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Object detection is one of the fundamental problems in computer vision that

has great practical impact. Current object detectors work well under certain con-

ditions. However, challenges arise when scenes become more complex. Scenes are

often cluttered and object detectors trained on Internet collected data fail when

there are large variations in objects’ appearance.

We believe the key to tackle those challenges is to understand the rich context

of objects in scenes, which includes: the appearance variations of an object due

to viewpoint and lighting condition changes; the relationships between objects and

their typical environment; and the composition of multiple objects in the same scene.

This dissertation aims to study the complexity of scenes from those aspects.

To facilitate collecting training data with large variations, we design a novel

user interface, ARLabeler, utilizing the power of Augmented Reality (AR) devices.

Instead of labeling images from the Internet passively, we put an observer in the

real world with full control over the scene complexities. Users walk around freely

and observe objects from multiple angles. Lighting can be adjusted. Objects can



be added and/or removed to the scene to create rich compositions. Our tool opens

new possibilities to prepare data for complex scenes.

We also study challenges in deploying object detectors in real world scenes:

detecting curb ramps in street view images. A system, Tohme, is proposed to

combine detection results from detectors and human crowdsourcing verifications.

One core component is a meta-classifier that estimates the complexity of a scene

and assigns it to human (accurate but costly) or computer (low cost but error-prone)

accordingly.

One of the insights from Tohme is that context is crucial in detecting objects.

To understand the complex relationship between objects and their environment, we

propose a standalone context model that predicts where an object can occur in an

image. By combining this model with object detection, it can find regions where an

object is missing. It can also be used to find out-of-context objects.

To take a step beyond single object based detections, we explicitly model the

geometrical relationships between groups of objects and use the layout information

to represent scenes as a whole. We show that such a strategy is useful in retrieving

indoor furniture scenes with natural language inputs.
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Chapter 1: Introduction

1.1 Background

Computer vision is changing the world. With the ever growing enormous

amount of visual data available (e.g., Google Street View, Flickr, and Instagram),

new powerful dedicated hardware (e.g., Nvidia GPUs and Intel Deep Learning

Chips), and evolving machine learning algorithms with highly nonlinear charac-

teristics (Deep Neural Networks), we are standing at the dawn of a new era in

which intelligent systems will substantially improve the quality of life for society.

For example, self driving cars [1], which could reduce traffic and save lives once they

hit the mass market, use object detection, semantic segmentation and 3D recon-

struction algorithms from computer vision; grocery stores use facial recognition and

tracking algorithms to enable a cashier-free shopping experience; segmentation and

classification algorithms are used in medical imaging to diagnose diseases.

As one of the fundamental problems in computer vision, Object Detection

attracts a lot of research attention and has great practical impact. The task is to

find the positions of all objects of interest in input images. Usually, object locations

are represented by rectangular boxes that tightly fit the objects: for example SSD [2]

and YOLO [3]. Another choice is to produce a pixel level probability map of where
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an object is; for example human part detection often uses heat maps to account for

uncertainties in predicting different parts.

Object detection is an essential building block in many computer vision appli-

cations. Once the location of an object is known, more sophisticated analysis can be

performed on the identified object regions such as person identification or attributes

analysis. Because such analysis takes more computational resources, it is crucial to

reduce the computational load by focusing on true object locations. Being able to

efficiently perform object detection is also important, especially for time-sensitive

applications such as obstacle detection on self driving cars.

The main goal of this dissertation is to investigate and develop algorithms to

improve object detection in complex scenes.

1.2 Challenges in Real-World Object Detection

Although extensively studied, object detection is still a difficult task in complex

real-world scenes for the following reasons.

Standard object detection datasets such as PASCAL VOC and COCO collect

images from the Internet. General purpose object detectors that are trained on

those data are assumed to be useful in real world scenes. However, those detectors

hardly work right out of the box for objects with arbitrary viewing angles and

lighting conditions. There is a reality gap in terms of the objects appearance

variations between images collected from the Internet and test images in real world

applications. For example, there barely exists any back-view images of computer
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monitors in the PASCAL VOC data, while in a real use case, a detector should work

for monitors in any orientation.

While state-of-the-art object detection systems certainly perform reasonably

well, there are applications that require even higher accuracy. It is an open re-

search problem on how to combine human knowledge in detection systems to

help improve the performance of a fully automatic system.

Objects in an unconstrained environment often appear together with other

objects, resulting in a cluttered scene. For example, a laptop might be on top of

a desk and surrounded by monitors, books, and keyboards. Without knowledge of

which objects tend to appear with each other, detecting each object individually

can be difficult due to occlusion and distraction from similar looking objects.

The relationships between objects provide useful information for localizing

them in a complex scene. Modeling objects’ interactions, however, is not an easy

task. One key challenge is that the parametric space is prohibitively large: O(K2)

for pairwise relations, and O(Kn) for n-tuple relations of K objects.

Most state-of-the-art object detectors focus on treating objects in a scene as

individuals. For example, region proposal based approaches such as Faster RCNN

discard information outside of the proposal boxes. For an end-to-end bounding box

regression approach such as SSD, global information is used but the relationship

between objects are not modeled explicitly.

Understanding interactions between multiple objects is a challenging task, yet

it is naturally the next research step over the current single detection based methods.

3



1.3 Towards Better Performance in Complex Scenes

While object detection is often done by looking at isolated local regions of an

image, we believe it is crucial to understand the elements in the whole scene that

can affect our ways of finding objects.

When an object appears in a scene, there are viewpoint and lighting changes

that alter its appearance. The existence of other objects provides information on

the possibility that a related object coexists. Some objects have strict constraints

on where other objects can occur: for example, a train should be on rail tracks.

Understanding the characteristics of a scene helps a detection system to: 1)

improve performance on objects with large variations; 2) reduce false detections

by considering a typical environment of objects; 3) detect object layouts as an

intermediate representation of scenes. This dissertation aims to study these effects

of scene complexity on object detection tasks.

To facilitate collecting training data with large variations in poses and light-

ing conditions, we design a novel user interface, ARLabeler, utilizing the power of

Augmented Reality (AR) devices. Instead of labeling images from the Internet pas-

sively, we put an observer in the real world and collect training labels for object

detection with full control over the scene complexities. Users walk around freely

and observe objects from multiple angles. Lighting can be adjusted. Objects can be

added and/or removed to the scene to create rich compositions. Our labeling tool

opens new possibilities to prepare data for complex scenes.

We also study challenges in deploying state-of-the-art object detectors in real
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world scenes. In particular, our task is to detect curb ramps in street view images.

This is challenging because the object of interest is not visually salient and street

view images contain a lot of distractors. We propose a system, Tohme, that com-

bines detection results from computer vision algorithms and human crowdsourcing

verifications for this task. One core component is a meta-classifier that estimates

the complexity of a scene and assigns detection tasks to human (accurate but costly)

or computer (low cost but error-prone) accordingly.

One of the insights from Tohme is that context is very important in detecting

some objects. For example, driveway ramps are visually almost identical to curb

ramps but they are located in very different context: driveway ramps are attached to

houses while curb ramps are in intersections. To understand the complex relation-

ship between objects and their environment, we propose a standalone context model

that predicts where an object can occur in an image. By combining this model with

object detection, false positives can be reduced. It can also be used for novel tasks

such as finding regions where an object is missing or finding out-of-context objects.

To take a step beyond single object based detections, we explicitly model the

geometrical relationships between groups of objects and use the layout information

to represent scenes as a whole. We show that such a strategy is useful in retrieving

indoor furniture scenes with natural language inputs.

In the following subsections, we give detailed introductions to each work and

their connections to the main goal of this dissertation: finding objects in complex

scenes.
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1.4 ARLabeler: Labeling and Detecting Objects in the Real World

Using Augmented Reality

Accurate data labeling is a critical element in training any object detection or

image recognition system. Detectors pre-trained with internet-collected data such

as ImageNet or PASCAL VOC face challenges in complex real-world scenes due

to large variations such as poses and lighting. We present three contributions to

enhance the labeling process in real scenes to train better object detectors.

First, we develop a fast labeling tool using an Augmented Reality (AR) plat-

form. The tool leverages the 3D geometry and tracking afforded by modern AR

systems, reusing a single labeling of a natural scene from an initial perspective to

obtain labels for any arbitrary number of different perspectives of the same scene.

At 5% of the labeling effort relative to fully manual labeling, our tool achieves 90%

label accuracy in Intersection-Over-Union ratio.

Furthermore, the data collected by our method exhibits rich diversity in pose

and lighting, and when combined with standard datasets (e.g. PASCAL), signifi-

cantly improves object detection performance.

Our second contribution is an efficient object detection pipeline that leverages

the datasets created by the AR platform. Recognizing that rectangular bounding

boxes in the original labeling perspective will result in skewed rectangles in other

perspectives, we extend standard detection algorithms such as SSD [2] and YOLO [3]

with a refiner network that predicts skewed quadrilateral bounding boxes while still
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maintaining fast (> 15 FPS) detection rate.

We make available the AR labeling tool and object detection algorithm to

enable practitioners to leverage this framework for their individual applications.

Our third contribution is a series of three datasets comprised of over 25,000

AR- labeled images containing man-made objects and object parts under a rich

variety of poses, lighting, and background clutter.

1.5 Tohme: Detecting Curb Ramps in Google Street View Using

Crowdsourcing, Computer Vision, and Machine Learning

In some complex scenes, even the best state-of-the-art detectors have unsat-

isfactory performance (e.g., 57% average precision in detecting potted plants with

SSD). On the other hand, human performance on object detection are near perfect,

but with a much higher cost than fully automatic systems. The key challenge is how

to balance the cost and performance in an object detection workflow that utilizes

human inputs.

Building on a prior work that combines Google Street View (GSV) and crowd-

sourcing to remotely collect information on physical world accessibility, we present

the first smart system, Tohme, that combines machine learning, computer vision

(CV), and custom crowd interfaces to find curb ramps remotely in GSV scenes.

Tohme consists of two workflows: a human labeling pipeline and a CV pipeline

with human verification, which are scheduled dynamically based on predicted per-

formance.
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Using 1,086 GSV scenes (street intersections) from four North American cities

and data from 403 crowd workers, we show that Tohme performs similarly in detect-

ing curb ramps compared to a manual labeling approach alone (F- measure: 84%

vs. 86% baseline) but at a 13% reduction in time cost.

Our work contributes the first CV-based curb ramp detection system, a custom

machine-learning based workflow controller, a validation of GSV as a viable curb

ramp data source, and a detailed examination of why curb ramp detection is a hard

problem along with suggested steps forward.

1.6 Seeing What Is Not There: Learning Context to Determine Where

Objects Are Missing

A scene is considered to be complex and challenging to object detectors usually

when there are many objects appearing in the same image with cluttered layouts.

However, these objects are not positioned arbitrarily. For example, it is highly likely

that a keyboard is found near a computer monitor. The spatial relationship between

an object and its typical environment, or context, contains valuable hints on where

to find objects in complex scenes.

We propose to train a standalone object-centric context representation. Given

an image, our context model can predict where objects should exist, even when no

object instances are present. Combined with object detection results, we can per-

form a novel vision task: finding where objects are missing in an image. Our model

is based on a convolutional neural network structure. With a specially designed
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training strategy, the model learns to ignore objects and focus on context only. It

is fully convolutional thus highly efficient.

Experiments show the effectiveness of the proposed approach in one important

accessibility task: finding city street regions where curb ramps are missing, which

could help millions of people with mobility disabilities.

1.7 Generating Holistic 3D Scene Abstractions for Text-based Image

Retrieval

Most current object detectors are designed for detecting single objects. We

are interested in finding multiple objects that are grouped in certain spatial layouts

in a scene.

Spatial relationships between objects provide important information for text-

based image retrieval. As users are more likely to describe a scene from a real

world perspective, using 3D spatial relationships rather than 2D relationships that

assume a particular viewing direction, one of the main challenges is to infer the

3D structure that bridges images with users text descriptions. However, direct

inference of 3D structure from images requires learning from large scale annotated

data. Since interactions between objects can be reduced to a limited set of atomic

spatial relations in 3D, we study the possibility of inferring 3D structure from a text

description rather than an image, applying physical relation models to synthesize

holistic 3D abstract object layouts satisfying the spatial constraints present in a

textual description. We present a generic framework for retrieving images from a
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textual description of a scene by matching images with these generated abstract

object layouts. Images are ranked by matching object detection outputs (bounding

boxes) to 2D layout candidates (also represented by bounding boxes) which are

obtained by projecting the 3D scenes with sampled camera directions.

We validate our approach using public indoor scene datasets and show that our

method outperforms baselines built upon object occurrence histograms and learned

2D pairwise relations.

1.8 Summary

Object detection - the task of finding object instances in images - is a fun-

damental problem in computer vision. It serves as an essential step in practical

computer vision systems such as the ones used in self-driving cars. Applying cur-

rent object detectors in complex real-world scenes faces challenges including: large

variations in poses and lighting conditions and multiple objects in cluttered scenes.

In this dissertation, we summarize four research works that aims to improve perfor-

mance of object detections in complex scenes. In the following chapters, we discuss

these works in details.
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Chapter 2: ARLabeler: Labeling and Detecting Objects in the Real

World Using Augmented Reality

2.1 Introduction

Deep learning has achieved tremendous success in computer vision in the past

decade, spanning a range of applications from image classification to object segmen-

tation with human-level accuracy. A key practical challenge that remains is efficient

annotation of large datasets required to train deep networks. The manual labeling

process is a tedious but significant, time-consuming endeavor. There are two pri-

mary means for manual labeling: 1) Domain experts provide high precision labels,

which involves significant expenditure in cost and time; 2) Crowdsourced workers

(e.g., Amazon Mechanical Turks) provide labels at low cost and fast turnaround, but

potentially with compromises in labeling accuracy and precision. Another potential

drawback with standard large-scale dataset collection is a bias towards certain types

of images [4], especially those collected from the Internet. Such images often have

a preponderance of certain views and lighting conditions over others, thus resulting

in potential overfitting and poor generalization to real world scenarios.

There has been some effort to ease the burden of manual labeling of images by
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Figure 2.1: We propose a novel Augmented Reality (AR) based image labeling

tool and an object detection refinement pipeline. In the AR Labeling stage, a

human labeler uses our AR interface to label a scene with virtual markers. Next in

the Data Collection with Label Tracking phase, these markers are propagated

by the AR platform to help construct bounding box labels in a large number of

images collected from different views. During testing, we propose a Detection

Box Refinement pipeline to map axis-aligned detection boxes into skewed shapes

that better fit the objects’ spatial extent.

creating human-computer interfaces that provide annotation assistance; however,

the majority of these tools only partially ease the labeling process. A few automatic

labeling tools have also been proposed, but these suffer from poor accuracy in chal-
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lenging scenes when captured frames have a lot of viewpoint changes, or from being

specialized to particular datasets. These tools are discussed in detail in Section 2.2.

We take a fundamentally different approach to address these issues by propos-

ing ARLabeler, an augmented reality (AR) based labeling interface to annotate the

real world. In ARLabeler, users initially label a scene using virtual markers, which

are then tracked by AR object localization as the user moves around the scene.

The result is a large number of high quality labeled images that are rich in pose

and lighting variations, collected at a small fraction of the time needed for fully

manual labeling (Figure 2.1). Our experiments show that in a typical scenario, AR-

Labeler generates labels 22 times faster than fully manual labeling, at 90% accuracy

(IOU). We also show that the data collected through ARLabeler exhibiting strong

diversity in pose, lighting and other environmental factors, can be used to augment

existing datasets such as PASCAL VOC to improve the performance of state-of-the-

art object detection. This suggests that being able to efficiently collect a massive

amount of data in a specific target domain (even with slight labeling imperfections)

is critical to improving a computer vision system’s performance in real-world sce-

narios.

It is worth mentioning that most current AR headsets are in the early stages of

development and can be prohibitively expensive, however it is reasonable to believe

that the cost will trend downward as the technology matures and adoption rates

increase [5]. The primary focus of this work is to test the hypothesis that the

tracking and mapping capabilities in current AR headsets are reliable enough to

generate thousands of image labels with a single set of annotations under a wide
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range of adverse imaging conditions. ARLabeler can leverage any technical progress

made by future headsets: for example, more robust object registration and tracking.

In addition, we propose an object detection pipeline specifically tuned for AR-

Labeler. We recognize that rectangular bounding boxes in the original perspective

will result in skewed quadrilateral bounding boxes in other perspectives in the train-

ing data. This leads us to extend standard axis-aligned bounding box detection al-

gorithms like YOLO and SSD to detect these skewed shapes while maintaining real

time frame rates. We propose a light-weight refinement network that can be added

to a standard object detector to predict transformations from standard axis aligned

bounding boxes to the desired skewed non-axis aligned quadrilaterals. Our exper-

iments show that the proposed refinement has significantly improved intersection-

over-union (IOU) ratios with respect to the object’s true outlines, when compared

to axis aligned boxes.

To summarize, the contributions of this chapter are as follows:

1. A novel interactive AR interface that allows an annotator to precisely and

efficiently label objects from different viewpoints and lighting conditions.

2. A light-weight refiner neural network that generates skewed bounding boxes

to more tightly fit an object’s appearance from arbitrary views.

3. Datasets generated by ARLabeler comprising over 25,000 AR-labelled images

with man-made objects and object parts captured in three different scenarios

under a rich variety of poses, lighting, and background clutter.

While we have developed ARLabeler using the Microsoft Hololens, the design
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framework and workflow are universal and should generalize to any AR device. We

plan to release our labeling application tool and datasets to the community.

This work was done with Dr. Kumar Sricharan, Dr. Raja Bala, and Dr.

Matthew Shreve during my internship at the Palo Alto Research Center (PARC).

2.2 Related Work

Manual Labeling Tools: The gold standard of data labeling is fully manual an-

notation with a visual user interface. In its basic form, a user clicks on an image to

indicate landmark points or object boundaries. VGG Image Annotator (VIA) [6]

is one such tool that has been used to label data for object detection and semantic

segmentation. With crowdsourcing platforms such as Amazon Mechanical Turks,

large amounts of labeled data can be acquired quickly and inexpensively as exempli-

fied by the ImageNet [7] project comprising millions of images, classification labels

and segmentation masks. One potential drawback of using crowdsourcing platforms

is that additional protocols are often required to ensure quality and consistency of

annotation; this is by itself an active research topic [8].

Assisted and Automatic Labeling Tools: Several methods have been proposed

introducing some level of automation to ease labeling burden. ViPER [9, 10] uses

key-frame animation style predictions to estimate (strictly linear) trajectories of ob-

jects moving in videos. LabelMe [11] interpolates future locations of bounding boxes

based on feature-based tracking. Both approaches exhibit limitations. The first re-

lies on a fixed camera perspective with objects moving at a relatively constant rate
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throughout the scene. The second approach does handle some shift in perspective,

however the bounding boxes remain axis aligned and do not track accurately when

the object undergoes rapid translations or shifts in perspective. Polygon RNN [12]

guesses an initial set of polygon vertices defining the boundary of an object. A

human annotator subsequently adjusts and refines this initial guess, thus requiring

substantially less manual effort. Similarly, there have been methods that identify

relevant segmentation masks from image descriptions [13], scribbles [14], as well as

a single point [15]; however, none of these methods have been shown to generate

ground truth level results [12]. Generating images and labels from computer gen-

erated scene models is also being actively investigated (unrealcv.org), however it is

unclear how well such datasets generalize to real-world applications.

3D-Based Annotation Systems: Recently several methods have been proposed

to collect semantic segmentation labels that leverage 3D information to speed up

the process [16–18]. SemanticPaint [16] is an interactive VR approach that allows

users to paint the surface of 3D reconstructed objects using a hand gesture that

triggers a pixel-level label propagation algorithm. This system is designed to be

fully online as a user provides live feedback of the labeling. Another interactive

3D labeling approach can be found in [17], wherein an initial 3D segmentation of

the scene is performed using a combination of Markov Random Fields (MRF) and

object localization, followed by refinement by a user. [18] uses a depth sensor and

state-of-art algorithms to reconstruct a 3D indoor scene. Crowdsourced workers

then annotate objects in the reconstructed 3D scenes.

To our knowledge, ARLabeler is one of the first AR headset based labeling
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approaches. One key difference between this and the aforementioned 3D methods is

that our landmarks are environmentally anchored using the inverted tracking capa-

bilities of AR headsets, and therefore remain stable even after significant appearance

changes, and even after parts of objects have been articulated. This enables use cases

beyond traditional object labeling. For example, a single AR-annotated bounding

box for a region can indicate the two states of the same cabinet door (open / closed)

that is useful for state classification. Also, utilizing the 3D registration and tracking

functions in the hardware level of an AR device, ARLabeler does not require heavy

3D reconstructions such as [18] and instead focuses on user interactions in image

labeling. Loaded in an AR headset, ARLabeler is light-weighted and easier to use

in various environments, compared to a Kinect-based system such as [16].

