pioglitazone had no anti-inflamma-

tory effect, we conducted a planned interim analysis comparing the Ki values in the pioglita-

zone cohort to previously published post-endotoxin control values [25, 26], which showed no
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difference. Therefore, volunteers were enrolled only into the single-agent pioglitazone and

zileuton treatment cohorts as well as the placebo cohort.

Treatments

Endotoxin (Escherichia coli O113:H10K) was obtained from the National Institutes of Health

(NIH) Clinical Center and instilled bronchoscopically (4 ng/kg) in the right middle lobe as

previously described [26]. Pioglitazone (Takeda Pharmaceuticals, 45 mg/day orally for two

weeks) and zileuton (Cornerstone Pharmaceuticals, 600 mg orally every six hours for five

days) were given prior to endotoxin instillation, according to the schedule shown in Fig 1.

Both drugs were purchased commercially and over-encapsulated to match the placebo for

blinding purposes. Volunteers were enrolled into each treatment cohort sequentially with

N = 6 in each group.

FDG-PET image acquisition and analysis

Sixty minutes of dynamic PET images were obtained on a Siemens Biograph 40 PET/CT scan-

ner after intravenously injecting 370 ± 18 MBq (10.0 ± 0.5 mCi) of 18F-FDG. Venous blood

samples were obtained throughout the scan as previously described [25, 26]. A low-dose com-

puted tomography (CT) scan was obtained for attenuation correction of the PET images.

All scans were analyzed using Integrated Research Workflow 4.0 (Siemens) as previously

described [25, 26, 37]. Briefly, the baseline and post-endotoxin PET and CT scans were core-

gistered. Volumes of interest (VOIs) were then placed on the CT images in areas of post-proce-

dure airspace inflammation and transferred to the PET images to extract the time-activity

curves. The Patlak graphical analysis was used to calculate the influx constant Ki [38, 39]. The

SUVmean at 60 min after tracer injection was quantified for 18F-FDG uptake from the same

VOIs used for the Patlak analysis.

Fig 1. Study design, participant and procedure flow. Reasons for screen failures were: Elevated alanine aminotransferase level (N = 5); % predicted forced

expiratory volume in one second (FEV1) and/or forced vital capacity (FVC)< 90% (N = 6); minimal airway obstruction on pulmonary function testing

(N = 1); abnormal chest x-ray (N = 1); abnormal electrocardiogram (N = 1); history of childhood asthma (N = 1); smoking within 1 year of enrollment

(N = 1); body mass index outside range (N = 1). Withdrawals were volunteers who signed the consent after completing the screening procedures and were

given the blinded study drugs but withdrew from the study prior to initiating the imaging and bronchoscopy procedures and were lost to follow up.

FDG-PET = positron emission tomography imaging with 18F-fluorodeoxyglucose. i.b. = intrabronchial. qD = once per day. Q6hr = once every six hours.

https://doi.org/10.1371/journal.pone.0191783.g001
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BAL procedures, assays and analysis

BAL was performed and the fluid processed as previously described [37]. All three retrieved

aliquots were pooled into a single sample. BAL cell counts and differentials were determined

as previously described [25, 37]. BAL fluid filtered through gauze was processed and stored at

-80˚ C until ready for analysis. Given that the interim analysis was negative for the primary

outcome measure, assays for 5- and 15-hydroxyeicosatetraenoic acid (5-HETE and 15-HETE,

respectively), lipoxin A4 (LXA4), LTB4, and LTE4 were performed as exploratory analyses on a

subset of BAL fluid samples.

Blood and urine assays

Serum and urine obtained at the screening visit and on the day before endotoxin instillation

were kept frozen at -80o C. Serum adiponectin levels were measured using an enzyme-linked

immunosorbent assay (ELISA) kit (Millipore, catalog #EZHADP-61K) according to the manu-

facturer’s instructions. Levels of urinary LTE4 were measured by ELISA (Cayman Chemical,

catalog #520411) as previously described [40] and normalized for creatinine, measured by

mass spectrometry as described in the S1 File. Toll-like receptor 4 (TLR4) single nucleotide

polymorphisms (SNPs) Asp299Gly (rs4986790) and Thr399Ile (rs4986791), associated with

decreased endotoxin responsiveness, were tested in all volunteers [41]. DNA was extracted

from whole blood using the PureGene protocol (Qiagen) according to the manufacturer’s

instructions and sent for genotyping by DNA Genotek, Inc. (Kanata, Ontario).

