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In software testing, test inputs are passed into a system under test (SUT);

the SUT is executed; and a test oracle checks the outputs against expected values.

There are cases when the same test case is executed on the same code of the SUT

multiple times, and it passes or fails during different runs. This is the test flakiness

problem and such test cases are called flaky tests.

The test flakiness problem makes test results and testing techniques unreliable.

Flaky tests may be mistakingly labeled as failed, and this will increase not only the

number of reported bugs testers need to check, but also the chance to miss real

faults. The test flakiness problem is gaining more attention in modern software

testing practice where complex interactions are involved in test execution, and this

raises several new challenges: What metrics should be used to measure the flakiness

of a test case? What are the factors that cause or impact flakiness? And how can

the effects of flakiness be reduced or minimized?

This research develops a systematic approach to quantitively analyze and min-



imize the effects of flakiness. This research makes three major contributions. First,

a novel entropy-based metric is introduced to quantify the flakiness of different lay-

ers of test outputs (such as code coverage, invariants, and GUI state). Second, the

impact of a common set of factors on test results in system interactive testing is

examined. Last, a new flake filter is introduced to minimize the impact of flakiness

by filtering out flaky tests (and test assertions) while retaining bug-revealing ones.

Two empirical studies on five open source applications evaluate the new en-

tropy measure, study the causes of flakiness, and evaluate the usefulness of the flake

filter. In particular, the first study empirically analyzes the impact of factors in-

cluding the system platform, Java version, application initial state and tool harness

configurations. The results show a large impact on SUTs when these factors were

uncontrolled, with as many as 184 lines of code coverage differing between runs of

the same test cases, and up to 96% false positives with respect to fault detection.

The second study evaluates the effectiveness of the flake filter on the SUTs’ real

faults. The results show that 3.83% of flaky assertions can impact 88.59% of test

cases, and it is possible to automatically obtain a flake filter that, in some cases,

completely eliminates flakiness without comprising fault-detection ability.
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Chapter 1: Introduction

1.1 Testing and Test Oracles

In software testing, test inputs are given to a system under test (SUT) and test

oracles are used to determine whether the test passed or failed by comparing the

observed outputs against expected outputs often encoded in assertions. For example,

to test a grep [2] function, the inputs may include the text and the pattern to search,

and the oracle can assert certain values for search results. In unit testing, the inputs

are typically supplied as parameters to methods, and test results are checked by

assertions on certain variables, return values, or other outputs. Figure 1.1 shows an

example JUnit1 test case. The upper frame shows the program under test, which

includes a method named reverseDigits() that takes a number as input and returns

a number with all digits reversed as output. As shown in the lower frame, a JUnit

test case named testPositiveNumber() passes in a value 501, and asserts a return

value 105. The test will pass if and only if the return value of the method is 105.

System User Interactive Tests (SUITs), on the other hand, involve more com-

plex inputs and outputs. For example, in a remote procedure call (RPC) system,

asynchronous or blocking remote calls are made, and the returning messages need

1http://junit.org/junit5/
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// A method under test that takes in a number and returns a number

with all digits reversed.

public class ReverseDigits {

public static int reverseDigits(int n) {

int reversed = 0;

while (n != 0) {

reversed = reversed * 10 + n \% 10;

n = n / 10;

}

}

}

// A JUnit test for the reverseDigits () method.

import org.junit.test;

import static org.junit.assert.assertions;

import static ReverseDigits.reverseDigits;

public class ReverseDigitsTest {

@Test

public void testPositiveNumber () {

assertEquals(reverseDigits (501), 105);

}

}

Figure 1.1: Example JUnit Test Case
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(a) Before Test Actions (b) After Test Actions

Figure 1.2: Interface of SUT Before and After Test Actions

to be decoded and then validated. As a concrete example, an AJAX [3] web client

may send a RPC request to the server, parse the returned Json2 object, and update

its display or internal state upon receiving the response from the server. Further,

when testing an application with a graphical user interface (GUI), inputs may come

from system events on GUI widgets (e.g., clicking on a button, expanding a menu,

etc.), and assertions may check various properties of the application’s active wid-

gets. For example, to test a GUI-based text editor, the test case may drive the

application to perform copy-paste commands, and check if the text content of the

editor panel matches expectations. As a concrete example, Figure 1.2 shows the

GUI of an application that allows users to draw a selected shape in a selected color.

The screenshot in Figure 1.2(a) shows the original interface of the application. A

SUIT created using the HP Unified Functional Testing (UFT, previously known as

Quick Test Professional, or QTP)3 is shown in Figure 1.3. The first part of the

2http://json.org/example.html
3https://software.microfocus.com/en-us/software/uft
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tests are actions performed on the UI, such as setting the shape, selecting the color,

and clicking on the “Create Shape” button. The UI after these actions is shown in

Figure 1.2(b). In the test script, several assertions are made on the new interface

to validate that the correct shape is rendered, and that properties such as “text”,

“foreground (color)”, and “width” of the rendered shape have expected values. The

test will fail if the expected Circle Panel is not shown, or any of the property values

are not as expected.

1.2 Context for This Work

Testing is done at multiple points in the software development process. One

important point is the Continuous Integration (CI) cycle, in which test cases act as

gatekeepers for a new software modification. Because the CI cycles are extremely

tight (every few hours), it is important that the test cases be reliable. The context

of this research is in the CI cycle. There is a place for additional test cases that

may provide useful information to a developer or tests, but may be unreliable, e.g.,

due to concurrency. Such test cases not desired in the CI cycle and thus are outside

the scope of this work.

1.3 The Flakiness Problem

Numerous development and maintenance tasks require the automated execu-

tion and re-execution of test cases, and often these are run from the system or user

interface perspective [4]. For instance, when performing regression testing on a web

4



// Test actions.

JavaWindow("Radio Button Demo").JavaRadioButton("Circle").Set

JavaWindow("Radio Button Demo").JavaMenu("Options")

.JavaMenu("Color").JavaMenu("Black").Select

JavaWindow("Radio Button Demo").JavaButton("Create Shape").Click

// Assert a Circle Panel is shown.

if Not JavaWindow("Radio Button

Demo").JavaObject("CirclePanel").Exist (1) Then

Reporter.ReportEvent micPass , "micFail",

"The Circle Panel SHOULD show up"

end if

// Check properties of the Circle Panel.

JavaWindow("Radio Button Demo").JavaObject("CirclePanel")

.CheckProperty "text", "Rendered Shape"

JavaWindow("Radio Button Demo").JavaObject("CirclePanel")

.CheckProperty "foreground", "333333 Shape"

JavaWindow("Radio Button Demo").JavaObject("CirclePanel")

.CheckProperty "width", "112"

Figure 1.3: Example SUIT Created Using HP UFT
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application [5] or integrating components with a GUI, a test harness such as Sele-

nium [6], Mozmill [7], or Unified Functional Test (UFT) [8] may be used to simulate

system-level user interactions on the application by opening and closing windows,

clicking buttons, and entering text.

Over the past years, numerous researchers have proposed improved automated

testing and debugging techniques [3, 9–17]. Common metrics have been used to

determine success such as fault detection [13,18,19], time to early fault detection [20],

business rule coverage [16], and statement, branch and other structural coverage

criteria [21]. Test assertions for these applications operate at differing degrees of

precision [22] such as detecting changes in the interface properties [23], comparing

outputs of specific functions [24], or through the observation of a system crash [25].

The assumption for all of this previous work, however, is that these tests

can be reliably executed or replayed, i.e., they produce the same output (code

coverage, invariants, object states) unless either the tests or SUT changes. In our

own experience with testing and benchmarking [26–28], we have learned that it is

hard to repeat test results with different platforms and configurations. Specifically,

we found that even within the same platform, simple changes to system load or a

new version of execution platform, or even the time of day that we ran a test, could

impact code coverage or the application interface state. The phenomenon that the

same tests on the same SUT may behave differently in different runs is referred to

as the test flakiness problem, and these tests are often called flaky tests [28]. The

flakiness problem is gaining much attention in recent years in industry practice –

several testing frameworks now support annotations for flaky tests [29] [30].

6



Flaky tests are gaining attention in industry practice due to the problems

they create and resources they demand. In the most common scenario of automatic

testing, flaky tests tend to be reported as failed, which either needs re-execution

– meaning more computation resources – or manual effort such as checking bug

reports. At Google, a failed test case will be re-run on the same code 10 times,

and if the test passed in any subsequent run, then it is labeled as flaky instead of

failed [31]. According to a recent technical report, 16% of their 3.5 million tests

have some level of flakiness, and 84% of transitions of tests from passing to failing

are due to flakes. Consequently, Google is spending up to 16% of their CI compute

resources re-running flaky tests. Taking into consideration the size of Google’s

compute resource pool, flaky tests consume significant resources in practice. Other

companies such as Netflix [32] and VMWare [33] also report problems with flaky

tests.

Recent studies provide different perspectives on the flakiness problem, how-

ever, none agree on how to define flakiness. Memon and Cohen [28] proposed in a

tutorial that when test execution environments are uncontrolled, tests may become

flaky, i.e., may generate different results. The tutorial did not formally define flaky

tests or specify factors of the execution environment to be controlled. Recent work

by Luo et al. [34] empirically studied causes for reported flaky tests from the Sub-

version repository of the Apache Software Foundation4. They also did not include

a formal definition for flaky tests. Instead, they studied tests reported by the de-

velopers or testers as “flaky” in the Apache Repository: the tests may be reported

4http://svn.apache.org/repos/asf/
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flaky due to inconsistent results generated by executing the test suite in the same

or different orders, on the same or changed code. Google, in contrast, labels a test

as flaky if it passed in some runs but failed in others on the same code. Without

a formal definition of flakiness, we cannot measure, reason about, or minimize its

effects.

1.4 Thesis Statement

This research aims to tackle the aforementioned problems associated with test

flakiness. This leads to our thesis statement:

We hypothesize flakiness of tests can be quantified, the underlying factors of

flakiness can be identified, and effects of flakiness can be minimized.

1.5 Challenges and Contributions

This research develops a systematic approach to tackle the major challenges

raised by the flakiness problem.

Challenge 1: It is challenging to measure flakiness.

Contribution 1: This research develops a novel metric to quantify the flakiness

of a test or test suite.

Each time a test is executed, the test outputs can be examined at different

layers. More specifically, this research studies: (1) User Interaction Layer: this

layer is typically used to execute SUITs and extract GUI widget properties for test

oracles, (2) Behavioral Layer: to infer properties, such as invariants, regarding the

8



test execution, and (3) Code Layer: for code coverage.

This research formally defines a flaky test or test suite as:

Definition 1 (Flaky Test (Suite)) A test (suite) is flaky in multiple runs at a

certain output layer iff the outputs at the layer are not identical across runs on the

same SUT with the same configuration.

Based on this definition, for each specific SUT, we first executed a fixed test

or test suite multiple times and captured outputs at a certain output layer. Then

we developed an entropy-based metric to measure the flakiness of a test based on

probabilities of observing its different outputs. A flaky test may have various outputs

across different runs, and consequently, the entropy of the test’s output serves as an

indicator of its flakiness. For instance, all the runs may have the same output, and

our entropy-based metric will give an entropy value of 0, meaning the test is not

flaky. As another extreme case, all runs may have different outputs and our metric

will give the maximum possible entropy value, showing the test is very flaky. All

other tests will have an entropy value in between the two extremes, depending on

the structure of the outputs.

This entropy-based metric lays the foundation for all further work: it is uti-

lized to quantify test flakiness when studying the impacting factors; and utilized to

minimize the effects of flakiness by filtering out flaky failures.

Challenge 2: It is challenging to understand causes of flakiness.

Contribution 2: This research identifies a common set of factors that may

impact flakiness and evaluate their impact at different output layers.

9



Identifying factors that may impact test flakiness and analyzing their impacts

is an important task, because it helps us understand the underlying nature of the

problem and provides clues on how to control flakiness. The research begins with

identifying key factors including (1) test execution platform, (2) application start-

ing state or configuration, (3) test harness factors, and (4) execution application

versions. Then we set up a set of configurations to cover various operating systems,

program initial state, time delay between steps, and Java Runtime Environment

(JRE) versions, and so on. For each configuration, the same test suite was executed

on each SUT 10 times and the test outputs were observed at the three output layers.

Finally the entropy-based metric was used to calculate the flakiness of each test and

test suite. This research studies the impact of each factor by comparing flakiness of

tests of different SUTs under different configurations.

Results on 5 open-source Java GUI programs of various sizes show that the

impact is large for many applications when factors (including initial state, step delay,

and so on) are uncontrolled – as many as 184 lines of code coverage differ and more

than 95% false positives for fault detection were observed.

