
ABSTRACT

Title of dissertation: NEW (ZERO-KNOWLEDGE) ARGUMENTS
AND THEIR APPLICATIONS TO
VERIFIABLE COMPUTATION

Yupeng Zhang
Doctor of Philosophy, 2018

Dissertation directed by: Professor Charalampos Papamanthou
Department of Electrical and Computer Engineering

Professor Jonathan Katz
Department of Computer Science

We study the problem of argument systems, where a computationally weak ver-

ifier outsources the execution of a computation to a powerful but untrusted prover,

while being able to validate that the result was computed correctly through a proof

generated by the prover. In addition, the zero-knowledge property guarantees that

proof leaks no information about the potential secret input from the prover. Exist-

ing efficient zero-knowledge arguments with sublinear verification time require an

expensive preprocessing phase that depends on a particular computation, and incur

big overhead on the prover time and prover memory consumption.

This thesis proposes new constructions for zero-knowledge arguments that

overcome the above problems. The new constructions require only a one time pre-

processing and can be used to validate any computations later. They also reduce

the overhead on the prover time and memory by orders of magnitude. We apply



our new constructions to build a verifiable database system and verifiable RAM

programs, leading to significant improvements over prior work.



NEW (ZERO-KNOWLEDGE) ARGUMENTS AND THEIR
APPLICATIONS TO VERIFIABLE COMPUTATION

A dissertation presented
by

Yupeng Zhang

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2018

Advisory Committee:
Professor Charalampos Papamanthou, Chair/Advisor
Professor Jonathan Katz, Co-Advisor
Professor Dana Dachman-Soled
Professor Gang Qu
Professor Lawrence Washington



c© Copyright by
Yupeng Zhang

2018





Acknowledgments

I would like to begin by thanking my advisors Charalampos (Babis) Papa-

manthou and Jonathan Katz. Babis recruited me in my first year of PhD and led

me to the exciting area of applied cryptography. He always made himself available

to answer my questions and discuss the research projects. We usually had several

meetings a week, through which I learnt quickly both the theory and the practice of

cryptography. He always believed in my ability and encouraged me to come up with

better solutions for many research problems, some of which led to papers included in

this thesis. He provided great help for me on research, paper writing, presentation

and gave me good advice for my future research career. I could not have had such

an enjoyable life during my PhD without his guidance.

Jonathan’s course on cryptography was the first time I got to know the area.

I developed strong interest and fundamental skills during the course and I always

believe it is the most important course for my PhD research. During our weekly

meetings, he always understood the problems deep and fast, challenged my ideas

and made helpful suggestions based on his broad knowledge and rich experience in

the research areas. These were essential for me to develop thorough and rigorous

solutions in many work. It is my great fortune to have him as my co-advisor. I am

also very grateful that my advisors provided full financial support for my PhD and

travels to conferences and workshops, so that I can focus on my research, and had

opportunities to interact with leading researchers in the field.

I also want to thank the mentors of my summer internships, Nikos Trian-

ii



dopoulos, Payman Mohassel, Ranjit Kumaresan and Melissa Chase. I spent several

wonderful summers with them working on various topics that were different from

my research at the graduate school. These great experiences helped my learn knowl-

edge and develop interest on other areas such as secure computation and machine

learning, and I also enjoyed the opportunities to live and work at different locations,

RSA at Boston, Visa Research at the Bay area and MSR at Seattle.

I am also thankful to my collaborators and lab-mates. Dimitris and Daniel

provided great help developing the ideas and writing several papers included in this

thesis. I want to thank Xiao, Ahmed and Kartik for having interesting discussions

on research and life, and senior students Alex, Aishwarya, Chang and Andrew for

their advice and help during the early years of my PhD.

Finally, I would like to thank my parents. I would not have started my PhD

without their important advice and they have always been showing love, under-

standing and support during my PhD. I also want to thank my girlfriend, Xi, for

her accompany during my graduate school. We have visited many great places all

around the world and she made my life outside research wonderful during my PhD.

iii



Table of Contents

Acknowledgements ii

1 Introduction 1
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 7
2.1 Bilinear Pairings and Assumptions . . . . . . . . . . . . . . . . . . . 7
2.2 Circuit and Polynomial Notations . . . . . . . . . . . . . . . . . . . . 9
2.3 Interactive Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 The Sum-Check Protocol . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 The CMT Protocol . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Security Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Constructions 20
3.1 Verifiable Polynomial Delegation . . . . . . . . . . . . . . . . . . . . . 20
3.2 Improving the Expressiveness of the CMT Protocol . . . . . . . . . . 30
3.3 The Construction of Our Argument System . . . . . . . . . . . . . . 32

4 Applications: Verifiable Databases 41
4.1 SQL Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Related Work on Verifiable Databases . . . . . . . . . . . . . . . . . . 45
4.3 Definitions of Verifiable Databases . . . . . . . . . . . . . . . . . . . . 46
4.4 Our Construction of Verifiable Databases . . . . . . . . . . . . . . . . 49
4.5 Optimizations for SQL Queries . . . . . . . . . . . . . . . . . . . . . 61

4.5.1 Optimizing Equality Testing . . . . . . . . . . . . . . . . . . . 62
4.5.2 Supporting Inputs/Outputs at Arbitrary Circuit Layers . . . . 65
4.5.3 Verifying Set Intersections . . . . . . . . . . . . . . . . . . . . 67
4.5.4 Supporting Expressive Updates . . . . . . . . . . . . . . . . . 71
4.5.5 Efficient Value Insertions . . . . . . . . . . . . . . . . . . . . . 72

4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6.2 Performance Comparison: Selection Queries . . . . . . . . . . 76

iv



4.6.3 Performance Comparison: Update Queries . . . . . . . . . . . 82
4.6.4 Scalability of Our Construction . . . . . . . . . . . . . . . . . 84
4.6.5 Microbenchmarks . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Applications: Verifiable RAM Programs 87
5.1 Preliminaries on RAM programs . . . . . . . . . . . . . . . . . . . . . 90

5.1.1 A Canonical RAM Architecture . . . . . . . . . . . . . . . . . 90
5.1.2 Previous Reductions from RAM to Circuit Satisfiability . . . . 92

5.2 Our New RAM to Circuit Reduction . . . . . . . . . . . . . . . . . . 96
5.2.1 Ensuring Correct Instruction Execution . . . . . . . . . . . . . 97
5.2.2 Verifying Instruction Fetches . . . . . . . . . . . . . . . . . . . 98
5.2.3 Ensuring Memory Accesses . . . . . . . . . . . . . . . . . . . . 100
5.2.4 Checking Consistency . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.1 Comparison with vnTinyRAM and Buffet . . . . . . . . . . . 104
5.3.2 Comparison to Other RAM-based VC systems . . . . . . . . . 113
5.3.3 Just-in-Time Architecture . . . . . . . . . . . . . . . . . . . . 115
5.3.4 Microbenchmarks . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Zero Knowledge 119
6.1 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2 Zero-Knowledge Polynomial Commitment . . . . . . . . . . . . . . . 123
6.3 Zero-Knowledge CMT Protocol . . . . . . . . . . . . . . . . . . . . . 136

6.3.1 A Sum-Check Protocol over Homomorphic Commitments . . . 136
6.3.2 A CMT Protocol over Homomorphic Commitments . . . . . . 142

6.4 Zero-Knowledge with Function Independent Preprocessing . . . . . . 152

7 Conclusions and Future Work 160
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Bibliography 163

v



Chapter 1: Introduction

With the advent of cloud computing, there has been significant interest in tech-

niques for ensuring correctness of computations performed by an untrusted server

on behalf of a client. Protocols for verifiable computation (VC) allow a computa-

tionally weak verifier to outsource the execution of a computation to a powerful

but untrusted prover (e.g., a cloud provider) while being assured that the result

was computed correctly. Somewhat more formally, a verifier V and prover P agree

on a function f and an input x. The prover then sends a result y to the verifier,

together with a proof that y = f(x), and the verifier can validate that the result is

indeed correctly computed. In addition, it is particularly interesting when the time

to validate the result on the verifier side is less than the time to compute f(x) on

its own.

VC protocols can be constructed from succinct argument systems, where the

prover P convinces the verifier V the validity of a statement, and the proof size and

verification time are smaller than the statement itself. See Section 2.4 for formal

definitions of argument systems. There is a long line of work constructing VC

protocols from argument systems for arbitrary computations, the most prominent

of which rely on succinct non-interactive arguments of knowledge (SNARKs) [20,46].

1



This has resulted in several implemented systems; see Section 1.1 for an overview.

However, SNARKs rely on a preprocessing phase, where a trusted party (possibly

the verifier) generates a set of public parameters corresponding to a circuit for a

specific function f . This preprocessing phase is orders of magnitude slower than

evaluating f itself, and can only be used later to prove and verify the results of

the same function f on different inputs. In addition, these SNARK-based protocols

introduce a big overhead on the running time and the memory consumption of the

prover to generate the proof.

In this thesis, we propose a new construction of a argument system for arbi-

trary computations. At a high level, our construction builds on top of prior work in

interactive proofs (IP), and combines them with a verifiable polynomial delegation

(VPD) scheme to extend the supported class of computations from P to NP, allow-

ing computations to take auxiliary inputs from the prover without sending them

back to the verifier. Compared to existing SNARK-based protocols, the preprocess-

ing phase of our construction is independent of the function and can be used to

validate any computation later. Our construction also reduces the overhead on the

prover time and memory consumption by orders of magnitude. We apply our new

argument system to build VC protocols for verifiable databases and verifiable RAM

programs, and show that they lead to significant improvements upon prior work.

We also present a variant of our new argument that is zero-knowledge.

2



1.1 Related Work

Verifiable computation was formalized in [45, 72], but research on constructing

interactive protocols for verifying general-purpose computations began much ear-

lier with the works of Kilian [57] and Micali [66]. While those works have good

asymptotic performance, and follow-up works further optimized those approaches

(e.g., [10, 13, 54]), subsequent implementations revealed that the concrete costs of

those approaches are prohibitively high for the prover [75].

SNARKs. The next big breakthrough in general-purpose verifiable computation

and argument systems came with the work of Gennaro et al. [46] (building upon

earlier work by Groth [50] and Lipmaa [63]), which introduced quadratic arith-

metic programs (QAPs) and showed that they can be used to capture the correct

evaluation of an arithmetic program. QAPs have since been the de-facto tool for

constructing efficient succinct arguments of knowledge (SNARKs) [20, 23] that can

be used to verify arbitrary NP computations. This has led to a long line of re-

search providing both highly-optimized systems [16, 35, 37, 41, 61, 71, 74, 76, 81, 93]

and significant protocol refinements [17, 39, 52, 64]. We refer to [85] for a detailed

survey.

The major disadvantage of SNARK-based approaches is the extremely high

prover time they currently impose. The prover time is O(m log2m), with O(m)

cryptographic operations (modulo exponentiations in a bilinear group) where m is

the number of gates in a arithmetic circuit for a particular function. In our new

argument system, the prover time is O(m logm) (O(m) for highly regular circuits)

3



with only O(n) cryptographic operations, where n is the number of inputs and

usually much less than m.

In addition, the fastest existing implementations of SNARKs assume a circuit-

specific preprocessing step, something that is not practical (and may be impossible)

in a scenario where multiple queries that cannot be predicted in advance will be made

on a given data. In contrast, our new construction requires only a one-time circuit-

independent preprocessing, and can later be used to validate arbitrary computations.

Finally, we remark that the systems mentioned above are all “natively” de-

signed to support verification only when the input is known to the verifier, which

is enough for argument systems as defined in Section 2.4. However, in verifiable

computation, the verifier also wants to outsource the storage of the input to the

prover. Support for outsourced data can be handled by having the verifier com-

pute a succinct hash of its data, and then verifying the hash computation along

with verification of the result. However, this adds additional overhead as the hash

computation needs to either be computed as part of the arithmetic circuit [29], or

checked by an external mechanism [12, 41]. Alternatively, one could hard-code the

data into the circuit being evaluated, but then the circuit-specific preprocessing

needs to be executed after each data update. Instead, our new argument system

naturally supports outsourcing data through a commitment and we can also support

dynamic data efficiently.

While some other works also aim at verifying arbitrary computations over

remotely stored data [27,31,33,55], these approaches are only of theoretical interest

at this point.

4



Interactive Proofs. Interactive proofs were introduced by Goldwasser et al. [49],

and have been studied extensively in complexity theory. More recently, prover-

efficient interactive proofs for log-depth circuits were introduced in [48]. Subsequent

works have optimized and implemented this protocol, demonstrating the potential

of interactive proofs for practical verifiable computation [36,78,81].

Structure of the Thesis:

• Chapter 2 introduces background on bilinear groups, circuits, polynomials and the

details of the sum-check protocol and the interactive proof protocol of Cormode,

Mitzenmacher, and Thaler [36] (that we call the CMT protocol) . In addition, it

formally defines an argument system for verifiable computation and its correct-

ness, soundness and zero-knowledge.

• Chapter 3 presents the detailed construction of our new argument system for ver-

ifiable computation. We first show our verifiable polynomial delegation scheme,

and an improvement of the CMT protocol that supports a larger class of compu-

tation efficiently. Then we present our new argument system combining the VPD

and the CMT protocol, followed by the security proofs and complexity analysis.

• In Chapter 4, we present a verifiable database system, vSQL, using our new

argument protocol. We introduce background on SQL queries, definitions, and our

construction of a verifiable database system. We also show several optimizations of

our argument system for common SQL queries, followed by experimental results,

showing that vSQL improves the prover time by two orders of magnitude and can

be used to validate arbitrary SQL queries [88].

5



• Chapter 5 describes our construction of verifiable RAM programs using our new

argument system as a backend. By utilizing the function-independent prepro-

cessing feature of our argument system, we propose a tighter RAM-to-circuit

reduction, and show that the prover time and the memory usage are improved by

up to two orders of magnitude upon prior work [90].

• In Chapter 6, we present a variant of our argument system that is zero-knowledge.

We show the construction of a zero-knowledge version of the VPD protocol, and

show how to run the interactive proof protocol on commitments without leaking

intermediate values. We give formal proofs for soundness and zero-knowledge of

the construction [89].

• Chapter 7 concludes the thesis, gives a more detailed survey on related work in the

literature of verifiable computation, zero-knowledge proofs, verifiable databases

and verifiable RAM programs, and describes future research directions.

6



Chapter 2: Preliminaries

In this chapter, we present background material on bilinear maps, circuits,

polynomials and interactive proofs.

We use λ to denote the security parameter. For a multivariate polynomial f ,

the degree of each monomial in f is the sum of the powers of its variables; the total

degree of f is the maximum degree of any of its monomials.

2.1 Bilinear Pairings and Assumptions

We denote by (p,G,GT , e, g)← BilGen(1λ) generation of bilinear-map param-

eters, where G, GT are groups of prime order p, with g a generator of G, and where

e : G×G→ GT is an efficient map, i.e., for all P,Q ∈ G and a, b ∈ Zp it holds that

e(P a, Qb) = e(P,Q)ab. For simplicity we assume symmetric pairings in this thesis,

but our scheme can be adapted to use asymmetric pairings as well.

Let ppt stand for “probabilistic polynomial-time”. We rely on the following

cryptographic assumptions.

Assumption 1 ( [24] q-Strong Bilinear Diffie-Hellman (q-SBDH)). For any ppt

7



adversary Adv, the following probability is negligible:

Pr



(p,G,GT , e, g)← BilGen(1λ);

s
R← Z∗p;

σ = ((p,G,GT , e, g), gs, . . . , gs
q
);

(a, h)← Adv(1λ, σ);

: h = e(g, g)
1
s+a


.

We use W`,d to denote the collection of all multisets of {1, . . . , `} where the

cardinality of each element is at most d. The next assumption states the following.

Assume a polynomial time algorithm that receives as input two ordered sequences

of elements of G such that each element contains in the exponent a multivariate

monomial with at most ` variables and of total degree at most ` · d, for some d,

and for every ordered pair of elements (across the two sequences) it holds that the

elements differ in the exponent by a fixed multiplicative factor α. Then, if the

party outputs a new pair of elements that differ in the exponent by α, then it must

hold that the first of these two elements was computed as a linear combination of

the elements of the first sequence (and likewise for the second and the same linear

combination). This fact is captured by the existence of a polynomial-time extractor

ε that, upon the same input outputs this linear combination.

This knowledge-type assumption is a direct generalization of Groth’s q-PKE

assumption [51] for the case of multivariate polynomials. In fact, q-PKE is by

definition the same as (1, q)-PKE, using our notation. Note that W`,d has size

O(
(
`+`d−1
`d

)
)1. In our construction, we will be using this assumption for the case

where
(
`+`d−1
`d

)
= poly(λ). The results of [22,28] show the impossibility of knowledge

1This is the number of multisets of cardinality `d, with elements taken from a set of ` elements.

8



assumptions with respect to arbitrary auxiliary inputs. In the following definition

we use the notion of a benign auxiliary input (or, alternatively, a benign state

generator), similar to [37, 41, 53], to refer to auxiliary inputs that make extraction

possible, avoiding these negative results. Concretely, our proofs hold assuming the

auxiliary input of the extractor comes from a benign distribution.

Assumption 2 ((d, `)-Power Knowledge of Exponent (PKE)). For any ppt adver-

sary Adv there is a polynomial-time algorithm E (running on the same random tape)

such that for all benign auxiliary inputs z ∈ {0, 1}poly(λ) the following probability is

negligible:

Pr



(p,G,GT , e, g)← BilGen(1λ); τ1, . . . , τ`, α
R← Z∗p;

σ = (p,G,GT , e, {g
∏
i∈W τi, gα·

∏
i∈W τi}W∈W`,d

, gα);

G×G 3 (h, h̃)← Adv(1λ, σ, z);

(a0, . . . , a|W`,d|)← E(1λ, σ, z);

:

e(h, gα) = e(h̃, g)

∧∏
W∈W`,d

gaW
∏
i∈W τi 6= h


.

2.2 Circuit and Polynomial Notations

An arithmetic circuit C is a directed acyclic graph whose vertices are called

gates and whose edges are called wires. Every in-degree 0 gate in C is labeled by

a variable from a set of variables X = {x1, · · · , xn} and is referred to as an input

gate. All other gates in C have in-degree 2, are labeled by elements from {+,×},

and referred to as addition and multiplication gates, respectively. Every gate of

out-degree 0 is called an output gate. In the following, we focus only on layered

circuits and we assume that the output gates are ordered. We say that a circuit is

9



layered if it can be divided into disjoint sets L1, · · · , Lk such that every gate of g

belongs to some set Li and all the wires of C connect gates in two consecutive layers

(i.e., between Lj+1 and Lj for some j). We write C : Fn → Fm to indicate that

C is an arithmetic circuit with n inputs and m outputs evaluated (as defined in a

natural way) over a field F. We denote by |C| the number of gates in the circuit

C, by widthi(C) the number of gates in the i-the layer of C and by width(C) the

maximum width of C, i.e., width(C) = maxi{widthi(C)}.

Polynomial decomposition. We use the following lemma for polynomial decom-

position.

Lemma 1 ([69]). Let f : F` → F be a polynomial. For all t ∈ F` there exist efficiently

computable polynomials q1, . . . , q` such that: f(x)− f(t) =
∑`

i=1(xi− ti)qi(x) where

ti is the ith element of t.

Multilinear extensions. For any function V : {0, 1}` → F we define the multilin-

ear extension, Ṽ : F` → F, of V as follows:

Ṽ (x1, · · · , x`) =
∑

b∈{0,1}`

∏̀
i=1

Xbi(xi)V (b) (2.1)

where bi is the i-th bit of b, X1(xi) = xi and X0(xi) = 1 − xi. Note that Ṽ is the

unique polynomial that has degree at most 1 in each of its variables that satisfies

Ṽ (x) = V (x) for all x ∈ {0, 1}`.

Multilinear extensions of arrays. An array A = (a0, · · · , an−1) where ai ∈ F can

be viewed as a function A : {0, 1}logn → F such that A(i) = ai for all 0 ≤ i ≤ n− 1.

In the sequel, we abuse terminology by defining (in the natural way) the multilinear

10



extension Ã of an array A.

2.3 Interactive Proofs

An interactive proof [49] is a protocol that allows a prover P to convince a

verifier V of the validity of some statement. We phrase this in terms of P trying to

convince V that f(x) = 1, where f is fixed and x is the common input. Of course, an

interactive proof in this sense is only interesting if the running time of V is less than

the time to compute f . Let 〈P ,V〉(x) denote the output of V after the interactions

with P on input x.

Definition 1. Let f be a boolean function. A pair of interactive algorithms (P ,V)

is an interactive proof for f with soundness ε if the following holds.

• Completeness: For every x such that f(x) = 1 it holds that

Pr[〈P ,V〉(x) = 1] = 1.

• ε-Soundness: For any x with f(x) 6= 1 and any P∗ it holds that

Pr[〈P∗,V〉(x) = 1] ≤ ε.

Note that the above can be easily extended to prove that g(x) = y (where x, y are

common input) by considering the function f defined as f(x, y) = 1 iff g(x) = y.

2.3.1 The Sum-Check Protocol

A fundamental interactive protocol that serves as an important building block

for our work is the sum-check protocol [65]. Here, the common input of the prover

11



and verifier is an `-variate polynomial g(x1, . . . , x`) over a field F; the prover’s goal

is to convince the verifier that

H =
∑

b1∈{0,1}

∑
b2∈{0,1}

. . .
∑

b`∈{0,1}

g(b1, b2, . . . , b`) .

Note that direct computation of H by V requires at least 2` work. Using the sum-

check protocol, the verifier’s computation is exponentially smaller. The protocol

proceeds in ` rounds, as follows. In the first round, the prover sends the univariate

polynomial g1(x1)
def
=
∑

b2,...,b`∈{0,1} g(x1, b2, . . . , b`); the verifier checks that the de-

gree of g1 is at most the degree of x1 in g, and that H = g1(0) + g1(1); it rejects

if these do not hold. Next, V sends a uniform challenge r1 ∈ F. In the ith round

P sends the polynomial gi(xi)
def
=
∑

bi+1,...,b`∈{0,1} g(r1, . . . , ri−1, xi, bi+1, . . . , b`). The

verifier checks the degree of gi and verifies that gi−1(ri−1) = gi(0) + gi(1); if so,

it sends a uniform ri ∈ F to the prover. After the final round, V accepts only if

g(r1, . . . , r`) = g`(r`). We have [65]:

Theorem 1. For any `-variate, total-degree-d polynomial g over F, the sum-check

protocol is an interactive proof for the function f(H) = 1 (where f(H) = 1 iff∑
b1∈{0,1} . . .

∑
b`∈{0,1} g(b1, . . . , b`) = H) with soundness d · `/|F|. Moreover, V per-

forms poly(`) arithmetic operations over F and one evaluation of g on a random

point r.

Remark 1. When g is a multilinear polynomial (the degree of each variable is at

most 1, and the total degree is `), the running time of P in round i of the sum-check

protocol is min{O(m), O(2`−i)}, where m is the total number of distinct monomials

in g [36, 78, 81].

12



2.3.2 The CMT Protocol

Cormode et al. [36, 80], building on work of Goldwasser et al. [48], show an

efficient interactive proof for a certain class of functions.

High-level overview. Let C be a depth-d layered arithmetic circuit over a finite

field F. The CMT protocol processes the circuit one layer at a time, starting from

layer 0 (that contains the output wires) and ending at layer d (that contains the

input wires). The prover P starts by proposing a value y for the output of the circuit

on input x. Then, in the ith round, P reduces a claim (i.e., an algebraic statement)

about the values of the wires in layer i to a claim about the values of the wires in

layer i+ 1. The protocol terminates with a claim about the wire values at layer d

(i.e., the input wires) that can be checked directly by the verifier V who knows the

input x. If that check succeeds, then V accepts.

Notation. Before describing the protocol more formally we introduce some addi-

tional notation. Let Si be the number of gates in the ith layer and set si = dlogSie

so si bits suffice to identify each gate at the ith layer. The evaluation of C on an

input x assigns in a natural way a value in F to each gate in the circuit. Thus, for

each layer i we can define a function Vi : {0, 1}si → F that takes as input a gate g

and returns its value (and returns 0 if g does not correspond to a valid gate). Using

this notation, Vd corresponds to the input of the circuit, i.e., x. Finally, we define for

each layer i two boolean functions addi,multi, which we refer to as wiring predicates,

as follows: addi : {0, 1}si−1+2si → {0, 1} takes as input three gates g1, g2, g3, where

g1 is at layer i − 1 and g2, g3 are at layer i, and returns 1 if and only if g1 is an

13



addition gate whose input wires are the output wires of gates g2 and g3. (We define

multi for multiplication gates analogously.) The value of a gate g at layer i < d can

thus be recursively computed as

Vi(g) =
∑

u,v∈{0,1}si+1

(
addi+1(g, u, v) · (Vi+1(u) + Vi+1(v))

+ multi+1(g, u, v) · (Vi+1(u) · Vi+1(v))
)
.

Protocol details. One idea is for V to verify that y = C(x) by checking that

Vi(g) is computed correctly for each gate g in each layer i. Since Vi(g) can be

expressed as a summation, this could be done using the sum-check protocol from

Section 2.3.1. However, the sum-check protocol operates on polynomials defined

over F and therefore we need to replace terms with their multilinear extensions.

That is:

Ṽi(z) =
∑

g∈{0,1}si
u,v∈{0,1}si+1

fi,z(g, u, v) (2.2)

def
=

∑
g∈{0,1}si

u,v∈{0,1}si+1

β̃i(z, g) ·
(

˜addi+1(g, u, v) · (Ṽi+1(u)

+ Ṽi+1(v)) + ˜multi+1(g, u, v) · (Ṽi+1(u) · Ṽi+1(v))
)
,

where ˜addi (resp., ˜multi) is the multilinear extension of addi (resp., multi) and β̃i is

the multilinear extension of the selector function that takes two si-bit inputs a, b

and outputs 1 if a = b and 0 otherwise.2 However, this approach would incur a cost

to the verifier larger than the cost of evaluating C, as it requires one execution of

the sum-check protocol per gate.

2Although using β̃ is not strictly necessary here [79], we use it in our construction to improve

efficiency when C is composed of many parallel copies of different smaller circuits in Section 3.2.

14



Instead, by leveraging the recursive form of Ṽi, correctness of the circuit eval-

uation can be checked with a single execution of the sum-check protocol for each

layer i, as follows. Assume for simplicity that the output of the circuit is a single

value. The interaction begins at level 0, with the prover claiming that y = Ṽ0(0) (i.e.,

the circuit’s output) for some value y. The two parties then execute the sum-check

protocol for the polynomial f0,0 in order to check this claim. Recall that, at the end

of this execution, V is supposed to evaluate f0,0 at a random point ρ ∈ Fs0+2s1 (the

randomness generated by the sum-check verifier). Since f0,0 depends on Ṽ1(u) and

Ṽ1(v), in this case V has to evaluate Ṽ1 on the random points q1, q2 ∈ Fs1 where

q2 consists of the last s1 entries of ρ, and q1 the previous s1 entries. If the verifier

had access to all the correct gate values at layer 1, it could compute these evalua-

tions himself. Since he does not, however, it must rely on the prover to provide it

with these evaluations, say v1, v2. This effectively reduces the validity of the orig-

inal claim that y = Ṽ0(0) to the validity of the two claims that Ṽ1(q1) = v1 and

Ṽ1(q2) = v2. The two parties can now execute the sum-check protocol for these two

claims. By repeatedly applying this idea, the final claim by the prover will be stated

with respect to Ṽd (i.e., the multilinear extension of the circuit’s input), which can

be checked locally by the verifier who has the input x.

Unfortunately, this approach still potentially requires 2d executions of the sum-

check protocol, since the number of claims being verified doubles with each level.

Condensing to a single evaluation per layer. Efficiency can be improved by

reducing the proof that v1 = Ṽ1(q1) and v2 = Ṽ1(q2) to a single sum-check execution,

15



as follows. Let γ : F → Fs1 be the unique line with γ(0) = q1 and γ(1) = q2. The

prover sends a degree-s1 polynomial h that is supposed to be Ṽ1(γ(x)), i.e., the

restriction of Ṽ1 to the line γ. The verifier checks that h(0) = v1 and h(1) = v2, and

then picks a new random point r′1 ∈ F and initiates a single invocation of the sum-

check protocol to verify that Ṽ1(γ(r′1)) = h(r′1). Proceeding in this way, it is possible

to obtain a protocol that uses only O(d) executions of the sum-check protocol.

We assumed so far that there is a single output value y. Larger outputs can be

handled efficiently [81] by adapting the above approach so that the initial claim by

the prover is stated directly about the multilinear extension of the claimed output.

The CMT protocol is formally described in Construction 1.

Construction 1 (CMT protocol). Let F be a prime-order field, and let C : Fn →

Fk be a depth-d layered arithmetic circuit. P and V hold x, y, and P wants to

convince V that y = C(x). To do so:

1. Let V0 : {0, 1}dlog ke → F be such that V0(j) equals the jth element of y. Verifier

V chooses uniform r0 ∈ Fdlog ke and sends it to P. Both parties set a0 = Ṽ0(r0).

2. For i = 1, . . . , d:

(a) P and V run the sum-check protocol for value ai−1 and polynomial fi−1,ri−1

as per Equation (2.2). In the last step of that protocol, P provides (v1, v2)

for which it claims v1 = Ṽi(q1) and v2 = Ṽi(q2).

(b) Let γ : F→ Fsi be the line with γ(0) = q1 and γ(1) = q2. Then P sends the

degree-si polynomial h(x) = Ṽi(γ(x)). Next, V verifies that h(0) = v1 and

16



h(1) = v2, and rejects if not. Then V chooses uniformly at random r′i ∈ F,

sets ri = γ(r′i), ai = h(r′i) and sends them to P.

3. V accepts iff ad = Ṽd(rd), where Ṽd is the multilinear extension of the polynomial

representing the input x.

Throughout the paper, when reporting asymptotic complexities we omit a

factor that is polylogarithmic in the field/blinear group size, implicitly assuming all

operations take constant time.

Theorem 2 ([36, 48, 78, 81]). Let C : Fn → Fk be a depth-d layered arithmetic

circuit. Construction 1 is an interactive proof for the function computed by C with

soundness O(d · logS/|F|), where S is the maximal number of gates per circuit layer.

It uses O(d logS) rounds of interaction, and the running time of P is O(|C| logS).

If ˜addi and ˜multi are computable in time O(polylogS) for all layers i ≤ d, then the

running time of the verifier V is O(n+ k + d · polylogS).

Remark 2 ([78]). If C can be expressed as a composition of (i) parallel copies of

a layered circuit C ′ whose maximum number of gates at any layer is S ′, and (ii) a

subsequent layered “aggregation” circuit C ′′ of size O(|C|/ log |C|), the running time

of P is O(|C| log |S ′|).

2.4 Security Definitions

In this section, we give the formal definitions of (zero-knowledge) argument

systems. Let R be an NP relation. An argument system for R is a protocol be-

tween computationally bounded prover P and a verifier V at the end of which V

17



is convinced in the validity of a statement made by P of the form “there exists w

such that (x;w) ∈ R” for some input x. In the sequel we focus on arguments of

knowledge which have the stronger property that if the prover manages to convince

the verifier of the statement’s validity, then the prover must know w. We use the

definition of [46] which includes a parameter-generation phase executed by a trusted

party, the preprocessor. Formally, consider Definition 2 below.

Definition 2. Let R be an NP relation and let λ be a security parameter. A tuple

of algorithms (G,P ,V) is a zero knowledge argument for R if the following holds.

• Completeness: For every (pk, vk) outout by G(1λ) and all (x;w) ∈ R we have

〈P(pk, w),V(vk)〉(x) = 1.

• Knowledge soundness: For any PPT prover P∗ there exists a PPT extractor

E which runs on the same randomness as P∗ such that for any x it holds that

Pr[〈P∗(pk, vk),V(vk)〉(x) = 1∧(x,w) /∈ R : (pk, vk)← G(1λ), w ← E(pk, x)] ≤ neg(λ).

• Zero knowledge: There exists a PPT simulator S such that for any PPT

adversary A, and auxiliary input z ∈ {0, 1}poly(λ), the following probability is

negligible:

Pr
[
(pk, vk)← G(1λ); (x;w) ∈ R; 〈P(pk, w),A(pk, vk)〉(x) = 1 : (x,w)← A(z, pk, vk)

]
−

Pr
[
(pk, vk, trap)← S(1λ); (x;w) ∈ R; 〈S(trap, pk),A(pk, vk)〉(x) = 1 : (x,w)← A(z, pk, vk)

]
the definition can be extended in a straight-forward manner for statistical and

perfect zero-knowledge.

18



We call (G,P ,V) a succinct argument system if the running time of V is poly(λ, |x|, log |w|).

19



Chapter 3: Constructions

In this chapter, we present the basic construction of our new argument system

for NP that is complete and sound. We defer the zero-knowledge version of our

protocol to Chapter 6.

