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Abstract During mitosis and meiosis, microtubule (MT) assembly is locally upregulated by the

chromatin-dependent Ran-GTP pathway. One of its key targets is the MT-associated spindle

assembly factor TPX2. The molecular mechanism of how TPX2 stimulates MT assembly remains

unknown because structural information about the interaction of TPX2 with MTs is lacking. Here,

we determine the cryo-electron microscopy structure of a central region of TPX2 bound to the MT

surface. TPX2 uses two flexibly linked elements (’ridge’ and ‘wedge’) in a novel interaction mode to

simultaneously bind across longitudinal and lateral tubulin interfaces. These MT-interacting

elements overlap with the binding site of importins on TPX2. Fluorescence microscopy-based in

vitro reconstitution assays reveal that this interaction mode is critical for MT binding and facilitates

MT nucleation. Together, our results suggest a molecular mechanism of how the Ran-GTP gradient

can regulate TPX2-dependent MT formation.

DOI: https://doi.org/10.7554/eLife.30959.001

Introduction
The microtubule (MT) cytoskeleton is essential for correct intracellular organization, cell division and

differentiation. MT function depends on a variety of MT-associated proteins (MAPs) that control MT

nucleation, dynamics and interactions with other cellular structures. Among them is TPX2

(Wittmann et al., 1998), a MAP from multicellular eukaryotes that is nuclear during interphase

(Neumayer et al., 2012) and associates with spindle MTs after nuclear breakdown during mitosis

and meiosis (Garrett et al., 2002; Gruss et al., 2002; Heidebrecht et al., 1997; Neumayer et al.,

2014). TPX2 is a multifunctional protein with several mitotic/meiotic activities (Neumayer et al.,

2014). Both over- and under-expression of TPX2 perturb MT organization, leading to genomic insta-

bility, and mutations in TPX2 are correlated with high metastasis frequency in cancer patients

(Aguirre-Portolés et al., 2012; Carter et al., 2006; Gruss et al., 2002; Pérez de Castro and

Malumbres, 2012). Consequently, TPX2 is a marker for the diagnosis and prognosis of malignancies

(Gruss et al., 2002; Heidebrecht et al., 1997; Neumayer et al., 2014).

TPX2 is a critical component of the so-called Ran-pathway (Cavazza and Vernos, 2015). Local

production of Ran-GTP around mitotic and meiotic chromosomes liberates proteins that contain a

nuclear localization signal (NLS), including a set of spindle assembly factors, from the inhibitory

action of importins (nuclear transport receptors). TPX2 is one such spindle assembly factor, having

prominent roles in local MT formation around chromatin (Gruss et al., 2001; Gruss et al., 2002;

Petry et al., 2013) and targeting of other spindle components to the spindle (Cavazza and Vernos,

2015). The molecular mechanism and the control of TPX2-dependent MT nucleation is still poorly

understood.
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Figure 1. High-resolution cryo-EM structure of TPX2 bound to GMPCPP-MTs. (A) Schematic of domain structure for full-length TPX2 and TPX2mini. (B)

Cryo-EM reconstruction of mGFP-TPX2mini decorated GMPCPP-MT, with pseudo-helical symmetry applied. a-tubulin, b-tubulin and TPX2 are colored in

green, blue and magenta, respectively. The same color scheme is used throughout. (C) Zoom-in view of two TPX2 molecules interacting with four

Figure 1 continued on next page
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TPX2 is an elongated monomeric protein composed of several functionally distinct parts

(Figure 1A, Figure 1—figure supplement 1). In addition to several MT-binding regions (Alfaro-

Aco et al., 2017; Brunet et al., 2004; Roostalu et al., 2015; Trieselmann et al., 2003), TPX2 inter-

acts with numerous binding partners. Its N-terminus interacts directly with Aurora A kinase, thereby

activating and targeting Aurora A to the spindle (Bayliss et al., 2003; Eyers et al., 2003;

Giubettini et al., 2011; Kufer et al., 2002; Tsai et al., 2003). TPX2-stimulated Aurora A activity is

important for proper spindle assembly, centrosome function and g-tubulin ring complex (g-TuRC)

activation (Pinyol et al., 2013; Scrofani et al., 2015; Tsai and Zheng, 2005).

The C-terminal half of TPX2 contains a-helical repeats that were shown to be important for stimu-

lating augmin-mediated branching MT nucleation in Xenopus laevis egg extract (Alfaro-Aco et al.,

2017; Sanchez-Pulido et al., 2016). The very C-terminus of TPX2 interacts with the two mitotic kine-

sins Kif11/Eg5 and Kif15/Xklp2 (originally having given the protein its name: TPX2 is short for ’target-

ing protein for Xklp2’) (Eckerdt et al., 2008; Ma et al., 2010; Tanenbaum et al., 2009;

Wittmann et al., 2000), mediating proper spindle localization of these motors (Helmke and Heald,

2014; Ma et al., 2010; Wittmann et al., 1998; Wittmann et al., 2000). TPX2 has also been

observed in complex with other spindle-associated MAPs (Koffa et al., 2006), the functional signifi-

cance of which is not well understood.

In vitro experiments with purified proteins have demonstrated that TPX2 directly promotes MT

stability by reducing the frequency of catastrophes (transition from MT growth to depolymerization)

and by slowing down depolymerization (Reid et al., 2016; Roostalu et al., 2015; Wieczorek et al.,

2015). Furthermore, TPX2 can directly stabilize MT nucleation intermediates (Roostalu et al., 2015)

thereby efficiently stimulating MT nucleation in pure tubulin solutions (Roostalu et al., 2015;

Wieczorek et al., 2015; Woodruff et al., 2017). The central portion of TPX2 also contains the NLS

whose interaction with importin-a is well characterized, both biochemically and at a structural level

(Giesecke and Stewart, 2010; Schatz et al., 2003). Importins suppress TPX2 binding to MTs and

MT nucleation in vitro (Roostalu et al., 2015; Schatz et al., 2003). The structural basis of the effects

of TPX2 on MT stabilization and nucleation as well as their regulation by importins is not yet

understood.

In in vitro experiments with purified proteins, TPX2 bound with higher affinity to growing MT

ends than to the rest of the MT, a preference likely resulting from sensitivity to the characteristic

nucleotide state and/or the curvature of the MT surface at MT ends (Roostalu et al., 2015). Accord-

ingly, TPX2 binds also with increased affinity to MTs grown in the presence of the non-hydrolyzable

GTP analog GMPCPP (Roostalu et al., 2015), a nucleotide which is well known to stabilize MTs and

to efficiently promote MT nucleation (Hyman et al., 1992). Cryo-electron microscopy (cryo-EM)

studies revealed that GMPCPP-MTs have a more extended lattice structure with a slightly different

lattice twist compared to GDP-MTs, a conformational difference thought to reflect the more stable

GTP state of the MT (Alushin et al., 2014; Hyman et al., 1992; Zhang et al., 2015). The central

TPX2 fragment (residues 274–659, Figure 1A) was shown to be sufficient for this nucleotide and cur-

vature-sensitive MT binding, albeit with reduced affinity, and for stimulating MT nucleation, even if

Figure 1 continued

neighboring tubulin monomers. (D) End-on view of the cryo-EM density, related to (c) by a 90˚ rotation, looking toward the MT minus end.( E–F) Zoom-

in view of the cryo-EM density and atomic model of TPX2 ridge (E) and wedge (F) respectively.

DOI: https://doi.org/10.7554/eLife.30959.002

The following figure supplements are available for figure 1:

Figure supplement 1. The sequence of human TPX2.

DOI: https://doi.org/10.7554/eLife.30959.003

Figure supplement 2. Coomassie Blue stained SDS page gels of purified TPX2 constructs used in this study.

DOI: https://doi.org/10.7554/eLife.30959.004

Figure supplement 3. Cryo-EM images of GMPCPP-MTs decorated with TPX2mini or TPX2micro constructs.

DOI: https://doi.org/10.7554/eLife.30959.005

Figure supplement 4. Resolution estimation of the cryo-EM structures of GMPCPP-MTs decorated with TPX2.

DOI: https://doi.org/10.7554/eLife.30959.006

Figure supplement 5. Cryo-EM reconstructions of GMPCPP-MTs decorated with TPX2 molecules.

DOI: https://doi.org/10.7554/eLife.30959.007
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to a lesser extent than the full-length protein (Roostalu et al., 2015). This raises the possibility that

the nucleotide sensitivity of TPX2 and its direct effects on MT dynamics and nucleation might be

linked and that they are encoded in the central part of the molecule.