Despite our ability to control factors and reduce variance, there still may exist

some that we cannot control - that are application specific, or sensitive to minor

changes in timing or system load - therefore a single run of any testing technique

(despite fault determinism) may lead to different code coverage or even different

invariants, and that unless one accounts for the normal variance of a subject, a single

test run may be insufficient to claim that one technique is better than another, or

even that a fault is really a true fault.

10



Challenge 3: It is challenging to minimize the effects of flakiness.

Contribution 3: This research develops a flake filter to de-flake a test suite

without impacting its fault detection ability.

In a typical regression testing scenario, test cases including assertions are cre-

ated and executed on the original version; and then executed on subsequent versions

to detect regression bugs. Failures reported on the subsequent versions may fall into

3 categories: (1) true failures caused by bugs, (2) flaky failures due to flakiness, and

(3) update failures caused by feature changes. Flaky tests and assertions increase

the amount of failures testers or developers have to go through to identify non-flaky

failures that reveal bugs (true failures) or obsolete tests (update failures).

To minimize the effects of flakiness, this research develops a flake filter that

automatically filters out flaky tests and assertions. We utilize our entropy-based

metric to measure the flakiness score of a test case or assertion based on its results

over multiple runs on a single version of the SUT. And if the score exceeds a manually

specified threshold, the test or assertion is no longer used to detect failures in the

subsequent version. By tuning the threshold, the filter can achieve best overall

performance in eliminating flaky tests and retaining fault-detection ability of tests.

A different set of SUTs together with 16 real bugs reported on their bug

reporting sites were used for our study. Results show that a small percentage of

flaky assertions (1.03%-7.19%) can result in very large percentages of flaky test

cases (54%-100%). The flake filter is able to significantly reduce this impact. For

some bugs, the flake filter is able to completely de-flake the tests without impacting

their fault detection ability.
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To summarize, this research has 3 goals: measuring, understanding the

causes of, and minimizing the effects of flakiness. For the first goal, the research

develops an entropy-based metric to quantify flakiness. For the second goal, the

approach is to identify a set of factors and to empirically study their effects on test

flakiness. And for the third goal, the research develops a flake filter that eliminates

flaky tests and assertions in regression testing.

1.6 Contributions and Disseminations

This section itemizes specific contributions (labeled as C1, C2, and so on) of

this research and summaries resulting research papers published at various venues.

C1 Formalizing the definition of test flakiness.

C2 Developing an entropy-based metric to quantify flakiness.

C3 Measuring test flakiness at three output layers: the code layer, the invariant

layer and the user-interface layer.

C4 Identifying factors that impact flakiness of SUITs and performing a compre-

hensive experiment to study the impacts of factor.

Results related to above contributions were published at the 2015 IEEE 37th

International Conference on Software Engineering (acceptance rate = 18.5%) [35].

Typical metrics for determining effectiveness of various testing technique include

code coverage and fault detection, with the assumption that there is determinism

in the resulting outputs. We developed an entropy-based metric to quantitatively
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examine the extent to which a common set of factors such as the system platform,

Java version, application starting state and tool harness configurations impact these

metrics. We also examined three layers of testing outputs: the code layer, the

behavioral (or invariant) layer and the external (or user interaction) layer.

C5 Performing a set of feasibility studies on minimizing effects of flakiness by

eliminating flaky test cases and assertions.

We first studied a technique that eliminated failures related to object prop-

erties that have been observed “unstable”, thereby reducing the effect of flakiness.

The results were published at 2015 IEEE 26th International Symposium on Software

Reliability Engineering (acceptance rate = 32.0%) [36].

In addition, a preliminary study on a small number of bugs and test cases

percolated real failures to the top of a set of reported failures using an entropy-based

metric. The results were published at the TestBEDS Workshop at 2015 IEEE/ACM

30th International Conference on Automated Software Engineering [37].

C6 Developing an automatic flake filter that automatically eliminates flaky fail-

ures.

C7 Conducting an experiment on subject applications with real faults to evaluate

the effectiveness of the flake filter.

The previously reported results relied on human expertise to manually identify

a universal set of “unstable” object properties for an SUT. We further developed

a fully automatic approach to reduce the effects of flaky tests. By measuring the
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entropy of each object being retrieved by each assertion, we developed a flake filter

to automatically weed out flaky failures. We evaluated our technique on 16 real bugs

on 18 different versions of 3 open source Java GUI applications. And this work has

been submitted to 2018 IEEE 11th International Conference on Software Testing,

Verification and Validation [38].

The research work discussed next did not contribute directly to the main

thrust of this thesis, but served to inform about existing challenges in software

testing, especially the test flakiness problem; it has also been published at various

venues.

In regression testing, whenever the GUI changes – widgets get moved around,

windows get merged – some scripts become unusable because they no longer encode

valid input sequences. Moreover, because the software’s output may have changed,

their test oracles – assertions and checkpoints – encoded in the scripts may no

longer correctly check the intended GUI objects. To address these challenges, we

developed ScrIpT repAireR (SITAR), a technique to automatically repair unusable

low-level test scripts. This was published in 2016 IEEE Transactions on Software

Engineering [39].

In another study, we developed a prototype tool named VGT GUITAR that

utilizes Computer Vision techniques to test GUIs; and evaluated its advantages and

disadvantages when compared to traditional object-based testing techniques. This

work was published at 2015 IEEE 8th International Conference on Software Testing,

Verification and Validation (acceptance rate = 25%) [40].
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Mutation has been widely used to measure fault-detection ability of various

techniques. We developed GUI mutation operators at the Mutation Workshop at

2015 IEEE 8th International Conference on Software Testing, Verification and Val-

idation [41].

Finally, continuous testing and integration is a challenging problem at Google

due to its scale of code and frequency of code repository updates. Even with enor-

mous resources dedicated to testing, regression test each code change individually

is unrealistic, resulting in increased lag time between code check-ins and test result

feedback to developers. We reported results of a project that aims to reduce this

time by: (1) controlling test workload without compromising quality, and (2) dis-

tilling test results data to inform developers, while they write code, of the impact

of their latest changes on quality. This work was published at 2017 IEEE 39th In-

ternational Conference on Software Engineering, Industry Track (acceptance rate =

29%) [42].

1.7 Broader Impacts

This research develops a systematic approach towards measuring and mini-

mizing the effects of test flakiness, and has the potential to broadly impact software

testing practice and research.

Test flakiness is not an isolated problem. It has potential impacts on most

functional testing techniques. For example, fault localization techniques need to

differ between the passed and failed tests; regression testing needs to compare the
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test results between two versions to determine broken features, or to prioritize tests;

mutation testing compares the results of the original and mutated versions to de-

termine whether tests can kill mutants. All of these techniques, if developed and

evaluated upon unreliable and flaky tests, will yield incorrect results.

The next chapter introduces the background of the work. The subsequent

3 chapters present approaches addressing the 3 challenges and supporting experi-

mental results. The final chapter summarizes our conclusions and possible future

research directions.
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Chapter 2: Background

This chapter elaborates on existing work related to the current research ef-

fort. Two major topics are covered in this chapter: previous studies related to test

repeatability and flakiness, and techniques utilized in this research.

2.1 Studies on Test Repeatability

A number of research efforts have studied the test repeatability problem, but

most have focused on the impact of a single factor on test execution.

2.1.1 Test Dependence

A test is dependent in a test suite iff there exist at least two orderings of the

test suite that cause different outputs. Many techniques (implicitly) assume test

independence. For example, many test prioritization [43] and selection [44] tech-

niques used to find bugs more quickly use an objective function to assign priorities

or select tests. The most commonly used objective function is the code coverage of

the test cases. Such techniques typically assume the coverage for each test remains

the same in different permutations, and therefore, that the tests are independent.

Zhang et al. empirically studied the test independence assumption [45]. They
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formally defined test dependence and developed algorithms that detect dependent

tests from human-written and automatically-generated test suites in their studied

subjects. While the test independence assumption is often implicitly made, some

researchers have taken this issue into consideration when developing their testing

techniques [46–48].

It is important to note that test dependence is different from determinism:

independent tests, even though not affecting one other, may contain nondetermin-

istic code. On the other hand, dependent tests may not contain nondeterministic

code but always affect each other. Most of the previous studies on test dependency

neglect the fact that executing the same sequence of tests on exactly the same SUT

could generate different test results. In this research, we eliminate the impact of

test dependency by always fixing test execution order, and then further studying

the nondeterminism inside the test.

2.1.2 Concurrency and Timing Issues

Concurrent programs are prevalent nowadays due to the ubiquity of multi-

core processors on servers and desktops. GUI applications are among the most

common examples of concurrent programs where multiple threads take charge of

GUI rendering and backend computing. However, it is difficult to test concurrent

systems due to their non-determinism: (1) some bug revealing execution traces may

be rarely covered in tests; and (2) it is difficult to reproduce previous bug-revealing

traces for debugging.
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Farchi et al. categorized a taxonomy of concurrent bug patterns together with

heuristics to help detect these bugs [49]. Lu et al. studied 105 real-world concurrency

bugs from representative open source applications and examined the bug patterns,

manifestations and fix strategies [50].

Automatically identifying bugs associated with unexpected interleaving of

threads is even more challenging. Stoller et al. presented a randomized scheduling

technique which inserts scheduling function calls at concurrent events [51]. Hartman

et al. proposed a more systematic but less scalable model-based test-generation tech-

nique for validation of parallel and concurrent software [52]. Yan et al. presented a

method of test generation based on BPEL, a language that could express concurrent

behaviors of software [53]. And Pugh et al. developed a framework to construct

unit tests to test block/unblock behaviors in multithreaded programs [54]. Despite

the research efforts, none of them focus on rare probabilistic faults that can exist in

both hand-coded and automated-generated tests.

Most of the automatic test generation techniques specifically designed for con-

current software focus on unit level tests. Even through it has never been demon-

strated, researchers believe that system tests suffer from severe timing problems:

system tests often involve more complex computations and interactions not only

between threads but also human and computers. GUI testing frameworks like Sele-

nium [55] and GUITAR [56] provide syncing mechanisms like wait() or waitFor(),

which wait for a specific time or event to occur such as the rendering of a GUI

widget. There still lack effective techniques to automatically determine how long a

test needs to wait and which elements to wait for. GUITAR uses a heuristic that
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periodically checks if the system event queue is empty, while this heuristic works well

in practice, it cannot always ensure the handler of a previous event has successfully

finished before moving on to the next event. In fact, most previous system level

testing techniques [1] assume determinism in test results. This research studies the

flakiness problem in system level tests.

2.1.3 Other Factors

Arcuri et al. [57] developed a method to generate unit tests that behave dif-

ferently in varying environments, controlling this by replacing API calls and classes

related to the environment with mocked versions. Although the test execution can

become more stable based on mocked dependencies, the major goal of their technique

is to increase the code coverage of the developed classes, instead of the repeatabil-

ity of testing the original system by controlling the real environment. In addition,

there are other studies regarding other factors such as the initial state [58], system

loads [59] and network connection [60,61].

2.2 Previous Studies on Test Flakiness

The problem of flaky tests first attracted attention of industry practition-

ers [31]. Some test frameworks provide annotations for flaky tests [29, 30]. At

Google, flaky tests are considered one of the leading cause of inefficiency: 2-16% of

the computational resources of continuous integration are spent re-executing flaky

tests [62]. To the best of our knowledge, Memon et al. firstly presented the test flaki-

20



ness problem to the research community [28] by suggesting controlling factors in test

execution to avoid flakiness. In addition, Luo et al. studied the flaky tests reported

in Apache projects and categorized the major reasons and fixes for them [34].

Despite its recent attention, there is currently no systematic approach to the

flakiness problem. First, as mentioned in the previous chapter, there is no universal

definition for flaky tests. Luo et al. studied the “flaky tests” reported by developers

of the subject applications. The paper mentioned that the tests may be caused by

various test execution factors, such as the order of test execution and even change of

code in the SUT. Luo et al. fail to provide a clear definition of flaky tests, however,

and no metric is proposed to measure flakiness. Second, the factors that impact

flakiness need to be further studied. Memon et al. mentioned that some factors need

to be controlled for automatic testing, but did not specify which factors and how they

will impact flakiness [28]. Luo et al. studied 161 reported flaky tests and classified

their causes into groups like concurrency and test order dependency [34]. However,

it remains unclear how some test execution factors (like test execution platform,

initial state of subject of application, timing, etc) can affect flakiness. This research

proposes to quantitatively study how these factors can impact flakiness. The results

will provide testers with guidelines to minimize test flakiness in practice. Last, even

though some general guidelines were given in previous work, the research community

has not taken flakiness into consideration when designing test oracles. This research

proposes to develop test oracles that minimize flakiness.
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2.3 Test Execution

Now we introduce the tools we use to generate and execute our GUI tests. The

main experiments use the GUITAR framework to test Java GUI applications. Since

the test harness itself can be a factor that impacts the test flakiness, the research

proposes to conduct a complementary experiment where another widely used tool,

Selenium, will be used to drive the execution of web applications.

