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A key task of cybersecurity is to discover and explain malicious behaviors of

malware. The understanding of malicious behaviors helps us further develop good

features and apply machine learning techniques to detect various attacks. The ef-

fectiveness of machine learning techniques primarily depends on the manual feature

engineering process, based on human knowledge and intuition. However, given the

adversaries’ efforts to evade detection and the growing volume of publications on

malicious behaviors, the feature engineering process likely draws from a fraction of

the relevant knowledge. Therefore, it is necessary and important to design an auto-

mated system to engineer features for discovering malicious behaviors and detecting

attacks.

First, we describe a knowledge-based feature engineering technique for mal-

ware detection. It mines documents written in natural language (e.g. scientific

literature), and represents and queries the knowledge about malware in a way that

mirrors the human feature engineering process. We implement the idea in a system



called FeatureSmith, which generates a feature set for detecting Android malware.

We train a classifier using these features on a large data set of benign and malicious

apps. This classifier achieves comparable performance to a state-of-the-art Android

malware detector that relies on manually engineered features. In addition, Feature-

Smith is able to suggest informative features that are absent from the manually

engineered set and to link the features generated to abstract concepts that describe

malware behaviors.

Second, we propose a data-driven feature engineering technique called Reason-

Smith, which explains machine learning models by ranking features based on their

global importance. Instead of interpreting how neural networks make decisions for

one specific sample, ReasonSmith captures general importance in terms of the whole

data set. In addition, ReasonSmith allows us to efficiently identify data biases and

artifacts, by comparing feature rankings over time. We further summarize the com-

mon data biases and artifacts for malware detection problems at the level of API

calls.

Third, we study malware detection from a global view, and explore automatic

feature engineering problem in analyzing campaigns that include a series of actions.

We implement a system ChainSmith to bridge large-scale field measurement and

manual campaign report by extracting and categorizing IOCs (indicators of com-

promise) from security blogs. The semantic roles of IOCs allow us to link qualitative

data (e.g. security blogs) to quantitative measurements, which brings new insights

to malware campaigns. In particular, we study the effectiveness of different per-

suasion techniques used on enticing user to download the payloads. We find that



the campaign usually starts from social engineering and “missing codec” ruse is a

common persuasion technique that generates the most suspicious downloads each

day.
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Chapter 1: Introduction

1.1 Motivation

In recent years, machine learning is widely used in detecting malware be-

cause it learns common patterns from known malware automatically. The key of

machine learning is feature engineering, which is a process of using domain knowl-

edge to create features. The feature set allows researchers to represent samples in a

machine-readable way, which facilitates the detection and analysis by using machine

learning techniques. For example, the earliest Android malware families exhibited

simple malicious behaviors [1] and could often be identified based on the observa-

tion that they requested the permissions essential to their operation [2]. To engineer

such features, researchers reason about the properties that attacks are likely to have

in common. This amounts to generating hypotheses about attack behavior. While

such hypotheses can be tested using statistical techniques, they must be initially for-

mulated by human researchers. The best sources to collect the feature hypotheses

is scientific literature. Different from security blogs and industry reports, scientific

literature is carefully reviewed by researchers and the conclusions are more represen-

tative. However, due to security arms race, malware has increasingly adopted more

evasive techniques, and in response the security community has proposed a variety

1



of new features to detect these behaviors. For example, Google Scholar estimates

that 32,300 papers have been published on Android malware and over 969,000 on

intrusion detection.Moreover, the volume of scientific publications is growing at an

exponential rate [3], as shown in Figure 1.1.

In addition, the feature engineering process is crucial to the effectiveness and

applicability of machine learning. This process is laborious and requires researchers

to assimilate a growing body of knowledge. For example, for a recent effort to

model the Manhattan traffic flows and predict the effectiveness of ride sharing [4],

data scientists from New York University invested 30 person-months in identifying

and incorporating informative features [5]. Because good machine learning mod-

els require a substantial manual effort, labor market estimates project a deficit of

190,000 data scientists by 2018 [6]. In the context of Android malware detection,

the Drebin [7] feature set consists of 8 types of features; one type encompasses

suspicious API calls. To engineer concrete features of this type, Drebin’s design-

ers manually identified 315 suspicious API calls from five categories: data access,

network communication, SMS messages, external command execution, and obfusca-

tion. For comparison, the Android framework version (API level 19) utilized by the

Drebin authors exported over 20,000 APIs. Moreover, this number keeps growing

and exceeds 25,000 in the current version (API level 23). This illustrates a key chal-

lenge for the feature engineering process: identifying API calls that may be useful

to malware authors requires extensive domain knowledge and manual investigation.