To better understand the molecular mechanism of the effects of TPX2 on MT nucleation and

dynamics, we used cryo-EM to determine the atomic structure of TPX2 bound to GMPCPP-MTs. We

observed a novel MT-binding mode with two flexibly linked elements of TPX2 binding the outer MT

surface, across both longitudinal and lateral tubulin dimer interfaces. The MT-binding region of

TPX2 directly overlaps with the NLS and the importin-a interaction motif. The structural results were

further validated by mutational analysis and in vitro total internal reflection fluorescence microscopy

(TIRFM) assays. The novel MT-binding mode provides a structural explanation for how TPX2 sup-

presses MT dynamics and stimulates MT nucleation, and how the Ran-GTP gradient can regulate

TPX2-MT interaction through importins.

Results

TPX2 has a unique MT-binding mode across several interfaces
We used high-resolution cryo-EM to visualize the interaction of the central part of TPX2 (residues

274–659, called TPX2mini) (Figure 1A, Figure 1—figure supplements 1 and 2B) (Roostalu et al.,

2015) with GMPCPP-MTs. This construct maintains the binding specificity of full-length TPX2,

despite its reduced affinity and is amenable to structural studies, because it does not induce MT

bundling at the high protein concentration (mM) typically required for cryo-EM studies of MAPs, in

contrast to full-length TPX2 (Brunet et al., 2004; Schatz et al., 2003). Using a MT seam search pro-

tocol that allows the structural study of MAPs with relatively small footprints on the MT lattice

(Zhang and Nogales, 2015), we obtained a 3.3 Å resolution reconstruction of mGFP-TPX2mini deco-

rated MTs (Figure 1B, Figure 1—figure supplements 3A and 4).

The structure shows a repeating unit of two small and discontinuous densities on the MT surface

corresponding to the TPX2mini molecule (Figure 1B), which is predicted to be largely intrinsically dis-

ordered (Figure 1—figure supplement 1). We refer to these two densities as the ‘ridge’ and the’

wedge’ (Figure 1C). The ridge binds on the crest of the protofilament (PF) with an extended confor-

mation, while the wedge corresponds to a short a-helix that binds within the crevasse between two

adjacent PFs and appears to be ‘wedging’ between neighboring tubulin subunits (Figure 1D). The

absence of a connection between these two regions of density indicates that the linker between

them is flexible and not in a fixed position with respect to the MT. The ridge is oriented roughly

along the MT axis and interacts with both a- and b-tubulin across a longitudinal inter-dimer inter-

face. The half-buried wedge between adjacent PFs interacts also with a- and b-tubulin in one PF,

and with another a-tubulin in the neighboring PF. Therefore, both regions of TPX2 bind over tubulin

polymerization interfaces, suggesting a potential explanation for how TPX2 can stabilize MTs and

stimulate MT nucleation. Thus, TPX2 uses a novel mode of MAP-MT interaction that involves two

structural elements, connected by a flexible linker, to simultaneously interact across both longitudi-

nal and lateral tubulin dimer interfaces in the lattice.

The modular MT engagement by TPX2 is different from previously characterized MAP-MT interac-

tions, which typically involve a globular domain (Nogales and Zhang, 2016). Using two separate ele-

ments connected by a linker that allows for some flexibility, likely also explains why TPX2 binding is

not sensitive to the exact PF number of MTs. We observed similar binding to GMPCPP-MTs with

either 13 or 14 PFs, which are the most typical PF numbers for these MTs polymerized in vitro (Fig-

ure 1—figure supplement 5A,B). This is in contrast to end binding proteins of the EB1 family (EBs)

and to the MT-stabilizing protein doublecortin (DCX), both of which use compact globular non-flexi-

ble domains to ‘staple’ across two adjacent PFs, resulting in a marked preference for 13-PF MTs

(Fourniol et al., 2010; Maurer et al., 2012; Zhang et al., 2015), the typical PF number found in

most cells.

Atomic model of the TPX2-MT interaction
At 3.3 Å resolution, we were able to do de novo modeling of the two MT-binding elements within

TPX2, aided by both the position of large side chain densities (Figure 1E,F) and secondary structure

prediction (Figure 1—figure supplement 1). We concluded that the ridge corresponds to residues
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300–311, while the wedge corresponds to residues 323–341. These regions overlap extensively with

the importin-a-binding site and the NLS of TPX2 (Giesecke and Stewart, 2010; Schatz et al., 2003)

(Figure 1—figure supplement 1), directly providing a structural explanation of the inhibitory effects

of importins on TPX2 (Discussion).

To test our atomic model of the MT-binding elements within TPX2, we generated a much shorter

construct, which we refer to as mGFP-TPX2micro. It comprises residues 274 to 370, which more

closely encompass the ridge and the wedge elements (Figure 2A, Figure 1—figure supplements 1

and 2A). TIRFM-based in vitro experiments with purified mGFP-TPX2micro and surface attached

GMPCPP-MT ‘seeds’ from which MTs elongated in the presence of GTP, demonstrated that the

shorter TPX2micro construct retains a strong binding preference for GMPCPP-MT ‘seeds’ (Figure 2B,

C), like the longer TPX2mini, although the overall binding affinity was reduced. Cryo-EM analysis of

GMPCPP-MT decorated with the mGFP-TPX2micro construct (Figure 1—figure supplement 3B)

resulted in a reconstruction with practically identical features to the structure obtained with the lon-

ger mGFP-TPX2mini construct (Figure 2D), in support of our atomic model for the ridge and the

wedge elements.

Based on our atomic model, the ridge and the wedge are connected across adjacent PFs by a

short flexible linker of 12 residues. The distance that this linker could stretch roughly matches the

distance between the cryo-EM densities of the ridge and the wedge, but is incompatible with simul-

taneous binding of the two elements across the MT seam, the lattice discontinuity where a-tubulins

laterally contact b-tubulins, in contrast to the rest of the lattice. Indeed, asymmetric (C1) reconstruc-

tion of the MT confirmed the absence of either the wedge element (for TPX2mini) or both elements

(for TPX2micro) at the MT seam (Figure 1—figure supplement 5C,D), in further agreement with our

atomic model.

Confirmation of the TPX2 MT-binding mode using single point
mutations
In our atomic model, the ridge of TPX2 binds the MT at the junction between the a:H12 and b:H11

helices in two adjacent dimers (Figure 3A). The ridge inserts a phenylalanine F307 into a hydropho-

bic pocket in tubulin defined by residues a:V435, a:Y262, a:W346 and b:R401 (Figure 3A). The

wedge of TPX2 interacts simultaneously with the a:H9, a:H10 and b:H6 helices in one PF, and a:H3

and a:H4 helices in the other PF (Figure 3A). At the interaction site with the first PF, near the inter-

dimer interface, two residues within the wedge, F334 and H335, appear to be critical for TPX2-MT

interaction. Interestingly, these identified TPX2 residues are conserved in organisms where TPX2 has

been demonstrated to be involved in chromatin-mediated, that is Ran-GTP-dependent, MT nucle-

ation (human, X. laevis, A. thaliana [Gruss et al., 2001; Gruss et al., 2002; Petrovská et al., 2013;

Vos et al., 2008]), whereas they are not conserved in organisms where TPX2 appears to play no or

only a minor role in this nucleation pathway, despite other involvement in correct spindle assembly

(D. melanogaster, C. elegans [Hayward et al., 2014; Karsenti, 2005; Ozlü et al., 2005]) (Figure 3—

figure supplement 1).

To further test our atomic model and to determine the importance of the ridge and wedge for

overall TPX2 binding, we mutated the three identified residues of mGFP-TPX2micro that are located

right at the interfaces between tubulin dimers, and assessed their binding to MTs using a TIRFM-

based in vitro assay. We produced two single-residue mutants within the ridge, F307A and F307E,

and two double mutants within the wedge, F334A H335A and F334E H335E, as well as the com-

bined triple mutants, F307A F334A H335A and F307E F334E H335E (Figure 3B, Figure 1—figure

supplement 2A). F to A mutations were intended to replace a large charged residue by a small

hydrophobic residue, while F to E mutations had the goal to introduce a more drastic change to a

negatively charged residue. A similar reasoning applied to the histidine mutations.

We observed that compared to wild-type mGFP-TPX2micro (Figure 3C), alanine replacements in

either the ridge or the wedge region dramatically reduced the binding strength to GMPCPP-MT

seeds (Figure 3D, top and middle, respectively, 3F). Simultaneous alanine replacements in both

binding regions further reduced the MT interaction of the mutated TPX2micro (Figure 3D, bottom,

3F). The corresponding glutamate replacements showed an even more pronounced reduction in the

binding affinity (Figure 3E,F). Disrupting both the ridge and the wedge by glutamate replacements

(F307E F334E H335E mutant) completely abolished all detectable MT binding (Figure 3E, bottom,
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3F). These data suggest that both the ridge and the wedge are equally important for MT binding of

TPX2 and strongly support the validity of the atomic model of the TPX2 MT-binding site.