Recall that the CMT protocol, and interactive proof protocols as defined in

Definition 1, only allow the prover P to convince the verifier V that f(x) = 1 for a

fixed f and a common input x. It does not allow auxiliary input w to f , limiting

the supported class of computation to P. To extend the interactive proof protocols

to prove statements in NP, we propose a new scheme for verifiable polynomial dele-

gation, which allows the prover P to commit a polynomial defined by w efficiently,

and later open it to a random evaluation point, as required by the CMT protocol.

3.1 Verifiable Polynomial Delegation

In the last step of the CMT protocol, the verifier Vcmt evaluates a polynomial

Ṽd on a random point rd. Since the number of terms in Ṽd is equal to the number

of input gates of C, this makes the verifier’s work linear not only in the size of the

input x but also the length of the witness w. We propose a verifiable polynomial

delegation (VPD) scheme to address this problem. We give the formal definition of

20



a VPD scheme here.

Definition 3. Let F be a finite field, F a family of `-variate polynomials over F,

and d a variable-degree parameter. (KeyGen,Commit,Evaluate,Ver) constitute an

extractable VPD scheme for F if:

• Perfect completeness. For any polynomial f ∈ F it holds that

Pr


(pp, vp)← KeyGen(1λ, `, d);

com← Commit(f, pp);

(y, π)← Evaluate(f, t, pp);

:

Ver(com, t, y, π, vp) = 1

∧

y = f(t)

 = 1.

• Soundness. For any ppt adversary Adv the following probability is negligible:

Pr


(pp, vp)← KeyGen(1λ, `, d);

(f ∗, t∗, y∗, π∗)← Adv(1λ, pp);

com← Commit(f ∗, pp);

:

Ver(com, t∗, y∗, π∗, vp) = 1

∧

y∗ 6= f ∗(t∗)

 .

• Extractability. For any ppt adversary Adv there exists a polynomial-time algo-

rithm E with access to Adv′s random tape such that for all benign auxiliary inputs

z ∈ {0, 1}poly(λ) the following probability is negligible:

Pr


(pp, vp)← KeyGen(1λ, `, d);

com∗ ← Adv(1λ, pp, z);

f ′ ← E(1λ, pp, z);

:

CheckCom(com∗, vp) = 1

∧

com∗ 6= Commit(f ′, pp)

 .

where CheckCom checks if a commitment is well-formed.

21



There are several works in the literature on verifiable polynomial delega-

tion [19,42,56,69]. Our construction extends the scheme of Papamanthou et al. [69]

(which itself extends prior work [56] to the multivariate case) to achieve a “knowl-

edge” property, i.e., to ensure that if the server can successfully prove that y is the

correct output relative to com for some input t, then the server in fact knows a

polynomial f of the correct degree for which f(t) = y. Thus, our construction can

be viewed as a special-purpose SNARK for polynomial evaluation.

As our starting point we use the selectively secure VPD scheme of Papaman-

thou et al. [69]. Unfortunately, selective security means that the parameters used for

the VPD protocol are computed as a function of the specific point rd on which the

VPD will be executed. This is insufficient for our application since VPD’s param-

eters will be generated once during the preprocessing phase which happens before

the CMT protocol.

To overcome this limitation, we modify this scheme to require the prover to

provide additional “extractability” terms as part of the evaluation proof. Our mod-

ified VPD scheme is given in Construction 2. We define the variable degree of a

multivariate polynomial f be the maximum degree of f in any of its variables, and

use W`,d to denote the collection of all multisets of {1, . . . , `} for which the multi-

plicity of any element is at most d.

Construction 2 (Verifiable Polynomial Delegation). Let F be a prime-order

field, and `, d variable and degree parameters such that O(
(
`+`d−1)

`d

)
) is poly(λ). Con-

sider the following protocol for the family F of `-variate polynomials of variable-

22



degree d over F.

1. KeyGen(1λ, `, d): Select uniform α, s1, . . . , s` ∈ F, run (p,G,GT , e, g)← BilGen(1λ)

and compute P = {g
∏
i∈W si, gα·

∏
i∈W si}W∈W`,d

. The public parameters are pp =

((p,G,GT , e, g),P, gα), and the verifier parameters are vp = ((p,G,GT , e, g),

gs1 , · · · , gs` , gα). For every f ∈ F we denote by ppf ⊆ pp the minimal subset

of the public parameters pp required to invoke Commit and Evaluate on f .

2. Commit(f, ppf ): If f 6∈ F output null. Else, compute c1 = gf(si,...,s`) and c2 =

gα·f(si,...,s`), and output the commitment com = (c1, c2).

3. CheckCom(com, vp): Check whether com is well-formed, i.e., output 1 if e(c1, g
α) =

e(c2, g) and 0 otherwise.

4. Evaluate(f, t, ppf ): On input t = (t1, . . . , t`), compute y = f(t). Next, us-

ing Lemma 1 compute the polynomials qi(xi, . . . , x`) for i = 1, . . . , `, such that

f(x1, . . . , x`)−f(t1, . . . , t`) =
∑`

i=1 (xi − ti)·qi(xi, . . . , x`). Output y and the proof

π := {gqi(s1,...,s`), gαqi(s1,...,s`)}`i=1.

5. Ver(com, y, t, π, vp): Parse the proof π as (π1, π
′
1 . . . , π`, π

′
`). If e(c1/g

y, g) =∏`
i=1 e(g

si−ti , πi) and e(c1, g
α) = e(c2, g) and e(πi, g

α) = e(π′i, g) for 1 ≤ i ≤ `

output 1. Otherwise, output 0.

We have the following theorem:

Theorem 3. Under Assumptions 1 and 2, Construction 2 is an extractable VPD

scheme. For a variable-degree-d `-variate polynomial f ∈ F containing m monomi-

als, algorithm KeyGen runs in time O(
(
`(d+1)−1

`d

)
), Commit in time O(m), Evaluate

23



in time O(`dm), Ver in time O(`) and CheckCom in time O(1). If d = 1, Evaluate

runs in time O(2`). The commitment produced by Commit consists of O(1) group

elements, and the proof produced by Evaluate consists of O(`) elements of G.

Proof. The completeness requirement immediately follows from the construction of

(KeyGen,Commit,Evaluate,Ver).

We now prove the extractability property. Let Adv be a ppt adversary that on

input (1λ, pp), where (pp, vp) is the output of KeyGen(1λ, `, d), outputs commitment

com∗ such that CheckCom(com∗, vp) accepts. This implies that e(c1, g
α) = e(c2, g)

where com∗
def
= (c1, c2). By Assumption 2, there exists ppt extractor E ′ for Adv

such that upon the same input as Adv, and with access to the same random tape,

outputs a0, . . . , a|W`,d| ∈ F such that
∏

W∈W`,d
gaW

∏
i∈W si = c1, except with negligible

probability. Note that, the coefficients (a0, . . . , a|W`,d|) can be encoded as a variable-

degree-d, `-variate polynomial that has ai as its monomial coefficients. We now

build extractor E :

1. Upon input (1λ, pp), E runs E ′ on the same input.

2. E tries to parse the output of E ′ as a0, . . . , a|W`,d| ∈ F and aborts if this fails.

3. E outputs f ′, where f ′ ∈ F is the polynomial with coefficients a0, . . . , a|W`,d|.

Note that E is ppt as E ′ is ppt and it only performs polynomially many operations in

F. It remains to argue that f ′ is a valid pre-image of Commit except with negligible

probability. Observe that, if E does not abort, it follows from the construction of

Commit that Commit(f ′, pp) = com, where com is the output commitment of Adv.

24



By assumption 2, the probability that the output E ′ is not a valid set of coefficients

is negligible which concludes the proof.

Next, we prove the soundness property. Let Adv be a ppt adversary that

wins the soundness game with non-negligible probability. For i = 1, . . . , ` we define

adversary Advi that receives the same input as Adv and executes the same code, but

outputs only (πi, π
′
i) ∈ π∗ (where π∗ is the proof output by Adv). Moreover, since Adv

is ppt, all these adversaries are also ppt. Thus, for i = 1, . . . , `, from Assumption 2

there exists ppt Ei (running on the same random tape as Advi) which on input

(1λ, pp) outputs a0,i, . . . , a|W`,d|,i ∈ F such that the following holds: If e(πi, g
α) =

e(π′i, g) then
∏

W∈W`,d
gaW,i

∏
j∈W sj 6= πi, except with negligible probability. Note

that, the coefficients (a0,i, . . . , a|W`,d|,i) for i = 1, . . . , ` can always be encoded as

a variable-degree-d, `-variate polynomial which we denote by q′i(x) for undefined

variable x = (x1, . . . , x`).

We construct an adversary B that breaks Assumption 1. On input (1λ, p,G,GT ,

e, g, gs, gs
2
, . . . , gs

`·d
), B does the following:

Parameter generation. B implicitly sets s1 = s and for i = 1, . . . , ` he chooses

ri ∈ F uniformly at random and sets (also implicitly) si = s · ri. Then he chooses

uniformly at random a value α ∈ F. Next B needs to generate the terms in P =

{g
∏
i∈W si , gα·

∏
i∈W si}W∈W`,d

. Since the exponent of each term is a product of at most

` · d factors where each factor is one of the values si = s · ri, it can be written as

a polynomial in s with degree at most ` · d. Therefore, B can compute these terms

from the values g, gs, gs
2
, . . . , gs

`·d
and α. Finally, B runs Adv on input (1λ, pp),

25



where pp = (p,G,GT , e, g, g
α,P).

Query evaluation. Upon receiving (f ∗, t∗, y∗, π∗) from Adv, B first runs Commit(f ∗, pp)

to receive com
def
= (c1, c2) and then runs Ver(com, t∗, y∗, π∗, vp) where vp = (1λ, p,G,GT ,

e, g, gs, gs
2
, . . . , gs

`·d
, gα). If Ver rejects, B aborts, else he runs extractors E1, . . . , E`

(defined above) on the same input as Adv and receives polynomials q′1, . . . , q
′
`. If

for the output of any of the Ei it holds that
∏

W∈W`,d
gaW,i

∏
j∈W sj 6= πi, B aborts.

Otherwise, let δ = y∗ − f ∗(t∗) and let Q(x) be the polynomial over F defined as

Q(x)
def
= f ∗(x) − f ∗(t∗) −∑`

i=1(xi − ti)q′i(x) where t∗
def
= (t1, . . . , t`). B picks τ ∈ F

uniformly at random. If gτ = g−s, he sets τ ← τ + 1. He then computes polynomial

Q′(x)
def
= Q(x)/(τ + x1) and finally outputs (τ, e(g, g)δ

−1·Q′(s1,...,s`)) as a challenge

tuple for Assumption 1.

Since s1 = s, s2 = r2 · s, . . . , s` = r` · s, we have Q′(s1, . . . , s`) = Q′′(s)

where Q′′ is an efficiently computable univariate polynomial of degree ` · d hence

e(g, g)−δ·Q
′(s1,...,s`) is computable from (1λ, p,G,GT , e, g, g

s, gs
2
, . . . , gs

`·d
). B is clearly

ppt since all of Ei are ppt and he performs polynomially many operations in

F,G,GT . Next, we analyze the success probability of B. Recall that, by assumption

Adv succeeds in violating soundness with probability ε. We observe that, condi-

tioned on not aborting, B’s output is always a valid tuple for breaking Assump-

tion 1. Let us argue why this is true. Since verification succeeds, it holds that

26



e(c1/g
y∗ , g) =

∏`
i=1 e(g

si−ti , πi); since extraction succeeds, this can be replaced with

e(g, g)f
∗(s1,...,s`)−δ−f∗(t∗) =

∏̀
i=1

e(gsi−ti , gq
′
i(s1,...,s`))

e(g, g)δ = e(g, g)f
∗(s1,...,s`)−f∗(t∗)

∏̀
i=1

e(gsi−ti , g−q
′
i(s1,...,s`))

e(g, g)δ = e(g, g)f
∗(s1,...,s`)−f∗(t∗)−

∑`
i=1 (si−ti)q′i(s1,...,s`).

By the definition of Q′ it follows that

e(g, g)δ = e(g, g)Q(s1,...,s`)

e(g, g)
δ

τ+s1 = e(g, g)
Q(s1,...,s`)

τ+s1 = e(g, g)Q
′(s1,...,s`)

e(g, g)
1

τ+s1 = e(g, g)δ
−1·Q′(s1,...,s`).

Thus, the final piece in order to conclude the proof is to bound the probability that

B aborts. Note that, conditioned on Adv winning, B will only abort if extraction

fails which can only happen with negligible probability neg(λ). This holds since,

if verification succeeds it must be that e(π′i, g) = e(πi, g
α) for i = 1, . . . , ` and in

this case, by Assumption 2, extraction for any of E1, . . . , E` fails with negligible

probability. Since ` is polynomial in λ it follows that the probability any of them

fails (which by a union bound is at most equal to the sum of each individual failure

probability) is also negligible.

Finally, let us argue that the polynomial division Q(x)/(τ + x1) is always

possible. Recall, that for polynomials defined over finite fields division is always

possible assuming that the dividend’s degree is at least as large as that of the

divisor’s. Moreover, the degree of the quotient is at most that of the dividend’s and

that of the remainder is strictly smaller than that of the divisor. Let us assume for

27



contradiction that Q(x) is a constant polynomial. Since, e(g, g)δ = e(g, g)Q(s1,...,s`+1)

and e(g, g) is a generator or GT , it must be that Q(x)
def
= δ therefore we can write

−δ =
∑̀
i=1

(xi − ti)q′i(x)− f ∗(x) + f ∗(t∗)

f ∗(x)− δ − f ∗(t∗) =
∑̀
i=1

(xi − ti)q′i(x)

f ∗(x)− y∗ =
∑̀
i=1

(xi − ti)q′i(x)

From the above relation it follows that t∗ is a root of the polynomial f ′
def
= f ∗(x)−y∗,

i.e., f ′(t∗) = 0 which implies that f ∗(t1, . . . , t`) = y∗. Thus, in this case, y∗ is the

correct evaluation of f ∗ on t∗, i.e., δ = 0 and Adv did not cheat. In all other cases,

the polynomial division is possible.

From the above analysis it follows that the probability that B succeeds is at

least (1−neg(λ))ε. By assumption, ε is the non-negligible probability that Adv wins

the soundness game, therefore B’s success probability is also non-negligible. This

contradicts Assumption 1 and our proof is complete.

Asymptotic analysis. The claims for the general polynomial case follow directly

from the analysis of [69]. For d = 1, i.e., for multi-linear polynomials, we prove the

tighter bound for the runtime of Evaluate below.

Recall that during Evaluate the prover computes polynomials qi(xi, . . . , x`) for

i = 1, . . . , `, such that f(x1, . . . , x`) =
∑`

i=1 (xi − ti) · qi(xi, . . . , x`) + f(t1, . . . , t`)

and proof π = {gqi(si,...,s`), gαqi(si,...,s`)}`i=1. We start by computing q1(x1, . . . , x`).

Since the degree of every variable is at most 1, the multi-linear polynomial f can be

written as f(x1, . . . , x`) = g(x2, . . . , x`) + x1 · h(x2, . . . , x`), where g(x2, . . . , x`) and

28



h(x2, . . . , x`) are multi-linear polynomials of variables x2, . . . , x`. In this way, f can

be decomposed as

f(x1, . . . , x`) = g(x2, . . . , x`) + x1 · h(x2, . . . , x`)

= (g(x2, . . . , x`) + t1 · h(x2, . . . , x`)) + (x1 − t1)h(x2, . . . , x`)

= R1(x2, . . . , x`) + (x1 − t1)h(x2, . . . , x`) .

We set q1(x1, . . . , x`) = h(x2, . . . , x`) (which means q1 contains no monomial

with x1), and proceed to decompose the multi-linear polynomial R1(x2, . . . , x`) with

` − 1 variables in the same way as f to compute q2(x2, . . . , x`). Regarding the

complexity of this, note that both g(x2, . . . , x`) and h(x2, . . . , x`) contain at most

2`−1 monomials. Therefore, it takes 2`−1 additions and multiplications to compute

q1(x1, . . . , x`) and R1(x2, . . . , x`), and 2`−1 exponentiations to generate gq1(s1,...,s`)

and gαq1(s1,...,s`) in the proof, respectively. The exact same reasoning applies for all

of q3, . . . , q`. At the last step after computing q`(x`), the remaining constant term

is equal to the answer f(t1, . . . , t`). In general, in the ith step, we are decompos-

ing Ri−1(xi, . . . , x`) with ` − i + 1 variables in the same way above to compute

qi(xi, . . . , x`) and Ri(xi+1, . . . , x`), and the complexity is O(2`−i). Thus, the total

complexity of computing q1, . . . , q` is O(2`−1) +O(2`−2) + . . . = O(2`). The polyno-

mial evaluation in order to get the answer takes the same time. Each pair πi, π
′
i is

computed with two exponentiations, thus the overall running time is O(2`).

29



3.2 Improving the Expressiveness of the CMT Protocol

As presented in Theorem 2 and Remark 2, the prover complexity of the CMT

protocol is in particular efficient if the circuit can be represented as many parallel

copies of the same small sub-circuit. In this section, we show how to modify the CMT

protocol to achieve the same prover efficiency for circuits that consist of multiple

(different) sub-circuits.

Let C be a depth-d, size-n, layered arithmetic circuit consisting of B inde-

pendent (“parallel”) sub-circuits C1, · · · , CB, each of depth at most d′ and size at

most n′, where the outputs of C1, · · · , Cn are fed into an aggregation circuit D of

depth-d′′ and size n′′. In this section, we show how to modify the CMT protocol

so as to prove statements about the output of C in time which is linear in the

size of C. Our modified protocol proceeds as follows. We start by following the

standard CMT protocol for the d′′ layers of sub-circuit D. Next, for the remain-

ing d − d′′ = d′ layers, we modify things in a similar way to [78] and [79]. Let

Si now denote the maximum number of gates in layer i across C1, · · · , CB, and

let si = dlogSie. We let Vi again be a function mapping a gate at level i to its

value, but we now specify a gate g by a pair g1, g2, where g2 ∈ [B] indicates the

sub-circuit in which g lies and g1 ∈ [Si] is the index of g (at level i) within that sub-

circuit. The prover and verifier then run a CMT-like protocol, but using the equa-

tion Vi(g1, g2) =
∑

u1,v1∈{0,1}si+1 (addi+1(g1, u1, v1, g2) · (Vi+1(u1, g2) + Vi+1(v1, g2)) +

multi+1(g1, u1, v1, g2) · (Vi+1(u1, g2) · Vi+1(v1, g2))).

The equation above still recursively defines Vi in terms of Vi+1, but takes

30



advantage of the fact that there is no interconnection between the different sub-

circuits. This has the effect of reducing the number of variables in addi+1 and

multi+1 from 2si+1 + si + 3dlogBe to 2si+1 + si + dlogBe. Next, we define the

multilinear extension of Vi(g1, g2).

Ṽi(z1, z2) =
∑

u1,v1∈{0,1}si+1 ,g2∈{0,1}logdBe
fi,z1,z2(u1, v1, g2) (3.1)

def
=

∑
u1,v1∈{0,1}si+1 ,g2∈{0,1}dlogBe

β̃i(z2, g2) ·
(

˜addi+1(z1, u1, v1, g2) · (Ṽi+1(u1, g2)

+ Ṽi+1(v1, g2)) + ˜multi+1(z1, u1, v1, g2) · (Ṽi+1(u1, g2) · Ṽi+1(v1, g2))
)
.

The only difference between equation 3.1 and the equation used for data-

parallel circuits with same sub-circuits in [78,79] is that ˜addi+1 and ˜multi+1 take an

extra variable g2, which denotes that the gates and wiring patterns can be different

in each sub-circuit. We further observe that running the same algorithm for the

sumcheck protocol as in [78, 79] on equation 3.1 results in the same complexity on

the prover, which is O(BSi logSi+1). To see this, for the first 2si+1 rounds, there

are at most BSi monomials per round, as there are at most BSi gates in the i-th

layer of the circuit and the number of non-zero monomials in ˜addi+1 and ˜multi+1

is bounded by the number of gates. By Remark 1, this takes O(BSi) arithmetic

operations per round, so the complexity for these rounds is O(BSi logSi+1). For the

remaining rounds, by Remark 1, P ’s running time is O(2dlogBe−j) in round 2si+1 + j

(j = 1, . . . , dlogBe) and the complexity is O(B). Thus, the complexity is dominated

by the first part, i.e., O(BSi logSi+1).

31



In this way, we extend the class of the circuit efficiently supported by the

CMT protocol in [78,79] without any overhead on the prover time.1 We present the

following result.

Theorem 4. Let C : Fn → F be a depth-d layered arithmetic circuit consisting

of B parallel sub-circuits C1, . . . , CB connected to an “aggregation” circuit D such

that |D| = O(|C|/ log |C|), and let S = maxj{width(Cj)}. Executing the CMT

protocol from Construction 1 using Equation 3.1 and the above described modifica-

tions to the sum-check protocol, yields an interactive proof for C with soundness

O(d · width(C)/|F|). Moreover, P’s running time is O(|C| logS) and the protocol

uses O(d log(width(C))) rounds of interaction. If ˜addi and ˜multi are computable

in time O(polylog(width(C))) for all the layers of C, then the running time of the

verifier V is O(n+ d · polylog(width(C))).

3.3 The Construction of Our Argument System

Finally, we present our new argument system with circuit-independent prepro-

cessing. Our construction combines the modified CMT protocol from Section 3.2

with the VPD scheme presented in Section 3.1. We refer to the prover and veri-

fier of the CMT protocol as (Pcmt,Vcmt), respectively, and to the algorithms of the

VPD scheme as (KeyGen,Commit,Evaluate,Ver). We construct an argument system

(G,P ,V) for the satisfiability of arithmetic circuits over finite fields, where the pre-

processing done by G depends on a bound on the size of the circuit, the size of its

1The complexity of the CMT protocol for circuits composed of identical sub-circuits has recently

been improved to O(BSi + Si logSi) in [82].

32



input, and the field over which it is defined, but not the circuit itself.

Let V1+2
cmt be the restriction of the CMT verifier from Construction 1 which

performs Steps 1 and 2 of Vcmt and outputs (rd, ad) without performing Step 3.

Construction 3 is a formal description of our argument system.

Construction 3. Let F be a prime-order field with |F| exponential in λ, and let n, t

be input size and circuit size parameters. For simplicity of exposition we assume

that n is a power of 2. Consider the algorithms G,P ,V described below.

Preprocessing phase. G(1λ, n, t) runs (pp, vp) ← KeyGen(1λ, n, 1). The proving

key pk is set to be pp and the verification key vk is set to be vp.

Evaluation phase. Let C : Fnx+nw → F be a depth-d layered arithmetic circuit

over F with at most t gates such that nx + nw ≤ n. Moreover, let x ∈ Fnx and

w ∈ Fnw be such that C(x;w) = 1. Assume that nw/nx = 2m − 1 for some m ∈ N.

Consider the following protocol between P and V.

1. P first commits to the multilinear extension Ṽd of the input layer of C(x;w).

That is, P runs c← Commit(Ṽd, pp) and sends c to V. Upon receving c, V runs

CheckCom(c, vp). If the output is reject, V rejects.

2. V computes the multilinear extension x̃ of the input x, generates a random

point r ∈ (Flog(nx) × 0log(nw)) and sends r to P. Upon receiving r, P executes

(a, π) ← Evaluate(Ṽd, r, pp) and sends (a, π) to V. Upon receiving (a, π), V exe-

cutes Ver(c, a, r, π, vp). In case Ver outputs 0 or a 6= x̃(r), V outputs 0.

3. V runs V1+2
cmt and P runs Pcmt to verify C(x;w) = 1. If V1+2

cmt rejects at any point,

33



V outputs 0. Otherwise, let rd, ad be the final values returned by V1+2
cmt . At this

point, V must verify that Ṽd(rd) = ad.

4. V sends rd to P. Upon receiving rd, P executes Evaluate(Ṽd, rd, pp) and obtains

(a′d, π
′) which he sends to V.

5. V upon receiving (a′d, π
′) executes Ver(c, a′d, rd, π

′, vp). In case Ver outputs 0 or

a′d 6= ad, V outputs 0. Otherwise, V outputs 1.

We have the following theorem:

Theorem 5. If Construction 2 is an extractable VPD scheme, then Construction 3

is an argument system for arithmetic circuits, as defined by Definition 2. The run-

ning time of P is O(|C| log |C|). When used for a depth-d, layered circuit C con-

sisting of B parallel sub-circuits C1, . . . , CB (the sub-circuits can be the same or

different) whose outputs feed into a circuit D with |D| ≤ |C|/ log |C|, the running

time of P is O(|C| · log maxj{width(Cj)}) and the protocol has O(d log(width(C)))

rounds. If C has input length n and is log-space uniform then the running time of

V is O(n + d · poylog(|C|)). Finally, if d is polylog (|C|), the above construction is

a succinct argument.

Proof. The completeness requirement immediately follows from the construction of

(G,P ,V).

We now argue about the knowledge soundness property. Let Adv be an ad-

versary which outputs a circuit C with |C| ≤ t and nx + nw ≤ n, where nx (nw) is

the size of the input (auxiliary input) of C) and an input x ∈ Fnx and is able to

34



make V accept for (C, x). We will construct a corresponding extractor E which is

able to produce a witness w ∈ Fnw such that C(x;w) = 1, except with negligible

probability.

We begin by observing that the prover parameters pk of the argument, that

are given as input to Adv, are equivalent to pp output by KeyGen(1λ, n, 1). There-

fore, since Adv convinces V which runs CheckCom as a sub-routine, it holds that

in Step 1 Adv outputs a c
def
= (c1, c2) for the input layer of the circuit C such that

CheckCom(c, vp) accepts.

Next, let Adv′ be a simplified version of Adv that runs the same code of

but halts right after Step 1, outputting only commitment c. Clearly, whenever

CheckCom(c, vp) accepts when interacting with Adv, it will also accept upon re-

ceiving the output of Adv′ since they produce the same output. Thus, from the

extractability property of our VPD scheme, it follows that there exists extractor E ′

that upon the same input as Adv′ outputs f ′ such that c = Commit(f ′, pp) except

with negligible probability. Note that Adv′ is ppt as Adv′ is ppt, therefore, by

extractability, E ′ is also ppt.

Now we are ready to define our main extractor E for Adv. Upon input (1λ, pk),

E operates as follows:

1. Run E ′(1λ, pk) and receive polynomial f ′. If f ′ is not a n-variate polynomial of

variable-degree 1, abort.

2. Output w = (f ′(nx), . . . , f
′(nw − 1)).

E is ppt as E ′ is ppt, and he performs only polynomially many operations in F.

35



It remains to show that in case Adv convinces V , then it holds that C(x;w) = 1

where w is the output of E , except with negligible probability. Assume for contra-

diction that Adv convinces V and C(x;w) 6= 1 with some non-negligible probability

ε, where w is the output of E . We will build an adversary B that uses Adv, E in

order to break the soundness of the CMT protocol or of our VPD construction, as

follows:

1. B receives as input (pp, vp) generated from KeyGen(1λ, n, 1) from a challenger for

the VPD soundness game. He then runs Adv(1λ, pk = pp).

2. Let C, x be the circuit and input chosen by Adv and let d be the depth of C.

Moreover, let c be the commitment output by Adv (claimed to be a commitment

to the input layer of C).

3. B runs CheckCom(c, vp) and if it outputs reject he aborts. Else, he runs E(1λ, pk)

and receives witness w. If w 6∈ Fnw , B aborts. Else, he sets polynomial f : Fn → F

to be the multilinear extension of the array x||w (i.e. the multilinear extension

of the entire input to C).

4. B chooses r ∈ Flognx × 0lognw uniformly at random and forwards it to Adv. Upon

receiving a, π, he runs Ver(c, a, r, π, vp). If it outputs reject he aborts. Else, if

a 6= f(r), B outputs (f, r, a, π) as a challenge for VPD and terminates.

5. B initializes the interaction with Vcmt for circuit C and input x,w. For all layers

of C (from 0 to d) B simply forwards the messages of Vcmt to Adv and vice versa.

6. Let rd be the random point established by Vcmt for the d-th layer of C. B forwards

36



rd to Adv and receives a′d, π
′. He then runs Ver(c, a′d, rd, π

′, vp). If it outputs reject

he aborts. Else, if a′d 6= f(rd), B outputs (f, rd, a
′
d, π

′) as a challenge for VPD

and terminates.

7. B forwards a′d to Vcmt and terminates.

B is ppt since Adv, E are ppt and he performs polynomially many operations in

F,G,GT . Let us now argue about B’s success probability.

We define the following events:

• Bwins is the event that B succeeds in breaking the VPD or the CMT soundness.

• Baborts is the event that B aborts during his interaction with Adv.

• A is the event that Adv succeeds in convincing P to accept and C(w, x) 6= 1,

where w is the output of E .

• R is the event that during the interaction of B with Adv, a 6= f(r) or a′d 6= f(rd).

• E = A ∩ Bcaborts.

For an event Y , let Y c denote its complement. In general, by the law of total

probability we can write

Pr[Bwins] ≥ Pr[Bwins|E ∩R] Pr[E ∩R]

+ Pr[Bwins|E ∩Rc] Pr[E ∩Rc].

Next, we turn our attention to evaluating the two summands.

For Pr[Bwins|E ∩R] we argue as follows. Conditioning on E ∩R implies that:

(i) Adv successfully convinces V , (ii) C(w, x) 6= 1, (iii) B does not abort, and (iv)

37



a 6= f(r) or a′d 6= f(rd). Then, the view provided to Adv by B is a perfect emulation

of the interaction with V and the view provided by B to Vcmt is a perfect emulation of

the execution of CMT for C(x,w), up to the point where B finds out that a 6= f(r)

(during Step (4) above), or that a′d 6= f(rd) (during Step (7) above). Without loss

of generality, we focus on the case where this occurs for a 6= f(r) and the exact

same reasoning follows for the other case. Simply observe that (f, r, a, π) is indeed

a valid challenge tuple for the VPD soundness game, since Ver(c, a, r, π, vp) accepts

and Commit(f, pp) = c, as B did not abort. It follows that, under these conditions,

B always succeeds in winning therefore Pr[Bwins|E ∩R] = 1.

Regarding Pr[Bwins|E ∩ Rc] we argue as follows. Conditioning on E ∩ Rc

implies that: (i) Adv successfully convinces V , (ii) C(w, x) 6= 1, (iii) B does not

abort, and (iv) a = f(r) and a′d = f(rd). Then, the view provided to Adv by B is

a perfect emulation of the interaction with V . Moreover, the view provided to Vcmt

is a perfect emulation of the CMT protocol. Therefore, in this case too, B always

succeeds as he falsely convinces Vcmt to accept for C(x,w). Hence, we have that

Pr[Bwins|E∩Rc] = 1 and replacing both probabilities in the above inequality we get

Pr[Bwins] ≥ 1 · Pr[E ∩R] + 1 · Pr[E ∩Rc]

= Pr[E] = Pr[A ∩Bc
aborts]

where we used the fact that R,Rc are complementary events. Finally, by the defi-

nition of conditional probability, we get

Pr[Bwins] ≥ Pr[A ∩Bc
aborts] = Pr[Bc

aborts|A] · Pr[A].

38



Conditioned on Adv winning, we have that all of CheckCom(c, pp), Ver(c, a, r, π, vp),

Ver(c, a′d, rd, π
′, vp) output accept since they are sub-routines of V . It follows, that

B may only abort if the extraction fails during Step (3) above. By the extractability

property of our VPD and the construction of E this can happen only with negligible

probability. Thus, we can write

Pr[Bwins] ≥ Pr[Bc
aborts|A] · Pr[A] ≥ (1− neg(λ)) · ε

which is non-negligible since, by our assumption, ε is non-negligible in λ.

Under our original assumption about the soundness of our VPD and that of

CMT this should only happen with negligible probability. Thus, this contradicts our

claim that Adv convinces V and C(x,w) 6= 1 with non-negligible probability (where

w is the output of extractor E), which concludes the proof of knowledge soundness

of our argument system.

Asymptotic analysis. The input size of the circuit is |x|+ |w|, which is bounded

by the maximum width of the circuit width(C). Applying Construction 2 with

d = 1 and ` = log(width(C)), by Theorem 3, in Step 1, 2, 4 and 5 the running

time of P is O(width(C)) and the running time of V is O(log(width(C)) + |x|).

Combined with Step 3, by Theorem 2 for Construction 3, the running time of P is

O(|C| · log(width(C))), the running time of V is O(|x|+ d · polylog(|C|)), and P and

V interact for O(d log(width(C))) rounds.

In the analysis above, applying Remark 2 and Theorem 4 for Construction 1

to Step 3, the running time of P becomes O(|C| · logS) if C consists of parallel

sub-circuit.

39



Comparison to SNARKs. As presented above, the preprocessing of our con-

struction only depends on an upper bound of the size of the input, but not on any

particular circuit. In this way our construction does not have function-dependent

preprocessing, as required by SNARKs.

In the evaluation phase, the CMT protocol only requires modular additions

and multiplications. The only place having modular exponentiations in our scheme

is in the VPD protocol, and the number of modular exponentiations is linear to the

size of the input, while it is linear to the size of the circuit in SNARKs. As the

modular exponentiation is the bottleneck of the schemes, this leads to significant

improvements on the prover time. In addition, the fast multi-scalar exponentiation

and fast Fourier transform (FFT) in SNARKs consumes high memory, while the

CMT protocol and VPD protocol in our construction are memory friendly.