Bounding Shapes for Object Detection: Bounding shapes range from highly

descriptive semantic and pixel-level segmentation [19–22] to simple axis aligned

bounding boxes (AABB) [2, 3, 23]. The pixel-level ground truth [24–26], while en-

abling precise segmentation, suffers from prohibitively high labeling cost and slow

detection rates in practice. On the other hand, AABB methods, while achieving fast

detection rates [2,3], are often coarse with respect to the objects’ true visual extent.

Our work falls in the middle of these two extremes, enjoying the advantage of the

impressive computational performance achieved with methods such as YOLO [3]

and SSD [2], while also providing a richer degree of localization that is beneficial to

many real-world applications.

The most closely related approaches for locating and labeling objects with

non-axis aligned bounding boxes (NAABB) can be found in scene text detection

17



applications [27–30], wherein it is often necessary to detect the orientation/stroke of

text and handwritten characters as a pre-processing step before further downstream

processing can take place. In the work by Ma et al. [27], a modified proposal net-

work (RRPN) is described that allows the network to learn a rotation θ in addition

to the location (x,y,w,h) of a rectangular bounding box through the use of a loss

function that is based on the intersection over union (IoU) as well as the intersec-

tion angle with the ground truth bounding box. A NAABB approach has also been

proposed for hand pose detection [30]. Similar to [27], a proposer network is trained

that jointly learns location and orientation, while also taking context into consid-

eration. In contrast, our approach does not rely upon any task-specific constraints

or context, and learns a more general parametric transform as a post-refinement

step following any object detection pipeline. Additionally, our approach uses con-

volutional layers to learn the AABB to NAABB transformation through the use a

spatial transform [31] based sampling layer to handle arbitrary AABB patch sizes.

In contrast, [27–30] are restricted to using fully connected layers based on pooled

features to detect the transformation. Also, unlike the work in [31] which uses a

spatial transform to normalize the entire input image for classification, we use the

spatial transform layer to scale the AABB image patch of interest.

2.3 ARLabeler Interface

In this section, we describe ARLabeler in greater detail. We begin by describ-

ing the overall design and critical components that we found necessary to create an

18



effective and efficient annotation tool. We then describe a typical workflow for col-

lecting and labeling images that are rich in pose variations and lighting conditions.

2.3.1 Design Requirements

1) Intuitive Interactions The majority of annotation tools available in the liter-

ature are restricted to a keyboard and mouse. However for ARLabeler, we leverage

voice and gesture modes that are fully integrated with most commercially available

AR devices. Our goal is to minimize the effort required by the annotator in terms

of hand and gaze movements.

2) Low Cognitive Load Data annotation can be an exhausting task, and we

want to reduce the cognitive burden on the labeler, i.e., there should be no diffi-

culty disambiguating annotations once placed. We address this by leveraging depth

perception and using easily distinguishable marker colors.

3) Flexible Object Boundary Labeling As a general tool, we want to be able

to label not only bounding boxes, but also keypoints and the detailed boundaries of

target objects. ARLabeler leverages the surface meshes that are produced by the AR

device to initially guide placement of boundary points. These individual markers

can then be adjusted using simple voice commands and/or gestures.

2.3.2 Interface Components

As shown in (Figure 2.2) ARLabeler is a virtual environment embedded in the

real world from a user’s point of view. It contains the following visual components
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Figure 2.2: ARLabeler interface with control buttons, virtual markers, and the

capture counter.

and functional modules that leverage a typical AR device’s capabilities.

1) Virtual Markers are unit-length cubes that can be rendered onto the real

world’s surfaces. Depending on the number of markers being used, it is possible

to annotate bounding boxes, keypoints, or complete outlines of an object. Markers

are grouped by colors. For the default view, we have chosen the eleven basic colors

based on the color naming theory of Berlin and Kay [32]. Each named color group

represents a consistent visual concept: e.g., the outline of a car. An unlimited

number of markers can be created one by one by voice command “New #COLOR”,

where #COLOR is one of the eleven color names.

2) World Surface Mesh Map is obtained from the AR device. The mesh is an

estimate of the [X, Y, Z] coordinates of solid surfaces in the real world, and is used
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as a guidance to let the user quickly attach markers on to real world objects. Be-

cause these meshes are produced with 3D sensors, they are robust to environmental

changes in lighting and/or cosmetic appearance changes made to objects.

3) Interaction Mode Our application offers two modes by which a user can place

markers: fast mode and refine mode. In fast mode, the user uses gaze to guide and

attach markers onto the surface mesh. This is the most efficient way to quickly

draw a large number of markers that are roughly aligned with the object. To

improve marker placement accuracy, the user can invoke the refine mode, wherein

hand gestures are used to move markers freely in three dimensions, without the

constraint that they lie on a mesh. The AR device tracks the movement of the hand

and replicates its motion with the target marker. The two modes are invoked by

voice commands.

4) Controls There are three virtual buttons for controlling the data collection

procedure: start, stop, and reset. Upon pressing the start button, the front fac-

ing camera starts capturing frames at a preset rate. At each time step, a photo

is captured and all 3D marker coordinates are recorded, until the stop button is

pressed. During capture, a counter is displayed to show how many photos have

been captured.

5) Geometric Transformation Information is stored for every captured frame.

The coordinates of markers in 3D are first transformed to camera coordinates, and

then converted to the 2D image plane with the AR camera’s projection matrix.

6) Visibility Test After placement, markers might be hidden in a particular view

due to being out-of-sight or occluded. We check a marker’s location in the 2D image
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plane to determine if it is out-of-sight. For occlusion, we utilize the surface mesh

map and compare two vectors in the world coordinate system: 1) the vector from

the camera center to the marker; 2) the vector from the camera center to the first

point where the user’s gaze hits the surface mesh map. If the difference between

the two vectors exceeds a certain threshold, we assume there is an occluding object

between the current camera position and the marker.

2.3.3 Data Collection Workflow

A typical workflow using ARLabeler for data collection is summarized as fol-

lows:

1. Preparation. The user identifies the target object(s) to be annotated.

Walking around the scene may be required for the AR device to estimate and register

the surface of each object.

2. Interactive Labeling. The user selects color markers and aligns them with

the target object(s). To label a single object, the user places markers of the same

color at the extreme points of that object to bound its volume, and then at multiple

locations along its boundary. To label multiple objects in a room, the user can use

colors as semantic labels for different object categories, or as instance level labels

for different objects in the same semantic category.

3. Photo Capture. Once the initial labeling is done, the user starts the record-

ing process and simply walks around the scene as ARLabeler takes photos from

various viewing angles and lighting conditions (day, night, flashlights, etc.). Photos
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are captured at a preset frame rate, and all of the markers’ positions for each frame

are automatically calculated and stored. The process can be interrupted and re-

sumed over an extended period of time, since the markers lock onto their respective

locations.

4. Post-processing. Captured images and markers’ coordinates are stored

with their corresponding frame indices. Post-editing of annotations, e.g., merging

or removing of markers is supported.

Through this interface and workflow, ARLabeler is able to achieve high quality

labels similar to fully manual labeling, but with much less time and effort. Consider

P scenes with K objects and N number of frames to be labeled. Manual labeling

will take O(N ·K · P ) human time, while ARLabeler takes O(K · P ) time, because

only the initial labeling phase requires human effort. This is a significant speed up

especially when N is large (e.g. tens of thousands for a typical vision dataset). A

quantitative comparison is provided in Section 2.5.2.

Discussion. The standard dataset collection pipeline in computer vision is a two

stage process. First, images are collected either from the Internet or a target envi-

ronment such as an indoor scene. Second, images are submitted for annotation by

domain experts or crowdsourced workers (e.g. Amazon MTurkers). ARLabeler, on

the other hand, couples both data collection and labeling into a single simultaneous

operation. A modest overhead is introduced at the start of the data collection pro-

cess where a user wears the AR device and places a few virtual markers at key points

in the virtual scene. Once the data capture is completed, the images are already

labeled, resulting in a much shorter turnaround time between data collection and
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deployment of real-world computer vision systems. Throughput efficiency will be

demonstrated quantitatively in the experimental section.

2.4 Bounding Box Refinement Network

We now switch our attention to training of object detection systems that can

leverage the data collected through ARLabeler. Recall that the user specifies virtual

markers that are bound to objects during labeling, and as a result, axis aligned

bounding box labels created by the user in the initial perspective transform to

skewed, non-axis aligned quadrilaterals in later perspectives. This presents us with

two options: (i) use the markers to construct loose, axis-aligned bounding boxes in

all perspectives (see left image in Figure 2.3) and use a standard detector like SSD

or YOLO, or (ii), use the markers to construct tighter, but skewed, non axis aligned

quadrilaterals (see right figure in Figure 2.3), and build a new detection pipeline to

detect the non axis aligned bounding boxes. We choose the latter approach for the

reasons highlighted below.

2.4.1 Motivation

Two factors prompt a consideration for non-axis-aligned bounding boxes: task

utility and IOU. We discuss each in turn.

In a real world AR application, the bounding box from the object detection

step is often used to create virtual annotations that assist end-users for various

tasks, including machine repair [33] or surgery [34]. Axis-aligned bounding boxes
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(AABB) are not an ideal choice for this purpose, since they “float” on top of the

object rather than aligning with its 3D orientation, and cover a large region not

within the object’s extent. This becomes especially problematic in cluttered scenes

where overlapping object labels impede the visual task, as shown in Figure 2.3.

We conducted a pilot study to understand how bounding box geometry affects

visual task guidance. We collected twelve images of three parts of a large office

printer and labeled them using both axis aligned bounding boxes (AABBs) and non-

axis aligned bounding boxes (NAABBs) at varying perspectives. We then asked five

people to identify which part was indicated by each bounding box in each image.

Part identification accuracy was approximately 72% on AABB-labeled images, and

as expected, 100% with the NAABB-labeled images (images in the latter category

were primarily used as a control). In addition, for the AABB-labeled images, 3 out

of 4 had at least one user indicating the wrong part. It is also worth noting that

more mistakes were made on images where the parts had large out-of-plane rotations

(for example, see the blue, yellow, and orange bounding boxes in Figure 2.3). We

believe this result indicates that tighter fits to object shapes (higher IOU) result

in higher visual identification, especially on real world objects exhibiting significant

perspective distortion.

IOU is a standard metric to measure object detection performance. One ap-

proach to improve IOU is to estimate the full outline of objects, or instance-level

segmentation. However, such segmentation is computationally expensive: Mask

RCNN [35] has a frame rate of 5FPS, which creates notable lags in any real-time

AR application. Instead, we hypothesize that simple geometric transformations of
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the AABB labels can significantly improve detection quality while maintaining the

desired frame rate for real-time applications. To validate this hypothesis, we con-

ducted a small study on the COCO dataset. We calculated IOU between the AABB

and the ground truth pixel-level object labels. For the NAABB ground truth tar-

get, we find the optimal 3 × 3 affine transformation that yields the tightest fitting

quadrilateral around the object’s outline, and determine its IOU ratio. The result

was an average IOU of 0.559 for AABB and 0.66 for the transformed NAABB shape.

This quantitatively illustrates the potential gains that can be obtained by detecting

NAABBs over AABBs.

Figure 2.3: Left: A cluttered scene image with AABB. Right: The same scene image

with NAABB. It is clear that the NAABB provides better guidance on where objects

are.

26



2.4.2 Network Structure

We propose a Bounding box Refinement Network (BRN) that takes as input

an image and a canonical AABB provided by a standard object detection network,

and predicts the parameters of a spatial transformation that maps the AABB to a

target NAABB that optimally fits the object’s spatial extent. Figure 2.4 illustrates

the network structure. We emphasize that BRN is a general purpose network that

can be applied to arbitrary datasets beyond those collected through ARLabeler.

The BRN first samples pixels from the region of interest (ROI) defined by

the AABB. This operation is similar to the pixel sampling mechanism used in the

Spatial Transformer Network [31], and it has two benefits: 1) Sampling directly from

the image makes BRN independent of any specific object detectors; 2) The sampling

results in a fixed size image patch from which it is easy to extract features. Next,

BRN extracts features through several convolutional and fully connected layers and

regresses on these features to yield a parameterized geometric transformation. This

transformation can be used to convert the coordinates of any bounding shape in

the canonical space to a shape in the image space that better aligns with the target

object.

The BRN, as a function of the input image I, minimizes ‖Xt − T (I)Xs‖2,

where Xs are augmented coordinates in the axis-aligned canonical space and Xt are

the target coordinates that are aligned with the object’s orientation. T (I) is a 3× 3

transformation matrix that can be flattened to a 9-dimensional vector.

There are several transformation choices for T (·):
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Figure 2.4: Network structure of BRN.

1. Rotation: [cos(θ),− sin(θ), 0, sin(θ), cos(θ), 0, 0, 0, 0]

2. Rotation + scale in x,y:

[sx cos(θ),−sy sin(θ), 0, sx sin(θ), sy cos(θ), 0, 0, 0, 0]

3. Affine (2× 3): [a1, a2, a3, a4, a5, a6, 0, 0, 0]

4. Homography (3× 3): [h1, h2, h3, h4, h5, h6, h7, h8, 1]

It is easy to modify the number of regression outputs in BRN to output any

of the aforementioned transformations, of which homography is the most general.

With efficiency in mind, the network is designed to be simple, and comprises two

convolutional filter layers, batch normalization layers, and a fully connected regres-

sion layer. While our implementation is class-independent, it is straightforward to

take class predictions and concatenate them with the fully connected layer to predict

class-dependent transformations. Compared with an end-to-end coordinates regres-

sion approach, BRN has several advantages. 1) It learns a small set of parameters

(only 6 for an affine transform), comparing to O(k) number of parameters for a

direct coordinates regression approach, where k is the number of keypoints along

the object’s outlines. 2) The geometric transformation matrix is easier to learn be-
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cause the parameters are decoupled: learning the rotation angle is independent from

learning the scaling factor. In contrast, direct coordinate regression has to predict

all coordinates in a joint fashion. This generalizes the common practice in object de-

tection that predicts (x, y, w, h) for a box instead of (x, y)4 pairs. 3) The estimated

geometric transformation can be independently applied to virtual AR content such

as arrows or pop-up text boxes for user guidance.

2.5 Experiments

In this section, we first evaluate ARLabeler as a data collection and labeling

tool, and measure its efficiency and accuracy in propagating manually placed mark-

ers to images captured at different perspectives. In the second part of this section,

we show the effectiveness of BRN at transforming an AABB to better fit an ob-

ject’s boundary. Finally, we show that combining data collected by ARLabeler and

existing datasets can improve object detection on both sets of data.

2.5.1 ARLabeler Dataset

We believe that the ability to collect images with wide variation in 3D ob-

ject pose and orientation, as well as different types of data including key points,

bounding boxes and boundaries, is crucial to boost object detection and recogni-

tion research. We collected three datasets of various types that demonstrate the

flexibility of ARLabeler to this end.

1) Data-Room contains images of multiple objects in a room. For each image,
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object instances are labeled by markers; different colored markers are used to dif-

ferentiate each of the objects and generate bounding boxes (AABBs or NAABBs).

Labeling is performed as described in Section 2.3.3, with an annotator walking

around a room capturing images of each object at various viewpoints, adjusting

ambient lighting, and placing different distracting objects in the vicinity. The result

is 9255 images captured in 4 room types: kitchen, office room, conference room, and

office common area, with 30 object classes and under rich variations in pose and

illumination.

2) Data-Part contains images of object parts labels. This is crucial in applications

where the user needs to interact with specific parts of an object (e.g. locating the

jammed paper tray of a printer). This dataset comprises 10872 images of 9 different

parts of 7 office printers, captured under vastly different poses, illumination and

background clutter.

3) Data-Shape contains images of single objects of complex shapes. This shows

ARLabeler ’s ability to collect labels of objects that are beyond rectilinear shapes.

The dataset comprises four stuffed animals: lizard, cheetah, giraffe, and zebra.

For each animal, a user puts virtual markers along its physical outlines from one

viewpoint. Also, we put an additional four markers as a reference box to bound

the shape. Subsequently, ARLabeler produces a large dataset with these objects

at different orientations, lighting and clutter. The result is 5192 images with an

average of 48 points per animal.

The three datasets in total contain over 25,000 labeled images; typical exam-
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Figure 2.5: Example images and marker labels of our datasets. Top: Data-Part.

Middle: Data-Room. Bottom: Data-Shape.

ples are shown in Figure 2.5.

2.5.2 ARLabeler Annotation Quality

In this experiment, we compare ARLabeler quantitatively with image labeling

tools that are widely used in the computer vision community.

We randomly selected 50 frames from the Data-Parts dataset, containing on

average 6 parts per frame and a total of approximately 300 regions. Each part is

labeled by a polygon with 4 vertices. We compare ARLabeler with representative
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manual labeling, semi-automatic video labeling, and crowdsourced labeling methods.

For manual labeling, we use an online tool (VIA) [6]. For semi-automatic video

labeling, we use a popular video-based labeling method called VATIC [36], in which

a user labels key frames and the software predicts the labels for the remaining frames

by tracking visual features. One volunteer was hired to complete both tasks. For

crowd-sourced labeling, we developed a web-based manual labeling interface that is

similar to ARLabeler in function, and serves selected frames to Amazon Mechanical

Turkers for annotation. The crowdsourced workers are guided to label the same

object parts, using a few reference images as examples.

We focus on the trade-off between efficiency and accuracy when evaluating

a labeling method. Efficiency is measured by time spent in the labeling process.

For ARLabeler, the duration of the volunteer placing virtual 3D markers onto the

objects is recorded. For manual labeling, the time spent drawing polygons on each

frame is recorded and summed, while for video labeling, the time spent for label-

ing the key frames is recorded. Accuracy of the obtained labels is measured by

intersection-over-union (IOU) ratio between the ground truth polygons and those

obtained using each of the labeling methods. We believe that higher IOU indicates

higher correlations between the labels and true object boundaries, which is impor-

tant for superior object detection performance. Note that manual labeling is not

1.0 due to the discrepancy between the volunteer and the ground truth source.

1) Comparison with Manual Labeling Table 2.1 shows that the accuracy of AR-

Labeler is comparable to that of manual annotation (0.74/0.82 = 90%) with only a

fraction (5%) of the time cost for labeling the selected frames. Moreover, the time
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required for manually labeling N frames is proportional to N ; while ARLabeler re-

quires no additional time cost for labeling additional frames for the same objects in

the same scene.

Manual ARLabeler

IOU 0.82 0.74

Time (50 Frames) 133 6

Time (N Frames) 2.66*N 6

Table 2.1: Accuracy and efficiency comparison between manual labeling and AR-

Labeler. ARLabeler comes close to manual labeling in terms of accuracy, but at a

fraction of the labeling time. Times are in minutes.

2) Comparison with Video Labeling For our data, the video labeling tool,

VATIC, while being very time efficient, suffers from inferior labeling accuracy if

used without heavy user interventions (Table 2.2). By only labeling the initial

frame, VATIC loses track of part labels quickly after large viewpoint changes. By

adding some key frame annotations in viewpoint transitioning scenes, VATIC is

able to improve. With heavy key frame annotations and adjustments (60% of total

frames), it is able to achieve about 57% (0.47/0.82) accuracy in IOU. With even

more key frame annotations and adjustments, we expect VATIC to further improve

accuracy, but with time cost approaching that of a fully manual process.

Also noteworthy is that ARLabeler can accurately track markers from various

angles while the semi-automated video labeling fails with strong geometric changes

33



across frames. In general we believe that feature-tracking based labeling works well

only when there is no significant motion between frames, and object parts are visible

across most frames. ARLabeler utilizes the built-in capabilities of an AR device

to provide scene level registration and tracking that is highly robust to viewpoint

changes.

VATIC

Init 10% KF 60% KF ARLabeler

IOU 0.19 0.27 0.47 0.74

Time (50 Frames) 1 2 10 6

Time (N Frames) 1 0.04*N 0.24*N 6

Table 2.2: Accuracy and efficiency comparison between VATIC and ARLabeler.

KF stands for portion of added key frame annotations. VATIC needs a significant

amount of annotations from users to achieve a good IOU level. Times are in minutes.

3) Comparison with MTurk We assigned 150 HITs on Amazon MTurks and

recruited 26 workers to complete our annotation task in two days. On average,

there were three workers annotating each image. The final polygon was generated

by majority votes of labeled pixels. Table 2.3 shows the comparison of the quality of

the MTurk labels and ARLabeler. MTurk labels have slightly lower label accuracy

and a much higher turnaround time.