TPX2micro in contrast to TPX2mini did not detectably bind to growing MT ends, probably due to

its weaker overall affinity, raising the question of whether the ridge and wedge are critical for grow-

ing MT end binding in the context of a longer TPX2 construct. To answer this question, we gener-

ated a mGFP-TPX2mini triple mutant (F307E F334E H335E) with the aim to disrupt ridge and wedge

binding also in this longer construct (Figure 4A top, Figure 1—figure supplement 2B). TIRFM
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assays with purified wild-type and mutant TPX2mini (Figure 4A,B) indeed demonstrated that binding

was abrogated both to GMPCPP-MT seeds (Figure 4C) and also to growing MT ends (Figure 4D),

further confirming that the novel binding module of TPX2 identified here is indeed critical for TPX2

binding to MT ends (see Discussion).

To test the functional significance of the identified binding module, we performed TIRFM-based

MT nucleation experiments as described previously (Roostalu et al., 2015). In these experiments,

MTs nucleate in solution in the presence of biotinylated TPX2 and then bind to a neutravidin-func-

tionalized glass surface (Figure 4E). We produced biotinylated constructs of wild-type TPX2mini and

the respective triple mutant (Figure 1—figure supplement 2C) and compared their efficiency in pro-

moting MT nucleation. Time lapse imaging revealed that the wild-type protein strongly promoted

MT nucleation, as expected (Roostalu et al., 2015), whereas the MT nucleation ability of the triple

mutant was severely compromised (Figure 4F). This demonstrates that the identified interaction

module is an important facilitator of TPX2-dependent MT formation.

MT stabilization by TPX2
TPX2 binds next to structural elements within tubulin that show significant local rearrangement dur-

ing the lattice compaction that accompanies GTP hydrolysis (Figure 5), such as the T5 loop in b-

tubulin and the H5 helix in a-tubulin (black dashed circles in Figure 5B,C) (Zhang et al., 2015). Fur-

thermore, comparison of the cryo-EM reconstructions of GMPCPP-MTs in the absence and presence

of TPX2mini shows that binding of TPX2mini has a direct effect on the MT lattice structure. TPX2 bind-

ing increases slightly the right-handed twist in the lattice (measured as a ‘dimer twist’), as well as the

inter-dimer distance (measured as ‘dimer rise’) (Figure 5—figure supplement 1, Figure 5—figure

supplement 1—source data 1). This means that TPX2 appears to oppose the compaction of the MT

lattice thought to occur upon GTP hydrolysis (Alushin et al., 2014; Hyman et al., 1992). The helical

character of the wedge of TPX2 may provide sufficient mechanical strength to counteract the

decrease in distance between the two wedge-binding sites (red dashed circles in Figure 5B) associ-

ated with GTP hydrolysis and lattice compaction. Moreover, the binding of TPX2 may lock rotamer

conformations of key tubulin residues that contribute to the allosteric response to GTP hydrolysis

within the tightly packed space of the MT lattice (Figure 5—figure supplement 2). These observa-

tions strongly suggest that TPX2 does not only sense, but it also influences the conformational state

of the MT, suggesting a structural explanation for the MT stabilizing effect of TPX2.

Discussion

A new MT-binding mode
Our high-resolution cryo-EM structure of TPX2 bound to GMPCPP-MTs reveals a new mode of

MAP-MT interaction that uses two small structural elements, the wedge and the ridge, connected by

a flexible linker, to interact across longitudinal and lateral tubulin dimer interfaces (Figure 6).

Although the TPX2 wedge binds to a similar location on the MT surface as EB1 and doublecortin

(DCX) (between tubulin dimers and between PFs), they interact with different sets of tubulin residues

(Figure 6—figure supplement 1). The modular MT engagement by TPX2 via extended regions of

the protein is in stark contrast to the interaction of globular protein domains with a MT so far

Figure 3 continued

1 mM, respectively. Note that in all cases background subtracted 25-frame averages are shown to allow visualization of the differences between the faint

signals of the mutants on the MT lattice. (F) Box-and-whiskers plot depicting average fluorescence intensity measurements for mGFP-TPX2micro

GMPCPP MT ‘seed’ binding comparing wild-type and mutant proteins. The boxes extend from 25th to 75th percentiles, the whiskers extend from

minimum to maximum values, and the mean value is plotted as a line in the middle of the box. 500 timeframes were averaged for each MT ‘seed’.

Number of ‘seeds’ analyzed: WT – 18, F307A – 30, F307E – 25, F334A H335A – 25, F334E H334 – 29, F307A F334A H335E – 29, F307E F334E H335E –

24.

DOI: https://doi.org/10.7554/eLife.30959.009

The following figure supplement is available for figure 3:

Figure supplement 1. Alignment of TPX2 amino acid sequences from different species.

DOI: https://doi.org/10.7554/eLife.30959.010
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Figure 4. Perturbing critical residues for MT interaction disrupts GMPCPP ‘seed’ and growing MT end binding of TPX2mini. (A) Schematic of the

TPX2mini indicating the three mutated residues (top), and representative TIRF microscopy images (bottom) comparing wild-type mGFP-TPX2mini and the

F307E F334E H335E triple mutant of mGFP-TPX2mini (green in merge) binding to dynamic Alexa647-labeled MTs (magenta in merge). MT plus ends are

indicated by yellow (+) signs, and GMPCPP ‘seeds’ by yellow arrowheads. (B) Representative kymographs of the same experiment. Tubulin and mGFP-

Figure 4 continued on next page
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structurally characterized for other MAPs, for example the calponin homology domains of Ndc80 or

EB3/Mal3 (Alushin et al., 2010; Maurer et al., 2012; Zhang et al., 2015), the doublecortin domain

(Moores et al., 2004), kinesin-motor domains (Goulet et al., 2014; Shang et al., 2014; Sosa and

Milligan, 1996) or the spectrin domain of PRC1 (Kellogg et al., 2016).

This novel TPX2 interaction mode permits bridging of adjacent PFs without the need for a rigidly

fixed curvature between them, so that tubulin assembly can be promoted even before MT tube clo-

sure occurs at the growing MT end. At the same time, the new binding mode is sensitive to the com-

paction state of the MT lattice and may even influence the GTP hydrolysis process and/or the

allosteric response to GTP hydrolysis.

MT stabilization by TPX2
Recent in vitro studies have shown that TPX2 suppresses MT dynamics by reducing the frequency of

catastrophes and the rate of MT depolymerization (Reid et al., 2016; Roostalu et al., 2015;

Wieczorek et al., 2015). Furthermore, it was observed that TPX2 promotes the elongation of the

region it binds to at growing MT ends (Roostalu et al., 2015), indicating that it affects conforma-

tional changes of the MT lattice, potentially suggesting that it slows down GTP hydrolysis. This

agrees with our model that TPX2 antagonizes MT lattice compaction (Figure 6). Remarkably, end

binding proteins (EBs) have opposite effects on the MT lattice parameters (in terms of both lattice

spacing and lattice twist) (Figure 5—figure supplement 1) (Zhang et al., 2015), which is paralleled

by opposite effects on the kinetics of GTPase reactions (Aguirre-Portolés et al., 2012;

Maurer et al., 2011; Maurer et al., 2014) and on the catastrophe frequency and nucleation effi-

ciency of MTs as compared to TPX2 (Bieling et al., 2007; Komarova et al., 2009; Maurer et al.,

2014; Roostalu et al., 2015; Vitre et al., 2008; Wieczorek et al., 2015). Future studies with other

MAPs will further test if this applies as a general rule for the relationship between MT lattice parame-

ters and MT stability.

In addition to the stably bound wedge and ridge elements that we see in our cryo-EM structures,

TPX2 contains other MT-binding regions that can increase its MT-binding affinity and may addition-

ally contribute to its ability to stabilize MTs (Alfaro-Aco et al., 2017; Brunet et al., 2004;

Roostalu et al., 2015; Trieselmann et al., 2003). Such additional contacts may shield the electro-

static repulsion between tubulin subunits due to their negatively charged C-terminal tails, and thus

also add to the MT stabilization effect of TPX2.