Statistical analysis

A sample size of six per group was chosen based on data from prior studies [25, 26]. A

one-way analysis of variance (ANOVA) was utilized to compare baseline characteristics

among all treatment cohorts (SigmaPlot 12.5, Systat Software, Inc.). Two-way repeated mea-

sures ANOVA with endotoxin status (pre- or post-instillation) and treatment cohort as co-

variates and Tukey’s method for post-hoc analysis (when applicable) was used to assess for

endotoxin-induced changes in clinical parameters (including vital signs, cellular differentials,

and pulmonary function tests), Ki and SUVmean from the PET data, and adiponectin and

uLTE4 levels. A few Ki values were slightly negative; these were set to zero for the analysis. Bon-

ferroni correction for multiple comparisons was applied to the statistical results for the clinical

parameters. Differences in the BAL cell counts among the cohorts was determined by one-way

ANOVA.

Results

Participant flow and clinical characteristics

We enrolled 38 volunteers, with 17 failing screen procedures and three withdrawing consent

after screen, leaving 18 total volunteers who completed all imaging procedures. The endotoxin

was instilled in the lateral segment of the right middle lobe in all volunteers except for one vol-

unteer in whom it was instilled in the medial segment. One volunteer in the placebo cohort

experienced a prolonged recovery period from the anesthesia for the endotoxin instillation

bronchoscopy; therefore, the BAL bronchoscopy procedure for this volunteer was canceled,

leaving 17 volunteers who completed all study procedures (both imaging and bronchoscopy).

The participant flow is summarized in Fig 1. All volunteers reported at least one of a number

of expected mildly severe symptoms, such as joint aches, sore throat, and cough, after the bron-

choscopy for endotoxin instillation. No unexpected or serious adverse events related to the
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PLOS ONE | https://doi.org/10.1371/journal.pone.0191783 February 7, 2018 5 / 17

https://doi.org/10.1371/journal.pone.0191783


study occurred during the course of the trial. Detailed adverse event reporting is listed in the

S2 File.

No significant differences among the cohorts were noted in the baseline clinical characteris-

tics of the volunteers with evaluable image data (Table 1). The frequency of symptoms and

changes in clinical parameters after endotoxin did not differ among the cohorts except for the

percentage of blood neutrophils, which increased significantly only in the placebo group

(Table 2). Significantly increased leukocytosis, peripheral blood neutrophilia, and C-reactive

protein, but not erythrocyte sedimentation rate, were observed after endotoxin in all cohorts.

No significant changes in lung function measures were noted.

Pioglitazone and zileuton effect on 18F-FDG uptake

Representative PET/CT images are shown in Fig 2. Post-procedure airspace inflammation

were noted on the CT images in all volunteers after endotoxin instillation. The average CT

volumes and numbers of PET voxels within the VOIs was similar across cohorts and is

Table 1. Baseline clinical characteristics.