So in this dissertation, we first ask the question (#1): Can we automatically

generate feature hypotheses from scientific literature?

2
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Figure 1.1: Paper estimation from Google Scholar.

Since researchers cannot discuss every aspects of security, the feature hypothe-

ses from scientific literature may not be sufficient. An alternative solution to en-

gineer features is directly using machine learning to learn useful features, because

machine learning algorithm is able to test arbitrary feature hypotheses from data.

However, due to the black-box nature of machine learning, we cannot examine which

features are considered important for the model, and consequently, the model is

likely to learn data biases and artifacts. For example, the synthetic data utilized

in the DARPA IDS evaluation [8] was criticized for the lack of information on the

validation of test data [9]—such as measures of similarity with the traffic traces or

a rationale for concluding that similar behaviors should be expected when exposing

the systems-under-test to real world data. Mahoney et al. shows that the intru-

sion can be detected simply from TTL field, because attack traffic and background

traffic are generated from different physical machines and only a few values of TTL

present in the data [10,11]. Biases and artifacts from data sampling and generation
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process would be reflected in the quality of the machine-learning techniques trained

with this data. Unfortunately, in security it is generally difficult to obtain a clean

training set for ML-based detectors.

In addition, in order to achieve good performance, deep neural network is used

in detecting malware, e.g. multi-layer perceptron [12,13], CNN [14,15], RNN [16,17],

etc.. The complexity and flexibility of neural network architecture makes the model

powerful to fit the data and captures the common pattern of the attacks, but at

the same time, makes the explanation much more difficult than traditional machine

learning systems like logistic regression and decision tree. To address this problem,

people propose different systems to explain machine learning models [18–20]. How-

ever, most of the methods are only able to explain single instances, and therefore it

is still unknown if the explained sample and its explanation is representative. Given

the black-box nature of machine learning and the presence of data artifacts and bi-

ases, we ask the question (#2): Can we identify important features and data

artifacts from neural network models?

The features of malware detection are usually the observations from static or

dynamic analysis, and the behaviors are monitored from a single machine. How-

ever, from a global view, malware relies on a chain of actions to be delivered to

victims, which is called malware campaigns. It is difficult to systematically collect

measurement that captures a complete chain of campaign actions, because cam-

paigns involve the interactions between different hosts and are only active in a

certain time. Therefore, researchers come up with the idea of threat intelligence

to share the technical details of breaches and attacks. It makes everybody safer

4



by making it harder for attackers to reuse attack methods and artifacts, thus in-

creasing their work factor [21]. Threat intelligence is a billion-dollar industry [22]

and has introduced standards [23–25], and information-sharing platforms [26–29].

These standards define threats using indicators of compromise (IOCs). For example,

to represent recent measurements of malware delivery networks [30–33] using these

standards, we can identify IOCs such as file hashes of malware droppers and of their

payloads, URLs and IP addresses of command-and-control (C&C) servers, or names

of malware families and exploit kits. However, individual IOCs do not allow us to

distinguish between components used for these various stages. Understanding the

sequential actions of malicious campaigns requires careful manual analysis, and the

results of this analysis are seldom encoded in a machine-readable format. Unfortu-

nately, these results are often published, either in practitioner-oriented journals such

as Virus Bulletin, or on the blogs of analysts or security companies, such as Webroot

or Trend Micro. On the other hand, field-measurements capture the global trend of

different attacks, where we can estimate the attack influence and victim volumes in

the real world. By linking qualitative data like security blogs to field-measurements,

we are able to learn both detailed behaviors from campaign operators and the global

influence from the campaign. Therefore, in this dissertation, we ask the question

(#3): Can we identify and categorize campaign indicators (i.e. IOCs)

from security reports?