Our construction does introduce overhead on the proof size and the verification

time. The proof size increases from O(1) to O(d log(width(C))) and the verification

time increases from O(|x|) to O(|x|+d·polylog(|C|)). However, they are still succinct

(polylogarithmic on the witness size) and reasonable concretely in practice, as we

will show in Section 4.6 and 5.3.

40



Chapter 4: Applications: Verifiable Databases

All major cloud providers offer Database-as-a-Service solutions that allow com-

panies and individuals (clients) to alleviate storage costs and achieve resource elas-

ticity by delegating storage and maintenance of their data to a cloud server. A client

can then query and/or update its data using, e.g., standard SQL queries.

Outsourcing data in this way, however, introduces new security challenges: in

particular, the client may need to ensure the integrity of the results returned by

the server. Providing such a guarantee is important if the client does not trust the

server, or even if the client is concerned about the possibility of server errors or

external compromise.

Prior works on verifiable databases address exactly this problem, but have sig-

nificant drawbacks. Function-specific schemes (e.g., authenticated data structures)

target specific classes of computations and can be much more efficient than generic

solutions; however, they suffer from limited expressiveness, and in particular they

cannot handle a wide range of SQL queries. Generic solutions (e.g., SNARKs) can

be used to verify arbitrary computations, but impose an unacceptable overhead at

the server, and requires an expensive setup phase for every possible SQL query.

Our new argument system in Chapter 3 provides a solution for verifiable

41



databases. It is an argument system for any computations in NP, which can be

used to validate arbitrary SQL queries in principle. Meanwhile, it does not require

a separate setup phase for every SQL query. In this chapter we use our new argu-

ment system to construct vSQL, a system for verifiable databases and SQL queries.

vSQL allows a client who owns a relational database to outsource it to an untrusted

server while storing only a small digest locally. Later, the client can issue arbitrary

SQL queries to the server, who returns the query’s result. (In the case of an update

query, the result is an updated digest.) The client can then verify the validity of the

result using our argument system with the server; if the result returned by the server

is incorrect, the client will reject with overwhelming probability. In addition, vSQL

benefits from several performance optimizations that improve both the server’s and

client’s concrete efficiency (see Section 4.5).

vSQL overcomes the drawbacks of existing works. It is highly expressive, sup-

porting any computation expressed as an arithmetic circuit (which in particular

means arbitrary SQL queries, including updates) efficiently. We empirically demon-

strate vSQL’s concrete performance and expressiveness using the TPC-H [9] bench-

mark, and find that the server-side computation (which is usually the limiting factor

in verifiable-computation schemes) is 5–120× better for vSQL than it is in highly op-

timized SNARK-based constructions [6] (that further require query-dependent pre-

processing), and comparable to or better than a state-of-the-art database-delegation

scheme [91] that only supports a limited subset of SQL.

In this chapter, we first give some additional background on SQL queries

in Section 4.1, and introduce additional related work on verifiable databases in

42



Section 4.2. We present the definition and our construction of verifiable databases

in Section 4.3 and 4.4. We then describe additional optimizations of our argument

system tailored for SQL queries in Section 4.5, followed by experimental results in

Section 4.6.

4.1 SQL Queries

Structured Query Language (SQL) is a very popular programming language

designed for querying and managing relational database systems. It operates on

databases that consist of collections of two-dimensional matrices called tables. In

the following, we briefly present the general structure of such queries and provide

concrete examples for common types.

In SQL, a simple query begins with the keyword SELECT followed by a function

A(col1, . . .) and then the keyword FROM followed by a number of tables, where A is

T1:

row id employee id name age salary

1 2019 John 28 45,000

2 1905 Kate 31 55,000

3 1908 Lisa 44 70,000

4 2117 Leo 23 39,000

5 2003 Alice 29 34,000

T2:

row id employee id department

1 1905 Sales

2 1906 Sales

3 1908 HR

4 2003 R&D

5 2022 HR

6 2117 R&D

43



defined over (a subset of) the columns of the specified tables. This sequence of

clauses and expressions dictates the output of the query. Following these, there is

a WHERE clause followed by a sequence of predicates connected by logical operators

(e.g, AND, OR, NOT) that restrict the rows used when computing the output. The

above is best illustrated by a series of examples. Consider a database consisting of

tables T1 and T2:

The first example we provide is a SQL range query which is used to select rows for

which particular values fall within a set of specified ranges. The conditions may be

defined over multiple columns, in which case we refer to it as a multi-dimensional

range query. For example, the query “SELECT ∗ FROM T1 WHERE age < 35 AND salary

> 40, 000” is a two-dimensional range query that returns the following table.

row id employee id name age salary

1 2019 John 28 45,000

2 1905 Kate 31 55,000

A FROM clause can be followed by JOIN sub-clauses that are used to com-

bine multiple tables based on common values in specific columns. An example

of such a JOIN query is “SELECT T1.name, T2.department FROM T1 JOIN T2 ON

T1.employee id = T2.employee id,” which returns:

The result of any SQL query is itself a table to which another SQL query

can be applied. In other words, a SQL query may be composed of several sub-

queries. SQL also provides queries for adding, updating, and deleting data from a

SQL database. Data-manipulation queries start with an INSERT, DELETE, or UPDATE

44



name department

Kate Sales

Lisa HR

Alice R&D

clause followed by a table identifier, a series of values, and (optionally) a sequence

of WHERE clauses. For example, the query “DELETE FROM T2 WHERE department =

Sales” deletes the first two rows from T2. Finally, there are queries that manipulate

the database structure, e.g, by adding new columns or creating a new table.

Note that a common theme of the examples presented above is that they

process each row of some table independently, performing a specific operation (e.g.,

comparing values from given columns with a specified range) on each row. This

structure can be leveraged to improve efficiency of our argument system, as noted

in Remark 2.

4.2 Related Work on Verifiable Databases

Most existing work on verifiable databases comes from authenticated data

structures [77]. It typically focuses on handling only a specific class of compu-

tations on the outsourced database, e.g., range queries [62, 67], joins [43, 87, 94],

pattern matching [40,68] and set operations [32,61,70,92]. The most relevant point

of comparison to our work is IntegriDB [91], which supports a subset of SQL. In Sec-

tion 4.6, we show that vSQL is significantly more expressive than IntegriDB while

45



enjoying comparable efficiency.

4.3 Definitions of Verifiable Databases

In this section, we present our security definition for a verifiable database

system, viewed as a two-party protocol run between a client that owns a database

D which it wishes to outsource to a remote server. In a setup phase, the client

computes a short digest of D, which it stores locally, and uploads D to the server.

Subsequently, he issues queries about the data or requests to update the data, which

are processed by the server. Each query evaluation is executed by an interactive

protocol between the two parties, at the end of which the client either accepts the

returned output or rejects it. Informally, the required security property is that no

computationally bounded adversarial server can convince the client into accepting

a false result. This is defined formally in Definition 4. To simplify notation, we do

not distinguish between verification parameters (that are stored by the client and

should be succinct) and proof-computation parameters (stored by the server).

Definition 4. A verifiable database system for database class D and query class

Q = U ∪ S (where U denotes update queries and S denotes selection queries), is a

tuple of algorithms defined as follows:

1. Setup takes as input 1λ, a database D ∈ D and outputs a digest δ and public

parameters pp.

2. Evaluate is an interactive protocol run between two probabilistic polynomial-time

algorithms C and S on common input a digest δ, a query Q ∈ Q, and public

46



parameters pp. Moreover, S holds database D. If Q ∈ S, then at the end of the

protocol C either outputs a result y (and accepts) or rejects. If Q ∈ U , then at

the end of the protocol C outputs a new digest δ′ (and accepts), or rejects.

Denote by Q(D) the evaluation of query Q on database D. We require that Setup

and Evaluate have the following properties.

• Perfect completeness. For any λ, any D0 ∈ D, any t ≥ 0, and any queries

Q1, . . . , Qt ∈ Q and Q∗ ∈ S, we require that y = Q∗(Dt) in the following experi-

ment:

– Setup is invoked on the input (1λ, D0) and outputs (δ0, pp).

– For 1 ≤ i ≤ t, do: S and C run Evaluate on inputs (Qi, δi−1, Di−1, pp) and

(Qi, δi−1, pp), respectively. If Qi ∈ U , let δi denote the output of C and set

Di = Qi(Di−1); otherwise, set δi = δi−1 and Di = Di−1.

– S and C run Evaluate on inputs (Q∗, δt, Dt, pp) and (Q∗, δt, pp), respectively.

Let y denote the output of C.

• Soundness. For any t and polynomial-time attacker S∗, the probability that S∗

succeeds in the following experiment is negligible:

1. S∗(1λ) outputs D0 ∈ D .

2. Setup(1λ, D0) outputs (δ0, pp).

3. For 1 ≤ i ≤ t, do: S∗ outputs Qi. Then S∗ and C run Evaluate on inputs

(Qi, δi−1, Di−1, pp) and (Qi, δi−1, pp), respectively. If C rejects, the experi-

47



ment ends. If C accepts and Qi ∈ U , let δi denote the output of C and set

Di = Qi(Di−1); otherwise, set δi = δi−1 and Di = Di−1.

4. S∗ outputs Q∗ ∈ S. Then S∗ and C run Evaluate on inputs (Q∗, δt, Dt, pp)

and (Q∗, δt, pp), respectively. Let y denote the output of C. We say that S∗

succeeds if C accepts with output y, but y 6= Q∗(Dt).

Supporting database size increases. For some constructions (including ours),

the size of the public parameters pp may depend on the database size. If the database

size increases (as a result of updates), it may be necessary to extend pp; there are

various ways this can be done. For instance, the database owner can choose an

upper bound for the database size, and generate a long-enough pp during the setup

phase. Alternatively, the owner may maintain some (succinct) trapdoor information

that allows it to extend pp as needed.

Efficiency considerations. One important aspect of a verifiable database sys-

tem is efficiency; a trivial approach is to transmit D for each query and have the

client evaluate it himself. Therefore, a basic efficiency requirement is that the com-

munication between client and server for query evaluation should be sublinear in

the database size |D|. Also important is the client’s computational cost for, which

should ideally be smaller than evaluating the query (so the client can benefit not

only from delegation of its storage but also from delegation of its computation).

A final efficiency metric is the computational overhead of the server, which should

ideally be asymptotically the same as the cost of evaluating the query.

48



4.4 Our Construction of Verifiable Databases

In this section, we present our construction of a verifiable database system. Re-

call that we refer to the prover and verifier of the CMT protocol as (Pcmt,Vcmt), and

we refer to the algorithms of our polynomial-delegation protocol as (KeyGen,Commit,

Evaluate,Ver).

The only modification on our argument system presented in Construction 3

is that the client also wants to outsource the storage of her input, the database D,

to the server. To do so, initially, the client views its database D as an array of

|D| elements (where |D| is equal to number of rows times number of columns) and

computes the multilinear extension D̃. Note that the number of variables in D̃ is

logarithmic in the total size of D. Next, the client generates a commitment com

to D̃ using our polynomial-delegation protocol, stores com locally, and uploads D

to the untrusted server. We stress that this phase does not depend on any specific

queries the client may choose to issue later.

Construction 4. Let λ be a security parameter, let D be a database and let F be a

prime-order field with |F| exponential in λ.

Setup phase. On input 1λ and a database D ∈ D, the client picks a parameter N ≥

|D| such that N ∈ O(|D|), which denotes an upper bound on the size of databases (in

terms of values in the database) that can be supported, and sets n = dlogNe. Let D̃

denote the multilinear extension of D. The client runs KeyGen(1λ, n, 1) to compute

public parameters pp, and Commit(D̃, pp) to compute commitment com on D̃. It

49



then sends (D, pp, com) to the server and stores (pp, com).

Evaluation phase. Let (x0, . . . , xN−1) be the current version of the database D

stored by the server and let com be the commitment stored by both client and server.

Given a query Q ∈ Q, let C be a depth-d circuit over F that evaluates Q on input D

and (possibly empty) auxiliary input B ∈ F|B|. Assume w.l.o.g. that |B| = (2m−1)·N

for some integer m. Partition the input of C into 2m arrays (B1, . . . , B2m) each

of size N with B1 corresponding to D and the rest corresponding to the auxiliary

input. Finally, let B̃1, . . . , B̃2m denote the corresponding multilinear extensions of

B1, . . . , B2m where B̃1 = D̃.

• If Q is a selection query, the two parties then interact as follows:

1. S computes the necessary auxiliary input B2, . . . , B2m, and runs Commit(B̃i, pp)

for 2 ≤ i ≤ 2m to obtain values com2, . . . , com2m, which it sends to C.

2. C runs Vcmt,1+2 and S runs Pcmt to evaluate C(B1, . . . , B2m). If Vcmt,1+2 rejects

at any point, C outputs 0. Otherwise, let rd, ad be the final values returned by

Vcmt,1+2. Let Ṽd be the multilinear extension of the input layer of C. At this

point, C must verify that Ṽd(rd) = ad, which is done as follows.

3. C sends to S values ρ(1), . . . , ρ(2
m) ∈ Fn−1 chosen uniformly at random.

4. S parses rd as rd := (κ1, . . . , κm+n) and defines r′d := (κm+1, . . . , κm+n). S

then sends to C the evaluations (v1, . . . , v2m) of polynomials B̃1(r
′
d), . . . , B̃2m(r′d)

along with corresponding proofs πi computed by Evaluate(B̃i, r
′
d, ρ

(i), pp), for all

1 ≤ i ≤ 2m.

50



5. C runs Ver(comi, r
′
d, vi, πi, ρ

(i), pp) for 1 ≤ i ≤ 2m. If any execution outputs 0,

C outputs 0. Otherwise, C defines r′′d := (κ1, . . . , κm) and computes Ṽd(rd) by

combining values v1, . . . , v2m as per Equation 2.1. If Ṽd(rd) 6= ad, C outputs 0,

otherwise 1.

6. The output of S is set to C(B1, . . . , B2m).

• If Q is an update query, the two parties then interact as follows:

1. S computes the necessary auxiliary input B2, . . . , B2m, and runs Commit(B̃i, pp)

for 2 ≤ i ≤ 2m computing values com2, . . . , com2m. Moreover, it computes

the multilinear extension Ṽout of the output of C(B1, . . . , B2m) and runs

Commit(Ṽout, pp) to compute output commitment comout. Finally, it sends

comout, com2, . . . , com2m to C.

2. C chooses r0 ∈ Fn, (the output of C is the entire new database which by

assumption is at most N therefore its multilinear extension operates on n =

logN elements), and sends it to the server along with a uniform value ρout ∈

Fn−1.

3. S responds with a0 = Ṽout(r0) and corresponding proof πout computed with

Evaluate(Ṽout, r0, ρout, pp).

4. C runs Ver(comout, r0, a0, πout, ρout, pp) and rejects if it outputs 0.

Otherwise, C runs Vcmt,2 while S runs Pcmt,2 on common input r0, a0. If

Vcmt,2 rejects at any point, C outputs 0. Otherwise, let rd, ad be the final

values returned by Vcmt,2. Let Ṽd be the multilinear extension of the input

51



layer of C. At this point, C must verify that Ṽd(rd) = ad. This is achieved

by having C and S perform steps 3–5 from above.

5. The output of S is set to C(B1, . . . , B2m) and comout. If C accepts, it sets

com← comout.

We have the following theorem:

Theorem 6. If Construction 2 is an extractable, verifiable polynomial-delegation

protocol, then Construction 4 is a verifiable database system for SQL queries.

If Construction 4 is executed on a database D with |D| values, to evaluate a

query expressed as a non-deterministic, depth-d arithmetic circuit C with at most S

gates per layer, that consists of parallel copies of a circuit C ′ with at most S ′ gates

per layer, followed by a post-processing circuit C ′′ of size O(|C|/ log |C|), and with

auxiliary input B, then

1. The running time of Setup is O(|D|).

2. Evaluate requires O(d logS) rounds of interaction.

3. The running time of C is O(k + d · polylog(S) + d|B|/|D|e log(|D|)), where k is

the size of the result for selection queries and k is O(log |D′|) for updates (D′ is

the output size).

4. The running time of S is O(|C| · logS ′ + (|B|+ |D|) · polylog(|B|+ |D|)).

Proof. The correctness requirement immediately follows from the construction of

(Setup,C, S). We now proceed to analyze the complexities of Setup, Evaluate, C and

52



S. First note that the multilinear extension for D, as computed by Setup, contains

N terms. Thus, using an optimization from [69, Appendix D], KeyGen,Commit

take time O(N) = O(|D|) which is the total running time for Setup. The number

of rounds of interaction during Evaluate follow directly by the execution of the

CMT protocol. The overall running time of C for a selection query results from

executing the first two steps of V from Construction 1 which has running time of

O(k + d · polylog(S)) from Theorem 2 (as the last step of V is omitted). This is

followed by a series of O(d|B|/|D|e) executions of Ver from Construction 2, each

for a polynomial of log |D| variables and variable-degree 1. This yields an overall

running time of O(d|B|/|D|e·log |D|) For updates, the only difference is that the first

step of V is replaced by an execution of Ver from Construction 2 for a polynomial

of log |D| variables and variable-degree 1, which is subsumed by O(polylog(S)).

The running time of S (again using the optimization from [69]) is the sum of the

running time of P in Construction 1 (O(|C| · logS ′) as per Remark 2) and a number

of Evaluate from Construction 2 for ` = log |D| and d = 1. Using an FFT for

polynomial division (as in [69]), the cost for Evaluate can be upper bounded by

O((|B|+ |D|) · polylog(|B|+ |D|)).

Finally, we prove the soundness property. Assume that there exists an adver-

sary Adv which is able to break the soundness of the verifiable database system.

We will use Adv in order to construct an adversary Adv′ which is capable of either

breaking the soundness property of our verifiable polynomial-delegation protocol or

the soundness of the CMT interactive protocol.

Indeed, let Adv be an adversary which is capable of breaking the security of

53



Construction 3. We build Adv′ as follows.

1. On input security parameter 1λ Adv′ runs Adv(1λ) to receive database D0 and

picks large enough bound parameter N .

2. Adv′ plays the security game of the verifiable polynomial-delegation scheme (Def-

inition 3). He sends variable parameter n = dlogNe and degree parameter d = 1

and receives pp← KeyGen(1λ, n, 1) and sends pp to Adv.

3. Adv′ computes the multilinear extension D̃0 of D0 (parsed as an array of N

elements) and computes com0 ← Commit(D̃0, pp). He then sends (com0, pp) to

Adv. The latter responds with upper bound t.

4. Adv′ chooses i′ uniformly at random from [t]. Then, for all 1 ≤ i < i′, Adv′

performs the following.

(a) Adv′ receives query Qi and 2m− 1 commitments comi
2, . . . , com

i
2m related to

auxiliary inputs Bi.

i. Qi is a selection query (Qi ∈ S). In this case Adv sends Adv′ the

query’s output yi.

ii. Qi is an update query (Qi ∈ U). In this case Adv sends Adv′ a

commitment comi
out corresponding to the query’s result (instead of the

query’s output).

(b) Adv′ emulates Adv’s interaction with C during the Evaluate protocol. If the

output of C is 0, Adv′ aborts. Otherwise, if Qi ∈ S Adv′ sets Di ← Di−1 and

comi ← comi−1. If Qi ∈ U Adv′ sets Di ← Qi(Di−1) and comi ← comi
out.

54



5. If Qi ∈ S and yi = Qi(Di−1) Adv′ aborts.

6. If Qi ∈ U and Commit(Qi(Di−1)) = comi
out Adv

′ aborts.

7. If Qi ∈ S and yi 6= Qi(Di−1) For all 2 ≤ j ≤ 2m Adv′ runs the extractor Ej

(see below for a description) that outputs the pre-image of comj As a result Adv′

receives an output oj. Adv′ attempts to parse oj as a variable-degree-1 n-variate

polynomial B̃j. If this step fails Adv′ aborts. Otherwise, Adv′ proceeds as follows.

(a) Since (B̃2, . . . , B̃2m) are variable-degree-1 n-variate polynomials, B̃j is a valid

multilinear extension of an array of N elements Bj, for all 2 ≤ j ≤ 2m (as

per Section 2.2).

(b) Adv′ initializes the soundness game with Vcmt (as per Definition 1) on

Ci, (Di−1, B2, . . . , B2m , yi), where Ci is the depth−d circuit representation

of Qi.

(c) Adv′ emulates Adv’s interaction with C during the Evaluate protocol. At any

point where Adv requires a random point from C, Adv′ requests a random

point from Vcmt and forwards it to Adv.

(d) At the end of the execution of Evaluate for the round corresponding to the

input layer of Ci, let ad be the claimed evaluation of the multilinear extension

of the inputs on point rd, as provided by Adv.

(e) At this point, Adv requires from C randomized challenges ρ(1), . . . , ρ(2
m) to

produce the evaluations of the 2m multilinear extensions of the input chunks

of Ci on challenge point r′d. Adv
′ requests ρ(1) from the verifiable polynomial

55



delegation challenger, generates ρ(2), . . . , r(2
m) uniformly at random himself

and sends them all to Adv. Adv responds with evaluations v1, · · · , v2m and

proofs π1, . . . , π2m .

(f) It holds that v1 6= D̃i−1(r
′
d). In this case Adv′ outputs (comi−1, r′d, v1, π1, ρ

(1), pp)

as the challenge input to Ver and halts.

(g) It holds that v1 = D̃i−1(r
′
d). Adv′ checks that B̃j(r

′
d) = vj, for all 2 ≤

j ≤ 2m. If any check fails, he aborts. Otherwise, he outputs ad as the final

evaluation to Vcmt, where ad is the claimed evaluation received by Adv′ for

the evaluation of the multilinear extension of the input of Ci on point rd

and halts.

8. If Qi ∈ U and Commit(Qi(Di−1)) 6= comi
out For all 2 ≤ j ≤ 2m Adv′ runs the

extractor Ej that outputs a pre-image of comj (see below for a description), receiv-

ing output oj. Moreover, Adv′ runs the extractor Eout that outputs a pre-image of

comout receiving output o′. Adv′ attempts to parse each of oj as a variable-degree-

1 n-variate polynomial B̃j and likewise for o′ and a variable-degree-1 n-variate

polynomial Ỹ . If this step fails Adv′ aborts. Otherwise, Adv′ proceeds as follows.

(a) Since (B̃2, . . . , B̃2m , Y ) are variable-degree-1 n-variate polynomials, B̃j is a

valid multilinear extension of an array of N elements Bj, for all 2 ≤ j ≤ 2m

(as per Section 2.2). Likewise, Ỹ is a valid multilinear extension of an array

Y of N elements.

(b) Adv′ initializes the soundness game with Vcmt (as per Definition 1) on

56



Ci, (Di−1, B2, . . . , B2m , Y ), where Ci is the depth−d circuit representation

of Qi.

(c) Adv′ emulates Adv’s interaction with C during the Evaluate protocol. At any

point where Adv requires a random point from C, Adv′ requests a random

point from Vcmt and forwards it to Adv.

(d) During the execution of Evaluate for the round corresponding to the output

layer of Ci, Adv requires from C randomized challenge ρ(out) to produce the

evaluation of the multilinear extension of the output of Ci on point r0. Adv′

generates ρ(out) uniformly at random and sends it to Adv. Adv responds with

evaluation vout and proof πout.

(e) Adv′ checks that Ỹ i(q0) = viout. If the check fails, he aborts. Otherwise he

continues emulating Adv’s interaction with C during the Evaluate protocol.

(f) Adv′ proceeds to run steps 7d-7g above.

Since Adv and the algorithms of the verifiable database scheme run in time polyno-

mial in λ, it follows that Adv′ also runs in time polynomial in λ. Let us now argue

about the success probability of Adv′.

We begin by defining the extractors Ej necessary for retrieving the commitment

pre-images. Let µ be the number of commitments output by Adv during round i′

(µ = 2m − 1 or 2m depending on the type of Qi), and Ti′ be the transcript that

consists of all the inputs received by Adv during the i′ − 1 first rounds.

Let Adv′′ denote the adversary that 1λ, pp and Ti′ as auxiliary input z1, and

interacts internally with Adv as follows.

57



• Use z1 to recreate the state of Adv right until the beginning or round i′.

• Upon receiving com1, . . . , comµ in the beginning of round i′, output them.

• Receive point r′d, randomized challenges ρ(1), . . . , ρ(µ), and auxiliary input z2

that consists of all the messages exchanged during the CMT execution in round

i′.

• Use z2 to recreate the state of Adv until the end of the CMT execution in

round i′.

• Upon receiving evaluations v1, . . . , vµ and proofs π1, . . . , πµ from Adv, output

them.

Finally, let Adv′′j for j = 1, . . . , µ denote the adversary that receives the same input

as Adv′′ and runs the exact same code, but only outputs comj initially and vj, πj

finally.

By the knowledge soundness property of our verifiable polynomial delegation

protocol, for each Adv′′j there exists Ej that on input (1λ, pp, z1) outputs variable

-degree 1, n-variate polynomial B̃j such that, if Ver accepts, then Commit(B̃j, pp) =

comj and B̃j(r
′
d) = vj with all but negligible probability. Here, we need to make the

assumption that the auxiliary inputs z1, z2 comes from a benign distribution.1

1We stress that, in our construction, z1, z2 consist of values that are chosen uniformly at random

from their respective domains (random evaluation points for the CMT execution and randomized

challenges for the verifiable polynomial delegation), therefore assuming that this distribution is

benign seems like a mild assumption.

58



We denote by EAdv the event that Adv wins the soundness game of the verifiable

database system (as per Definition 4) and by EAdv′ the event that Adv′ wins the

soundness game of the verifiable polynomial-delegation protocol (as per Definition 3)

or the soundness game of the interactive protocol (as per Definition 1). By definition,

EAdv takes place if and only if there exists 1 ≤ i ≤ t such that Qi ∈ S ∧ bi =

1 ∧ yi 6= Qi(Di−1). We denote by E1 the event that there exists 1 ≤ i′′ ≤ t such

that Qi′′ ∈ U ∧ bi′′ = 1 ∧ Commit(Qi′′(Di′′−1) 6= comi′′
out, i.e., the event that Adv

produced an update query and an incorrect commitment for round i′′. Note that

Pr[EAdv] = Pr[EAdv∧E1]+Pr[EAdv∧Ec
1) where Ec denotes the complement of event

E.

Regarding the probability that Adv′ wins we can write

Pr[EAdv′ ] ≥ Pr[EAdv′|EAdv ∧ E1 ∧ i′ = i′′] Pr[EAdv ∧ E1 ∧ i′ = i′′]

+ Pr[EAdv′ |EAdv ∧ Ec
1 ∧ i′ = i] Pr[EAdv ∧ Ec

1 ∧ i′ = i]

=
1

t

(
Pr[EAdv′ |EAdv ∧ E1 ∧ i′ = i′′] Pr[EAdv ∧ E1])

+ Pr[EAdv′ |EAdv ∧ Ec
1 ∧ i′ = i] Pr[EAdv ∧ Ec

1]
)

where the last step follows from the fact that i′ is chosen uniformly at random.

We now lower-bound Pr[EAdv′|EAdv ∧ E1 ∧ i′ = i′′] as follows. Conditioned on

EAdv ∧ E1 ∧ i′ = i′′, Adv′ provides a perfect emulation of C to Adv during the first

i′′ − 1 rounds. Moreover, assuming Adv′ does not abort in round i′′, he provides a

perfect emulation for both Adv′ and Vcmt for round i′′ up to, and including, step 7d.

If v1 6= D̃i′′−1(r
′
d) then the tuple (comi−1, r′d, v1, π1, ρ

(1)i, pp) is indeed a valid chal-

lenge for the soundness game of the verifiable polynomial protocol, therefore Adv′

59



wins. Otherwise, v1 = D̃i′′−1(r
′
d), and it follows that ad is the correct evaluation of

the multilinear extension of the input layer of Ci, therefore Adv′ wins. From the

above it follows that Pr[EAdv′|EAdv ∧ E1 ∧ i′ = i′′] = 1 − Pr[Adv′ aborts in round

i′′|EAdv ∧ E1 ∧ i′ = i′′]. Note that conditioned on EAdv ∧ E1 ∧ i′ = i′′, Adv′ will only

abort if any of the checks in steps 8, 8e, 7g fail, i.e., the extraction of the pre-image

polynomials for output and auxiliary input fails. By the knowledge soundness prop-

erty of the verifiable delegation protocol (and since, conditioned on EAdv, Ver which

is a subroutine of C outputs 1 for all of them), each of them can fail with probability

neg(λ). Since there are only O(poly(λ)) many of them, by a simple union bound we

get that Pr[EAdv′|EAdv ∧ E1 ∧ i′ = i′′] ≥ 1− neg(λ)

We can lower-bound Pr[EAdv′ |EAdv ∧ Ec
1 ∧ i′ = i] in a similar manner. Con-

ditioned on EAdv ∧ Ec
1 ∧ i′ = i, Adv′ provides a perfect emulation for Adv for all

rounds before the ith, and for both Adv and Vcmt for round i up to, and including,

step 7d. With the same argument as above, under these conditions Adv′ always

wins the game unless he aborts at round i. This last probability is again negligible,

i.e., neg′(λ) (for some neg′ not necessarily equal to neg defined above) due to the

knowledge soundness property of the verifiable delegation protocol. By substituting

in the above equation (and assuming without loss of generality that neg ≥ neg′) we

get

Pr[EAdv′ ] ≥
1

t

(
(1− neg(λ))(Pr[EAdv ∧ E1] + Pr[EAdv ∧ Ec

1])
)

=
1

t

(
(1− neg(λ)) Pr[EAdv]

)
=

Pr[EAdv]

t
− neg(λ).

Assuming Adv wins with non-negligible probability in λ, we get that Adv′ also wins

60



with non-negligible probability in λ (since t is polynomial in λ) which concludes our

proof.

4.5 Optimizations for SQL Queries

In this section, we introduce additional optimizations to improve the efficiency

of our argument system for SQL queries. In particular, we leverage the ability of our

scheme to efficiently handle auxiliary inputs in order to: (i) achieve faster equality

testing (which is useful for selection queries), (ii) allow for input/output gates at

arbitrary layers of the circuit with minimal overhead, and (iii) verify the results of

set intersections using a smaller number of gates (which is useful for join queries).

Finally, we discuss how to support expressive SQL updates, and how simple updates

(that consist of assigning values to unused table cells) can be verified using one round

of interaction.

Most of the optimizations discussed below exploit various techniques for con-

structing efficient representations of computations commonly when answering SQL

queries. These techniques include modifying the queries’ circuit representations in

order to utilize auxiliary inputs, encoding some of the query computations directly

as polynomials, and utilizing interaction in order to reduce the circuit size. Since

these modifications are applied directly to the underlying circuit being computed,

security when using these optimizations follows readily from security of our protocol.

61



4.5.1 Optimizing Equality Testing

A very common subroutine used in both selection and join queries is testing

whether two values are equal, which can be reduced to testing whether their dif-

ference is 0. Here we show how we can efficiently perform such zero tests using

auxiliary input provided by the prover.

Optimized zero testing. Ideally, we would like a small arithmetic circuit that

takes as input a field element x and outputs x′ = 0 if x = 0 and x′ = 1 otherwise.

It is well known [36] that, by relying on Fermat’s little theorem, this can be done

by computing x′ = xp−1 (where p is the field size). This approach is relatively

expensive, however, since it requires a circuit of size and depth O(log p). Instead,

we will construct a non-deterministic circuit for this task that has two outputs x′, z

and satisfies the following: x = 0 iff there is an auxiliary input y such that x′ = 0

and z = 0; also, x 6= 0 iff there is an auxiliary input y such that x′ = 1 and z = 0.

Thus, the rest of the computation can use x′, and the client will additionally verify

that z = 0.

We can achieve the above by computing x′ = xy and z = x · (1 − xy). Note

that setting y = x−1 if x 6= 0 (and setting y arbitrarily otherwise) yields correct

values for x′ and z. Moreover, if x = 0 then x′ = z = 0 for any choice of y, and

if x 6= 0 then the only way to force z = 0 is to set x′ = 1. We note that the same

high-level idea has appeared before (e.g., [71,76]) in the context of SNARKs that are

defined based on constraint systems. In our case, the CMT protocol only supports

the evaluation of arithmetic circuits (and not constraint systems), and so we need

62



y1x1 xM yM

C2C1

⇥

⇥

⇥

⇥

R

R

R

R1� 1�

zMz1

Layer 0

Layer 1

Layer 2

Layer 3 . . .

. . .

Figure 4.1: Zero testing. If zi = 0 then the input to C2 is a 0/1 value indicating

whether xi is zero.

a slightly different technique.

Enforcing zero values. A trivial implementation of the above would require the

server to send all the x′, y values to the client, resulting in the client performing

work linear in the number of zero tests. Since zero testing may be done at least

once per database row, this will lead to large overheads.