In terms of the cost in money, MTurk results are $0.15 for hiring three turkers

per image. To collect a dataset of N images, the total cost goes linearly with N. The
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cost of ARLabeler is a constant of one-time initial investment on the AR device.

We assume the cost of hiring a person to initially label the scene is negligible and

considered as included in the total cost of the whole image capture process.

In general, there are many uncertain factors that come into play in a crowd-

sourced labeling approach. The task requester has no accurate estimation of time

to complete the HITs. For each new task, there is an unknown probability that

a MTurker misunderstands the instruction and performs sub-optimally. Thus the

time needed for post-processing and verification of the labels is difficult to quan-

tify deterministically. In addition, complex tasks that require domain knowledge

such as labeling functioning parts of a complicated machine are not suitable for

MTurkers. These factors make MTurk annotation a less favorable choice compared

with ARLabeler in scenarios requiring fast and accurate labeling.

MTurk ARLabeler

IOU 0.71 0.74

Time (50 Frames) ∼ 48 hours 6 min

Table 2.3: Accuracy and efficiency comparison between MTurk labeling and ARLa-

beler.

Discussion The ARLabeler tools uniformly performs better than its competitors

as demonstrated by above results. While this underlines the significant value of this

approach, we also would like to point out that the ARLabeler has a few limitations.

Specifically, due to hardware characteristics of the chosen Microsoft Hololens AR
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device, the whole 3D coordinate system shifts when a user undergoes large motion

at times. We have also noticed that registration and tracking of virtual markers

are not reliable for objects with reflective surfaces. With the advent of superior AR

headset technology over time, we expect more robust data annotation performance

using ARLabeler.

2.5.3 Bounding Box Refinement

In this experiment, we investigate BRN’s ability to improve IOU over the

standard axis-aligned bounding box. We first run the input image through a SSD

object detector to obtain axis-aligned ROIs for each object, which are then supplied

to BRN for refinement.

We compare different parametric BRN transformations with end-to-end coor-

dinate regression and a rotated bounding box approach. The end-to-end method

takes in an image region of interest and directly regresses coordinates of all points.

The rotated bounding box approach predicts [x1, y1, x2, y2, h] parameters [28] that

represent a rectangular shape with arbitrary rotations. All methods are learning

based, and for fair comparison, share the same convolutional feature extraction

structure. Specifically, we employ two convolutional layers, two batch normaliza-

tion layers and one regression layer. We use the Data-Part and Data-Shape datasets

for evaluation. Each dataset is randomly split into 90% training and 10% testing.

Implemented in Caffe, we train each method with the Adam optimizer until stability

is achieved.
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With the Data-Part dataset, there are four pairs of marker (x-y) coordinates to

be estimated for each printer part. The result is summarized in Table 2.4. Example

predictions are shown in Figure 2.6.

Figure 2.6: Top row: Example of Data-Part predictions. Red box: axis-aligned

box. Green box: ground truth box. Blue box: BRN estimated box. Bottom row:

Example of Data-Shape predictions. Left: End-to-End predicted shape (green)

compared with ground truth (red). Right: BRN estimated shape (purple) compared

with ground truth (red).

Method AABB End2End xyxyh BRN(R+S) BRN(H)

IOU 0.44 0.63 0.53 0.60 0.68

MSE 0.50 0.17 0.75 0.19 0.13

Table 2.4: Comparison of different bounding box refinement methods on Data-Part

dataset. BRN(R+S): BRN with rotation + scale. BRN(H): BRN with homography.
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Method AABB End2End BRN(H)

IOU (37 pts) 0.322 0.39 0.678

IOU (73 pts) 0.17 0.19 0.623

Table 2.5: Comparison of different bounding box refinement methods on Data-

Shape dataset, with different number of shape points. NAABBs produced by BRN

completely outperform AABBs.

For the Data-Shape set, for each object, BRN predicts the transformation

matrix T that will be used to transform the reference bounding rectangle. Next, we

extract the object category (e.g., lizard) output by SSD and use this to look up a

prior object shape in its canonical space. The prior shape is obtained by averaging

over all shapes of various views that are transformed back to the canonical space

in the training data. The final object shape is then predicted by applying T on the

prior shape. The result is summarized in Table 2.5. Figure 2.6 shows qualitative

examples.

With respect to computational performance, BRN achieves high precision with

little sacrifice in speed. When combined with SSD, the overall pipeline runs at

about 20 FPS on a Titan 1080Ti GPU. As a reference, the more detailed instance

segmentation, Mask RCNN, runs at 5 FPS on the COCO dataset.

Discussion On the Data-Part dataset, BRN with homography transformation out-

performs all methods, with end-to-end training coming closest to a comparable per-

formance. However on the Data-Shape dataset, BRN is significantly (70%) better
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than the end-to-end training. One critical reason is that learning four coordinates

regression is much simpler than learning all fine-grain coordinates (Table 2.5). Fig-

ure 2.6 shows that the end-to-end training fails completely for complex shapes. On

the other hand, BRN does not learn a direct coordinate mapping, but rather a sim-

ple parametric transformation between image spaces that is much easier to learn.

Furthermore the BRN-learned transformation can be advantageously used to over-

lay text and pop-up animation in an AR setting - a feature that does not appear

achievable by end-to-end training.

2.5.4 Data Augmentation for Enhanced Object Detection

As mentioned earlier, standard object detection datasets including PASCAL

VOC [26], DAVIS [24] and COCO [25] are often biased in terms of pose and lighting

conditions, leading to mixed results when used to train object detectors for real-

world applications. In this experiment, we show that by using ARLabeler, it is

possible to quickly collect a large number of labeled images that can then augment

these existing datasets to train a more robust detector with superior performance.

We selected samples from the ‘monitor’ class in the PASCAL 2012 VOC datasets.

We then used the ARLabeler tool to collect 3000 additional images of six different

types of monitors in the span of 2 hours. We combined this new dataset with PAS-

CAL and trained an SSD detector with different combinations of training/testing

splits. The result is summarized in Table 2.6. The first entry of this matrix [PASCAL

(train) / PASCAL (test)] used a publicly available SSD model that was pre-trained
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on the PASCAL VOC dataset.

PASCAL (test) AR (test)

PASCAL (train) 0.52 0.39

PASCAL+AR (train) 0.66 0.49

Table 2.6: Average precision with different training configurations of a SSD detector

trained on monitors.

The PASCAL trained detector does not work well on our AR data because

many monitor images in PASCAL are taken from a frontal view, and as a result, the

detector performs poorly on non-frontal views in the AR data. When jointly trained

with PASCAL and AR data, the SSD detector is able to improve performance

significantly on both the AR dataset and the PASCAL dataset by about 20%. This

suggests that the AR data provides valuable pose and environmental variations in

training an object detector to complement the rich object type variation in the

PASCAL data. This experiment illustrates the promise of ARLabeler in efficiently

filling the gap between the performance of detectors built on existing benchmark

datasets and that of detectors applied in real world settings with enormous variations

in pose, lighting and other confounding variables.

2.6 Summary

We propose an augmented reality application, ARLabeler, that enables intu-

itive and efficient large scale data annotation with greatly reduced labeling time, and
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increased samples diversity when compared to standard data collection and labeling

methods. ARLabeler can be used to generate standard axis-aligned bounding boxes,

as well as object key-points and detailed outlines quickly and accurately. It labels

images 20 times faster than typical manual labeling, and is useful to rapidly create

new datasets that can be used standalone to train accurate object detection systems,

or combined with existing benchmark datasets to further improve state-of-the-art

detectors. Additionally, we present BRN, an efficient neural network module with

minimal computational overhead, that refines axis-aligned bounding boxes from a

standard object detector to predict skewed boxes that more closely align with an ob-

ject’s visual extent. We demonstrate significantly improved IOU (50% improvement

over axis-aligned bounding boxes) for general object detection applications. Finally

we contribute three datasets collected using ARLabeler that exhibit rich diversity in

pose, lighting, and background clutter. We plan to release the ARLabeler labeling

tool to the scientific community to enable rapid creation of high volume real-world

datasets for general purpose machine vision systems.
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Chapter 3: Tohme: Detecting Curb Ramps in Google Street View

Using Crowdsourcing, Computer Vision, and Machine

Learning

Figure 3.1: In this chapter, we present Tohme, a scalable system for semi-

automatically finding curb ramps in Google Streetview (GSV) panoramic imagery

using computer vision, machine learning and crowdsourcing. The images above show

an actual result from our evaluation.

3.1 Introduction

Recent work has examined how to leverage massive online map datasets such

as Google Street View (GSV) along with crowdsourcing to collect information about
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the accessibility of the built environment [37–41]. Early results have been promising;

for example, using a manually curated set of static GSV images, Hara et al. [39]

found that minimally trained crowd workers in Amazon Mechanical Turk (turk-

ers) could find four types of street-level accessibility problems with 81% accuracy.

However, the sole reliance on human labor limits scalability.

In this chapter, we present Tohme1, a scalable system for remotely collecting

geo-located curb ramp data using a combination of crowdsourcing, Computer Vision

(CV), machine learning, and online map data. Tohme lowers the overall human

time cost of finding accessibility problems in GSV while maintaining result quality

(Figure 3.1). As the first work in this area, we limit ourselves to sidewalk curb

ramps (sometimes called “curb cuts”), which we selected because of their visual

salience, geospatial properties (e.g., often located on corners), and significance to

accessibility. For example, in a precedent-setting US court case in 1993, the court

ruled that the “lack of curb cuts is a primary obstacle to the smooth integration of

those with disabilities into the commerce of daily life” and that “without curb cuts,

people with ambulatory disabilities simply cannot navigate the city” [42].

While some cities maintain a public database of curb ramp information (e.g., [43,

44]), this data can be outdated, erroneous, and expensive to collect. Moreover, it is

not integrated into modern mapping tools. In a recent report, the National Coun-

cil on Disability noted that they could not find comprehensive information on the

“degree to which sidewalks are accessible” across the US [45]. In addition, the qual-

ity of data available in government systems is contingent on the specific policies

1Tohme is a Japanese word that roughly translates to “remote eye.”

43



and technical infrastructure of that particular local administration (e.g., at the city

and/or county level). While federal US legislation passed in 1990 mandates the use

of ADA-compliant curb ramps in all new road construction and renovation [46], this

is not the case across the globe. Our overarching goal is to design a scalable system

that can remotely collect accessibility information for any city across the world that

has streetscape imagery, which is now broadly available in GSV, Microsoft Bing

Maps, and Nokia City Scene.

Tohme is comprised of four custom parts: (i) a web scraper for downloading

street intersection data; (ii) two crowd worker interfaces for finding, labeling, and

verifying the presence of curb ramps; (iii) state-of-the-art CV algorithms for auto-

matic curb ramp detection; and (iv) a machine learning-based workflow controller,

which predicts CV performance and dynamically allocates work to either a human

labeling pipeline or a CV + human verification pipeline. While Tohme is purely a

data collection system, we envision future work that integrates Tohmes output into

accessibility-aware map tools (e.g., a heatmap visualization of a citys accessibility

or a smart navigation system that recommends accessible routes).

To evaluate Tohme, we conducted two studies using data we collected from

1,086 intersections across four North American cities. First, to validate the use of

GSV imagery as a reliable source of curb ramp knowledge, we conducted physical

audits in two of these cities and compared our results to GSV-based audit data.

As with previous work exploring the concordance between GSV and the physical

world [37,41,47–49], we found high correspondence between the virtual and physical

audit data. Second, we evaluated Tohmes performance in detecting curb ramps
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across our entire dataset with 403 turkers. Alone, the computer vision sub-system

currently finds 67% of the curb ramps in the GSV scenes. However, by dynamically

allocating work to the CV module or to the slower but more accurate human workers,

Tohme performs similarly in detecting curb ramps compared to a manual labeling

approach alone (F-measure: 84% vs. 86% baseline) but at a 13% reduction in human

time cost.

In summary, the primary contribution of this study is the design and evaluation

of the Tohme system as a whole, with secondary contributions being: (i) the first

design and evaluation of a computer vision system for automatically detecting curb

ramps in images; (ii) the design and study of a “smart” workflow controller that

dynamically allocates work based on predicted scene complexity from GIS data and

CV output; (iii ) a comparative physical vs. virtual curb ramp audit study (Study

1), which establishes that GSV is a viable data source for collecting curb ramp data;

and (iv) a detailed examination of why curb ramp detection is a hard problem and

opportunities for future work in this domain.

This work was done with Kotaro Hara, Prof. David Jacobs, and Prof. Jon

Froehlich; it was published in Proceedings of the 27th Annual ACM Symposium on

User Interface Software and Technology (UIST ’14) [50]. At the time of this work,

Deformable Parts Model was the best performing object detection algorithm. Later

on, deep convolution neural networks based methods outperform others and take

the competition to a new level. We investigate ways of encoding context information

into a deep convolutional neural network model in Chapter 4.
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3.2 Related Work

We describe work in sidewalk assessment, crowdsourcing, computer vision, and

dynamic workflow allocation.

3.3 Crowdsourcing

Recently, Bigham et al. argued that current technological infrastructure pro-

vides unprecedented access to large sources of human power that can be harnessed

to address accessibility challenges [51] (e.g., via crowdsourcing). Examples include

VizWiz [52] and Legion:Scribe [53]. Most relevant to this chapter is the recent explo-

ration of combining GSV and crowdsourcing for collecting street-level accessibility

data including sidewalks [39], bus stops [41], and intersections [37]. Though this

prior work demonstrates GSV as a potential accessibility data source, the studies

do not examine semi-automatic methods (e.g., using machine learning or CV) as we

do here.

Tohmes performance is contingent on crowd workers speed and accuracy in

processing GSV imagery. Prior work exists in studying how to efficiently collect

image labels(e.g., [54,55]). Su et al. investigated cost-performance tradeoff between

majority vote based labeling and verification based data collection [55], finding qual-

ity control via verification improves cost-effectiveness. Recent work by Deng [54]

explores methods of efficiently collecting multiclass image annotations by incorpo-

rating heuristics such as correlation, hierarchy, and sparsity (e.g., the presence of
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a keyboard in an image also suggests the presence of correlated objects such as

mouse and monitor); however, to our knowledge, no prior work exists on efficiently

collecting image labels from crowd workers on large panoramic imagery.

3.4 Computer Vision

There is a growing body of research applying CV techniques to GSV [56–60].

For example, Xiao et al.introduced automatic approaches to model 3D structures

of streetscape and building faades using GSV [56, 57]. Zamir et al. showed that

large-scale image localization, tracking, and commercial entity identification are

possible [58–60]. This work demonstrates the potential of combining CV with GSV;

however, automatically detecting curb ramps or other accessibility features has not

been studied.

Tohme builds on top of existing object detection algorithms from the CV

community [61–63]. For example, we use Deformable Part Models (DPMs) [62,

64], one of the top-performing approaches in the PASCAL Visual Object Classes

(VOC) challenge, a major object detection and recognition competition [65]. Despite

a decade-long effort, however, object detection remains an open problem [66, 67].

For example, even the DPM, which won the Lifetime Achievement Prize at the

aforementioned PASCAL VOC challenge, has reached 30% precision and 70% recall

in car detection [62]. Due to their variation in size, shape, and appearance, curb

ramps are similarly difficult to detect. Consequently, we incorporate a “smart”

workflow algorithm that attempts to predict poor CV performance and, in those
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instances, route work to human labelers.

3.5 Dynamic Workflow Allocation

Tohme uses machine learning to control its workflow for efficiently collecting

data from GSV. Typical workflow adaptions include: varying the number of workers

to recruit for a task [67, 68], assigning stronger workers to harder versions of a

task [69], and/or fundamentally changing the task an individual worker is given [70,

71]. These workflow decisions are made automatically by workflow controllers often

by analyzing worker performance history, inferring task difficulty, or estimating cost.

Most relevant to our work is workflow adaptation research in crowdsourcing

systems [67, 71, 72]. For example, Lin et al. and Welinder et al. rely on worker

performance histories to either assign different tasks [71] or recruit different numbers

of workers [67]. More similar to our work is [70, 72] who infer task difficulty via

automated methods and adapt work accordingly. For example, Kamaret al. [72]

analyzed image features with CV algorithms to predict worker behaviors a priori on

image annotation tasks and used this to dynamically decide the number of workers

to recruit.

Though similar, our work is different both in problem domain (finding curb

ramps) as well as in approach. Rather than vary the number of workers per task,

our workflow controller infers CV performance and decides whether to use crowd

worker labor for verifications or labeling. In addition, we do not simply rely on

image features or CV output to determine workflow but also contextual information
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such as intersection complexity and 3D-point cloud data.

3.6 Dataset

Because sidewalk infrastructure can vary in quality, design, and appearance

across geographic areas, our study sites include a range of neighborhoods from four

North American cities: Washington DC, Baltimore, Los Angeles, and Saskatoon,

Saskatchewan (Figure 3.2; Table 3.1). For each city, we collected data from dense

urban cores (shown in blue) and semi-urban residential areas (shown in red). We

emphasized neighborhoods with potential high demand for sidewalk accessibility

(e.g., areas with schools, shopping centers, libraries, and medical clinics).

Figure 3.2: The eight urban (blue) and residential (red) audit areas used in our

studies from Washington DC, Baltimore, LA and Saskatoon. This includes 1,086

intersections across a total area of 11.3km2. Among these areas, we physically

surveyed 273 intersections (see annotations in a-d).

We used two data collection approaches: (i) an automated web scraper tool

that we developed called svCrawl, which downloads GIS-based intersection data,
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Washington DC Baltimore Los Angeles Saskatoon Overall

Region Type Downtown Residential Downtown Residential Downtown Residential Downtown Residential

Total Area (km2) 1.52 1.13 0.73 2.24 1.91 1.89 0.74 1.13 11.28

# of Intersections 140 124 132 139 132 132 141 146 1,086

# of Curb Ramps 818 352 476 229 358 186 321 137 2877

# of Missing Curb Ramps 8 35 32 69 43 214 24 222 647

Avg. GSV Data Age (SD) 1.9 yrs (0.77) 1.6 yrs (0.63) 2.1 yrs (0.75) 0.4 yrs (0.65) 2.0 yrs (0.31) 0.9 yrs (0.24) 4.0 yrs (0.0) 4.0 yrs (0.0) 2.2 (1.3)

Table 3.1: A breakdown of our eight audit areas. Age calculated from summer 2013.

*These counts are based on ground truth data.

including GSV images, within a geographically defined region; and (ii) a physical

surveyof a subset of our study sites (four neighborhoods totaling 273 intersections),

which was used to validate curb ramp infrastructure found in the GSV images.

In all, we used svCrawl to download data from 1,086 intersections across 11.3km2

(Table 3.1).

To create a ground truth dataset, two members of our research team inde-

pendently labeled all 1,086 scenes using our custom labeling tool (svLabel). Label

disagreements were resolved by consensus. From the ground truth data, we discov-

ered 2,877 curb ramps and 647 missing curb ramps(Figure 3.3). Of the 1,086 scenes,

218 GSV scenes did not require marking a curb ramp or missing curb ramp because

the location was not a traditional intersection (e.g., an alleyway with no vertical

drop from the sidewalk). These 218 scenes are useful for exploring false positive

labeling behavior and were kept in our dataset. The remaining 868 intersections

had on average 3.3 curb ramps (SD=2.3) and 0.75 missing curb ramps (SD=1.3)

per intersection. A total of 603/868 intersections were marked as not missing any

curb ramps. We use the ground truth labels for training and testing our machine
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learning and CV algorithms and to evaluate crowd worker performance.

Figure 3.3: Example curb ramps (top two rows) and missing curb ramps (bottom

row) from our GSV dataset.

At download time (summer 2013), the average age of the GSV images was

2.2 years (SD=1.3). As image age is one potential limitation in our approach, it is

necessary to first show that GSV is a reasonable data source for deriving curb ramp

information, which we do next.

3.7 Study 1: Assessing GSV as a Data Source

To establish GSV as a viable curb ramp data source, we must show: (i) that

it presents unoccluded views of curb ramps, (ii) that the curb ramps can be reliably

found by humans and, potentially, machines, and (iii) that the curb ramps found in

GSV adequately reflect the state of the physical world. This study addresses each
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of these points. Multiple studies have previously demonstrated high concordance

between GSV-based audits and audits conducted in the physical world [37,41,47,48];

however, prior work has not examined curb ramps specifically. Though this audit

study was labor intensive, it is important to establish GSV as a reliable data source

for curb ramp information, as it is the crux of our systems approach.

We conducted physical audits in the summer of 2013 across a subset of our

GSV dataset: 273 intersections spanning urban and residential areas in Washington

DC and Baltimore (Figure 3.2). We followed a physical audit process similar to

Hara et al. [41]. Research team members physically visited each intersection, cap-

turing geo-timestamped pictures (Mean=15 per intersection; SD=5). These images

were analyzed post hoc for the actual audit. Surveying the 273 intersections took

approximately 25 hours as calculated by image capture timestamps.