5



1.2 Challenges and contributions

1.2.1 Can we automatically generate feature hypotheses from scien-

tific literature?

Researchers engineer features for malware detection by reasoning about the

properties that malware samples are likely to have in common (e.g. they engage in

SMS fraud) and the concrete features that reflect these behaviors (e.g. the samples

request the SEND_SMS permission). These features may not single out the malicious

apps; for example, the SMS sending code is typically invoked from an onClick()

method [1], but this method is prevalent across all Android apps. Feature selection

methods can rank a list of potential features according their effectiveness (e.g. by

using mutual information [34]). However, the initial list is the result of a feature

engineering process, involving human researchers who rely on their intuition and

knowledge of the domain.

Additionally, machine learning techniques can be difficult to deploy in opera-

tional security systems, as the trained models detect malware samples but do not

outline the reasoning behind these inferences. In consequence, there is a semantic

gap between the model’s predictions and their operational interpretation [35]. For

example, a machine learning model that successfully separates malicious and be-

nign apps on a testing corpus by relying primarily on the onClick() feature would

be useless for detecting malware in the real world. Recent work on explaining the

outputs of classifiers generally focuses on providing utility measures (e.g. mutual

6



information) for the features used in the model [7, 19]; however, classifiers trained

for malware detection typically use a large number of low level features [7], which

may not have clear semantic interpretations. To understand what these malware

detectors do, and to gain confidence in their outputs, the human analysts who use

them operationally require explanations that link the outputs of the malware detec-

tor with concepts that the analysts associate with malware behavior—a cognitive

process known as semantic priming [36]. Such explanations should convey the puta-

tive malicious behaviors, rather than the basic functionality described in developer

documents. For example, sendTextMessage should be relevant to not only “send

SMS message” but also “subscribe premium-rate service”; RECORD_AUDIO could be

related to “record audio” as well as “record phone call”.

Challenges. Natural language often contains ambiguities that cannot be resolved

without a deep understanding of the subject under discussion. For example, the

phrase “sends SMS message “798657” to multiple premium-rate numbers in Rus-

sia” [1] implies a malicious behavior to a human reader, but this inference is not

based on purely linguistic clues. In another example, the phrase “API calls for

accessing sensitive data, such as getDeviceId() and getSubscriberId()” [7] men-

tions concrete Android features, but inferring that these features would be useful

for malware detection requires understanding that Android malware is often inter-

ested in accessing sensitive data. To perform such commonsense reasoning, natural

language processing (NLP) techniques match the text against an existing ontology,

which is a collection of categories (e.g. malware samples, SMS messages), instances

7



of these categories (e.g. FakePlayer is a malware sample) and relations among

them (e.g. FakePlayer sends message ”798657”) [37]. To this end, specialized on-

tologies have been developed in other scientific domains, such as medicine [38]. Un-

fortunately, security ontologies are in an incipient stage. CAPEC [39], MAEC [40]

and OpenIOC [23] provide detailed languages for exchanging structured information

about attacks and malware, but they are not designed for being matched against

natural language text.

This reflects a deeper challenge for automatic feature engineering. Ontologies

are manually constructed and reflect the known attacks and malware behaviors ob-

served in the real world. In contrast, scientific research is open ended and focuses on

novel and theoretical attacks. Moreover, the malware behavior evolves continuously,

as adversaries aim to evade existing security mechanisms.

There are also technical challenges for applying existing NLP techniques to the

security literature. In other scientific fields, such as biomedical research, papers have

structured abstracts, often in the IMRAD format (Introduction, Methods, Results,

And Discussion). This has facilitated the use of NLP for mining the biomedical

literature [41–43]. In contrast, the titles and abstracts of security papers are too

general to extract useful information for automatic feature engineering. While the

paper bodies contain the relevant information, they also include a large amount of

abstract concepts and terms that represent noise for the feature engineering system.