Parameter� Placebo (N = 6) Pioglitazone (N = 6) Zileuton (N = 6) P-value

Age (years) 29 ± 3 31 ± 6 31 ± 8 0.891

Gender 3F/3M 3F/3M 4F/2M N/D

Race/Ethnicity 4 African-American; 1 African-American/Latino; 1

Caucasian

2 African-American; 4

Caucasian

2 African- American; 4

Caucasian

N/D

Vital Signs

Temperature, ˚C 36.8 ± 0.4 36.8 ± 0.3 36.3 ± 0.4 0.031

Heart rate, beats/min 68 ± 6 73 ± 12 74 ± 9 0.557

Blood pressure, mm HG, systolic 117 ± 6 121 ± 16 119 ± 10 0.841

Blood pressure, mm HG, diastolic 74 ± 6 77 ± 8 74 ± 6 0.713

Mean arterial pressure, mm Hg 88 ± 5 92 ± 11 89 ± 7 0.753

SaO2, % on room air 99 ± 1 98 ± 1 99 ± 1 0.250

Respiratory rate, breaths/min 18 ± 2 17 ± 1 17 ± 2 0.853

Pulmonary function tests

FEV1, L 3.3 ± 1.5 4.1 ± 0.7 3.7 ± 0.7 0.853

% predicted FEV1 98 ± 5 105 ± 10 103 ± 9 0.294

FVC, L 3.8 ± 0.6 5.1 ± 1.1 4.7 ± 0.7 0.059

% predicted FVC 97 ± 6 108 ± 10 110 ± 14 0.081

Complete blood counts

White blood cells, 103/ml 5.4 ± 2.0 5.8 ± 1.4 6.6 ± 1.0 0.400

% neutrophils 52 ± 8 61± 10 63 ± 6 0.079

Hemoglobin, g/dl 13 ± 1 13 ± 1 13 ± 2 0.954

Hematocrit, % 39 ± 3 38 ± 4 39 ± 5 0.903

Platelets, 1000/mm3 246 ± 40 237 ± 55 226 ± 61 0.819

Erythrocyte sedimentation rate (ESR),

mm/hr

6.2 ± 2.5 8.0 ± 1.9 7.0 ± 5.5 0.689

C-reactive protein (CRP), mg/L 0.9 ± 0.9 0.5 ± 0.7 0.6 ± 0.6 0.429

�No significant differences were found. p < 0.003 required for statistical significance with Bonferroni correction for multiple comparisons. Statistical testing was not

performed for gender or racial/ethnicity distributions (N/D).

Data shown as mean ± standard deviation.

FEV1: Forced expiratory volume in 1 second

FVC: Forced vital capacity

https://doi.org/10.1371/journal.pone.0191783.t001

FDG PET shows no anti-inflammatory effect of pioglitazone and zileuton

PLOS ONE | https://doi.org/10.1371/journal.pone.0191783 February 7, 2018 6 / 17

https://doi.org/10.1371/journal.pone.0191783.t001
https://doi.org/10.1371/journal.pone.0191783


summarized in the S1 Table. The interim analysis comparing pre- and post-endotoxin Ki val-

ues in the right middle lobe in the pioglitazone group (pre-endotoxin 0.00062±0.00037, post-

endotoxin 0.0029±0.0017) compared to previously reported Ki values in healthy volunteers

receiving endotoxin and either no drug treatment or placebo treatment from two prior studies

[25, 26] (pre-endotoxin 0.00046±0.00044, post-endotoxin 0.0026±0.0010, in aggregate, N =

12) showed no differences among groups (p = 0.072 for two-way RM ANOVA). Based on the

interim analysis, we concluded that pioglitazone had no anti-inflammatory effect. Increases in

right middle lobe post-endotoxin Ki (placebo cohort: pre-endotoxin 0.00048±0.00050, post-

endotoxin 0.0026±0.0018; zileuton cohort: pre-endotoxin 0.00048±0.00042, post-endotoxin

0.0029±0.0017) and SUVmean (placebo cohort: pre-endotoxin 0.48±0.15, post-endotoxin 1.01±
0.42; pioglitazone cohort: pre-endotoxin 0.51±0.13, post-endotoxin 1.06±0.25; zileuton cohort:

pre-endotoxin 0.51±0.16, post-endotoxin 0.98±0.15) were similar in all volunteers (p< 0.001),

regardless of the drug treatment received or presence of TLR4 SNP (Fig 3 and Fig 4). Ki values

were more variable than seen on prior studies [25, 26].

Table 2. Effect of endotoxin on clinical characteristics.

