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RESEARCH ARTICLE
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University School of Medicine, Saint Louis, MO United States of America, 2 Division of Biostatistics,

Washington University School of Medicine, Saint Louis, MO United States of America, 3 Department of

Internal Medicine, Division of Nutritional Science, Metabolism and Lipid Research Washington University

School of Medicine, Saint Louis, MO United States of America
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Abstract

We previously demonstrated that infusion of an intestinal peptide called xenin-25 (Xen)

amplifies the effects of glucose-dependent insulinotropic polypeptide (GIP) on insulin secre-

tion rates (ISRs) and plasma glucagon levels in humans. However, these effects of Xen, but

not GIP, were blunted in humans with type 2 diabetes. Thus, Xen rather than GIP signaling

to islets fails early during development of type 2 diabetes. The current crossover study

determines if cholinergic signaling relays the effects of Xen on insulin and glucagon release

in humans as in mice. Fasted subjects with impaired glucose tolerance were studied. On

eight separate occasions, each person underwent a single graded glucose infusion- two

each with infusion of albumin, Xen, GIP, and GIP plus Xen. Each infusate was administered

± atropine. Heart rate and plasma glucose, insulin, C-peptide, glucagon, and pancreatic

polypeptide (PP) levels were measured. ISRs were calculated from C-peptide levels. All

peptides profoundly increased PP responses. From 0 to 40 min, peptide(s) infusions had lit-

tle effect on plasma glucose concentrations. However, GIP, but not Xen, rapidly and tran-

siently increased ISRs and glucagon levels. Both responses were further amplified when

Xen was co-administered with GIP. From 40 to 240 min, glucose levels and ISRs continually

increased while glucagon concentrations declined, regardless of infusate. Atropine in-

creased resting heart rate and blocked all PP responses but did not affect ISRs or plasma

glucagon levels during any of the peptide infusions. Thus, cholinergic signaling mediates

the effects of Xen on insulin and glucagon release in mice but not humans.

Introduction

Xenin-25 (Xen) is a 25-amino acid neurotensin-related peptide produced by a subset of enter-

oendocrine cells [1,2]. In animals, Xen administration delays gastric emptying [3], reduces
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food intake [4–6], increases intestinal motility [7], augments gall bladder contractions [8],

enhances exocrine pancreas secretion [9], and excites a small subset of enteric neurons [10]. We

[11] and others [12] have shown that Xen amplifies the effects of glucose-dependent insulino-

tropic polypeptide (GIP) on insulin secretion in mice. Surprisingly, this in vivo response to GIP

plus Xen was not recapitulated in studies using isolated islets, insulin-producing cell lines, or

the in situ perfused [11]. However, the ability of Xen to amplify GIP-mediated insulin secretion

in vivo was inhibited by atropine. Additionally, in vitro experiments showed that the in vivo

effects of Xen could be mimicked by carbachol. These results indicate that in mice, Xen initiates

a cholinergic relay to islets which in turn, amplifies the effects of GIP on insulin release [11].

Many of the effects of Xen are mediated by activation of neurotensin receptor-1 on neurons

[3,5,6,8,10,13]. Immunohistochemical studies showed that in the human pancreas, neurotensin

receptor-1 is present on nerves, but not islet endocrine cells [14]. In human studies, we showed

that Xen delays gastric emptying [15], increases pancreatic polypeptide release [14,16], inhibits glu-

cagon-like peptide-1 release [15], augments intestinal motility [15,17], and amplifies the effects of

GIP on insulin, glucagon, and pancreatic polypeptide release [14,17]. Contrary to dogma, these

studies also demonstrated that exogenously administered GIP remained fully active in humans

with mild type 2 diabetes mellitus [17]. Conversely, the effects of Xen on GIP-mediated insulin

and glucagon release were greatest in humans with impaired glucose tolerance but blunted in

those with mild type 2 diabetes mellitus [17]. Similarly, we previously showed that the effect of Xen

on GIP-mediated insulin secretion was greater in hyperglycemic compared to normoglycemic

mice [11]. These collective results suggest that increased cholinergic signaling is a compensatory

neural mechanism to increase insulin secretion in pre-diabetes and type 2 diabetes develops if this

adaptation fails. Thus, it is critical to determine if the effects of Xen on insulin and glucagon release

are mediated by cholinergic signaling in humans as in mice. The purpose of the present study is to

determine if atropine inhibits the ability of Xen to amplify the effects of GIP on insulin, glucagon,

and pancreatic polypeptide release in humans. As expected, atropine completely blocked the pan-

creatic polypeptide response to GIP alone, Xen alone, and the combination of GIP plus Xen. Sur-

prisingly and in stark contrast to mice, the effects of Xen on GIP-mediated insulin and glucagon

release were not inhibited by atropine and thus, are not mediated by cholinergic signaling.