2.3.1 The GUITAR Framework

We start with a description of GUITAR, our automatic GUI Testing frAme-

woRk. GUITAR automatically builds a formal model called an Event-Flow Graph

(EFG) of the application under test (SUT), generates test cases based on an event

coverage criteria, and replays them.

GUITAR adopts a process called GUI Ripping [63] to traverse the avail-

able events on the GUI in a depth-first manner. During this process, the GUI

ripper extracts GUI structure information, including the hierarchical structure of

GUI windows and widgets, as well as their properties (e.g., title, type, position,

whether a widget opens a modal/modeless Restricted-focus events open modal win-

dows, unrestricted-focus events open modeless windows, and termination events close

modal windows.

The GUI Ripper then converts the GUI structure to an EFG, which is a

directed graph representing all possible event interactions in the GUI. More formally,

an EFG for a GUI G is a 4-tuple <V, E, B, I> where: (1) V is a set of vertices
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Cut Copy

PrintPaste

Figure 2.1: Example GUI and its EFG

representing all the events in G. Each v ∈ V represents an event in G; (2) E ⊆ V

× V is a set of directed edges between vertices. We say that event ei may-follow

ej iff ej may be performed immediately after ei. An edge (vx, vy) ∈ E iff the event

represented by vy may-follow the event represented by vx; (3) B ⊆ V is a set of

vertices representing those events of G that are available to the user when the GUI

is first invoked; and (4) I ⊆ V is the set of restricted-focus events of the GUI.

That is, in an EFG, each vertex represents an event on the GUI (e.g., click-

on-File, click-on-Open), and an edge represents a may-follow relationship between

two events. Note that only events inside the modal window invoked will follow a

restricted-focus event. All events in the new invoked window as well as the original

invoking window will follow an unrestricted-focus event. All events in the window

from which the current modal window is invoked will follow a termination event.

In the example shown in Figure 2.1, a may-follow edge from event Copy to another

event Paste means the latter event may be performed immediately after the former

event.
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Each test case generated is a sequence of events from the EFG. More formally,

a test case is <e1, e2, e3, . . . , en> where (ei, ei+1) ∈ E, 1 ≤ i ≤ n − 1. Notice that

each test case will need to start from an event available at the initial state of the

SUT, thus reaching events may be prepended to the test case to make it executable.

Event coverage criteria are used to generate GUI test cases. For example, a test

suite, TE, can be generated to cover all events in the EFG. Consider a test suite T

= {t1 =<Copy>, t2 =<Cut, Paste>, t3 =<Cut, Print>} that covers all events in

the GUI. A test suite, TD, can also be generated in a similar manner to cover all

edges in the EFG. GUITAR executes the test cases one by one from the same initial

state of the application, capturing the GUI’s state after each event. This state will

be used to create the test oracle, a mechanism used to determine whether a test case

passed or failed.

2.3.2 Selenium

Selenium is a widely used framework “for automating web applications for

testing purposes” 1. The framework includes two key components: the Selenium

WebDriver which provides an API to drive web browsers using each browser’s native

support for automation; and the Selenium IDE which is a complete integrated

development environment that enables record-and-replay of user interactions with

a web application as well as script editing.

In this research, web tests will be generated and executed using the Selenium

IDE which allows testers to record, edit and replay Selenium scripts. Record: The

1http://www.seleniumhq.org
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testers can interact with the web application by performing actions in a test case,

like clicking on a link or typing in text, etc. The IDE will automatically capture

all the actions together with the parameters and record them as script lines. Edit:

The testers can modify the scripts as needed. For example, some input values can

be replaced with variable names to make the scripts more generally usable. Also,

the testers may insert assert statements to check a certain property of a certain web

element (e.g., the title of a popup dialog) and the script will quit execution when

the assertion fails; or a waitFor statement can be inserted which makes the script

wait until a certain element shows up or a certain statement turns true. Replay:

Finally, the recorded and edited scripts can be automated replayed (in regression

testing). The test passes if the script finishes execution and all assertions are true

and fails otherwise.

2.4 Test Output Observation

2.4.1 The Daikon Invariant Detector

A tool named Daikon is used to dynamically detect likely program invariants

in this research. According to Ernst [64], “A program invariant is a property that

is true at a particular program point or points, such as might be found in an assert

statement, a formal specification, or a representation invariant.” And the following

are some examples of invariants: y = 2 ∗ x+ 1; x >= y; size(keys) = size(entries);

and graph g is acyclic. Invariants are helpful in tasks from software design to

maintenance. For example, some invariants must be preserved when the code is
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modified. However, invariants are often missing from programs.

The Daikon tool requires three major steps to obtain invariants: target pro-

gram instrumentation, test execution, and invariants inference. Instrumentation:

The Daikon invariant detector is a dynamic analysis technique which discovers likely

program invariants from program execution data. Thus the tool needs to first in-

strument the target program to trace runtime values of certain variables. Test

Execution: Daikon relies on the test suite of the target program which can be ex-

ecuted on the instrumented program to collect runtime variable values for analysis.

Thus the quality of the inferred invariants inevitably depends on the quality and

comprehensiveness of the test suite. In practice, “standard” test suites that is large

enough and with reasonably good coverage have performed adequately in invariant

detection. However, the technique cannot guarantee the completeness or soundness

of its results. Also, Daikon assumes a distribution and performs a statistical test

over the observed values of each variable to eliminate values generated by chance.

Invariants Inference: Daikon developed a list of invariants that will be checked,

including unary invariants involving a single variable (such as x = a), binary invari-

ants over two variables (such as x ∈ arr) and ternary invariants over a fixed set of

operands. Daikon also checks derived invariants within a certain depth of derivation

from derived variables. The derived invariants for a numeric sequence, for example,

can be the length or sum of the sequence. Daikon will test all the possible invariants

over the trace data to obtain likely invariants.
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2.4.2 GUI Test Oracle

We use the GUI state for the test oracle because any part of the GUI state

through the sequence of the test execution may be bug revealing. Figure 2.2 shows

an example of using GUI state for test oracle. The test case is a sequence of actions

with the “Cancel” action at the ith position. The GUI state Si shows the GUI

state after this step. The GUI state consists a list of triples consisting of the widget

identifier (e.g., “Cancel”), the property name (e.g., “Color” and “Height”) and

the property value (e.g., “Grey” and “40”). The GUI state includes all available

GUI properties of all widgets in all shown windows of the SUT at this step. For

the purpose of test oracle, the captured GUI state can be compared against the

expected GUI state to determine if all the GUI widget properties are as expected.

e1 e2 … Cancel en-1 enTest Case  = 

S0 S1 S2 … Si-1 Si …

…

Sn-1 Sn

(wF,1, p1, v1)
(wF,2, p2, v1)

…
(wF,…, pr, v1)

(CANCEL, COLOR, GREY)
(CANCEL, HEIGHT, 40)
(CANCEL, WIDTH, 100)

(CANCEL, TEXT, CANCEL)

(wF,…, p1, v1)
(wF,…, p2, v1)

…
(wF,m, ps, v1)

Window Find

(wX,1, p1, v1)
(wX,2, p2, v1)

…
(wX,…, pt, v1)

(wX,…, p1, v1)
(wX,…, p2, v1)

…
(wX,…, pu, v1)

(wX,…, p1, v1)
(wX,…, p2, v1)

…
(wX,n, pv, v1)

Window X

(wY,1, p1, v1)
(wY,2, p2, v1)

…
(wY,…, px, v1)

(wY,…, p1, v1)
(wY,…, p2, v1)

…
(wY,…, py, v1)

(wY,…, p1, v1)
(wY,…, p2, v1)

…
(wY,o, pz, v1)

Window Y

TRIPLES 
FOR 

CANCEL

COMPLETE STATE OF GUI AFTER CANCEL

Oracle 
Information  = 

Figure 5: Oracle information for the Cancel event.

For brevity, the terms LOI1 to LOI3 will be used for the above three levels of oracle
information. Note that although only three instances of test oracle information have been
specified, the specification mechanism is general and may be used to specify many other
instances. In Figure 3, the subroutine GetOracleInfo(i, COI) is used to compute the
oracle information. There are several different ways to realize GetOracleInfo, three of
which are outlined next:

1. As discussed in Section 2, using capture/replay tools is a popular method to ob-
tain the oracle information for GUIs [22]. Recall that capture/replay tools are semi-
automated tools used to record and store a tester’s manual interaction with the GUI;
the goal is to replay the interactions and observe the GUI’s output. Testers manually
select some widgets and some of their properties that they are interested in storing
during a capture session. This partial state is used as oracle information during replay.
Any mismatches are reported as possible defects.

2. In the experiment presented in this paper, we have automated the above approach by
developing a technique that we call execution extraction, a form of reference testing
discussed in Section 2. The key idea of using execution extraction is to designate
the current version of an application as “correct” and use it as a specification of the
software. During the execution extraction process, oracle information is collected via
reverse engineering [27] from the “golden” version of the application. Platform-specific
technologies such as Java API,4 Windows API,5 and MSAA6 are used to obtain this
information. The oracle information is then used to test future versions of the software
or ones that have been artificially seeded with faults.

3. We have used formal specifications in earlier work [32] to automatically derive oracle
information. These specifications are in the form of pre/postconditions for each GUI

4java.sun.com
5msdn.microsoft.com/library/default.asp?url=/library/en-us/winprog/winprog/windows api reference.asp
6msdn.microsoft.com/library/default.asp?url=/library/en-us/msaa/msaaccrf 87ja.asp

11

Figure 2.2: Capture GUI State For Test Oracle [1]

Xie and Memon presented automatic test oracles on applications with manu-
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ally seeded bugs [1]. More importantly, they raised two important research questions

regarding GUI test oracle: (1) what to assert, and (2) how frequently to check an

assertion. They proposed 3 options regarding what to assert: (1) properties of the

GUI widgets associated with the event, (2) properties of all GUI widgets in the

current active window, and (3) properties of all GUI widgets of all windows. In

addition, 2 options are suggested regarding how frequently to check an assertion:

(1) after execution of each event, and (2) after the last event of the test case. This

results in 6 different combinations of GUI test oracles. Their study shows that com-

paring all properties at the end of test case execution provides the most effective

test oracle.

In this research, we further improve the test oracles by automatically filtering

out failures due to flaky object properties.
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Chapter 3: Quantifying Flakiness

To quantify test flakiness, this research develops an entropy-based metric to

measure the flakiness of a test or test suite. Because the flakiness is measured based

on test outputs on a certain output layer, we will first present the different output

layers then the metric to measure flakiness will be introduced in detail.

3.1 Observing Test Output in Different Layers

We begin by differentiating three layers, illustrated in Figure 3.1 of a user-

interactive software application: the Code Layer, the Behavioral Layer and the

User Interaction Layer.

3.1.1 Code Layer

At the lowest level, we have the source code. It is common to measure code

coverage at the statement, branch or path level to determine coverage of the under-

lying business logic. It is very commonly used in experimentation to determine the

quality of a new testing technique. The coverage information from multiple runs of

the same test (suite) can be compared to determine their flakiness.
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User Interaction Layer 

Behavioral Layer 

Code Layer 

Figure 3.1: Layers of a User Interactive Application

3.1.2 Behavioral Layer

This layer presents behavioral data, such as runtime values of variables and

function return values, and returning data to an external location or database, which

may be obtained from the running program via instrumentation hooks. Such data

can also be mined/analyzed to infer invariants. Invariant detection involves running

a set of test cases and inferring from this, a set of properties that hold in all test

cases. Invariants represent high-level functionality of the underlying code and should

be consistent between runs. Test flakiness is measured at this layer by comparing
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the invariants obtained from different runs.

3.1.3 User Interaction Layer

We use this to interface with the application and run tests. For example, in

the Android system, one could write the code segment (shown in Figure 3.2) in a

system test to programmatically discover and click on the “OK” button. During

the test execution, the GUI state can be captured, and the flakiness at this layer

can be computed.