3.8 Auditing Methodology

For the auditing process itself, two additional research assistants (different

from the above) independently counted the number of curb ramps and missing curb

ramps at each intersection in both the physical and GSV image datasets. An initial

visual codebook was composed based on US government standards for sidewalk

accessibility [46,73]. Following the iterative coding method prescribed by Hruschka

et al. [74], a small subset of the data was individually coded first (five intersections

from each area). The coders then met, compared their count data, and updated

the codebook appropriately to help reduce ambiguity in edge cases. Both datasets
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were then coded in entirety (including the original subset, which was recoded). This

process was iterated until high agreement was reached.

3.9 Calculating Inter-Rater Reliability between Auditors

Before comparing the physical audit data to the GSV audit data, which is the

primary goal of Study 1, we first calculated inter-rater reliability between the two

coders for each dataset. We applied the Krippendorffs Alpha (α) statistical measure,

which is used for calculating inter-rater reliability of count data (see [75]). Results

after each of the three coding passes using the iterative scheme from [74] are shown

in Table 3.2. Agreement was consistently high, withthe 3rd pass representing the

reliability of codes in the final code set. There was initially greater inconsistency

in coding missing curb ramps vs. coding existing curb ramps, perhaps because

identifying a missing ramp requires a deeper understanding of the intersection and

proper ramp placement.

3.10 Comparing Physical vs. GSV Audit Data

With high agreement verified within each dataset, we can now compare the

count scores between the datasets. Similar to [41,49], we calculate a Spearman rank

correlation between the two count sets (physical and GSV). This was done for both

the curb ramp and missing curb ramp counts. To enable this calculation, however,

we first merged the two auditors counts by taking the average of their counts for

missing curb ramps and the average for present curb ramps at each intersection.
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Physical Audit Image Dataset GSV Audit Image Dataset

1st Pass 2nd Pass 3rd Pass 1st Pass 2nd Pass 3rd Pass

Curb Ramp 0.959 0.960 0.989 0.927 0.928 0.989

Missing C. Ramp 0.647 0.802 0.999 0.631 0.788 0.999

Overall 0.897 0.931 0.996 0.883 0.917 0.996

Table 3.2: Krippendorff’s alpha inter-rater agreement scores between two researchers

on both the physical audit and GSV audit image datasets. Following Hruschka et

al. iterative coding methodology, a 3rd audit pass was conducted with an updated

codebook to achieve high-agreement scores.

Using these average counts, a Spearman rank correlation was computed, which

shows high correspondence between datasets: ρ=0.996 for curb ramps and ρ=0.977

for missing curb ramps (p < 0.001). Overall, 1,008 curb ramps were identified in

the virtual audit compared to 1,002 with the physical audit; differences were due

to construction. The number of missing curb ramps was exactly the same for both

datasets (89).

3.11 Study 1 Summary

Though the age of images in GSV remains a concern, Study 1 demonstrates

that there is remarkably high concordance between curb ramp infrastructure in GSV

and the physical world, even though the average image age of our dataset was 2.2

years. With GSV established as a curb ramp dataset source, we now move on to
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describing Tohme.

3.12 A Scalable System for Curb Ramp Detection

Tohme is a custom-designed tool for remotely collecting geo-located curb ramp

information using a combination of crowdsourcing, CV, machine learning, and online

map data.It is comprised of four parts depicted in Figure 3.4: (i) a web scraper,

Street View Crawl (svCrawl), for downloading street intersection data; (ii) two crowd

worker interfaces for finding, labeling, and verifying the presence of curb ramps called

svLabel and svVerify ; (iii) state-of-the-art CValgorithms for automatically detecting

curb ramps (svDetect); and (iv) a machine learning-based workflow, called svControl,

which predicts CV performance on a scenes and allocates work accordingly.

We designed Tohme iteratively with small, informal pilot studies in our labora-

tory to test early interface ideas. We also performed larger experiments on Amazon

Mechanical Turk (MTurk) with a subset of our data to understand how different

interfaces affected crowd performance and, more generally, how well crowds could

perform our tasks. The CV sub-system, svDetect, also evolved across multiple itera-

tions, and was trained and evaluated using the aforementioned ground truth labels.

While our ultimate goal is to deploy Tohme publicly on the web, the current pro-

totype and experiments were deployed on MTurk. Below, we describe each Tohme

sub-system.
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Figure 3.4: A workflow diagram depicting Tohme’s four main subsystems. In sum-

mary, svDetect processes every GSV scene producing curb ramp detections with

confidence scores. svControl predicts whether the scene/detections contain a false

negative. If so, the detections are discarded and the scene is fed to svLabel for man-

ual labeling. If not, the scene/detections are forwarded to svVerify for verification.

The workflow attempts to optimize accuracy and speed.

3.12.1 svCrawl: Automatic Intersection Scraping

svCrawl is a custom web scraper tool written in Python that downloads GIS-

related intersection data over a predefined geographic region (Figure 3.2). It uses

the Google Maps API (GMaps API) to enumerate and extract street intersection

points within selected boundaries. For each intersection, svCrawl downloads four

types of data:

1. A GSV panoramic image at its source resolution (13,312 x 6,656px). This

is our primary data element (e.g., Figure 3.1).

56



2. A 3D-point cloud, which is captured by the GSV car using LiDAR [76].

The depth data overlays the GSV panorama but at a coarser resolution (512 x

256px; Figure 3.10). This is used by svDetect to automatically cull the visual

search space and by svControl as an intersection complexity input feature.

3. A top-down abstract map image of the intersection obtained from the

GMaps API (Figure 3.13), which is used as a training feature in our work

scheduler, svControl, to infer intersection complexity (like the depth data).

4. Associated intersection GIS metadata, also provided by the GMaps API,

such as latitude/longitude, GSV image age, street and city names, and inter-

section topology.

3.12.2 svLabel: Human-Powered GSV Image Labeling

In Tohme, intersections are labeled either manually, via svLabel, or automat-

ically via svDetect. svLabel is a fully interactive online tool written in Javascript

and PHP for finding and labeling curb ramps and missing curb ramps in GSV im-

ages (Figures 3.5,3.6,3.7). Unlike much previous crowd-sourcing GSV work, which

uses static imagery to collect labels [37,38,72], our labeling tool builds on Bus Stop

CSI [41] to provide a fully interactive 360 degree view of the GSV panoramic image.

While this freedom increases user-interaction complexity, it allows the user to more

naturally explore the intersection and maintain spatial context while searching for

curb ramps. For example, the user can pan around the virtual 3D-space from one

corner to the next within an intersection.
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Using svLabel. When a turker accepts our HIT, they are immediately

greeted by a three-stage interactive tutorial. The stages progressively teach the

turker about the interface (e.g., the location of buttons and other widgets), user

interactions (e.g., how to label, zoom, and pan), and task concepts (e.g., the defini-

tion of a curb ramp). If mistakes are made, our tutorial tool automatically provides

corrective guidance. Turkers must successfully complete one tutorial stage before

moving on to the next.

Once the tutorials are completed, we automatically position the turker in one

of the audit area intersections and the labeling task begins in earnest. Similar

to Bus Stop CSI, svLabel has two primary modes of interaction: Explorer Mode

and Labeling Mode (Figure 3.6). When the user first drops into a scene, s/he

defaults into Explorer Mode, which allows for exploration using Street Views native

controls. Users are instructed to pan around to explore the 360 degree view of the

intersection and visual feedback is provided to track their progress (bottom-right

corner of Figure 3.6). Note: users movement is restricted to the drop location.

When the user clicks on either the Curb Ramp or Missing Curb Ramp buttons,

the interface switches automatically to Labeling Mode. Here, mouse interactions no

longer control the camera view. Instead, the cursor changes to a pen, allowing the

user to draw an outline around the visual targeta curb ramp or lack thereof (Fig-

ure 3.5). We chose to have users outline the area rather than simply clicking or

drawing a bounding box because the detailed outlines provide a higher degree of

granularity for developing and experimenting with our CV algorithms. Once an

outline is drawn, the user continues to search the intersection. Our tool automat-
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ically tracks the camera angle and repositions any applied labels in their correct

location as the intersection view changes. In this way, the labels appear to “stick”

to their associated targets. Once the user has surveyed the entire intersection by

panning 360 degrees, s/he can submit the task and move on to the next task in the

HIT, until all tasks are complete.

Figure 3.5: Example curb ramp and missing curb ramp labels from our turk studies.

The green/pink outline points denote presence/absence.

Ground Truth Seeding. A single HIT is comprised of either five or six

intersections depending on whether it contains a ground truth scene (a scene is just

an intersection). This “ground truth seeding” [77] approach is commonly used to

dynamically examine, provide feedback about, and improve worker performance. In

our case, if a user makes a mistake at a ground truth scene, after hitting the submit

button, we provide visual feedback about the error and show the proper corrective

action. The user must correct all mistakes before submitting a ground truth task.

If no mistakes are detected, the user is congratulated for their good performance.

In our current system, there is a 50% chance that a HIT will contain one ground

truth scene. The user is not able to tell whether they are working on a ground truth
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Figure 3.6: The svLabel interface. Crowd workers use the Explorer Mode to interac-

tively explore the intersection (via pan and zoom) and switch to the Labeling Mode

to label curb ramps and missing curb ramps. Clicking the Submit button uploads

the target labels. The turker is then transported to a new location unless the HIT

is complete.

scene until after they submit their work.

3.12.3 svVerify: Human-Powered GSV Label Verification

In addition to providing “curb ramp” and “missing curb ramp” labels, we rely

on crowd workers to examine and verify the correctness of previously entered labels.

This verification step is common in crowdsourcing systems to increase result quality

(e.g., [39,55]). svVerify (Figure 3.8) is similar to svLabel in appearance and general

60



Figure 3.7: svLabel automatically tracks the camera angle and repositions any ap-

plied labels in their correct location as the view changes. When the turker pans the

scene, the overlay on the map view is updated and the green ‘explored’ area increases

(bottom right of interface). Turkers can zoom in up to two levels to inspect distant

corners. Labels can be applied at any zoom level and are scaled appropriately.

workflow but has a simplified interaction (clicking and panning only) and is for an

easier task (clicking on incorrect labels).

While we designed both svLabel and svVerify to maximize worker efficiency

and accuracy, our expectation was that the verification task would be significantly

faster than initially providing manual labels [55]. For verification, users need not

perform a time-consuming visual search looking for curb ramps to label but rather

can quickly scan for incorrect labels (false positives) to delete. And, unlike labeling,

which requires drawing polygonal outlines, the delete interaction is a single click

over the offending label. This enables users to rapidly eliminate false positive labels

in a scene.

To maintain verification efficiency, however, we did not allow the user to spa-

tially locate false negatives. This would essentially turn the verification task into a

labeling task, by asking users to apply new “curb ramp” or “curb ramp missing”

labels when they noticed a valid location that had not been labeled. Instead, svVer-
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ify gathers information on false negatives at a coarser-grained level by asking the

user if the current scene was missing any labels after s/he clicks the submit button.

Thus, svVerify can detect the presence of false negatives in an intersection but not

their specific location or quantity.

Similar to svLabel, svVerify requires turkers to complete an interactive tutorial

before beginning a HIT, which includes instructions about the task, the interface

itself, and successfully verifying one intersection. Because verifications are faster

than providing labels, we included 10 scenes in each HIT (vs. the 5 or 6 in svLabel).

In addition, we inserted one ground truth scene into everysvVerify HIT rather than

with 50% probability as was done with svLabel. Note that not all scenes are sent

to svVerify for verification, as discussed in the svControl section below. We move

now to describing the two more technical parts of Tohme: svDetect and svControl.

3.12.4 svDetect: Detecting Curb Ramps Automatically

While svLabel relies on manual labeling for finding curb ramps, svDetect at-

tempts to do this automatically using CV. Because CV-based object detection is still

an open problem–even for well-studied targets such as cars [64] and people [61]–our

goal is to create a system that functions well enough to reduce the cost of curb ramp

detection vs. a manual approach alone.

svDetect uses a three-stage detection process. First, we train a Deformable

Part Model (DPM), one of the most successful recent approaches in object detection

(e.g., [65]), as a first-pass curb ramp detector. Second, we post-process the resulting
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Figure 3.8: The svVerify interface is similar to svLabel but is designed for verifying

rather than labeling. When the mouse hovers over a label, the cursor changes to a

garbage can and a click removes the label. The user must pan 360 degrees before

submitting the task.

bounding boxes using non-maximum suppression [78] and 3D-point cloud data to

eliminate detector redundancies and false positives. Finally, the remaining bounding

boxes are classified using a Support Vector Machine (SVM) [79], which uses features

not leveraged by the DPM, further eliminating false positives.

svDetect was designed and tested iteratively. We attempted multiple algorith-

mic approaches and used preliminary experiments to guide and refine our approach.

For example, we previously used a linear SVM with a Histograms of Oriented Gra-

dients (HOG) feature descriptor [80] but found that the DPM was able to recognize
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curb ramps with larger variations. In addition, we found that though the raw GSV

image size is 13,312 x 6,656 pixels, there were no detection performance benefits

beyond 4,096 x 2,048px (the resolution used throughout this chapter). Because it

helps explain our design rationale for Tohme, we include our evaluation experiments

for svDetect in this section rather than later in the chapter.

First Stage: The Curb Ramp Deformable Part Model (DPM)

DPMs are comprised of two parts: a coarse-grained model, called a root filter,

and a higher resolution parts model, called a parts filter. DPMs are commonly

applied to human detection in images, which provides a useful example. For human

detection, the root filter captures the whole human body while part filters are for

individual body parts such as the head, hand, and legs [62]. The individual parts are

learned automatically by the DPM–that is, they are not explicitly defined a priori.

In addition, how these parts can be positioned around the body (the root filter) is

also learned and modeled via displacement costs. This allows a DPM to recognize

different configurations of the human body (e.g., sitting vs. standing).

In our case, the root filter describes the general appearance of a curb ramp

while part filters account for individual components (e.g., edges of the ramp and

transitions to the road). DPM creates multiple components for a single model

(Figure 3.9) based on bounding box aspect ratios. We suspect that each component

implicitly captures different viewpoints of a curb ramp. For our DPM, we used code

provided by [81].

Second Stage: Post-Processing DPM Output

In the second stage, we post-process the DPM output in two ways. First,
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Figure 3.9: The trained curb ramp DPM model. Each row represents an automati-

cally learned viewpoint variation. The root and parts filter visualize learned weights

for the gradient features. The displacement costs for parts are shown in (c).

similar to [78], we use non-maximum suppression (NMS) to eliminate redundant

bounding boxes. NMS is common in CV and works by greedily selecting bounding

boxes with high confidence values and removing overlapping boxes with lower scores.

Overlap is defined as the ratio of intersection of the two bounding boxes over the

union of those boxes. Based on the criteria established by the PASCAL Visual

Object Classes challenge [65], we set our NMS overlap threshold to 50%.

Our second post-processing step uses the 3D-point cloud data to eliminate curb

ramp detections that occur above the ground plane (e.g., bounding boxes in the sky

are removed). To do so, the 512 x 256px depth image is resized to the GSV image size

(4096 x 2048px) using bilinear interpolation. For each pixel, we calculate a normal

vector and generate a mask for those pixels with a strong vertical component. These

pixels correspond to the ground plane. Bounding boxes outside of this pixel mask

are eliminated(Figure 3.10 and 3.11).
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Figure 3.10: Using code from [38], we download GSV’s 3D-point cloud data and use

this to create a ground plane mask to post-process DPM output. The 3D depth

data is coarse: 512 x 256px.

Third Stage: SVM-Based Classification

Finally, in the third stage, the remaining bounding boxes are fed into an addi-

tional classifier: an SVM. Because the DPM relies solely on gradient features in an

image, it does not utilize other important discriminable information such as color

or position of the bounding box. Given that street intersections have highly con-

strained geometrical configurations, curb ramps tend to occur in similar locations-so

detection position is important. Thus, for each bounding box, we create a feature

vector that includes: RGB color histograms, the top-left and bottom-right corner

coordinates of the bounding box in the GSV image along with its width and height,

and the detection confidence score from the DPM detector. We use the SVM as a

binary classifier to keep or discard detection results from the second stage.

svDetect Training and Results

Two of the three svDetect stages require training: the DPM in Stage 1 and the
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SVM in Stage 3. For training and testing, we used two-fold cross validation across

the 1,086 GSVscenes and 2,877 ground truth curb ramp labels. The GSV scenes

were randomly split in half (543 scenes per fold) with one fold initially assigned for

training and the other for testing. This process was then repeated with the training

and testing folds switched.

To train the DPM (Stage 1), we transform the polygonal ground truth la-

bels into rectangular bounding boxes, which are used as positive training examples.

DPM uses a sliding window approach, so the rest of the GSV scene is treated as

negative examples (i.e., comprised of negative windows). For each image in the

training set, the DPM produces a set of bounding boxes with associated confidence

scores. The number of bounding boxes produced per scene is contingent on a mini-

mum score threshold. This threshold is often learned empirically. A high threshold

would produce a small number of bounding boxes, which would likely result in high

precision and low recall; a low threshold would likely lead to low precision and high

recall.

To train the SVM (Stage 3), we use the post-processed DPM bounding boxes

from Stage 2. The bounding boxes are partitioned into positive and negative sam-

ples by calculating area overlap with the ground truth labels. Though there is no

universal standard for evaluating good area overlap in object detection research, we

use 20%overlap (from [82]). Prior work suggests that even 10-15% overlap agreement

at the pixel level would be sufficient to confidently localize accessibility problems

in images [39]. Thus, positive samples are boxes that overlap with ground truth

by more than 20%; negative samples are all other boxes. We extract the aforemen-
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tioned training features from both the positive and negative bounding boxes. Note

that SVM parameters (e.g., coefficient for slack variables) are automatically selected

by grid search during training.

Figure 3.11: Example results from svDetects three-stage curb ramp detection frame-

work. Bounding boxes are colored by confidence score (lighter is higher confidence).

As this figure illustrates, setting the detection threshold to -0.99 results in a rela-

tively low false negative rate at a cost of a high false positive rate (false negatives

are more expensive to correct). Many false positives are eliminated in Stages 2 and

3. The effect of Stage 2s ground plane mask is evident in (b). Acronyms: TP=true

positive; FP=false positive; FN=false negative.

Results. To analyze svDetects overall performance and to determine an ap-

propriate confidence score cutoff for svDetect, we stepped through various DPM

detection thresholds (from -3-to -3 with a 0.01 step) and measured the results. For

each threshold, we calculated true positive, false positive, and false negative de-

tections for each scene. True positives were assessed as bounding boxes that had
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20% overlap with ground truth labels and that had a detection score higher than

the currently set threshold. The results are graphed on a precision-recall curve in

Figure 3.12. To balance the number of true positive detections and false positives

in our system, we selected a DPM detection threshold of -0.99. At this threshold,

svDetect generates an average of 7.0 bounding boxes per intersection (SD=3.7); see

Figure 3.11 for examples. Note: svDetect failed to generate a bounding box for 15

of the 1,086 intersections. These are still included in our performance comparison.

In the ideal, our three-stage detection framework would have both high preci-

sion and high recall. As can be observed in Figure 3.12, this is obviously not the case

as 20% of the curb ramps are never detected (i.e., the recall metric never breaches

80%). With that said, automatically finding curb ramps using CV is a hard problem

due to viewpoint variation, illumination, and within/between class variation. This

is why Tohme combines automation with manual labor using svControl.

svControl: Scheduling Work via Performance Prediction

svControl is a machine-learning module for predicting CV performance and as-

signing work to either a manual labor pipeline (svLabel) or an automated pipeline

with human verification (svDetect + svVerify)-see Figure 3.4. We designed svCon-

trol based on three principles: first, that human-based verifications are fast and

relatively low-cost compared to human-based labeling; second, CV is fast and inex-

pensive but error prone both in producing high false positives and false negatives;

third, false negatives are more expensive to correct than false positives.

From these principles, we derived two overarching design questions: first, given

the high cost of human labeling and relative low-cost of human verification, could
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Figure 3.12: The precision-recall curve of the three-stage curb ramp detection pro-

cess constructed by stepping through various DPM detection thresholds (from -3-

to-3 with a 0.01 step). For the final svDetect module, we selected a DPM detection

threshold of -0.99, which balances true positive detections with false positives.

we optimize CV performance with a bias towards a low false negative rate (even if

it meant an increase in false positives)? Second, given that false negatives cannot

be eliminated completely from svDetect, can we predict their occurrence based on

features of an intersection and use this to divert work to svLabel instead for human

labeling?

