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Abstract: Interferons (IFNs) are key host cytokines in the innate immune response to viral infection,
and recent work has identified unique roles for IFN subtypes in regulating different aspects of
infection. Currently emerging is a common theme that type III IFNs are critical in localized control
of infection at mucosal barrier sites, while type I IFNs are important for broad systemic control of
infections. The intestine is a particular site of interest for exploring these effects, as in addition to
being the port of entry for a multitude of pathogens, it is a complex tissue with a variety of cell
types as well as the presence of the intestinal microbiota. Here we focus on the roles of type I and
III IFNs in control of enteric viruses, discussing what is known about signaling downstream from
these cytokines, including induction of specific IFN-stimulated genes. We review viral strategies to
evade IFN responses, effects of IFNs on the intestine, interactions between IFNs and the microbiota,
and briefly discuss the role of IFNs in controlling viral infections at other barrier sites. Enhanced
understanding of the coordinate roles of IFNs in control of viral infections may facilitate development
of antiviral therapeutic strategies; here we highlight potential avenues for future exploration.
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1. Introduction

Viral pathogens may infect a human host via a variety of routes, including inhalation,
oral ingestion, sexual transmission, or the bite of an arthropod. Common to many of these infection
routes is that the first encounters between the virus and the host occur at a mucosal surface. These
barrier sites are well adapted to respond to pathogens, as they are in constant contact with the outside
environment. Interferons (IFNs), first discovered for their ability to “interfere” with influenza virus
infection in cell culture, have long been known to be critical molecules of the host innate immune
system [1]. IFNs are important for both the first wave of viral regulation, and also for priming of
adaptive immune responses [2,3]. It is only over the past decade, however, that we have begun to
appreciate differential roles for different IFN subtypes at mucosal surfaces, and indeed that we have
been aware of some IFN subtypes. In this review, we will specifically focus on type I and type III IFNs
and their unique functions in defending the host against invading viruses.

While it has become clear that both type I and III IFNs have important roles at all mucosal surfaces,
the differential functions of these IFNs in viral control have perhaps been most thoroughly explored
in the context of intestinal infection. The gut is a complex organ, encompassing a wide variety of
epithelial and immune cell subtypes, mucus layers that are distinct in different intestinal compartments,
and a diverse community of commensal organisms including bacteria, viruses and fungi. Many
functions are distributed along this organ, including digestion of food, absorption of nutrients and
water, secretion of waste products, and development and maintenance of a properly tuned immune
system [4]. Enteric viruses infecting a host at this complex barrier need to remain intact during passage,
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bypass or utilize the microbiome and mucus as they approximate to permissive host cells, infect
epithelial or immune cells, and ultimately remain localized in the intestine or traffic systemically.

Here we will review what is known for type I and III IFN control of viral infection in the massively
complex compartment of the intestine. We will focus on IFN-induced cell-intrinsic signaling by
different IFN subtypes, the specific roles of these IFNs in control of well-studied enteric viruses,
interactions between IFNs and the microbiome, and how enteric viruses combat the antiviral effects
of IFNs. We will also highlight interesting research directions for type I and III IFNs that may prove
important to understanding enteric viral regulation in the future.

2. Type I Versus Type III Interferons

As a critical part of the innate immune system’s antiviral response, IFNs have been a topic of
immunological and microbiological interest since their discovery nearly 60 years ago [5,6]. This family
of cytokines enacts a cellular response stimulating hundreds of IFN-stimulated genes (ISGs), which can
have both antiviral and proviral roles [7]. While the three types of IFNs and their receptors are well
established, the complex relationships between these cytokines, and precisely how they orchestrate a
defense against viral invaders via activity of specific ISGs, are still only partially understood. IFNs are
classified into three types (I, II, and III), based upon the cell surface receptor with which they interact.
Here we will focus on the critical roles of type I and III IFNs at the gut mucosal interface; type II
IFN, or IFN-γ, has been reviewed elsewhere [8]. We will begin with a brief discussion of the inherent
differences between type I and type III IFNs.

Type I IFNs are both the first discovered and the largest group within this cytokine family [6].
Identified by their interaction with the ubiquitously expressed IFNαR1/2 heterodimeric receptor [9,10],
type I IFNs in humans encompass five types: IFN-ω, IFN-ε, IFN-κ, IFN-β, and IFN-α, for which there
are 13 subtypes [11–13]. Of these, IFN-α and IFN-β have been the best studied. An important aspect of
this large family of proteins is the differential downstream effect they have, mediated through distinct
interactions with the same receptor proteins. For example, with a higher binding affinity to IFNαR1,
IFN-β causes a more robust antiproliferative effect and higher ISG expression levels than IFN-α [14,15].
Additionally, IFN-β has the unique ability to transduce signals upon IFNαR1 binding without IFNαR2
present [11].

Discovered more recently, type III IFNs, or IFN-λ, induce an antiviral response through interaction
with a distinct receptor [16,17]. In humans, the four type III IFN proteins include IFN-λ1 (also
known as IL-29), IFN-λ2 (IL-28A), IFN-λ3 (IL-28B), and IFN-λ4 [18]. The IFN-λ receptor (IFNλR) is a
heterodimeric receptor made up of IFNλR1 (also IL-28Rα) and IL-10Rβ subunits. Type III IFNs have
many overlapping functions with type I IFNs, prompting the question as to why synonymous innate
immune pathways exist. Insight into the expression of IFNλR1 in specific cell types has suggested a
possible reason. While the IL-10 receptor subunit is widely expressed in various cell types, IFNλR1 is
predominantly expressed in epithelial tissues [19]. Therefore, its specific utility as a molecular first
responder at sites including the lungs and gastrointestinal tract is apparent [20,21].