UiObject okButton = new UiObject(

new UiSelector ().text("OK"));

okButton.click ();

Figure 3.2: Code Segment from An Android Test Script

solo = new Solo(getInstrumentation (), getActivity ());

solo.clickInList (1);

assertTrue(solo.searchText("Android")); // Assertion

Figure 3.3: An Example Test Oracle for An Android Application

We also can use this layer as test oracles to identify faults since this is the layer

that the user sees. For instance, if a list widget fails to render or displays the wrong

information, then this layer will reveal a fault. From an automation perspective,

the properties of the interface widgets can be captured and compared to a correct
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expected output, e.g., using the code shown in Figure 3.3 that (1) gets a handle to

the current screen, (2) clicks on a list, and (3) checks whether the list contains the

text “Android”.

3.2 Dependent Variables: Metrics

Entropy was originally introduced in thermodynamics and has been used to

measure the amount of disorder in a thermodynamic system. It was later adopted

by information science and has some successful user scenarios [65–67], among which

decision tree generation is one outstanding example [68] that utilizes the entropy

metric to measure the information gain. The intuition behind this is that the entropy

metric can be used to measure the amount of disorder of a data set, and the difference

in entropy values reflects the additional or gained information that further ordered

the data set.

We now describe the metrics to measure the variance of multiple runs of the

same test. In addition to the entropy-based metric which measures test flakiness,

we also introduce a novel metric to measure the range of difference. The metrics

will be illustrated using the tests’ code coverage information.

Assume we have the test cases with the coverage metrics as shown in Table

3.1. The coverage can be line or branch or some other unit (in our experiments

we will use line coverage). The test suite (TS) includes 4 test cases (rows TC1-

TC4), is executed 4 times on a subject application that has 6 lines of code (cols 1..6

within each run). A dot in the table means that the line is covered during a single
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execution of the test case. For example, in the first run of test case 1 (TC1), lines

2 and 3 are covered whereas all other lines are not.

Table 3.1: Example Test Case/Suite Coverage Variance

#Cov
Run 1 Run 2 Run 3 Run 4

Const Groups

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

TC1 • • • • • • • • 4

TC2 • • • • • • • • • • • • • • • 3/1

TC3 • • • • • • • • • • • • 2/2

TC4 • • • • • • • • • • • • 2/1/1

TS • • • • • • • • • • • • • • • • • • • • • 3/1

Definition 2 (Consistently Covered Lines) A line is Consistently Covered in

two runs iff the line is covered in both runs or not covered in either of the runs.

In our example, Line 1 is consistently covered in Run 1 and Run 2 of TC1

because Line 1 is not covered in either run. Line 2 is also consistently covered

because it is covered in both runs.

Definition 3 (Consistent Coverage) Two runs of a test case or test suite have

Consistent Coverage iff all lines of the subject application are consistently covered

in both runs.

Both Run 1 and Run 2 of TC1 cover line set {#2, #3} and thus have consistent

coverage.
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Because the consistent coverage relationship is reflexive, symmetric, and tran-

sitive and is hence an equivalence relation, we can divide all runs of a test case/suite

into equivalence groups based on the consistent coverage relationship, and measure

flakiness of a test case/test suite as the entropy (or H) of the group based on the

following formula [66]:

H(X) = −
n∑

i=1

p(xi)loge(p(xi)) (3.1)

where n is the number of groups and p(xi) is the probability that a certain run falls

into the ith group.

For example, the 4 runs of TC1 are divided into a single equivalence group of

consistent coverage; thus we have H(X)TC1 = −(4/4∗ loge(4/4)) = 0. The 4 runs of

TC4, however, are divided into 3 groups with sizes 2, 1 and 1, and the corresponding

entropy is H(X)TS = −(2/4 ∗ loge(2/4) + 1/4 ∗ loge(1/4) + 1/4 ∗ loge(1/4)) = 1.04.

To measure the impact of the variance, we further measure the range of dif-

ference of all runs of a test case/suite.

Definition 4 (Range of Difference) The Range of all runs of a test case or test

suite is the total number of lines that are not consistently covered in any two runs.

For example, in the 4 runs of TC1, the same set of lines are covered in each

run, thus the range of difference is 0, while the test suite has a range of 1 (at line

#6). We show the ranges and entropies calculated for test cases and the test suite

in Table 3.2. The average range and entropy of test cases are shown in the last row

of the table. Note that the more unstable the groups are, the greater the entropy
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value is. TC1 has perfect stability and thus has an entropy value 0. TC4 is the

most unstable and thus has the greatest entropy value for test cases. The entropy

of a test suite is generally smaller than the average entropy of all test cases. This is

because some lines that are not covered by one test case may be covered by another

and the individual differences are erased (we see this phenomenon in our study).

If however, tests do not have this property, then the entropy of test suite will be

higher than the average entropy of test cases.

Table 3.2: Entropy Metrics for Table 3.1

Metrics Inconsistent Lines Range Groups Entropy

TC1 {} 0 4 0

TC2 {#5} 1 3/1 0.56

TC3 {#1, #4} 2 2/2 0.69

TC4 {#3, #6} 2 2/1/1 1.04

TS {#6} 1 3/1 0.56

Average 1.25 0.57

3.3 Summary

This chapter developed a formal way of quantifying test flakiness, i.e., in terms

of entropy. The next chapter uses entropy on actual test runs to help identify factors

that cause flakiness.
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Chapter 4: Understanding Causes of Flakiness

4.1 Factors Impacting Test Execution

To better understand what causes tests to be flaky, this research categorizes

the factors we believe have the greatest impact on test flakiness into four groups:

test execution platform, application starting state/configuration, test harness factors

and execution application versions.

4.1.1 Test Execution Platform

Many of the applications that we test can be run on different execution plat-

forms which include different operating systems (e.g., Windows Mac OS, Linux)

or on different versions of the same operating system (e.g. Ubuntu 12, Ubuntu

10). Different operating systems may render system interfaces differently and could

have different load times, etc. In addition, applications often contain code that is

operating system specific.
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4.1.2 Application Starting State/Configuration

Many applications have preferences (or configuration files, registry entries)

that impact how they start up. Research has shown that the configuration of an

application impacts test execution [58] therefore we know that this starting point

is important. Even if we always initialize with a default configuration at the start

of testing, test cases may change the configurations for future tests. Therefore the

program configuration files should be located and restored before each test is run.

4.1.3 Test Harness Factors

Test harnesses such as Selenium contain parameters such as step delays or

startup delays to ensure that the application settles between test steps, however,

this is often set to a default value and/or is set heuristically by the tester. Long

delays may mean that the application pauses and runs additional code, but short

delays may not allow completion of some functionality, particularly when system

load or resources vary between executions. In early experiments we ran tests on a

VM where we can change CPU and memory, and have found that reducing memory

and/or CPU has a large impact on the ability to repeat test execution – primarily

due to the need for tuning these parameters.

4.1.4 Execution Application Versions

If we are running web applications using different web browsers or Java pro-

grams using different version of Virtual machines (e.g. Java 7 versus 6 or OpenJDK
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versus Oracle Java), we may run into differences due to support for different events

and threading policies.

4.2 Empirical Study

We now evaluate the impact of factors that we have identified on test flakiness

via the following research questions regarding the observed results at different layers:

• RQ1: To what extent do these factors impact code coverage?

• RQ2: To what extent do these factors impact invariant detection?

• RQ3: To what extent do these factors impact GUI state coverage?

Note that our questions include one for each of the layers. We start with the

lowest code layer (code coverage) and end with the highest user interaction layer

(GUI state).

4.2.1 Subjects of Study

We selected five non-trivial open source Java applications with GUI front ends

from sourceforge.net. All of these have been used in prior studies on GUI testing.

Table 4.1 shows the details of each application. For each we show the version, the

lines of code, the number of windows and the number of events on the interface.

Rachota1 is a time tracking tool allowing one to keep track of multiple projects and

create customized time management reports. Buddi2 is a personal financial tool for

1http://rachota.sourceforge.net/en/index.html
2http://buddi.digitalcave.ca/
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managing a budget. It is geared for those with little financial background. JabRef3

is a bibliography reference manager. JEdit4 is a text editor for programmers. Last,

DrJava5 is an integrated development environment (IDE) for Java programs.

Table 4.1: Programs used in Study

SUT Name Version LOC # Windows # Events

Rachota 2.3 8,803 10 149

Buddi 3.4.0.8 9,588 11 185

JabRef 2.10b2 52,032 49 680

JEdit 5.1.0 55,006 20 457

DrJava 20130901-r5756 92,813 25 305

4.2.2 Experiment Configurations

We selected our factors from each of the four categories based on those iden-

tified in Section 4.1.

1. Platform: We use the three operating systems that are described above

(Ubuntu, Mac and Scientific Linux).

2. Initial Starting State/Configuration: We control the initial configuration

of each application, input data files that are loaded or written to and when

3http://sourceforge.net/projects/jabref/
4http://sourceforge.net/p/jedit/
5http://www.drjava.org/
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possible (on the Ubuntu and Mac OS stand-alone machines) we control the

date and time of the machine running the tests (note that we could not control

the time on our Red Hat cluster, but try to run tests within the same day when

possible).

3. Time Delay: These are the delays that are used in the test harness to control

the time that GUITAR waits to stabilize during replay of each step in the test

case.

4. Java Version: We use three different Java versions in our experiments: Oracle

JDK 6, Oracle JDK 7, and OpenJDK 6..

Our experiments vary each of the factors above. We do not vary all combina-

tions of factors, but have designed a set of experiments that we believe is represen-

tative. The experiment configurations are shown in Table 4.2. Each configuration

(row) represents a set of conditions.

Best means the best configuration (our gold standard for the experiments).

For this we use the same configuration setup and use the same initial input files for

the applications so that its starting state is the same. We also control the time (when

possible) and fix the Java version to Oracle 6. To obtain the best configuration, we

first tried to control as many factors as possible, and heuristically selected the best

delay value for each different platform (where best shows the smallest variation

based on a visual inspection of a sample of the test cases). We then fixed this

configuration as our best configuration and created variants of these for study.
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Table 4.2: Configurations of our Experiments

Runs Config Input Date& Delay JDK

Fixed Files Time

1. Best Y Y Y Best Oracle 6

2. Unctrl N N N (rand) 0ms Oracle 6

3. No Init N N N (actual) best Oracle 6

4. D-0ms Y Y Y 0ms Oracle 6

5. D-50ms Y Y Y 50ms Oracle 6

6. D-100ms Y Y Y 100ms Oracle 6

7. D-200ms Y Y Y 200ms Oracle 6

8. Opn-6 Y Y Y Best OpenJDK 6

9. Orc-7 Y Y Y Best Oracle 7

Unctrl means uncontrolled. This is expected to be our worst configuration.

We do not control any of the factors mentioned. We just run our test cases with

the default tool delay value (0ms), and do not reset the starting configuration files

or provide a fixed input file. We use a random date (on the two platforms where we

can control this).

Starting from our best configuration, we removed the initial configuration/s-

tarting state files. We call this No Init (see configuration #3). We then varied the

delay values (shown as D-0 through D-200ms, while keeping the configuration files
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and inputs fixed. Our last configurations (Opn-6 and Orc-7) use the best delays

and control all other factors but use different versions of Java (Open JDK 6 and

Oracle 7) instead of the default version (Oracle 6).

4.2.3 Experiment Procedure

Having selected the applications and setting up the configurations, our ex-

periment procedure involves executing a number of test cases on these applications

multiple times on various platforms and collecting information at the 3 layers dis-

cussed earlier. For each application we run 200 test cases randomly selected from all

possible length 2 test cases generated by the GUITAR test case generator that are

executable (and complete) on all three different platforms, Ubuntu 12.04, Red Hat

Scientific Linux 6.4 and Mac OSX 10.8. The Ubuntu machine is a stand-alone server

with an Intel Xenon 2.4GHZ CPU and 48 GB of memory. The MacOS machine is

a laptop with a 2.5 GHZ Intel Core and 8GB of memory and the Red Hat Scien-

tific Linux machine is an Opteron cluster server running at 2000MHz with 8GB of

memory on each node. All test cases are short, which reflects what might be done

for overnight regression or smoke testing [58]. We decided that using the shortest

possible (reasonable) tests would keep us from unduly biasing this data. We view

this as a baseline – if we can’t control length 2 tests, then longer tests should be

even harder. For each application and experiment configuration, we run the tests

10 times using the GUITAR replayer [56,69].