Towards the first question, biasing CV performance towards a certain rate of

false negatives is trivial. It is simply a matter of selecting the appropriate threshold

on the precision/recall curve (recall that the threshold that we selected was -0.99).

The second question is more complex. We iterated over a number of prediction tech-
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niques and intersection features before settling on a linear SVM and Lasso regression

model [83] with the following three types of input features:

• svDetect results (16 features): For each GSV image, we include the raw

number of bounding boxes output from svDetect, the average, median, stan-

dard deviation, and range of confidence scores of all bounding boxes in the

image, and descriptive statistics for their XY-coordinates. Importantly, we

did not use the correctness of the bounding box as a feature since this would

be unknown during testing.

• Intersection complexity (2 features):We calculate intersection complexity

via two measures: cardinality (i.e.,how many streets are connected to the

target intersection) and an indirect measure of complexity, for which we count

the number of street pixels in a stylized top-down Google Map. We found that

high pixel counts correlate to high intersection complexity (Figure 3.13).

• 3D-point cloud data (5 features): svDetect struggles to detect curb ramps

that are distant in a scene-e.g., because the intersection is large or because the

GSV car is in a sub-optimal position to photograph the intersection. Thus, we

include descriptive statistics of depth information of each scene (e.g., average,

median, variance).

We combine the above features into a single 23-dimensional feature vector for

training and classification.

svControl Training and Test Results
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We train and test svControl with two-fold cross validation using the same train

and test data as used for svDetect. Given that the goal of svControl is to predict

svDetect performance, namely the occurrence of false negatives, we define a svDetect

failure as a GSV scene with at least one false negative curb ramp detection. The

SVM model is trained to make a binary failure prediction with the aforementioned

features. Similarly, the Lasso regression model is trained to predict the raw number

of false negatives of svDetect (regression value > 0.5 is failure).

To help better understand the important features in our models, we present

the top three correlation coefficients for both. For the SVM, the top coefficients were

the labels x-coordinate variance (0.91), the mean confidence score of automatically

detected labels (0.69), and the minimum scene depth (0.67). For the Lasso model,

the top three were mean scene depth (0.69), median scene depth (-0.28), and, similar

to the SVM, the mean confidence score of the automatically detected labels (0.21).

If either the SVM or the Lasso model predicts failure on a particular GSV scene,

svControl routes that scene to svLabel instead of svVerify.

svControl Results. We assessed svControls prediction performance across

the 1,086 scenes. While not perfect, our results show that svControl is capable of

identifying svDetect failures with high probabilitywe correctly predicted 397 of the

439 svDetect failures (86.3%); however, this high recall comes at a cost of precision:

404 of the total 801 scenes (50.4%) marked as failures were false positives. Given

that we designed svControl to be conservative (i.e., pass more work to svLabel if

in doubt about svDetect), this accuracy balance is reasonable. Below, we examine

whether this is sufficient to provide performance benefits for Tohme.
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Figure 3.13: We use top-down stylized Google Maps (bottom row) to infer inter-

section complexity by counting black pixels (streets) in each scene. A higher count

correlates to higher complexity.

3.13 Study 2: Evaluating Tohme

To examine the effectiveness of Tohme for finding curb ramps in GSV images

and to compare its performance to a baseline approach, we performed an online

study with MTurk in spring 2014. Our goal here is threefold: first, and most im-

portantly, to investigate whether Tohme provides performance benefits over manual

labeling alone (baseline); second, to understand the effectiveness of each of Tohmes

sub-systems (svLabel, svVerify, svDetect, and svControl); and third, to uncover

directions for future work in preparation for a public deployment.

3.13.1 Tohme Study Method

Similar to Hara et al. [39], we collected more data than necessary in practice

so that we could simulate performance with different workflow configurations post
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hoc. To allow us to compare Tohme vs. feeding all scenes to either workflow on

their own (svLabel and svDetect+svVerify), we ran all GSV scenes through both.

To avoid interaction effects, turkers hired for one workflow (labeling) could not work

on the other (verifying) and vice versa.

Second, to more rigorously assess Tohme and to reduce the influence of any

one turker on our results, we hired at least three turkers per scene for each workflow

and used this data to perform Monte Carlo simulations. More specifically, for both

workflows, we randomly sampled one turker from each scene, calculated performance

statistics (e.g., precision), and repeated this process 1,000 times. Admittedly, this is

a more complex evaluation than simply hiring one turker per scene and computing

the results; however, the Monte Carlo simulation allows us to derive a more robust

indicator of Tohmes expected future performance.

Of the 1,086 GSV scenes (street intersections) in our dataset, we reserved 40

for ground truth seeding, which were randomly selected from the eight geographic

areas (5 scenes from each). We calculated HIT payment rates based on MTurk

pilot studies: $0.80 for svLabel HITs (five intersections; $0.16 per intersection)

and $0.80 for svVerify (ten intersections; $0.08 per intersection). As noted in our

system description, turkers had to successfully complete interactive tutorials before

beginning the tasks.

3.13.2 Analysis Metrics

To assess Tohme, we used the following measures:
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• Label overlap compared to ground truth: as described in the svDetect

section, we use 20% overlap as our correctness threshold (from [39]).

• We calculate standard object detection performance metrics includ-

ing precision, recall, and F-measure based on this 20% area overlapthe same

overlap used by svDetect.

• Human time cost: cost is calculated by measuring completion times for each

intersection in svLabel and svVerify.

3.13.3 Tohme Study Results

We first present high-level descriptive statistics of the MTurk HITs before

focusing on the comparison between Tohme vs. our baseline approach (pure man-

ual labeling with svLabel). We provide additional analyses that help explain the

underlying trends in our results.

Descriptive Statistics of MTurk Work

To gather data for our analyses, we hired 242 distinct turkers for the svLabel

pipeline and 161 turkers for the svVerify pipeline (Table 3.3). As noted previously,

all 1,046 GSV scenes were fed through both workflows. For svLabel, turkers com-

pleted 1,270 HITs (6,350 labeling tasks) providing 17,327 curb ramp labels and

3,462 missing curb ramp labels. For svVerify, turkers completed 582 HITs (5,820

verification tasks) and verified a total of 42,226 curb ramp labels. On average,

turkers eliminated 4.9 labels per intersection (SD=2.9). We hired an average of 6.1

(SD=0.6) turkers per intersection for svLabel and 5.6 (SD=0.6) for svVerify.
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Turkers
GSV

Scenes

HITs Tasks
Avg. Turkers /

Intersection

Label Stats
Avg. Task

Time

svLabel 242 1046 1270 6350 6.1 (0.6) 20789 labels 94.1s (144.4s)

svVerify 161 1046 582 5820 5.6 (0.6) 42226 verified labels 43.2s (48.7s)

Table 3.3: An overview of the MTurk svLabel and svVerify HITs. While Tohme’s

svControl system would, in practice, split work between the svLabel and svDe-

tect+svVerify pipelines, we fed every GSV scene to both to perform our analyses.

svVerify was 2.2x faster than svLabel.

Evaluating Tohmes Performance

To evaluate Tohmes overall performance, we first examined how well each

pipeline would perform on its own across the entire dataset (1,046 scenes). This

provides two baselines for comparison: (i) the svDetect + svVerifyresults show how

well Tohme would perform if the svControl module passed all work to this pipeline

and, similarly, (ii) the svLabel results show what would happen if we only relied on

manual labor for finding and labeling curb ramps.

We found that Tohme achieved similar but slightly lower curb ramp detection

results compared to the manual approach alone (F-measure: 84% vs. 86%) but

with a much lower time cost (13% reduction); see Figure 3.14. As expected, while

the svDetect + svVerify pipeline is relatively inexpensive, it performed the worst

(F-measure: 63%). These findings show that the svControl module routed work

appropriately to maintain high accuracy but at a reduced cost. Tohme reduces

the average per-scene processing time by 12 seconds compared to svLabel alone.The
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overall task completion times were 12.3, 27.3, and 23.7 hours for svDetect + svVerify,

svLabel, and Tohme respectively.

The above results were calculated using the aforementioned Monte Carlo method.

If we, instead, use only the first turker to arrive and complete the task, our results

are largely the same. The F-measures are 63%, 86%, and 85% respectively for svDe-

tect + svVerify, svLabel, and Tohme with a 10% drop in cost for Tohme (rather

than 13%). This includes 65 distinct turkers for svDetect + svVerify, 97 for svLabel,

and 149 for Tohme.

Figure 3.14: Tohme achieves comparable results to a manual labeling approach alone

but with a 13% reduction in time cost. Error bars are standard deviation.

Task Allocation by svControl

As the workflow scheduler, the svControl module is a critical component of

Tohme. Because the svVerify interface does not allow for labeling (e.g., correcting

false negatives), the svControl system is conservativeit routes most of the work to
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svLabel otherwise many curb ramps would possibly remain undetected. Of the 1,046

scenes, svControl predicted svDetect to fail on 769 scenes (these results are the same

as presented in the svControl section but with the 40 ground truth scenes removed).

Thus, 73.5% of all scenes were routed to svLabel for manual work and the rest (277)

were fed to svVerify for human verification (Figure 3.15). Again, svControls true

positive rate is high: 86%. However, if svControl worked as a perfect classifier, 439

scenes would have been forwarded to svLabel and 607 to svVerify. In this idealized

case, Tohmes cost drops to 27.7% compared to a manual labeling approach with

the same F-measure as before (84%). Thus, assuming limited improvements in CV-

based curb ramp detections in the near future, a key area for future work will be

improving the workflow control system.

Where Humans and Computers Struggle

The key to improving both CV and human labeling performance is to un-

derstand where and why each sub-system makes mistakes. To assess the detection

accuracy of human labelers, we calculated the average F-measure score per scene

based on the average number of true positives(TP), false positives (FP), and false

negatives (FN). For example, if the average for a scene was (TP, FP, FN) = (1, 1,

2), then (Precision, Recall, F-measure) = (0.5, 0.3, 0.4). For CV, we simply used

the F-measure score for each scene based on our svDetect results. We sorted the

two F-measure lists and visually inspected the best and worst performing scenes for

each. For the top and bottom 10, the average F-measure scores were 99% and 0%

for CV and 100% and 25% for human labeling respectively. Common problems are

summarized in Figure 3.16.
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Figure 3.15: svControl allocated 769 scenes to svLabel and 277 scenes to svVerify.

379 out of 439 scenes (86.3%) where svDetect failed were allocated ‘correctly’ to

svLabel. Recall that svControl is conservative in routing work to svVerify because

false negative labels are expensive to correct; thus, the 86.3% comes at a high false

positive cost (390).

Crowd workers struggled with labeling distant curb ramps (scale) or due to

placement and angle (viewpoint variation). To mitigate this, future labeling in-

terfaces could allow the worker to “walk” around the intersection to select better

viewpoints (similar to [25]); however, this will increase user-interaction complexity

and labeling time. Perhaps as should be expected, crowd workers were much more

adept at dealing with occlusion than CVeven if a majority of a curb ramp was

occluded, a worker could infer its location and shape (e.g., middle occlusion pic-

ture). CV struggled for all the reasons noted in Figure 3.16. Given the tremendous

variation in curb ramp design and capture angles, a larger training set may have
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improved our results. Moreover, because multiple views of a single intersection are

available n GSV via neighboring panoramas, these additional perspectives could be

combined to potentially improve scene structure understanding and mitigate issues

with occlusion, illumination, scale, and viewpoint variation. The semantic issues-

e.g., confusing structures similar to curb ramps-are obviously much more difficult

for CV than humans. We describe other areas for improvement in the Discussion.

Figure 3.16: Finding curb ramps in GSV imagery can be difficult. Common prob-

lems include occlusion, illumination, scale differences because of distance, viewpoint

variation (side, front, back), between class similarity, and within class variation. For

between class similarity, many structures exist in the physical world that appear sim-

ilar to curb ramps but are not. For within class variation, there are a wide variety of

curb ramp designs that vary in appearance. White arrows are used in some images

to draw attention to curb ramps. Some images contain multiple problems.

Effect of Area Overlap Threshold on Performance

As noted previously, there is no universal standard for selecting an area overlap
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threshold in CV; this decision is often domain dependent. To investigate the effect

of changing the overlap threshold on performance, we measured precision, recall,

and F-measure at different values from 0-50% at a step size of 10% (Figure 3.17).

For overlap=0%, at least 1px of a detected bounding must overlap with a ground

truth label to be considered correct.

A few observations: first, as expected, performance decreases as the overlap

threshold increases; however, the relative performance difference between Tohme and

baseline (svLabel) stays roughly the same. For example, at 0% overlap, the (Pre-

cision, Recall, F-measure) of Tohme is (85%, 89%, 87%) and (86%, 90%, 88%) for

svLabel and at 50% overlap, (54%, 55%, 55%) vs. (57%, 59%, 58%).Thus, Tohmes

relative performance is consistent regardless of overlap threshold (i.e., slightly poorer

performance but cheaper). Second, there appears to be a more substantial per-

formance drop starting at 30%, which suggests that obtaining curb ramp label

agreement at the pixel level between human labelers and ground truth after this

point is difficult. Finally, though svDetect + svVerify has much greater precision

than svDetect alone, this increase comes at a cost of recalla gap which widens as

the overlap threshold becomes more aggressive. So, though human verifiers help

increase precision, they are imperfect and sometimes delete true positive labels.

3.14 Discussion

Our research advances recent work using GSV and crowdsourcing to remotely

collect data on accessibility features of the physical world (e.g., [37–39, 41]) by in-
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Figure 3.17: As expected, performance drops as the area overlap threshold increases;

however, the relative difference between Tohme and baseline (svLabel) remains con-

sistent.

tegrating CV and a machine learning-based workflow scheduler. We showed that a

trained CV-based curb ramp detector (svDetect) found 63% of curb ramps in GSV

scenes and fast, human-based verifications further improved the overall results. We

also demonstrated that a novel machine-learning based workflow controller, svCon-

trol, could predict CV performance and route work accordingly. Below, we discuss

limitations and opportunities for future work. Note that the future works discussed

in this section is a general discussion on possible research directions to extending

Tohme. The future works that are closely relevant to my thesis is summarized in

Chapter 6.

3.14.1 Improving Human Interfaces

How much context is necessary for verification? We were surprised that ver-

ification tasks were only 2.2x faster than labeling tasks. Though we attempted to
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design both interfaces for rapid user interaction, there is some basic overhead in-

curred by panning and searching in the 360-degree GSV view. In an attempt to

eliminate this overhead, we have designed a completely new type of verification in-

terface, quickVerify, that simply presents detected bounding boxes in a grid view

(Figure 3.18). Similar to the facial recognition verifier in Google Picasa, these boxes

can be rapidly confirmed or rejected with a single-click and a new bounding box

appears in its place. In a preliminary experiment using 160 GSV scenes and 59

distinct turkers, however, we found that accuracy with quickVerify dropped signifi-

cantly. Unlike faces, we believe that curb ramps require some level of surrounding

context to accurately perceive their existence. More work is needed to determine

the appropriate amount of surrounding view context to balance speed and accuracy.

3.14.2 Improving human labeling.

Human labeling time could be reduced if point-and-click interactions were used

for labeling targets rather than outlining; however, as demonstrated in Figure 3.16,

curb ramps vary dramatically in size, scale, and shape. Clicking alone would be

insufficient for CV training. Moreover, labeling will always be more costly than

verification because it is a more difficult task (i.e., finding elements in an image

requires visual search and a higher mental load). With that said, we currently

discard all svDetect bounding boxeseven those with a high confidence scorewhen a

scene is routed to svLabel. Future work should explore how to, instead, best utilize

this CV data to improve worker performance (e.g., by showing detected bounding
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Figure 3.18: In the quickVerify interface, workers could randomly verify CV curb

ramp detection patches. After providing an answer for a given detection, the patch

would explode (bottom left) and a new one would load in its place. Though fast,

verification accuracies went down in an experiment of 160 GSV scenes and 59 turkers.

boxes with high scores to the user or as a way to help verify human labels). Finally,

similar to quickVerify, future work could explore GSV panorama labeling that is not

projected onto a 3D-sphere but is instead flattened into a 2D zoomable interface

(e.g., [84]) or specially rendered to increase focus on intersection corners.

3.14.3 Improving Automated Approaches

As the first work in automatically detecting curb ramps using CV, there are no

prior systems with which to directly compare our performance. Having said that,

there is much room for improvement and advances in CV will only increase the

overall efficacy of our system.
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Improving CV-based curb ramp detection. We are currently exploring

three areas of future work: (i) Context integration. While we use some context

information in Tohme (e.g., 3D-depth data, intersection complexity inference), we

are exploring methods to include broader contextual cues about buildings, traffic

signal poles, crosswalks, and pedestrians as well as the precise location of corners

from top-down map imagery. (ii) 3D-data integration.Due to low-resolution and

noise, we currently use 3D-point cloud data as a ground plane mask rather than as

a feature to our CV algorithms. We plan to explore approaches that combine the

3D and 2D imagery to increase scene structure understanding (e.g., [85]). If higher

resolution depth data becomes available, this may be useful to directly detect the

presence of a curb or corner, which would likely improve our results. (iii) Training.

Our CV algorithms are currently trained using GSV scenes from all eight city regions

in our dataset. Given the variation in curb ramp appearance across geographic areas,

we expect that performance could be improved if we trained and tested per city.

However, in preliminary experiments, we found no difference in performance. We

suspect that this is due to the decreased training set size. In the future, we would

like to perform training experiments to study the effects of per-city training and

to identify minimal training set size. Relatedly, we plan to explore active learning

approaches where crowd labels train the system over time.

Improving the workflow controller. While our current workflow con-

troller focuses on predicting CV performance, future systems should explore mod-

eling and predicting human worker performance and adapting work assignments

accordingly. For example, struggling workers could be fed scenes that are predicted
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to be easy, or hard scenes can be assigned to more than one worker to take majority

vote [69, 72]. Similar to CV detection, per-city training and active learning should

also be explored.

Who pays? The question of who will pay for data collection(or if payment

is even necessary) in the future is an important, unresolved one. Our immediate

plans are to build an open website where anyone can contribute voluntarily. From

conversations with motor impaired (MI)persons and the accessibility community

as a whole (e.g.,non-profit organizations, families of those with MI), we believe

there is a strong demand for this system. For example, with a public version of

Tohme, a concerned, motivated father could easily label over 100 intersections in his

neighborhood in a few hours. A website akin to walkscore.com could then visualize

the accessibility of that neighborhood using heatmaps and also calculate accessible

pedestrian routes.

3.14.4 Limitations

There are two primary limitations to our work. First, there is a workload im-

balance between svLabel and svDetect. svLabel gathers explicit data on both curb

ramps and missing curb ramps while svDetect only detects the former. It is likely

that if the svLabel task involved only labeling curb ramps, the labeling task com-

pletion time would go down, which would affect our primary results. And, while

the lack of a detected curb ramp could be equated to a missing curb ramp label

for svDetect, we have not yet performed this analysis. Clearly, more explorations
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are needed here but we believe our initial examinations are sufficient to show the

potential of Tohme. Second, there is no assessment of how our curb ramp detection

results compare to traditional auditing approaches (e.g., performed by city govern-

ments). Anecdotally, we have found many errors in the DC government curb ramp

dataset [44]; however, more research is necessary to uncover whether our approach

is faster, cheaper, and/or more accurate. Ultimately, Tohme must produce suffi-

ciently good data to enable new types of accessibility-aware GIS applications (e.g.,

pedestrian directions routed through an accessible sidewalk path).

3.15 Summary

This chapter contributes the design and evaluation of a new tool, Tohme,

for semi-automatically detecting curb ramps in GSV images using crowdsourcing,

computer vision, and machine learning. To our knowledge, we are the first work

to design and investigate CV algorithms for curb ramp detection, an important

sidewalk accessibility attribute. We are also the first to combine crowdsourcing

with automated methods for collecting accessibility information about the physical

world in GSV scenes. Tohmes custom workflow controller predicts CV performance

and routes work accordingly to balance accuracy and human labor. Through an

MTurk study of 1,086 intersections across four North American cities, we showed

that Tohme could provide comparable curb ramp detection accuracy at a 13% re-

duction in cost. As computer vision and machine learning algorithms continue to

improve, Tohme should only become more efficient.
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While this work focuses specifically on curb ramps, we believe a similar ap-

proach could be applied to analyze the accessibility of external building facades

(e.g., the presence of stairways), the safety of intersections (e.g., the presence of

painted cross walks), or even the accessibility of store aisles as mapping companies

increasingly focus on the indoors (e.g., [20]).

One limitation of Tohme is that it is not designed to detect missing curb ramps.