The signaling pathways downstream from IFNαR and IFNλR are remarkably similar (Figure 1),
both inducing activation of multiple signal tranducer and activator of transcription (STAT)
proteins and formation of ISG factor 3 (ISGF3) [16]. Upon ligand-receptor binding, IFNαR2- or
IFNλR1-associated Janus kinase (JAK) 1 and IFNαR1- or IL-10Rβ-associated tyrosine-specific kinase
(TYK) 2, transphosphorylate and phosphorylate associated receptor tyrosine residues [9,22,23].
Recruitment of STAT1 and STAT2 cytosolic proteins allows for their phosphorylation and dimerization,
and then the STAT1/STAT2 heterodimer associates with IRF9, forming ISGF3 [24]. Translocation of
this complex to the nucleus leads to IFN-stimulated response element (ISRE) binding and promotion
of ISG transcription. Both type I and III IFNs signal through this common pathway [25]. Overlapping
use of this signaling pathway, as well as shared induction of mitogen-activated protein kinase (MAPK)
pathways, demonstrate the similarities in downstream signaling between type I and III IFNs [25,26].
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Figure 1. Canonical type I and III IFN signaling. Upon interaction of type I and type III IFNs with 
their receptors, TYK2 and JAK1 phosphorylation occurs, recruiting STAT1 and STAT2 for 
phosphorylation. STAT1 and STAT2 dimerize and associate with IRF9 to form the ISG factor 3 (ISGF3) 
complex, which traffics to the nucleus (dashed arrow) and binds IFN-stimulated response elements 
(ISRE) to drive transcription of ISGs (bold arrow). Both IFNs also activate the MAPK pathway (not 
shown). While shown in equivalent quantities here for simplicity, differential type I and type III IFN 
receptor densities, based on cell type, may influence subsequent host responses. 

Despite use of redundant signaling pathways and similar induction of ISGs between type I and 
III IFNs [25–27], recent studies have identified divergent effects of type I and III IFNs. Depending 
upon the cell type interrogated, type I and III IFNs may mediate differential expression patterns of 
ISGs, including distinct gene sets induced in intestinal and respiratory epithelial cells [28,29]. 
Additionally, type I and III IFNs can exhibit differential kinetics of induction, with IFN-α inducing 
more rapid but transient ISG expression, while the effects of IFN-λ are delayed but longer lasting 
[30–32]. Alternative regulation of these pathways by negative regulators including suppressor of 
cytokine signaling 1 (SOCS1) has been implicated in driving some of these differences [33,34]. There 
is also the possibility that IFN-λ may exhibit unique MAPK signaling pathway activation, not 
activated by type I IFNs, for non-redundant antiviral activity [35]. In addition to downstream 
regulation, the production of type I and III IFNs may be differentially regulated. In vitro, type I and 
III IFNs may be induced in parallel [36,37], but in vivo, preferential induction of IFN-λ at mucosal 
surfaces by viral infection was observed in both the intestine and the lung [38–40], predominantly 
emanating from epithelial cells. Consistent with this observation, IFN-λ is transcribed and translated 
at higher rates than IFN-β in intestinal organoids [35]. Activation of an antiviral response in dendritic 
cells, in contrast, may stimulate production of both type I and III IFNs (Figure 2) [37,41,42], which 
may act on a variety of cell types. 

Of critical importance to the distinct effects of type I and III IFNs in vivo is the differential tissue 
and cellular expression of their receptors [43]. Type I IFN induces robust ISG responses in many 
tissues including liver, spleen, and kidney, while type III IFN mediates its most prominent effects on 
organs with mucosal surfaces [44]. Cell-specific effects on receptor expression have been best 
described in the gut (Figure 2). Intestinal epithelial cells (IECs) have high expression levels of IFNλR 
with low levels of IFNαR1 and IFNαR2 [38,45]. The opposite is found in cells of the lamina propria 
of the gut, with low levels of IFNλR1 and high levels of IFNαR [38]. Increased IEC responsiveness to 

Figure 1. Canonical type I and III IFN signaling. Upon interaction of type I and type III IFNs with their
receptors, TYK2 and JAK1 phosphorylation occurs, recruiting STAT1 and STAT2 for phosphorylation.
STAT1 and STAT2 dimerize and associate with IRF9 to form the ISG factor 3 (ISGF3) complex,
which traffics to the nucleus (dashed arrow) and binds IFN-stimulated response elements (ISRE)
to drive transcription of ISGs (bold arrow). Both IFNs also activate the MAPK pathway (not shown).
While shown in equivalent quantities here for simplicity, differential type I and type III IFN receptor
densities, based on cell type, may influence subsequent host responses.

Despite use of redundant signaling pathways and similar induction of ISGs between type I and III
IFNs [25–27], recent studies have identified divergent effects of type I and III IFNs. Depending upon
the cell type interrogated, type I and III IFNs may mediate differential expression patterns of ISGs,
including distinct gene sets induced in intestinal and respiratory epithelial cells [28,29]. Additionally,
type I and III IFNs can exhibit differential kinetics of induction, with IFN-α inducing more rapid but
transient ISG expression, while the effects of IFN-λ are delayed but longer lasting [30–32]. Alternative
regulation of these pathways by negative regulators including suppressor of cytokine signaling 1
(SOCS1) has been implicated in driving some of these differences [33,34]. There is also the possibility
that IFN-λ may exhibit unique MAPK signaling pathway activation, not activated by type I IFNs,
for non-redundant antiviral activity [35]. In addition to downstream regulation, the production of
type I and III IFNs may be differentially regulated. In vitro, type I and III IFNs may be induced in
parallel [36,37], but in vivo, preferential induction of IFN-λ at mucosal surfaces by viral infection
was observed in both the intestine and the lung [38–40], predominantly emanating from epithelial
cells. Consistent with this observation, IFN-λ is transcribed and translated at higher rates than IFN-β
in intestinal organoids [35]. Activation of an antiviral response in dendritic cells, in contrast, may
stimulate production of both type I and III IFNs (Figure 2) [37,41,42], which may act on a variety of
cell types.