We instrumented each application with the Cobertura code coverage tool [70]
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to obtain the line coverage. We then parse the Cobertura report files to determine

if we cover the same (or different) lines of code in each run. For invariant detection

we use the Daikon Invariant Detector [64]. Due to the large number of invariants

generated we only selected three classes for study, those with the highest code cov-

erage. For interface oracles we use the states returned by GUITAR. For the oracle,

we excluded common patterns that are known to be false positives (see [56]). More

specifically, to avoid false positives and compare only meaningful properties of GUI

state, we filter out properties, such as the ID of widgets given by the testing harness,

minor differences in coordinates of widgets, etc. The remaining differences should be

meaningful such as the text in a text field, or missing widgets. For the code coverage,

we share the test cases and scripts between platforms to ensure consistency.

4.2.4 Addressing RQ1

We begin by looking at the data for code coverage using the first and second

configurations from Table 4.2. These configurations include the best with everything

controlled and the potentially worst configuration (where we control nothing).
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Table 4.3 shows the Test suite (TS) entropies for each application on each

operating system. The rows labeled TC are the average entropy of the individual

test cases within the test suite. In these tables we have 10 runs of test cases. Note

that 0’s without decimal places have true 0 entropy, while 0.00 indicates a very small

entropy that is rounded to this value. The highest entropy occurs when all 10 runs

differ – in this case we have an entropy of 2.3. When only a single run out of 10

differs the entropy is 0.33 and when half of the runs differ we have an entropy of

1.50. We see lower (close to zero), but not always zero, entropy when we control

the factors, and higher entropy when we don’t. We see differences between the

applications and between platforms. We also show the range of coverage (in lines)

which is the average variance across test cases. We can see that in the uncontrolled

configuration we see as high as 184 lines on average differing and in the best we see

closer to zero. However, we still have a few platforms/applications (such as Redhat

running Buddi) where there is a large variance (90+ lines). This is because we were

not able to control the time and date on this server and Buddi uses time in its code.

We show this data in an alternative view in Figure 4.1. The flakiness of all

200 test cases by application and operating system within the application. Figure

4.1(a) shows the best while (b) shows the uncontrolled factors. Flakiness is lower

in the best environment (but not zero) across most of the applications and that it

varies by platform. Rachota and Buddi have almost zero flakiness in their test cases

while JEdit and DrJava have a non-zero flakiness even when we control its factors.

Only the Ubuntu platform with the best configuration shows a zero flakiness.
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We next turn to the configurations that do not control the initial environment

(No Init), vary the delay time (D-xms) and vary Java versions (Opn-6 and Orc-7).

We show this data in Tables 4.4 through 4.6. Table 4.4 shows the test suite flakiness,

while Table 4.5 shows the average test case flakiness. Table 4.6 shows the variance

in line coverage. We see that the initial starting state and application configuration

(No Init) has an impact on some of our applications, but not as large as we expected,

when we control the other factors.
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Figure 4.2: Flakiness Values of Test Cases of 2 Platforms with/without Initial State

and Configuration Control

A boxplot of the flakiness values by application when we don’t control the

initial state and configurations is seen in Figure 4.2. We show a boxplot of the

flakiness values by application for different delays in Figure 4.3. We see that the

different delays also impact the flakiness and the delay value varies by application

and platform. Finally, looking at the boxplots of the Java Versions in Figure 4.4, we
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Figure 4.3: Flakiness Values of Test Cases with Different Delay Values
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Figure 4.4: Flakiness Values of Test Cases with Different JDK Versions
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see differences between Java versions, the largest being with DrJava using Oracle 7.
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Figure 4.5: Flakiness Values of Invariant Groups on Ubuntu

4.2.5 Addressing RQ2

To examine the results at the behavioral or invariant level we examine the

invariants created by Daikon. Two runs of a test case have the same behavior if

all the invariants that hold in these two runs are exactly the same. The average,
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maximum and minimum flakiness values of the 200 test cases using the best and

uncontrolled configurations are shown in Table 4.7. As we can see, the invariants

seem to be more sensitive to application than to the factors that we are controlling.

We can see this if we examine Figure 4.5. Rachota seems to have internal variation

not related to these factors, while three of the other applications appear to have

almost zero flakiness for both the best and uncontrolled runs. For DrJava, the

factors impact the invariants. In general though the variation is lower than at the

code level of interaction.

Table 4.7: Average/Max/Min Flakiness Values of Invariants across 200 Test Cases

Config Entropy Buddi Rachota JEdit JabRef DrJava

Best

Avg 0 0.45 2.30 0 0

Max 0 1.22 2.30 0 0

Min 0 0 2.16 0 0

Unctrl

Avg 0.00 1.04 2.30 0.00 0.15

Max 0.33 1.64 2.30 0.33 0.33

Min 0 0 2.30 0 0

4.2.6 Addressing RQ3

For GUI layer, we capture the GUI state after each step of test execution, and

after filtering out the spurious properties, we compare the GUI states from different
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Figure 4.6: Flakiness Values of GUI-State Groups of 3 Platforms in Best & Uncon-

trolled Environments
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runs and obtain flakiness values. Figure 4.6 shows the distribution of flakiness values

for GUI state for the 200 test cases. Figure 4.6(a) shows the flakiness value is very

low for all 5 applications in the best controlled configuration, but that in 4.6(b)

there is a higher median flakiness value when we leave our factors uncontrolled.

Since the GUI states are often used as test oracles for SUITs, we also measure

the false positives of the test outputs. Our reasoning is that if one were to use the

state as an oracle for fault detection, any change detected would indicate a fault.

We use the state that is captured during the first (of 10) runs as the oracle, and

then then calculate the (test level) false positives based on the following formula:

FP =
∑

FalsePositives/(
∑

#testcases ∗ (#runs− 1)) ∗ 100. (4.1)

The results of false positives are shown in Table 4.3 in the last rows as FP.

We see as high as a 96% chance (Rachota on Ubuntu) for obtaining a false positive.

In general in the best configuration we see a very low false positive rate (no more

than 6%), however it is only 0 in a few cases (such as Buddi on Mac). The high

false positive rate is concerning for experiments that report on new techniques and

finding faults. This data also concurs with other recent work on flakiness which uses

fault detection as the metric (see Luo et al. [34]).

Finally we show the false positives for the other experimental configurations

in Table 4.8. The results show that this level of information is sensitive to the initial

state, delay values, and Java version.
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4.2.6.1 Case Study: What Causes the Differences

Code Coverage: In our experiments, we found numerous instances of the

same test case executing different code. Figure 4.7 shows an example of memory de-

pendent code from the application DrJava that we cannot deterministically control

with our test harness. In this code (lines 571-580 of StringOps.java, the memSize-

ToString() method) we see code that checks memory usage so that it can create a

string object stating the memory size. It checks for whole block boundaries, e.g., 1B,

1KB, 1MB, via whole == 1 and constructs the string content accordingly. Because

the actual memory allocated to the executing JVM may vary from one run to the

next, in our experiments one in ten executions covered this code because by chance

the space was not equal to a block.

if (whole == 1) {

sb.append(whole);

sb.append(’ ’);

sb.append(sizes[i]); ...}

Figure 4.7: An Example of Memory Dependent Code

The code segment shown in Figure 4.8 is an example of code that we can control

by making sure the environment is mimicked for all test cases. In this code (JEdit,

MiscUtilities class lines 1318-1357) the application checks file permissions. We found

that the files did not always properly inherit the correct permissions when moved
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by the test script and this caused 9 different lines being covered between executions,

or when time and date were involved as has been described in [57]. Other examples

of differing code coverage occurred when opening screens of windows have code that

waits for them to settle (based on a time).

public static int parsePermissions(String s) {

int permissions = 0;

if (s.length () == 9) {

if (s.charAt (0) == ’r’)

permissions += 0400;

if (s.charAt (1) == ’w’)

permissions += 0200;

....

else if (s.charAt (8) == ’T’)

permissions += 01000;

}

return permissions;

}

Figure 4.8: An Example of Environment Dependent Code

Invariants: In our experiments, we found differences in the invariants re-

ported. For instance, in the application Rachota, we found that approximately in

two of every ten runs, the application started faster than normal and generated the
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two extra invariants shown in Figure 4.9 related to the startup window not found

in the other eight runs. In each run we used exactly the same set of test cases. The

“correct” set of invariants is dependent on the speed at which the window opens

and again, may be an artifact of the system load or test harness factors.

this.lbImage == orig(org.cesilko.rachota.gui

.StartupWindow.startupWindow.lbImage)

this.loading == orig(org.cesilko.rachota.gui

.StartupWindow.startupWindow.loading)

Figure 4.9: Example Differences in Invariants

GUI State: During our experiments, we find variation in the properties of

certain interface widgets between runs, that would appear as a fault to the test

harness (and would be a real fault if this happened during manual execution), but

that is most likely an artifact of automated test execution – a false positive. For

instance in the application, JEdit, we found that the widget

org.gjt.sp.jedit.gui.statusbar.ErrorsWidgetFactory$ErrorHighlight had empty text in one

run, but was filled in during other runs. We believe this had to do with a delay

between test steps that was too short when the system load increased, preventing

the text from rendering to completion before the next test step occurred. A test

case that checks the text in this widget may non-deterministically fail during one

run and succeed in another.
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Figure 4.10: Average Flakiness: Code Coverage vs GUI State
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4.2.6.2 Discussion: Correlation Between Code Coverage and GUI

State

To study a possible correlation between the stableness of code coverage and

GUI state layers, we plot curves of average flakiness in Figures 4.10(a) - 4.10(c), for

3 applications on the RedHat platform. We see that the flakiness in code coverage

is generally greater than the GUI state. But we don’t see a correlation between the

two. Figure 4.10(b) shows a big difference in code coverage and GUI state flakiness;

sometimes code coverage is unstable when GUI states are stable. Figure 4.10(c)

shows this trend.

4.3 Discussion and Guidelines

We have seen some interesting results during these experiments. First, in al-

most none of our layers were we able to completely control the information obtained.

We saw instances of an application with zero entropy for one or two of the testing

configurations, but in general most of our results had a positive entropy meaning

at least one test case varied. Some of the greatest variance appears to be related

to the delay values and issues with timing which are system and load dependent.

Since this might also be an artifact of the tool harness that we used (GUITAR),

we wanted to understand the potential threat to validity further, therefore we ran

an additional set of experiments using the Selenium test case tool which automates

test execution on web applications.
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We selected a web application that has existing test cases called schoolmate

version: 1.5.4. It was used as one of the subjects by Zou et al. in [71]. SchoolMate

is a PHP/MySQL solution for elementary, middle and high schools. We randomly

selected 20 of the test cases and modified the delay values of the test cases to be

0ms, 100ms and 500ms. We ran each 10 times as we did in our other experiments.

Six of the twenty test cases failed at least once (and 5 failed in all 10 runs) when

the delay value was 0ms or 100ms. This shows us that the delay value is relevant in

other tools as well.

One might expect monotonic behavior with respect to the delay, but we did

not observe this. Since tools such as GUITAR cannot use human input to advise

them about which properties to wait for, they use heuristics to detect an application

steady state. The delay value says how long to wait before checking for a steady

state. In some applications, there are system events that check periodically for

a status, such as timing or reporting events. Since these run at intervals (and the

intervals may vary), they create a complex interaction with the delay value, resulting

in unpredictable behavior.

We also found some interesting application specific issues such as code which

is dependent on the size of memory the application is using, the time of day that

the application is run or the time it takes to refresh a screen. For instance, one

application had a 30 day update mechanism and we just happened to run one of our

early experiments on the 30 day update (and covered new/additional code). Had

we been running a real experiment, we might have incorrectly reported that our

technique was superior. With respect to operating system differences, we saw three

62



primary causes. Some differences are due to permissions or network connections.

For instance, Rachota will send requests to a server using the network and these

calls were blocked on the Mac experiments. We also saw differences with system

load. Certain code is triggered if the application takes longer to perform a particular

task or if the resolution is different. This is not necessarily due to differences in the

operating systems, but is machine specific. Last, we found code such as in JabRef

that only runs under specific operating systems enclosed within if-blocks.

We did find that we could control a lot of the application starting state and

configurations by judicious sharing of the starting configuration files, and that if we

heuristically find a good delay value for a specific machine it is relatively stable. The

invariant layer was our most stable layer, which indicates that the overall system

behavior may not be as sensitive to our experimental factors. Despite our partial

success, we believe there is still a need to repeat any tests more than once.

Our overall guidelines are:

1. Exact configuration and platform states must be reported/shared.

When providing data for experimentation or internal company testing re-

sults, the exact configuration information, including the operating system,

Java version, harness configurations/parameters and the application starting

state needs to be shared.