Instead (cf. Figure 4.1), we split the computation into two parts: (i) a circuit

C1 that computes z = x(1− xy), and (ii) a circuit C2 that evaluates the SQL query

using the result of the zero test (i.e., x′ = xy). Without loss of generality, we assume

the result of the zero test is used at the input layer of C2, as shown in Figure 4.1.

The client and the server will run two separate interactive proof protocols for C1

and C2. First, the protocol for C2 is executed up to one layer before its input layer

(i.e., the client and server pause before proceeding to its input layer). After that,

the protocol for C1 is initiated. Note that the honest prover does not need to send

63



any of the outputs of C1 to the verifier since the verifier knows all of them are

supposed to be 0. Moreover, in order to initiate the execution of this protocol, the

verifier needs to compute the multilinear extension of the outputs of C1 evaluated at

a random point. Since the multilinear extension of the 0-vector is the 0-polynomial,

this step is free. Once the interactive protocol for C1 finishes layer 1, the verifier

uses the same randomness for the next layer of both circuits (layer 2 of C1 and the

input layer of C2, which have the same values).2 This reduces the claims in both

executions to a single evaluation of the multilinear extension of the joint input for

that layer. Finally, layer 3 (the input layer) of C1 is verified normally. In this way,

the prover’s overhead for zero testing is only linear in the size of C1, which only has

3 layers. The verifier’s overhead is only polylogarithmic in the size of C1.

In our experiments (where dlog pe = 254), the above zero testing and enforce-

ment method yield an 80× speedup for both prover and verifier compared to the

deterministic approach using Fermat’s little theorem.

Handling conjunctions and disjunctions. In multi-dimensional SQL selection

queries, AND or OR operators are applied on the results of multiple selection clauses

over different columns, and thus the number of zero tests required potentially grows

with the number of columns. But note that OR clauses can be trivially reduced

to a single zero test; e.g., testing x1 = 0 ∨ x2 = 0 reduces to testing x1x2 = 0.

We further observe that AND clauses can also be reduced to a single zero test if

the input values are known to be in a bounded range. For example, if it is known

2Using the same randomness for both C1 and C2 does not affect the soundness of the CMT

protocol here.

64



that −
√
p/2 < x1, x2 <

√
p/2 then we may reduce evaluating the conjunction

x1 = 0 ∧ x2 = 0 to evaluating whether x21 + x22 = 0. In particular, if all values in

question are 32 bits long and p is a 254-bit value, then we can test conjunctions

involving up to 2189 values using just a single zero test. Alternatively, we can handle

conjunctions using packing: e.g., if x1, x2 are 32-bit values (and |p| > 64) then

testing whether x1 = 0 ∧ x2 = 0 is equivalent to testing whether 232x1 + x2 = 0.

These approaches ensure the number of required auxiliary inputs (as well as the size

of the zero-test circuit) for a multi-dimensional selection query depends linearly on

the number of rows in the table and is almost independent of the number of columns

involved in the query.

4.5.2 Supporting Inputs/Outputs at Arbitrary Circuit Layers

So far, we have assumed that the circuit being computed takes all its inputs at

the same layer, and produces all its outputs at the same layer. This is without loss

of generality since one can always define a “relay” gate that simply passes its input

to the next layer. In practice however, such relay gates will contribute some cost to

the execution of the interactive-proof protocol [81]. For many natural SQL queries,

this might even result in a highly inefficient circuit where most gates are relay gates.

For example, consider an SQL query of the form SELECT ∗ FROM T WHERE coli = x.

A circuit for evaluating this query takes the entire table as input, but only values

from the ith column are involved in the selection process. All the other values, from

all other columns, are simply relayed between the various circuit layers.

65



Avoiding relaying the inputs. We now describe a technique that avoids relay

gates by leveraging the property of the multilinear extension described in Section 2.2.

Concretely, consider a circuit C such that some internal layer k operates on 2M

values with m = dlogMe. Assume the second half (denoted by B) of the 2M values

are “fresh inputs” (these may either be from the database itself, or auxiliary input

from the prover), while the first half (denoted by A) come from layer k + 1. Before

running the CMT protocol for C, the verifier holds the commitment (either obtained

from the preprocessing or received from the server) to the multilinear extension, Ṽ B
k ,

of the fresh inputs to the kth layer. Next, during the execution of the CMT protocol,

the client receives the evaluation of the multilinear extension of the values at layer

k, i.e., Ṽk(r1, . . . , rm+1), at some random point (r1, . . . , rm+1) as before. As only the

first M wires (corresponding to A) are connected to layer k + 1, the client needs to

obtain the evaluation of the multilinear extension (denoted by Ṽ A
k ) of the first M

values, at a random point and use it to continue the CMT protocol for layer k + 1.

This is done as follows. By Equation 2.1 in Section 2.2, we have Ṽk(r1, . . . , rm+1) =

(1−r1)Ṽ A
k (r2, . . . , rm+1)+r1 ·Ṽ B

k (r2, . . . , rm+1). Since B are all input gates, the client

can request the evaluation of Ṽ B
k at point (r2, . . . , rm+1) along with a correspond-

ing proof (using the verifiable polynomial-delegation protocol). Next, the client

computes Ṽ A
k (r2, . . . , rm+1) =

(
Ṽk(r1, . . . , rm+1)− r1 · Ṽ B

k (r2, . . . , rm+1)
)
/(1 − r1),

obtaining an evaluation of Ṽ A
k at the random point (r2, . . . , rm+1). The client then

uses it to continue the execution of the CMT protocol for layer k + 1 as usual.

We note that similar optimizations can be performed in order to avoid relying

output gates as well.

66



Generalizations. For both inputs and outputs, using Equation 2.1 allows us to

avoid relaying a number of input and the output gates. We notice that the number

of input (resp. output) gates does not have to be half of the total number of gates

in the layer, but can be any fraction 1/m′ such that m′ is a power of 2. Moreover,

while we described the solution assuming that the “fresh” inputs at some layer are

all in the second half of the inputs to that layer, this is not required. With small

modifications we can accommodate more complicated wiring patterns, e.g., the case

where odd wires are routed from the previous layer and even wires are fresh inputs

to the circuit.

4.5.3 Verifying Set Intersections

A join operation requires computing the intersection of two large sets of column

values (assuming for now there are no duplicates). The naive way to compute the

intersection of two N -element sets, where each element is represents using z bits,

requires a circuit that performs N2 equality tests on z-bit inputs. We describe here

several ways this can be improved.

A sorting-based O(zN log2N) solution. An asymptotic improvement can be

obtained by first sorting the 2N elements, and then comparing consecutive elements

in the sorted result. Sorting can be done using O(N log2N) comparator gadgets of

width z, resulting in a circuit of size O(zN log2N) overall. The concrete overhead

of this approach is high, as each comparator must be implemented by decomposing

the inputs to their bit-level representations.

67



A routing-based O(zN + N logN) solution. Prior literature on SNARKs [16]

improves the above by relying on auxiliary input from the prover to replace sorting

networks with switching networks that can induce arbitrary permutations on N

elements. Using this approach, the server will simply specify the permutation that

sorts the elements; the client can verify that the elements are sorted in linear time.

Switching networks can be built using O(N logN) gadgets that swap their inputs if

an auxiliary bit is set to 1. The total complexity of this approach is O(zN+N logN).

An O(zN) interactive solution. In our setting, where we have interaction, we

can do better. We simply have the server provide the sorted list x′1, . . . , x
′
2N cor-

responding to the original items x1, . . . , x2N . The client can verify that the new

list is sorted in O(N) time, so all that remains is for the client to verify that it

is a permuted version of the original list. This can be done by having the server

commit to the new values (as part of the auxiliary input he computes) using our

verifiable polynomial-delegation scheme. The client then chooses and sends to the

server a uniform value r, and both parties then run an interactive proof protocol to

verify that
∏N

i=1(xi− r)−
∏N

i=1(x
′
i− r) = 0. Overall, this approach requires O(zN)

auxiliary inputs and gates.

Sorting 0 values. The concrete cost can be further reduced as follows. In case

many of the elements are 0, after the sorting step they will be pushed to the

front of the auxiliary-input array (assuming, for simplicity, that all values are non-

negative). Instead of providing one auxiliary input per element, it suffices for the

prover to tell the verifier the number of non-zero elements, and only provide aux-

68



iliary inputs for those. For example, assume only the last 1/m of elements are

non-zero (where m is a power of 2), using Equation 2.1 in Section 2.2, the eval-

uation of the multilinear extension for all elements at point r = (r1, . . . , rlog(mn))

is Ṽ (r) = r1 . . . rlogmṼm(rlogm+1, . . . , rlogmn), where Ṽm is the multilinear extension

of the non-zero elements. Thus, the size of the auxiliary input and the number of

necessary comparisons only depend on the number of non-zero elements (as opposed

to the total number of elements).

In the context of SQL queries, the scenario above is very common. Consider

a query where a join clause is applied on the result of two range queries. It is

often the case that only a small portion of rows in the table fall within the bounds

imposed by the latter. Therefore, after evaluating the range selection, the values in

these rows will be propagated through the circuit, while the values in all other rows

will effectively be set to 0. The join query (and therefore the sorting) will then be

applied on this result which has the property that many of its elements are 0. Thus

the above optimization can significantly lower the join evaluation cost in this case.

Sorting multiple columns. Another challenge arises when the output of a join

query includes more than just the reference column, e.g., SELECT ∗ FROM T1,T2,

WHERE T1.coli = T2.colj. In this case, in order to compute the set intersection using

the above interactive method, the verifier must make sure that the prover permuted

all of the columns of T1 (resp., T2) with the same permutation used for coli (resp.,

colj).

We achieve this using the following packing technique. Assume for simplicity

69



that each database row has two columns with values xi, yi respectively, and that

the elements are arranged as tuples (x1, y1), · · · , (xN , yN). Suppose the elements

xi, yi have length at most z bits, with z < blog pc/2. To sort both columns based

on the xi values, we ask the server to provide auxiliary inputs (a1, . . . , a2N) =

(xπ(1), yπ(1), · · · , xπ(N), yπ(N)), such that the {xπ(i)} are sorted and the {yπ(i)} are

permuted by the same permutation. The client then chooses and sends to the

server two random values r1, r2, and both parties run the interactive proof protocol

described above for the following three checks:

1.
∏N

i=1(xi − r1)(yi − r1)−
∏2N

i=1(ai − r1) = 0;

2.
∏N

i=1(bi − r2)−
∏N

i=1(b
′
i − r2) = 0, where bi = xi + yi2

z and b′i = a2i−1 + a2i2
z;

3. (a1, a3, . . . , a2N−1) are sorted.

The first check guarantees that ais are a permutation of xi, yis, which also implies

that ais have length at most z bits. Now as xi, yi, ais all have length at most z bits,

the second check guarantees that ∃π : a2i−1 = xπ(i) and a2i = yπ(i) (note that we

cannot omit the first check as there exist ais with more than z bits that can pass

the second check). This, together with the last check, guarantees xπ(i)s are sorted

and yπ(i)s are permuted by the same permutation.

The technique generalizes naturally to sort multiple columns based on a refer-

ence column. As long as the packing result does not overflow in Fp, we can pack all

the columns. Otherwise, we can duplicate the reference column, perform a separate

packing of subsets of columns, and sort them separately. In particular, assuming

z = 32 and p is 254 bits long, we can pack up to 7 columns in a single field element.

70



Handling duplicate values. Finally, if there are duplicate values in the reference

columns, the result of a join query can no longer be described as a set intersection.

In this case, a pairwise comparison of the elements of the two columns, viewed

as multisets, provides the correct result but the cost is quadratic in the number

of database rows. Instead we can do the following. First, we extract the unique

values from each multiset (using a linear-size circuit as described in [78]). Then we

compute the intersection of the resulting sets with our previous technique for the

case of no duplicates. Following this, we apply again the same technique to intersect

this intersection with each of the original multisets. This returns two multisets such

that: (i) each of them contains exactly those elements that appear in both original

multisets, and (ii) every element appears in each multiset exactly the same amount

of times as it appeared in the the corresponding original multiset. Finally, the join

result can be computed with a pair-wise comparison of the elements of these two

multisets. Note that the cost for this final step is asymptotically optimal as it is

exactly the same as simply parsing the join’s output.

4.5.4 Supporting Expressive Updates

A common problem of existing dynamic authenticated data structures (e.g., [67,

91]) is that they support limited types of updates: element insertions and deletions.

Thus, they cannot handle general updates that can be expressed as SQL queries

themselves, e.g., the query UPDATE Employees; SET Salary = 45000; WHERE Age =

33.

71



The main reason such update queries are hard to handle is that the client

must eventually compute the corresponding updated database commitment. With-

out access to the database, it must again rely on the untrusted server to provide

this new commitment. SNARK-based constructions can support expressive updates

by including the commitment computation in the circuit. However, this would con-

siderably increase the prover’s overhead.

Our approach avoids this cost by separating the computation of the update

from its verification. First, the server computes the updated database normally, and

commits to the multilinear extension of the result using our verifiable polynomial

delegation scheme. The client and server then verify that the update was performed

correctly by running the CMT protocol on the circuit that performs the update.

In order to initiate the CMT protocol, the client needs to compute the multilinear

extension of the updated database (which is here the circuit’s output) and evaluate

it on a random point. This would naively require transmitting the entire updated

database back to the client. Instead, we rely on the server to compute the evaluation

for the client, and verify this value using our verifiable polynomial-delegation scheme.

Once this is done, the remainder of the CMT evaluation proceeds normally.

4.5.5 Efficient Value Insertions

As explained above, our construction can handle any update query by having

the server evaluate the update-query circuit and then commit to the output as the

new digest. For simple updates such as adding/subtracting a constant from an

72



element, we have a much simpler mechanism. By utilizing the closed form of the

multilinear extension, in order to add a constant v to the bth entry in the database,

the multilinear extension of the database is increased by Xb(x1, · · · , xn)v (as defined

in Equation 2.1). Therefore, the client only needs to multiply the commitment of

the database by gXb(x1,··· ,xn)v = pvb , where pb is the bth element of the public key P. In

practice, as the size of P is linear in the size of the database, the client can outsource

its storage to the server and obtain an authenticated value of pb using a Merkle hash

tree or digital signatures. Thus, simple updates of this form can be handled with

one round of interaction, and the running time for both parties is logarithmic in the

database size using a Merkle tree, or constant using a digital signature scheme. The

update above also captures inserting a new element/row to the database, which is

adding their values to previously unused cells.

4.6 Experimental Results

4.6.1 Experimental Setup

We implemented our constructions (including the circuit generator and CMT

protocol) in C++, and compiled it with g++ 4.8.4. We use the NTL library [7]

for number-theoretic operations, and SHA-256 from the OpenSS libraryL [8] to

instantiate a random oracle. For the bilinear pairing we use the ate-paring library [1]

on a 254-bit elliptic curve. The EMP toolkit [86] was used for the network I/O

between the server and the client.

Since the running time of our verifiable polynomial-delegation protocol is over-

73



whelmingly dominated by the modular exponentiations, in what follows we estimate

the running time of this component of our system by simply performing the same

number of exponentiation operations (using the same setup as above).

Hardware and network. Our experiments were executed on two Amazon EC2

c4.8xlarge machines running Linux Ubuntu 14.04, with 60GB of RAM and Intel

Xeon E5-2666v3 CPUs with 36 virtual cores running at 2.9 GHz. For the WAN

experiments, we used machines hosted in two different regions, one in the US East

and the other in the US West. The average network delay was measured at 72ms

and the bandwidth was 9MB/s. For each data point, we collected 10 experimental

results and report their average.

Database setup. We evaluate performance using the TPC-H benchmark [9], which

contains 8 synthetic tables and 22 SQL queries and is widely used by the database

community for performance evaluation. We represented decimal numbers, dates, and

categorical strings in the tables as elements in the field used by our constructions. In

our experimental evaluations, we do not consider substring or wildcard queries, and

the corresponding columns were discarded. The TPC-H database contains tables of

various sizes. The two largest tables used in our experiments contained 6 million

rows and 13 columns and 0.8 million rows and 4 columns, respectively.

TPC-H queries. We tested five TPC-H queries: query #2, #5, #6, #15, and #19.

As a representative example, query #5 is shown in Figure 4.2. It gives an example

of multi-way join queries on different columns of different tables. sub-query in line 6

is a selection query on table region, and the query in lines 7–8 is a range query on

74



1. SELECT n name, SUM(l extendedprice*(1-l discount))

2. AS revenue

3. FROM customer, orders, lineitem, supplier, nation, region

4. WHERE c custkey = o custkey AND l orderkey = o orderkey

5. AND l suppkey = s suppkey AND c nationkey = n nationkey

6. AND n regionkey = r regionkey AND r name = ’MIDDLE EAST’

7. AND o orderdate >= date ‘1997-01-01’

8. AND o orderdate < date ‘1997-01-01’+interval ’1’ year

9. GROUP BY n name

10. ORDER BY (revenue) DESC;

Figure 4.2: Query #5 of the TPC-H benchmark.

table order. Lines 4–6 consist of join queries among tables customer, order, lineitem,

supplier, nation, region. In line 1, the result is projected to three columns, two of

which are aggregated. Finally, in lines 9–10, the aggregated values are summed for

each unique value of n name, and sorted based on n name in descending order.

Query #2 is a nested query. The inner query consists of a 4-way join followed

by a MIN query, resulting in a single value. The outer query consists of selection

queries, where the result of the inner query is used as a constraint, followed by a 4-

way join and projections. Query #6 is a simple 3-dimensional range query followed

by an aggregation. Query #19 consists of range and selection queries on two tables,

followed by a single join query and an aggregation. Query #15 creates a new table

that is the result of a one-dimensional range query and a SUM query. All the other

75



queries in TPC-H are variants of these five queries with different dimensions and

constraints.

Query representation and field sizes. For every TPC-H query we implemented

a circuit generator that takes as input the database size and outputs an arithmetic

circuit for evaluating the specified query on a database of that size, using the op-

timizations described in Section 4.5 (when possible). We implemented both the

CMT protocol (Construction 1) and the verifiable polynomial-delegation protocol

(Construction 2) using a prime-order field with a 254-bit prime.

4.6.2 Performance Comparison: Selection Queries

We compare the performance of our construction with prior work, including

IntegriDB [91], a special purpose system optimized for a class of SQL queries, and

libsnark [6], the state-of-the-art general-purpose SNARK implementation. Below,

we report the results on queries #2, #5, #6, and #19.

For IntegriDB, we downloaded the implementation from [4] and executed it on

our machine. For libsnark, we estimated the performance as follows. For each query,

we first produced its circuit representation the jSNARK compiler [5], hardcodeding

the TPC-H dataset in the circuit. This resulted in a circuit which takes as inputs

the values used in selection and range queries. We then constructed a SNARK using

libsnark for this circuit, and report its performance. We note that this approach of

hardcoding the database and the query into the circuit yields a preprocessing phase

whose results are only useful for that specific query and database. In particular, the

76



results of the preprocessing phase cannot be reused for other queries or databases, or

even an updated version of the database. Although clearly unrealistic, this approach

gives a lower bound on the server time when using a SNARK-based approach.3 Even

with this more efficient approach, we were not able to generate SNARKs for circuits

containing more than 220 multiplication gates (see Table 4.7 for the circuit sizes

of the queries we used in our evaluation). Therefore, for experiments requiring

larger circuits, we estimated the cost assuming the prover time grows linearly in the

circuit size (this is, again, an underestimate since the prover time actually grows

quasilinearly in the circuit size).

Setup phase. The setup phases in both IntegriDB and vSQL are query independent

and thus need to be executed only once, after which any supported queries can

be handled. We run the setup phases of both IntegriDB and vSQL on all eight

TPC-H tables. The setup for vSQL took about 1,185 seconds. For IntegriDB, the

setup phase could not be completed on the entire TPC-H database due to excessive

memory consumption. Our estimate for the setup phase of IntegriDB was about

350,000 seconds. Our construction is about 295× faster than IntegriDB because

the complexity of our setup phase is linear in the number of columns compared to

quadratic in IntegriDB.

For libsnark, the setup time depends on the query. The fastest setup time,

for query #6, is estimated to take 36,000 seconds, which is an order-of-magnitude

3It is possible to use SNARKs that support arbitrary queries by constructing a SNARK for

a universal circuit [18] and supporting delegation of storage [29, 41]. However, these approaches

introduce additional overhead.

77



IntegriDB SNARKs vSQL (ours)

Query Server Client Server∗ Client∗ Server Client Total (WAN) Total (NI)

#19 6,376s 232ms 196,000s 6ms 4,923s 148ms 4,989s 4,923s

#6 1,818s 74ms 19,000s 6ms 3,878s 112ms 3,896s 3,878s

#5 7 7 615,000s 110ms 5,172s 305ms 5,379s 5,172s

#2 7 7 58,000s 40ms 2,421s 427ms 2,633s 2,421s

Figure 4.3: Comparison of server and client times for evaluating queries using Inte-

griDB, a SNARK-based approach and our construction. (See text for details.) The

numbers in columns marked by * are estimated. 7 denotes an unsupported query.

.

slower than vSQL. Running setup for all four queries is estimated to require about

1.7 · 107 seconds (roughly 197 days).

Evaluation phase. The results of the evaluation phase are summarized in Ta-

ble 4.3. The numbers reported in the “Server” column reflect the computation

time required for the server to evaluate the SQL query and produce a valid proof;

those in the “Client” column reflect the time for the client to verify the proof.

For vSQL, in the “Total (WAN)” column we also report the total end-to-end time

which includes the overhead due to communication between the client and server

over a WAN network. For comparison, the total time for IntegriDB and SNARKs

(which are non-interactive) is essentially the same as the server time, since the client

time is negligible. Note, however, that vSQL can be made non-interactive in the

random oracle model, virtually eliminating the cost of interaction at the negligible

expense of a small number of SHA-256 computations. We report the performance of

78



this non-interactive mode, including the SHA-256 computation time, under “Total

(NI).”

Evaluation phase: vSQL vs. IntegriDB. As shown in Table 4.3, IntegriDB

can only support queries #19 and #6, compared with vSQL which can support all

TPC-H queries. While being more expressive, the running times of vSQL’s client

and server are on the same order of magnitude as those of IntegriDB; in fact, for

query #19, vSQL’s server (resp., client) outperforms that of IntegriDB by about

23% (resp., 36%). We observe also that the cost of interaction for vSQL (even over

a WAN) is small, mainly because prover time is by far the dominating cost.

Evaluation phase: vSQL vs. SNARKs. Compared to libsnark, the server

time of our constructions is significantly faster (ranging from approximately 5×

for query #6 to approximately 120× for query #5). At a high level, the better

performance of vSQL is a consequence of two features. First, our construction is

mostly information-theoretic and the number of (relatively slow) cryptographic op-

erations it requires is linear in the input and output length, whereas SNARK-based

approaches require a number of cryptographic operations linear in the circuit size. In

addition, as described in Section 4.5, our construction leverages interaction and aux-

iliary input to reduce the size of a query’s circuit representation. Verification when

using a SNARK-based approach is faster than in vSQL since it requires only a num-

ber of cryptographic operations linear in the output length. In practice, however,

the difference is at most 0.5sec which we consider negligible for most applications.

We stress that all numbers reported for libsnark are underestimations since they

79



assume the database and queries are fixed in advance. We expect our construction’s

improvement to be even more significant compared to more general SNARK-based

systems that support arbitrary queries and dynamic outsourced databases (see dis-

cussion below).

Communication. For libsnark-based systems, the additional communication re-

quired for the proof is always constant (e.g., 288 bytes). For IntegriDB and vSQL

the communication required in all experiments was under half a megabyte. We con-

sider this to be negligible in practice for modern networks and thus omit additional

details.

Comparison with other SNARK-based systems. SNARKs can be used for

verifiable computation in various ways other than the one we used for our compari-

son.

Exploiting Structured Computations via Bootstrapping. Geppetto [37] takes a com-

plex computation and splits it into smaller building blocks, each represented as a

“small” circuit. Each such circuit can then be pre-processed with a SNARK sepa-

rately. In the context of SQL queries, the natural way to split the computation is

by having one small circuit that operates on a single row, and then applying that

circuit iteratively to each row in the database. An additional SNARK is then needed

to aggregate and verify the outputs of all the smaller SNARKs into a single succinct

proof, in a “bootstrapping” step. In practice, Geppetto has the potential to sig-

nificantly reduce the preprocessing time and memory consumption since the same

small circuit is used throughout the query evaluation. However, the total prover

80



time to execute the smaller SNARK on every row is similar to that of the single

large SNARK we used as our benchmark, as the total number of exponentiations is

linear in the total number of multiplication gates and breaking a large circuit into

multiple smaller ones does not reduce that. Our results already show that the prover

time in that case is up to 2 orders of magnitude slower than for vSQL. Additionally,

the bootstrapping phase requires approximately 30,000–100,000 gates per instance

of the smaller circuit [37, Section 7.3.1]. Applying this to a table with 6 million

rows (as in the TPC-H dataset) will thus introduce an additional overhead of 1.4–

4.8× 107s for the prover, based on our estimations with libsnark (which is itself an

underestimate as the bootstrapping phase operates over a larger and less efficient

elliptic curve).

Memory Delegation via Hash Functions. Pantry [29] can be used to outsource mem-

ory by implementing a Merkle hash tree on top of Pinocchio [71]. The consistency

of each memory read/write access must be proven by checking the corresponding

Merkle path as part of the SNARK that evaluates the query. This approach has

the benefit of allowing the verifiable evaluation of RAM programs on outsourced

memory (as opposed to expressing the computation directly as a circuit). For SQL

queries, assuming the existence of pre-built database indices (as is typically the case

with modern database management systems), there are programs that can evaluate

certain queries in time sublinear in the database size. (E.g., assuming the existence

of a search tree that stores the ordered element values at its connected leaves, a sim-

ple 1-D range query can be evaluated in time logarithmic in the database size and

81



linear in the result.) Thus, for specific queries for which such indices can be built,

Pantry can in theory outperform vSQL. Regarding the specific queries we evaluated

here, we note that the number of memory accesses would still be very large even

with the help of pre-built indices. The simplest TPC-H query we tested is query

#6, which is a 3-dimensional range query followed by a summation. Assuming a

search tree is built for each dimension and each 1-D range query has a 1% selec-

tivity (which is well below the selectivity in our experiments), getting the result of

each dimension requires 60,000 memory accesses. In practice, the concrete cost of

proving the correctness of each memory access would be approximately 2.5s, using a

SNARK-friendly algebraic hash function [60] for 106 4-byte memory blocks. There-

fore, just verifying the memory accesses for query #6 would take around 450,000s

(5 days) in this case.

Finally, in contrast to vSQL, both approaches require a query-specific setup

phase that can only be avoided if one uses a universal circuit [18] or proof-bootstrapping [17],

but these techniques incur considerable additional overheads.

4.6.3 Performance Comparison: Update Queries

We further test the performance of vSQL on a CREATE query (query #15 in

TPC-H). As shown in Table 4.4, the communication required is only 86.4KB, even

though the newly created table is itself more than 1MB in size. IntegriDB cannot

directly support such expressive updates. The only solution for IntegriDB would be

for the client to download the entire new table, verify its correctness, and preprocess

82



Server Client Total (WAN) Total (NI) Comm.

2,034.3s 66ms 2,089.4s 2,034.4s 86.4KB

Figure 4.4: Performance of our construction on TPC-H query #15, creating a new

table from table lineitem.

it from scratch.

Next we look at updates that can be supported by IntegriDB, in particular

inserting a new row. In this case, vSQL outperforms IntegriDB since the total

time for inserting a row into the lineitem table in TPC-H is only 5.2ms using vSQL

vs. 1.46s using IntegriDB. This is because the vSQL client only needs to verify

the corresponding elements of the public parameters using a Merkle-tree proof and

then perform one exponentiation per column. For IntegriDB, the required number

of exponentiations is quadratic in the number of columns and logarithmic in the

number of rows.

In order for a SNARK-based system to support updates, it must offer a way

to check the validity of a new database digest returned by the prover. The standard

way of doing this is by incorporating the digest computation in the circuit that is

evaluated, which introduces a huge cost in practice. More recent approaches can

achieve this via an external mechanism that is not part of the circuit of the SNARK

(e.g., [12, 41]). Note however, that at the very least the update circuit must be

evaluated and the SNARK proof must be computed by the prover. According to

our performance comparison in the previous section, this already takes more time

than vSQL.

83



6× 103 6× 104 6× 105 6× 106

Table size

100

101

102

103

104

Se
rv

er
ti

m
e

(s
) query #6

query #5
query #19

6× 103 6× 104 6× 105 6× 106

Table size

0

100

200

300

400

C
lie

nt
ti

m
e

(m
s)

query #6
query #5
query #19

Figure 4.5: Performance of vSQL for three TPC-H queries as a function of the

number of rows in the largest table involved in the query.

4.6.4 Scalability of Our Construction

In this section, we evaluate the performance of our constructions as a function

of the database size. To that end, we run our construction on the largest three of

the previous queries and scale the number of rows in the largest participating table

from 6,000 to 6,000,000.

Server time. As shown in Figure 4.5, the server performance for query evaluation

scales almost linearly with the size of the largest table, matching the theoretical

analysis of Theorem 5.

Client time. Figure 4.5 shows that the client’s verification time grows logarithmi-

cally with the number of rows in the largest table participating in a query (note the

logarithmic scale of the horizontal axis). This again matches Theorem 5.

84



Query # of Inputs Time (sec) Time/Input (ms)

#15 12,002,430 1,389 0.1157

#2 17,840,340 2,065 0.1158

#6 24,004,860 2,741 0.1142

#5 31,397,075 3,612 0.1151

#19 32,406,075 3,726 0.1150

Figure 4.6: Prover time for our polynomial-delegation scheme. The number of inputs

includes both the database and the prover’s auxiliary inputs.

4.6.5 Microbenchmarks

In addition to evaluating vSQL’s end-to-end performance, we also report on

the performance of vSQL’s main components—namely, our implementations of the

CMT protocol and the polynomial-delegation scheme.

Performance of the polynomial-delegation scheme. Table 4.6 shows the

prover time the polynomial-delegation scheme (Construction 2). As can be seen,

the prover spends about 0.11ms per input, which is the same order of magnitude as

what is achieved with SNARK-based schemes. Preprocessing for our polynomial-

delegation scheme (which is the only part of our construction that requires prepro-

cessing) took only 1,185 seconds for 95,525,880 inputs (12.4µs per gate).

Performance of the CMT protocol. Table 4.7 shows the performance of our

implementation of the CMT protocol. As can be seen, the average time required

85



Query # of Gates Time (sec) Time/Gate (µs)

#2 198,646,335 356 1.79

#15 367,495,719 646 1.76

#6 704,643,060 1,137 1.61

#19 801,374,196 1,198 1.49

#5 945,828,996 1,560 1.65

Figure 4.7: Prover time for our implementation of the CMT protocol.

per gate is about 1.7µs.

86



Chapter 5: Applications: Verifiable RAM Programs

While circuits can model arbitrary programs, most real-world computations

are expressed in terms of random-access memory (RAM) machines. This is true both

in terms of most programmers’ mental model of computation, as well as in terms

of the execution of assembly code on general-purpose computers. However, since

most constructions of VC protocols, including our new protocol in Section 3, work

on computations expressed as arithmetic circuits, verification of a RAM program

P is usually done by verifying the correct evaluation of an arithmetic circuit CP

that validates the execution of the program P . As mentioned in related work in

Section 1.1, most VC protocols (e.g., SNARKs) require the circuit to be fixed ahead

of time, during a trusted preprocessing phase. Due to this, previous works for

verifying RAM programs can be roughly divided into two main categories.

1. Program-specific preprocessing. If the program P to be verified is known

ahead of time, it is possible to tailor the circuit CP so as to verify P as efficiently

as possible. While this tailoring is beneficial to the protocol’s overall performance,

it comes at the expense of usability since CP cannot be used to verify another

program P ′. Examples of this approach are Pantry [29] and Buffet [83].

87



2. Universal preprocessing. In case the RAM program to be verified is not

known ahead of time, it is possible to construct a universal circuit CRAM which

is capable of verifying any RAM program that runs for at most T steps. Examples

of this approach include [16,18].

Both these approaches have significant drawbacks. In the first case, the verifier can-

not change the RAM program P being verified without re-running the (expensive)

preprocessing phase. This is a major drawback as the preprocessing cost can only

be amortized by running the same program on different inputs.

In the second case, although the preprocessing cost can be amortized over the

evaluation of different programs on different inputs, the universal preprocessing used

in this approach imposes large concrete overheads during the proving phase.

This results from the fact that CRAM must be able to emulate all possible

operations at every CPU step in order to handle arbitrary RAM programs. In

contrast, the program-specific approach benefits from the fact that P is known

when CP is chosen, and so the set of possible instructions at each step is potentially

much smaller.

Two notable exceptions to the above are the works of [13, 17], which do not

need a preprocessing phase tied to a specific circuit. However, the concrete cost

of these systems remains significantly higher than that of the preprocessing-based

solutions mentioned above. (See Section 5.3.2.)

In this chapter, we present a new verifiable RAM construction, vRAM, that

achieves the best of both categories. It has similar (or even better) performance

88



than what is achievable with program-specific preprocessing, but without knowing

the program during the preprocessing phase. This is achieved by using our new

argument system on the circuit validating the execution of a RAM program as a

backend, which has faster prover time and does not require the circuit to be fixed

during the preprocessing phase.