Of critical importance to the distinct effects of type I and III IFNs in vivo is the differential tissue
and cellular expression of their receptors [43]. Type I IFN induces robust ISG responses in many tissues
including liver, spleen, and kidney, while type III IFN mediates its most prominent effects on organs
with mucosal surfaces [44]. Cell-specific effects on receptor expression have been best described in
the gut (Figure 2). Intestinal epithelial cells (IECs) have high expression levels of IFNλR with low
levels of IFNαR1 and IFNαR2 [38,45]. The opposite is found in cells of the lamina propria of the gut,
with low levels of IFNλR1 and high levels of IFNαR [38]. Increased IEC responsiveness to IFN-λ but
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not IFN-β due to epithelial cell polarization and differential receptor trafficking further differentiates
the roles of type I and III IFNs on the epithelium [46,47]. Therefore, the division between epithelial
cells and lamina propria cells confers distinct roles of IFN-λ and IFN-α/β in the gut for protection
from initial, early viral infection and systemic spread, respectively [27,38,48]. While recent studies
have highlighted distinct potential mechanisms for the disparate antiviral activity of type I and III
IFNs observed during infections, future work exploring how these in vitro observations translate to
virus-, organ- and cell-specific effects in vivo will be of great interest. We detail the effects of the IFNs
in the antiviral response against specific enteric viruses below.
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Control of infection by acute MNoV strains (e.g., CW3, MNV-1) depends upon the presence of intact 
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Figure 2. Differential sources of and receptor expression for type I and III IFNs. Immune cell tropic
virus sensed by dendritic cells (DCs) results in production of type I and type III IFNs. Type I IFNs
activate other immune cells, including macrophages, by binding to IFNαR, and to a limited extent may
act on intestinal epithelial cells (IECs). Sensing of IEC tropic virus such as norovirus or rotavirus by
IECs may stimulate type I and III IFN production. Type III IFNs, possibly acting by both autocrine and
paracrine signaling to neighboring IECs, bind to IFNλR expressed on IECs to induce an antiviral state
and protect the host from infection.

3. Differential Control of Individual Viruses by Type I and III IFNs

IFN-mediated control of viral infection differs widely depending upon the virus and its cell and
tissue tropism (Table 1). Upon entering the intestinal lumen, a virus can infect IECs, the predominant
intestinal cell type, or alternately immune cells in the lymphoid tissue, and from there disseminate
to other tissues. Type III IFN mounts an effective antiviral response in IECs because of the unique
expression of IFNλR on epithelial surfaces [19]. The gut may benefit from the focused effect of IFN-λ in
stimulating an antiviral response exclusively in the barrier cells themselves, thereby avoiding excessive
and off-target inflammation of all cell types. While IECs seem to use a predominantly IFN-λ-based
defense, cells in the lamina propria and other tissues instead predominantly use type I IFN to prevent
systemic infection.

Norovirus (NoV), a ssRNA virus which causes severe gastroenteritis that can be followed by
prolonged periods of asymptomatic shedding [49], is an enteric pathogen with differential sensitivity
to type I and III IFNs [50]. Many studies have been conducted using a highly effective mouse model,
murine NoV (MNoV), for which both acute and persistent strains have been identified [51,52]. Control
of infection by acute MNoV strains (e.g., CW3, MNV-1) depends upon the presence of intact type
I IFN signaling, as Ifnar1−/− and Stat1−/− mice succumb to lethal infection [52–56]. Acute MNoV
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has recently been reported to have a tropism for macrophages, dendritic cells, and B and T cells in
the gut, which may explain why type I IFN signaling is important for its control [57]. For control of
persistent strains (e.g., CR6), however, type I IFN only prevents spread of virus from its persistent
immune-privileged niche in rare IECs [58–60] to systemic sites outside of the intestine [61,62], and does
not determine viral loads in the intestine. In contrast, IFN-λ has a profound antiviral effect on persistent
MNoV strains [21]. Ifnlr1−/− mice exhibit elevated levels of virus in intestinal tissues and stool [45,62],
correlating with an increase in the numbers of infected IECs [58]. Recombinant IFN-λ prevents and
cures persistent enteric MNoV infection [62], mediating its effects through IFNλR1 expression on
IECs [45]. While recombinant IFN-λ does not affect acute MNoV infection in wild-type mice [58],
IFN-λ has been shown to prevent transmission of acute strain MNV-1 between immunocompromised
mice [63]. Thus far, the data points to IFN-λ as critical to controlling NoV infection in IECs, while type
I IFNs control viral infection in all other cell types and tissues.

Table 1. Differential effects of type I and III IFNs on enteric viruses.

Virus Type I IFN Type III IFN References

Norovirus (NoV)

• Prevents lethality from
acute MNoV infection

• Controls systemic spread
of persistent MNoV

• Controls persistent intestinal
infection by restricting
IEC tropism

• Therapeutic administration clears
persistent MNoV and prevents
transmission of acute strain

• Associated with interactions
between microbiota and NoV

[45,52,54,56,58,61–63]

Reovirus

• Robustly induced by
infection in vitro

• Prevents lethal infection
in vivo

• Preferentially induced in some
cell types

• Controls intestinal levels and
shedding into stool

[45,48,64,65]

Rotavirus (RV)

• Treatment decreases local
spread and replication in
intestinal enteroids

• Controls diarrhea and
systemic replication
in vivo

• Combined deficiency of
IFN-α and IFN-γ signaling
increases mortality in
suckling mice

• Postnatal mice are
responsive to IFN-β
treatment, but this
diminishes with age

• Robustly induced in
human enteroids

• Controls infection in the intestine,
acting synergistically with IL-22,
and can effectively treat infection
in mature mice

[27,47,66–69]

Adenovirus (AdV)

• Induced by
in vitro infection

• Antiviral when
administered in vitro

• Unknown [70–72]

Murine
cytomegalovirus
(MCMV)

• Induced by infection
• IFN-β has most effective

antiviral effect of type
I IFNs

• Induced by infection
• Robust antiviral effects

against MCMV
[73,74]