2. Run Tests Multiple Times. For some of the differences observed we do not

see an easy solution and expect some variance in our results. Therefore studies

should include multiple runs of test cases and report averages and variances of
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their metrics, as well as sensitivity of their subjects to certain environmental

conditions (e.g., resources, date/time).

3. Use Application Domain Information to help reduce some variability.

For instance, if the application uses time, then clearly this is an environmental

variable that needs to be set. But we found others such as memory variances,

file permission variances, and simple timing delays within the application that

would vary. Knowing what some of these are may allow you to remove that

variable code from the evaluation.

4.4 Summary

This chapter studied the impact of factors, such as test execution platform,

SUT initial state, and timing, on flakiness of test cases. The results showed that by

controlling these factors properly, test flakiness can be largely reduced. But still,

we cannot totally eliminate flakiness with the best controlled environment in our

study - flaky failures may still be reported. In the next chapter, we present a flake

filter that filters out flaky failures and retains fault detection ability of tests in the

meanwhile.
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Chapter 5: Minimizing Effects of Flakiness

Flaky tests are often reported as failed and thus require additional resources

for re-execution. This research alleviates this problem by developing a new flake

filter that automatically weeds out flaky failures. We thus study the effectiveness of

the flake filter via the following research questions:

• RQ4: What is the impact of flakiness on test results?

• RQ5: How effective is our flake filter?

• RQ6: What is the cumulative effect of applying the flake filter over multiple

successive versions of an application?

5.1 Developing Our Flake Filter

We now describe the design and development of our flake filter using a running

example. Consider the test case shown in Figure 5.1. This is an actual test case

from our empirical study (Bug 1324 of the jEdit application from Section 5.2). The

test case contains two parts. The first part includes 2 actions that will be executed

on the SUT: in the main window (titled “jEdit”) of the SUT, the test clicks menu

“Utilities” and then menu item “Buffer Options...”. As a result, a dialog entitled
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// Click on the menu item to invoke the "Buffer Options"

dialog.

Window("jEdit").JMenu("Utilities").Click

Window("jEdit").JMenuItem("Buffer Options ...").Click

// Assertions on the SUT state.

Dialog("Buffer Options").

CheckProperty "isRootWindow", "false" // asr1

Dialog("Buffer Options").

CheckProperty "width", "358" // asr2

Dialog("Buffer Options").

CheckProperty "height", "496" // asr3

Dialog("Buffer Options").Checkbox (#4).

CheckProperty "text", "Indent ..." // asr4

Dialog("Buffer Options").Checkbox (#4).

CheckProperty "isSelected", "true" // asr5

Dialog("Buffer Options").Checkbox (#4).

CheckProperty "y", "22" // asr6

Figure 5.1: Example Test Case
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(a) V1 without the Bug (b) V2 with the Bug

Figure 5.2: Bug 1324 of the JEdit Application

“Buffer Options” opens as shown in Figure 5.2(a). The second part of the test

case includes 6 assertions that check the correctness of the SUT after executing the

actions. In the example, 3 assertions check properties “isRootWindow”, “width” and

“height” of the dialog, and 3 assertions on properties of the highlighted checkbox,

“text”, “isSelected” and “y” (y coordinate).

The test was originally developed on the current version, V1, of the SUT; we

executed it and it passed on V1 at least once. When the SUT was changed to a

new version, V2, a bug is introduced in the “Buffer Option” dialog. As shown in

Figure 5.2(b), the text label for the checkbox mistakenly disappeared. In addition,

the checkbox was incorrectly not selected. Thus we expect assertions asr4 and asr5

to fail on V2, thereby revealing the bug.
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Table 5.1: Test Results on New Version

Assertion Expected Actual Status As Expected Flakiness

asr1 false false Passed Yes 0

asr2 358 348 Failed No 1.03

asr3 496 498 Failed No 1.28

asr4 “Indent...” “” Failed Yes 0

asr5 true false Failed Yes 0.33

asr6 22 17 Failed No 0.61

The results of executing the test case on V2 are shown in Table 5.1. For each

assertion, the first two columns show the “Expected” and “Actual” values of the

object properties returned to the assertions. In the “Status” Column, we mark the

assertion as Passed if the two values match, and Failed otherwise. Among the 5

failed assertions, not all were expected/wanted. Assertions asr4 and asr5 are as

expected, whereas other failures were not.

We have defined flaky tests (suites) in Chapter 1. Now we formally define

flaky assertions and objects.

Definition 5 (Flaky assertions) An test assertion is flaky if it does not consis-

tently pass or fail across multiple runs on the same SUT with the same configuration.

Test assertions often assert some property values on a certain program objects.

For example, assertion asr4 is performed on a checkbox object with id number #4
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inside a dialog titled “Buffer Options”. Thus we define Flaky objects as below.

Definition 6 (Flaky objects) An program object is flaky if at least one of its

properties/attributes returns unexpectedly different results across multiple runs of

the same test on the same SUT with the same configuration.

Note that according to our definitions, when an assertion is flaky, the object

asserted on is also flaky. And a test is flaky as long as one or more of its assertions

are flaky.

5.1.1 Quantifying Flakiness via a Score

Our flake filter discards the outcomes of any assertion that causes a certain

level of flakiness in each test case. We quantify flakiness of an assertion, a, by mea-

suring entropy of the actual observed values of each test assertion during multiple

runs using the following formula:

F(a) = H(X) = −
n∑

i=1

p(Xi)loge(p(Xi)) (5.1)

where Xi stands for an identical value observed on the asserted object property and

p(Xi) stands for the probability of the object having property value Xi.

In this example, we run the test case on V1 10 times and keep record of the

actual values of the properties asserted on. For example, we observed 3 identical

values of the width property used in asr2 : 358 (5 times), 348 (3 times) and 338 (2

times). Thus F(asr2 ) can be calculated as:

−( 5
10
∗ loge(

5
10

) + 3
10
∗ loge(

3
10

) + 2
10
∗ loge(

2
10

)) = 1.03
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As another example, we observed 2 identical values of the selected property

used in asr4 : true (9 times) and false (1 time). Thus F(asr4 ) can be calculated as:

−( 9
10
∗ loge(

9
10

) + 1
10
∗ loge(

1
10

)) = 0.33

From the examples, we can that the more unstable the observed value of an

object property is, the greater its flakiness score will be. And as extreme cases, the

smallest score, 0, will be obtained iff outputs in all runs are identical. On the other

end, if all outputs in 10 runs are different, the greatest score, − 1
10

loge(
1
10

)∗10 = 2.30

will be obtained.

By applying our flakiness formula to all assertions, we can get their flakiness

scores in the 10 runs, and the results are shown in the last column of Table 5.1.

We measure the flakiness of a test case as the maximum flakiness of all its

assertions:

F(test) = MAXasri∈test F(asri) (5.2)

Thus the flakiness score of the test case is a positive number, 1.28, showing

that the test is flaky. To obtain a non-flaky test, we can apply our filter to remove

all flaky assertions, results in the test case shown in Figure 5.3.

5.1.2 Tuning the Threshold of Flakiness Score

In the resulting test case, we remove all flaky tests, thus making reported

failures more reliable. But the problem is one of the bug-revealing assertion, asr5, is

also filtered out. Thus we developed a technique to better balance between removing

flaky assertions and retaining bug-revealing ones by tuning the threshold of flakiness
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// Click on the menu item to invoke the "Buffer Options"

dialog.

Window("jEdit").JMenu("Utilities").Click

Window("jEdit").JMenuItem("Buffer Options ...").Click

// Assertions on the SUT state.

Dialog("Buffer Options").

CheckProperty "isRootWindow", "false" // asr1

Dialog("Buffer Options").Checkbox (#4).

CheckProperty "text", "Indent ..." // asr4

Figure 5.3: Example Test Case After Filtering Out Flaky Assertions

score. Giving a flakiness threshold, τ , our flake filter will eliminate all assertions

with flakiness scores greater than τ .

The results of applying different thresholds are shown in Figure 5.4. The dash

line with hollow nodes show the percentage of flaky assertions eliminated - as the

threshold increases, some not-so-flaky assertions will be retained, causing the line to

decrease. The concrete line with filled nodes show the percentage of bug-revealing

assertions retained - as the threshold increases, some flaky bug-revealing assertions

will be retained, causing the line to increase. By tuning the threshold, we can achieve

best performance of our flake filter based on our needs. For example, when we pick

a threshold between 0.4 and 0.6, our filter can eliminate 75% of flaky assertions,

and retain all (100%) bug-revealing assertions. The intersection of the two lines is
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roughly at coordinate (0.37, 0.83), indicating the balance point in our two goals: if

we had more data, our filter is expected to eliminate 83% of flaky assertions and in

the meanwhile retain 83% of bug revealing assertions when the threshold is set to

0.37. The real data for this bug is shown at the top of Figure 5.9 in Section 5.2.

5.1.3 Accumulating Flakiness Information Across Versions

In this part, we are going to test a new version, V3, of the SUT, and want to

apply our flake filter to eliminate failures on V3 that were flaky on V2.

Similarly, to apply our flake filter, we need to run the test case on V2 multiple

times to measure the flakiness of assertions in the test. The results are shown in

Table 5.2. As shown in Column “Flaky on V2”, 2 assertions (asr2 and asr3 ) were
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Table 5.2: Test Results on V3

Assertion Flaky on V2 Failed on V3 Filtered Single-V Filtered Accu

asr1 No No - -

asr2 Yes Yes Yes Yes

asr3 Yes Yes Yes Yes

asr4 No Yes No No

asr5 No No - -

asr6 No Yes No Yes

observed flaky on V2. Column “Failed on V3” shows 4 failed assertions. Besides

of the two flaky failures, a true failure on assertion asr4 reported the unfixed bug;

but assertion asr6 was a mis-reported failure that our flake filter failed to eliminate

because it had not been observed flaky on V2. Fortunately, the missing assertion,

asr6, has been observed flaky on the history version, V1. Thus we extend our flaky

filter to accumulate flakiness information across versions. As shown in the last

two columns of Table 5.2, our flake filter with flakiness information from a single

version (V1) filtered 2 flaky failures (asr2 and asr3 ); and by accumulating flakiness

information across multiple versions (V1 and V2), our flake filter eliminated 1 addition

flaky failure (asr6 ), improving the performance of the single-version flake filter by

50% in this example.
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5.2 Empirical Study

The goal of this study is to study the extent of flakiness in fielded software

systems and their test suites, evaluate the usefulness of our flakes filter, i.e., its

ability to reduce flaky failures, and explore the unintended consequences of missing

real faults due to the flakes filter.

5.2.1 Metrics for Research Questions

Now we defined metrics to evaluate our research questions.

RQ4 addresses the impact of flakiness on test results. We will execute test

cases, containing test steps and assertions on program objects, on a set of subject

applications multiple times. We will record the outcome of each assertion and test

case. Our metrics to answer this question will be percentage of flaky tests, flaky

assertions and flaky objects. These metrics will inform us about the extent of

flakiness that exists in our subject applications and their test suites.

Additionally, we will select, from a given universe of tests for a subject appli-

cation, a subset that is capable of detecting a particular real fault in the application.

We will then evaluate the flakiness of all assertions—if there are multiple—in that

test case, including the one that caused the test case to fail, and eventually lead to

the detection of the fault. This is important because the flakiness of these asser-

tions may cause the test case to incorrectly pass, thereby causing the actual fault

to be missed; or if the flaky assertions fail, the test case would fail for an incorrect

reason; both are undesirable as they lead to wasted resources, e.g., manual triaging
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of failure results. We will repeat this analysis for multiple faults, test cases, and

subject applications. Hence, we will mine real subject applications for actual faults

that have been reported for their test cases.

RQ5 addresses effectiveness of our flake filter. We will measure effectiveness

in two ways: (1) the ability of the flake filter to reduce flaky failures and (2) the

unintended consequence of missing real bugs due to our flake filter. Because our flake

filter is enabled via a tunable flakiness threshold, i.e., we filter all assertions/tests

whose flake score is greater than the threshold, the flake filter’s effectiveness using

our two aforementioned criteria is closely tied to the threshold: set too high (an

underperforming filter) and we risk too large a number of flakes; set too low (an

aggressive filter) and we risk missing real faults.