Experimental evaluations show that vRAM improvse the prover’s running time

by 9–30× as compared to the state-of-the-art-implementation in the universal set-

ting [18]. On the other hand, compared to systems using program-specific prepro-

cessing [83], vRAM achieves very similar prover performance; in fact, in some cases

our prover is faster despite the fact that systems with program-specific preprocessing

can deploy program-specific optimizations during the preprocessing phase.

We also show that vRAM is much better in terms of memory consumption,

which is currently the main bottleneck for running large instances of verifiable com-

putation. vRAM achieves an improvement of 55–110× in terms of memory con-

sumption compared to [18], which allows us to prove computations involving more

than 2 million CPU cycles with 256GB memory (65× more than [18]). The im-

provements achieved by vRAM come at the cost of increased verifier’s running time

and proof size, however these still remain well within the capabilities of modern

machines.

In this chapter, we first give preliminaries on RAM programs and RAM to

circuit reductions in Section 5.1, and present our new reduction in Section 5.2. We

then show experimental results in Section 5.3.

89



5.1 Preliminaries on RAM programs

5.1.1 A Canonical RAM Architecture

In this section we establish notation for a random-access machine supporting

some instruction-set architecture.

Hardware. We focus on RAM machine computations, where the machine is parametrized

by the number of registers K and the register width (word size) W . The CPU state

consists of a W -bit program counter (pc) and K general-purpose, W -bit registers

r1, . . . , rK . Each instruction operates over two operands (registers) and stores its

result in a third register, to which we shall refer as the destination register. The

machine’s memory is a randomly accessible array of 2W bytes. We also assume two

read-only unidirectional tapes containing W -bit words. The first tape is used for the

program input x, and the second tape may potentially be used for auxiliary input

aux.

Program execution. A program is a sequence of instructions, where each instruc-

tion has two operands (which are either register numbers or constants) and stores

its result in a third register called the destination register. A random-access ma-

chine starts executing a program with all registers, its memory, and the program

counter initialized to 0. At each step, the instruction pointed by the pc is executed.

By default, every instruction increments the pc by one (i.e., pointing to the next

instruction), but an instruction (e.g., jump) can also modify the pc directly to facil-

itate arbitrary control flow. The machine’s inputs are the above-mentioned tapes,

90



S and S∗∗ t, pc, r1, . . . , rK , O, flag, auxiliary1

I and I∗∗ line number, opcode, i, j (source registers), k (target register)

A a, t, O, b (denoting memory load or store)

Table 5.1: Values in a state and an instruction.

accessible via special read instructions, as well as the initial contents of its mem-

ory. The machine outputs either accept or reject. We say program P accepts input

(x, aux) if the machine running program P with the specified input terminates with

output accept.

Machine state and instruction encoding. We define the notion of machine

state as the values of the machine’s registers pc, r1, · · · , rK at any point during

the program execution. Let S1, · · · , ST be a list of the machines states during

the execution of some program P . We augment each state Si to also include i in it,

referring to i as Si’s step number as well as to include an additional field Oi, referring

to it as the instruction’s output field. An instruction I contains information about

what operation the machine should execute (e.g., addition, multiplication, etc.), the

two source registers ri, rj as well as the target register rk. For a specific program

(which is a sequence of instructions) P = P1, · · · , P`, we augment every instruction

Pi to include its location i (line number) within P . The detailed values in a state

and an instruction used in our implementation is shown in Table 5.1.

1Auxiliary includes data from the prover for efficient implementation purposes, i.e., bit-

decomposition of the values for computation modulo 232 and bits denoting whether an instruction

is jump, memory store or load.

91



We take as our set of available instructions from those used by TinyRAM [16,

18]. This is an ideal starting point for our implementation as the universal circuit

for the TinyRAM CPU can be described by a relatively small arithmetic circuit.

Execution traces. The trace tr = (S1, I1, S2, I2, . . . , IT−1, ST ) of a program P on

inputs x, aux is a sequence of CPU states and instructions, where S1 is the initial

state and each Si is produced by executing instruction Ii−1 on Si−1. A trace tr is

valid for a program P on input x if there is an aux such that P (x, aux) has trace tr.

Similarly, a trace tr of a program P on input x is accepting if there exists aux such

that tr is valid and we say that P accepts input (x, aux).

A universal NP relation for RAM programs. The following NP relation

RAM`,n,T captures accepting RAM programs:

Definition 5. For `, n, T ∈ N, relation RAM`,n,T consists of tuples (P, x; aux) such

that: (i) P is a program with ≤ ` instructions, (ii) x is an input of ≤ n words, and

(iii) P (x, aux) accepts in ≤ T steps.

5.1.2 Previous Reductions from RAM to Circuit Satisfiability

Before describing our improvements, in this section we present previous approaches

for constructing a circuit that can verify the execution of RAM programs. More

specifically, given a time bound T , [18] constructs a circuit C such that for any

RAM program P , ∃w : C(P, x;w) = 1 if and only if ∃aux such that P (x; aux)

accepts. Throughout this paper, unless otherwise noted, we do not distinguish

between the program and the input data, and we let ` be a bound on both the

92



Cmem

CmemCexe

Cexe

S1

··· ······

I1

IT�1

ST

B1

B`

S2

ST�1

···
···

A1

A2

S1

···

I1

IT�1

ST

S2

ST�1

···

A1

AT�1

AT

A2

C
p
e
r
m

···

···

Ctime

Ctime

Cval,1

Cval,J

Cval,1

Cval,J

···
···

···

S⇤⇤
1

I⇤⇤1

S⇤⇤
k1

I⇤⇤k1

S⇤⇤
kJ�1+1

I⇤⇤kJ�1+1

S⇤⇤
T

I⇤⇤T

···

C
r
o
u

te

Cmem

C
p
e
r
m

C
f

e
tc

h

Cmem

tr tr⇤ tr⇤trtr⇤⇤

A2T+`�1

A2T+`

Figure 5.1: Circuits for the reductions from RAM programs to circuits from Sec-

tion 5.1.2 (left) and Section 5.2 (right). Circuits Cfetch and Cperm receive additional

input from the verifier as described in Sections 5.2.2 and 5.2.4, respectively.

program length and the input size.

The circuit C takes as input a program P and a witness w that contains a

trace tr = (S1, I1, S2, I2 · · · , IT−1, ST ) and aux. C then outputs 1 only if S1 is the

initial state, ST is an accepting state, and the following hold at every step i in tr:

1. Correct instruction execution. State Si+1 is obtained from Si after executing

instruction Ii.

2. Correct instruction fetches. Ii is the instruction in P pointed to by the

program counter (pc) in Si. If i = 1 we require that pc = 0.

3. Correct memory accesses. If Ii is a load instruction accessing address a then

the value loaded is v, where v is the last value written to address a by some

previous instruction (and v = 0 if Ii is the first load from a.)

In order to verify the above three conditions, the circuit C is constructed from three

sub-circuits Cexe, Cmem, and Croute (cf. Figure 5.1(left)), which we explain below.

93



Ensuring correct instruction execution. To ensure (1), every triple Si, Ii, Si+1

is given as input to a circuit Cexe which performs the following two checks. (a)

Check that the value Oi in Si is correctly computed by executing Ii.
2 In case Ii is

a memory load instruction, Cexe optimistically assumes that the loaded value Oi is

correct (this will be tested separately when checking memory accesses). (b) Check

that Oi is equal to rj of Si+1 (or pci+1 in case of jump), all other registers of Si+1

are the same as Si, Si’s step number is indeed i and pci is equal to the line number

of Ii in P (as encoded in Ii).

Ensuring correct instruction fetches. To ensure (2), C must check that the

instruction Ii is fetched from the location in the program P pointed by pci in

state Si (i.e., that Ii is the pci-th instruction in P ). In [18], this is achieved by

storing P in memory and then loading instructions before they are executed. For-

mally, a booting sequence B1, . . . , B` is prepended to the trace tr, with Bi storing

the i-th instruction of P in memory at address i. This results in a new trace

tr = (B1, · · · , B`, S1, I1, S2, I2 · · · , IT−1, ST ) of length 2T + `. Each Ii ∈ tr is then

viewed as two operations: One is a load operation fetching an instruction from the

memory address pointed by its line number, and the other is Ii itself. In this way,

the correctness of instruction fetches is reduced to checking the consistency of the

memory stores and loads performed by Bs and Is, which we describe next.

Ensuring correct memory accesses. To ensure (3), Ben-Sasson et al. [18] include

in w an additional trace tr∗ = (A1, · · · , A2T+`), which is a permuted version of tr

2If Ii is a memory instruction, Oi is the loaded or stored value; if Ii is a jump instruction, Oi

is the jump destination.

94



where: (a) all the states in which a memory access is performed are sorted by

the memory address a being accessed (with ties broken by their step number in

tr), and (2) non-memory instructions are pushed to the end of tr. Notice that Bi

and Ii are also sorted, using the addresses i and the line number respectively. For

two adjacent entries Ai, Ai+1 ∈ tr∗ with outputs Oi, Oi+1, step numbers ti, ti+1 and

accessing addresses ai, ai+1, respectively, the circuit Cmem checks the following:3

• If ai = ai+1 then ti < ti+1. If Ai+1 is a load instruction, the loaded value Oi+1 is

the same as the value Oi stored or loaded by Ai.

• If ai 6= ai+1 then ai+1 > ai, and if Ai+1 is a load instruction then Oi+1 = 0.

Checking consistency between tr and tr∗. Finally, C must ensure that tr∗ is

a copy of tr that contains exactly the same states and instructions, just sorted by

their accessed addresses. Note that the fact that tr∗ is sorted correctly has already

been checked by Cmem. Hence, it remains to ensure that a state appears in tr∗

if and only if it appears in tr. This can be done by checking that there exists a

permutation π such that π(tr∗) = tr. To that end, C contains a sub-circuit Croute

which implements a O(T log T ) switching network that routes every entry in tr to

its matching entry in tr∗. The control bits used for the switching network (which

specifies the permutation π) are provided by the prover and included in w.

Overall complexity. For a program of size ` running for T steps, the above

reduction yields a circuit C of size T · |Cexe| + (2T + `) · |Cmem| + |Croute|. Since

3In case Ai corresponds to Bj or Ij , the value Oi loaded is the encoding of the instruction, i.e.

the concatenation of the machine operation code and the source and destination registers.

95



Cexe, Cmem are fixed for a given architecture (i.e., they are independent of T, `),

and Croute can be implemented using O((T + `) · log(T + `)) gates, we have |C| =

O((T + `) · log(T + `)).

5.2 Our New RAM to Circuit Reduction

In this section, we present a ”tigher” reduction than the one of [18] presented in

Section 5.1.2, resulting in a more efficient argument for RAM programs. We rely on

our new argument system as a backend, which is both interactive and has a circuit-

independent preprocessing phase. More specifically, having a circuit-independent

preprocessing phase allows us to produce a concretely smaller circuit where at each

step the prover only proves the correct execution of the instruction that is actually

executed by the RAM program on its specific inputs, as opposed to proving the

correctness of a circuit evaluating all possible instructions. Next, the interactivity

property allows us to replace the routing network used in [18] for checking trace

consistency with an efficient interactive protocol for randomized polynomial identity

testing. This reduces the prover’s complexity from O((T + `) log(T + `)) to O(T + `)

as well as improves the prover’s concrete efficiency.

Our final circuit construction is shown in Figure 5.1(right). As in Section 5.1.2,

we must check correctness of (1) instruction execution, (2) instruction fetches, and

(3) memory accesses. Next we describe our implementation of these checks.

96



5.2.1 Ensuring Correct Instruction Execution

Let tr = (S1, I1, S2, I2 · · · , IT−1, ST ). Recall that in the reduction described in Sec-

tion 5.1.2, the correct execution of tr’s instructions is checked via a universal Cexe

which performs two sets of tests on every triple Si, Ii, Si+1 ∈ tr. The first test (a)

checks the correctness of Oi (i.e., that performing Ii on Si results in Oi) while the

second test (b) checks that the values from Si are consistently propagated to Si+1

(including correct pci update and ordering of steps). Notice that while the second

test is relatively simple and identical for all triples, the majority of Cexe’s gates

are actually required for performing the first test. This is since this part of Cexe is

often implemented by a composition of smaller circuits each of which can check the

execution of a specific instruction, together with a multiplexer that specifies which

instruction should be checked at this step. In order to optimize the size of Cexe,

while maintaining the succinct representation of the result circuit C, we split Cexe

into two sub-circuits which perform these two checks independently. For the second

check we will the same circuit for all triples, whereas for the first one we we will use

a circuit that can only verify the logic of the particular instruction Ii. Below, we

describe in detail how these circuits are implemented.

Ensuring correct propagation of values. We define a circuit Ctime that takes as

input a triple Si, Ii, Si+1, and verifies that the value of the destination register in Si+1

is equal to Oi, all other registers in Si+1 remain unchanged, and pci+1 was updated

appropriately. Similar to Section 5.1.2, Ctime also checks that Si’s step number is

indeed i and that pci is equal to the alleged location of Ii in P (as encoded in Ii by

97



the prover). However, unlike Section 5.1.2, we stress that Ctime does not verify that

Oi is the correct output after executing Ii.

Verifying instruction execution. Let J be the number of instruction types

supported by the RAM architecture. We include in the witness w an additional

trace tr∗∗ that is the result of sorting the pairs (Si, Ii) ∈ tr by the instruction type

of Ii. Define a circuit Cval,j which takes as input a pair (S∗∗i , I
∗∗
i ) ∈ tr∗∗ and checks

that S∗∗i is a valid state for the instruction I∗∗i of type j (i.e., Oi is correctly computed

by executing I∗∗i on S∗∗i ). In this way, Cval,j is specialized to a specific instruction

type. Moreover, since tr∗∗ is sorted by instruction type, the copies of Cval,j will also

appear in C sorted by j. In this way, C can be succinctly described by (k1, . . . , kJ),

where kj (for j = 1, . . . , J) denotes the number of times instruction type j appears

in trace tr when program P is executed on input x (where
∑

j kj = T ).

5.2.2 Verifying Instruction Fetches

As described above, [18] ensures program consistency by first storing the program to

memory during the machine’s booting phase. Next, each instruction is sequentially

loaded from memory for execution. These operations are treated the same as regular

memory stores and loads, and are checked by T +` copies of Cmem. Here, we explain

how the correctness of these operations can be checked more efficiently assuming

instructions in the program are fixed and known to the verifier (i.e., if we assume

that P does not contain self-modifying code, similar to [16]).

Unlike the reduction of Section 5.1.2, note that the trace tr does not include a

98



boot sequence. Instead, we observe that for each triple Si, Ii, Si+1, the circuit Ctime

already checks that pci is equal to the line number of Ii in P (as encoded in Ii by

the prover). All that remains is to verify that Ii is the instruction in P with the

same line number. Equivalently, let {P1, · · · , P`} be the set of instructions in P

where each Pi is augmented to also contain its line number within P (as defined

in Section 5.1.2). Then we only need to check that the sequence {I1, · · · , IT−1}

is a multiset of {P1, · · · , P`} (the multiplicity of some Pi may be 0 to account for

non-executed instructions). To that end, we add a circuit Cfetch that validates this

multiset relation and leverages the interactive property of our argument scheme from

Section 3. The circuit takes the sequence I1, · · · , IT−1 from tr and a random value r

(provided by the verifier) as input. Cfetch outputs the evaluation of its characteristic

polynomial at point r, i.e.,
∏T−1

i=1 (Ii − r). The verifier also receives from the prover

the multiplicity kj of Pj in {P1, · · · , P`}. Thus, he can compute himself the value∏`
j=1(Pj − r)kj

def
=
∏T−1

i=1 (Ii− r) and test whether it corresponds to the value output

by the circuit. By the Schwartz-Zippel lemma, the probability the verifier accepts

if the two polynomials are not the same (i.e., {I1, · · · , IT−1} is not a multiset of

{P1, · · · , P`}) is negligible. We stress that this is only secure if we ensure that the

prover commits to the entire witness (including I1, · · · , IT−1) before seeing r, as is

the case in our construction in Section 3. In this way, we have replaced T + ` copies

of Cmem with a smaller circuit Cfetch evaluating the characteristic polynomial at a

random value which leads to concrete efficiency improvement.

99



5.2.3 Ensuring Memory Accesses

Similar to Section 5.1.2, in order to verify memory accesses (ensuring (3)) we

include in w a trace tr∗ = (A1, · · · , AT ) sorted by the memory address being accessed

(again with ties broken by step number and non-memory instructions located at

the end of tr∗). Since the correctness of instruction fetches is already ensured (as

described above), we only sort the states Si in tr, and the length of tr∗ now becomes

T . For every two adjacent entries Ai, Ai+1 ∈ tr∗ with outputs Oi, Oi+1, step numbers

ti, ti+1 and accessing addresses ai, ai+1, respectively, the circuit Cmem checks the same

two conditions as in Section 5.1.2. Finally, note that the number of instruction that

actually perform memory operations may be smaller than T , but we still include T

copies of Cmem in C to account for the worst case. In practice however, it is almost

certain that not every cycle will perform a memory access. E.g., even for a program

that consists of a single for loop that simply loads a memory location per repetition,

the total percentage of memory accesses is 25% (one instruction for the memory

load, plus three for counter increase, loop bound check, and jump). Motivated by

this, we exploit the circuit-independent pre-processing of our argument to modify

C so that it only contains αT copies of Cmem where α is the percentage of general

memory accesses over the total steps.

In order to achieve this, we split the witness to two separate parts. The first

contains tr and tr∗∗ sorted by time and instruction type, and the second contains

tr∗. Recall that after the optimization above, tr∗ only contains AT+`, · · · , A2T+`,

which is a permutation of S1, · · · , ST sorted by accessed memory addresses. Then,

100



by our design, if Ii is not a memory load/store instruction, we set the accessed

memory address of Si as 0 and all the values in Si as 0s before sorting. In this

way, the first (1 − α)T states in AT+`, · · · , A2T+` are all zeros (assuming the real

memory address starts from 1) and there is no need to check anything for these

states, as they are not memory operations. Because of this layout, now the prover

only includes AT+`+αT , · · · , A2T+` in tr∗, and tells the verifier the number of non-

memory operations. With these information, it is sufficient to validate the new tr∗ is

a permutation of non-zero states in tr using CMT on circuit C ′, and the technique is

described in Section 4.5.2 for handling circuits that receive inputs at different levels.

With this optimization, we manage to reduce the number of Cmem further from T

to αT , which is a significant improvement in practice. However, the verifier now

needs to run two VPD instances (once for each part of the witness).

5.2.4 Checking Consistency

Finally, it remains to check that tr∗ and tr∗∗ are indeed permutations of tr.

Previous works [15, 16, 18] achieve this task by using routing networks, yielding

a circuit of size O((T + `) log(T + `), for a T -step RAM program of size `, and

correspondingly increasing the prover’s asymptotic running time from linear to

quasilinear. Using routing networks to achieve this would yield a circuit of size

O((T + `) log(T + `), for a T -step RAM program of size `, which would corre-

spondingly increase the prover’s asymptotic running time from linear to quasilinear.

Following the approach of Section 4.5.3, we leverage the interactive nature of our

101



argument in order to avoid the use of routing networks, replacing them with a simple

interactive protocol that is similar to the one used above for verifying instruction

fetches. The result is that our prover’s running time is only O(T + `), i.e., asymp-

totically the same as simply evaluating the program.

More specifically, assume the prover holds lists x1, . . . , xm and x′1, . . . , x
′
m and

wants to convince the verifier that they are a permutation of each other. Consider

a circuit Cperm that takes x1, . . . , xm and x′1, . . . , x
′
m (provided by the prover) and a

random point r (provided by the verifier) and outputs the result of
∏m

i=1(xi − r)−∏m
i=1(x

′
i − r). If the two lists are permutations of each other the output is always

zero, otherwise by the Schwartz-Zippel lemma it is zero with negligible probability.4

Finally, evaluating this polynomial requires O(m) gates. For our argument, we

use two executions of this interactive protocol, one for the pair tr, tr∗ and one for

tr, tr∗∗, in a way that ensures that C outputs zero only if Cperm outputs zero both

times. From the above analysis, each of these circuits consists of O(T + `) gates.

We stress that it is crucial to have the prover commit to the two lists ahead of

time, in particular before seeing r, for security purposes. This is enforced by our

argument as P commits to the entire witness w in the first step of the protocol (cf.

Construction 3, Evaluation Phase, Step 1).

4As a state (e.g., A in tr∗) contains multiple values such as O and t and we want to ensure they

are permuted together, we pack the values before the check (e.g., for W -bit values (a, b, c), we set

x = a × 22W + b × 2W + c). If the result of a single pack overflows the field, we pack the values

multiple times with respect to the first value. In our implementation, we use a 254-bit prime field,

which allows packing of 7 32-bit numbers. We also use the same technique to ensure that S∗∗
i and

I∗∗i in tr∗∗ are permuted together.

102



Finally, we apply our new argument system presented in Construction 3 on

the circuit presented above as a backend. This leads to a VC protocol for arbitrary

RAM programs. We are now ready to state the following result:

Theorem 7. Let ` be a program length parameter, T be a time bound and let n be an

input bound. Assuming that Construction 2 is an extractable verifiable polynomial

delegation protocol, then combining the results of Section 5.2 with Construction 3 we

obtain an argument system for the relation RAM`,n,T (as per Definition 5). More-

over, as the sizes of Ctime, Cval and Cmem are constants which are independent of

n, T, `, the running time of P is O(n+T + `) and that of V is O(n+ `+poylog(T )).

This yields a succinct argument with polylog (n+ `+ T ) rounds of interaction.

The theorem directly follows Theorem 5, and we omit the proof here.

5.3 Experimental Results

Software and hardware. We implemented our constructions (including the RAM

reduction, circuit generator, CMT protocol, and VPD protocol) in C++. We use

the GMP library [3] for field arithmetic and OpenSSL’s [8] SHA-256 implementation

for hashing. For the bilinear pairing we use the ate-paring library [1] on a 254-bit

elliptic curve.

We run our experiments on an Amazon EC2 m4.2xlarge machine having 32

GB of RAM and an Intel Xeon E5-2686v4 CPU with eight 2.3 GHz virtual cores.

Our implementations are not parallelized and only use a single CPU core.

103



5.3.1 Comparison with vnTinyRAM and Buffet

In this section, we compare the performance of our system to existing sys-

tems for verifiable RAM. We compare to Buffet [83], a verifiable RAM system with

program-specific prepossessing (where the parameters generated by the trusted pre-

processing can only be used to verify one specific program on different inputs) and

vnTinyRAM [18], a universal verifiable RAM system (where the parameters gener-

ated by the trusted preprocessing can be used to verify any program up to some

bound on the number of steps). We also measure the performance of our system

against naive unverified execution of the RAM program. Finally, in Section 5.3.2

we also discuss comparisons to other verifiable RAM systems.

Benchmark. As a benchmark, we evaluate the RAM programs from [83] (see

Table 5.2). Following that work, we benchmark our system using programs of three

types.

1. Circuit friendly. The function computed by these programs has a very efficient

circuit representation. We use matrix multiplication as an example.

2. Fixed memory access and instruction patterns. These programs do not

exploit the full generality of RAM machines, i.e., their memory-access patterns

and control flow do not depend on the program’s inputs. This allows for a

tighter RAM-to-circuit reduction since it can be determined ahead of time which

instruction will be executed at each time step. Thus, the produced circuit only

needs to handle a specific instruction per cycle. We use pointer chasing and

104



Benchmark Input Size # of Cycles Native

1: Matrix Mult. n=215 96M 42ms

2: Pointer Chasing n = 16634 50K 22µs

3: Merge Sort n = 512 65K 28µs

4: KMP Search n = 2900, k = 256 30K 13µs

5: Sparse Mat-Vec Mult. n = 1150, k = 2300 27K 12µs

Table 5.2: Benchmarks in our experiments. We report the input size, the number

of CPU cycles and the native running time on verifier for the instances we used in

Table 5.3 and 5.4.

merge sort as examples of such programs.

3. Input-dependent memory access and instruction patterns. Such RAM

programs use the full generality of RAM machines since they have input-dependent

control flow and memory-access patterns. In particular, the circuit generated by

the RAM reduction must be able to handle multiple possible instructions at every

step. We use KMP string matching [58] and CSR sparse matrix-vector multipli-

cation [47] as examples of such programs.

Buffet evaluation methods. Buffet’s front-end takes a RAM program and out-

puts a circuit that verifies its execution and its back-end uses a circuit-based VC

system based on Pinocchio [71]. We evaluate Buffet using the released code [2].

vnTinyRAM evaluation methods. We evaluate vnTinyRAM [18] using the

105



code at [6]. As the code that takes a TinyRAM program and outputs the traces

for vnTinyRAM is not available, we are unable to produce vnTinyRAM traces cor-

responding to the execution of any benchmark RAM program. Instead, we esti-

mate the cost of vnTinyRAM by running the prover on traces of appropriate length

resulting from execution random machine instructions. Since the performance of

vnTinyRAM only depends on the total number of CPU steps and not on the in-

struction being executed at each step, this estimate is accurate.5

Using a different back-end for vnTinyRAM and buffet. Both Buffet and

vnTinyRAM can be re-factored to use the more recent construction of [53] as their

back-end. This would result in an approximate improvement of 30% in their setup,

prover time and public key size as well as 50% improvement in their proof and

verification key sizes. This would also improve verification time by 3×, as per the

benchmarks of [6].

vRAM evaluation methods. For vRAM, we implemented our own TinyRAM

simulator to output the program traces used by our prover and verifier backend.

We then adapted the assembly code for the programs in the Buffet benchmark, and

ran them in our TinyRAM simulator to obtain execution traces, which we provided

to prover-verifier backend. In order to measure the cost of our system vs. naive

unverified execution, we estimate the execution time of random instructions on a

5A version of vnTinyRAM that removes unnecessary instructions in each step after running the

particular program to be verified was released by Wahby et al. [83]. However, since the prover in

this program-specific version is unable to handle arbitrary RAM programs, it is not appropriate

for our comparison.

106



single-threaded 2.3 GHz CPU core.

Experimental results. The results of the comparison are summarized in Ta-

bles 5.2, 5.3, 5.4 and 5.5 as well as in Figure 5.2. We executed each program on

the largest input size reported in [83]. Table 5.2 summarizes their input size, num-

ber of CPU cycles and the native running time if executed on the verifier locally.

As vnTinyRAM cannot handle such large parameters, we estimate its cost by ex-

trapolation, assuming linear growth. This yields a conservative estimate since the

overhead of vnTinyRAM’s prover grows quasilinearly (rather than linearly) with

the number of RAM instructions. We report setup time, prover and verifier time,

proof size and the size of the circuit verifying the RAM program. In Figure 5.2,

we show the prover time and memory consumption of the three systems versus the

number of CPU steps. In vRAM, these are mainly determined by the number of

CPU steps executed by the benchmark, rather then the specific choice of instruc-

tions executed in these steps. Consequently, we show the performance of pointer

chasing as a representative example, with other programs behaving similarly. Since

Buffet optimizes the circuit generated based on a particular benchmark program,

we report two cases: one is pointer chasing, which is a fixed-RAM program, and the

other is string search, which is a data dependent RAM program.

Comparison with vnTinyRAM. Both our system and vnTinyRAM can verify

the execution of arbitrary programs with a single setup. As shown in Table 5.3, 5.4

and Figure 5.2 (left), for all benchmarks except matrix multiplication, our system

achieves an approximate 8× improvement in setup time and 9× improvement in

107



Setup Time (min) Prover Time (min)

TinyRAM Buffet vRAM TinyRAM Buffet vRAM

#1 460000∗ 16.6

38.7

290000∗ 14.4 0.65

#2

310∗

20.0 150∗ 11.2 17.3

#3 16.1 200∗ 9.6 21.21

#4 22.9 90∗ 12.6 9.2

#5 20.8 82∗ 11.8 10.2

Table 5.3: Comparison of the performance of vRAM versus Buffet and vnTinyRAM

(Setup time and prover time. ∗ denotes simulation due to memory exhaustion).

prover time compared to vnTinyRAM. Note that vnTinyRAM is unable to exploit

the fact that matrix multiplication is circuit-friendly, leading to large circuit size,

setup, prover and verifier times. Since our system uses a preprocessing phase that

only depends on the input size and is otherwise agnostic to the program represen-

tation, for circuit-friendly benchmarks we are able to directly use the program’s

circuit representation and thereby obtain an improvement of more than 4 orders of

magnitude for setup time and 5 orders of magnitude for proving time compared to

vnTinyRAM.6

6Note that in order to support all the benchmarks in Table 5.3, vnTinyRAM only needs to

execute a single preprocessing phase which is as large as the largest instance, i.e. matrix multi-

plication. However, for fair comparison, we report a separate setup time for the 4 RAM-friendly

programs and compare the performance of our system to this number.

108



|C| (Millions of gates) Verification Time (ms)

TinyRAM Buffet vRAM (mult/total) TinyRAM Buffet vRAM

#1 240000∗ 9.9 9.9 19.8 422∗ 401 26

#2 125∗ 8.6 38.5 150.8 56∗ 69 93

#3 164∗ 7.9 36.2 148.3 9∗ 8 91

#4 75∗ 10.5 18.2 72.4 15∗ 20 84

#5 68∗ 9.4 18.1 74.3 20∗ 15 85

Table 5.4: Comparison of the performance of vRAM versus Buffet and vnTinyRAM

(Number of gates and verification time. ∗ denotes simulation due to memory ex-

haustion).

The speedup obtained by vRAM is due to (1) the better RAM-to-circuit re-

duction from Section 5.2; and (2) the faster argument system from Section 3. To

isolate the effect of (1), in Table 5.4 we report the number of gates in the circuits

produced by our reduction. Note that unlike vnTinyRAM and Buffet, in vRAM

all types of gates (numbers reported in the last column) contribute to the prover

time, instead of multiplication gates only.7 Thus, to facilitate the comparison be-

tween vnTinyRAM’s circuit reduction and our circuit reduction, we also report the

number of multiplication gates in the table. As shown in Table 5.4, the number of

7Both vnTinyRAM and Buffet use the notion of quadratic constraints with each constraint

verifying that the product of the outputs of two unbounded fan-in gates equals to the output of a

third unbounded fan-in add gate.

109



210 211 212 213 214 215 216 217 218

# of RAM Cycles

101

102

103

104

105

T
im

e
(s

)

Ours
vnTinyRAM
Buffet (ptr chase)
Buffet (KMP)

210 211 212 213 214 215 216 217 218

# of RAM Cycles

10−2
10−1
100
101
102
103
104

M
em

or
y

(G
B

)

Ours
vnTinyRAM
Buffet (ptr chase)
Buffet (KMP)

Figure 5.2: Prover time (left) and memory consumption (right) of our construction

vs vnTinyRAM and Buffet for various number of CPU steps.

multiplication gates in our system is 3.3–4.5× less than in vnTinyRAM. Regarding

(2), the performance of our argument system is demonstrated in more detail in Sec-

tion 5.3.4, where we show that the per-gate cost of our system is lower than that of

QAP-based systems.

Comparison with Buffet. The main advantage of our system compared to Buffet

is that it can support arbitrary programs with a single setup. As shown in Table 5.3,

the setup time for our system is 38.7 minutes for any program that runs for up to

65K CPU steps. Although the setup time of Buffet for the indicated programs is

lower, an independent setup would have to be run for each different program to be

verified (and the set of programs being verified must be known at the time setup is

run). Moreover, we note that Buffet’s setup time would likely be larger than ours if

used for a program running for 65K CPU steps (which none of the benchmarks do).

Overall, the prover time of our system is comparable to that of Buffet. On

one hand, for programs with fixed memory access and instruction patterns (such as

pointer chasing and merge sort) Buffet can perform numerous optimizations, since

110



the instruction to be executed in each CPU step is pre-determined. This allows

Buffet to highly customize the resulting circuit. Nonetheless, our system is still only

around 2× slower than Buffet while avoiding program-dependent preprocessing. On

the other hand, for programs with input-dependent memory and instruction patterns

(such as KMP string search and sparse matrix-vector multiplication), our system

actually outperforms Buffet, despite the fact that the latter can optimize the circuit

during preprocessing. Moreover, as mentioned in [83, Section 4.3], if a program has

deep nesting of data dependent loops or complex conditions (e.g., a state machine),

the compiler of Buffet may have to incur a significantly higher overhead, since the

amount of applicable optimizations will be limited. However, the performance of

our construction is not adversely affected by such programs therefore our speedup

compared to Buffet can be higher.

Finally, we note that when the program is circuit-friendly, e.g., matrix multi-

plication, Buffet can also represent the computation using a circuit. In this case, the

circuit is exactly the same in both systems, and the prover time of our system is 22×

faster than Buffet, since our argument system outperforms Buffet’s Pinocchio-based

argument [71].