Change after endotoxin

Parameter Placebo (N = 6) Pioglitazone (N = 6) Zileuton (N = 6) P-value

Vital Signs

Temperature, ˚C 0.5 ± 0.3 0.8 ± 0.6 0.7 ± 0.6 <0.001�

Heart rate, beats/min

Compared to highest 21 ± 5 23 ± 11 22 ± 6 <0.001�

Compared to lowest −7 ± 5 −10 ± 9 −6 ± 4 <0.001�

Blood pressure, mm HG, systolic −19 ± 10 −19 ± 5 −17 ± 9 <0.001�

Blood pressure, mm HG, diastolic −18 ± 7 −23 ± 7 −20 ± 6 <0.001�

Mean arterial pressure, mm Hg −14 ± 6 −20 ± 4 −18 ± 7 <0.001�

SaO2, % on room air −2.7 ± 1.2 −2.8 ± 1.5 1.7 ± 1.2 <0.001�

Respiratory rate, breaths/min 3 ± 2 2 ± 3 4 ± 2 <0.001�

Pulmonary function tests

FEV1, L −0.2 ± 0.3 −0.2 ± 0.1 0.0 ± 0.1 0.006

% predicted FEV1 −5.5 ± 7.5 −5.2 ± 4.4 -0.2 ± 2.8 0.011

FVC, L −0.2 ± 0.2 −0.1 ± 0.0 0.0 ± 0.1 0.008

% predicted FVC −4.8 ± 5.8 −2.6 ± 1.6 0.1 ± 3.0 0.021

Complete blood counts

White blood cells, 103/ml 3.9 ± 1.2 1.7 ± 1.1 3.2 ± 2.4 <0.001�

% neutrophils 17.9 ± 8.6�� 3.4 ± 6.4 4.4 ± 7.3 <0.001��

Hemoglobin, g/dl 0.1 ± 0.9 −0.6 ± 0.5 −0.1 ± 0.5 0.257

Hematocrit, % 0.5 ± 2.5 −1.7 ± 1.7 −0.2 ± 2.0 0.376

Platelets, 1000/mm3 −12 ± 24 −31 ± 19 −22 ± 22 <0.001�

Erythrocyte sedimentation rate (ESR), mm/hr −1.2 ± 1.9 −0.7 ± 1.0 −0.5 ± 1.1 0.033

C-reactive protein (CRP), mg/L 10.1 ± 7.3 6.9 ± 5.6 6.3 ± 6.5 <0.001�

�p < 0.003 required for statistical significance with Bonferroni correction for multiple comparisons. P values shown for comparisons of values before and after

endotoxin across all groups in the repeated measures analysis of variance. No interaction was found between drug treatment and endotoxin effect on any of the

parameters except for the % neutrophils in the peripheral blood.

��p < 0.001 when comparing the post-endotoxin value to the pre-endotoxin value within the placebo cohort. No significant difference was found in pre- and post-

endotoxin % neutrophil values in the other two treatment groups (p = 0.29 and 0.17 for the pioglitazone and zileuton treatment cohorts, respectively).

Data shown as mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0191783.t002
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BAL cell count changes in response to drug treatments

The percentage of neutrophils in the BAL cells (Table 3) increased in all treatment cohorts

after endotoxin instillation, as has been observed previously [25]. The lower mean total cell

and neutrophil counts and much larger standard deviation in the total BAL cell counts in the

pioglitazone cohort was due to a single low outlier value that was included in the analysis. BAL

fluid analyses demonstrated no differences in 5-HETE, 15-HETE, LXA4, LTB4, and LTE4 levels

among groups. This may have been due to the fact that the BAL was performed at approxi-

mately 29 hours after endotoxin instillation, long after the peak cytokine increase normally

seen at six hours post-endotoxin in this model [19]. These results are presented in more detail

in the S3 File.

Fig 2. Positron emission tomography (PET) and computed tomography (CT) images from a representative volunteer in each treatment cohort. White outlines show

the volumes of interest (VOIs) used to determine the time-activity curves for the Patlak graphical analysis and standard uptake values. VOIs were sometimes smaller in

volume on the left due to the heart.

https://doi.org/10.1371/journal.pone.0191783.g002
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Blood and urine assays confirm compliance with prescribed drug

treatments

Plasma adiponectin significantly increased only in the pioglitazone cohort. No significant dif-

ferences in urinary LTE4 levels were noted, though the post-treatment values dropped more

consistently in the zileuton cohort (Fig 5).

Discussion

In this study, we have shown that pioglitazone and zileuton have no effect on endotoxin-

induced lung inflammation in healthy volunteers using 18F-FDG PET/CT imaging. We

observed increased 18F-FDG uptake in all treatment cohorts that was similar that observed in

prior studies using this same model [25, 26]. The increase in BAL cell counts, and the variabil-

ity associated with this measurement, was also similar to previous studies [19, 25, 26]. These

results contrast with data in animal models demonstrating their efficacy as pulmonary anti-

inflammatory treatments [27–33]. The expected changes in plasma adiponectin and urinary

LTE4 levels suggested that noncompliance with the drug treatment regimen was unlikely to

explain this result. Neither drug significantly reduced BAL cell counts or blood C-reactive pro-

tein levels after endotoxin instillation as well, further confirming that these drugs had no anti-

inflammatory effect in this model.