For example, a ten-page paper may mention a specific malware behavior in only one

sentence. In consequence, extracting concrete features from security papers requires

new text mining techniques.
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Goals. Our first goal is to design a general approach for discovering valuable fea-

tures mentioned in natural language documents about malware detection. These

features should be concrete named entities, such as Android API calls, permissions

and intents,1 that we can extract directly from a corpus of malware samples us-

ing off-the-shelf static analysis tools. Given a feature type, our approach should

discover useful feature instances automatically. This automatic feature engineer-

ing approach complements the traditional approach, where data scientists manually

create the feature sets based on their own domain knowledge. Specifically, while

the manual feature engineering process benefits from human creativity and deep

personal insights, the strength of our automatic technique is its ability to draw from

a larger body of knowledge, which is increasingly difficult for humans to assimilate

fully. Our second goal is to rank the extracted features according to how closely

they are related to malware behavior. Rather than simply extracting all the fea-

tures mentioned in the natural language documents, we aim to discover the ones

that are considered most informative in the literature. Our third goal is to provide

semantic explanations for the features discovered, by linking them to abstract con-

cepts discussed in the literature in relation to malware behavior. A meta-goal is to

implement and evaluate a real system for automatic feature engineering based on

these ideas; we select the problem of Android malware detection for this proof of

concept.

Contributions. In summary, we make the following contributions:

1Additional examples include blacklisted URLs, Windows registry keys, or fields from the head-

ers of network packets.
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• We propose a semantic network model for representing a growing body of

knowledge. This model addresses unique challenges for mining the security

literature.

• We propose techniques for synthesizing the knowledge contained in thousands

of natural language documents to generate concrete features that we can utilize

for training machine learning classifiers.

• We describe FeatureSmith, an automatic feature engineering system. Using

FeatureSmith, we generate a feature set for detecting Android malware. This

set includes informative features that a manual feature engineering process

may overlook, and its effectiveness rivals that of a state-of-the-art malware

detection system. FeatureSmith also helps us characterize the evolution of

knowledge about Android malware.

• We propose a mechanism that uses our semantic network to generate fea-

ture explanations, which link the features to concepts that describe malware

behaviors.

• For reproducibility, we release the automatically engineered feature set and

the semantic network used to generate it at http://featuresmith.org.

10
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1.2.2 Can we identify important features and data artifacts from

neural network models?

Machine learning especially deep learning is capable to learn complicated fea-

tures automatically from data, which seems overcome the difficulties from manual

feature engineering. However, due to the black-box nature of deep learning models,

we have no clues about what features the system has learned. As a result, we cannot

tell which features are important with respect to the training data and cannot dis-

tinguish if the model generalize security knowledge or merely memorize the training

instances.

For malware detection, biases and artifacts are common in the data set, and

can be originated from data generation process. For example, executing malware in

sandbox environment is widely used to collect data from dynamic analysis. However,

the virtual machine creates unique environment (e.g. network settings) that poten-

tially changes the malware behaviors. The malware attempts to scan the network

range can connect to internal gateway, which will never happen in the real world.

The standard machine learning validation methods like cross-validation cannot solve

this problem, because the artifacts will always exist in both training and testing sets.

As a result, the neural networks can easily memorize the data artifacts, but such

knowledge cannot be generalized to the area outside this environment. Therefore,

it is important to design a tool that can pinpoint the place where data artifacts are

likely to happen.

Research has been done to explain how the machine learning is making de-
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cisions, and approximate the decision in the form of feature weight [18, 19], which

helps human to verify if the decision is correct. However, such explanation can

only interpret the model locally, and it is still unclear what the model uses features

globally. Moreover, the problem cannot be solved by explaining more samples, since

it is difficult state that the selected samples are representative to the whole data

set. Neural networks are usually trained on millions of samples, however humans

are unlikely to verify the explanation of even a small proportion of samples.

An alternative solution is to generate explanation at the feature level, which is

widely used in traditional machine learning models. For example, logistic regression

can be used in classification problems. The model parameter directly indicates the

feature influence, which allows people to validate and adjust the model without

retrieving any samples from training set. Therefore a feature-oriented solution is

more efficient in examining the global model behaviors. Fortunately, input features

for malware detection usually have their own semantic meaning especially for the

observation at the level of API calls.