For ease of understanding, let’s assume that, for each test case ti, we have

computed a flakiness score F(ti). Further, assume the availability of a function

Φ(ti, F(ti), τ), where τ ≥ 0 is the threshold, and returns NULL if F(ti) > τ , else

returns ti. The way we have computed our flakiness score, Φ(ti, F(ti), 0) will always

return NULL if ti has exhibited any amount of flakiness. Hence, our first metric to

compute the effectiveness of our flake filter for a test suite T = {t1, t2, . . . , tn}, and

threshold τ is R:

RT (τ) =
|Map(Φ(#1,F(#1), τ)&, T )|
|Map(Φ(#1,F(#1), 0)&, T )|

× 100, (5.3)

where Map(f&,L) applies the function f()& to each element of a list L, substituting

the arguments in f()& (denoted by #1) with the element, and returns a list of the

outcomes of f()&. Intuitively, the above formula gives us the percentage of flaky
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tests that our flake filter can remove. Similar computations can be done for flaky

assertions and objects, e.g., to compute the effectiveness of our flake filter for a set

of assertions A = {a1, a2, . . . , am} for a test suite, we adapt the formula to:

RA(τ) =
|Map(Φ(#1,F(#1), τ)&, A)|
|Map(Φ(#1,F(#1), 0)&, A)|

× 100. (5.4)

Our second metric has to do with our filter inadvertently filtering out test

cases and assertions that detect actual faults. Assume that we have for each test

case ti, a function β(ti) that returns 1 if ti detects a real defect (not flaky) in the

software under test, else returns 0. It also returns 0 on a NULL input parameter

value. We compute our second metric B for test suite T = {t1, t2, . . . , tn}:

BT (τ) = (1−
∑

Map(β(Φ(#1,F(#1), τ))&, T )∑
Map(β(#1)&, T )

)× 100, (5.5)

where
∑

Map(β(#1)&, T ) gives us the total number of bug revealing test cases

from amongst {t1, t2, . . . , tn}.
∑

Map(β(Φ(#1,F(#1), τ))&, T ) gives us the total

number of bug revealing test cases that were filtered out by the flake filter. Again

the formula for B can be adapted for assertions instead of test cases by simply using

the set of assertions A instead of T .

Because we want real regression failures as well as flaky failures to address this

research question, we will select software subjects with at least two versions: VX−1

and VX . We will select VX as a version in which a regression bug was detected by

at least one test case; and VX−1 that did not have that particular bug.

RQ6 addresses the cumulative effect of applying the flake filter over multiple

successive versions of an application. Once a flake filter has been obtained for a
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software version and test suite, one would expect that the same assertions would ex-

hibit flaky behavior on subsequent versions of the software for the suite unless fixed.

If one were to evolve the flake filter, adding newly identified flaky assertions/tests

over time, the cumulative effect of the evolved flake filter should yield a smaller set

of flaky tests than would have been obtained from a single version. To address this

question, we will run tests on 10 consecutive versions of each subject application,

obtain the set of flaky tests and assertions, constantly evolving the flake filter. At

each step, we will show the cumulative effect of the flake filter on the resulting test

suite.

5.2.2 Subjects of Study, Test Cases, & Bugs

We have used 3 Java applications in our experiments: jEdit, Jmol,1 and

JabRef. jEdit and JabRef have been used in our first empirical study, and Jmol

is a molecular viewer for three-dimensional chemical structures. These applications

have been used in our past studies, come with a set of test cases, and have real

reported faults [36].

Table 5.3 shows the number of test cases for each of our subjects. Columns

“Objects” and “Assertions” shows the number of objects and assertions observed

during test execution.

The test cases for these applications detected a total of 16 regression bugs; we

found these bugs from reports submitted at these applications’ bug reporting sites

1http://sourceforge.net/p/jmol/
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Table 5.3: Test Cases for Subject Applications

SUT Version Tests Objects Assertions

jEdit

4.1Pre4 100 908 33215

4.3.3 73 1126 37514

4.4.2 42 1200 25756

Jmol

11.6.27 16 498 10249

12.2.34 35 1084 27892

13.1.3 19 471 12707

JabRef

1.1 41 247 6277

1.5 100 472 23849

1.7.1 100 623 21327

Total All 526 6629 198786
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Table 5.4: Bugs in jEdit, Jmol and JabRef

AUT Bug Id Bug Description VX−1 VX VX+1

jEdit

1324 CheckboxMissing 4.1-pre4 4.1-pre5 4.1-pre6

3538 BeanShellError 4.3.3 4.4-pre1 4.4.1

3645 DropdownlistUnenabled 4.4.2 4.5.1 5.0-pre1

3899 DropdownlistEmpty 4.3.3 4.4-pre1 5.0-pre1

Jmol

T1 LogoInNewWindow 11.6.27 11.7.1 12.0.38

T2 NewWindow 13.1.3 13.1.4 13.1.14

T3 LogoInAboutWindow 12.2.34 13.0.1 14.2.11

T4 MainWindowTitle 12.2.34 13.0.1 NA

JabRef

65 HelpContent 1.1 1.2 1.3.1

160 SearchColumn 1.5 1.6-beta 1.7-beta2

1130 CloseDatabase 1.7.1 1.8-beta 2.0-beta

1132 SaveDatabase 1.7.1 1.8-beta 2.0-beta

1133 Search 1.7.1 1.8-beta 2.0-beta

1134 Export 1.7.1 1.8-beta 2.0-beta

1135 EditEntry 1.7.1 1.8-beta 2.0-beta

1136 SearchPanel 1.7.1 1.8-beta 2.0-beta
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(mostly SourceForge2). Table 5.4 shows the bugs and the versions in which they

first appeared. For each bug, we use a concise, descriptive keyword to describe each

bug. We denote the version in which the bug first appeared as VX , the past version

in which the broken feature still worked as VX−1 and the future version in which the

bug was first fixed as VX+1.

In Tables 5.5 through 5.7, for each bug, we also show a sample test case

that automatically revealed the bug as well as the cause of this revelation, i.e., the

properties that mismatched, and hence triggered the test oracle to report a failure.

The columns “Steps” and “TC length” show the steps and length of the test cases.

The “Oracle” column shows the mismatch.

2http://sourceforge.net/
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Figure 5.5 visually shows the window of exposure (δ) of each of our bugs under

consideration. We define δ as the time for which a regression bug has existed in the

software, i.e., the time that elapsed between VX and VX+1. The x-axis shows clock

time, in years, increasing from left to right, and the corresponding version numbers.

The y-axis shows the individual bugs. Each bug is represented by a horizontal

bar that starts at the time the bug was first introduced (not detected) into the

software and ends when the bug was removed. The length of the bar indicates

the window of exposure. We see that our selected bugs’ window of exposure varies

across applications and bugs. Most bugs in JabRef and jEdit persisted for months

whereas most from Jmol persisted across years. For example, Bugs T3 and T4 of

Jmol, and Bug 113x of JabRef persisted across major versions. Other bugs only

persisted across multiple minor versions. Bug T4 of Jmol remained unresolved by

the writing of this paper, and we denote its VX+1 as NA.

5.2.3 Addressing RQ4

In order to compute our flakiness score, RQ4 required that we execute each

test case multiple times on their respective SUTs. We executed each test case 10

times; this is consistent with the number of runs that other researchers have used in

related reported work [35]. Table 5.8 shows the number of flaky tests, objects, and

assertions we encountered.

The two columns under “Flaky Objects” are for objects whose properties are

flaky: Column “#” shows the number of flaky objects and Column “%” shows
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(a)
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(c)

Figure 5.5: Window of Exposure for Bugs in Our Study
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Table 5.8: Flaky Tests, Objects and Assertions

SUT Version
Flaky Tests Flaky Objects Flaky Assertions

# % # % # %

jEdit

4.1Pre4 100 100.00 339 37.33 1590 4.79

4.3.3 73 100.00 234 20.78 1064 2.84

4.4.2 42 100.00 238 19.83 1001 3.89

Jmol

11.6.27 16 100.00 112 22.49 386 3.77

12.2.34 26 74.29 115 10.61 288 1.03

13.1.3 19 100.00 127 26.96 518 4.08

JabRef

1.1 41 100.00 89 36.03 296 4.72

1.5 54 54.00 157 33.26 937 3.93

1.7.1 95 95.00 390 62.60 1533 7.19

Total All 466 88.59 1801 27.17 7613 3.83
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its percentage in all objects. Similarly, the two columns under “Flaky Assertions”

show the number of flaky assertions and its percentage in all assertions. We can

see from the table that flaky assertions constitutes up to 7.19% of all assertions and

3.83% of the assertions are flaky overall. Although the percentage appears small,

flaky assertions are observed on up to 62.60% objects and 27.17% of the objects are

impacted by flaky assertions overall.
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Figure 5.6: Compositions of Flaky Assertions

We further studied the compositions of the flaky assertions in terms of object

properties on which these assertions were based. In Figure 5.6, the most common

properties leading to flaky assertions are listed and sorted by their percentage. In the

column chart, we also mark the percentages of the most dominant flaky properties,

including “X” , “Y” , “Width”, “Height”, and “Insets”. Some other UI-related prop-
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erties like “Opaque”, and function-related properties like “Enabled”, “Selected”,

“Text” and “Invokelist” (the list of windows opened by the widget). Because of the

nature of the test cases and their assertions, all the objects are related to the GUI

layer.

5.2.4 Addressing RQ5

To detect regression bugs, we want test cases to be executed on two consecutive

versions VX−1 and VX . To do this, we had to pick a subset of our bug-revealing test

cases that can be run on both VX−1 and VX ; the number of test cases is shown

in Table 5.9. To create our flake filter, we start with bug-revealing test cases for

VX−1. Then we filter out tests that are not executable on VX . For each of the

remaining tests, we execute them on both VX−1 and VX 10 times. The final picked

bug-revealing test cases that are executed on both versions.

5.2.4.1 Composition of Failures

As expected, some tests and assertions that passed on VX−1 fail on VX . Those

are reported as regression failures. Table 5.10 lists the average number of assertions

and reported failures for each bug over all the bug-revealing test cases. Column

“Assertions” shows the number of assertions. The two columns under “Failures”

present the two types of failures based on the test oracles – “Objects” stands for the

number of objects that no longer exists on VX and “Assertions” stands for the failed

assertions. The table shows that an average bug-revealing test case includes 2-6
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Table 5.9: Test Case Selection

AUT Bug Id VX−1 VX TCX−1 TCX

jEdit

1324 4.1-pre4 4.1-pre5 100 100

3538 4.3.3 4.4-pre1 31 11

3645 4.4.2 4.5.1 42 42

3899 4.3.3 4.4-pre1 42 22

Jmol

T1 11.6.27 11.7.1 16 15

T2 13.1.3 13.1.4 19 19

T3 12.2.34 13.0.1 3 1

T4 12.2.34 13.0.1 32 1

JabRef

65 1.1 1.2 41 19

160 1.5 1.6-beta 100 100

113x 1.7.1 1.8-beta 100 100
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thousand assertions among which 2.42% are reported as failures. The last column

presents the true failures, i.e., failures that reveal a bug. We obtain the numbers

of true failures by manually inspecting the list of reported failures. The results

show that all bugs can be detected by our regression testing technique except Bug

160 JabRef due to test harness implementation and the details are explained in the

appended notes for the table.

The failures can be further categorized into 3 classes:

(1) true failures, i.e., failures due to a bug introduced in VX . These failures should

be presented to developer to identify and fix bugs.

(2) update failures, i.e., failures due to feature update in VX . These failures should

be presented to developer to update tests and assertions to match updated

features of SUT.

(3) flaky failure. These failures are unwanted and should be filtered out properly.

5.2.4.2 Filtering Flaky Failures

To address RQ2, we first study the percentage of flaky failures among all

reported failures. For each execution of a test case, we obtain the percentage of

flaky failures. Then we get an average percentage value of the 10 runs. This shows

the expected percentage of flaky failures when a test is executed just once. Then

for each bug, we obtain a set of percentage values, one for each bug-revealing test

case. The results are shown in Figure 5.7 where each box presents the distribution

of percentage values of test cases revealing a bug.
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Table 5.10: Regression Failures

AUT Bug Id Assertions
Failures

Fail Rate True Failures

Objects Assertions

jEdit

1324 6140 17 88 1.72 2

3538 5516 19 39 1.05 4+

3645 5763 12 72 1.46 4

3899 5706 19 52 1.26 3

Jmol

T1 2842 5 20 0.87 1

T2 2730 4 23 0.99 1

T3 2905 4 3 0.24 1

T4 3063 3 0 0.10 4

JabRef

65 2687 34 204 8.86 3

160 4241 13 403 9.80 0†

113x 4978 17 78 1.90 1

Total All 46571 147 982 2.42 23

+ The bug is revealed by added objects. Regression testing can detect it if new assertions

are added after executing VX .