Reovirus is a dsRNA virus that usually causes sub-clinical disease in humans upon respiratory
or enteric infection, but which has recently been linked to celiac disease as a potential trigger [75].
It can be readily studied in mice, providing another useful model to explore interactions between
enteric viruses and IFNs. Type I IFNs are critical to prevent lethal infection in mice with the T1L
strain of reovirus; viral infection induces robust type I IFN production from conventional dendritic
cells in Peyer’s patches [48]. Reovirus can also induce type I IFNs in macrophage cell lines, and late
stage reovirus infection leads to necroptosis requiring IFN-β production [64]. Interestingly, reovirus is
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among the pathogens that preferentially activate IFN-λ production instead of type I IFN upon infection,
signaling via retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) and peroxisome-associated
mitochondrial antiviral-signaling protein (MAVS) to activate type III IFN expression [65]. In the
absence of infection, epithelial cell polarization leads to an abundance of peroxisomes that correlate
with increased type III IFN expression in human cells [65], predisposing IECs towards type III IFN
expression upon infection. This differential induction of one type of IFN over another suggests another
level of selective regulation of these innate immune actors. In vivo, IFN-λ controls reovirus levels
in the intestine, as IFNλR expression on IECs prevents reovirus from growing to high titers in small
intestinal tissues or being shed at high levels in stool [45].

Also in the Reoviridae family, rotavirus is a clinically important enteric pathogen, transmitted
via the fecal-oral route, which continues to cause substantial disease in infants in the developing
world [76]. Consistent with what was observed for norovirus and reovirus, type III IFN has been
shown to be a powerful antiviral effector during rotavirus infection in the intestine [47,66], and
type I IFNs help to control systemic spread of infection, indicating a spatial regulation of antiviral
defenses [27]. Murine rotavirus infection robustly activates type I IFN and ISG expression in the
intestine, the source of induced IFNs primarily being hematopoietic cells as determined by single-cell
analysis [77]. Depletion of type I and II IFNs drastically enhances extraintestinal replication of rhesus
rotavirus in suckling mice, and a modest increase in infection is observed when type I IFN signaling
alone is absent [69]. Exogenous treatment with either type I or type III IFNs restricts infection of
rhesus rotavirus in mice [27], and murine rotavirus is successfully cleared in suckling mice with IFN-λ
treatment while type I IFN has a more modest antiviral effect [47]. Alone, IFN-λ acts on IECs to induce
an antiviral state, but the type 3 innate lymphoid cell-produced cytokine, interleukin-22 (IL-22), is a
cooperative factor for optimal ISG induction [67]. More recent studies have provided new insights into
rotavirus and IFN interactions. Rotavirus preferentially induces type III IFN responses in human small
intestinal enteroids [68], but this type III IFN response does not effectively clear infection, whereas
exogenous type I IFN treatment can, suggesting cooperative roles for IFNs from different cell types
may be important for viral control. Interestingly, exogenous IFN-β is more protective against rotavirus
than IFN-α or IFN-λ, due to faster induction of an antiviral state [68]. Type I and III IFNs cooperate
to limit heterologous simian rotavirus infection in mice by inducing a distinct but overlapping set of
antiviral genes in IECs [27], with type I IFN being important in neonatal mice but less critical in adult
mice, consistent with an age-dependent diminishing responsiveness of IECs to type I IFN [27]. Despite
our general consideration of rotavirus as an enteric virus, it is important to remember it can develop
into a systemic infection, potentially causing neurological issues and other systemic disease [78].
Our understanding of the coordinate roles of type I and III IFNs in control of rotavirus infection at
extraintestinal sites such as the biliary tract is still poorly understood. Thus, better understanding of
the important roles that IFNs play in restricting both enteric and systemic infection may help us limit
clinical disease severity.

Adenovirus (AdV) is a dsDNA virus that infects both the respiratory and gastrointestinal tracts
with the potential to cause serious morbidity and mortality (reviewed in [79]). Children under the age
of 5 are most at risk for infection, and present with severe diarrhea and dehydration [80]. Virus can be
shed in stool for up to a year following initial infection [81], with the potential for viral reactivation and
systemic infection in immunocompromised patients [82]. AdV replicates at high levels in the ileum,
though different AdV strains may be distributed along the gastrointestinal tract, and lymphocytes have
been shown to harbor the virus, allowing for lengthy durations of viral shedding [83]. Endothelial cells
are important for viral sensing via cyclic GMP-AMP synthase (cGAS)-based detection of cytosolic viral
DNA, which stimulates type I IFN to drive clearance of AdV [70]. Inhibition of type I IFN enhances
AdV growth in fibroblasts [71], and type I IFN administration prevents viral growth in vitro in Caco2
cells [72]. However, whether or not type III IFN affects AdV has not been explored.

Murine cytomegalovirus (MCMV) is a well-studied mouse model for β-herpesvirus.
Understanding how the innate immune system controls, or is helpless against, CMV infections
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is important because of the high seroprevalence of human cytomegalovirus (HCMV) in human
populations [84]. Infection in immunocompromised patients can be tissue-specific, usually within
the gastrointestinal tract, or systemic, commonly referred to as CMV syndrome [85]. Upon MCMV
infection, both type I and III IFNs are upregulated [73,74,86], and IFN-λ effectively contains viral
replication of HCMV and MCMV in human and murine IECs, respectively [74]. While IFN-α and IFN-λ
are upregulated after infection, IFN-β has been shown to induce a more potent CMV antiviral defense
through IRF3 and IRF7-independent pathways [73]. Additional in vivo exploration of the coordinate
regulation of MCMV by type I and III IFNs would be of substantial interest for future studies.