Challenges. The first challenge to reasoning deep neural network models based on

input features is finding a metric that captures the general feature importance. In

logistic regression model, since there is no hidden layer and no non-linear activation

functions except for the output layer, system weight directly reflects the general con-

tribution from each features. However, deep neural networks have multiple hidden

layers, non-linear activation functions and different network architectures. These

characteristics makes the model powerful to mine and memorize patterns from train-
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ing data, but on the other hand, makes the relationship between input features and

the output complicated. Therefore, it is almost impossible to derive a formula that

explicitly calculates feature influence from model weights.

To overcome this, we model the global feature influence as a random variable

that is dependent on the input feature, and the input feature is another random

variable. If the feature influence is small with high probability, then we can conclude

that the model does not consider this feature important. Therefore we can identify

a feature set that are not used by the model.

The second challenge is how to define feature influence and how to estimate

the distribution. To overcome this challenge, we define feature influence using the

gradient of output with respect to the input. The gradient indicates the directions

of input if we need to change output, and the magnitude of it reflects the feature

importance locally. Similar idea has been applied in both model visualization [20]

and adversarial machine learning [44, 45]. Instead of directly estimating the distri-

bution, we characterizes the random variable using mean and covariance, which can

be efficiently estimated empirically using maximum likelihood estimation.

Goals. The first goal is to design a system that is able to measure the influence

of all features for a deep neural network model. The feature influence reflects the

usage of each feature globally, such that by removing features with low influence,

the negative affect should be minimum. In addition, the reasoning system should

be compatible with different network architectures and cannot affect or change the

model to be explained. Our second goal is to apply the proposed model to malware
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detection problems and identify biases and artifacts that learned by the malware

detector.

Contributions. In summary, we make following contributions.

• We propose a method called ReasonSmith to rank features based on their

global importance. Compared to the traditional metrics like mutual infor-

mation, ReasonSmith assigns better importance score to features for machine

learning model. By removing less importance features, the machine learning

model is still able to achieve high true positive rate with a low false positive

rate.

• We propose a method to generate hypotheses on data biases and artifacts

using ReasonSmith results and data sets in different time.

• We conduct an empirical study on both Windows and Android data sets, and

find new features that are absent from prior knowledge and identify common

data artifacts.

1.2.3 Can we identify and categorize campaign indicators from secu-

rity reports?

A malware delivery campaign [30, 33, 46–48] involves multiple steps: baiting

the user to perform a risky action, such as opening an email attachment or visiting

an unknown site; exploiting an unpatched vulnerability on the user’s computer;

and installing a dropper [30], which then downloads additional malware. If one
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step fails, the malware delivery fails; for example, an exploit kit [49] is useless

unless the attacker can lure users to the landing page. The technical challenges

for implementing each of these steps make it difficult for an individual actor to

execute a campaign from end to end. Instead, malware creators rely on a thriving

underground economy [31, 32, 49, 50], where specialized services are provided for a

fee and one can quickly set up a campaign by summoning the hacking expertise of

third parties.

In this ecosystem, we call the actors that provide malware-delivery services

suppliers and the actors that utilize the service customers. Understanding the

business relationships among suppliers and their customers can uncover important

dependencies among these actors and may guide effective interventions [51]. For

example, we distinguish between tier 1 suppliers, which are directly involved in

user baiting and exploitation, and other suppliers that act as middlemen. Because

only tier 1 suppliers bring victims to the delivery network, the effectiveness of their

techniques is critical for the entire ecosystem.