Memory consumption. Another advantage of our system is that it uses much

less memory in order to prove the same statement. As shown in Figure 5.2 (right),

the memory consumption of our system is 55–110× less than vnTinyRAM, yielding

a two orders of magnitude improvement. The memory consumption is also 4− 8×

less than Buffet. In particular, on a desktop machine with 32GB of RAM, we can

111



#1 #2 #3 #4 #5

Proof Size (KB) 4 256 255 236 235

Memory Usage (GB) 3.6 7.6 7.7 3.8 3.8

Table 5.5: Proof size and memory usage of vRAM.

execute 218 CPU steps, while vnTinyRAM can only reach 212 steps, and Buffet can

reach 215 − 216 steps. We also report the memory consumption for the benchmarks

we run in Table 5.5. The improvement is largely due to our reliance on the CMT

protocol which imposes a minimal memory overhead for the non-input part of the

circuit. In fact, although the circuit size is much larger than the input size, the

memory usage of our VPD protocol and the CMT protocol are on the same order.

In addition, in the VPD protocol, the memory is mainly used for storing the public

key, thus the usage is roughly the same in the setup and the evaluate phase of VPD.

Verification time and proof size. We next compare the verification time and

communication cost of our system with vnTinyRAM and Buffet, both of which out-

perform our system. In particular, the verification time is 9–56ms for vnTinyRAM

and 8–35ms for Buffet (except matrix multiplication). Also, vnTinyRAM and Buf-

fet inherit a proof size of 288 Bytes from QAP-based SNARKS. For comparison,

the verification time and the overall communication cost for our construction varies

on different sizes of circuits. As shown in Table 5.4 and 5.5, the verification time

is 84–93ms and the communication is 235–256KB for different programs. However,

we believe that these are very modest quantities for any modern machine.

112



Proving 2 million instructions. To demonstrate the ability of our construction

to handle the task of verifying programs that run for large amounts of CPU steps,

we also ran our system on an Amazon EC2 m4.16xlarge machine featuring 256GB of

RAM and an Intel Xeon E5-2676v3 CPU with 64 virtual cores running at 2.4GHz.

Using this machine, we executed our system for programs consisting of 221 instruc-

tions. The reported prover’s time is 51000s, the memory consumption grows to 252

GB and the total number of gates in the circuit is 4.8 billion. While these numbers

are concretely large, we stress that, to the best of our knowledge, this is by far the

largest reported successfully performed instance of verifiable RAM computation.

In particular, this instance is about 65× larger than the largest instance reported

in [18] (which was achieved by using a 256GB solid state drive as additional memory

space). Finally, the reported verification time was less than 105ms and the total

communication cost was 336.5KB.

5.3.2 Comparison to Other RAM-based VC systems

In this section, we briefly discuss the performance of our system compared to

other RAM-based VC systems.

Pantry and SNARKs for C. Pantry [29] and SNARKs for C [16] are two VC

schemes that predate Buffet and vnTinyRAM, with their performance subsumed by

those systems (see [83, Figure 10] and [18, Figure 3]).

Exploiting data parallel structure via bootstrapping. Geppetto [37] is a VC

system that takes a large circuit, splits it into sub-circuits, and preprocesses each

113



sub-circuit with a SNARK separately. An additional SNARK is then applied to ag-

gregate and verify the outputs of all sub-circuits in a ”bootstrapping” step. Though

verifiable RAM is not explicitly considered in [37], the system can be potentially

applied to circuits checking the correctness of a RAM program, such as ones in Sec-

tions 5.1.2 and 5.2. Due to the data parallel structure of these circuits, Geppetto can

reduce the setup time asymptotically (e.g., only one setup for the sub-circuit Cmem,

Ctime etc.). However, it introduces a big concrete overhead for both setup and prover

time because of the bootstrapping phase. For example, it requires ∼ 30, 000-100, 000

gates to bootstrap one small sub-circuit of just 500 gates [37, Section 7.3.1].

Constant or no preprocessing. Two alternative approaches for RAM-based VC

are suggested in [13, 17] by Ben-Sasson et al. The first uses composition of elliptic

curves to recursively apply a SNARK in a sequence of T fixed-size circuits, each

of which validates the state of a single previous CPU step, executes the next CPU

step, and outputs the new state. In this way, the resulting setup time is constant.

The second constructs a RAM-based VC without any preprocessing by using PCPs.

Both these systems incur a very large concrete overhead on the prover. It takes

35.5 seconds/cycle for the first system [17, Figure 1], which is about 3000× slower

than ours. For the second one, it takes 0.33 seconds/cycle using 64 threads in

parallel [13, Figure 1], which roughly corresponds to 21.1 seconds/cycle using single

thread [13, Section 2]. This is compared to our single threaded implementation

which achieves 0.015 seconds/cycle. We leave the task of achieving a speedup for

our system via parallelization as future work.

114



1k 2k 4k 8k
# of Bytes Copied

101

102

103

104

T
im

e
(s

)

Ours (Opt)
Ours

1k 2k 4k 8k
# of Bytes Generated

101

102

103

104

T
im

e
(s

)

Ours (Opt)
Ours

Figure 5.3: Prover time for evaluating memcpy (left), RC4 (right) using vRAM

with (green) and without (blue) the optimizations of Section 5.3.3. For memcpy

we vary the size of the copied memory block and for RC4 we vary the number of

pseudorandom bytes generated.

5.3.3 Just-in-Time Architecture

Next, we use the architecture-independent preprocessing property of our scheme

to improve performance for specific tasks. Common just-in-time compilation meth-

ods are used to optimize the executed code for a specific architecture. The circuit

independent preprocessing feature of our construction allows us to take this ap-

proach further and modify the machine’s architecture in order to better fit a specific

program after executing it, when the program’s exact behavior on its inputs is

known. We illustrate this using two benchmarks from [16,18]. We stress that since

our protocol has architecture-independent preprocessing we are able to change the

architecture without rerunning the preprocessing phase. In particular, the follow-

ing results were achieved with a single preprocessing execution. In all cases, the

verifier’s runtime remained below 150ms.

115



Improving performance by adding instructions. Figure 5.3(left) shows prover’s

time for evaluating a program which copies consecutive blocks of memory from one

location to another (e.g., memcpy). We achieve a 3.6× improvement by introducing

a memory instruction which (1) copies a byte from memory address A to memory

address B and (2) increments A and B by 1 for the next loop iteration. This reduces

the number of gates in the obtained circuit, thus yielding lower prover time. In this

case, we did not modify any of the machine’s other parameters (e.g., number of

registers and register size).

Improving performance by changing register sizes. Next, Figure 5.3(right)

shows prover’s time for evaluating a RC4 pseudorandom generator on a highly spe-

cialized architecture. More specifically, we modified the machine to contain 3 8-bit

registers, a 32-bit address register for memory accesses and a 32-bit program counter.

Each RC4 round was implemented using 16 instructions operating over the 8-bit

registers. Notice the 2.4× speedup compared to the non-optimized version, which

again results from the overall reduction of necessary gates in order to generate one

pseudorandom byte.

5.3.4 Microbenchmarks

Finally, we report here the individual performance of our construction’s main

building blocks.

Verifiable polynomial delegation. Table 5.6 shows the prover time of our imple-

mentation of the VPD from Section 3.1. The prover time is about 12µs per input

116



Benchmark VPD CMT Buffet vnTinyRAM

Time/Input Time/Gate Time/Gate Time/Gate

#2 11.32 5.42 77.50 72.20

#3 13.17 6.36 68.34 72.15

#4 13.23 6.18 74.97 72.33

#5 12.90 5.77 72.10 72.37

Table 5.6: Per gate (input) prover time for our VPD and CMT, Buffet and

vnTinyRAM for the last 4 RAM programs in the benchmark (same order and size

as in Table 5.3 and 5.4). Time reported in µs.

gate, which is about 8× faster than that of [88]. This is due to (i) our improved

VPD construction (amounting to around 2-4×) and (ii) due to the fact that 85%

of the inputs used in our RAM reduction are field elements that encode single bit

values (due to bit decomposition, register indices and flags), which leads to faster

exponentiation times for the VPD prover.

CMT protocol. Next, we evaluate the performance of our CMT protocol. As

can be seen in Table 5.6, the average time required per gate for the CMT prover

is about 6µs, which is about 4× slower than the 1.7µs number reported in [88].

This is because we implemented our new CMT protocol supporting circuits with

different copies of sub-circuits in Section 3.2, while the CMT protocol for regular

circuits is used in [88]. Both the per-input time for the VPD protocol and the per-

gate time for the CMT protocol are much faster than the per-gate time for Buffet

117



and vnTinyRAM.

Circuit generator. Finally, we report the number of gates required by our re-

duction to verify a TinyRAM cycle. We measure this by dividing the total number

of gates of the circuits produced by the experimental evaluation of Section 5.3.1

over the number of TinyRAM steps. For our tested programs this circuit contained

about 2500 gates, 600 of which are multiplications (for comparison, vnTinyRAM

takes roughly 2000 multiplication gates, as reported in [18]. Notice that the work

of [18] only needs to report the number of multiplication gates while we must report

on the total number of gates.

118



Chapter 6: Zero Knowledge

Our argument scheme presented in Section 3 lacks one crucial property: it

is not zero-knowledge. Moreover, while state-of-the-art SNARKs from quadratic-

arithmetic programs can be made zero-knowledge by simply randomizing proof ele-

ments, this approach is not directly compatible with our argument scheme.

In this chapter, we show a zero-knowledge version of our argument scheme.

At a high level, in order to obtain a zero-knowledge property we replace both of

the underlying components, the VPD and the CMT protocols, with zero-knowledge

variants. For the CMT component, this can be achieved by running the entire proto-

col inside homomorphic commitments (as first observed in a a more general context

by Cramer and Damg̊ard [38]). For the VPD part, we devise a new construction

that we call zk-VPD which is used to allow the prover to produce a proof about the

correctness of a commitment to the correct evaluation of a polynomial (rather than

proving correctness of the evaluation itself).

Asymptotically, our protocol has the same performance as that in Section 3

and has a preprocessing phase that only depends on an upper bound on the size

of the input, but not on the specific circuit to be evaluated. In practice, we would

expect it to have a slightly larger overhead for both parties (due to the increased

119



number of cryptographic operations).

In this chapter, we first go through building blocks we use to achieve zero-

knowledge in Section 6.1, and present the zero-knowledge variants of the VPD pro-

tocol and CMT protocol in Section 6.2 and 6.3. We then present the construction

of our new zero-knowledge argument system in Section 6.4.

6.1 Building Blocks

Linearly homomorphic commitment scheme. We assume the existence of a

commitment scheme Comm = (Setup,Com,Open) that has Zq (for prime q) as its

message space. This could be instantiated by the Pedersen commitment scheme [73],

for example. We assume:

• Setup(1λ) outputs public commitment parameters cp.

• Com(cp,m, r) on input a message m ∈ Zq and randomness r outputs a com-

mitment com.

• Open(cp, com,m, r) accepts iff Com(cp,m, r) = com.

We also require that there exists an efficient algorithm Evaluate(cp, com1, . . . , comn, x1, . . . , xn)

that on input n valid commitments (for some randomness values ri) for m1, . . . ,mn

and coefficients x, . . . , xn ∈ F, outputs new commitment com′ such that Open(cp, com′,
∑n

1 ximi, r
′)

accepts, where r′ is computed as a function of (r1, . . . , rn, x1, . . . , xn). For Pedersen

commitments, this can be easily achieved by having Evaluate(cp, com1, . . . , comn,

x1, . . . , xn) outputs com′ =
∏n

1 com
xi
i and r′ =

∑n
1 xiri.

120



Zero-knowledge argument for commitment-preimage equality. We assume

the existence of a zero-knowledge argument ZKeq for proving that two commitments

produced with Comm have the same pre-image. Somewhat informally, we write

ZKeq(m, r1, r2; com1, com2) → 1/0 to denote the interaction between a prover that

holds cp,m, r1, r2, com1, com2 such that Open(cp, comi,m, ri) accepts for i = 1, 2, and

a verifier that holds cp, com1, com2 will eventually accept if he believes they have

the same preimage and he will reject otherwise. For completeness, we require that

the verifier accepts with probability 1 for a valid statement. For soundness, we

require that for any probabilistic polynomial-time (cheating) prover algorithm, the

verifier will accept a false statement with probability negligible in λ. Zero-knowledge

dictates that the verifier learns nothing about m1,m2. For the Pedersen commitment

scheme, such a protocol can be instantiated by first using a sigma-protocol (e.g., the

one from [25]) and then using standard techniques to make it full zero-knowledge

(e.g., [44]).

Zero-knowledge argument for product of preimages. We assume the exis-

tence of a zero-knowledge argument ZKprod for proving that for three commitments

com1, com2, com3 produced with Comm it holds that the preimage of the last is the

product (in F) of the preimages of the first two. We write ZKeq(m1,m2, r1, r2, r3;

com1, com2, com3) → 1/0 to denote the interaction between a prover that holds

cp,m1,m2, r1, r2, r3, com1, com2, com3 such that Open(cp, comi,mi, ri) accepts for i =

1, 2, and Open(cp, com3,m1 ·m2, r3) accepts, and a verifier that holds cp, com1, com2,

com3. For completeness, we require that the verifier accepts with probability 1 for

121



a valid statement. For soundness, we require that for any probabilistic polynomial-

time (cheating) prover algorithm, the verifier will accept a false statement with

probability negligible in λ. Zero-knowledge dictates that the verifier learns nothing

about m1,m2. For the Pedersen commitment scheme, this can again be instantiated

via a standard combination of [25,44].

Exractability. Finally, we want the commitment scheme to be extractable in the

manner described in [21] for the case of collision-resistant functions, i.e., it should

not be possible to output a valid commitment without knowing a corresponding

pre-image. Somewhat informally, this is captured by the existence of an adversary-

specific extractor that (given access to the adversary’s code, random tape and auxil-

iary input) can output a pre-image for any commitment value the adversary produces

with all but negligible probability. For the Pedersen commitment scheme this can

be achieved, under Assumption 2, via the following modifications. (1) Parameters

cp also include value gβ for β ∈ F chosen uniformly at random. (2) Commitments

consist of a pair of values from com, com′ ∈ G such that com′ = comβ. (3) Upon

receiving such a commitment com, com′, the receiving party must check the relation

e(com, gβ) = e(com, g) and abort if the check fails. To ease notation, in the following

when describing a commitment value we will only refer to com and we will omit the

above validity check from the description of our protocols.

122



6.2 Zero-Knowledge Polynomial Commitment

In this section we present our zero knowledge polynomial delegation scheme.

At a high level, the main idea is to modify the polynomial delegation scheme of [88]

to output a commitment to the evaluation instead of the evaluation itself. That is,

instead of having Evaluate output the value y of the polynomial f when evaluated

on the input x together with a suitable proof π, the zero-knowledge polynomial

delegation commitment scheme outputs a statistically hiding and computationally

binding commitment comy to the value of y (in addition to the proof π). This hides

the value of y but still supports verifying that comy is indeed a commitment to f(x).

We first present our definition of a zero-knowledge polynomial delegation

scheme.

Definition 6. Let F be a finite field, F be a family of `-variate polynomials over

F, and d be a variable-degree parameter. (KeyGen,Commit,Evaluate,CheckCom,Ver)

constitute a zero-knowledge verifiable polynomial-delegation protocol for F if:

• Perfect completeness. For any polynomial f ∈ F and value t, the following

probability is 1:

Pr
rf ,ry


(pp, vp)← KeyGen(1λ, `, d)

comf ← CommitPoly(f, rf , pp)

(comy, π)← CommitValue(f, t, f(t), rf , ry, pp)

:
CheckCom(comf , vp) = 1 ∧

Ver(comf , t, comy, π, vp) = 1



• Binding. For any ppt adversary Adv and benign auxilary inputs z1, z2 the fol-

123



lowing probability is negligible:

Pr



(pp, vp)← KeyGen(1λ, `, d)

(π∗, com∗
f , com

∗
y, state)← Adv(1λ, z1, pp)

(f∗, t∗, y∗, r∗f , r
∗
y)← Adv(1λ, z2, state, pp)

:

CheckCom(com∗
f , vp) = 1 ∧

Ver(com∗
f , t

∗, com∗
y, π

∗, vp) = 1 ∧

com∗
f = CommitPoly(f∗, r∗f , pp) ∧

(com∗
y, π) = CommitValue(f∗, t∗, y∗, r∗f , r

∗
y , pp)

∧ f∗(t∗) 6= y∗



.

• Zero Knowledge. For security parameter λ, polynomial f , adversary Adv, and

simulator Sim consider the two experiments RealAdv,f (1
λ), IdealAdv(1

λ), defined as

follows.

RealAdv,f (1
λ):

1. (pp, vp)← KeyGen(1λ, `, d)

2. Generate rf uniformly at random

3. comf ← CommitPoly(f, rf , pp)

4. k ← Adv(1λ, comf , vp)

5. For i = 1, . . . , k repeat:

(a) Generate ri uniformly at random

(b) ti ← Adv(1λ, comf , comy1 . . . , comyi−1
, π1, . . . , πi−1, vp)

(c) (comyi , πi)← CommitValue(f, ti, f(ti), rf , ri, pp)

6. b← Adv(1λ, comf , (comy1 . . . , comyk , π1, . . . , πk), vp)

7. Output b

124



IdealAdv,Sim(1λ):

1. (comf , pp, vp, σ)← Sim(1λ, `, d)

2. k ← Adv(1λ, comf , vp)

3. For i = 1, . . . , k repeat:

(a) ti ← Adv(1λ, comf , comy1 . . . , comyi−1
, π1, . . . , πi−1, vp)

(b) (comyi , πi, σ)← Sim(ti, σ, pp)

4. b← Adv(1λ, comf , (comy1 . . . , comyk , π1, . . . , πk), vp)

5. Output b

We require that for any ppt adversary Adv and all f ∈ F, there exists a simulator

Sim such that the following is negligible

∣∣Pr
[
RealAdv,f (1

λ) = 1
]
− Pr

[
IdealAdv,Sim(1λ) = 1

]∣∣ .
Finally, we say that (KeyGen,Commit,Evaluate,CheckCom,Ver) are an extractable

zero-knowledge verifiable polynomial-delegation protocol for F if (KeyGen,Commit,

Evaluate,CheckCom,Ver) satisfy the following extraction requirements instead of the

above defined soundness requirement.

• Polynomial extractability. For any ppt adversary Adv there exists a polynomial-

time algorithm E with access to Adv′s random tape such that for all benign auxil-

125



iary inputs z ∈ {0, 1}poly(λ) the following probability is negligible:

Pr


(pp, vp)← KeyGen(1λ, `, d);

com∗f ← Adv(1λ, pp, z);

(f, rf )← E(1λ, pp, z)

:
CheckCom(com∗, vp) = 1 ∧

com∗f 6= CommitPoly(f, rf , pp)

 .

• Evaluation extractability. For any ppt adversary Adv there exists a polynomial-

time algorithm E with access to Adv′s random tape such that for all benign auxil-

iary inputs z ∈ {0, 1}poly(λ) the following probability is negligible:

Pr



(pp, vp)← KeyGen(1λ, `, d)

(t∗, π∗, com∗f , com
∗
y)← Adv(1λ, pp, z)

(f, rf , y, ry)← E(1λ, pp, z)

:

CheckCom(com∗f , vp) = 1 ∧

Ver(com∗f , t
∗, com∗y, π

∗, vp) = 1 ∧

(f(t∗) 6= y ∨ com∗f 6= CommitPoly(f, rf , pp) ∨

(π∗, com∗y) 6= CommitValue(f, t∗, y, rf , ry, pp))


.

Our construction of zero-knowledge verifiable polynomial-delegation protocol

is as following:

Construction 5 (Zero-knowledge Verifiable Polynomial-Delegation Pro-

tocol). Let F be a prime-order finite field, ` be a variable parameter, and d be a

variable-degree parameter such that O(
(
`(d+1)
`d

)
) is polynomial in λ. Consider the fol-

lowing protocol for the family F containing `-variate polynomials of variable-degree d

over F.

1. KeyGen(1λ, `, d): Select α, β, s1, . . . , s`, s`+1 ∈ F uniformly at random, run bp←

BilGen(1λ) and compute P = {g
∏
i∈W si, gα·

∏
i∈W si}W∈W`,d

. The public parameters

are set to be pp = (bp,P, gα, gβ, gs`+1 , gαs`+1 , gβs`+1) and the verifier parameters

are set to be vp = (bp, gs1 , · · · , gs` , gs`+1 , gα, gβ).

126



2. CommitPoly(f, rf , pp): If f 6∈ F output null. Else, compute c1 = gf(si,...,s`)+rf s`+1

and c2 = gα·(f(si,...,s`)+rf s`+1), and output the commitment comf = (c1, c2).

3. CheckCom(comf , vp): On input a commitment comf = (comf,1, comf,2), check

whether it is well-formed, i.e., output 1 if e(comf,1, g
α) = e(comf,2, g) and output

0 otherwise.

4. CommitValue(f, t, y, rf , ry, pp): Choose r1, . . . , r` ∈ F uniformly at random. Next,

using Lemma 1 compute polynomials qi such that

f(x1, . . . , x`) + rfx`+1 − (y + ryx`+1) =

∑̀
i=1

(xi − ti) · (qi(xi, . . . , x`) + rix`+1) + x`+1(rf − ry −
∑̀
i=1

ri(xi − ti)).

Set comy ← (gy+rys`+1 , gβy+βrys`+1). For i = 1, . . . , `, compute comi ← CommitPoly(

qi, ri, pp). Compute com`+1 ← (grf−ry−
∑`
i=1 ri(si−ti), gα(rf−ry−

∑`
i=1 ri(si−ti))). Out-

put comy and the proof π := (com1, . . . , com`+1).

5. Ver(comf , t, comy, π, vp): Parse the proof π as (com1, . . . , com`+1). For i =

1, . . . , ` + 1 run CheckCom(comi, pp). If any of them outputs 0, output 0. Oth-

erwise, parse comf as (comf,1, comf,2) and comy as (comy,1, comy,2) and for i =

1, . . . , ` + 1 parse comi as (comi,1, comi,2). If e(comy,1, g
β)

?
= e(comy,2, g) and

e(comf,1/comy,1, g)
?
= e(gs`+1 , com`+1,1)

∏`
i=1 e(g

si−ti , comi) output 1, otherwise

output 0.

Next, consider the following theorem.

127



Theorem 8. Under Assumptions 1 and 2, Construction 5 is a zero-knowledge ex-

tractable verifiable polynomial-delegation protocol. Moreover, for a variable-degree-d

`-variate polynomial f ∈ F containing m monomials, algorithm KeyGen runs in

time O(
(
`(d+1)−1

`d

)
), CommitPoly in time O(m), CommitValue in time O(`dm), Ver

in time O(`) and CheckCom in time O(1). If d = 1, CommitValue can be made to

run in time O(2`). The commitment produced by CommitPoly consists of O(1) group

elements, and the proof produced by CommitPoly consists of O(`) elements of G.

Proof. Completeness follows by close inspection of the algorithms. Next, we prove

the rest of the properties of Definition 6.

Polynomial extractability. Let Adv be a ppt adversary that on input (1λ, pp),

where (pp, vp) is the output of KeyGen(1λ, `, d), outputs commitment com∗f such

that CheckCom(com∗f , vp) accepts. This implies that e(comf,1, g
α) = e(comf,2, g).

By Assumption 2, there exists ppt extractor E for Adv such that upon the same

input as Adv, and with access to same random tape, outputs a0, . . . , a|W`,d|, b ∈ F

such that
∏

W∈W`,d
gaW

∏
i∈W sigbs`+1 = comf,1, except with negligible probability.

Note that, the coefficients (a0, . . . , a|W`,d|, b) can always be encoded as an (` + 1)-

variate polynomial that consist of the sum of two polynomials: an `-variate one with

degree-variable d that is defined over variables x1, . . . , x` and has values ai as its

monomial coefficients, and the univariate, degree-1 polynomial bx`+1.

Binding. Next, we prove the binding property. Let Adv be a ppt adversary that

wins the binding game with non-negligible probability. For i = 1, . . . , ` + 1 we

define adversary Advi that receives the same input as Adv and executes the same

128



code, but outputs only comi ∈ π∗ (where π∗ is the proof output by Adv). Moreover,

since Adv is ppt, all these adversaries are also ppt. Thus, for i = 1, . . . , ` +

1, from Assumption 2 there exists ppt Ei (running on the same random tape as

Advi) which on input (1λ, pp) outputs a0,i, . . . , a|W`,d|,i, bi ∈ F such that the following

holds: If e(comi,1, g
α) = e(comi,2, g) then

∏
W∈W`,d

gaW,i
∏
j∈W sj · gbis`+1 6= comi,1,

except with negligible probability. By the same reasoning as above, the coefficients

(a0,i, . . . , a|W`,d|,ibi) for each i = 1, . . . , ` can always be encoded as an (`+ 1)-variate

q′i that can be expressed as the sum of an `-variate polynomial with variable-degree d

that is defined over variables x1, . . . , x` and a univariate degree-1 polynomial defined

over x`+1.

We now proceed to build an adversary B that breaks Assumption 1 for pa-

rameter (`+ 1) · d. Upon input (1λ, bp, gs, gs
2
, . . . , gs

(`+1)·d
), B proceeds as follows:

Parameter Generation. B implicitly sets s1 = s and for i = 2, . . . , ` + 1 he chooses

ρi ∈ F uniformly at random and sets (also implicitly) si = s · ρi. Then he chooses

uniformly at random values α, β ∈ F. Next B needs to generate the terms in

P = {g
∏
i∈W si , gα·

∏
i∈W si}W∈W`,d

. Since the exponent of each term is a product

of at most ` · d factors where each factor is one of the values si = s · ri (for i =

1, . . . , `), it can be written as a polynomial in s with degree at most ` ·d. Therefore,

B can compute these terms from the values g, gs, gs
2
, . . . , gs

`·d
and α. Then, he

computes gs`+1 , gαs`+1 , gβs`+1 . Finally, B runs Adv on input (1λ, pp), where pp =

(bp,P, gα, gβ, gs`+1 , gαs`+1 , gβs`+1).

Query Evaluation. Upon eventually receiving (f ∗, t∗, y∗, π∗, com∗f , com
∗
y, r
∗
f , r
∗
y) from

Adv, B first checks whether CommitPoly(f ∗, r∗f , pp) = com∗f and CommitValue(f ∗, t∗,

129



r∗y, pp) = com∗f and aborts if any of the checks fails. Then, he runs Ver(com∗f , t
∗, com∗y,

π∗, vp) where vp = (bp, gs1 , . . . , gs
`+1
, gα, gβ). If Ver rejects B aborts, else he runs

extractors E1, . . . , E`+1 (defined above) on the same input as Adv and receives poly-

nomials q′1, . . . , q
′
`+1.

If for the output of any of the Ei it holds that
∏

W∈W`,d
gaW,i

∏
j∈W sjgbis`+1 6=

comi,1, B aborts. Let δ = y∗ − f ∗(t∗). If δ = 0 (i.e., y∗ = f ∗(t∗)), B aborts.

Otherwise, let K(x)
def
= f ∗(x)−∑`

i=1(xi−ti)q′i(x)−x`+1q
′
`+1(x)+(rf−ry)x`+1−

f ∗(t∗). Note that by setting s1 = s, s2 = ρ2 · s, . . . , s`+1 = ρ`+1 · s, we implicitly set

variables x2, . . . , x`+1 to ρ2 ·x1, . . . , x` = ρ`+1 ·x1. Thus, K(x) can be interpreted as

an (efficiently computable) univariate polynomial of degree at most (` + 1) · d over

variable x1, which we refer to as K ′(x1).

B then proceeds as follows. He chooses τ ∈ F uniformly at random. If gτ =

g−s, he aborts. Else, he computes univariate polynomial Q of degree at most (`+1)·d

and value R ∈ F such that K ′(x1) = (x1 + τ)Q(x1) + R. We then distinguish two

cases. (1) If R = δ then B factorizes the polynomial K ′ and let Y ⊂ F be the set

of its roots (|Y | ≤ (` + 1) · d). For each y ∈ Y , B tests whether gy = gs. If so, he

outputs (τ, e(g, g)
1

y+τ ) as a challenge tuple for Assumption 1 and halts. If all these

checks fail, he aborts. (2) Else, (if R 6= δ) he outputs (τ, e(g, g)Q(s1)·(δ−R)−1
) as a

challenge tuple for Assumption 1 and halts. Recall that, (as explained above) the

expression in the exponent is a (`+ 1) ·d degree polynomial thus the challenge value

is computable in polynomial time from (1λ, p,G,GT , e, g, g
s, gs

2
, . . . , gs

(`+1)·d
).

B is clearly ppt since all of Ei are ppt and he performs polynomially many

operations in F,G,GT . Next, we analyze the success probability of B. Recall that, by

130



assumption Adv succeeds in breaking the binding property of the scheme with non-

negligible probability ε. We observe that, conditioned on not aborting, B perfectly

emulates the binding game to A and moreover B’s output is always a valid tuple for

breaking Assumption 1. Let us argue why this is true.

Since verification succeeded, it holds that

e(comf,1/comy,1, g) = e(gs`+1 , com`+1,1)
∏̀
i=1

e(gsi−ti , comi,1)

and since extraction succeeded this can be replaced with

e(g, g)f
∗(s1,...,s`)+rfx`+1−y∗−ryx`+1 = e(g, g)s`+1q

′
`+1(s1,...,s`+1)

∏̀
i=1

e(g, g)(si−ti)q
′
i(s1,...,s`+1)

e(g, g)f
∗(s1,...,s`)−y∗ = e(g, g)s`+1q

′
`+1(s1,...,s`+1)

∏̀
i=1

e(g, g)(si−ti)q
′
i(s1,...,s`+1)e(g, g)(ry−rf )x`+1

e(g, g)f
∗(s1,...,s`)−y∗ = e(g, g)s`+1q

′
`+1(s1,...,s`+1)+(ry−rf )x`+1+

∑`
i=1(si−ti)q′i(s1,...,s`+1)

e(g, g)−y
∗

= e(g, g)s`+1q
′
`+1(s1,...,s`+1)+(ry−rf )x`+1+

∑`
i=1(si−ti)q′i(s1,...,s`+1)−f∗(s1,...,s`)

e(g, g)−δ−f
∗(t∗) = e(g, g)s`+1q

′
`+1(s1,...,s`+1)+(ry−rf )x`+1+

∑`
i=1(si−ti)q′i(s1,...,s`+1)−f∗(s1,...,s`)

e(g, g)−δ = e(g, g)s`+1q
′
`+1(s1,...,s`+1)+(ry−rf )x`+1+

∑`
i=1(si−ti)q′i(s1,...,s`+1)−f∗(s1,...,s`)+f∗(t∗)

e(g, g)δ = e(g, g)K(s1,...,s`+1)

e(g, g)δ = e(g, g)K
′(s1) = e(g, g)(x1+tau)Q(s1)+R

In order for the last substitution to be possible, it must the case that K ′(x1),

and correspondingly K ′(x) is non-constant polynomial (i.e., with degree > 0). Re-

call, that for polynomials defined over finite fields division is always possible assum-

ing that the dividend’s degree is at least as large as that of the divisor’s. Moreover,

the degree of the quotient is at most that of the dividend’s and that of the remainder

is strictly smaller than that of the divisor (i.e., R is a constant in this case).

131



Let us assume thatK ′(x) is a constant polynomial. Since, e(g, g)δ = e(g, g)K(s1,...,s`+1)

and e(g, g) is a generator or GT , it must be that K ′(x)
def
= δ therefore we can write

f ∗(x1, . . . , x`)− δ − f ∗(x1, . . . , x`) =

x`+1q
′
`+1(x1, . . . , x`+1) + (ry − rf )x`+1 +

∑̀
i=1

(xi − ti)q′i(x1, . . . , x`+1)

f ∗(x1, . . . , x`)− y∗ =

x`+1q
′
`+1(x1, . . . , x`+1) + (ry − rf )x`+1 +

∑̀
i=1

(xi − ti)q′i(x1, . . . , x`+1)

f ∗(x1, . . . , x`)− (ry − rf )x`+1 − y∗ =

x`+1q
′
`+1(x1, . . . , x`+1) +

∑̀
i=1

(xi − ti)q′i(x1, . . . , x`+1).

Now let f ′ be the `+1 variable polynomial defined as f ′(x1, . . . , x`+1)
def
= f ∗(x1, . . . , x`)−

(ry− rf )x`+1 and let t′ ∈ F`+1 defined as t′ = (t∗1, . . . , t
∗
` , 0). From the above relation

it follows that f ′(x1, . . . , x`+1)− y∗ =
∑`+1

i=1(xi − t′i)q′i(x1, . . . , x`+1), therefore t′ is a

root of the polynomial f ′′
def
= f ′(x1, . . . , x`+1)−y∗, i.e., f ′′(t′) = 0 which implies that

f ′(t1, . . . , t`+1)− y∗ = 0

f ∗(t1, . . . , t`)− (ry − rf ) · 0− y∗ = 0

f ∗(t1, . . . , t`) = y∗

which implies that y∗ is the correct evaluation of f ∗ on t∗, i.e., δ = 0. If that

is the case, B has already aborted, therefore conditioned on not aborting this will

never happen.