Materials and methods

Human subjects

All protocols were approved by Washington University’s Human Research Protection Office

(November 12, 2012) and the FDA (IND#103,374) and are registered with ClinicalTrials.gov

(NCT01951729). The original study protocol as approved by the IRB is presented in S1 Appen-

dix. An administrative error resulted in a delay in registering this clinical trial (all ongoing and

related studies are currently registered). Subjects were recruited through Washington Univer-

sity’s Research Participant Registry, our own database, and by visibility on the Clinicaltrials.

gov website. Studies were performed by the nursing and medical staff in the Clinical Research

Unit of the Institute of Clinical and Translational Sciences of Washington University after

obtaining written informed consent. As part of the consent, participants agreed that if we

write a report or article about this study or share the study data set with others, we will do so in

such a way that they cannot be directly identified. Subject recruitment was initiated on March

13, 2013 and follow-up for the final participant was completed on May 13, 2015. Subjects were

remunerated to encourage completion of the study. An initial screening visit was conducted

after a 10-hour overnight fast. Subjects completed a health history questionnaire, underwent

an EKG, and had blood drawn for screening labs including hematocrit, hemoglobin, HbA1C,

lipid panel, electrolytes, amylase, and thyroid, liver and kidney function. Subjects were
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excluded if they had a history of chronic pancreatitis and/or risk factors for chronic pancreati-

tis, had a history of gastrointestinal disorders, were taking any medication known to affect

glucose homeostasis, or had significant systemic illness including heart, kidney, liver, inflam-

matory or malignant disease. The use of atropine is contraindicated in those with narrow-

angle glaucoma, obstructive uropathy including benign prostatic hypertrophy, pyloric stenosis,

myasthenia gravis, asthma, hyperthyroidism, angina and cardiac arrhythmias including heart

block. Subjects with any of these conditions were also excluded. Subjects who were otherwise

eligible received a standard 75-gram oral glucose tolerance test on a subsequent visit to deter-

mine final eligibility. Impaired glucose tolerance was defined by the 2-hour plasma glucose

level (141 to 199 mg/dl) during the oral glucose tolerance test using diagnostic criteria of the

American Diabetes Association [18]. Male and female subjects with impaired glucose toler-

ance, 18 to 65 years of age, and of all races and ethnicities were eligible. Women of childbear-

ing potential were required to use effective birth control.

Study design

This is a crossover study in which each participant was to undergo 8 separate 240-minute

graded glucose infusions, each separated by at least 2 weeks (Fig 1). Studies were performed

after a 10-hour overnight fast. Subjects were blinded to treatment. One intravenous catheter

was placed into a hand vein. This hand was kept in a thermostatically controlled box (50–55˚C)

to facilitate venous sampling and to provide arterialized venous blood [19]. A second intrave-

nous line was inserted for administration of glucose and study drugs. For each graded glucose

infusion (Fig 2), the intravenous glucose infusion was initiated at time zero and maintained at a

rate of 1 mg x kg-1 x min-1 for 40 min, followed by 2, 3, 4, 6, and 8 mg x kg-1 x min-1 (40 min for

each step) as in our earlier study [17]. Albumin alone (i.e. no peptide), Xen alone, GIP alone,

and GIP+Xen were administered by primed-constant infusions starting at time zero as previ-

ously described [17]. Briefly, a continuous infusion of peptide(s) was maintained at a rate of 4

pmoles x kg-1 x min-1 throughout the experiment. However, a priming dose was administered

during the first 10 minutes by increasing the infusion rate 2.71-fold for the first 3 minutes,