For that purpose, we need a standalone context model, which we introduce in the

next chapter.
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Chapter 4: Seeing What Is Not There: Learning Context to Deter-

mine Where Objects Are Missing

Figure 4.1: When curb ramps (green rectangle) are missing from a segment of

sidewalks in an intersection (orange rectangle), people with mobility impairments

are unable to cross the street. We propose an approach to determine where objects

are missing by learning a context model so that it can be combined with object

detection results.

4.1 Introduction

There are several limitations in Tohme (Chapter 3). 1) It uses a collection of

simple cues for context. While our experiments show that such context information
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indeed can help improving detections, we want to model context more effectively and

flexible. 2) Although Tohme has good performance in detecting constructed curb

ramps, it is not designed to detect missing curb ramps (Figure 4.1). In this work, we

investigate how to encode context using a deep convolutional neural network model

and solve the missing curb ramp detection problem.

Knowing missing curb ramp information is highly valuable: people with dis-

abilities can assess the accessibility of an area; navigation algorithms can calculate

better routes for pedestrians; governments can plan for future renovations accord-

ingly. This is an expensive and time consuming task for human labelers, which is

partially the reason why such information is missing from public databases. There-

fore, we are interested in developing an automatic algorithm that is effective and

efficient. It can be used to scan a whole city to find regions where curb ramps are

missing. In this scenario, the number of found true missing curb ramp regions (re-

call) is more important than precision because it is much more light-weight to ask

humans to verify algorithm results than to label images from scratch. Moreover,

even if the algorithm reports one true missing curb ramp region but mistakenly ig-

nores three others in an image, it is still valuable as a preprocessing step. With the

missing curb ramp regions data, government can prioritize intersections in a city to

send physical auditors in a more efficient way.

Most fundamental computer vision tasks, e.g., image classification and object

detection, focus on seeing what is there: for example, is there a curb ramp in

this image, if yes, where is it? Using deep neural network models, computational

approaches to such tasks are catching up to human performance in more and more

90



benchmarks. However, humans can easily outperform algorithms in the task of

inferring objects that are ‘not there’: for example, is there a curb ramp in this

image, if no, where could it be?

We are interested in finding where objects are missing in an image: an object

of interest is not there, even though the environment suggests it should be. From a

computational perspective, an object can be defined as missing in an image region

when: 1) an object detector finds nothing; 2) a predictor of the object’s typical

environment, i.e. context, indicates high probability of its existence. Given an

image, we want to detect all such regions efficiently. We summarize the relationship

between an object’s detector and its context model in Table 4.1. While there are

many existing works on utilizing context in object detection (Section 4.2), they

mainly focus on improving performance on finding typical objects with contextual

and object information entangled. In this work we propose to train a standalone

object-centric context representation to find missing objects. By looking at the

reverse conditions, it can be adapted to find out of context objects too.

One practical motivation for finding missing objects comes from the street

view curb ramp detection problem (Figure 4.1). The task is to label curb ramps in

a city’s intersections so that people with mobility impairments can plan their routes

with confidence. Although existing work [50] shows good performance in detecting

constructed curb ramps, it cannot detect missing curb ramps regions. Knowing

this information is highly valuable: users can assess the accessibility of an area;

navigation algorithms can calculate better routes for pedestrians; governments can

plan for future renovations accordingly. This is a very expensive and time consuming
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task for human labelers, which is partially the reason why such information is missing

from public databases. Therefore, we are interested in developing an automatic

algorithm that is effective and efficient. It can be used to scan a whole city to

find regions where curb ramps are missing. In this scenario, the number of found

true missing curb ramp regions (recall) is more important than precision because it

is much more light-weight to ask humans to verify algorithm results than to label

images from scratch. Moreover, even if the algorithm reports one true missing curb

ramp region but mistakenly ignores three others in an image, it is still valuable as

a preprocessing step: governments can prioritize intersection assessments in a city

and allocate auditors more efficiently.

We believe the key to tackle this problem is to learn a model that focuses

on context only and works efficiently just like an object detector: it scans each

image and generates a probability heat map in which each pixel represents the

probability that an object exists, even when no object is in sight. One big advantage

of the context and object decomposition is that we don’t need abnormal object

labels (missing/out-of-context) for training. A standalone context model can be

learned from typical objects and later used for finding abnormal objects. This

greatly simplifies training: normal objects are abundant and much easier to collect

and label than abnormal objects.

In this study, we propose such a model based on convolutional neural networks

and a novel training strategy to learn a standalone context representation of a target

object. We start by introducing a base network in Section 4.3. It takes input images

with explicit object masks and learns useful context from the remaining areas of the
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Object Score Context Score Image Region Remark

High High Typical objects

Low High Missing objects

High Low Out of context objects

Table 4.1: Relationship between object and context. Object score is obtained from

an object detector, while context score is from its context model.

images. Because of the limitations discussed in Section 4.4, we then propose a fully

convolutional version of the network that learns an implicit object mask such that

it ignores objects in an image and focuses purely on context. It does not require

object masks during test time. Section 4.5 describes the procedure for using the

context model to find missing objects regions and Section 4.6 presents experimental

results.

The contributions of this work are as follows. First, we propose a method

to learn an object-centric context representation by learning from object instances

with masks. Second, we propose a training strategy to force the network to ignore

objects and learn an implicit mask. The model is fully convolutional so it also

speeds up probability heat map generation significantly. Finally we present promis-

ing results on the missing curb ramps detection problem in street view images, and

a preliminary result on finding out-of-context faces.

This work was done with Prof. David Jacobs and published in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017.
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4.2 Related Work

Context in Object Recognition. A large body of evidence has shown that con-

textual information affects human visual search and recognition of objects [87, 88].

In computer vision, recently it also has become a well accepted idea that context

helps in object recognition algorithms [89–92]. Usually, context is represented by

semantic labels around an object. [93] uses a Conditional Random Field to model

contextual relations between objects’ semantic labels to post-process object recog-

nition results. [90] builds a deformable part model that incorporates context labels

around an object as ‘parts’. Because of the coupling between context and object

information, these methods are unsuitable to detect missing object regions.

Torralba et al. proposed the Context Challenge [94] that consists in detecting

an object using exclusively contextual information. They take the approach of

learning the relation between global scene statistical features and object scale and

position. Visual Memex [95] is a model that can either retrieve exemplar object

instances or predict the semantic identity of a hidden region in an image. It uses

hand-crafted features and models context as inter-category relations. Our approach

can be seen as a general approach that attempts to address this challenge, without

the need for designing hand-crafted features or using preset object classes.

Finding Missing Objects. Grabner et al. proposed to use the General Hough

Transform to find objects that are missing in video frames during object track-

ing [96]. The idea is to estimate positions of a target object from surrounding

objects with coupled motions.
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Computer Vision with Masked Images. Recently Pathak et al. [97] proposed

to learn a convolutional neural network context encoder for image inpainting. Both

their work and ours train convolutional neural networks with masked images. But

the purpose is very different as they try to learn a generative model to inpaint the

mask while we learn a discriminative model to infer what is inside the mask. Also,

our work uses an efficient fully convolutional structure.

Accessibility Tasks. With massive online resources such as the Google Street

View (GSV) service, many computer algorithms are designed to help people with

disabilities and improve their quality of life. CrossingGuard [37] is a system designed

to help visually impaired pedestrians to navigate across intersections with help from

Amazon Mechanical Turk. Tohme [50] is a semi-automated system that combines

crowdsourcing and computer vision to collect existing curb ramp positions in city

intersections using GSV images. It uses the Deformable Part Models [64] as a curb

ramp detector and asks Mechanical Turkers to verify the results. They provide a

street view curb ramp dataset with 1086 city intersection images, which we use in

the experiment section.

4.3 Learning Context from Explicit Object Masks

In this section, we introduce a base version of the proposed context learning

algorithm. If ‘context’ is defined to be everything that surrounds an object except

the object itself, this model is learning context literally: every target object instance

in training images is masked out. Here we assume an object’s visual extent is fully
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Figure 4.2: Training scheme of the Siamese trained Fully convolutional Context

network (SFC). The intuition is to enforce the fully convolutional network Q to

output similar results regardless of whether an image is masked or not. Additionally,

the network should produce correct classification labels. The training is done in a

Siamese network setting with shared weights w.

represented by its bounding box label.

This is a binary classification problem. Positive samples are collected so that

each image sample has an object at its center, with a black mask (value equals

zero after preprocessing) covering the object’s full extent. The bounding box width

to the whole image width ratio is set to 1/4 for the purpose of including a larger

contextual area. Negative samples are random crops with similar black masks at

their centers. The position of a negative crop is chosen so that the masked region

will not cover any groundtruth labeled objects with more than a Jaccard index 1 of

0.2.

1Defined as the intersection-over-union ratio of two rectangles.
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If there are multiple object instances in an image, we mask out one object at

a time for positive samples. This is because the existence of other object instances

could be useful context: for example, curb ramps often appear in pairs.

To prevent our context model trivially learning the particular mask shape,

we force negative samples to share a similar distribution of mask dimensions with

positive samples. The sampling strategy is to interleave the positive sampling and

negative sampling processes, and use the previous positive sample’s mask dimension

in the next negative sample.

We train a convolutional neural network model Q. The network consists of

four convolutional layers with pooling and dropout, and two fully connected layers.

Its structure is summarized in Table 4.2. Cross entropy loss (Eq. 4.1) is used as the

classification loss:

Lc = −Qy(Im) + log
∑
y

eQy(Im), (4.1)

where y ∈ {1, 2} is the groundtruth label for a masked image Im (1 for positive, 2

for negative), Q(Im) is a 2x1 vector representing the output from the network Q,

while Qy(Im) represents its y-th element.

During test time, a sliding window approach is used to generate a probability

heat map for a new image so that each pixel has a context score of how likely it is

to contain an object. At each position, a fixed size (224x224 in our implementation)

image patch is cropped with the center region masked out to be fed into the base

network. The mask size is determined empirically from the training set.

97



4.4 A Fully Convolutional Model that Learns Implicit Masks

There are several issues with a network trained with masked images. First, the

network tends to learn artifacts. [97] reports that training with rectangular mask

makes a network learn “low level image features that latch onto the boundary of the

mask”. They propose to use random mask shapes to prevent this issue. However,

we cannot use random masks because our mask is defined over the visual extent

of an object. Second, during testing time, the base network expects every input

to have an explicit mask. This is highly inefficient when we evaluate the network

at all positions and scales to generate a heat map. There are standard procedures

to convert a convolutional neural network with fully connected layers into a fully

convolutional one [98] so that the map generation is much more efficient for images of

arbitrary sizes. However, in our case the situation is complicated. During training,

the base network always sees input images with all zeros at the center, so the weights

of neurons with receptive fields on this region can be arbitrary because no gradients

are updated. If we apply the converted fully convolutional network to unmasked

images, outputs from those neurons can affect the final map arbitrarily.

The question is then, can we train a network so that it is fully convolutional

and learns context by ignoring the masked region ‘by heart’?

The answer is yes and we now propose a training strategy to make a network

learn an implicit object mask. The intuition is that we want the network to output

similar results regardless of whether an input image is masked or not. By enforcing

this objective, the network should learn to find visual features that are shared in
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both masked and raw images: i.e. from the unmasked regions.

Formally, we want to minimize a distance loss in addition to the classification

loss used in the base network:

Ld = ||Q(Im)−Q(I)||p, (4.2)

where Q(Im) is the output vector from the network Q with masked image Im as

the input, Q(I) is the output vector from Q with the unmasked raw image I as the

input, and ‖ · ‖p represents the Lp-norm.

Effectively, we have two shared-weight networks that are fed with masked and

raw image pairs (Figure 4.2). The network is a fully convolutional version of the base

network (Table 4.3). One stream of the network computation takes a masked image

as input and outputs Q(Im). In parallel, the other stream of network computation

takes the unmasked raw image as input and outputs Q(I). The classification loss

Lc is calculated based on Q(Im) alone, while the distance loss Ld is calculated by

Q(Im) and Q(I). This structure is known as a Siamese Network [99] so we call

it the Siamese trained Fully convolutional Context (SFC) network. Following [99],

we choose the L1 norm in distance loss Ld. We expect the SFC network to learn

an implicit object mask by assigning zero weights to neurons whose receptive field

falls onto the center object mask region. During test time, unlike the base network,

we don’t have to manually set the mask size: the SFC network has encoded this

information in convolutional filters’ weights.

Finally, the overall training objective is defined as a weighted sum of the two

losses:
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L = λLd + Lc, (4.3)

where λ = 0.5 in our implementation.

The benefits of this training strategy are three fold:

1) Because the SFC learns to ignore object mask regions, we can directly

apply it to new unmasked images with arbitrary sizes: it is now highly efficient

to generate a dense probability map. Figure 4.3 shows a comparison between heat

maps generated by the base network and the SFC network. A 1024x2048 pixels

image costs about 5 minutes to generate a heat map with the base network while

the SFC network takes less than 4 seconds to generate a map with higher spatial

resolutions.

2) The SFC network is less prone to artifacts. It is possible for the base

network to learn artifact features along the boundary of masks. Since such features

are not present in unmasked images, the SFC network learns to ignore them.

3) During training, we can perform hard negative mining efficiently. Between

each training epoch, we can apply the SFC network on all training images to generate

heat maps and find high score false positive regions. Because of the efficiency of fully

convolutional networks, this step can be easily included in training. Section 4.6.2

shows that hard negative mining indeed improves the network performance by a

large margin.
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Figure 4.3: Top: an input street view panorama image. Middle: the heat map

generated by the base network using a sliding window approach. Bottom: the dense

heat map generated by the SFC network.

4.5 Finding Missing Object Regions Pipeline

With a trained standalone context network (base network or SFC network),

we summarize the procedure for finding missing object regions in a test image.

1) Generate a context heat map using the context network Q. This map shows

where an object should appear.

2) Generate object detection results using any object detector. Convert detec-
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tion boxes into a binary map by assigning 0 to the detected box region, 1 otherwise.

This binary map shows where no objects are found.

3) Perform element-wise multiplication between the context heatmap and the

binary map. The resulting map shows the regions where an object should occur

according to its context but the detector finds nothing.

4) Crop the high scored regions (above a preset threshold) from the image

according to the resulting map. These are the regions where objects are missing.

4.6 Experiments

In this section, we first examine the characteristics of the base network and the

SFC network in Subsection 4.6.1. Then we evaluate their effectiveness. With the

decomposition of context and object information, we study two unique tasks that can

be efficiently performed using a standalone context model. Subsection 4.6.2 shows

experimental results of finding missing curb ramp regions in street view images.

Subsection 4.6.3 shows preliminary results of detecting out of context faces.

4.6.1 Characteristics of the Trained Model

As a validation study, we first check the sensitivity of the base and the SFC

networks with regard to small changes in input images. All experiments are con-

ducted on the curb ramp street view dataset. A desirable model has small response

variations to the center region of an input image, where a mask was put during

training. For evaluation, we change one pixel value at a time in a test image, by
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adding a small noise. The L2 distance between a network’s output before and after

the disturbance is recorded for each pixel. In the end we obtain a map that shows

which region in the image has large impact on the network’s output. This can be

seen as an estimate of the first order derivative of a network with respect to its

input. Figure 4.4 shows the result with comparison between the base network and

the SFC network. This result is summed over 20 different image samples.

Figure 4.4: The sensitivity map of the base network (left) and the SFC network

(right): a dark dot indicates a high sensitivity spot. Compared to the base network,

the SFC map has a clear blank area at the center, which indicates that changes in

this region have little effect on the network’s output. The SFC network learns an

implicit region mask.

From the result it is clear that the SFC network has small sensitivity at the

center region of the input image. This is most likely due to the network learning

to mute neurons whose receptive field falls at the center region of the input image.

The blank region in the SFC’s sensitivity map can be seen as a visualization of an

approximation to the learned implicit region mask.
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Next we check the distance loss Ld of the base network and the SFC network

on test data. Using the same set of training hyper-parameters and setup (learning

rate, training epochs) to train the two networks, the mean Ld loss is summarized in

Table 4.4. It is clear that the SFC network is much more consistent in producing

similar outputs regardless of object masks.

The SFC network works as intended: 1) it learns an implicit mask so it is less

sensitive to any changes in the center region; 2) the useful features that it learns for

the classification task are mainly from unmasked regions.

4.6.2 Finding Missing Curb Ramp Regions

Setup. We want to find missing curb ramps in the street view curb ramps dataset [50].

The dataset contains 1086 Google Street View panoramas which come from four

cities in North America: Washington DC, Baltimore, Los Angeles and Saskatoon

(Canada). Each panorama image has 1024x2048 pixels. It provides bounding box

labels for existing curb ramps. On average there are four curb ramps per image. In

addition, for our evaluation, an expert has labeled all missing curb ramp regions.

The dataset is split into half training and half testing. Each image is converted

to YUV color space and normalized to be zero mean and one standard deviation in

all channels. We use the curb ramp detector provided with the dataset, a Deformable

Part Model, with default settings.

Training. For each epoch, 5000 samples are generated from training data, with

half positives and half negatives. Figure 4.5 shows several examples. Each sample
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has 50% probability of being horizontally flipped for data augmentation purposes.

Positive samples contain valid context around curb ramps. Negative samples are

cropped randomly from areas not containing a curb ramp. To train the SFC network,

each sample is prepared with two versions: raw and masked. We resize positive

samples such that the object width is close to 55 pixels in a 224 pixels wide image.

Each negative sample uses the same object mask and scale as the last positive sample

to prevent the network overfitting to mask shapes.

Figure 4.5: Training examples of curb ramps. Green rectangles represent positive

samples, red rectangles represent negative samples.

We use the Keras/Tensorflow neural network software package [100]. The

optimization algorithm uses Adadelta with default parameters. Since this is an

adaptive learning rate method, there is no need to set a learning rate schedule

during training. 20% of the training data is used as a validation set for an early

stopping test. A base network and a SFC network are trained using the same

hyper-parameters and training setup.

Results. Following the procedure described in Section 4.5, we run the two networks

on test images to generate probability heat maps of where curb ramps should be in an

image. For the base network, each heat map is generated in a sliding window scheme
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with a stride of 10 pixels, and various object mask widths of {50, 70, 100} pixels to

generate multi-scale maps. The SFC network doesn’t need an object mask size, so

we resize the input panorama image with scales {0.5, 0.7, 1.0}. The numbers are

chosen so that two networks see similar image pyramids. We use the DPM detector

provided with the dataset to generate detection results. For each panorama, we

generate a final map that combines the detection and context map and crop high

scored regions (above a certain threshold) with size d×d. According to preliminary

empirical studies, we set the context threshold to 0.4 throughout the experiment.

We use human verification to evaluate the quality of the reported missing

curb ramp regions. For that purpose, we develop a web based interface (Figure 4.6)

that displays a gallery of found regions, ranked by their context scores. For each

candidate region, a user provides feedback on whether it is truly a missing curb ramp

region. We compare context maps generated by the base and the SFC networks with

three baseline methods: random scores, spatial prior map, and a Faster RCNN [101]

missing curb ramp detector.

Random scores assigns uniformly random context scores from [0, 1] to all posi-

tions in an image. This is a reference baseline showing the performance by chance.

A spatial prior map is built using the prior positions of curb ramps in street

view panoramas. We use the prior map as a replacement for the context map

for comparison. We collect the prior spatial distribution of all curb ramps from

the training images. The collected distribution is smoothed with a 30x30 pixel

Gaussian kernel with sigma=10. Figure 4.7 shows the spatial prior map used in

our experiment. Because most panoramas are at street intersections, there is strong
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Figure 4.6: The web interface for verification. Each thumbnail shows one retrieved

region, with its score displayed below. A user clicks on a thumbnail to verify it.

spatial structure consistency among the dataset. We expect this approach to be a

reasonable baseline.

Figure 4.7: The spatial prior heat map generated from groundtruth locations of

curb ramps in the training set. It shows that curb ramps are far from uniformly

distributed.

With missing curb ramp region labels, we can treat this task as a standard

object detection problem and directly train a Faster RCNN detector: the positive
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‘object’ is a region labeled as missing curb ramps. Note that a Faster RCNN detector

is capable of learning context because it’s an end-to-end approach: potentially the

detector can learn from the whole image to predict locations of missing curb ramp

regions. We expect the Faster RCNN detector to be a strong baseline.

The verification of the missing curb ramp regions requires domain knowledge.

One of the authors who has extensive experience with accessibility problems verified

the results using our web interface. Figure 4.8 shows the comparison in recall of

true missing curb ramp regions versus the number of visited regions (Recall@K).

The retrieved region size is set to d = 400 pixels. 500 regions were retrieved from

543 test images.