Stimulation of MT nucleation by TPX2
It has been shown that TPX2 can directly promote MT nucleation in vitro, by stabilizing early nucle-

ation intermediates (Roostalu et al., 2015). While the structural nature of these intermediates is

poorly understood, we hypothesize that they may share some common features with MT ends, possi-

bly resembling a curved, GTP-rich, sheet-like structure (Chrétien et al., 1995; Guesdon et al., 2016;

Voter and Erickson, 1984; Wang et al., 2005) (Figure 6). By slowing down GTP hydrolysis and

therefore the premature transition to an unstable GDP state that is prone to depolymerization, TPX2

would allow the early nucleation intermediates to have more time to grow and transform into elon-

gating MTs (Roostalu et al., 2015). In addition, given the flexible character of the linker between its

two MT-binding elements, TPX2 may promote the formation of nucleation intermediates by bridging

two short PFs and facilitating their lateral association, even before the final lateral curvature between

PFs is established within the closed, cylindrical MT lattice (Figure 6). Furthermore, given that the

Figure 4 continued

TPX2mini concentrations were 12.5 mM and 125 nM, respectively. (C) Box-and-whiskers plot depicting average fluorescence intensity measurements for

mGFP-TPX2mini GMPCPP MT ‘seed’ binding comparing wild-type and mutant protein. The boxes extend from 25th to 75th percentiles, the whiskers

extend from minimum to maximum values, and the mean value is plotted as a line in the middle of the box. 250 time frames were averaged for each

MT ‘seed’. Number of ‘seeds’ analyzed: WT – 57, F307E F334E H335E – 67. (D) Averaged fluorescence intensity profiles of wild-type and mutant mGFP-

TPX2mini at growing MT ends. 180 timeframes were averaged for each growing plus end. Number of plus ends analyzed: WT – 42, F307E F335E H335E

– 43. Error bars are s.e.m. (E) Schematic of the TIRF microscopy-based MT nucleation assay. (F) Representative TIRFM images of CF640R-labeled MT

nucleation time course comparing the nucleation promoting ability of wild-type biotinylated TPX2mini and F307E F334E H335E triple mutant

biotinylated TPX2mini. Fluorescently labeled tubulin concentration was 15 mM, biotinylated TPX2mini concentrations were 90 nM.

DOI: https://doi.org/10.7554/eLife.30959.011
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ridge bridges across the tubulin interdimer interface along the PF, TPX2 is also likely to stabilize PFs

longitudinally. This effect on both lateral and longitudinal contacts might thereby provide a structural

explanation for why TPX2 directly promotes MT formation and stability so efficiently.

Besides the ridge and wedge motifs, that our results have identified as critical contributors to

TPX2-dependent MT nucleation, other parts of the TPX2 molecule can affect MT nucleation indi-

rectly via other interaction partners such as Aurora A, gTuRC and augmin (Alfaro-Aco et al., 2017;
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Figure 5. TPX2 binds at inter-dimer interfaces that change during the MT lattice compaction linked to GTP hydrolysis. (A) Comparison of atomic

models between the kinesin-bound GMPCPP-MT and GDP-MT states (both in the absence of TPX2 binding). The two models are aligned on the b1-

tubulin subunit. Both a- and b-tubulin in the GMPCPP-state are colored in orange, whereas a-tubulin and b-tubulin in the GDP-state are colored in

green and blue, respectively. The model of the TPX2 molecule (magenta) from the present study is also displayed at the corresponding location. (B)

Zoom-in view of the TPX2-wedge-binding site. The black dashed circle marks the T5 loop in b-tubulin that show significant local changes during MT

lattice compaction. The red dashed circles mark the regions of tubulin contacting the short helix of the wedge element. (C) Zoom-in view of the TPX2-

ridge binding site. The black dashed circle marks the H5 helix in a-tubulin that show significant local changes during MT lattice compaction.

DOI: https://doi.org/10.7554/eLife.30959.012

The following source data and figure supplements are available for figure 5:

Figure supplement 1. Plot of MT lattice parameters for different functional states.

DOI: https://doi.org/10.7554/eLife.30959.013

Figure supplement 1—source data 1. Lattice parameters for different MT states.

DOI: https://doi.org/10.7554/eLife.30959.014

Figure supplement 2. Effect of TPX2 binding on tubulin conformational transitions with nucleotide state.

DOI: https://doi.org/10.7554/eLife.30959.015
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Bayliss et al., 2003; Pinyol et al., 2013; Scrofani et al., 2015; Tsai and Zheng, 2005). There is

increasing evidence that TPX2 enhances the activity of gTuRC-dependent MT nucleation either indi-

rectly (Pinyol et al., 2013) or directly (Alfaro-Aco et al., 2017). In the light of the new binding mode

of TPX2 observed here in the context of a MT, it is tempting to speculate that TPX2 may bind in a

very similar manner to the interface between the g-tubulin surface of gTuRC and the first tubulin

layer, that is at the g-tubulin/first a-tubulin interface, thereby directly promoting the templating

Figure 6. Model for the RanGTP-regulated interaction of TPX2 with tubulin assemblies during MT nucleation and MT growth. Binding of importins by

RanGTP releases the sequestration of structural elements in TPX2 that are involved in interaction with tubulin assemblies at polymerization interfaces.

TPX2 then functions to bring together tubulin subunits during MT nucleation and MT growth. The binding of TPX2 at those interfaces is optimal for the

GTP-bound, extended MT lattice, and may slow down the GTP hydrolysis process by antagonizing MT lattice compaction.

DOI: https://doi.org/10.7554/eLife.30959.016

The following figure supplement is available for figure 6:

Figure supplement 1. Comparison of the binding sites of TPX2, EB3 and doublecortin (DCX) on MTs.

DOI: https://doi.org/10.7554/eLife.30959.017
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activity of gTuRC in addition to stabilizing interdimer tubulin-tubulin contacts in the MT wall, as dis-

cussed above. Future structural studies are required to explore this possibility.

Regulation of TPX2 by importin binding
Our studies have identified two structural elements within TPX2, the ridge and the wedge, involved

in specific interactions with the MT lattice. Our atomic model, validated using different constructs as

well as mutational analysis, identified the sequences of these two MT-binding elements as overlap-

ping extensively with the importin-a-binding site and the NLS of TPX2 (Giesecke and Stewart,

2010; Schatz et al., 2003) (Figure 1—figure supplement 1). Therefore, importin binding to TPX2

competes with MT binding of the central part of TPX2, explaining previous observations with puri-

fied proteins (Roostalu et al., 2015), preventing TPX2 from stabilizing MTs and from promoting

their nucleation (Figure 6). Differences between the conservation of TPX2 sequences and its role in

MT nucleation have been noted earlier (Goshima, 2011; Karsenti, 2005). The observation that the

MT contact sites in the wedge and ridge of TPX2 appear to be conserved only in organisms, such as

vertebrates, where a role of TPX2 for chromatin-dependent MT nucleation has been reported

(Gruss et al., 2001; Gruss et al., 2002; Vos et al., 2008) and not where TPX2 does not seem to be

involved in this pathway (Hayward et al., 2014; Ozlü et al., 2005) (Figure 3—figure supplement

1), suggests that this binding mode is distinctly responsible for Ran-GTP-regulated effects of TPX2

on MT nucleation and stability. Hence, our findings provide a mechanistic explanation of how the

Ran-GTP gradient is coupled to MT nucleation and stabilization during mitosis.

Conclusion
The present work sheds light on the process of regulated MT nucleation through a combination of

the direct visualization of the MT stabilizer TPX2 bound to the MT surface and biochemical reconsti-

tution assays that verify the functional importance of this interaction (Figure 6). Through a novel

binding mode involving small, flexibly linked structural motifs, TPX2 binds across longitudinal and

lateral interfaces between tubulin subunits in the MT lattice promoting the association between

tubulin subunits (Figure 6, top right and bottom right). At the same time, TPX2-binding motifs allow

the discrimination between nucleotide states in the MT lattice, possibly also slowing down GTP

hydrolysis and the transition to a compacted GDP-MT lattice (Figure 6, bottom left). All these prop-

erties likely contribute to the direct effect TPX2 has on MT nucleation. The new binding mode might

also contribute to stimulating gTuRC-mediated MT nucleation, in combination with indirect effects of

TPX2 mediated by other interaction partners. By identifying the critical MT-binding regions in TPX2

as those that also bind importins, our study explains how the interaction of TPX2 with MTs is regu-

lated by the Ran-GTP gradient. Similar molecular mechanisms may be shared among a group of

nuclear proteins that are activated upon nuclear envelope breakdown and function as spindle assem-

bly factors in mitosis and meiosis.

Materials and methods

Cloning and protein biochemistry
The mGFP-TPX2mini construct (containing residues 274–659 of human TPX2 N-terminally tagged

with monomeric GFP) was described previously (Roostalu et al., 2015). The fusion protein was

expressed in Sf21 cells and purified as described (Roostalu et al., 2015), concentrated to ~5 mg/ml

with Vivaspin 15R concentrators (10,000 MWCO, Sartorius), ultracentrifuged (278,088 x g, 10 min,

4˚C), and flash frozen and stored in storage buffer (50 mM HEPES (pH 7.5), 300 mM KCl, 2 mM

MgCl2, 50 mM arginine, 50 mM glutamate, 250 mM sucrose, 5 mM 2-mercaptoethanol (2-ME)) in liq-

uid nitrogen.