1.93-fold for the next 4 minutes, and 1.41-fold for the final 3 minutes. Albumin alone was

infused at the same rate when peptides were not administered. Each peptide(s) was adminis-

tered both with and without an infusion of atropine sulfate. Dosing for atropine sulfate was

based on a survey of the literature [20–31] and studies registered on the Clinicaltrials.gov web-

site (NCT00468091; NCT00689208; and NCT00992901). Atropine sulfate was administrated by

primed-constant intravenous infusion starting at minus 30 minutes (priming dose of 0.4 mg/m2

over 2 minutes followed by continuous dose of 0.3 mg/m2/hour). Saline alone was infused when

atropine was not administered. Infusion rates for glucose, peptides, and atropine/saline are

shown in Fig 2. The same peptide(s) was administered in 2 successive visits. Atropine was

administered with the peptide on one visit and saline (instead of atropine) was administered

with the same peptide on the subsequent visit. The order of the paired visits was first random-

ized with respect to the peptide(s) after which the order of the atropine or saline infusion was

randomized. This was done to ensure that in case of drop outs, matched infusions (each

peptide ± atropine) would be obtained for each subject. Hemoglobin levels were measured

immediately before each study visit and anyone with a Hb<11.2 g/dL had that study delayed.

Peptides

GIP and Xen were custom synthesized under GMP conditions (Bachem, Torrance, CA), vali-

dated for use in humans, and compounded in normal saline containing 1% Flexbumin (Baxter

Healthcare Corp., Westlake Village, CA) as previously described [17].

Effects of cholinergic signaling on islet hormone release
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Fig 1. Flow diagram for atropine study. The flow diagram is for a crossover study in humans with impaired glucose

tolerance and was designed so that each subject would receive all 8 graded glucose infusions. The same peptide(s) was

administered during 2 successive visits- once with saline and once with atropine. First, the order of the peptide infusions was

Effects of cholinergic signaling on islet hormone release
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Blood sampling

Blood was drawn for measurements of plasma glucose and preparation of heparinized plasma

at the following time points (in minutes): -40, -30, -20, -10, 0, 5, 10, 15, 20, 30, 40, 50, 60, 70,

80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240. Blood was col-

lected for preparation of EDTA/Trasylol plasma at -40, -30, -20, -10, 0, 5, 10, 15, 20, 30, 40, 80,

120, 160, 200, and 240 minutes. A DPP4 inhibitor (Millipore, St. Charles, MO) was also

included in the EDTA/Trasylol tubes.

Assays

Glucose, insulin, C-peptide, Xen, total GIP, complete metabolic profiles and hemoglobin

A1c were measured as previously described [32]. Glucagon was measured as previously

described [32] using an ELISA specific for mature glucagon that does not cross-react with

other proglucagon-derived peptides. Pancreatic polypeptide was measured as previously

described and involves an extraction step to remove compounds that interfere with the assay

[14].

randomized. Second, the order of saline or atropine administration was randomized for each peptide. For example, if the

subject was randomized to first receive Xen alone, this person would receive Xen in study visits 1 and 2. The atropine and

saline infusions would then be randomized to visit 1 and 2. Eight subjects received all 8 graded glucose infusions. One

subject received 6 infusions but did not receive either infusion with Xen alone. One subject received only the 2 infusions

with GIP plus Xen.

https://doi.org/10.1371/journal.pone.0192441.g001

Fig 2. The graded glucose infusion protocol. The glucose infusion rate was increased in a step wise fashion every 40

minutes starting at time zero as shown in red. The primed-constant infusion of each peptide(s) was started at time zero

and is shown in yellow. Note that GIP and Xen were each infused at the same rate when administered together. The

primed-constant infusion of atropine (or saline) was initiated 30 minutes before the start of the graded glucose infusion as

shown in blue. All infusions were terminated 240 minutes after the glucose infusion was initiated.

https://doi.org/10.1371/journal.pone.0192441.g002

Effects of cholinergic signaling on islet hormone release
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Calculations and data analysis

ISRs were derived by stochastic deconvolution of the peripheral C-peptide concentrations as

in earlier studies [15–17,32] using population-based estimates of C-peptide clearance kinetics

[33–35]. Baseline values for glucose, ISR, and pancreatic polypeptide are mean values for the

-50, -40, -30 time points. Baseline for glucagon are mean values of -30, -20, and -10 time points

because baseline values continually dropped from -50 to -30 minutes and the decline was not

affected by atropine. Baseline levels for each individual were used for their respective calcula-

tions. AUCs were calculated for each individual using the trapezoid method and incremental

AUCs were determined by subtracting that individual’s baseline AUC from the AUC. Data for

AUCs and iAUCs were analyzed using mixed effects models with subject as a random effect

and treatment as a fixed effect using SAS v9.4. Baseline values were used as a covariate for the

analysis of the AUCs. Data for the time frames of 0 to 40 minutes and 40 to 240 minutes were

analyzed separately because the former represents a rapid, large, and transient response and

the latter is a progressively changing effect. Thus, the early and late responses may be regulated

by distinct mechanisms. Outcome measures through time were analyzed using the mixed ran-

dom effects repeated measures model with covariance structure estimated by a spatial model

(SAS 9.4). Subject and subject by drug interaction were random effects. Individual data points

used for calculating means, (incremental) areas under the curve, and variance measures are

provided in the S2 Appendix.