The result shows that the SFC network with hard negative mining outperforms

all other methods. We believe its superiority comes from the highly efficient fully

convolutional structure that helps in training and generating high resolution context

maps. Spatial prior map shows reasonable performance, which confirms the spatial

bias of curb ramps locations in the dataset. Unlike the spatial prior map, the

proposed methods can work well on other datasets that have no such bias. The

Faster RCNN detector has significantly less recall compared with the SFC networks.

With more missing curb ramp regions as training data, we expect the Faster RCNN

detector to show improved performance; on the other hand, the SFC network does

not even need missing curb ramp labels in training. The proposed methods learn

useful context information from normal curb ramps, which are much easier to collect

and label than missing curb ramp regions. Moreover, the SFC network is using

detection results from a less advanced curb ramp detector (a DPM model shipped
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with the dataset): 77% of the false missing curb ramp retrievals are due to inaccurate

curb ramp detections. Due to the page limit, we show more qualitative results of

retrieved regions in the supplementary document.

Number of Retrieved Regions
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Figure 4.8: Recall of true missing curb ramp regions vs number of regions viewed

(Recall@K). Our base and SFC networks outperform the two baseline methods (ran-

dom scores and prior maps) by a large margin. The difference in recall between the

Faster RCNN detector and the proposed method is substantial. The SFC network

with hard negative mining has the best result among the proposed methods.

Additionally, we investigate the effects of the retrieved region size d on the

number of true missing curb ramp regions. Specifically, we vary the cropped region

size from 400 pixels in width to 100 pixels. With smaller region size, it becomes

crucial that the region is accurately localized with missing curb ramps at the center.

Table 4.5 shows that the SFC network is not affected too much by the reduced

field of view. This is because the regions it found are very well localized (See
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Figure 4.6). On the other hand, two baseline methods (random scores and prior

maps) are performing poorly when the region size becomes small.

Discussion. Among 543 street view intersections in the test set, the SFC network is

able to find 27% of the missing curb ramp regions by merely looking at 500 regions.

This is an impressive result: 1) The whole process is very efficient (Table 4.6) such

that it can be easily deployed to scan new city areas. For example, there are about

2,820 intersections in Manhattan, New York: it will take merely a few hours for

our system to find missing curb ramps in a region with 1.6 million population; 2)

Accessibility reports have shown that curb ramps condition (missing or not) shows

high proximity consistency: if one intersection is missing curb ramps, it is highly

likely that the nearby intersection has similar issues [86]. Our results can be used

as an initial probe to quickly locate city areas that need special attention.

4.6.3 Finding Out of Context Faces

The pipeline in Section 4.5 for finding missing objects can be adapted to find

out of context objects with just a few small modifications: change step 2 by assigning

1 to detected box regions and 0 for other regions; change step 4 to retrieve the lowest

scored regions. Here we show a preliminary result of finding out of context faces

to demonstrate both the generalization ability of the proposed method in different

domains and possible future directions.

The task is to find out of context faces in the Wider face dataset [102]. Using

a similar procedure as in finding missing objects and a state-of-the-art face detec-

110



tor [103], we retrieve the top 500 face regions that contain high face detector scores

and low context scores from the validation set. For evaluation, we define an out of

context face as a face without a visible body. Figure 4.9 shows qualitative results

of the SFC network. We compare the SFC network results with random scoring.

Out of 500 regions, the SFC network can find 27 out of context faces while random

scoring found 14. While this result is preliminary, it suggests that the proposed

method has the potential to be used in many other applications where finding out

of context objects is important: for example, visual anomaly detection.

Figure 4.9: Retrieved out of context faces by a SFC network.

4.7 Summary

We present an approach to learn a standalone context representation to find

missing objects in an image. Our model is based on a convolutional neural network

structure and we propose ways to learn implicit masks so that the network ignores
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objects and focuses on context only. Experiments show that the proposed approach

works effectively and efficiently on finding missing curb ramp regions.
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Layer (type) Shape Param #

Convolution2D (3, 3, 32) 896

Convolution2D (3, 3, 32) 9248

MaxPooling2D (2, 2) 0

Dropout - 0

Convolution2D (3, 3, 64) 18496

Convolution2D (3, 3, 64) 36928

MaxPooling2D (2, 2) 0

Dropout - 0

FullyConnected (53*53*64, 256) 46022912

Dropout - 0

FullyConnected (256, 2) 514

Total params: 46,088,994

Table 4.2: Neural network structure summary for the base network. Convolution

filter shapes are represented by (filter width, filter height, number of filters) tuples.

The network expects to take an input image of size 224x224, with an explicit mask

at the center.

Convolution2D (53, 53, 256) 46022912

Dropout - 0

Convolution2D (1, 1, 2) 514

Table 4.3: Fully convolutional layers to substitute for the last three layers of the

base network. This network can take arbitrary sized input, with no explicit mask

needed. 113



SFC network Base network

Ld loss 0.041 2.27

Table 4.4: Mean Ld loss of the two networks on the curb ramp dataset test set.

Lower loss means smaller changes between a network’s outputs from masked and

unmasked images.

Region Width 400 200 100

SFC 35 33 27

Spatial Prior 13 8 4

Random Scores 4 2 0

Table 4.5: Effect of retrieved region size on the raw number of found missing curb

ramps with 255 regions (the higher the better). As the region width shrinks, SFC

performs very consistently while the two baseline methods (random scores and prior

maps) suffer from poor localizations.

Context Map (*) Detection Verification

Cost 4s/image 22s/image 20min/500 ims

Table 4.6: Time costs for different steps in finding missing curb ramps. The whole

process is efficient as context and detection maps can be generated in parallel. *Us-

ing the SFC network.
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Chapter 5: Generating Holistic 3D Scene Abstractions for Text-based

Image Retrieval

5.1 Introduction

In this chapter, we move beyond single object detections and investigate the

problem of representing objects in certain geometrical relationships in a scene. In

particular, we are interested in image retrieval tasks where a complex scene is rep-

resented as a composition of multiple objects.

Text-based image retrieval, dating back to the late 1970s, has evolved from

a keyword-based task to a more challenging task based on natural language de-

scriptions (e.g., sentences and paragraphs) [114, 115, 126]. Queries in the form of

sentences rather than keywords refer to not only object categorical information but

also interactions, such as spatial relationships, between objects. Those relationships

are usually described in the real (3D) world due to the nature of human language.

Intuitively, they can be the core feature for ranking images in many application

scenarios, e.g., a user searching for images that are relevant to a particular men-

tal image of a room layout. Not surprisingly, researchers have recently increased

their focus on understanding spatial relationships from text input and retrieving
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semantically consistent visual information [114,120,127,136].

Matching images with user provided spatial relations is challenging because

humans naturally describe scenes in 3D while images are 2D projections of the world.

Inferring 3D information from a single image is difficult. Most existing approaches

learn from annotated data to map language directly to a probability distribution

of pairwise relationships between object locations [114, 120]. However, such a dis-

tribution is non-convex and highly non-linear in the 2D image space because the

(unknown) camera view affects the bounding box configurations. Consequently, the

success of 2D learning based approaches naturally depends on the size of annotated

training data. Also, the learner overfits easily since annotated spatial relations have

a long-tailed distribution; many valid configurations happen rarely in the real world

(e.g., a desk on another desk). With pairwise relations, it is also hard to enforce the

fact that all objects are viewed from the same direction in an image. This argues

for a holistic model for object relationships that jointly optimizes object configura-

tions. Motivated by this, we explore an alternative model of spatial relations that

generates 3D configurations explicitly based on physics.

We explore an approach that uses physical models and complex spatial rela-

tion semantics as part of an image retrieval system that generates 3D object layouts

from text (rather than from images) and performs image retrieval by matching 2D

projections of these layouts against objects detected in each database image. Our

framework requires the a priori definition of a fixed set of object and spatial relation

categories. Spatial relation terms are extracted from the dependency tree of the text.

Objects are modeled using cuboids and spatial relations are modeled as inequality
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constraints on object locations and orientations. These inequality constraints can

become very complex, containing nonlinear transformations represented using first

order logic. Consequently, an interval arithmetic based 3D scene solver is intro-

duced to search for feasible 3D spatial layout solutions. Camera orientations are

constrained and sampled for obtaining 2D projections of candidate scenes. Finally,

images are scored and ranked by comparing object detection outputs to a sampled

set of 2D reference layouts.

Compared to 2D learning based approaches, our approach has the following

advantages: (1) the mapping from language to 3D is simple since the text-based

spatial constraints have a very concrete and simple meaning in 3D, simple enough

to define with a few rules by hand; (2) no training data is needed to learn complex

distributions over the spatial arrangement of 2D boxes given linguistic constraints

(the non-linear mapping from language to 2D is handled by projective geometry) and

(3) adding common sense constraints is easy when referring to physical relationships

in 3D (Sec. 5.4.2.2), while it is hard if these constraints are specified and learned

in 2D (due to the non-linearity of projective geometry). We evaluate our approach

using two public scene understanding datasets [107, 131]. The results suggest that

our approach outperforms baselines built upon object occurrence histograms and

learned 2D relations.

This work was done with Ang Li, Joe Yue-Hei Ng, Ruichi Yu, Vlad I. Morariu,

and Prof. Larry Davis. It was published in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) 2017.
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5.2 Related Work

Text-based image retrieval has been studied for decades [126]. As both com-

puter vision and natural language processing have advanced, recent efforts have

emerged that build connections between linguistic and visual information [116,123].

Srivastava and Salakhutdinov [132] extend Deep Boltzman Machines (DBMs) to

multimodal data for learning joint representations of images and text. They apply

such representations to retrieving images from text descriptions. Their model learns

mappings between objects with attributes and their corresponding visual appear-

ances; however spatial relations are not modeled.

Spatial relationships play an important role in visual understanding. Previous

works make use of text-extracted spatial relations in image retrieval. Zitnick et

al . [136] generate and retrieve abstract cartoon images from text. Cartoon object

models are pre-defined and 2D clipart images are composed according to the text.

Siddiquie et al . [128] devise a multi-modal framework for retrieving images from

sources including images, sketches and text by jointly considering objects, attributes

and spatial relationships, and reducing all sources into 2D sketches. However, their

framework handles text with only two or three objects and very limited 2D spatial

relationships. Lin et al . [120] retrieve videos from textual queries. A set of motion

text is defined with visual trajectory properties and parsed into a semantic graph

to to match video segments via a generalized bipartite graph matching. All these

works rely on 2D spatial relations while our work is based on real world physical

models of 3D scenes to retrieve semantically consistent images.

118



Interesting recent work on retrieving images from text is based on the scene

graph representation [114,127]. A scene graph is a graph-based representation which

encodes objects, attributes and object relations. In Johnson et al . [114], text input

is converted to a scene graph by a human and a CRF model is used to match scene

graphs to images by encoding global spatial relations of objects rather than only

pairwise relations. Their approach requires learning spatial relations from annotated

image data. Our work differs in that we take a generative perspective and inject

physical relation models and human knowledge into the retrieval system without

the requirement of large-scale data annotation.

Many existing works utilize 3D geometry in vision tasks such as object recog-

nition [112], image matching [119], object detection [134,135], etc. However, to the

best of our knowledge, the use of 3D geometry in relating images with language has

not been exploited. While inferring the 3D structure from a single image is chal-

lenging and complicated in vision [107, 109, 113, 124, 125], the problem of rendering

scenes from text is of interest in the graphics community. The wordseye system [108]

renders scenes from text with given 3D object models. Chang et al . [106] generates

3D scenes from text by incorporating the spatial knowledge learned from data. In

addition, some recent works cast computer vision as inverse graphics and try to incor-

porate computer graphics elements into visual understanding systems [117,118,133].

Our work also involves scene generation. However, our purpose is to retrieve sim-

ilar images based on bounding boxes , which can be efficiently computed using

off-the-shelf software during a database indexing step, so real object models are not

required, although better scene generation could potentially improve image retrieval
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natural
language

description

(obj1a, obj1b, rel1)
(obj2a, obj2b, rel2)

... ...
(objna, objnb, reln)

Possible 3D layouts Sampled 2D projections

Each image Object detection
2D bounding boxesImage database

Scoring & Ranking

User input query Semantic triplets

Figure 5.1: Framework overview: a textual description of the visual scene is parsed

into semantic triplets which are used for solving feasible 3D layouts and their 2D

projections as reference configurations. An object detector runs over each database

image and generates a 2D bounding box layout, to be matched to reference config-

urations. All database images are ranked according to their configuration scores.

accuracy.

5.3 Preliminary: Interval Analysis

Our approach involves finding feasible solutions to a mathematical program

where the variables are object coordinates and orientations, and the constraints are

inequalities translated from user descriptions. Since small placement perturbations

usually do not affect the fulfillment of constraints, feasible variables can naturally

be represented by a set of intervals (any value within the interval is feasible).

Interval analysis represents each variable by its feasible interval, e.g., [l, u]

(with lower bound l and upper bound u) and the goal is to find the bound for each

dimension that satisfies all constraints [130]. When an interval does not satisfy all

the constraints, it is split into smaller intervals and evaluated recursively. Arithmetic
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operators are defined in terms of intervals, e.g.,

• addition: [l1, u1] + [l2, u2] = [l1 + l2, u1 + u2];

• subtraction: [l1, u1]− [l2, u2] = [l1 − u2, u1 − l2];

• comparison: [l1, u1] < [l2, u2] equals [0, 0] if u2 ≤ l1 (definitely false); equals

[1, 1] if u1 < l2 (definitely true); equals [0, 1] otherwise (maybe true).

The fulfillment of a constraint can be represented by any of the three logical intervals,

i.e., [0, 0], [1, 1], [0, 1].

5.4 Our Approach

The proposed framework, as illustrated in Fig. 5.1, consists of several modules.

First, the input text is parsed into a set of semantic triplets of object names and

their spatial relationships. Second, the semantic triplets are used to solve possible

3D layouts of objects along with sampled camera locations and orientations. The

2D projections of the 3D scenes are used for generating 2D bounding boxes of

objects, which we call reference configurations. Finally, the reference configurations

are matched to the detected bounding boxes in each database image to score and

rank according to their configuration similarity.

5.4.1 Text Parsing

The text parsing module translates text into a set of semantic triplets which

encode the information about two object instances and their spatial interactions.

How to robustly extract relations from text is still an open research problem in
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natural language processing [115], which is beyond the scope of this chapter. For our

application, a simple rule-based pattern matching works sufficiently well, requiring

a pre-defined dictionary of object and spatial relation categories. A text example

and its parsing output is shown in Table 5.1.

The input text is processed by the Stanford CoreNLP library [122] with part-

of-speech tagging and dependency tree. We implement a rule-based approach to

extract spatial relations (such as on, under, in front of, behind, above, etc.) from

the dependency tree and compose its corresponding semantic triplet representation

(target object, reference object, relation). The co-reference module in the CoreNLP

library is used to aggregate multiple noun occurrences that correspond to the same

object instance. Each object reference is represented by its category name and a

unique ID within the category, e.g. sofa-0 and dining-table-2.

Natural objects are usually composed of multiple sub-objects and there are

often cases when a sub-object is referenced instead of the whole object. A bed,

for instance, has its head and rear. And a chair has its back and seat. We take

sub-objects into consideration and represent any sub-object reference by its object

category name, unique in-category ID and sub-object name, e.g. “the rear of the

bed” is represented as bed-0:rear if the ID is 0.

Besides object categories and spatial relationships, we also consider the count

of each object, e.g. three chairs, two monitors, etc. The parser maintains a list

of object ID and their counts. If the count of chair-0 is 3, then the parser will

expand chair-0 to a set of three instances {chair-0-0,chair-0-1,chair-0-2} in the

outputs.

122



# Sentence → (object-1, object-2, relation)

1 A picture is above a bed.

(picture-0, bed-0, above)

2 A night stand is on the right side of the head of the bed.

(night-stand-0, bed-0:head, right)

3 A lamp is on the night stand.

(lamp-0, night-stand-0, on)

4 Another picture is above the lamp.

(picture-1, lamp-0, above)

5 A dresser is on the left side of the head of the bed.

(dresser-0, bed-0:head, left)

Table 5.1: Semantic triplet parsing from an example query

5.4.2 3D Abstract Scene Generation

The 3D abstract scene generation module is the central component in our

image retrieval framework; it takes as input semantic triplets and generates a set of

sampled possible 3D object layouts. We describe below the three core components

of the scene generator: the cuboid based object model, the spatial relation model

and the 3D scene solver.
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5.4.2.1 Cuboid based object model

The basic cuboid representation of an object is C = (lx, ly, lz, zs) where (lx, ly, lz)

is the size of the cuboid that bounds the object in x, y, z directions respectively and

zs is the z-coordinate of the supporting surface of the object. We mostly use reg-

ular sizes but also set different sizes for objects with attributes such as long-desk,

triple-sofa, etc. The supporting surface is usually the top face of the object cuboid,

but it can sometimes be located elsewhere with respect to the cuboid, e.g., for a

chair it is in the middle of the cuboid. Spatial relations such as on and under are

modeled with respect to the surface of the object. Most of the objects can be mod-

eled using this cuboid representation such as garbage-bin, picture, night-stand,

etc.

However, the single cuboid representation is not sufficient for some object

categories such as chair and desk since the under-surface area is empty. Considering

the fact that most objects can be easily decomposed into smaller sub-objects, we

represent these object categories as the union of a set of cuboids, which we call

a cuboid set representation. Each sub-cuboid corresponds to a sub-object and is

considered a simple object, whose top face is the supporting surface. The k-th sub-

cuboid is represented by Sk = (dkx, d
k
y, d

k
z , l

k
x, l

k
y , l

k
z ) where (dkx, d

k
y, d

k
z) is the offset from

the lowest point of the sub-cuboid to the lowest point of the original object, and

(lkx, l
k
y , l

k
z ) is the size of the sub-cuboid. The sub-cuboid parameters Sk are computed

as functions of the original object parameters C. Four sampled cuboid based object

models are visualized in Fig. 5.2.
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Figure 5.2: Sample cuboid based object representations: (a) table (b) chair (c) bed

(d) night-stand. Different colors represent different sub-objects. The night stand

(d) is represented by a single cuboid.

5.4.2.2 Spatial relation model

The spatial location and orientation of each object is represented as X =

(x, y, z, d) where (x, y, z) is the lowest point of the object cuboid and d is its orien-

tation. The object rotation is around the z-axis.

Atomic relations. We model 8 basic spatial relations using the following

mathematical expressions. Given the object pose and its size, the lowest point

p = (xp, yp, zp)
ᵀ and highest point q = (xq, yq, zq)

ᵀ of the object cuboid can be

computed by rotating the object models w.r.t. the object orientation such that

p = Rd

[
− lx

2
,− ly

2
,− lz

2

]ᵀ
+

[
x+

lx
2
, y +

ly
2
, z +

lz
2

]ᵀ
,

q = Rd

[
lx
2
,
ly
2
,
lz
2

]ᵀ
+

[
x+

lx
2
, y +

ly
2
, z +

lz
2

]ᵀ
(5.1)

where Rd is the z-axis rotation matrix w.r.t. to orientation d. So an object can be

represented using tuple (p,q, d). Letting the cuboid of object-1 be O1(p1,q1, d1)
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with support surface zs1 and the cuboid of object-2 be O2(p2,q2, d2) with support

surface zs2, we define 8 atomic relations as

• near: O1 ∩ (p2 − dneared2 ,q2 + dneared2 , d2) 6= ∅;

• on: zp1 = zs2 ∧ p1+q1

2
∈xy O2;

• above: zq2 + dmin-above ≤ zp1 ≤ zq2 + dmax-above ∧ p1+q1

2
∈xy O2;

• under: zs1 < zs2 ∧O1 ∩xy O2 6= ∅;

• behind: max(uᵀ
d2

p1,u
ᵀ
d2

q1) ≤ min(uᵀ
d2

p2,u
ᵀ
d2

q2);

• front: min(uᵀ
d2

p1,u
ᵀ
d2

q1) ≥ max(uᵀ
d2

p2,u
ᵀ
d2

q2);

• on-left: min(uᵀ
d2−π/2p1,u

ᵀ
d2−π/2q1)

≥ max(uᵀ
d2−π/2p2,u

ᵀ
d2−π/2q2);

• on-right: max(uᵀ
d2−π/2p1,u

ᵀ
d2−π/2q1)

≤ min(uᵀ
d2−π/2p2,u

ᵀ
d2−π/2q2);

where dnear, dmin-above, dmax-above are distance thresholds, p ∈xy C means point p is

inside the cuboid C on the x-y plane, ∩ represents the intersection of two cuboids

and ∩xy the intersection of two cuboids on the x-y plane, and uθ = (cos θ, sin θ, 0)ᵀ

is a unit direction vector and eθ = (cos θ − sin θ, sin θ + cos θ, 1)ᵀ is a vector that

enlarges the effective object cuboid.