To generate a bacterial expression construct for TPX2micro, a fragment of the TPX2 cDNA encod-

ing residues 274–370 was amplified by PCR using the TPX2mini construct as a template and cloned

into a pETMZ vector together with the N-terminal mGFP resulting in a fusion His6-Ztag-mGFP-Gly5A-

laMet-TPX2274-370 where the His6 and the Ztag could be cleaved off by TEV protease.

The TPX2micro fusion protein was expressed in E. coli BL21 pRil at 18˚C for 16 hr, induced by 0.1

mM IPTG. To purify the protein, cell pellets from 2 l culture were resuspended in ice-cold lysis buffer

(50 mM HEPES (pH 8.0), 300 mM KCl, 5 mM MgCl2, 1 mM imidazole, 25 mM sucrose, 1 mM EDTA,
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5 mM 2-ME) supplemented with a protease inhibitor cocktail (Roche) and DNAseI (10 mg/ml, Sigma

Aldrich) and lysed using a microfluidizer. The lysate was clarified by ultracentrifugation (183,960 x g)

for 45 min at 4˚C and loaded on 2.5 g Protino Ni-TED resin (Macherey-Nagel). The resin-bound pro-

tein was washed with 40 ml of lysis buffer, 10 ml of lysis buffer containing 5 mM ATP, and then again

with 40 ml lysis buffer. The protein was eluted by GST-TEV protease cleavage on a rotating wheel at

4˚C for 16 hr. The soluble protein was then separated from the resin by centrifugation (700 x g, 10

min, 4˚C). GST-TEV was then removed by 30-min incubation with glutathione resin (Novagen) on ice.

The resin was then pelleted (700 x g, 10 min, 4˚C) and the buffer of the mGFP-TPX2micro containing

protein solution exchanged to MES A buffer (20 mM MES (pH 6.0), 2 mM MgCl2, 5 mM 2-ME) via

PD-10 columns (GE Healthcare). The protein was then loaded on a MonoS 5/50 GL column (GE

Healthcare) pre-equilibrated with MES A buffer. The protein was eluted with an increasing linear KCl

concentration gradient in MES A buffer. The peak fractions (eluted at ~330 mM KCl) were pooled,

aliquoted and stored in liquid nitrogen.

To generate mutants, the expression construct of mGFP-TPX2micro was modified by PCR muta-

genesis to disrupt either the ‘ridge’ (F307A or F307E) or the ‘wedge’ (F334A H335A or F334E

H335E) regions, or both simultaneously. The expression and purification of the mutant proteins was

carried out as described above for the mGFP-TPX2micro. mGFP-TPX2mini and BAP-mTagBFP-TPX2mini

(BAP – biotin acceptor peptide, BFP – blue fluorescent protein) triple mutants (F307E F334E H335E)

were also generated by PCR mutagenesis, expressed in Sf21 cells and purified as described previ-

ously for wild-type mGFP-TPX2mini and BAP-mTagBFP-TPX2mini (Roostalu et al., 2015).

Porcine brain tubulin for total internal microscopy (TIRFM) assays was purified as described earlier

(Castoldi and Popov, 2003) and labeled either with CF640R-N-hydroxysuccinimide ester (NHS,

Sigma-Aldrich), Atto565-NHS ester (Sigma-Aldrich), or Alexa647-NHS ester or biotin-NHS ester

(Thermo Scientific) according to established methods (Hyman et al., 1991). The porcine tubulin

used for cryo-EM studies was purchased from Cytoskeleton (see below).

All new expression constructs were verified by sequencing. Protein concentrations were deter-

mined by Bradford assay (TPX2 constructs), or by measuring the absorbance at 280 nm (tubulin).

TPX2 concentrations indicate monomer concentrations, tubulin concentrations refer to tubulin

dimers.

Total internal reflection fluorescence microscopy (TIRFM)
Flow chambers were assembled from a poly-(L-lysine)-polyethylene glycol (PLL-PEG, SuSoS) passiv-

ated counter glass and a biotin-PEG-functionalized coverslip as described previously (Bieling et al.,

2010). TIRFM imaging was performed at 30 ± 1˚C using either an iMIC system (FEI Munich) charac-

terized in detail elsewhere (Maurer et al., 2014), or a custom TIRFM microscope (Cairn Research,

Faversham, UK) based on a Nikon Ti-E frame with a 100 � 1.49 N.A. objective lens and with Andor

iXon Ultra 888 EMCCD camera. The exposure times were always 150 ms at 1 s or 1.5 s intervals

using either 488 nm (for mGFP), 561 nm (for Atto561), or 640 nm (for CF640R, or Alexa647) lasers

for excitation for dynamic MT assays. Images were acquired with a 200 ms exposure time at 2 s inter-

vals using a 638 nm laser for the nucleation assay (for CF640R). For double-color imaging images

were acquired either simultaneously with 488 nm and 640 nm lasers, or alternating between 488 nm

and 561 nm excitation to avoid bleed through. Image alignment was performed as described earlier

using MATLAB (Maurer et al., 2014). Images were assembled and processed (image stabilization,

background subtraction and generation, average Z-projections) using Fiji.

For MT dynamics assays, the GMPCPP-stabilized fluorescently labeled (containing either 12% of

CF640R-, Alexa647- or Atto565-labeled tubulin) and biotinylated MT ‘seeds’ were polymerized as

described earlier (Bieling et al., 2010; Roostalu et al., 2015). The assay itself was performed as pre-

viously described (Roostalu et al., 2015) with minor modifications. The passivated flow chambers

were incubated first for 5 min with 5% Pluronic F-127 in MQ water (Sigma-Aldrich) at room tempera-

ture and then washed with assay buffer (for mGFP-TPX2micro AB: 80 mM PIPES, 1 mM EGTA, 1 mM

MgCl2, 1 mM GTP, 5 mM 2-ME, 0.15% (w/vol) methylcellulose (4000 cP, Sigma-Aldrich), 1% (w/vol)

glucose, 0.02% (vol/vol), Brij-35; for experiments with mGFP-TPX2mini the AB also included 60 mM

KCl) containing k-casein (50 mg/ml, Sigma-Aldrich). The flow chamber was subsequently incubated

on a metal block on ice in the same buffer additionally supplemented with NeutrAvidin (50 mg/ml,

Life Technologies). Excess NeutrAvidin was then removed by washes with AB. Next the GMPCPP-

‘seeds’ diluted in AB were flowed in and incubated in the chamber for 3 min at room temperature to
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facilitate attachment. The unbound ‘seeds’ were removed by additional washes with AB followed by

flowing in the final assay mix.

The final assay mix for experiments with TPX2micro proteins consisted of: 77.8% (vol/vol) AB con-

taining mGFP-TPX2micro protein and 22.2% BRB80 (80 mM PIPES, 1 mM EGTA, 1 mM MgCl2) con-

taining oxygen scavengers (catalase and glucose oxidase), and fluorescently labeled tubulin

(containing 5% of either CF640R-, Alexa647- or Atto565-labelled tubulin). The final protein concen-

trations were 500 nM or 1 mM for wild-type or mutant mGFP-TPX2micro proteins, 12.5 mM or 15 mM

tubulin, and 180 mg/ml catalase (Sigma-Aldrich), 750 mg/ml glucose oxidase (Serva). To allow for

direct comparisons the mGFP-TPX2micro and the respective mutants were all first pre-diluted to 50

mM in their storage buffer (20 mM MES (pH 6.0), 330 mM KCl, 2 mM MgCl2, 5 mM 2-ME) prior fur-

ther dilutions in AB and imaged on the same day under identical conditions. The final assay mix for

experiments with TPX2mini proteins consisted of: 76.1% AB supplemented with 60 mM KCl and

22.2% BRB80 containing oxygen scavengers, and fluorescently labeled tubulin (containing 5% of

either Alexa647-labelled tubulin), and 1.7% TPX2mini diluted in its storage buffer (see below). The

final protein concentrations were 125 nM for wild-type or mutant mGFP-TPX2mini proteins, 12.5 mM

tubulin, and 180 mg/ml catalase and 750 mg/ml glucose oxidase. To allow for direct comparisons

between mGFP-TPX2mini and mGFP-TPX2mini F307E F334E H335E, the proteins were first diluted to

15 mM in their storage buffer (50 mM HEPES (pH 7.5), 300 mM KCl, 2 mM MgCl2, 50 mM arginine,

50 mM glutamate, 250 mM sucrose, 5 mM 2-ME) and imaged on the same day under identical

conditions.