132



In all other cases, the polynomial division is possible therefore we can write

e(g, g)δ = e(g, g)(s1+τ)Q(s1)+R

e(g, g)
δ

s1+τ = e(g, g)
Q(s1)+

R
s1+τ

e(g, g)
δ−R
s1+τ = e(g, g)Q(s1).

If δ = R (case (1) above), then it follows that e(g, g)0 = e(g, g)Q(s1), i.e., s1 = s is root

of Q. Therefore, s = y for some y ∈ Y (and therefore |Y | > 0). Since factorization

can be done in deterministic polynomial time B always succeeds in computing this

y and e(g, g)
1

y+τ = e(g, g)
1
s+τ thus B succeeds in breaking Assumption 1 in this case.

If δ 6= R (case (2) above), from the above it holds that

e(g, g)
δ−R
s1+τ = e(g, g)Q(s1)

e(g, g)
1

s1+τ = e(g, g)Q(s1)·(δ−R)−1

therefore, in this case too, B succeeds in breaking Assumption 1 in this case.

Since the two cases are complementary, B always succeeds, conditioned on not

aborting. Thus, it remains to bound the probability of aborting. B can only abort

in three cases. If extraction fails, if y∗ = f ∗(t∗), or if τ = −y. The former can only

happen with negligible probability. This holds since, if verification succeeds it must

be that e(comi,2, g) = e(comi,1, g
α) for i = 1, . . . , `+ 1 and by Assumption 2, extrac-

tion for any of E1, . . . , E`+1 fails with negligible probability. Since ` is polynomial

in λ it follows that the probability any of them fails (which by a union bound is at

most equal to the sum of each individual failure probability) is also negligible. The

second happens by assumption with probability at most 1 − ε (as Adv wins with

133



probability at least ε), whereas the third happens with negligible probability O(2−λ)

as τ is chosen uniformly at random from F. By a union bound, the abort probability

is at most (1− ε) + neg(λ). Thus the success probability of B is ε− neg(λ) which is

non-negligible as we assumed that ε is non-negligible. Since B succeeds in breaking

Assumption 1 this contradicts our original assumption and our proof is complete.

Evaluation extractability. This follows almost directly from soundness and poly-

nomial extractability. In particular, let Adv be an ppt adversary that plays the

evaluation extractability game. Let Advf , Advy be two adversaries that on input

the same input as Adv, run Adv’s code internally but only output com∗f , com
∗
y re-

spectively and then halt. Clearly, both adversaries are ppt. Moreover, whenever

CheckCom(com∗f , vp) and Ver(com∗f , t
∗, com∗y, π

∗, vp) output 1, it follows that: (1) by

polynomial extractability there exist extractor Ef with access to the code and ran-

dom tape of Advf that with all but negligible probability outputs f, rf such that

CommitPoly(f, rf , pp) = com∗f , and (2) by Assumption 2, since Ver accepted (and

recall that as a sub-routine, Ver checks that e(comy,1, g
β) = e(comy,2, g)) there exists

ppt extractor with access to the code and random tape of Advy that with all but

negligible probability, outputs y, ry ∈ F such that gy+rys`+1 = comy,1.

It remains to show that the event E = {f(t∗) 6= y, where f is the output of

Ef and y is the output of Ey} occurs with negligible probability. For contradiction,

assume Pr[E] = ε, for some non-negligible ε. Then we can build adversary Adv′ that

breaks the binding property of our scheme, as follows.

1. On input (1λ, pp), Adv′ runs Adv internally and receives (t∗, π∗, com∗f , com
∗
y).

134



2. Adv′ runs Ef , Ey on the same input as Adv to receive f, rf , y, ry.

3. Adv′ outputs (f, t∗, y, π∗, com∗f , com
∗
y, rf , ry) as a challenge for the soundness game.

Adv′ is clearly ppt as Adv, Ef , Ey are all ppt. Note that whenever E occurs, Adv′

wins. Assuming that Pr[E] = ε, it follows that Adv′ breaks the binding property,

for which we proved above that it can only happen with negligible probability. This

concludes our proof.

Zero knowledge. We build our simulator Sim that operates as follows.

1. On input (1λ, `, d), run KeyGen(1λ, `, d) and receive pp, vp. Set σ = α, β, s1, . . . , s`+1.

Choose rf ∈ F uniformly at random and set comf = (grf , gα·rf ). Send vp, comf

to A.

2. Receive k from A.

3. For i = 1, . . . , k repeat:

(a) Receive ti from A.

(b) Choose r1i, . . . , r`i, ryi ∈ F uniformly at random.

(c) Compute comyi = (gryis`+1 , gβryis`+1), comji = (grjis`+1 , gαrjis`+1) for j =

1, . . . , ` and com`+1i = (grf−ryi−
∑`
j=1 rji(sj−tij), gα(rf−ryi−

∑`
j=1 rji(sj−tij))).

(d) Output (comyi, πi = (com1i, . . . , com`+1i), σ).

Sim is clearly ppt as all the above steps can be computed in time polynomial

in λ. Next, note that since rf and r1i, . . . , r`i, for all i, are chosen uniformly at

random, it follows that comf , com1i, . . . , com`i are indistinguishable from uniformly

135



chosen elements from G. Moreover, this holds both in the real and the ideal game

execution since in the former the discrete logs of these elements are computed as

the sum of a polynomial evaluation in F and an element of F chosen uniformly at

random. Finally, note that in both games, for any i, fixing comf , com1i, . . . , com`i

also fixes a unique element com`+1i ∈ G. From the above, it follows that for any (even

unbounded) adversary A and all f ∈ F, it holds that the view from the execution of

RealAdv,f (1
λ) and IdealAdv,Sim(1λ) is indistinguishable, thus Construction 5 is perfect

zero-knowledge.

6.3 Zero-Knowledge CMT Protocol

We start with a zero-knowledge sum-check protocol, which is a major building

block in the CMT protocol.

6.3.1 A Sum-Check Protocol over Homomorphic Commitments

As shown in Section 2.3.1, the messages exchanged during the sum check

protocol reveal the coefficients of g1, · · · , g`, thus leaking additional information

about the values of g, beyond H. This is problematic since we would like to use

the sum-check protocol as part of a zero-knowledge argument system of NP, where

leaking additional evaluations of g might leak information about the prover’s witness.

To that end, we execute the sum-check protocol over an additively homomorphic

commitment scheme. In particular, we consider the Pedersen commitment scheme,

136



modified as described in Section 6.1. The modified protocol starts by having P

commit to the coefficients of g and by providing a commitment com0 to the value

H. Next, at round i, instead of having P send to V the coefficients of gi, we modify

the sum-check protocol and have P send commitments to these coefficients to V .

Since Pedersen commitments are linearly homomorphic, V can locally compute a

commitment com∗ to gi(0)+gi(1) and then check (using the ZKeq protocol) that com∗

commits to the same value as comi−1, thus verifying that indeed gi−1(ri−1) = gi(0)+

gi(1). In case this verification succeeds, V sends a uniformly random challenge ri to

P , and both P and V use the homomorphic properties of the Pedersen commitment

scheme in order to obtain a commitment comi to the evaluation of gi on ri. P and

V repeat the above, using comi and ri in round i+ 1.

Formally, we present our construction below.

Construction 6 (Sum-check Protocol Over Homomorphic Commitment

Schemes). Let F be a prime-order finite field, and let λ be a security parameter.

In addition, let Comm be a linearly homomorphic commitment scheme as described

in Section 6.1, cp ← Setup(1λ), and let g(b1, · · · , b`) be an `-variate total-degree-d

polynomial over F which is represented using m coefficients a0, · · · , am. Consider the

following protocol between P and V for convincing V that t0 =
∑

b1∈{0,1} · · ·
∑

b`∈{0,1}

g(b1, · · · , b`) is a valid opening to some commitment com0. That is, that he knows

ρ0 such that com0 = Com(cp, t0, ρ0).

1. For all i = 1, · · · , ` perform the following.

(a) Define gi(x) =
∑

bi+1,··· ,b`∈{0,1} g(r1, · · · , ri−1, x, bi+1, · · · , b`) and let a0, · · · , am

137



be the coefficients of gi.

(b) For every 0 ≤ j ≤ m P computes comaj ← Com(cp, aj, ρaj) where ρaj ∈ F is

selected uniformly at random and sends (coma0 , · · · , comam) to V.

(c) V computes com∗i−1 ← coma0 ·
∏m

k=0 comak which is a commitment to gi(0) +

gi(1).

(d) V and P perform ZKeq(cp, ti−1, ρi−1, ρa0 +
∑m

j=0 ρaj ; comi−1, com
∗
i−1).

(e) V generates a random value ri and sends it to P.

(f) Both V and P compute comi ← Evaluate(cp, coma0 , · · · , comam , 1, ri, · · · , rmi ).

(g) P sets ti ← gi(ri) and ρi ←
∑m

j=0 ρajr
j
i

2. V computes com∗` ← Com(cp, g(r1, · · · , r`), ρ`+1) and sends com∗` and ρ`+1 to P.

3. Both V and P perform ZKeq(cp, g(r1, · · · , r`), ρ`, ρ`+1; com`, com
∗
`).

We now state the following theorem (we are only interested in proving “regu-

lar” soundness and not knowledge soundness).

Theorem 9. For any `-variate, total-degree-d polynomial g : F` → F with m non-

zero coefficients, assuming Comm is a linearly homomorphic commitment scheme,

as described in Section 6.1, and ZKeq is a zero-knowledge non-interactive argument

for testing equality of commitments for Comm, Construction 6 is an interactive

argument with soundness d · `/|F| for the following language L(cp, com0, g; ρ0) : com0 ← Com

cp,
∑

b1,··· ,b`∈{0,1}

g(b1, · · · , b`), ρ0

 and cp← Setup(1λ)


where λ is the security parameter.

138



Proof Sketch. The completeness property immediately follows from Construc-

tion 6. We now proceed to argue about the soundness property.

Soundness. Let g(b1, · · · , b`) be an `-variate total-degree-d polynomial over a fi-

nite field F. We begin by observing that the commitment com0 and all coefficient

commitments comaj ,i for i = 1, . . . , `, j = 1, . . . ,m are extractable. That is, for each

of them there exists a polynomial-time extractor that receives the same input as

the adversary Adv and outputs with all but negligible probability a valid pre-image

from F, whenever Adv succeeds in convincing V . This follows under Assumption 2

using the same argument as in the proof of Theorem 8 (recall that, as explained in

Section 6.1, we implicitly assume that whenever V receives a commitment he checks

whether it is well-formed and rejects otherwise).

Next, we distinguish between the following two complementary cases.

1. There exists 0 ≤ i ≤ ` such that the extracted pre-images for comi, com
∗
i

are not equal. In this case, this directly contradicts the soundness of the ZKeq

protocol executed in Steps 1d and 3 of Construction 6. This means that Adv can

be used to construct a black box adversary Adv′ which breaks the soundness of

the ZKeq protocol.

2. For all 0 ≤ i ≤ ` it holds that the extracted pre-images for comi, com
∗
i

are equal. In this case let t∗0 be the extracted pre-image of com0, and let h∗i

be the extracted pre-image of comi for all i = 0, · · · , ` − 1. Also, let g∗i be the

polynomial defined by coefficients a0, · · · , am which are the pre-images extracted

from the commitments coma0 , · · · , comam sent by P in Step 1b of Construction 6

139



during the (i + 1)th round. Notice that since comi and com∗i have the same

pre-image h∗, by construction of com∗i is holds that h∗i = g∗i (0) + g∗i (1). Due

to this, notice that (t∗0, g, (ri, g
∗
i , h

∗
i )i=1,··· ,`) is a valid transcript for a (possibly)

cheating prover P∗ controlled by Adv trying to convince a verifier V that indeed

t0 =
∑

b1∈{0,1} · · ·
∑

b`∈{0,1} g(b1, · · · , b`).

Thus, if t0 6=
∑

b1∈{0,1},...,b`{0,1} g(b1 . . . , b`) then Adv can be used in a black-box

manner in order to break the soundness property of the sum-check interactive

proof protocol.

Moreover, we prove the following lemma that will be helpful for us while

proving the zero-knowledge property of our argument.

Lemma 2. For every verifier V∗ and for every `-variate, total-degree-d polynomial

g : F` → F with m non-zero coefficients, there exists a simulator Sim such that Sim

is capable of simulating from cp, com0,m and t0 (without using g) the partial view

of V∗ defined by cp, com0 as well as the messages obtained during only Step 1 of

Construction 6.1

Proof Sketch. We build simulator Sim which simulates the view of V during Step 1

of Construction 6 as follows. First, Sim receives as input commitment parameters

cp, commitment com0, an upper bound m on the number of coefficients of g, as

well as the value t0 =
∑

b1,··· ,b`∈{0,1} g(b1, · · · , b`). Sim proceeds to simulate Step 1 of

Construction 6 as follows.

1Notice that the partial view does not include the coefficients a1, · · · , am of g.

140



1. For i = 1, . . . , `:

(a) Sim chooses coefficients a0, . . . am−1 chosen uniformly at random from F and

sets am such that ti−1 = a0 + am +
∑m−1

j=0 aj. Let gi(x) be the polynomial

denoted by coefficients a0, . . . , am and notice that ti−1 = gi(0) + gi(1).

(b) For every 0 ≤ j ≤ m, Sim computes comaj ← Com(cp, aj, ρaj) where ρaj ∈ F

is selected uniformly at random, and sends (coma0 , · · · , comam) to V∗.

(c) Sim computes com∗i−1 ← coma0 ·
∏m

k=0 comak .

(d) Let Simeq be the simulator guaranteed from the zero knowledge property of

ZKeq. Sim runs simulator Simeq on inputs (cp, com∗i−1, comi−1) in order to

simulate V∗’s view during the execution of ZKeq the ith round.

(e) Upon receiving ri from V∗, Sim computes comi ← Evaluate(cp, coma0 , · · · , comam

, 1, ri, · · · , rmi ) and sets ti ← gi(ri) and ρi ←
∑m

j=0 ρajr
j
i .

The produced transcript is indistinguishable from the one V∗ gets while interacting

with P since: (i) the coefficients a0, . . . , am for each round i satisfy the same rela-

tion with respect to ti−1 in both cases, (ii) Comm is statistically hiding, i.e., each

commitment is indistinguishable from a commitment to a random value, and (iii)

the output of Simeq for round i is indistinguishable from the messages received by

V∗ while running ZKeq on the same values. In the following, we consider a slightly

modified simulator Sim that outputs as secret state the values (t`, ρ`) to be used

when building a larger simulator that runs Sim as a black box.

141



6.3.2 A CMT Protocol over Homomorphic Commitments

Similarly to the case of the standard sum-check protocol, the messages ex-

changed during the CMT execution leak information about the intermediate values

of the circuit C and thus potentially about the circuit’s input (which in our case

will include the prover’s witness). Thus, similarly to Section 6.3.1, we execute the

CMT protocol over homomorphic commitments and use the commitment’s hiding

property to conceal from V information regarding the circuit’s internal wires.

The modified protocol proceed as follows. First, P sends to V commitments

comx1 , . . . , comxn to the n inputs of C and a commitment com0 to 1 (the claimed

output of the circuit when evaluated on x). Next, at round-i, both P and V use

the first step of the sum-check protocol over homomorphic commitments, resulting

in V obtaining a commitment com′i on ai which is claimed by P to be equal to

Ṽi−1(r
′
i), where r′i is uniformly generated by V . Let q1, q2 be the last 2si elements

of r′i. P then computes t1 = Ṽi(q1), t2 = Ṽi(q2), t3 = t1 · t2 and commits to

t1, t2, t3 resulting in comt1 , comt2 , comt3 . V then verifies (using the ZKprod protocol)

that indeed comt3 is a commitment to the multiplication of t1 and t2 and uses the

homomorphic properties of the commitment scheme and the ZKeq protocol in order

to check that the value com′i provided earlier by P is indeed a commitment to the

evaluation of Ṽi−1(r
′
i). Both V and P then use the homomorphic properties of the

commitment scheme and the ZKeq protocol in order for V to obtain a commitment

comi to a value ai = Ṽi(γ(r′′i )), where r′′i is generated by V , and proceed to the next

round of the protocol using ai and random point ri = γ(r′′i ). Finally P reveals x and

142



r0 to V who then checks their consistency with the initial commitments, evaluates

the polynomial Ṽx on the last random point established rd and both parties use

ZKeq to establish that a commitment to this evaluation has the same pre-image as

comd. We stress that this entire last step (which clearly would violate any notion

of zero-knowledge) will not be a step of our final construction; it will instead by

replaced with appropriate evocations of zk-VPD.

Formally, consider the protocol presented below.

Construction 7 (CMT Protocol Over Homomorphic Commitment Schemes).

Let F be a prime-order finite field, and let λ be a security parameter, Comm be

a linearly homomorphic commitment scheme as described in Section 6.1, and let

cp ← Setup(1λ). In addition, let C : Fn → F be a depth-d layered arithmetic cir-

cuit and let x ∈ Fn be inputs of C such that C(x) = 1. Consider the following

protocol between P and V for convincing V that x is a valid opening to a series of

commitments comxi ← Com(cp, xi, ρxi), where xi ∈ F is the i-th element of input x.

1. Both parties set a0 = 1 and r0 = 0. P generates ρ0 uniformly at random,

computes com0 ← Comm(cp, a0, ρ0) and sends it to V.

2. For all i = 1, · · · , d perform the following.

(a) V and P execute Step 1 of Construction 6 on input ai−1, polynomial Ṽi−1

(as per Equation 2.1), and randomness ρi−1 for P and comi−1, ri−1 for V.

As a result, V obtains a commitment com′i = Com(t, ρi) (where t and ρi are

known to P and not to V) where P claims that t = Ṽi−1(r
′
i) with r′i having

been selected uniformly at random by V.

143



(b) Let (q1, q2) be the last 2si elements of r′i. P computes t1 = Ṽi(q1), t2 = Ṽi(q2),

and t3 = t1 · t2. P then computes commitments comt1 ← Com(cp, t1, ρt1),

comt2 ← Com(cp, t2, ρt2), and comt3 ← Com(cp, t3, ρt3) which he sends to V.

(c) V and P perform ZKprod(cp, t1, t2, t3, ρt1 , ρt2 , ρt3 ; comt1 , comt2 , comt3).

(d) Using Equation 2.1 V can express Ṽi−1(r
′
i) as a linear function of r′i, Ṽi(q1),

Ṽi(q2), Ṽi(q1) · Ṽi(q2). Thus, using Evaluate, V can obtain a new commitment

com∗i to the evaluation of Ṽi−1(r
′
i) and let ρ∗i be the corresponding random-

ness.

(e) V and P perform ZKeq(cp, Ṽi−1(r′i), ρi, ρ∗i ; com′i, com∗i ).

(f) Let γ : F → Fsi be the line defined by γ(0) = q1 and γ(1) = q2 and let

h(x) be the degree-si polynomial such that h(x) = Ṽi(γ(x)) and h0, . . . , hsi

be its coefficients. For j = 0, . . . , si, P computes commitments comhj ←

Com(cp, hj, ρhj) and sends them to V.

(g) V computes comh(0) ← comh0 and comh(1) ←
∏si

j=0 comhj which are commit-

ments to h(0) and h(1) respectively.

(h) V and P perform ZKeq(cp, t1, ρt1 , ρh0 ; comt1 , comh(0)) and ZKeq(cp, t2, ρt2 ,∑si
j=0 ρhj ; comt2 , comh(1)).

(i) V chooses r′′i ∈ F uniformly at random, sets ri ← γ(r′′i ) and sets comi ←

Evaluate(cp, comh0 , · · · , comhsi
, 1, r′′i , · · · , r′′si).

(j) V sends r′′i and comi to P. P sets ri ← γ(r′′i ), ai ← Ṽi(γ(r′′i )) and ρi ←∑si
j=0 r

′′jρhj .

144



3. P sends to V the input x and randomness ρ0 and ρxi for 1 ≤ i ≤ n. V verifies

that comxi = Com(cp, xi, ρxi) for 1 ≤ i ≤ n and that com0 = Com(cp, 1, ρ0).

4. Let Ṽx be the multilinear extension of the polynomial Vx satisfying Vx(i) = xi for

all i = 1, · · · , n. The verifier computes com∗x ← Com(cp, Ṽx(rd), ρ
∗
d) where ρ∗d is

chosen uniformly at random.

5. V and P perform ZKeq(cp, Ṽx(rd), ρd, ρx; com∗x, comd). V accepts if the protocol

accepts and rejects otherwise.

We have the following theorem:

Theorem 10. Let C : Fn → Fk be a depth-d layered arithmetic circuit over a fi-

nite field F. Assuming Comm is an linearly homomorphic commitment scheme as

described in Section 6.1, ZKeq is a zero-knowledge argument for testing equality of

committed values, and ZKprod is a zero-knowledge argument for testing the product

relation between three commitments in Comm, the CMT protocol presented in Con-

struction 7 is an interactive argument with soundness O(d · logS/|F|) for for the

following relation

R =

{(
(cp, C, comx1 , . . . , comxn); (x1, · · · , xn, ρx1 , . . . , ρxn)

)
:

C(x1, · · · , xn) = 1 ∧
n∧
i=1

comxi = Com(cp, xi, ρxi)

}
where cp ← Setup(1λ), λ is the security parameter, n is the input size of C, and S

is the maximal number of gates per circuit layer in C.

Proof Sketch. The completeness property immediately follows from Construc-

tion 7. We now proceed to argue about the soundness property.

145



Soundness. Soundness follows by a similar argument as in Theorem 9. Indeed, let

P∗ be an cheating prover which convinces V (with non-negligible probability) of a

claim “1 = C(x)” for some x and C, such that 1 6= C(x). Using Assumption 2, for

each commitment that V receives from P∗, there exists a polynomial-time extractor

with access to P∗’s code and random tape that outputs (with all but negligible

probability) a corresponding commitment pre-image.

Next, we define the following events.

1. Event A takes place if the extracted pre-image for comd is not equal to Ṽx(rd) or

there exists 1 ≤ i ≤ d such that the extracted pre-images for com′i, com
∗
i during

Step 2e, or the extracted pre-images for comt1 , comh(0) or comt2 , comh(1) during

Step 2h are not equal.

2. Event B takes place if there exists 1 ≤ i ≤ d such that the extracted pre-image

for comt3 is not equal to the product of the extracted pre-images for comt1 , comt2

during Step 2c

3. Event Ci (for 0 ≤ i ≤ d) takes place if Ṽi(ri) = ai (where Ṽi is as defined in

Equation 2.1) when evaluating C on the extracted pre-image of comx and ai is

the extracted pre-image of comi.

Note that assuming C(x) 6= 1 is equivalent to assuming Ṽ0(r0) 6= a0 i.e., that ¬C0

occurred. Next, we study the following (exhaustive) cases.

• Event A occurs. We argue about this case in exactly the same manner as in the

proof of Theorem 9. That is, this directly contradicts the soundness of the ZKeq

146



protocol executed in Steps 5, 2e, or 2h of Construction 6 since P∗ can be used

in a black box manner to construct an adversary Adv which breaks the soundness

of the ZKeq protocol.

• Event B occurs. Again, this directly contradicts the soundness of the ZKprod

protocol executed in Step 2c of Construction 6 since P∗ can thus be used in a

black box manner to construct an adversary Adv which breaks the soundness of

the ZKprod protocol.

• There exist 1 ≤ i ≤ d such that ¬Ci−1 occurs and events A, B do not. We

will now prove that this case contradicts the soundness property of Construction 6.

Note that since V computes Ṽx(rd)
def
= Ṽd(rd) himself and since event A did not

occur, Cd must occur. Therefore in this case it holds ¬A∧¬B ∧¬Ci ∧¬C0 ∧Cd.

Therefore, there must exist i′ such that ¬Ci′−1 ∧ Ci′ .

Let a∗i′−1 be the extracted pre-image of comi′−1, a
∗
i′ be the extracted pre-image

of comi′ . Since ¬Ci′−1 ∧ Ci′ holds we obtain that a∗i′ = Ṽi′(ri) and that a∗i′−1 6=

Ṽi′−1(ri′−1). Next, since a∗i′ = Ṽi′(ri) from Steps 2f-2h we obtain that (except with

negligible probability) it holds that the extracted pre-images of comt1 , comt2 are

indeed equal to Ṽi′(q1), Ṽi′(q2) (where (q1, q2) are the last 2si elements of r′i).

We now claim that P∗ can be used in black-box manner to construct an adver-

sary Adv that succeeds in falsely proving that a∗i′−1 is equal to Ṽi′−1(ri′−1), thus

contradicting the soundness of Construction 6. Indeed, let Vsum−check be a verifier

for Construction 7 using the coefficients of Ṽi′−1. Adv then performs (using the

147



code of P∗) Step 1 of Construction 6. Since the verifier V for Construction 7

did not reject while interacting with P∗ (and in particular, did not reject during

Step 2a with i = i′), Vsum−check will not reject as well. Notice that, at this point

in Construction 6, it is the case that com` is a commitment to Ṽi′−1(r
′
i) and so is

com′i′ (defined in Step 2a of Construction 7 with i = i′).

Next, Vsum−check and Adv proceed by performing Steps 2 and 3 of Construc-

tion 6. We now argue that Vsum−check will not reject during Step 3 of Construc-

tion 6. Indeed, since the extracted pre-images t1, t2 of comt1 , comt2 are equal to

Ṽi′(q1), Ṽi′(q2) and since V did not reject during Step 2c and 2d of Construction 7

with i = i′, we obtain that V successfully performed a step which is equivalent to

Step 2 of Construction 6. Thus, V holds a commitment com∗i′ to Ṽi′−1(r
′
i) (using

the notation of Construction 7) and Vsum−check holds a commitment com∗` to the

same value Ṽi′−1(r
′
i). At this point, ass explained above we also have that that the

pre-images of com` and com′i′ are both equal to Ṽi′−1(r
′
i) as well. Since event A

did not occur, it holds that the pre-images of com′i′ and com∗i′ also have the same

pre-image. By transitivity, we obtain that com∗` is a commitment to the same

value as com`, thus Vsum−check will not reject during Step 3 of Construction 6.

Therefore, we have violated the soundness of Construction 6 by allowing Adv to

falsely prove that a∗i′−1 = Ṽi′−1(ri′−1).

Moreover, we prove the following lemma that will be helpful for us while

proving the zero-knowledge property of our argument.

Lemma 3. For every verifier V∗ and for every depth-d layered circuit C : Fn → Fk

148



over a finite field F there exists a simulator Sim such that Sim is capable of simulating

the view of V∗ in steps 1 and 2 of Construction 7 from C, without access to x.

Proof Sketch. We build simulator Sim that simulates the view of V during Steps 1

and 2 of Construction 7. The simulator gets as input commitment parameters cp

and a circuit C and proceeds as follows.

1. Sim sets a0 = 1 and r0 = 0, and computes comx ← Com(cp, 0, ρx) for some ρx

generated at random. Sim then sends comx to V∗.

2. Sim generates ρ0 uniformly at random, computes com0 ← Com(cp, a0, ρ0) and

sends it to V .

3. Sim proceeds to simulate Step 2 of Construction 7 as follows. For all i = 1, · · · , d

Sim performs the following.

(a) Let Simsum−check be the simulator from the proof of Lemma 2. Sim runs

Simsum−check on input (cp, comi−1, si−1, ai−1), in order to simulate V∗’s view

during the execution of Step 2a. In addition to the final message com′i sent

to V∗, Simsum−check also outputs a secret state (ai, ρi) which is not forwarded

to V∗. Notice that ai is the simulated value of Ṽi−1(r
′
i) where r′i was chosen

by V∗.

(b) Let (q1, q2) be the last 2si elements of r′i. Sim chooses simulated values

t1, t2 ∈ F for Ṽi(q1) and Ṽi(q2) such that ai (which is the simulated value

Ṽi−1(r
′
i)), t1, t2 (which are the simulated values for Ṽi(q1) and Ṽi(q2)) and r′i

satisfy Equation 2.1.

149



(c) Sim then computes comtj ← Com(cp, tj, ρtj) for j = 1, 2, 3, where t3 = t1 · t2

and ρt1 , ρt2 , ρt3 are chosen uniformly at random from F, and forwards them

to V∗.

(d) Let Simprod be the simulator guaranteed from the zero knowledge property of

ZKprod. Sim runs simulator Simprod on input cp, comt1 , comt2 , comt3 in order

to simulate V∗’s view during the execution of Step 2c of Construction 7).

(e) Sim performs Step 2d of Construction 7 using the values r′i, t1, t2, t3. This

results in a commitment com∗i to the value of Ṽi−1(r
′
i).

(f) Sim runs simulator Simeq on input cp, com′i, com
∗
i in order to simulate V∗’s

view during the execution of Step 2e of Construction 7).

(g) Sim computes comh(0) as a fresh commitment to t1. For j = 1, . . . , si − 1,

Sim chooses values hj ∈ F uniformly at random. Moreover, he chooses hsi

such that
∑si

j=1 hj + t1 = t2 and for j = 1, . . . , si he computes comhj ←

Com(cp, hj, ρhj). Sim then sends comh0 , . . . , comhsi
to V∗.

(h) Sim computes comh(1) ← comh(0) ·
∏si

j=1 comhj .

(i) Sim runs simulator Simeq on input cp, comt1 , comh(0) and on input cp, comt2 , comh(1)

in order to simulate V∗’s view during the execution of Step 2h of Construc-

tion 7).

(j) Finally, Sim sets ri ← γ(r′′i ) (where r′′i was sent by V∗ in Step 2j of Con-

struction 7) and ai ← H(r′′i ) (where H is the degree-si polynomial that

has as coefficients t1 = h0, h1, . . . , hsi) and ρi ←
∑si

j=0 r
′′jρhj . Finally, Sim

computes comi ← Comm(ai, ρi).

150



We claim that the view of V∗ while interacting with Sim (for Steps 1,2 of Con-

struction 6) is indistinguishable from the view he gets while interacting with the

honest prover P since: (i) All triplets ai and t1, t2 (for each round i) chosen by

Sim satisfy Equation 2.1, (ii) All values hj (for each round i) satisfy the condition

h0 = t1 and
∑si

j=1 hj + t1 = t2, (iii) by assumption, the messages received by V∗ by

Simeq, Simprod, Simsum−check (forwarded via Sim) are indistinguishable form the ones

received while running ZKeq,ZKprod and Construction 6 with the honest prover,

and (iv) (ii) Comm is statistically hiding.

Other approaches to make CMT zero-knowledge. Chiesa et al. [34] showed

how a large class of algebraic protocols (including sum-check and CMT) can be made

zero-knowledge using only information theoretic techniques. While this is a very at-

tractive property, it is not clear how to make their approach compatible with a VPD

protocol from Section 3.1. Next, in a concurrent and independent work, Wahby et

al. [84] presented an efficient zero-knowledge argument for sufficiently “parallel” cir-

cuits that utilizes the CMT protocol and uses the same general approach for making

it zero-knowledge as the one used in this work (i.e., running the CMT protocol over

homomorphic commitments). Unlike our construction which has a trusted prepro-

cessing phase and relies on non-standard knowledge-of-exponent assumptions, the

construction of [84] does not require any preprocessing and its security is based solely

on the DDH assumption. However, while our construction achieves communication

size and verification time that are polylogarithmic in the size of the witness w for

NP-relation being verified, the communication size and verification time of [84] scale

151



with O(
√
|w|) which might be prohibitive for some applications.

6.4 Zero-Knowledge with Function Independent Preprocess-

ing

In this section we construct our zero knowledge proof system with function

independent preprocessing. We run the CMT protocol over homomorphic commit-

ments, as described in 6.3, and by replacing the VPD construction of Section 3 with

our zk-VPD construction from Section 6.2. Formally, consider the following protocol

and theorem.

Construction 8 (Zero-knowledge Delegation Protocol). Let λ be a security

parameter and let F be a prime order field such that |F| is exponential in λ. In

additional, let n be an input size parameter and let t be a circuit size parameter. In

the following, for simplicity of exposition we assume that n is a power of 2. Consider

the algorithms G,P ,V described below.

• Preprocessing phase. The parameter generator G on input 1n, 1t, 1λ runs

(pp, vp) ← KeyGen(1λ, n, 1). The proving key pk is set to be pp and the verifi-

cation key vk is set to be vp.

• Evaluation phase. Let C : Fnx+nw → F be a depth-d layered arithmetic circuit

over F such that |C| ≤ t and nx + nw ≤ n. In addition, let x ∈ Fnx and w ∈ Fnw

such that C(x;w) = 1. Assume that nw/nx = 2m − 1 for some m ∈ N. Consider

the following protocol between P and V.

152



1. Let Ṽd be the multilinear extension of the input layer of C evaluated on (x;w).

P commits to the values of Ṽd by executing comṼd
← CommitPoly(Ṽd, ρṼd , pp)

where ρṼd is generated uniformly at random. P then sends comṼd
to V.

2. V runs CheckCom(comṼd
, vp). In case CheckCom rejects, V rejects as well.

3. V and P execute Steps 1 and 2 of Construction 7. In case Construction 7

rejects, so does V. Otherwise, at the end of Step 2 of Construction 7 V holds

a commitment comd of an evaluation of Ṽd at a random point rd chosen by V

while P holds the randomness ρd used to generate comd.