However, neither threat intelligence nor measurement studies can provide a

complete picture of malware delivery campaigns. Threat intelligence reports analyze

the strategies employed in a campaign, but do not assess the effectiveness of these

strategies in a systematic manner. For example, the reports may discuss a tier-1

supplier’s baiting methods (e.g. spam, malvertising, compromised sites) but do not

quantify the volume of malware downloads that these methods produce in the wild,

as this would require comprehensive field data. Field measurements can record

download events systematically, and provide various IOCs, but they may not be
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able to indicate the role of them. For example, the measurement data does not

usually indicate whether a dropper corresponds to a tier 1 supplier, nor does it

indicate how the dropper was installed on the host. Moreover, measurement studies

often focus on a single phase of the campaign—e.g., baiting [52,53], exploitation [54,

55], or installation [30, 33]—and do not shed light on the strategies of long-lasting

campaigns. These insights require the ability to connect the threat intelligence with

the field measurements.

Challenges. The key challenges to automating the insight generation process are

the semantics of security threats in a machine-readable format, extracting them

from the available threat intelligence, and developing analytics that combine the

threat intelligence with measurement data. Existing standards for sharing threat

intelligence like OpenIOC [23] and STIX [25] are incomplete and do not capture

important concepts, such as the persuasion strategy employed by attackers to con-

vince users into running malware or to lure them to an exploit kit. Worse, the

IOC feeds currently available omit critical information, even when this informa-

tion can be represented in the current standards. For example, STIX specifies the

kill_chain_phase IOC attribute, which indicates the role of the indicator in the

campaign; however, current feeds omit this attribute. Instead, this information is

usually provided in the threat intelligence reports in natural language. However,

prior work on mining security articles [56, 57] does not extract the roles of IOCs in

campaigns, and does not correlate the information extracted from natural language

with field measurement data.
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To overcome these challenges, we aim to extract the threat and campaign

semantics from intelligence reports written in colloquial English. In doing so, we

further identify three technical challenges that are specific to security discourses.

First, natural language processing (NLP) techniques usually rely on the context of

complete sentences. However in security articles IOCs are often included in bulleted

lists and tables, while the relevant relations are discussed in the text. Second, some

indicators are presented in an obfuscated form. For example, to prevent the mis-

clicking of a malicious site, malicious links are transformed to use “hxxp” instead

of “http”, and “[dot]” or (dot)” instead of “.”, and authors use different names

and delimiters for malware families. Third, the security arms race gives rise to

a growing number of technical terms [56], while language models cannot usually

handle previously unseen words.

Goals. Our first goal is to build a generic system that mines descriptions of security

threats written in natural language, and extracts threat intelligence in a format that

enables correlations and complements measurement data. Specifically, we aim to

extract both IOCs and their roles in an attack, which allows us to augment the

measurement data with the semantics of security threats observed. To this end,

we develop new NLP techniques that address technical challenges specific to the

security domain.

Our second goal is to apply our system to the concrete problem of understand-

ing malware delivery campaigns and to gain new insights into this security threat.

To this end, we propose a model of malware delivery campaigns (detailed in Sec-
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tion 5.1.1), and we build a Web application for manually labeling articles according

to this model. We also correlate the threat intelligence with a comprehensive data

set of download events [30], observed on 5M hosts. With this combined data set,

we ask the following research questions:

1. What is the relative effectiveness of various persuasion techniques in generating

downloads on real-world hosts?

2. What roles do various attack groups play in the malware delivery ecosystem,

and what are the business relationships among them?

3. How long do malware delivery campaigns remain active?

4. How long do their support infrastructures remain active?

In addition to our findings and their actionable implications, we expect that

the process of answering these research questions will provide important lessons

about the utility of threat intelligence—both for the tasks it was originally meant

to address and for the novel application proposed in this paper. This is our third

and final goal.

Contributions. In summary, we make the following contributions:

• We design ChainSmith, an IOC extraction system that collects indicators from

security articles and classifies them into different campaign stages.

• We evaluate the effect of different persuasion techniques on the subsequent

payload delivery in the wild, by connecting campaigns from blog posts and

the real-world telemetry data.
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• We report new findings about the underground business relationship and the

characteristics of campaign infrastructures. This allows us to assess the utility

of threat intelligence.

• We set up a Web application (http://ioc-chainsmith.org) to release the

latest data from ChainSmith to further stimulate the research on threat intel-

ligence.