Fig 3. Patlak graphical analysis results from18F-fluorodeoxyglucose (18F-FDG) PET images in the right and left lungs before and

after endotoxin instillation. Arrows indicate presence of both Asp299Gly and Thr399Ile single nucleotide polymorphisms (SNPs),

arrowheads only the Asp299Gly SNP. The arrowhead for the left lung data of the zileuton treatment cohort points to the post-endotoxin

data point that decreased slightly after endotoxin. Ki = influx constant describing rate of 18F-FDG uptake into the lung region of interest,

determined by Patlak graphical analysis. � = p< 0.05 when comparing post-endotoxin (After) to pre-endotoxin (Before) value.

https://doi.org/10.1371/journal.pone.0191783.g003
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Our results continue to support the utility of 18F-FDG PET imaging as a noninvasive bio-

marker of lung inflammation and suggest that the SUVmean determined from PET/CT images

may be sufficient for detecting the low-level lung inflammation induced in this human model.

We have used the Ki in previous studies performed on a dedicated PET scanner (Siemens

ECAT EXACT HR+) to quantify the rate of 18F-FDG uptake in endotoxin-induced inflamma-

tion in healthy volunteers [25, 26]. We showed previously that the SUVmean is less accurate for

quantifying low levels of inflammation in a dog model of ARDS [42]. However, in this study,

Fig 4. Mean standard uptake value (SUV) results from18F-fluorodeoxyglucose PET images in the right and left lungs for each

treatment cohort. Arrows indicate presence of both Asp299Gly and Thr399Ile single nucleotide polymorphisms (SNPs), arrowheads only

the Asp299Gly SNP. The arrow and arrowhead for the left lung of the placebo cohort point to the top two post-endotoxin data points. � =

p< 0.05 when comparing post-endotoxin (After) to pre-endotoxin (Before) value.

https://doi.org/10.1371/journal.pone.0191783.g004

Table 3. BAL cell counts and differentials.

BAL Measures Placebo (N = 5) Pioglitazone (N = 6) Zileuton (N = 6)

Total cell count, cells/mm3 7060 ± 3904 4879 ± 5063 8410 ± 4862

% neutrophils 48 ± 23 50 ± 21 58 ± 12

% monocytes 50 ± 20 49 ± 21 39 ± 12

% others 2 ± 3 0.95 ± 0.74 3 ± 3

Neutrophil concentration, cells/mm3 4099 ± 2492 2787 ± 2841 5179 ± 3629

Values given as mean ± standard deviation

BAL: Bronchoalveolar lavage

https://doi.org/10.1371/journal.pone.0191783.t003
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we observed a consistent increase in SUVmean after endotoxin instillation, similar to our previ-

ously published data with Ki [25, 26]. The SUVmean was also less variable than the Ki in this

study. In our previous studies, the attenuation correction transmission scan on the dedicated

PET scanner was acquired over several minutes, thus averaging multiple respiratory cycles in

the same manner as the PET emission data. In this study, we observed irregularities in a few of

the lung time-activity curves used for the Patlak analysis, thus causing these Ki values to be

slightly negative. These irregularities were most likely due to PET-CT misregistration errors

from respiratory motion during the one-hour acquisition, which can lead to small attenuation

correction errors [43]. The SUVmean observed in the smaller VOIs, defined by the degree of

airspace inflammation seen on the CT images, may have been lower because of such motion as

well as partial-volume averaging error; however, we were still able to detect increased uptake

in these VOIs. The PET and CT images appeared well-matched at the end of the one-hour

acquisition on all subjects, which likely helped explain the more consistent increase seen in the

SUVmean. Therefore, using the SUVmean with PET/CT imaging could simplify the use of
18F-FDG in this human model for determining the efficacy of novel pulmonary anti-inflam-

matory treatments.

Other studies also demonstrate the importance of evaluating anti-inflammatory therapies

in human models. Our results are in line with two other studies evaluating the effects of

Fig 5. Serum adiponectin and urinary leukotriene E4 (LTE4) levels by treatment cohort. � = p< 0.05 when comparing post-endotoxin

(After) to pre-endotoxin (Before) values. Serum adiponectin levels are expressed as mg/mL serum. Urinary LTE4 levels are expressed as pg

LTE4/mg creatinine (pg/mg).

https://doi.org/10.1371/journal.pone.0191783.g005
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pioglitazone and zileuton on lung inflammation in healthy volunteers. In one study, 60 mg of

pioglitazone administered daily for 9 days did not affect vascular responses in healthy volun-

teers after intravenous injection of endotoxin [44]. Another study using the same zileuton dos-

ing regimen as employed in this study had no effect on exhaled nitric oxide measurements or

peripheral blood neutrophilia in healthy volunteers after a 3 hour exposure to swine dust [45].