Results

Subject characteristics

We previously demonstrated [17] that the ability of Xen to amplify the effects of GIP on insulin

and glucagon release is greatest in humans with impaired glucose tolerance and therefore, only

subjects with impaired glucose tolerance were studied. Fifty three subjects were screened and

15 were enrolled and studied on at least 1 occasion (Fig 1). Most screen failures were due to

subjects not meeting the criteria for impaired glucose tolerance (see below) or having a contra-

indication for receiving atropine. Six patients were withdrawn from the study and data from

these participants were not included in the analyses. Data from the 9 remaining subjects were

analyzed. Clinical characteristics and demographics for these 9 subjects are shown in Table 1.

Seven of the participants completed all 8 visits. One subject was dropped before both Xen infu-

sions due to change in medication and one was dropped after both GIP plus Xen visits due to

anxiety. Consistent with the screening protocol, all subjects had impaired glucose tolerance

based on the 2-hour glucose value from a standard 75-gram oral glucose tolerance test.

Table 1. Subject demographics and clinical characteristics.

Parameter n = 9
2-Hour Glucose (mg/dl) 170± 20

HbA1c (%) 6.0 ± 0.4

Fasting Glucose (mg/dl) 99.3 ± 7.8

Fasting Insulin (μU/ml) 11.4 ± 4.9

HOMA-IR 2.8 ± 1.3

BMI, kg/m2 30.4 ± 8.2

Age (years) 46 ± 10

Gender (F/M) 6/2

Values except gender are group mean ± SD.

https://doi.org/10.1371/journal.pone.0192441.t001
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Peptide levels during infusion of GIP and/or Xen

Steady-state levels of GIP and/or Xen are attained approximately 10 minutes after starting the

primed-constant peptide infusions and are maintained until the end of the graded glucose infu-

sion [17]. As in our earlier study, infusion of GIP increased steady state levels of plasma GIP

from ~25 pM to ~400 pM whereas infusion of xenin-25 increased plasma xenin levels from the

lower limit of detection to ~200 pM (Fig 3). Infusion of one peptide did not affect plasma levels

of the other. Further, infusion of atropine did not affect plasma levels of either peptide. Thus,

pharmacologic levels of GIP and/or Xen were attained throughout the graded glucose infusions.

Atropine increases resting heart rate

In the absence of atropine, infusion of Alb alone or Xen alone had little effect on resting heart

rate (Fig 4). As in our earlier study [17], infusion of GIP alone increased resting heart rate by

Fig 3. Peptide levels during graded glucose infusions. Subjects were administered 8 different graded glucose

infusions, each on a separate day. Each visit was separated by at least 2 weeks. Glucose and peptides were infused from

0 min to 240 min and atropine (or saline control) was infused from -30 to 240 min as shown in Fig 2. Steady state levels

of immunoreactive-GIP (IR-GIP; panel A) and immunoreactive-Xen (IR-Xen; panel B) were measured during

infusion with albumin alone (Alb), Xen alone, GIP alone, and the combination of GIP plus Xen (G+X). Each peptide

was measured during infusion of atropine or the saline control. Because of limiting sample volumes, GIP and Xen were

measured only in the 80 or 240 minute samples, respectively. Values represent group means ± SEM.

https://doi.org/10.1371/journal.pone.0192441.g003
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~9 beats per minute and this response was not amplified when Xen was administered along

with GIP. Infusion of atropine increased resting heart rate before peptides were administered

(i.e. from -30 to 0 minutes) as well as after the peptide infusions were initiated. Heart rate was

normalized ~90 minutes after the atropine infusion was terminated. Mean arterial pressures

were unaffected by atropine (Not Shown) although infusion of GIP, alone or with Xen, de-

creased mean arterial pressure by ~10 mm Hg as in our earlier study [17]. Based on symptom

surveys self-reported by subjects before, during, and after the infusions, xerostomia was expe-

rienced by all subjects during 1 or more of the 4 atropine infusions (mean = 2.6; SD = 1.1).