Composite relations. In natural language, there are far more spatial relation

descriptions than the above mentioned 8 relations. However, most of the spatial

relations can be defined based on the 8 atomic relations. Two examples are

• next-to: on-left(O1,O2) ∨ on-right(O1,O2);
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• side-by-side: d1 = d2 ∧ near(O1,O2);

In addition, another relation is modeled which is usually used for a set of multiple

instances {O1,O2, . . . ,Ok} of the same object category, i.e.,

• in-a-row: di = di+1 ∧ on-right(Oi,Oi+1), ∀i;

Group relations. If an object reference has a count more than 1, then all of

its instances form a group, which often interacts with other objects as an entirety.

If a group of k instances occurs in the triplet as the target, we create k new triplets

with the same reference and relation. If the group occurs as the reference, then we

create a new virtual object whose cuboid is bounded by all of its instances.

Prior constraints. An effective way to reduce the search space is to incor-

porate common sense and reasonable assumptions into the constraints. First, we

make the following assumptions: (a) the room has two walls (x = 0 and y = 0); (b)

the text description is coherent, i.e., the objects in each semantic triplet are close to

each other; (c) objects are usually oriented along x-axis or y-axis directions. Second,

no pair of objects overlap with each other, i.e.,

• exclusive: Svi ∩ Swj = ∅∀i, j, v, w

where Svi is the v-th component (sub-cuboid) of the i-th object. Many other con-

straints are related with object properties: (a) picture, door, mirror are on the wall,

i.e. x = 0 ∨ y = 0; (b) for relation next-to, in-a-row, side-by-side, if either reference

or target is against the wall, the other ones are also against the wall and they should

also have the same orientation; (c) bed, night-stand, sink are against the wall; (d)

bed, night-stand, sofa are on the ground.
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5.4.2.3 3D scene solver

Let X = {x1, y1, z1, d1, . . . , xn, yn, zn, dn} ∈ R4n be a layout state representing

the locations and orientations of all objects. We construct constraint function F :

R4n → {0, 1} which evaluates all prior constraints and relational constraints. The

goal is to find the feasible solution set S such that F (X) = 1 for all X ∈ S.

Our solver is based on interval analysis [130] where any variable is represented

by an interval (an uncertain value) instead of a certain value. We use a vector of

size 2 to represent an interval, i.e., a lower bound and an upper bound. Under

interval analysis, the domain of layout states becomes R4n×2 and the constraint

function becomes F : R4n×2 → {[0, 0], [0, 1], [1, 1]}. Starting with a candidate queue

containing an initial interval layout state {X0}, our solver examines the candidate

states one at a time. For each state Xi ∈ R4n×2, if F (Xi) = [1, 1], then Xi is feasible

and appended to the solution set. If the constraint fullfillment is undecidable, i.e.,

F (Xi) = [0, 1], then Xi is divided into two equally sized intervals by splitting the

variable with the largest uncertainty. The two new states are appended to the

candidate queue. Otherwise, F (Xi) = [0, 0] and no feasible solution is within the

space bounded by Xi. In the end, any layout in the solution set is guaranteed

to meet all constraints. An advantage of the method is that it does not require

computing the gradient of constraint F . The pseudo-code is shown in Algorithm 1.

Interval shrinkage. The original interval analysis does not make full use of

equality constraints, e.g., when a variable is constrained to equal another variable,

it becomes redundant to divide both of their intervals since one can be directly
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(a) (b) (c)

Figure 5.3: The generated scene geometry for the query in Table 5.1: (a) a sampled

3D layout with the sampled camera location (a blue cross in the figure), (b) 2D

projections of the object cuboids and (c) 2D bounding boxes of the objects.

computed based on the other. In addition, many spatial relations are transitive,

e.g., if object A is in front of object B and B is in front of C, then A is likely to be in

front of C but with a larger distance. Such inferred constraint can benefit the solver

with a better pruning power. Based on these observations, we develop the interval

shrinkage operation which pre-computes lower bound matrices Lx,Ly,Lz ∈ Rn×n

and upper bound matrices Ux,Uy,Uz ∈ Rn×n for pairwise coordinate differences,

i.e., Lxi,j ≤ xi − xj ≤ Ux
i,j ∧ L

y
i,j ≤ yi − yj ≤ Uy

i,j ∧ Lzi,j ≤ zi − zj ≤ U z
i,j. The

bound matrices are initialized using the original constraints and updated once we

find L∗i,j < L∗i,k + L∗k,j or U∗i,j < U∗i,k + U∗k,j (∗ ∈ {x, y, z}). Before evaluating

each candidate interval layout state, we shrink its variables according to the bound

matrices, e.g., xshrink
i = ∩j[xj +Lxi,j, xj +Ux

i,j]∩xi where xi is the interval of variable

xi and xshrink
i is the interval after shrinkage.

Early stopping. The feasible solution space can be large if the input con-

straints are weak. Since we sample K layouts in our framework for subsequent
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Algorithm 1: 3D scene solver

Data: Initial bounds X0 = [x1,y1, z1,d1, . . . ,xn,yn, zn,dn] ∈ R4n×2

Data: Constraint F : R4n×2 → {[0, 0], [0, 1], [1, 1]}

Result: Feasible regions (or solution set) S

1 initialization: S = ∅,Q = {X0};

2 while Q 6= ∅ do

3 read the first interval: Xi = Q.front();

4 remove the first interval: Q.pop();

5 interval shrinkage: Xi = shrinkage(Xi);

6 if F(Xi)=[0, 0] then

7 Xi is not feasible;

8 else if F(Xi)=[1, 1] then

9 Xi is feasible: S.append(Xi);

10 else if maxk |Xik.max−Xik.min| > tol then

11 k = arg maxk |Xik.max−Xik.min|;

12 half split k-th dimension of Xi into X
(1)
i and X

(2)
i ;

13 Q.append(X
(1)
i );

14 Q.append(X
(2)
i );

15 end

16 return S;

image matching, the 3D scene solver stops when at least K layouts are found. The

sampling behavior is achieved by implementing the candidate queue with Knuth

shuffling, i.e., each time after appending a new element, the queue randomly pick
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an element and swaps it with the new element.

The problem is a combinatorial optimization which is NP-hard and interval

analysis is essentially a breadth first search with pruning. As a result, the algorithm

has no time limit guarantee. However, with interval shrinkage and early stopping,

our algorithm is able to solve most queries in a reasonable amount of time. Without

interval shrinkage, our matlab implementation can not find a solution for the query

in Table 5.1 within 10 minutes, while it returns 5 solutions with only 6 seconds using

the shrinkage operation.

5.4.3 Image Retrieval

To compare a query with image bounding boxes, we first sample feasible 3D

layouts and potential camera locations and orientations to produce reasonable 2D

projections of objects and then compute their bounding boxes. The whole image

database is scored and ranked according to the similarity between bounding boxes

detected by object detectors and those from sampled 2D layouts.

3D layout sampling. The 3D solver finds (continuous) interval solutions

for 3D object coordinates; any solution within such intervals is feasible. However,

the solutions within an interval are redundant; those object locations shift in tiny

distances. So we sample only one layout within each interval, which results in a set

of representative feasible 3D layouts. We further sample a few 3D layouts from this

feasible set in order to generate their 2D projections.

2D layout projections. For each layout, we sample camera locations and
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orientations to obtain 2D projections which allows matching images under multiple

views. Object bounding boxes are computed according to the 2D projections. Since

we solve for scale and translation for each image individually during matching, in

this step we only consider a canonical camera. Some heuristics are used for sampling

camera locations and orientations. First, the camera always faces the objects and

should be neither too close nor too far, so we sample its location from 5-10 meters

from the origin. Second, the camera should not be located behind the wall, so the

coordinates are positive. Third, when an object is on the wall, the camera direction

should be within 60 degree offset from the object orientation. We assume the camera

is 1.7 meters above the ground and situated horizontally. Fig. 5.3 shows an example

of 3D layout, 2D projections and 2D bounding boxes for the query in Table 5.1.

2D layout similarity. Both detection outputs and 2D reference layouts can

be represented by {bi, ci} where bi is the 2D box of the i-th object and ci is its

category. Let {bi, ci} be a 2D reference layout and {b′i, c′i} be the detected boxes.

Since scaling and translation are left as free variables, the bounding box matching

involves optimizing

max
s,t,a

∑
i

p(b′ai) · iou(sbi + t,b′ai), s.t. ci = c′ai , (5.2)

where p(b′k) is the detection confidence, iou is intersection-over-union and assign-

ment vector a indicates the correspondence between two sets of bounding boxes. In

our experiment, we evaluate two versions: (a) the hard version uses a threshold on

detection outputs and uniform p(b′k) and (b) the soft version makes p(b′k) equal to

the detection score. We use a sliding window to find the best matched transforma-
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tion and assignment. Specifically, we uniformly sample 5 scale factors from 0.5 to 1

w.r.t. the image space and search with a 10-pixel stride. We use a greedy strategy

to compute assignments and scores (Eq. 5.2). The score for a query is computed as

the highest score among the scores of all its sampled 2D layouts.

5.5 Experiments

We validate our approach using two indoor scene datasets (SUN RGB-D [131]

and 3DGP [107]). Although the original goal of the two datasets is not text-based

image retrieval, both contain groundtruth object bounding boxes which enables

evaluation in our image retrieval setting. We compare 3 baselines built upon object

occurrence histogram and 2D spatial relation based scene graph matching.

5.5.1 Setup

Baseline (H). The first baseline is based on the histogram of object occur-

rences. Specifically, both the image and text are converted to a histogram represen-

tation, i.e., a vector x = {x1, x2, . . . , xN}, where xi is the number of occurrences of

the i-th object category. The similarity between occurrence histograms is measured

by `1 distance.

Baseline (2D). The second baseline is based on learned object relations in 2D

image space. Specifically, the baseline learns a bounding box distribution of the first

object w.r.t. the second object box (normalized in both x and y coordinates). We

have all eight atomic relations annotated in 1,000 images in the training set of SUN
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RGB-D dataset and use IOU-based nearest neighbor (IOU-NN) classifier to score

for each test image the spatial relationships between object pairs. Following [105],

we convert the text to a simplified scene graph that maps all instances of an object

category into a single node, and assign the count of each relation as an attribute of

the corresponding edge. An image scene graph with relation probabilities on edges

can be constructed for each test image by using the IOU-NN relation classifier upon

each pair of detected object instances. To measure the similarity between text scene

graph and image scene graph, we sum for each edge (u, v, r) in the text scene graph

the top ku,v,r corresponding relation scores in the image scene graph, where ku,v,r is

the count of the relation r between object categories u and v in text scene graph.

Baseline (CNN). The third baseline replaces the IOU-NN relation classifier

in Baseline 2D with a Convolutional Neural Network (CNN). Following [121], we

finetune the pretrained VGG-19 [129] to predict predicates from cropped union

image regions of the two objects. The word2vec vectors of the two objects are

concatenated with the response of layer fc7. We backpropagate through the whole

network with initial learning rate 0.001 for 90 epochs.

Evaluation metric. We evaluate different approaches to retrieving indoor

images from text descriptions by measuring the percentage of queries (recall) at

least one of whose ground truth images are retrieved within top k ranked images

(R@k). The median rank (median of the ranks of all ground truths) is used as a

global measurement.

Parameter selection. We set the room size to be 5m × 5m × 5m. dnear =

0.5m, dmin-above = 0.25m, dmax-above = 0.5m. The tolerance in 3D scene solver is
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0.2m because 20cm replacement of objects is unlikely to change the constraint ful-

fillment. We sample 5 reference layouts per query and 1 camera view per layout

unless otherwise specified.

5.5.2 SUN RGB-D dataset with R-CNN detectors

SUN RGB-D Dataset [131] is a recent dataset for scene understanding which

contains 10, 335 RGBD images. We use only the RGB images without depth infor-

mation. We follow the same protocol as [131] by using 5, 285 images for training

the detectors and the remaining 5, 050 images as the evaluation set. We annotated

text queries for 150 sampled test images. SUN RGB-D contains various objects

and complex spatial relations. We choose 19 object categories in our evaluation:

{bed, chair, cabinet, sofa, table, door, picture, desk, dresser, pillow, mirror, tv, box,

whiteboard, night stand, sink, lamp, garbage bin, monitor}, which contains not only

objects on the floor but also those off the ground or on the wall such as picture and

mirror.

We use the 5, 285 training images and their ground truth object bounding

boxes to train Fast R-CNN [111] detectors for the 19 object categories. The R-CNN

approach is built upon object proposals; non-maximum suppression is not used in

postprocessing. For each test image, R-CNN detectors generate probability-like

scores for all object categories on each object proposal bounding box. The category

with the highest score is chosen as the bounding box category and its score is used

as the bounding box confidence.
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R@1 R@10 R@50 R@100 R@500

Baseline H 1.3 4.0 14.0 20.0 43.3

Baseline 2D 2.7 15.3 35.3 44.0 64.0

Baseline CNN 2.7 16.7 30.7 36.0 63.3

Ours hard[5,1] 3.9 16.4 31.7 42.3 71.7

Ours soft[5,1] 4.5 16.7 34.0 46.4 76.0

Ours soft[5,5] 4.9 18.7 37.9 48.1 76.9

Ours soft[5,5] + 2D 8.7 21.6 40.5 50.7 77.6

Table 5.2: SUN RGB-D: Top-k retrieval accuracy for 150 queries. The retrieval

candidate set contains 5,050 images. We evaluate the occurrence baseline (H), 2D

relation baseline (2D), CNN baseline, the proposed hard version, proposed soft

versions, and a combination between our soft version and the 2D baseline. The

parameter of our model [x, y] means sampling x 3D layouts and y camera views

for each layout. All results of our model are averaged over 5 random trials. The

threshold for detection outputs is 0.5. The best is shown in bold and the second

best is shown with underline.

The top-k retrieval recalls are shown in Table 5.2. In addition with the base-

lines, two versions of our approach are evaluated. The baselines and our hard model

use bounding boxes with over 0.5 confidence and weigh them equally, while our soft

models use all bounding boxes and assign their confidences as weights in Eq. 5.2.

The results suggest that the hard model with 5 layout samples outperforms the oc-

currence baseline and is on par with the 2D baseline. Our soft models perform even
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Figure 5.4: Matched object layouts based on our greedy 2D layout matching for

three ground truth images that are ranked top 5 among all candidate images. Green

bounding boxes are object detection outputs that match the 2D layouts generated

from the text queries. Red bounding boxes represent a missing object (not detected

by the object detector) within the expected region proposed by 2D layouts.

better than the hard one. With increased layout samples, our approach outperforms

the baselines significantly. We also evaluate a combination between our soft model

and the 2D baseline by adding their normalized scores. The result suggests that

such combination further boost the accuracy and that our physical model based

solution is complementary to learning based approaches.

Fig. 5.4 shows 3 examples whose ground truths are ranked top 5. The object

bounding boxes that best match the generated 2D layouts are shown on the images.

Green boxes are matched objects and red boxes are missing ones, expected in the
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Figure 5.5: Influence of # viewpoint samples and # layout samples: (a) 5 3D layouts

sampled for each query, and (b) 5 viewpoint sampled for each 3D layout. The y-axis

is median rank of ground truths. We random 5 times for each data point. Lower is

better.

generated 2D layout but unseen in the object detection output. The figure shows

that our model has some level of tolerance on missing detections. A more interesting

finding is that our model suggests potential locations for missing objects even though

they could be heavily occluded.

To obtain 2D layouts, we sample 3D layouts and camera views. Fig. 5.5 shows

how the sample size of both affects the the median rank of ground truths (keeping

one and varying the other). Fig. 5.5 suggests that more samples generally yield

better performance and the improvement saturates as the sample size increases.

The improvement brought by more 3D layouts is more significant than that brought

by more camera views. In addition, the performance uncertainty due to randomness

decreases as the sample size increases.
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5.5.3 3DGP dataset with DPM detectors

The 3DGP dataset [107] contains 1, 045 images with three scene types: living

room, bedroom and dining room. Each image is annotated with bounding boxes

for 6 object categories: sofa, table, chair, bed, side table and dining table. Following

the same protocol as in [107], 622 training images are used to train the furniture

detectors and the remaining 423 images are used as the retrieval image database. We

use pre-trained Deformable Part Models (DPM) [110] of indoor furnitures provided

by the 3DGP dataset and use the thresholds in the pre-trained models to cut off

false alarms. Non-maximum suppression is used to remove duplicates.

3DGP dataset is less diverse than SUN RGB-D; many images have very similar

layouts. We annotated 50 unique layout descriptions which cover 222 test images.

The retrieval results are shown in Table 5.3. Because our method is agnostic about

object detector algorithms, we split the results into two parts to separate the im-

pact from using a specific detection algorithm: one using ground truth bounding

boxes and the other using DPM detection outputs. The results suggest that our

approach outperforms baseline algorithms under both bounding box settings and

the improvement is independent from detector performances.

5.6 Summary

We present a general framework for retrieving images from a natural language

description of the spatial layout of an indoor scene. The core component of our

framework is an algorithm that generates possible 3D object layouts from text-
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w/ DPM bbox w/ GT bbox

H 2D CNN Ours H 2D CNN Ours

R@1 4.0 2.0 4.0 4.4 4.0 4.0 4.0 3.0

R@10 10.0 14.0 16.0 16.8 16.0 18.0 14.0 20.2

R@50 30.0 30.0 30.0 31.2 34.0 38.0 32.0 41.4

R@100 46.0 32.0 32.0 52.0 64.0 66.0 66.0 68.0

Table 5.3: 3DGP dataset: Top-K image retrieval accuracy. Left half is based on

DPM (the best is with bold) and right half is based on ground truth bounding

boxes (the best is in underline). The results of our approach (soft[5,5]) are averaged

over 10 random trials.

described spatial relations and matching these layout proposals to the 2D image

database. We validated our approach via the image retrieval task on two public

indoor scene datasets and the result shows the possibility of generating 3D layout

proposals for rigid objects and the effectiveness of our approach to matching them

with images.
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Chapter 6: Conclusion

With the ever growing enormous amount of visual data available, new powerful

dedicated hardware, and evolving learning algorithms, computer vision becomes

more and more practical and useful in real world applications. Object detection is

one of the fundamental problems that has great practical impact in many computer

vision systems.

Current object detectors are able to work well under certain conditions. How-

ever, challenges arise when scenes becomes more complex:

• Object detectors trained on data collected from the Internet fail when there

are large variations in objects’ poses and lighting conditions.

• Current detectors’ performance are still suboptimal compared to human per-

formance in some scenes.

• Scenes are often cluttered. Detecting each object individually can be difficult

due to occlusion and distraction of similar looking objects.

• Understanding interactions between multiple objects is crucial for object lo-

calization tasks. Yet modeling object relationships is hard.
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This dissertation presents four research works that aim to tackle those chal-

lenges from different angles.

1. We design a novel user interface based on Augmented Reality headsets. It can

collect training data in real world scenes with large variations in poses and

lighting conditions.

2. We build a system that combines computer vision algorithms detection results

and human crowdsourcing verifications in detecting curb ramps. It improves

detection performance over a fully automatic system but with a reduced cost

compared to a fully manual process.

3. We propose a standalone context model to capture the complex relationship

between objects and their environment.

4. We explicitly model the geometric relationship between objects of indoor

scenes. The model can be used to retrieve objects with similar spatial lay-

outs.

Future Directions. There are still many open questions and unsolved issues

left in modeling objects and their context. One of the core challenges is how to build

effective and flexible representations of context in complex scenes. Combined with

standard object detectors, a desired context representation can help reduce false

positive detections in unlikely regions, recover missed detections in highly plausible

regions, and identify abnormal objects in unusual context. We list in the following

a few directions that are worth exploring towards this goal.

142



Context for General Objects. SFC shows promising results on detecting missing

curb ramp regions. We are interested in applying a similar strategy to learn context

models for general objects such as those in the COCO dataset. This is not a trivial

extension of the current work because there are different object categories sharing

the same context in an image.

Non Object-centric Context. Currently, SFC is learning an object-centric con-

text model, i.e., an object is always at the center of the input view. There are a few

limitations: the ratio between region of objects and context has to be preset; objects

that are close to image boundaries will have cut-off black regions in their context.

We are interested in learning a more flexible context model that is not limited to

the object-centric setting.

Learning Context from Positive-only Data. In the curb ramp dataset, we

have information on which images do not contain curb ramps, i.e., the negative

labels. However in learning context for other object categories, it is not common to

have negative labels. For example in the KITTI dataset, there are regions with no

pedestrians, but they are not necessarily regions where a pedestrian cannot occur,

i.e., the true ‘negative regions’. How to learn context models from positive-only

data is thus an important and interesting research problem.
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[97] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei
Efros. Context encoders: Feature learning by inpainting. 2016.

[98] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus,
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