TIRFM-based MT nucleation assays were performed as described previously (Roostalu et al.,

2015). In short, the final assay mix (see below) was first prepared on ice and ultracentrifuged

(278,088 � g, 7 min, 4˚C). In parallel, the flow chamber was sequentially incubated for 10 min with

5% Pluronic F-127 at room temperature, washed with AB containing 60 mM KCl and 50 mg/ml k-

casein, and subsequently incubated on a metal block on ice in the same buffer additionally supple-

mented with NeutrAvidin (50 mg/ml). The flow chamber was then washed with AB containing KCl at

room temperature and placed on a metal block at 30˚C. The ultracentrifuged final assay mix was

then incubated at 30˚C for 1 min to initiate nucleation in solution and then transferred to the pre-

warmed flow chamber. The chamber was sealed with silicone grease. Imaging was started 3 min

after placing final assay mix at 30˚C. The composition of the final assay mix: 80% AB containing 60

mM KCl, 18.7% BRB80 containing oxygen scavengers, bovine serum albumin (BSA, Sigma-Aldrich,

fluorescently labeled tubulin (containing 5% of CF640R-labeled tubulin), and 1.3% wild-type or triple

mutant BAP-mTagBFP-TPX2mini proteins in their storage buffer. The final protein concentrations

were 90 nM for wild-type or triple mutant BAP-mTagBFP-TPX2mini proteins, 12.5 mM tubulin, 1 mg/

ml for BSA, 180 mg/ml catalase and 750 mg/ml glucose oxidase. Three independent experiments

were performed for the indicated condition.

Fluorescence intensity analysis
All fluorescence intensity measurements were performed using Fiji software. To quantify the binding

of mGFP-TPX2micro and mGFP-TPX2mini to the GMPCPP stabilized ‘seed’ part of the dynamic MT

(Figure 3F and Figure 4A, respectively) a 50 pixel rolling-ball background subtraction was applied

to each frame of a 250 timeframe movie. The fluorescence intensities were then averaged over all

frames generating a single time-averaged image for the entire movie. The bright MT ‘seeds’ were

identified and marked manually along their length with a three-pixel wide segmented line in the MT

channel of the movie. The corresponding average mGFP-TPX2micro or mGFP-TPX2mini fluorescence

intensities in these ’seed’ areas were then determined in the GFP channel. To obtain the final aver-

age fluorescence intensity values, a residual background was subtracted. This residual background

was generated from the time-averaged image by generating a 50-pixel rolling–ball background

image followed by averaging its intensities. For mGFP-TPX2micro averaged ‘seed’ intensities for one

sample were quantified. Number of ‘seeds’ measured: WT – 18, F307A – 30, F307E – 25, F334A

H335A – 25, F334E H334 – 29, F307A F334A H335E – 29, F307E F334E H335E – 24. For mGFP-

TPX2mini averaged ‘seed’ intensities for three samples were quantified. Number of ‘seeds’ measured:

WT – 57, F307E F334E H335E – 67.

To quantify the average fluorescence intensities of mGFP-TPX2mini at growing MT plus ends

(Figure 4D) averaged intensity profiles were measured similarly as described previously

(Roostalu et al., 2015). In short, kymographs were generated of growing MTs. The growing plus
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ends were then marked by three-pixel wide segmented lines. The kymographs were straightened,

aligned and averaged together using the marked plus end as a reference point. The resulting image

was then further averaged along the time axis (180 timeframes) to generate a time-averaged spatial

intensity profile for the MT plus end. Number of plus ends analyzed: WT – 42, F307E F335E H335E –

43.

Cryo-EM sample preparation
Porcine tubulin powder (Cytoskeleton) was reconstituted to 10 mg/ml in CB1 buffer (80 mM PIPES

pH 6.8, 1 mM EGTA, 1 mM MgCl2, 1 mM GTP, 10% glycerol). After one polymerization-depolymeri-

zation cycle, active tubulin was resuspended in cold EM buffer (80 mM PIPES, pH 6.8, 1 mM EGTA,

1 mM MgCl2, 1 mM DTT, 0.05% Nonidet P-40) supplemented with 1 mM GMPCPP. GMPCPP-

loaded tubulin at 3 mg/ml soluble tubulin concentration were polymerized at 37˚C for about 1 hr,

and GMPCPP-MTs were diluted to 0.25 mg/ml in warm EM buffer supplemented with 1 mM

GMPCPP. mGFP-TPX2mini or mGFP-TPX2micro was desalted into cold EM buffer using a Zeba Micro

Spin desalting column (Thermo Scientific), and the sample was clarified by ultracentrifugation at

80,000 RCF for 15 min at 4˚C using a Beckman TLA-100 rotor. 3 ml GMPCPP-MT specimen was

applied to a glow-discharged C-flat 1.2/1.3–4C holey carbon EM grid (Protochips). After 30 s incuba-

tion inside a Vitrobot (Maastricht Instruments) set at 15˚C (to minimize protein aggregation) and

95% humidity, the grid was washed twice with 3 ml of 20 mM TPX2 (30 s incubation each time) to

maximize the decoration of TPX2 on the MT lattice, before blotting and vitrification in liquid ethane.

Cryo-EM data collection
The cryo-EM data for the mGFP-TPX2mini (initial testing) or mGFP-TPX2micro decorated GMPCPP-MT

were collected using a 300 keV low-base Titan microscope (FEI) (located at UC Berkeley) with a K2

Summit direct electron detector (Gatan). The sample was imaged under parallel illumination condi-

tions, with a beam diameter of ~2 mm on the specimen. A defocus range from �1.2 to �3.5 mm was

used. All cryo-EM images were recorded at a nominal magnification of 27,500�, corresponding to a

calibrated pixel size of 1.33 Å. The K2 camera was operated in counting mode, with a dose rate

of ~8 electrons/pixel/s on the camera. Each exposure was 6 s long and recorded as a movie of 20

frames, corresponding to a dose of 1.37 electron/Å2 for each frame, and an accumulative dose of

27.6 electrons/Å2 on the specimen. The data were collected semi-automatically using the Leginon

software suite (Suloway et al., 2005).

A large cryo-EM dataset of the mGFP-TPX2mini decorated GMPCPP-MT was collected on a 300

keV Titan Krios microscope (FEI) at the HHMI Janelia Research Campus. The microscope is equipped

with a spherical aberration corrector (Cs- correction) and a high-brightness field emission gun (X-

FEG). A Gatan Image Filter (GIF) for energy filtering was used for data collection, with a slit width of

20 eV. A defocus range from �1 to �2.5 mm was used. A total number of ~4000 movie stacks were

recorded on a post-GIF K2 Summit direct electron detector camera (Gatan), in super resolution

mode with a calibrated pixel size of 1.35 Å per physical pixel and a dose rate of ~8 electrons/pixel/s.

Each exposure was 7.5 s long and recorded as a movie of 25 frames, corresponding to a dose of

1.32 electron/Å2 for each frame, and an accumulative dose of 33.0 electrons/Å2 on the specimen.

The data were collected automatically using SerialEM (Mastronarde, 2005).

Image processing
For data collected at the HHMI Janelia cryoEM facility, each movie stack was subject to an aniso-

tropic magnification correction using mag_distortion_correct (Grant and Grigorieff, 2015a), fol-

lowed immediately by Fourier binning by 2. The calibrated pixel size after the correction and binning

is also 1.33 Å. No significant magnification anisotropy (>0.5%) was detected for the Titan micro-

scope located at UC Berkeley. Drift correction for each movie stack was performed using the UCSF

motioncorr program(Li et al., 2013). Then the contrast transfer function (CTF) parameters were esti-

mated from the motion-corrected micrographs using CTFFIND4 (Rohou and Grigorieff, 2015). Sub-

sequently, we manually selected MTs from these motion-corrected micrographs using the APPION

image processing suite (Lander et al., 2009). The MT selections were converted to overlapping

boxes (512 � 512 pixels), with ~80 Å non-overlapping region (along the MT axis) between adjacent

boxes. The initial alignment parameters and PF number for each boxed MT particle were
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determined using multi-reference alignment (MRA) in EMAN1 (Ludtke et al., 1999). MT particles

with the same PF number were merged and subject to further structural refinement in FREALIGN v9

(Grigorieff, 2007).

For high-resolution structural refinement in FREALIGN, we used the ‘polished’ particles obtained

by alignparts_lmbfgs (Rubinstein and Brubaker, 2015), which tracks the movements for individual

particles throughout the movie series, and applies dose exposure filtering (Grant and Grigorieff,

2015b). Starting from the initial alignment parameters obtained by EMAN1, and using a recently

developed data processing protocol (Zhang and Nogales, 2015), we could accurately determine

the a, b-tubulin register and seam location for each MT segment. This approach allows the study of

MT-MAP interactions without the need for a large protein marker for the tubulin dimer (such as a

kinesin motor domain, as we previously used Alushin et al., 2014; Zhang et al., 2015]), which could

otherwise interfere with the binding of the MAP of interest. Finally, 3D reconstructions (assuming

either pseudo-helical symmetry or no symmetry) were performed using the ‘polished’ particles, fol-

lowing a previously described protocol (Zhang et al., 2015; Zhang and Nogales, 2015). The final

resolution for each reconstruction (Figure 1—figure supplement 4A) was estimated by calculating

the Fourier Shell Correlation (FSC) of a single tubulin dimer from the odd and even maps, using a

FSC 0.143 criterion. The local resolution (Figure 1—figure supplement 4B,C) was calculated using

the blocres function in the Bsoft package (Heymann and Belnap, 2007).