Blurred vision was self-reported by 3 of the 9 subjects during 2 (n = 2) or 3 (n = 1) of the

Fig 4. Atropine increases resting heart rate. Resting heart rate was measured at the indicated times before, during and after

the graded glucose infusion (GGI) with Alb alone (Panel A), Xen alone (Panel B), GIP alone (Panel C), and GIP plus Xen (G+X;

Panel D). Atropine or saline infusion was started 30 minutes before the graded glucose infusion. Note that atropine or GIP

increased resting heart and values were normalized approximately 90 minutes after the graded glucose infusions were terminated.

After 240-minutes, heart rates increase in the subjects administered saline instead of atropine because they are no longer confined

to the bed. Values represent group means ± SEM.

https://doi.org/10.1371/journal.pone.0192441.g004
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atropine infusions. These results indicate that atropine dosing was effective in our patient

population.

Peptides increase cholinergic signaling in humans

As reported earlier [14], infusion of peptide(s) alone, but not albumin alone, rapidly increased

pancreatic polypeptide concentrations after which the levels slowly declined but remained ele-

vated for the duration of the graded glucose infusion (Fig 5A). The pancreatic polypeptide

response was greatest during infusion of GIP+Xen compared to GIP alone and Xen alone. The

pancreatic polypeptide response to GIP was delayed compared to that with Xen alone. All pep-

tide-dependent increases in pancreatic polypeptide levels were abolished when atropine was

administered during the graded glucose infusion (Fig 5B). Like the temporal profiles, pan-

creatic polypeptide AUCs (Fig 5C) and iAUCs (Fig 5D) were also increased in the order of

Fig 5. Atropine inhibits pancreatic polypeptide release. Panels A and B. Pancreatic polypeptide (PP) levels were measured at the

indicated times before and during graded glucose infusions (GGIs) in the presence of the indicated peptide(s) and with infusion of

saline (Panel A) or atropine (Panel B). Total (Panel C) and incremental (Panel D) AUCs from 0–240 minutes were calculated from

data in panels A and B. Incremental and total AUCs were determined for each individual and values represent group means ± SEM.

Significance was determined using the mixed effects model. p values for each peptide versus albumin alone are indicated within

charts in Panels C and D. p values for the effects of atropine for each peptide infusate (or albumin control) are indicated below

Panels C and D. The p values for infusate effects were calculated for all 8 treatments. Note that atropine infusion completely blocks

all pancreatic polypeptide responses.

https://doi.org/10.1371/journal.pone.0192441.g005
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GIP+Xen > GIP alone>Xen alone > Alb alone and the increases were completely blocked by

atropine (p<0.003 and<0.006 for respective infusate effects). Thus, peptide(s) infusions

increase cholinergic signaling in humans.

Cholinergic signaling does not mediate the effects of peptides on insulin

secretion

As in our earlier study [17], plasma glucose levels remained nearly euglycemic for the first 40

minutes of the graded glucose infusion in the presence or absence of peptide(s) (Fig 6A). In

contrast, there was a rapid, large, and transient increase in ISRs over this same period during

infusion of GIP alone, but not Xen alone, and this transient response was even greater when

Xen was administered along with the GIP (Fig 6B). These early insulin secretory responses

occur in the absence of a significant increase in plasma glucose levels (Fig 6C). The rapid and

transient increases in ISRs were quantified by determining AUCs for ISRs for the time frame

of 0–40 min. In agreement with the temporal data in Fig 6, both the incremental (Fig 7A) and

total (Fig 7B) AUCs were respectively increased 3-fold (p = 0.007) and 1.5-fold (p = 0.003) by

infusion of GIP alone, but not Xen alone. Administration of the combination of GIP plus Xen

increased the early ISR response for both incremental (4.3-fold) and total (1.8-fold) AUCs;

(p<0.0001 for both; Fig 7A and 7B). Over this first 40 minutes, the effects of peptides on the

profiles for plasma glucose levels and ISRs were similar with (Fig 6D–6F) and without (Fig

6A–6C) infusion of atropine. Similarly, the ISR iAUCs and AUCs for each peptide over the

first 40 minutes of the graded glucose infusions were unaffected by atropine (Fig 7A and 7B).

These results indicate the rapid and transient insulin secretory response to peptides is not

mediated by cholinergic signaling.