These results further contrast with the multiple studies in preclinical models demonstrating an

anti-inflammatory effect of both drugs on neutrophilic inflammation [27–31, 33, 46].

Together, these studies highlight the value of using human models to study inflammatory

responses to assess anti-inflammatory treatment efficacy.

Our results also contrast with clinical studies in patients demonstrating that long-term gli-

tazone treatment reduces systemic inflammation. Treatment with either rosiglitazone (4–8 mg

daily for 8 to 26 weeks) or pioglitazone (45 mg daily for 3 months) significantly reduced C-

reactive protein (CRP) levels in patients with diabetes [47, 48] as well as in non-diabetic

patients with coronary artery disease [49] and rheumatoid arthritis [50]. Obese, non-diabetic

volunteers treated with 10 weeks of pioglitazone at 45 mg daily had reduced numbers of pro-

inflammatory M1 macrophages in adipose tissue assessed by biopsy before and after treatment

[51]. In contrast, our study demonstrated no effect on CRP levels as a result of two weeks of

pioglitazone treatment, which could be due to the relatively short duration of pioglitazone

treatment used in this study. This lack of effect could also be due to the fact that, in the model

we used, the endotoxin induces acute inflammation that is resolved within 48 hours, in con-

trast to the chronic inflammation seen in these diseases. Nevertheless, studying acute endo-

toxin responses in humans may still be valuable as such studies will highlight how the human

inflammatory response differs from that seen in animal models. Such data can guide the devel-

opment of animal models that better reflect human inflammation biology and thus improve

their utility for basic studies of lung inflammation as well as biomarker and drug development.

Several limitations must be considered for this study. One limitation was our inability to

confirm that adequate drug levels were achieved in the airspaces. We were not able to detect

group differences in the lipid mediators using mass spectrometry as we had expected. We can-

not exclude the possibility that we did not achieve adequate levels of pioglitazone in the air-

ways to have an effect. However, previous studies demonstrating that zileuton doses similar to

our study reduced eosinophilic recruitment in asthma patients exposed to allergen [52, 53]

suggest that our zileuton dosing was adequate. We did not control for the presence or absence

of oropharyngeal sources of inflammation, such as dental disease, which could have promoted

a more robust inflammatory response. We also did not control for differences in diet, which

could have affected urinary LTE4 levels and limited our ability to detect differences among the

groups [54, 55]. We excluded the possibility that any of the volunteers were on over-the-

counter medications with anti-inflammatory properties at the time of entry into the study, lim-

iting the possibility that these medications would affect the study results. Finally, we did not

account for changes in blood volume on the 18F-FDG PET signal as we did not have an inde-

pendent measure of blood volume. We have previously shown that, in this human model,

treatment-induced reductions in 18F-FDG uptake can be detected [26] and that the BAL cells

have higher 18F-FDG uptake than the BAL fluid by an order of magnitude [25]. These results

suggest that, regardless of the impact of inflammation-induced blood volume changes,
18F-FDG uptake still reflects neutrophil recruitment, in part, and can still serve as a modifiable

inflammatory marker in this model. Recently published quantitative models suggest that

accounting for blood volume changes could change the interpretation of the 18F-FDG PET

data (reviewed in [56]). However, since these models have not yet been validated with inde-

pendent measures of blood volume, the impact of changes in blood volume on interpreting
18F-FDG uptake as marker of inflammation will require further study.
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Conclusion

In summary, we have shown that short courses of pioglitazone and zileuton have no effect

on endotoxin-induced lung inflammation in healthy volunteers using 18F-FDG uptake, quanti-

fied as either Ki or the SUVmean. This result continues to support the utility of using 18F-FDG

PET/CT imaging to measure the effects of anti-inflammatory drugs and to demonstrate the

value of testing anti-inflammatory agents in humans before embarking on larger patient clini-

cal trials.
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