4. Individual Interferon Stimulated Genes

The IFN response to cellular pathogens stimulates production of a number of cellular proteins,
collectively known as ISGs. The antiviral role(s) of each ISG are not yet fully understood because of
unique cell type responses [72,87], differential stimulation by different IFNs [33], and antagonistic
viral proteins making each ISG:virus interaction unique [88], but also because the antiviral effects of
individual ISGs have not yet been adequately explored. Highly variable in their baseline expression,
ISGs can be upregulated or downregulated upon IFN stimulation of a cell, or upon direct cell
recognition of virus [89,90]. Hundreds of ISGs may play a role in positive or negative regulation of IFN
signaling and induction of an antiviral state. The potentially complex relationships between different
ISG combinations are another area that has not been adequately explored. Screening methodologies
and the advent of CRISPR/Cas9 have facilitated investigations into the role of specific ISGs [7,91,92],
but this is an area where much remains to be uncovered. Additionally, much of the study of specific
ISGs has been in the context of systemic, not enteric, viral infections. Here we will focus on several
ISGs reported to have activity against intestinal viruses.

Ubiquitin-like ISG15 is an ISG with well-understood relationships with other cellular proteins [93].
ISG15 is robustly upregulated in the intestine in response to type I IFNs, and is also induced in IECs
by type III IFNs [94,95]. Upon type I IFN-mediated induction, ISG15 is conjugated to a number
of cellular proteins, both cytosolic and nuclear, which traverse a wide range of functional roles.
This ISG conjugation, or ISGylation, of cellular proteins is important for both antiviral defense and for
prevention of excessive inflammation via the RIG-I pathway [96–98]. ISGylation has been shown to
inhibit the early viral life cycle of MNoV [99]. RIG-I senses dsRNA in the cytoplasm and subsequently
stimulates an IFN-mediated response, a cycle that is positively reinforced by induction of more RIG-I
by IFN. ISG15 serves to negatively regulate the RIG-I pathway by direct conjugation of RIG-I, thereby
preventing excessive inflammatory activation [98]. Thus, ISG15 plays multiple critical roles in IFN
responses; future study to clarify its role specifically in other enteric viral infections would be of
great interest.

Another specific ISG of interest is IFN-induced protein with tetratricopeptide repeats 2 (IFIT2), also
known as ISG54. The role of this protein in IFN-mediated antiviral responses is two-fold: promotion
of apoptosis and restriction of translation [100,101]. Stimulated by type I IFN, IFIT2 drives apoptosis
via a mitochondrial pathway in coordination with ISG60 [100] and interacts with translation initiation
factor eIF3 to restrict translation [101]. IFIT2′s importance for enteric viral control is suggested via
study of MNoV, as it is among the targets for viral antagonism by the viral virulence factor 1 (VF1)
protein [102].

Interferon-induced transmembrane (IFITM) protein 3 is located in the plasma membrane of
endosomal vesicles and has been implicated in inhibition of viral entry into the cytosol and reduction
of virus infectivity at multiple mucosal surfaces [103]. IFITM3 and related family members were some
of the first discovered ISGs, but their specific antiviral roles have only recently been uncovered [104].
IFITM3 does not regulate bacterial or protozoan pathogens [105], but plays a restrictive role against
many viruses including reovirus [103,105–107]. IFITM3 can prevent viral particle entry into the cytosol
by blocking viral fusion to the endocytic membrane [106] or modulating late endosomal compartment
function [107], thereby effectively attenuating viral infection. Interestingly, studies of AdV and



Viruses 2018, 10, 46 8 of 23

HCMV have shown that not all viruses that utilize the endosomal pathway for entry are affected
by IFITM expression, suggesting viral evasion strategies may be in place to avoid IFITM-mediated
restriction [108].

As the number of known ISGs is in the hundreds, we will only focus on one more ISG studied
in relationship to enteric viruses. The viperin protein binds the cytosolic side of the endoplasmic
reticulum membrane and is heavily upregulated by IFNs [68,109]. Viperin plays a crucial inhibitory
role against many viruses, with multiple mechanisms reported, including inhibition of viral replication
and egress [109], and activity against mucosal viruses including reovirus [110,111]. Some viruses
have developed strategies to hijack viperin, however, including HCMV, which encodes the viral
mitochondrial inhibitor of apoptosis protein to traffic viperin to the mitochondria, resulting in
decreased cellular metabolism and enhanced infection [112]. Viperin and many other ISGs are involved
in the complex antiviral IFN-induced state, and while several have been identified as integral to the
response to enteric virus infection, there is still enormous potential for exploration in this area.

5. Viral Evasion and Antagonism Strategies

The powerful antiviral signaling stimulated by IFNs has in turn forced viruses to develop
a variety of mechanisms to evade these host immune responses. Viruses target innate immune
signaling cascades at multiple points, preventing sensing of viral genetic material as foreign to dampen
production of IFNs, and also interfering with signaling downstream of IFN receptors (reviewed
in [113]). By targeting type I and III IFN signaling, enteric viruses such as rotavirus can combat
and elude the host antiviral response. Rotavirus infection leads to degradation of type I and III
IFN receptors in vitro and in vivo in infected IECs [114]. The nonstructural protein 1 (NSP1) of
rotavirus is a well-studied viral protein that interacts with various host proteins and targets them for
proteasomal degradation [115]. NSP1 inhibits IFN signaling by targeting transcription factors IRF3,
IRF5 and IRF7 for proteasomal degradation [116,117], as well as other important molecules in the
innate immune signaling cascade such as tissue necrosis factor receptor-associated factor 2 (TRAF2),
RIG-I and MAVS [118–120]. NSP1 also suppresses IFN responses and ISG production by inhibiting
activation of transcription factor NF-κB [121], which is critical for inducing transcription of IFN-β
and IFN-λ [122], and preventing IFN-mediated phosphorylation and nuclear translocation of STAT1
in vitro [123,124]. The rotavirus structural protein VP3 also inhibits the IFN response [125,126]. VP3
antagonizes the 2′,5′-oligoadenylate synthetase (OAS)/Ribonuclease L pathway that senses cytosolic
dsRNA generated during viral replication [127]. Rotavirus has thus developed myriad effectors to
counteract the host antiviral response.