† Detecting the bug requires verifying the “expandable” property of a GUI object.
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Figure 5.7: Percentage of Flaky Failures (Assertions)

From the box plot, we see that for most of the bugs, flaky failures contribute

over 40% of all reported failures. For some bug-revealing test cases of Bug 1324 on

jEdit, up to 91% of failures reported are due to flakiness. It is extremely interesting

to see that although only 3.83% of the assertions are flaky, they contribute to a much

greater portion of reported failures. That is also one of the major reason why the

test flakiness problem is important and its effects need to be minimized.

The results show that a large fraction of failures are due to flakes, and hence

should be removed before presenting the list of failures to testers or developers. By

tuning the threshold for flakiness score, our flake filter can remove part or all of the

flaky tests/assertions while retaining their bug-detection ability.

Next we evaluate how the thresholds impact the performance of our flake filter

in terms of percentage of flaky tests eliminated vs. the percentage of bug-revealing

tests retained. Figure 5.8 shows the results when different thresholds are applied

to filter out flaky tests. The dash line with hollow-circle nodes are percentage of

flaky tests eliminated - as the threshold increases, more flaky tests are retained,
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thus the precision goes down. The solid line with filled-circle nodes are percentage

of bug-revealing tests remained. The two lines are symmetric - the percentages of

eliminated flaky tests and remaining bug-revealing tests always sum up to 1. This is

because our experiment studied only bug-revealing test cases, all of which are flaky

for the 3 bugs illustrated.

Note that in the results shown in Figure 5.8, the curves have a very steep

slope at some point - meaning the flakiness score of many tests are very similar.

To show more fine-grained results, we perform the same study on assertions and

the results are shown in Figure 5.9. The decreasing lines show the percentage of

flaky assertions eliminated when the thresholds increases; the increasing lines show

the percentage of bug-revealing assertions remained along the process. We can see

the dash line gradually goes down as assertions are gradually eliminated when the

threshold increases. On the other hand, the percentage of bug-revealing assertions

goes up as the threshold increases.

The starting point for Bug 1324 of jEdit and Bug 65 is around 50% and 80%,

meaning that even with the most restricted threshold (i.e., when threshold is 0 and

all flaky assertions are filtered out), some bug-revealing assertions are kept so that

the bugs can still be detected. Bug T1 of Jmol is the only bug among all studied

bugs that will be missed with a restricted threshold. This is because the bug is

related to an image icon in a dialog whose content is encoded as part of a long

HTML code that tends to have different values in different runs. Even with this

bug, if we pick a higher threshold, we can detect the bug and filter out some flaky

assertions in the meanwhile. The intersection of two lines shows the balance point of
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Figure 5.8: Performance of Filtering Flaky Tests using Different Thresholds
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Figure 5.9: Performance of Filtering Flaky Assertions using Different Thresholds
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Table 5.11: 10 Versions Studied for each Subject Application

Application V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

JEdit 4.3.3 4.4.2 4.5.0 4.5.1 4.5.2 5.0.0 5.1.0 5.2.0 5.3.0 5.4.0

Jmol 12.2.23 12.2.24 12.2.25 12.2.26 12.2.27 12.2.28 12.2.30 12.2.32 12.2.33 12.2.34

JabRef 2.7 2.7.1 2.7.2 2.8 2.8.1 2.9 2.9.1 2.9.2 2.10-beta 2.10

our filter: at that point, the percentage of eliminated flaky assertions and remaining

bug-revealing assertions are the same. For example, for Bug 1324 of jEdit, when

we set the threshold to 0.3, around 85% of flaky assertions will be removed and the

same percentage of bug revealing assertions will be kept. For Bug 65 of JabRef, if

we pick a threshold around 0.25, our filter can remove almost all flaky assertions

and keep all bug revealing assertions at the same time.

5.2.5 Addressing RQ6

To address RQ6, we run test cases on the most recent 10 consecutive versions

of the 3 subject applications that work with our tool to accumulate flaky widget-

properties and evaluate its performance in removing reported failures. The versions

studied are shown in Table 5.11. We will refer to these versions as V1, V2, ..., and

V10.

For each application, we first selected 100 test cases that can be executed on all

its 10 versions. We executed each test case 10 times on each of the 10 versions of each

application. For each version, we obtained a set of flaky assertions, and accumulated

them across 10 versions. Table 5.12 shows the results on the 3 applications. For each

application, we show the results in 4 rows. Row “Accu Flakes” shows the numbers
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Table 5.12: Flaky Widget-Properties and Reported Failures Across 10 Versions

AUT Measure V2 V3 V4 V5 V6 V7 V8 V9 V10

jEdit

Accu Flakes 617 1024 1119 1380 1508 1781 2165 2219 2272

Single Flakes 617 813 484 967 988 999 1306 1321 1179

Accu F Failures 415 659 706 833 662 812 1321 1224 1224

Single F Failures 415 658 430 674 592 734 1258 1187 1062

Improve(%) 0 0 39.09 19.09 10.57 9.61 4.77 3.02 13.24

Jmol

Accu Flakes 602 730 869 912 1020 1038 1043 1046 1089

Single Flakes 602 547 662 841 831 795 848 937 934

Accu F Failures 465 564 671 789 876 826 936 947 938

Single F Failures 465 527 642 763 807 757 831 920 875

Improve(%) 0 6.56 4.32 3.30 7.88 8.35 11.22 2.85 6.72

JabRef

Accu Flakes 1192 1451 1630 2182 2211 2510 2514 2628 3077

Single Flakes 1192 1328 1003 1636 584 1243 1143 1318 1163

Accu F Failures 1116 1342 1136 1703 1045 1378 1134 809 1144

Single F Failures 1116 1272 709 1610 474 1175 1058 796 1100

Improve(%) 0 5.22 37.59 5.46 54.64 14.73 7.44 1.61 3.85

97



of flaky assertions accumulated from V1 to V10.

For each pair of adjacent versions, VX−1 and VX , we obtain a set of failures,

i.e., assertions that passed on VX−1 but failed on VX . Then we apply our flake filter

to eliminate flaky failures. Rows “Accu F Failures” and “Single F Failures” show

the number of failures eliminated by filtering out flaky assertions accumulated from

multiple versions (V1, V2, . . . , VX−1) or obtained from a single version (VX−1). The

results show that up to 54.64% more flaky failures can be removed by accumulating

flaky assertions along the versions.

Figure 5.10 provides a more illustrative perspective of the difference between

using accumulated and single-version flaky assertions. The top line with circle nodes

show the numbers of failures reported. The dash lines with hollow triangle nodes

show the numbers after removing flaky failures on the single version. The solid

lines with solid triangle nodes show the numbers after accumulating flaky assertions

across versions and applying our filter.

5.3 Summary

This chapter studies the impact of flaky failures on test subjects with real

bugs. A new flake filter is developed to eliminate flaky failures while retaining bug-

revealing ones. Adaptable thresholds of flakiness score are used to balance the two

goals. Experimental studies show that, in some cases, it is possible to completely

eliminate flakiness without compromising fault-detection ability. And our flake filter

can yield better results if evolved over successive SUT versions.
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Figure 5.10: Accumulated Flaky Assertions and Ratios in Mismatches across 10

Versions
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Chapter 6: Conclusions and Future Research Directions

6.1 Conclusions

As test infrastructures have evolved to handle large numbers of test cases, test

harnesses have become more sophisticated to handle multiple input modalities of

today’s software, and test cases themselves have become more sophisticated, relying

on external resources to test complex workflows, the issues surrounding test flakiness

have started to take center stage [32, 33, 62]. This thesis presented a systematic

approach towards the test flakiness problem.

First, an entropy-based metric was developed to quantify test flakiness. By

running a test on the same SUT multiple times and observing test results at a certain

output layer (e.g., code coverage, invariants, GUI state), our metric can determine

the flakiness score of the test, varying from 0, indicating the test is not flaky, to a

certain max value given the number of runs (e.g., 2.3 when tests are run 10 times),

indicating a test is most flaky. The metric lays the foundation for our study on

factors that impact flakiness and for development of the flake filter.

Second, we identified a set of factors that impact test flakiness and performed

a large study to evaluate their impacts. We observed test outputs at the aforemen-

tioned three output layers, and studied factors including test execution platforms,
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application starting state or configuration, test harness factors, and execution ap-

plication versions. We observed as little as 0 flakiness when the identified factors

are best controlled, but had flakiness as high as 2.3 (where outputs of each test

run differed) when we did not control these factors. The largest flakiness was at

the bottom (code) and top (GUI state) layers. Despite seeing a lower entropy at

the middle, or behavioral layer, we did find some cases where invariants differed

between runs. Our results suggest that all results for testing (especially from the

user interface) should provide exact configuration and platform details, as well as

tool parameter information. We also recommend running tests more than once and

providing both averages and ranges of differences, since we are unable to completely

control all variation. This also motivated us to develop other techniques to minimize

effects of flaky tests.

Finally, we presented a new approach to reduce the impact of flaky tests by

developing a flake filter. This filter is automatically obtained by observing multiple

runs of the same version of the SUT. A flakiness score is computed for each test

assertions in each test case. If the score exceeds a manually specified threshold, then

the assertion is no longer used to detect failures. We have implemented a system

that computes the flakiness score and applies the filter during regression testing.

Our second empirical study with this implementation has shown that it is possible

to automatically obtain a flake filter that, in some cases, completely eliminates

flakiness without compromising fault detection ability.
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6.2 Threats to Validity

As is the case with all studies, results of our two empirical studies are subject

to threats to validity. To minimize threats to internal validity, we relied on robust

tools, such as the GUITAR framework and the Daikon tool. We also ensured that

our data is correct by continuously inspecting our data collection codes and results

carefully. To minimize threats to external validity, we used open-source GUI and

web applications with real bugs as our subjects; we had no influence over their codes

or evolution. However, we recognize that these applications do not represent the

wide range of possible applications; results could be different for other application

types. Also, there are some factors we cannot fully control during our experiment.

For example, we could not control the time on our Redhat cluster, but try to run

tests within the same day when possible.

6.3 Future Research Directions

This research lays the foundation for much future work. We now discuss

possible future directions.

• Developing a classification of modern software applications based on the flak-

iness likelihood of their test cases.

Modern software applications include mobile applications, software for vari-

able devices, and software that communicates over networks. Some classes of these

applications will lend themselves to flakiness; others will not. Future work can ex-
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pand our empirical studies to such modern software types, quantify the flakiness

of their test cases, understand factors that impact their flakiness, and at the same

time, rank these application classes based on how flaky their test cases turn out.

• Developing a holistic measure of flakiness based on the full set of program

elements.

In this thesis, we quantified flakiness and applied the flake filter on test cases

and assertions. Future research may extend our metrics and flake filter to additional

test case code statements that have outcomes, not just assertions. This extension

will allow the quantification of flakiness associated with “potentially flaky” non-

assertion statements, such as ones that wait for an external resource. The results

may help developers or testers better understand flakiness of the tests of an SUT by

providing flakiness measures for more fined-grained program elements such as code

statements and blocks.

• Automatically identifying root causes of flakiness using static and dynamic

analyses.

This thesis studied the general factors that impact test flakiness; but it remains

a challenging job to identify root causes of flakiness. Future work may automatically

tackle this problem using static and dynamic analysis techniques. Static analysis

techniques such as control flow analysis [72], data flow analysis [73], and symbolic

execution [74] may help understand the program elements such as variables, state-

ments, blocks, functions that lead to flakiness. A dynamic approach may also help

locate causes of flakiness by analyzing execution traces of flaky (and non-flaky) tests.
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• Developing automatic classifiers for flaky tests based on machine learning tech-

niques.

In addition to traditional program analysis techniques, future research may

explore the use of supervised or unsupervised learning techniques to automatically

classify flaky tests. For example, a simple binary classifier may be developed to

determine if a test is flaky or not. Further, multi-class classifiers may be developed

to classify flaky tests by their root causes. Features used in these classifiers may

include measures used in traditional static and dynamic analysis techniques. For

example, static features may include size of code covered by a test, other measures

of program complexity based on programs’ decision structure [75], and types of ex-

ternal resources the test depend on. Dynamic features may include any information

collected during execution a test, such as size of log, depth of stacks of function

calls, waiting time for external resources, and so on.

• Developing techniques to automatically fix flaky tests – de-flaking.

Automatically fixing flaky tests is a significant challenge. Much of the under-

standing that we have developed in this work may be used to de-flake tests, e.g., by

avoiding assertions on certain classes of program-object properties. Manually de-

signed strategies may be used to fix certain types of flakes. For example, flaky tests

that assert on non-deterministic outputs may be fixed by using more appropriate

and reliable assertions. As another example, tests that are flaky due to external

resources can be fixed by using mocked objects [76].
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