After the first 40 minutes of the graded glucose infusions, both plasma glucose (Fig 6A and

6D) and ISRs (Fig 6B and 6E) progressively increased such that ISR as a function of plasma

glucose increased linearly in the order of GIP+Xen > GIP alone> xenin alone or albumin

alone (Fig 6C and 6F). Because peptides affected the 40 minute values for ISR versus plasma

glucose (Fig 6C and 6F), the later ISR responses were quantified by determining incremental

and total AUCs for ISR and plasma glucose levels (from 40–240 min for both outcomes) and

then calculating the ratio of ISR to glucose. Results revealed that infusion with GIP alone, but

not Xen alone, amplified the ISR/glucose incremental (Fig 7C) and total (Fig 7D) AUCs

1.55-fold (p = 0.0048) and 1.17-fold (p = 0.042), respectively and amplification was further

increased to 1.70-fold (p = 0.0005) and 1.27-fold (p<0.001), respectively by infusing the com-

bination of GIP plus Xen. The 40 to 240 minute ISR/glucose responses to peptides were not

inhibited by atropine indicating that they are not mediated by cholinergic signaling.

Cholinergic signaling does not mediate the effects of peptides on glucagon

levels

Our earlier study showed that GIP transiently increases plasma glucagon levels as well as ISRs

over the first 40 minutes of the graded glucose infusion and these responses were amplified by

Xen only in subjects without type 2 diabetes mellitus [17]. Thus, the effects of peptides and

atropine on plasma glucagon levels were determined (Figs 8 and 9). As in our earlier study,

infusion of GIP alone increased plasma glucagon levels at the 40 min time point after starting

the graded glucose infusion (p = 0.07) and the glucagon response at the 40 min time point was

further enhanced when Xen was infused along with the GIP (p<0.001; Figs 8A and 9A). In the

current study, additional samples were collected from 0 to 40 minutes to define this early glu-

cagon response in greater detail. During infusion with albumin alone, plasma glucagon levels

progressively declined starting as soon as the graded glucose infusion was initiated (Fig 9A
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Fig 6. Xen amplifies the effects of GIP on ISRs. Graded glucose infusions (GGIs) with the saline control (Panels A-C) or atropine infusion

(Panels D-F) were conducted. Plasma glucose (Panels A and D) and ISRs (Panels B and E) are shown for the indicated times before and during

GGIs. The glucose infusion rate (GIR) at each 40 minute step is shown in white. Note that plasma glucose levels increase progressively even

though glucose was administered in a step-wise fashion. Data from panels A and B are re-graphed in panel C whereas data from panels D and E

are re-graphed in panel F. Symbols and error bars are eliminated in panels C and F for clarity. The rapid and transient increases in ISR in

response to GIP and GIP plus Xen from 0–40 minutes (Panels B and E) are reflected by the initial spikes in ISRs (Panels C and F) that occur in

the absence of a significant increase in plasma glucose levels. Values represent group means ± SEM.

https://doi.org/10.1371/journal.pone.0192441.g006
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and 9B). As noted for ISRs, infusion with GIP+Xen caused a rapid and transient increase in

plasma glucagon levels (Fig 9A). This response was highly significant from 5 to 40 minutes

after starting the graded glucose infusion when compared to that with albumin alone. The

rapid glucagon responses to GIP alone and Xen alone were smaller and neither reached statis-

tical significance (Fig 9A). Infusion of atropine did not affect plasma glucagon levels during

infusion of albumin alone or any peptide(s) (Fig 9B–9E). From 40 to 240 minutes, plasma glu-

cagon levels progressively decreased as plasma glucose levels increased (Fig 8). This decrease

was observed regardless of which peptide(s) was administered indicating that it may be a glu-

cose-regulated rather than a peptide-dependent response. As with the early response, the 40 to

240 minute glucagon responses to albumin and peptides were unaffected by atropine (Fig 9).

These results indicate that cholinergic signaling does not mediate the effects of peptides on the

glucagon response.

Discussion

Transmitters and peptides released from neurons that innervate islets play important roles in

regulating insulin and glucagon release [36,37]. In general, parasympathetic and sympathetic

Fig 7. Atropine does not inhibit effects of peptides on ISRs. Incremental (Panels A and C) and total (Panels B and D) AUCs were

calculated using data shown in Fig 6. Baseline values (average from -50 to -30 min) were subtracted to calculate incremental AUCs.