1.3 Assumptions and limitations

Behaviors with complex operations. Since the features discussed in scientific

literature are likely to be semantically meaningful, we focus on concrete features,

which do not impose additional manual effort for the data collection. We are not

able to extract behaviors that encode more complex operations, such as specific

conditions or behavior sequences [58]. For example, from the sentence “send SMS

without notification,” we extract two behaviors—“send SMS” and “send without

notification”—rather than a single behavior with a conditional dependence. In ad-

dition, owing to limitations in the state of the art techniques for natural language

processing, we expect that some of the features we extract will not be useful (e.g.,

when they result from parsing errors); however, our highest ranked features should

be meaningful and informative.

White-box assumption. For data-driven feature engineering approach, we must

have complete access to the neural network models in order to calculate gradient

for importance estimation. The primary usage of the reasoning tool is finding data
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biases and artifacts during training. Consequently, we expect people who train the

model to use this tool for examining and debugging the model, rather than peo-

ple from third-party who do not have permissions to access internal structure of

the model. In addition, since the proposed system identifies the key knowledge

extracted from the model, which might be sensitive and crucial, the white-box as-

sumption helps to protect data privacy and business secretes. Instead, we discuss

techniques for bridging the semantic gap between the outputs of malware classi-

fiers and the operational interpretation of these outputs, in order to allow security

researchers and analysts to benefit from the entire body of published research. Al-

though ReasonSmith system requires access to the original model, it is compatible

to any architecture of neural networks and does not affect its training process. In

this dissertation, we only test the case for multi-layer perceptron, but it can be

applied to other models, which is discussed in Chapter 6.

Gaussian distributed interpretation. To model the global interpretation for

neural network models, We use Gaussian distribution to estimate the local inter-

pretation for a single instance. However, the Gaussian distribution is a strong

assumption. The benefit of this assumption is computational complexity, and we

are able to obtain a less precise but faster evaluation for the model and the data.

Additionally, we discuss a more precise estimation method without the Gaussian

assumption in Chapter 6.

Human examination for data artifacts. Since machine learning model cannot

learn the semantic meaning of features, model cannot tell if the features come from
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data artifacts. Distinguishing if a feature reflects the core malware behavior or the

data artifact requires human intervention and the process is based on the under-

standing of malware behaviors. We aim to provide a method to efficiently prioritize

the features for manual examination, but we cannot completely replace this step.

Additionally, we do not aim to enumerate all biases and artifacts from data. Our

system is able to identify the most important features learned by the model, which

provides an opportunity to verify if there are any biases and artifacts learned. How-

ever, even though biases and artifacts are common in training data, model may not

consider them important.

Noise from qualitative data. In this dissertation, we use scientific literature and

industry reports to generate feature hypotheses and use security blogs to extract

concrete indicators for malware campaigns. However, we are unable to assess the

quality of the information discussed in these articles. Although it is likely that these

sources contains fake information, we use the information to generate hypotheses

and further test the hypotheses using measurement data. For example, the features

engineered from scientific literature are further tested on malware data set using

machine learning algorithm, and the malware campaign indicators from security

blogs can also be found from measurement data. Therefore, quantitative sources

provide external validation for the information extracted from qualitative sources.

Performance of malware detector. We aim to engineer informative features for

detecting malware in general from both qualitative sources (i.e. scientific literature

and security blogs) and quantitative sources (i.e. malware behavior measurements),
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so we do not aim to outperform existing malware detection systems on a specific data

set in terms of precision and recall. In addition, since it is unlikely to obtain a precise

time stamp for all the information collected from qualitative sources, it is difficult to

compare two feature set (i.e. automatic feature set from FeatureSmith and manual

engineered set) with exactly the same time span. However, our system is able to

engineer features automatically and can efficiently update the security knowledge by

adding new articles and get rid of the intensive manual effort to engineer features.

1.4 Overview of natural language processing

In this chapter, we briefly introduce the state-of-the-art natural language pro-

cessing techniques, which will be used in the automatic feature engineering systems.