Multiple other enteric viruses also evade the innate immune system through the action of distinct
viral proteins. The MNoV VF1 protein, absent in human NoV, localizes to the mitochondria and blocks
the expression of Ifnb, Cxcl10, and Ifit2 [102]. This VF1-mediated antagonism of type I IFNs correlates
with MNoV virulence, as VF1 in naturally attenuated strain MNV-3 does not inhibit the Ifnb promoter
activation, while VF1 of virulent strain MNV-1 blocks Ifnb promoter activity [55,128]. Mammalian
reovirus induces a replication-dependent evasion mechanism wherein the viral non-structural protein
µNS sequesters IRF3 in the viral replication compartments. This prevents the nuclear translocation of
IRF3, thereby resulting in effective inhibition of type I and III IFN production [129].

Evasion of cellular sensing pathways for viral infection is a critical mechanism that was observed
for a number of pathogens, including several mucosal viruses. Enterovirus coxsackie B virus targets
both type I and III IFN pathways by degrading pattern recognition receptor adaptors, such as TRIF
and MAVS, by action of viral protease 2Apro, thereby inhibiting IFN production [130]. In the lung,
influenza A virus (IAV) targets the stimulator of IFN genes (STING) pathway to evade innate antiviral
responses [131]. Fusion peptide, a region of IAV hemagglutinin, helps penetrate the cellular membrane
during fusion [132], and abrogates the induction of type I IFNs by fusogenic liposomes [131], a known
inducer of antiviral response [133]. The inhibition of IFN responses is thus widely seen across viral
infections as an effective method to allow for unperturbed infection of host cells. Further study of
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these strategies will help to elucidate innate immune pathways and may reveal high-yield druggable
targets for viral infection.

6. Physiological Effects of IFNs on the Intestine

In addition to the well-known role of IFNs in antiviral defense, these signaling proteins play
a crucial role in maintaining intestinal homeostasis and cellular proliferation during infection,
inflammation, or repair of the intestinal epithelium (reviewed in [134–136]) (Figure 3, Table 2).
The epithelial cell lining in the intestine provides both a chemical and physical barrier, allowing
for maintenance of gut integrity and mucosal homeostasis. The intestinal epithelial barrier consists
predominantly of IECs including enterocytes as well as multiple specialized cellular subtypes such as
Paneth cells, goblet cells, tuft cells, and enteroendocrine cells [137,138].
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Figure 3. Pleiotropic effects of IFNs on the intestine. (i) Sensing of viral pathogens by dendritic cells
(dotted arrow) leads to the production of (ii) type I and III IFNs [37]. (iii) Type III IFNs act on (solid
arrow) neutrophils to suppress tissue damage and protect against fungal pathogens [139]. Type I
IFNs (iv) inhibit intestinal stem cell proliferation [86], (v) prevent (T bar) systemic viral infection [54]
and (vi) contribute to repair of acute tissue damage and wound healing (red lightning symbols) [140].
(vii) IEC tropic virus induces the production of type III IFNs by IECs [47]. (viii) Type III IFNs are crucial
in controlling intestinal viral infections [45]. (ix) Commensal microbes may interact with type III IFNs
in the gut, though the exact mechanism is unknown [61].

Type I IFNs, which are constitutively produced in the small intestine [141], appear to play complex
roles in regulating IECs under both homeostatic and non-infectious stress conditions [142]. Deletion
of type I IFN receptor Ifnar1 specifically in IECs has been reported to result in an increased number
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of Paneth cells and epithelial hyperproliferation [143], associated with an increased propensity to
colitis-induced tumorigenesis. Another study indicated that IEC proliferation is unchanged in mice
lacking Ifnar1 in all cell types [144]. These reports suggest the potential for context-dependent effects
of type I IFN on the intestinal epithelium at baseline.

During a non-infectious challenge, type I IFNs appear to have the potential to protect or harm the
host, mediated through anti-proliferative effects on the epithelium. In the context of excessive β-catenin
activation, which leads to intestinal hyperplasia and loss of barrier function, type I IFNs control the
proliferation and function of the intestinal epithelium and maintain the barrier [145]. Similarly,
when IFN-β production is upregulated with DNA damage, the resulting activation of the p53 pathway
promotes senescence in vitro and inhibits intestinal stem cell proliferation in vivo [146]. Elevated
levels of type I IFNs can contribute to repair of acute tissue damage associated with graft-versus-host
disease [147,148]. With a colitis-related challenge, type I IFNs also have protective effects during
acute intestinal damage [140,144,149]. Paradoxically, however, type I IFNs inhibit the resolution of
inflammation after injury [144], and treatment of inflammatory bowel disease (IBD) patients with
type I IFNs has resulted in mixed outcomes [150]. Chronic upregulation of type I IFNs as occurs with
viral infection such as MCMV, or in mice lacking Irgm1, has been reported to play a protective role
during wound healing [86]. Interestingly, and in contrast to other reports, this protective effect is via
proproliferative signaling on the intestinal epithelium, mediated via IFNαR1 on nonepithelial cells
including macrophages. In sum, type I IFN signaling plays vital roles in maintenance of intestinal
barrier function and protection, but these roles depend strongly upon context, and may include
distinct effects on different cell types that cumulatively are protective or damaging depending upon
the magnitude of IFN signaling.

Table 2. Differential effects of type I and III IFNs on intestinal physiology.