4. P executes (com∗d, π)← CommitValue(Ṽd, rd, Ṽd(rd), ρṼd , ρṼd(rd), pp) where ρṼd(rd)

is generated uniformly at random and sends (com∗d, π) to V.

5. Upon receiving (com∗d, π), V executes Ver(com∗d, rd, comṼd
, π, vp). In case Ver

rejects, so does V.

6. P and V perform ZKeq(cp, Ṽd(rd), ρd, ρṼd(rd); com∗d, comd). (Note that cp is a

subset of vp.) In case ZKeq rejects so does V.

7. V computes the multilinear extension x̃ of the input x, generates a random

point rx ∈ (Flognx × 0lognw) and sends r to P.

8. Upon receiving rx, P executes (com∗x, πx) ← CommitValue(Ṽd, rx, rṼd , ρrx , pp)

where ρrx is generated uniformly at random and sends (com∗x, πx) to V. Next,

V executes Ver(com∗x, rx, comṼd
, πx, vp). In case Ver rejects, so does V.

9. V computes comx ← Com(vp, x̃(r′x), ρ
′
x) where ρ′x is generated uniformly at ran-

dom and r′x is defined to be the first log nx elements of rx. V sends ρ′x to

P.

153



10. Both P and V perform ZKeq(cp, Ṽd(rx), ρrx , ρ′x; comx, com
∗
x). In case ZKeq

rejects so does V.

Theorem 11. For any circuit size parameter t, input size n and finite field F,

Construction 8 is a zero-knowledge argument system for the relation

R = {(C, x;w) : C ∈ CF ∧ |C| ≤ t ∧ inp(C) ≤ n ∧ C(x;w) = 1}.

Moreover, for every (C, x;w) ∈ R the running time of P is O(|C| · log(width(C)))

and if C is log-space uniform then the running time of V is O(|x|+ d · poylog(|C|)).

Finally P and V interact O(d log(width(C))) rounds where d is the depth of C. In

case d is polylog (|C|), the above construction is a succinct argument.

Proof Sketch. The completeness property immediately follows from Construc-

tion 8. We now proceed to argue about the knowledge soundness property.

Knowledge soundness. Let Adv be a reduced version of P∗ that aborts right after

outputting comṼd
. By the polynomial extractability property of Construction 5,

there exists extractor E ′ that upon the same input as P∗ and the same random

tape, outputs a n-variable degree-variable 1, polynomial f and randomness ρf such

that CommitPoly(f, ρf , pp) = comṼd
with all but negligible probability. We are now

ready to build our extractor E as follows:

1. Run E ′(1λ, pp) and receive polynomial f and randomness ρf . If f is not a n-

variable degree-variable 1, polynomial f , abort.

2. Output w = (f(nx), . . . , f(nw − 1)).

154



We now argue that assuming P∗ successfully convinced a verifier V , it is indeed the

case that C(x,w) = 1.

First, notice that com∗x (produced via CommitValue) and comx are of the same

format, i.e., regular Pedersen commitments under the same cp parameters (as de-

scribed in Section 6.1). Thus, by the soundness property of the ZKeq protocol we

obtain that comx and com∗x are commitments to the same pre-image. Next, let Evpd,x

be the extractor for P∗ (limited to Steps 1 and 8 of Construction 8) guaranteed by

the evaluation extractability of property of Construction 5, as per Definition 6. Since

P∗ convinces V we obtain that Evpd,x on the same inputs as P∗ outputs f(rx) as the

pre-image of com∗x (with high probability).

We now argue that (f(0), · · · , f(nx − 1)) = x. Indeed, notice that f is an

n-variate variable-degree-1 polynomial and it is thus a multilinear extension. In ad-

dition, by construction of x̃ (Step 7 of Construction 8) it holds that (x̃(0), · · · , x̃(nx−

1)) = x. Next, since comx and com∗x are commitments to the same value, we obtain

that x̃(r′x) = f(rx). Thus, by the properties of multilnear extensions we obtain that

with high probability it holds that (f(0), · · · , f(nx−1)) = (x̃(0), · · · , x̃(nx−1)) = x.

We now proceed to argue that C(x,w) = 1. Let x′ = (x,w). We now show how

to construct a prover P∗cmt which will convince a verifier Vcmt from Construction 7

that C(x′) = 1. Using the soundness property of Construction 7 we shall obtain

that C(x,w) = C(x′) = 1 with high probability. Indeed, let x′ = (x′1, · · · , x′n), P∗cmt

starts by computing comx′i
← Com(cp, x′i, ρx′i ) where ρx′i is generated uniformly at

random and cp was given to P∗ by the parameter generator G. P∗cmt then sends

comx′1
, · · · , comx′n to Vcmt and proceeds as follows.

155



1. P∗cmt sets a0 = 1, r0 = 0, generates ρ0 uniformly at random, computes com0 ←

Comm(cp, a0, ρ0) and sends it to Vcmt. P∗cmt then emulates G and runs P ∗ until

Step 3 of Construction 8, discarding messages sent to Vcmt.

2. Using P (restricted to Step 3 of Construction 8), P∗cmt now interacts with Vcmt

during Step 2 of Construction 7 by forwarding messages between Vcmt and P . At

the end of this step P∗cmt and Vcmt hold a commitment comd and a random point

rd chosen by V∗cmt.

3. P∗cmt then sends x′ and the randomness ρx′1 , · · · , ρx′n to Vcmt.

4. P∗cmt then runs P ∗ until Step 6 of Construction 8 again discarding messages sent

to Vcmt.

5. Using P (restricted to Step 6 of Construction 8), P∗cmt now interacts with Vcmt

during Step 5 of Construction 7 by forwarding messages between Vcmt and P .

We now proceed to argue that since P convinces V it is the case that P∗cmt convinces

Vcmt. Indeed, first notice that since Step 2 of Construction 8 involve running running

Steps 1 and 2 of Construction 7 and since V did not reject we have that V∗cmt will not

reject as well. Next, since the commitments comx′1
, · · · , comx′n to Vcmt sent by P∗cmt

to Vcmt are honestly computed commitments to the values of x′ using the randomness

ρx′1 , · · · , ρx′n , we obtain that V∗cmt will not reject during Step 3 of Construction 7. It

remains to show that V∗cmt will not reject during Step 5 of Construction 7.

Indeed, notice that f is the unique multilinear extension of x′ = (x,w). Thus

we have that the polynomial Ṽx defined in Step 4 of Construction 7 actually equals

156



f . Let Evpd,d be the extractor for P∗ (limited to Steps 1 and 4 of Construction 8)

guaranteed by the evaluation extractability of property of Construction 5, as per

Definition 6. Since P convinces V we have that with high probability Evpd,d on the

same inputs as P∗ outputs f(rd) as the pre-image of com∗d. Next, by uniqueness

property of multilinear extensions, we have that the multilinear extension Ṽx′ of

x′ computed in Step 2 of Construction 7 equals f . This implies that commitment

com∗x′ computed in Step 4 of Construction 7 (executed on input x′) is also to a

commitment to Ṽx′(rd) = f(rd). Overall, since comd is produced the same way in

Construction 7 and Construction 8, we obtain that the ZKeq protocol is executed

on commitments to the same values. Thus, if P convinces V we obtain that Vcmt

will also be convinced by P∗cmt.

Zero knowledge. Let Simvpd be the simulator from Theorem 8 and Simcmt be the

simulator from Lemma 3. Consider the simulator Sim which is defined as follows.

1. On input (1λ, C, x), Sim runs Simvpd on input (1`, n, 1) where n is the input size

of C and receives commitment comṼd
, parameters pp, vp, and state σ. Note that

pp contains commitment parameters cp for the Pedersen commitment scheme, as

defined in Section 6.1. Sim sends vp to V∗.

2. Sim runs Simcmt on input (cp, C), in order to simulate V∗’s view during the

execution of Step 3 of Construction 8. Let comd be the corresponding output

forwarded to V∗ and rd be the last random point chosen by V∗.

3. In order to simulate V∗’s view during Step 4 of Construction 8, Sim runs Simvpd

on input (rd, σ, pp) and receives commitment com∗d, proof π, and new state σ.

157



Sim then forwards (com∗d, π) to V∗.

4. Sim runs simulator Simeq on input comd, com
∗
d in order to simulate V∗’s view

during the execution of Step 6 of Construction 8.

5. Upon receiving rx from V∗, Sim simulates V∗’s view during Step 8 of Construc-

tion 8. To that end, Sim runs Simvpd on input (rx, σ, pp) and receives commitment

com∗x, proof πx, and new state σ. Sim then forwards (com∗x, πx) to V∗.

6. Upon receiving ρ′x from V∗, Sim computes comx ← Comm(vp, x̃(rx), ρ
′
x). Next, Sim

runs simulator Simeq on input comx, com
∗
x in order to simulate V∗’s view during

the execution of Step 10 of Construction 8.

We claim that the view of V∗ while interacting with Sim is indistinguishable from

the view he gets while interacting with the honest prover P since: (i) Comm is

statistically hiding, (ii) the messages received by V∗ by Simeq (forwarded via Sim) are

indistinguishable from the ones received while running ZKeq with the honest prover,

(iii) the messages received by V∗ by Simcmt (forwarded via Sim) are indistinguishable

from the ones received while running Construction 7 with the honest prover, and (iv)

the messages received by V∗ by Simvpd (forwarded via Sim) are indistinguishable from

the ones received while running Construction 5 with the honest prover. Note that

the values of commitments comd, com
∗
d, comx, com

∗
x are independent of each other

(modulo the common commitment parameters cp) in both the real and the ideal

execution. In particular, the messages exchanged during Step 3 of Construction 5

do not depend on the value of comx (comṼd
in the real execution).

158



Asymptotic complexity. Firstly, we note that Pedersen commitments, as well

as protocols ZKeq, ZKprod, require a constant number of exponentiations and field

operations (when instantiated as explained in Section 6.1). Then, the analysis of

the asymptotic complexity of our argument follows in a straight forward manner

from: (i) the analysis of CMT in Theorem 2, (ii) the analysis of the standard VPD

in Theorem 3, (iii) the fact that the zk-VPD protocol of Section 6.2 has the same

asymptotic behavior as the plain VPD in Section 3.1.

159



Chapter 7: Conclusions and Future Work

7.1 Conclusions

In this thesis, we introduce a new construction of an argument system. Our

construction combines techniques developed in the literature of interactive proofs

with an extractable verifiable polynomial delegation scheme, supporting proving

relations in NP. Compared to the most commonly used existing techniques, i.e.

SNARKs, our construction only requires a setup phase that is independent of the

relation, and can be used later to prove any relation without a separate setup. In

addition, we significantly improve the prover efficiency, by reducing the number of

expensive cryptographic operations on the prover side from proportional to the size

of the circuit representing the relation to the size of the input (and the witness).

We apply our new construction to build a verifiable database system that

supports validating arbitrary SQL queries. The prover time is improved by up to

2 orders of magnitude compared to SNARK-based solutions and is comparable to

those customized systems that support only a subset of SQL queries (e.g., Inte-

griDB). We also use our new argument systems to build a verifiable RAM program

and show that it improves the prover time by 1-2 orders of magnitude and the mem-

160



ory consumption by 120× compared to prior work, and scales to prove a program

with 2 million CPU instructions, beating the 32K instructions achieved by the best

existing result.

Finally, we present a variant of our argument system that achieves an addi-

tional zero-knowledge property.

7.2 Future Directions

Efficient zero-knowledge argument without trusted setup. Though our new

argument system removes the function-dependent setup phase, it still requires a

trusted party to perform the key generation with a trapdoor, and the soundness

and zero-knowledge will be broken if the trapdoor is leaked.

Many recent work [11, 14, 26, 30, 84] try to remove this trusted setup phase.

However, they either produce a proof that is not succinct (square root of the size of

the witness [11,26,84]), or require a linear verification time [11,26,30]. A remaining

open problem is to construct an efficient and succinct argument system without

trusted setup.

Privacy-preserving smart contracts. One key application of zero-knowledge

proof is to construct privacy-preserving smart contracts. Smart contract systems

on blockchain and crypto-currencies enforce the correct execution of digital con-

tracts among many parties without a trusted third party. However, existing smart

contracts have no privacy guarantee. All information of the contracts, such as the

amount of money and the sender and the receiver of the transactions, are exposed

161



on the blockchain.

Kosba et. al. [59] proposed a system, Hawk, for privacy-preserving smart

contracts using zero-knowledge proof. Instead of posting the contract in the clear

on the blockchain, a contract manager would instead post a zero-knowledge proof

that the contract is correctly executed. In this way, all parties of the blockchain can

validate the contract without learning any of its information. However, zk-SNARK

is used to construct the zero-knowledge proof in [59], which requires a trusted setup

phase for every different contract. Because of this, a trusted party needs to be

present to generate the parameters of zero-knowledge proof for every contract in

Hawk, which deviates from the original goal of decentralization in blockchain.

A future direction is to apply our new zero-knowledge proof system to address

this issue. With our new protocol, the public parameters are only generated once by

a trusted authority, and can be used to generate proofs of difference smart contracts

later. How to reduce the proof size and verification time of our protocol, and how

to build compliers to translate a smart contract to our argument system are left as

future work.

162



Bibliography

[1] Ate pairing. https://github.com/herumi/ate-pairing.

[2] Buffet. https://github.com/pepper-project/releases.

[3] The GNU multiple precision arithmetic library. https://gmplib.org/.

[4] Integridb. https://github.com/integridb/Code.

[5] jsnark. https://github.com/akosba/jsnark.

[6] libsnark. https://github.com/scipr-lab/libsnark.

[7] NTL library. http://www.shoup.net/ntl/.

[8] OpenSSL toolkit. https://www.openssl.org/.

[9] TPC-H benchmark. http://www.tpc.org/tpch/.

[10] Aiello, W., Bhatt, S. N., Ostrovsky, R., and Rajagopalan, S. Fast
verification of any remote procedure call: Short witness-indistinguishable one-
round proofs for NP. In Automata, Languages and Programming, 27th In-
ternational Colloquium, ICALP 2000, Geneva, Switzerland, July 9-15, 2000,
Proceedings (2000), pp. 463–474.

[11] Ames, S., Hazay, C., Ishai, Y., and Venkitasubramaniam, M. Ligero:
Lightweight sublinear arguments without a trusted setup. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security
(2017), ACM, pp. 2087–2104.

[12] Backes, M., Barbosa, M., Fiore, D., and Reischuk, R. M. AD-
SNARK: Nearly practical and privacy-preserving proofs on authenticated data.
In S&P 2015, pp. 271–286.

163

https://github.com/herumi/ate-pairing
https://github.com/pepper-project/releases
https://gmplib.org/
https://github.com/integridb/Code
https://github.com/akosba/jsnark
https://github.com/scipr-lab/libsnark
http://www.shoup.net/ntl/
https://www.openssl.org/
http://www.tpc.org/tpch/


[13] Ben-Sasson, E., Bentov, I., Chiesa, A., Gabizon, A., Genkin, D.,
Hamilis, M., Pergament, E., Riabzev, M., Silberstein, M., Tromer,
E., and Virza, M. Computational integrity with a public random string
from quasi-linear PCPs. In Advances in Cryptology—Eurocrypt 2017 (2017),
pp. 551–579.

[14] Ben-Sasson, E., Bentov, I., Horesh, Y., and Riabzev, M. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology
ePrint Archive, Report 2018/046, 2018. https://eprint.iacr.org/2018/046.

[15] Ben-Sasson, E., Chiesa, A., Genkin, D., and Tromer, E. Fast re-
ductions from RAMs to delegatable succinct constraint satisfaction problems:
extended abstract. In Innovations in Theoretical Computer Science, ITCS ’13,
Berkeley, CA, USA, January 9-12, 2013 (2013), pp. 401–414.

[16] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., and Virza, M.
SNARKs for C: Verifying program executions succinctly and in zero knowledge.
In CRYPTO 2013. 2013, pp. 90–108.

[17] Ben-Sasson, E., Chiesa, A., Tromer, E., and Virza, M. Scalable zero
knowledge via cycles of elliptic curves. In CRYPTO 2014. 2014, pp. 276–294.

[18] Ben-Sasson, E., Chiesa, A., Tromer, E., and Virza, M. Succinct
non-interactive zero knowledge for a von Neumann architecture. In USENIX
Security 2014 (2014).

[19] Benabbas, S., Gennaro, R., and Vahlis, Y. Verifiable delegation of
computation over large datasets. In CRYPTO 2011, pp. 111–131.

[20] Bitansky, N., Canetti, R., Chiesa, A., and Tromer, E. From ex-
tractable collision resistance to succinct non-interactive arguments of knowl-
edge, and back again. In ITCS 2012 (2012), pp. 326–349.

[21] Bitansky, N., Canetti, R., Chiesa, A., and Tromer, E. From ex-
tractable collision resistance to succinct non-interactive arguments of knowl-
edge, and back again. In Innovations in Theoretical Computer Science 2012,
Cambridge, MA, USA, January 8-10, 2012 (2012), pp. 326–349.

[22] Bitansky, N., Canetti, R., Paneth, O., and Rosen, A. On the existence
of extractable one-way functions. STOC 2014, pp. 505–514.

[23] Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., and Paneth, O.
Succinct non-interactive arguments via linear interactive proofs. In Theory of
Cryptography - 10th Theory of Cryptography Conference, TCC 2013, Tokyo,
Japan, March 3-6, 2013. Proceedings (2013), pp. 315–333.

[24] Boneh, D., and Boyen, X. Short signatures without random oracles. In
EUROCRYPT 2004 (2004), pp. 56–73.

164

https://eprint.iacr.org/2018/046


[25] Bootle, J., Cerulli, A., Chaidos, P., and Groth, J. Efficient zero-
knowledge proof systems. In Foundations of Security Analysis and Design VIII
- FOSAD 2014/2015/2016 Tutorial Lectures (2016), pp. 1–31.

[26] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., and Petit, C. Effi-
cient zero-knowledge arguments for arithmetic circuits in the discrete log set-
ting. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques (2016), Springer, pp. 327–357.

[27] Boyle, E., Goldwasser, S., and Ivan, I. Functional signatures and pseu-
dorandom functions. In PKC 2014, pp. 501–519.

[28] Boyle, E., and Pass, R. Limits of extractability assumptions with distribu-
tional auxiliary input. In ASIACRYPT 2015, pp. 236–261.

[29] Braun, B., Feldman, A. J., Ren, Z., Setty, S. T. V., Blumberg,
A. J., and Walfish, M. Verifying computations with state. In ACM SIGOPS
24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA,
USA, November 3-6, 2013 (2013), pp. 341–357.

[30] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., and
Maxwell, G. Bulletproofs: Short proofs for confidential transactions and
more. In 2018 IEEE Symposium on Security and Privacy (SP) (2018), vol. 00,
pp. 319–338.

[31] Canetti, R., Chen, Y., Holmgren, J., and Raykova, M. Adaptive
succinct garbled RAM or: How to delegate your database. In TCC 2016-B,
pp. 61–90.

[32] Canetti, R., Paneth, O., Papadopoulos, D., and Triandopoulos, N.
Verifiable set operations over outsourced databases. In PKC 2014, pp. 113–130.

[33] Catalano, D., Fiore, D., Gennaro, R., and Nizzardo, L. Generalizing
homomorphic MACs for arithmetic circuits. In PKC 2014, pp. 538–555.

[34] Chiesa, A., Forbes, M. A., and Spooner, N. A zero knowledge sumcheck
and its applications. Cryptology ePrint Archive, Report 2017/305, 2017. http:
//eprint.iacr.org/2017/305.

[35] Chiesa, A., Tromer, E., and Virza, M. Cluster computing in zero knowl-
edge. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II (2015), pp. 371–403.

[36] Cormode, G., Mitzenmacher, M., and Thaler, J. Practical verified
computation with streaming interactive proofs. In ITCS 2012 (2012), pp. 90–
112.

165

http://eprint.iacr.org/2017/305
http://eprint.iacr.org/2017/305


[37] Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter,
B., Naehrig, M., Parno, B., and Zahur, S. Geppetto: Versatile verifiable
computation. In S&P 2015 (2015), pp. 253–270.

[38] Cramer, R., and Damg̊ard, I. Zero-knowledge proofs for finite field arith-
metic; or: Can zero-knowledge be for free? In Advances in Cryptology -
CRYPTO ’98, 18th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 23-27, 1998, Proceedings (1998), pp. 424–441.

[39] Danezis, G., Fournet, C., Groth, J., and Kohlweiss, M. Square
span programs with applications to succinct NIZK arguments. In Advances in
Cryptology - ASIACRYPT 2014 - 20th International Conference on the Theory
and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014. Proceedings, Part I (2014), pp. 532–550.

[40] Devanbu, P., Gertz, M., Kwong, A., Martel, C., Nuckolls, G.,
and Stubblebine, S. G. Flexible authentication of XML documents. In
CCS 2001, pp. 136–145.

[41] Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O.,
and Parno, B. Hash first, argue later: Adaptive verifiable computations on
outsourced data. Cryptology ePrint Archive, 2016.

[42] Fiore, D., and Gennaro, R. Publicly verifiable delegation of large polyno-
mials and matrix computations, with applications. In CCS 2012, pp. 501–512.

[43] Fournet, C., Kohlweiss, M., Danezis, G., and Luo, Z. ZQL: A compiler
for privacy-preserving data processing. In USENIX Security 2013, pp. 163–178.

[44] Garay, J. A., MacKenzie, P. D., and Yang, K. Strengthening zero-
knowledge protocols using signatures. J. Cryptology 19, 2 (2006), 169–209.

[45] Gennaro, R., Gentry, C., and Parno, B. Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers. In Advances in Cryp-
tology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 15-19, 2010. Proceedings (2010), pp. 465–482.

[46] Gennaro, R., Gentry, C., Parno, B., and Raykova, M. Quadratic
span programs and succinct nizks without pcps. In Advances in Cryptology -
EUROCRYPT 2013, 32nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013.
Proceedings (2013), pp. 626–645.

[47] Ghuloum, A. M., and Fisher, A. L. Flattening and parallelizing irregular,
recurrent loop nests. In ACM SIGPLAN Notices (1995), vol. 30, ACM, pp. 58–
67.

[48] Goldwasser, S., Kalai, Y. T., and Rothblum, G. Delegating computa-
tion: interactive proofs for muggles. In STOC 2008 (2008), pp. 113–122.

166



[49] Goldwasser, S., Micali, S., and Rackoff, C. The knowledge complexity
of interactive proof-systems. In STOC 1985, pp. 291–304.

[50] Groth, J. Short pairing-based non-interactive zero-knowledge arguments.
In International Conference on the Theory and Application of Cryptology and
Information Security (2010), Springer, pp. 321–340.

[51] Groth, J. Short pairing-based non-interactive zero-knowledge arguments. In
Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference on
the Theory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings (2010), pp. 321–340.

[52] Groth, J. On the size of pairing-based non-interactive arguments. In Advances
in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Austria,
May 8-12, 2016, Proceedings, Part II (2016), pp. 305–326.

[53] Groth, J. On the size of pairing-based non-interactive arguments. In EURO-
CRYPT 2016 (2016), pp. 305–326.

[54] Ishai, Y., Kushilevitz, E., and Ostrovsky, R. Efficient arguments with-
out short pcps. In 22nd Annual IEEE Conference on Computational Complexity
(CCC 2007), 13-16 June 2007, San Diego, California, USA (2007), pp. 278–
291.

[55] Kalai, Y. T., and Paneth, O. Delegating RAM computations. In TCC
2016-B,, pp. 91–118.

[56] Kate, A., Zaverucha, G. M., and Goldberg, I. Constant-size commit-
ments to polynomials and their applications. In ASIACRYPT 2010, pp. 177–
194.

[57] Kilian, J. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In Proceedings of the 24th Annual ACM Symposium on Theory
of Computing, May 4-6, 1992, Victoria, British Columbia, Canada (1992),
pp. 723–732.

[58] Knuth, D. E., Morris, Jr, J. H., and Pratt, V. R. Fast pattern
matching in strings. SIAM journal on computing 6, 2 (1977), 323–350.

[59] Kosba, A., Miller, A., Shi, E., Wen, Z., and Papamanthou, C.
Hawk: The blockchain model of cryptography and privacy-preserving smart
contracts. In Security and Privacy (SP), 2016 IEEE Symposium on (2016),
IEEE, pp. 839–858.

[60] Kosba, A., Zhao, Z., Miller, A., Qian, Y., Chan, H., Papamanthou,
C., Pass, R., abhi shelat, and Shi, E. C∅c∅: A framework for build-
ing composable zero-knowledge proofs. Cryptology ePrint Archive, Report
2015/1093, 2015. http://eprint.iacr.org/2015/1093.

167

http://eprint.iacr.org/2015/1093


[61] Kosba, A. E., Papadopoulos, D., Papamanthou, C., Sayed, M. F.,
Shi, E., and Triandopoulos, N. TRUESET: Faster verifiable set compu-
tations. In USENIX Security 2014, pp. 765–780.

[62] Li, F., Hadjieleftheriou, M., Kollios, G., and Reyzin, L. Dynamic
authenticated index structures for outsourced databases. In SIGMOD 2006,
pp. 121–132.

[63] Lipmaa, H. Progression-free sets and sublinear pairing-based non-interactive
zero-knowledge arguments. In Theory of Cryptography Conference (2012),
Springer, pp. 169–189.

[64] Lipmaa, H. Succinct non-interactive zero knowledge arguments from span
programs and linear error-correcting codes. In Advances in Cryptology - ASI-
ACRYPT 2013 - 19th International Conference on the Theory and Application
of Cryptology and Information Security, Bengaluru, India, December 1-5, 2013,
Proceedings, Part I (2013), pp. 41–60.

[65] Lund, C., Fortnow, L., Karloff, H., and Nisan, N. Algebraic methods
for interactive proof systems. J. ACM 39, 4 (1992), 859–868.

[66] Micali, S. Computationally sound proofs. SIAM J. Comput. 30, 4 (2000),
1253–1298.

[67] Papadopoulos, D., Papadopoulos, S., and Triandopoulos, N. Taking
authenticated range queries to arbitrary dimensions. In CCS 2014, pp. 819–830.

[68] Papadopoulos, D., Papamanthou, C., Tamassia, R., and Trian-
dopoulos, N. Practical authenticated pattern matching with optimal proof
size. VLDB 2015 , 750–761.

[69] Papamanthou, C., Shi, E., and Tamassia, R. Signatures of correct com-
putation. In TCC 2013 (2013), pp. 222–242.

[70] Papamanthou, C., Tamassia, R., and Triandopoulos, N. Optimal
verification of operations on dynamic sets. In CRYPTO 2011, pp. 91–110.

[71] Parno, B., Howell, J., Gentry, C., and Raykova, M. Pinocchio:
Nearly practical verifiable computation. In S&P 2013 (2013), pp. 238–252.

[72] Parno, B., Raykova, M., and Vaikuntanathan, V. How to delegate and
verify in public: Verifiable computation from attribute-based encryption. In
Theory of Cryptography - 9th Theory of Cryptography Conference, TCC 2012,
Taormina, Sicily, Italy, March 19-21, 2012. Proceedings (2012), pp. 422–439.

[73] Pedersen, T. P. Non-interactive and information-theoretic secure verifiable
secret sharing. In Advances in Cryptology - CRYPTO ’91, 11th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 11-15,
1991, Proceedings (1991), pp. 129–140.

168



[74] Setty, S., Braun, B., Vu, V., Blumberg, A. J., Parno, B., and
Walfish, M. Resolving the conflict between generality and plausibility in
verified computation. In EuroSys 2013, pp. 71–84.

[75] Setty, S. T., McPherson, R., Blumberg, A. J., and Walfish, M.
Making argument systems for outsourced computation practical (sometimes).
In NDSS 2012, p. 17.

[76] Setty, S. T. V., Vu, V., Panpalia, N., Braun, B., Blumberg, A. J.,
and Walfish, M. Taking proof-based verified computation a few steps closer
to practicality. In USENIX Security Symposium 2012, pp. 253–268.

[77] Tamassia, R. Authenticated data structures. In European Symposium on
Algorithms (2003), Springer, pp. 2–5.

[78] Thaler, J. Time-optimal interactive proofs for circuit evaluation. In
CRYPTO 2013 (2013), pp. 71–89.

[79] Thaler, J. A note on the GKR protocol, 2015. Available at http://people.
cs.georgetown.edu/jthaler/GKRNote.pdf.

[80] Thaler, J. R. Practical verified computation with streaming interactive proofs.
PhD thesis, 2013.

[81] Vu, V., Setty, S., Blumberg, A. J., and Walfish, M. A hybrid architec-
ture for interactive verifiable computation. In S&P 2013 (2013), pp. 223–237.

[82] Wahby, R. S., Ji, Y., Blumberg, A. J., Shelat, A., Thaler, J., Wal-
fish, M., and Wies, T. Full accounting for verifiable outsourcing. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (2017), pp. 2071–2086.

[83] Wahby, R. S., Setty, S. T., Ren, Z., Blumberg, A. J., and Walfish,
M. Efficient ram and control flow in verifiable outsourced computation. In
NDSS (2015).

[84] Wahby, R. S., Tzialla, I., abhi shelat, Thaler, J., and Walfish, M.
Doubly-efficient zkSNARKs without trusted setup.

[85] Walfish, M., and Blumberg, A. J. Verifying computations without reex-
ecuting them. Commun. ACM 58, 2 (2015), 74–84.

[86] Wang, X., Malozemoff, A. J., and Katz, J. EMP-toolkit: Efficient
multiparty computation toolkit. https://github.com/emp-toolkit.

[87] Yang, Y., Papadias, D., Papadopoulos, S., and Kalnis, P. Authenti-
cated join processing in outsourced databases. In SIGMOD 2009, pp. 5–18.

169

http://people.cs.georgetown.edu/jthaler/GKRNote.pdf
http://people.cs.georgetown.edu/jthaler/GKRNote.pdf
https://github.com/emp-toolkit


[88] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., and Papaman-
thou, C. vSQL: Verifying arbitrary SQL queries over dynamic outsourced
databases. In IEEE Symposium on Security and Privacy (S&P) 2017 (2017).

[89] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., and Papaman-
thou, C. A zero-knowledge version of vsql. Tech. rep., Cryptology ePrint
Archive, Report 2017/1146, 2017. https://eprint. iacr. org/2017/1146, 2017.

[90] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., and Papaman-
thou, C. vram: Faster verifiable ram with program-independent preprocess-
ing. In Proceeding of IEEE Symposium on Security and Privacy (S&P) (2018).

[91] Zhang, Y., Katz, J., and Papamanthou, C. IntegriDB: Verifiable SQL
for outsourced databases. In CCS 2015 (2015), pp. 1480–1491.

[92] Zhang, Y., Katz, J., and Papamanthou, C. An expressive (zero-
knowledge) set accumulator. In Security and Privacy (EuroS&P), 2017 IEEE
European Symposium on (2017), IEEE, pp. 158–173.

[93] Zhang, Y., Papamanthou, C., and Katz, J. Alitheia: Towards practical
verifiable graph processing. In CCS 2014, pp. 856–867.

[94] Zheng, Q., Xu, S., and Ateniese, G. Efficient query integrity for out-
sourced dynamic databases. In CCSW 2012, pp. 71–82.

170


	Acknowledgements
	Introduction
	Related Work

	Preliminaries
	Bilinear Pairings and Assumptions
	Circuit and Polynomial Notations
	Interactive Proofs
	The Sum-Check Protocol
	The CMT Protocol

	Security Definitions

	Constructions
	Verifiable Polynomial Delegation
	Improving the Expressiveness of the CMT Protocol
	The Construction of Our Argument System

	Applications: Verifiable Databases
	SQL Queries
	Related Work on Verifiable Databases
	Definitions of Verifiable Databases
	Our Construction of Verifiable Databases
	Optimizations for SQL Queries
	Optimizing Equality Testing
	Supporting Inputs/Outputs at Arbitrary Circuit Layers
	Verifying Set Intersections
	Supporting Expressive Updates
	Efficient Value Insertions

	Experimental Results
	Experimental Setup
	Performance Comparison: Selection Queries
	Performance Comparison: Update Queries
	Scalability of Our Construction
	Microbenchmarks


	Applications: Verifiable RAM Programs
	Preliminaries on RAM programs
	A Canonical RAM Architecture
	Previous Reductions from RAM to Circuit Satisfiability

	Our New RAM to Circuit Reduction
	Ensuring Correct Instruction Execution
	Verifying Instruction Fetches
	Ensuring Memory Accesses
	Checking Consistency

	Experimental Results
	Comparison with vnTinyRAM and Buffet
	Comparison to Other RAM-based VC systems
	Just-in-Time Architecture
	Microbenchmarks


	Zero Knowledge
	Building Blocks
	Zero-Knowledge Polynomial Commitment
	Zero-Knowledge CMT Protocol
	A Sum-Check Protocol over Homomorphic Commitments
	A CMT Protocol over Homomorphic Commitments

	Zero-Knowledge with Function Independent Preprocessing

	Conclusions and Future Work
	Conclusions
	Future Directions

	Bibliography