Outcomes were determined for each individual and values represent group means ± SEM. Significance was determined using the mixed

effects model. Panels A and B: Data are for 0–40 min (Panels A and B). Panels C and D: Data are for 40–240 min. Values were calculated

from the 40 to 240 ISR (i)AUCs for each individual divided by the 40 to 240 glucose (i)AUCs for the same individual. Values represent

group means ± SEM.

https://doi.org/10.1371/journal.pone.0192441.g007
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Fig 8. Xen amplifies the rapid and transient response to GIP via a muscarinic receptor-independent mechanism. Panels

A and B: Plasma glucagon levels were measured at the indicated times during graded glucose infusions (GGIs) with the
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neurons that innervate pancreatic islets increase and inhibit insulin release, respectively [36–

39]. In rodents, islets are richly innervated by parasympathetic neurons [40]. Many studies

with genetically modified mice and/or islets indicate that cholinergic signaling via M3 musca-

rinic acetylcholine receptors plays an important role in regulating insulin and glucagon release

[41–46]. Consistent with these results, we previously showed in hyperglycemic mice that Xen,

with GIP but not alone, indirectly amplifies insulin secretion by initiating a cholinergic neural

relay to islets [11]. As shown earlier [14,17] as well as in this paper, Xen amplifies the effects of

GIP on insulin, glucagon, and pancreatic polypeptide release during graded glucose infusions

in humans without type 2 diabetes mellitus. Although atropine completely inhibited the pan-

creatic polypeptide responses to Xen alone, GIP alone, and the combination of GIP plus Xen,

it had little effect on rapid and transient (0 to 40 minutes) and glucose-regulated (40 to 240

minutes) insulin and glucagon responses, regardless of peptide(s) administered. Consistent

with these results, we recently demonstrated that bethanechol, a muscarinic acetylcholine ago-

nist that works only in the periphery, increased the postprandial pancreatic polypeptide

response in humans with impaired glucose tolerance but had no effect on ISRs or plasma glu-

cagon levels [16]. Similarly, Xen infusion increased the postprandial pancreatic polypeptide

response 6-fold in humans with normal glucose tolerance, impaired glucose tolerance, and

type 2 diabetes mellitus [16] without affecting ISRs or plasma glucagon levels [15]. Thus, our

collective studies strongly suggest that cholinergic signaling plays an important role in regulat-

ing insulin and glucagon release in mice, but not humans.

An immunohistochemical study suggested that mouse, but not human, islets are richly

innervated with parasympathetic neurons [40]. However, studies with the isolated perfused

human pancreas have shown that electrical stimulation of the splanchnic nerve in the presence

and absence of selective neural inhibitors increases both cholinergic and sympathetic input to

islets which in turn, regulates insulin, glucagon, pancreatic polypeptide, and somatostatin

release [47–52]. Further, neurotransmitters can regulate insulin release in isolated human islets

[53]. Thus, functional neural/cholinergic signaling can regulate islet physiology in humans.

This also suggests that under physiologic conditions and in the intact human, insulin secretion

and glucagon release are regulated by numerous factors and studying the effects of single com-

ponents in isolation may not reflect what happens in whole person physiology.

The specific pathway(s) that mediates the effects of Xen on islet physiology in humans is

unknown. We have shown that neurotensin receptor-1, the major receptor for Xen, is present

on nerves, but not endocrine cells, in the human pancreas [14]. In addition to parasympathetic

neurons, Kirchgessner and Gershon have described an extensive network of enteric neurons

that directly connect the proximal small intestine and pancreas [54–57]. These neurons can

function independently of the central nervous system and are capable of modifying pancreatic

islet function. We have shown that Xen excites a small subset of enteric neurons [10] raising

the possibility that enteric neurons may play an underappreciated but important role for regu-

lating islet physiology. It will be important to determine the specific neural or non-neural path-

way that mediates the effects of Xen because this pathway is blunted in type 2 diabetes.

indicated peptide(s) and with the saline infusion (Panel A) or atropine infusion (Panel B). The glucose infusion rate (GIR)

for each 40 minute step is shown in white. Note the rapid and transient increase in glucagon levels during peptide infusions

only from 0 to 40 minutes. Panels C and D: Plasma glucagon levels during graded glucose infusions with saline (Panel C) or

atropine (Panel D) infusions were plotted as a function of plasma glucose levels. Panels E-H: Plasma glucagon and glucose

levels were determined during graded glucose infusions with Albumin alone (Panel E), Xen alone (Panel F), GIP alone

(Panel G), and the combination of GIP plus Xen (Panel H). Plasma glucagon versus glucose values during infusion of saline

or atropine are shown for each peptide(s). Note that atropine had little effect on the rapid and transient (0 to 40 min) or on

the glucose-regulated (40–240 min) glucagon responses regardless of the peptide administered.