Challenge Type I IFN Type III IFN References

Inflammation
and colitis

• Repairs acute intestinal damage associated with
colitis and graft-versus-host disease

• Inhibits resolution of inflammation

• Protects in colitis
• Suppresses

neutrophil-dependent
tissue damage

[140,144,147–
149,151–153]

Injury repair

• Controls intestinal stem cell proliferation and
maintain function of the intestinal epithelium

• Maintains epithelial barrier
• Facilitates wound healing

• Contributes to wound healing [86,145,146,151]

Homeostasis • Keeps number of Paneth cells and epithelial
proliferation in check

• Promotes epithelial proliferation
in vitro

[143,151]

Recent studies have revealed that type III IFNs also appear to play important roles in the
intestine outside of viral responses. Patients with IBD exhibit increased levels of IFN-λ and IFNλR
in intestinal biopsies [151], with IFN-λ being derived from dendritic cells in the lamina propria and
IFNλR restricted to IECs. Treatment of patient-derived intestinal organoids with IFN-λ resulted in
STAT1 phosphorylation and promoted epithelial proliferation [151]. In vivo, several studies have
implicated type III IFN as protective in colitis models. Mice lacking Ifnlr1 have been reported to exhibit
enhanced colitis-related pathology [151–153], and IFN-λ treatment has been reported to contribute to
wound healing [151]. Activity of type III IFNs on neutrophils has been implicated in this protection,
as neutrophils express IFNλR and treatment with IFN-λ decreases neutrophil degranulation, thereby
suppressing neutrophil-dependent tissue damage [153]. One study also suggested type I IFN signaling
was dispensable for colitis protection in the context of type III IFN-deficiency, as Ifnar1−/−Ifnlr1−/− mice
phenocopied Ifnlr1−/− mice [152]. Thus, both type I and III IFNs may play overlapping or coordinate
roles in protecting the intestine during non-infectious challenges and in homeostasis. Further work to
dissect precisely how these pathways interact to maintain intestinal health outside of the context of
infection will be important in considering their roles in treatment for IBD and other intestinal diseases.



Viruses 2018, 10, 46 11 of 23

7. IFNs and the Microbiota

While many sites in the human body are colonized by communities of microbes, the microbiota of
the intestinal lumen represents one of the densest and most diverse compilations of bacteria, fungi,
viruses, protozoa and archaea [154,155]. The microbiota is non-uniform along the gastrointestinal tract,
with a complex biogeography and substantial variation along both the longitudinal and transverse
axes [156]. Commensal bacteria have been implicated in facilitating infection by multiple enteric
viruses, including poliovirus, reovirus, rotavirus, and NoV [61,157–159], but conversely also in
preventing or controlling systemic viral infection or infection at other mucosal sites such as the
lung [160,161]. Here, we will describe what is understood thus far about interactions between the
microbiota, IFNs, and viral infections.

The microbiota has been reported to have profound effects on type I IFN-mediated antiviral
immunity. Mice administered oral antibiotics exhibit defective clearance of both systemic lymphocytic
choriomeningitis virus and influenza infections, and macrophages from these mice are impaired
in their type I IFN responses to infection [160]. A recent report implicates microbial metabolite
desaminotyrosine as a critical regulator of type I IFN and protection against influenza, indicating
this may be a key microbiota mediator for antiviral protection [162]. Intriguingly, infection with
enteric helminth Heligmosomoides polygyrus has also been reported to stimulate antiviral effects against
respiratory syncytial virus infection dependent on both the microbiota and type I IFN signaling [163].
It is possible that some of these microbiota-driven effects on type I IFNs are mediated through levels
of plasmacytoid dendritic cells, which produce type I IFNs in response to viral infection but are
substantially depleted in the gut in the absence of the microbiota [164].

In addition to these systemic innate immune phenotypes, the local physiological effects of
type I IFNs described above may be driven at least in part by components of the microbiota. The
Paneth cell expansion and epithelial hyperproliferation reported in mice lacking Ifnar1 in IECs
was microbiota-dependent, as it disappeared when Ifnar1-deficient and Ifnar1-sufficient mice were
cohoused [143]. Removal of endogenous enteric viruses by treatment of mice with an antiviral cocktail
makes mice more susceptible to damage with a colitogenic agent [165], a protective effect associated
with TLR3- and TLR7-induced type I IFN production. Intriguingly, a separate study confirmed that
depletion of enteric viruses augmented tissue damage in wild-type but not in Ifnlr1−/− mice, suggesting
instead that enteric viruses require IFN-λ signaling to protect the host from developing intestinal
inflammation [153], indicating that enteric viruses may potentially affect both type I and III IFN
signaling. Of interest, depletion of the microbiota enhances intestinal injury and pathogenic bacterial
infections in wild-type mice, but these phenotypes can be rescued by infection of antibiotics-treated or
germ-free mice with persistent MNoV [166]. This rescue by MNoV requires intact type I IFN signaling,
consistent with a protective role for this cytokine family.

There have been a limited number studies exploring the interactions between the microbiota,
IFNs, and enteric viruses. Infection of mice by persistent MNoV strain CR6 was found to be enhanced
by the presence of intestinal commensal bacteria, a dependence that was abrogated in mice lacking
Ifnlr1, but not Ifnar1 [61]. These findings suggest a role for type III, but not type I, IFN in regulating
interactions between enteric viruses and the intestinal microbiota. Nucleotide-binding oligomerization
domain-like receptor 6 (NLRP6) plays a critical role in the inflammasome, influencing the production
of proinflammatory cytokines [167]. NLRP6, which is important for induction of antiviral type I and
III IFN responses to MNoV and viral control, is also important for maintenance of gut microbiota
homeostasis [168], supporting the idea of coordinate regulation of host responses by the microbiota and
viral pathogens. In exploring other mucosal surfaces, it was recently reported that activation of type
III IFNs in response to IAV infection altered the upper airway microbiome and increased susceptibility
to infection by bacterial pathogens [169]. Additionally, in the lung type I and III IFNs have been found
to act coordinately to mediate neutrophil antifungal responses [139]. Extrapolating these results to the
intestine, they raise interesting possibilities for alteration of the intestinal microbiota by type III IFNs
and/or enteric viral infection. MNoV infection has been reported to alter the intestinal commensal
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bacteria in some studies but not in others, possibly due to facility or viral strain differences [170,171],
and human NoV infection is associated with dysbiosis in a subset of patients [172]. In human
pediatric patients severe acute gastroenteritis, especially with rotavirus infection, significantly reduces
intestinal microbial diversity [173], supporting the notion that enteric viral infection may regulate the
bacterial microbiome.