Atomic model building and refinement
The atomic models of TPX2 and a/b tubulin were built in COOT (Emsley et al., 2010), based on the

high-resolution cryo-EM density map. The model for the two resolved structural elements of TPX2

was built de novo, while the tubulin model was built using our previous cryo-EM-derived structure of

kinesin decorated GMPCPP-MT (PDB ID: 3JAT [Zhang et al., 2015]) as the starting point. Torsion

angle, planar peptide and Ramachandran restraints were used during the building process in COOT.

The models built in COOT (TPX2 and a/b tubulin) were duplicated and fitted as a rigid-body into

the MT lattice. And the initial model containing six tubulin dimers and two TPX2 molecules were

subsequently refined with REFMAC v5.8 adapted for cryo-EM (Brown et al., 2015), following a pre-

vious protocol (Zhang et al., 2015). Secondary structure and reference restraints generated with

ProSMART (Nicholls et al., 2012) were used throughout the refinement process. During refinement,

local symmetry restraints were used to restrain corresponding interatomic distances in symmetry-

related molecules. These local symmetry restraints are functionally analogous to non-crystallographic

symmetry (NCS) restraints used during crystallographic refinement (Murshudov et al., 2011).

Molecular graphics
All structural figures were generated using UCSF Chimera (Goddard et al., 2007; Pettersen et al.,

2004).

Data deposition
The following cryo-EM maps have been deposited in the Electron Microscopy Data Bank [EMDB]:

TPX2mini-decorated GMPCPP-MT (EMD-7101), TPX2micro-decorated GMPCPP-MT (EMD-7102). The

refined atomic model for TPX2mini-decorated GMPCPP-MT has been deposited in the Protein Data

Bank (PDB) with accession code 6BJC.
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Kufer TA, Silljé HH, Körner R, Gruss OJ, Meraldi P, Nigg EA. 2002. Human TPX2 is required for targeting
Aurora-A kinase to the spindle. The Journal of Cell Biology 158:617–623. DOI: https://doi.org/10.1083/jcb.
200204155, PMID: 12177045

Lander GC, Stagg SM, Voss NR, Cheng A, Fellmann D, Pulokas J, Yoshioka C, Irving C, Mulder A, Lau PW,
Lyumkis D, Potter CS, Carragher B. 2009. Appion: an integrated, database-driven pipeline to facilitate EM
image processing. Journal of Structural Biology 166:95–102. DOI: https://doi.org/10.1016/j.jsb.2009.01.002,
PMID: 19263523

Zhang et al. eLife 2017;6:e30959. DOI: https://doi.org/10.7554/eLife.30959 20 of 22

Research article Biochemistry Biophysics and Structural Biology

https://doi.org/10.1074/jbc.M110.102343
https://doi.org/10.1074/jbc.M110.102343
http://www.ncbi.nlm.nih.gov/pubmed/20335181
https://doi.org/10.1242/jcs.075457
https://doi.org/10.1242/jcs.075457
http://www.ncbi.nlm.nih.gov/pubmed/21147853
https://doi.org/10.1016/j.jsb.2006.06.010
http://www.ncbi.nlm.nih.gov/pubmed/16963278
https://doi.org/10.1371/journal.pone.0028120
http://www.ncbi.nlm.nih.gov/pubmed/22140519
https://doi.org/10.1073/pnas.1319848111
http://www.ncbi.nlm.nih.gov/pubmed/24449904
https://doi.org/10.1016/j.jsb.2015.08.006
https://doi.org/10.1016/j.jsb.2015.08.006
http://www.ncbi.nlm.nih.gov/pubmed/26278979
https://doi.org/10.7554/eLife.06980
http://www.ncbi.nlm.nih.gov/pubmed/26023829
https://doi.org/10.1016/j.jsb.2006.05.004
http://www.ncbi.nlm.nih.gov/pubmed/16828314
https://doi.org/10.1016/S0092-8674(01)00193-3
http://www.ncbi.nlm.nih.gov/pubmed/11163242
https://doi.org/10.1038/ncb870
http://www.ncbi.nlm.nih.gov/pubmed/12389033
https://doi.org/10.1038/ncb3412
http://www.ncbi.nlm.nih.gov/pubmed/27617931
https://doi.org/10.1016/j.devcel.2013.12.001
http://www.ncbi.nlm.nih.gov/pubmed/24389063
http://www.ncbi.nlm.nih.gov/pubmed/9207457
https://doi.org/10.1083/jcb.201401014
http://www.ncbi.nlm.nih.gov/pubmed/25070954
https://doi.org/10.1016/j.jsb.2006.06.006
http://www.ncbi.nlm.nih.gov/pubmed/17011211
https://doi.org/10.1016/0076-6879(91)96041-O
http://www.ncbi.nlm.nih.gov/pubmed/2034137
https://doi.org/10.1091/mbc.3.10.1155
http://www.ncbi.nlm.nih.gov/pubmed/1421572
https://doi.org/10.1016/j.molcel.2005.08.002
https://doi.org/10.1016/j.molcel.2005.08.002
http://www.ncbi.nlm.nih.gov/pubmed/16109366
https://doi.org/10.1073/pnas.1609903113
https://doi.org/10.1073/pnas.1609903113
http://www.ncbi.nlm.nih.gov/pubmed/27493215
https://doi.org/10.1016/j.cub.2006.03.056
https://doi.org/10.1016/j.cub.2006.03.056
http://www.ncbi.nlm.nih.gov/pubmed/16631581
https://doi.org/10.1083/jcb.200807179
https://doi.org/10.1083/jcb.200807179
http://www.ncbi.nlm.nih.gov/pubmed/19255245
https://doi.org/10.1083/jcb.200204155
https://doi.org/10.1083/jcb.200204155
http://www.ncbi.nlm.nih.gov/pubmed/12177045
https://doi.org/10.1016/j.jsb.2009.01.002
http://www.ncbi.nlm.nih.gov/pubmed/19263523
https://doi.org/10.7554/eLife.30959


Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng Y. 2013. Electron counting
and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature Methods
10:584–590. DOI: https://doi.org/10.1038/nmeth.2472, PMID: 23644547

Ludtke SJ, Baldwin PR, Chiu W. 1999. EMAN: semiautomated software for high-resolution single-particle
reconstructions. Journal of Structural Biology 128:82–97. DOI: https://doi.org/10.1006/jsbi.1999.4174,
PMID: 10600563

Ma N, Tulu US, Ferenz NP, Fagerstrom C, Wilde A, Wadsworth P. 2010. Poleward transport of TPX2 in the
mammalian mitotic spindle requires dynein, Eg5, and microtubule flux. Molecular Biology of the Cell 21:979–
988. DOI: https://doi.org/10.1091/mbc.E09-07-0601, PMID: 20110350

Mastronarde DN. 2005. Automated electron microscope tomography using robust prediction of specimen
movements. Journal of Structural Biology 152:36–51. DOI: https://doi.org/10.1016/j.jsb.2005.07.007,
PMID: 16182563

Maurer SP, Bieling P, Cope J, Hoenger A, Surrey T. 2011. GTPgammaS microtubules mimic the growing
microtubule end structure recognized by end-binding proteins (EBs). PNAS 108:3988–3993. DOI: https://doi.
org/10.1073/pnas.1014758108, PMID: 21368119

Maurer SP, Cade NI, Bohner G, Gustafsson N, Boutant E, Surrey T. 2014. EB1 accelerates two conformational
transitions important for microtubule maturation and dynamics. Current Biology 24:372–384. DOI: https://doi.
org/10.1016/j.cub.2013.12.042, PMID: 24508171

Maurer SP, Fourniol FJ, Bohner G, Moores CA, Surrey T. 2012. EBs recognize a nucleotide-dependent structural
cap at growing microtubule ends. Cell 149:371–382. DOI: https://doi.org/10.1016/j.cell.2012.02.049,
PMID: 22500803

Moores CA, Perderiset M, Francis F, Chelly J, Houdusse A, Milligan RA. 2004. Mechanism of microtubule
stabilization by doublecortin. Molecular Cell 14:833–839. DOI: https://doi.org/10.1016/j.molcel.2004.06.009,
PMID: 15200960

Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA. 2011.
REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica Section D Biological
Crystallography 67:355–367. DOI: https://doi.org/10.1107/S0907444911001314, PMID: 21460454

Neumayer G, Belzil C, Gruss OJ, Nguyen MD. 2014. TPX2: of spindle assembly, DNA damage response, and
cancer. Cellular and Molecular Life Sciences 71:3027–3047. DOI: https://doi.org/10.1007/s00018-014-1582-7,
PMID: 24556998

Neumayer G, Helfricht A, Shim SY, Le HT, Lundin C, Belzil C, Chansard M, Yu Y, Lees-Miller SP, Gruss OJ, van
Attikum H, Helleday T, Nguyen MD. 2012. Targeting protein for xenopus kinesin-like protein 2 (TPX2) regulates
g-histone 2AX (g-H2AX) levels upon ionizing radiation. Journal of Biological Chemistry 287:42206–42222.
DOI: https://doi.org/10.1074/jbc.M112.385674, PMID: 23045526

Nicholls RA, Long F, Murshudov GN. 2012. Low-resolution refinement tools in REFMAC5. Acta
Crystallographica. Section D, Biological Crystallography 68:404–417. DOI: https://doi.org/10.1107/
S090744491105606X, PMID: 22505260

Nogales E, Zhang R. 2016. Visualizing microtubule structural transitions and interactions with associated proteins.
Current Opinion in Structural Biology 37:90–96. DOI: https://doi.org/10.1016/j.sbi.2015.12.009, PMID: 268032
84

Notredame C, Higgins DG, Heringa J. 2000. T-Coffee: A novel method for fast and accurate multiple sequence
alignment. Journal of Molecular Biology 302:205–217. DOI: https://doi.org/10.1006/jmbi.2000.4042, PMID: 10
964570
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Pérez de Castro I, Malumbres M. 2012. Mitotic Stress and Chromosomal Instability in Cancer: The Case for
TPX2. Genes & Cancer 3:721–730. DOI: https://doi.org/10.1177/1947601912473306, PMID: 23634259

Pinyol R, Scrofani J, Vernos I. 2013. The role of NEDD1 phosphorylation by Aurora A in chromosomal
microtubule nucleation and spindle function. Current Biology 23:143–149. DOI: https://doi.org/10.1016/j.cub.
2012.11.046, PMID: 23273898

Reid TA, Schuster BM, Mann BJ, Balchand SK, Plooster M, McClellan M, Coombes CE, Wadsworth P, Gardner
MK. 2016. Suppression of microtubule assembly kinetics by the mitotic protein TPX2. Journal of Cell Science
129:1319–1328. DOI: https://doi.org/10.1242/jcs.178806, PMID: 26869224

Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic
Acids Research 42:W320–W324. DOI: https://doi.org/10.1093/nar/gku316, PMID: 24753421

Zhang et al. eLife 2017;6:e30959. DOI: https://doi.org/10.7554/eLife.30959 21 of 22

Research article Biochemistry Biophysics and Structural Biology

https://doi.org/10.1038/nmeth.2472
http://www.ncbi.nlm.nih.gov/pubmed/23644547
https://doi.org/10.1006/jsbi.1999.4174
http://www.ncbi.nlm.nih.gov/pubmed/10600563
https://doi.org/10.1091/mbc.E09-07-0601
http://www.ncbi.nlm.nih.gov/pubmed/20110350
https://doi.org/10.1016/j.jsb.2005.07.007
http://www.ncbi.nlm.nih.gov/pubmed/16182563
https://doi.org/10.1073/pnas.1014758108
https://doi.org/10.1073/pnas.1014758108
http://www.ncbi.nlm.nih.gov/pubmed/21368119
https://doi.org/10.1016/j.cub.2013.12.042
https://doi.org/10.1016/j.cub.2013.12.042
http://www.ncbi.nlm.nih.gov/pubmed/24508171
https://doi.org/10.1016/j.cell.2012.02.049
http://www.ncbi.nlm.nih.gov/pubmed/22500803
https://doi.org/10.1016/j.molcel.2004.06.009
http://www.ncbi.nlm.nih.gov/pubmed/15200960
https://doi.org/10.1107/S0907444911001314
http://www.ncbi.nlm.nih.gov/pubmed/21460454
https://doi.org/10.1007/s00018-014-1582-7
http://www.ncbi.nlm.nih.gov/pubmed/24556998
https://doi.org/10.1074/jbc.M112.385674
http://www.ncbi.nlm.nih.gov/pubmed/23045526
https://doi.org/10.1107/S090744491105606X
https://doi.org/10.1107/S090744491105606X
http://www.ncbi.nlm.nih.gov/pubmed/22505260
https://doi.org/10.1016/j.sbi.2015.12.009
http://www.ncbi.nlm.nih.gov/pubmed/26803284
http://www.ncbi.nlm.nih.gov/pubmed/26803284
https://doi.org/10.1006/jmbi.2000.4042
http://www.ncbi.nlm.nih.gov/pubmed/10964570
http://www.ncbi.nlm.nih.gov/pubmed/10964570
https://doi.org/10.1016/j.devcel.2005.07.002
http://www.ncbi.nlm.nih.gov/pubmed/16054030
https://doi.org/10.1093/jxb/ert271
https://doi.org/10.1093/jxb/ert271
http://www.ncbi.nlm.nih.gov/pubmed/24006426
https://doi.org/10.1016/j.cell.2012.12.044
http://www.ncbi.nlm.nih.gov/pubmed/23415226
https://doi.org/10.1002/jcc.20084
http://www.ncbi.nlm.nih.gov/pubmed/15264254
https://doi.org/10.1177/1947601912473306
http://www.ncbi.nlm.nih.gov/pubmed/23634259
https://doi.org/10.1016/j.cub.2012.11.046
https://doi.org/10.1016/j.cub.2012.11.046
http://www.ncbi.nlm.nih.gov/pubmed/23273898
https://doi.org/10.1242/jcs.178806
http://www.ncbi.nlm.nih.gov/pubmed/26869224
https://doi.org/10.1093/nar/gku316
http://www.ncbi.nlm.nih.gov/pubmed/24753421
https://doi.org/10.7554/eLife.30959


Rohou A, Grigorieff N. 2015. CTFFIND4: Fast and accurate defocus estimation from electron micrographs.
Journal of Structural Biology 192:216–221. DOI: https://doi.org/10.1016/j.jsb.2015.08.008, PMID: 26278980

Roostalu J, Cade NI, Surrey T. 2015. Complementary activities of TPX2 and chTOG constitute an efficient
importin-regulated microtubule nucleation module. Nature Cell Biology 17:1422–1434. DOI: https://doi.org/10.
1038/ncb3241, PMID: 26414402

Rubinstein JL, Brubaker MA. 2015. Alignment of cryo-EM movies of individual particles by optimization of image
translations. Journal of Structural Biology 192:188–195. DOI: https://doi.org/10.1016/j.jsb.2015.08.007,
PMID: 26296328

Sanchez-Pulido L, Perez L, Kuhn S, Vernos I, Andrade-Navarro MA. 2016. The C-terminal domain of TPX2 is
made of alpha-helical tandem repeats. BMC Structural Biology 16:17. DOI: https://doi.org/10.1186/s12900-
016-0070-8, PMID: 27782824

Schatz CA, Santarella R, Hoenger A, Karsenti E, Mattaj IW, Gruss OJ, Carazo-Salas RE. 2003. Importin alpha-
regulated nucleation of microtubules by TPX2. The EMBO Journal 22:2060–2070. DOI: https://doi.org/10.
1093/emboj/cdg195, PMID: 12727873

Scrofani J, Sardon T, Meunier S, Vernos I. 2015. Microtubule nucleation in mitosis by a RanGTP-dependent
protein complex. Current Biology 25:131–140. DOI: https://doi.org/10.1016/j.cub.2014.11.025, PMID: 25532
896

Shang Z, Zhou K, Xu C, Csencsits R, Cochran JC, Sindelar CV. 2014. High-resolution structures of kinesin on
microtubules provide a basis for nucleotide-gated force-generation. eLife 3:e04686. DOI: https://doi.org/10.
7554/eLife.04686, PMID: 25415053

Sosa H, Milligan RA. 1996. Three-dimensional structure of ncd-decorated microtubules obtained by a back-
projection method. Journal of Molecular Biology 260:743–755. DOI: https://doi.org/10.1006/jmbi.1996.0434,
PMID: 8709152

Suloway C, Pulokas J, Fellmann D, Cheng A, Guerra F, Quispe J, Stagg S, Potter CS, Carragher B. 2005.
Automated molecular microscopy: the new Leginon system. Journal of Structural Biology 151:41–60.
DOI: https://doi.org/10.1016/j.jsb.2005.03.010, PMID: 15890530
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