https://doi.org/10.1371/journal.pone.0192441.g008
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It is generally accepted that as plasma glucose levels rise, insulin secretion increases while

glucagon release decreases. Our previous [15,17,32] and current studies indicate that the rela-

tionship between insulin and glucagon release is more complicated than this. For examples: i)

insulin secretion and glucagon release are both rapidly and transiently increased while plasma

glucose levels remain nearly euglycemic during the first 40 minutes of graded glucose infusions

with GIP alone or GIP+Xen (Figs 6–9; [17]). Although the glucose concentration within the

Fig 9. Atropine does not inhibit the glucagon response to peptides. Data from Fig 8A and 8B representing the rapid and transient

responses (0 to 40 minutes) were replotted. Panel A: Note that compared to albumin alone, the increase in plasma glucagon is highly

significant during infusion of GIP+Xen from 5 to 40 minutes. Red #, �, ��, and ��� represent p<0.03,<0.01,<0.001, and<0.0001,

respectively compared to albumin alone. The yellow + sign indicates a p value<0.07 for GIP alone compared to albumin alone.

Panels B-E. Data from graded glucose infusions with albumin alone (Panel B), Xen alone (Panel C), GIP alone (Panel D) and GIP

+Xen (Panel E) are shown for infusions with (red squares) and without (blue circles) atropine. Compared to the saline control,

atropine had no statistically significant effect on the glucagon response to any of the 4 peptide treatments.

https://doi.org/10.1371/journal.pone.0192441.g009
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islets during the start of the graded glucose infusion is unknown, our results strongly suggest

that this rapid response to peptides is largely independent of circulating plasma glucose levels.

Consistent with this hypothesis, others have shown that GIP can increase glucagon release dur-

ing euglycemia [58]. ii) plasma glucagon levels and ISRs both increase for the first 30 minutes

after ingestion of a liquid mixed meal in humans with normal glucose tolerance, impaired glu-

cose tolerance, and type 2 diabetes mellitus [15]; and iii) the paradoxical postprandial increases

in both insulin and glucagon levels are greatly exaggerated in humans with prior Roux-en-Y

gastric bypass [32]. These results suggest that the early release of both insulin and glucagon

may be critical for maintaining postprandial glucose homeostasis distinct from their individual

and well-established respective roles for increasing glucose clearance and augmenting glucose

production. Intriguingly, the combination of insulin plus glucagon has been shown to syner-

gistically increase hepatic FGF21 mRNA levels and peptide release [59]. FGF21 has numerous

beneficial metabolic effects in both rodents and primates [60,61]. The FGF21 response in hepa-

tocytes occurs over several hours rather than minutes [59] suggesting it could mediate delayed

responses to the rapid increases in both insulin and glucagon. Additional signaling molecules

are likely to be regulated by the combination of insulin plus glucagon and these factors could

play important roles in rapid as well as longer-term metabolic responses.

Two limitations to our study should be addressed. First, our mouse studies suggested that

atropine would completely block the effect of Xen on GIP-mediated ISRs and glucagon levels

[11]. Thus, our human study was not powered to detect small effects of atropine on ISRs and

plasma glucagon levels. However, atropine increased resting heart rate and completely blocked

the ability of Xen to increase pancreatic polypeptide release. Thus, the atropine dosing was

effective and muscarinic receptor signaling is most likely involved in only a subset of responses

to Xen. Second, the current study was performed using graded glucose infusions in humans

with impaired glucose tolerance. Thus, it is possible that other techniques or patient popula-

tions would yield different results. However, as previously discussed, Xen infusions and/or

oral bethanechol also increased postprandial cholinergic signaling in humans with normal glu-

cose tolerance, impaired glucose tolerance, and type 2 diabetes mellitus without affecting ISRs

or glucagon levels [16]. Thus, our results appear to be generally relevant but may not be valid

for all pathological conditions.

Conclusions

In spite of the study limitations, our results indicate that in contrast to mice, cholinergic signal-

ing plays a minor role in regulating ISRs and glucagon levels in humans and further illustrate

the importance of studying islet physiology in vivo and in humans. It will be important to

identify the neurotransmitters or neuropeptides that mediate the effects of Xen on insulin and

glucagon release in humans because signaling pathways initiated by Xen rather than GIP fail

early during the development of type 2 diabetes mellitus.
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