While studies thus far indicate that commensal bacteria promote type I IFN-mediated antiviral
signaling with potent extraintestinal effects, the interactions between type III IFNs, enteric viruses,
and the microbiota are less clear. Future opportunities for study include exploring the effects of enteric
viruses on the microbiota in Ifnlr1-sufficient and -deficient mice, determining how bacteria and viruses
influence induction of IFNs by each other, and careful delineation of specific microbiota factors that
promote or prevent viral infections.

8. Type I and III IFNs at other Barriers

Despite different cell types and infectious challenges, type I and type III IFNs are also crucial in
controlling antiviral responses at other barrier sites beyond the gut [134,135]. In the lung, IFN-λ
is rapidly induced prior to type I IFNs after IAV infection, providing early antiviral protection
against sublethal IAV infection [174]. However, for long-term protection both type I and III IFNs
are necessary. Type III IFNs induce a prolonged antiviral immune response in neutrophils without
activating inflammatory cytokines, whereas type I IFNs predominantly initiate a neutrophil-driven
inflammatory signature during IAV infection [174]. Therapeutically, treatment with IFN-λ during IAV
infection in mice ameliorated disease and reduced mortality as compared to IFN-α. This contrasting
effect was due to the rapid induction of proinflammatory cytokines in immune cells and apoptosis in
airway epithelial cells by IFN-α but not IFN-λ [175]. Thus, distinct activities of type I and III IFNs are
not observed exclusively in the gut but also at other mucosal surfaces.

Type I and III IFNs also play pivotal roles in controlling feto-placental infections such as during
Zika virus (ZIKV) infection, recently shown to be a concerning cause of fetal abnormalities [176–178].
Deficiencies in type I IFN signaling, either via Ifnar1-deficiency or deficiency of Irf3, Irf5, and Irf7 such
that little IFN is produced, have been key to modeling ZIKV infection in mice and recapitulating aspects
of human disease, supporting a critical role for type I IFN in controlling ZIKV infection [179–181].
Type I IFN of fetal origin might provide partial protection to ZIKV infection [182]. Type III IFNs
also appear to be critical for viral control. Primary human trophoblasts, the barrier cells of the
placenta, are resistant to ZIKV infection, producing high basal levels of type III IFNs that act in
autocrine and paracrine manner to restrict ZIKV infection [183]. Despite high basal expression,
however, ZIKV infection does not induce type III IFNs in these trophoblasts [183]. Cell-line-based
models of human syncytiotrophoblasts also exhibit robust type III IFN production [184]. Pretreating
pregnant Ifnar1−/− mice with IFN-λ during mid-gestation suppresses ZIKV and alleviates fetal growth
restriction, suggesting this as a promising treatment strategy for infection [182].

Along with a direct antiviral role, IFN-λ also restricts viral infection by modulating endothelial
barriers such as the blood brain barrier (BBB) for protecting against CNS infections. IFN-λ limits
West Nile Virus spread to the CNS by tightening the BBB [185]. Ifnlr1−/− mice showed increased
BBB permeability after infection, and IFN-λ treatment enhances colocalization of endothelial junction
proteins, ZO-1 and claudin-5 to increase BBB tightness [185]. In contrast, type I IFNs are required
for control of viremia and cellular tropism in West Nile virus infection, as infection of Ifnar1−/− mice
results in a rapidly fatal infection associated with high viremia [186,187], a phenotype recapitulated
in mice specifically lacking Ifnar1 only in myeloid cells [188]. A similar set of observations has been
reported with yellow fever virus vaccine strain YFV-17D. Type III IFNs prevent spread of YFV-17D to
the CNS, as shown by increased infection susceptibility and BBB permeability in Ifnar1−/−Ifnlr1−/−

mice compared to Ifnar1−/− mice [189]. However, type I IFNs are also critical for control of YFV-17D,
as robust systemic infection is only achieved in the absence of Ifnar1 [189].
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The recurring theme of sometimes overlapping but distinct antagonistic effects of type I and
III IFNs against viral infections has thus been observed in the gut but also at multiple barrier sites
throughout the body. Type III IFNs are critical for protecting at the barrier sites themselves, while
type I IFNs induce robust systemic responses whenever an invading virus manages to move past
the barrier.

9. Conclusions and Future Directions

Recent studies of the control of viral infection by type I and III IFNs has revealed distinct roles for
these cytokines in the gut and at other barrier surfaces. Due to its more restricted and less systemic
inflammatory activity, the potential for IFN-λ administration as a therapeutic intervention in the
case of severe or persistent enteric or mucosal infections is clear. In mouse models, IFN-λ has been
shown to have potent activity against NoV, rotavirus, and influenza without accompanying damaging
inflammation [45,47,62,175], and in humans, IFN-λ has been shown to be safe for administration [190].
Initially explored as a potential treatment for chronic hepatitis C infection, the promise of IFN-λ for
treatment of mucosal viruses in humans has not yet been tested but is an exciting potential future
direction. Further discovery of both how the microbiota regulates IFNs and viral infection in the
intestine is critical to helping inform development of probiotic or metabolic approaches to prevent or
treat infections and enhance vaccine responses. In addition to the profound effects of the microbiota
on enteric viruses in animal models, there are indications that intestinal bacterial populations may
influence responses to oral rotavirus vaccines in humans, though the mechanisms are not yet well
understood [191,192]. Continued exploration of the role of commensal bacteria in determining innate
and adaptive immune responses to viral challenges will be important to combatting viral epidemics
and ensuring development of robust antiviral immunity. Finally, there are still broad opportunities to
better understand the specific ISGs induced by both type I and III IFNs and how they target viruses.
While there have been a number of successful screens conducted exploring the effects of human ISGs
against viruses including West Nile virus and yellow fever virus [7], these methods have not yet been
applied to explore the role of specific ISGs in control of enteric viruses. In addition, the ongoing
identification of type III IFN-specific ISGs in responsive cell types has the potential to increase the
range of interesting ISGs to test in future assays [28]. In conclusion, though the past two decades
have revealed an enormous amount about the coordinate control of mucosal viruses by different IFNs,
there are still many unanswered questions remaining and exciting avenues left to explore.
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