1.4.1 Syntactic parsing

Syntactic parsing performs tokenization, part-of-speech tagging and depen-

dency parsing, which processes the raw string to a tree structure that indicates

the word dependency. This stage is equivalent to the lexical analysis and syntac-

tic analysis in a compiler. Dependency parsing represents sentences as a directed

graph to express the relationship between words. The parser identifies the gram-

matical relationship between words and labels each relationship with a type. For

example, Figure 1.2 shows one example of dependency tree, where the arc label is

the dependency type [59]. From the typed dependencies, we know that the MD5

“4462c5b3556c5cab5d90955b3faa19a8” is the object of “drop”, while the subject
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Figure 1.2: Example of dependency parsing.

of “drop” is “campaign”. Therefore, we learn that the given hash depends on “drop”

instead of “on”, even though they are equally close to the hash. Syntactic parsing

is widely used in NLP applications and the state-of-the-art system has a reasonable

experimental performance.

Most of the NLP tools perform syntactic parsing. In this work, we use Python

NLTK [60] for sentence and word tokenization and Stanford CoreNLP [61] for de-

pendency parsing.

1.4.2 Semantic parsing

Since syntactic parsing cannot tell the semantic similarity among words, to

make the system more generic, we have to understand the meaning of words. The

state-of-the-art technique for semantic parsing is word embedding, which represents

words, with close semantic meaning, in a close position in the vector space. The

most popular embedding method is word2vec [62, 63], which trains word vectors

by maximizing the probability of a word given its adjacent words. For example,

in Figure 1.2, “campaign” and the MD5 are considered as the context of “drop”,

and the system should maximize the probability of “drop” given its context words.

Instead of using adjacent words as the context, dependency-based word embedding

utilizes word dependency to train word vector [64]. For example, for the MD5 in
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Figure 1.2, the context is drop:dobj rather than {“drop”, “on”}. The benefit of

dependency-based word2vec is that it learns functional similarity rather than topical

similarity. In addition, the embedding of dependency can be trained using related

words, which indicates the common context pattern of a word.

1.4.3 Named entity recognition

Named entity recognition (NER) locates and classifies named entities into

pre-defined categories. There is no general technique that is applicable to all NER

problems, because the entity categories or ontology is usually task-dependent. Most

of the NLP research focuses on identifying the names of persons, locations and

organizations. While in security, the categories may include URLs, IP addresses, file

names, etc.. Although there is no standard method for NER problems, the solution

usually includes: fixed dictionary, regular expression or machine learning based

classifier. Since most security entities (e.g. URLs, and IP addresses) tend to follow

fixed patterns, regular expression is necessary to select entity candidates and remove

irrelevant words. Table 1.1 lists the rules and additional constraints of recognizing

the most common entity types in security. We should also take into account certain

writing practices common to security articles that do not follow general patterns.

For example, to prevent the mis-clicking of malicious site, some bloggers use “hxxp”

instead of “http”, and “[dot]” or (dot)” instead of “.”. Additionally, authors might

use different delimiters for malware family names, e.g. replacing underscores with

semicolons, so we accept the delimiter to be any one of underscore, slash, period,
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Table 1.1: Rules of named entity recognition.

Type Rules

URL Identified top level domain must be found [65].

IPv4 Contains 4 digits (<256) and the address is not reserved [66].

hash A hexadecimal string of length 32, 40 or 64.

family Starts with malware types, and contains common delimiter [67].

EK Either in defined dictionary [68] or ends with EK or exploit kit.

vuln. CVE-[0-9]{4}-[0-9]{4,5}

colon, and semicolon.

Because security narratives often include multi-word expressions, we cannot

simply analyze individual words. For example, Black Hole is the name of an exploit

kit; in this context, the words Black and Hole are meaningless when considered

separately. Mikolov et al. propose a simple unsupervised approach to identify multi-

word expressions [63]. The intuition behind this method is that the joint probability

of words is much higher than the product of the probability of individual words for

multi-word expression. In the example of “Black Hole”, since the word “Black” is

likely to appear together with “Hole”, then we identify “Black Hole” as a multi-word

expression.
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1.5 Structure

The paper is organized as follows. In Chapter 2, we review the related work. In

Chapter 3, we introduce a knowledge-based feature engineering system that mines

features for malware detection from natural-language sources. In Chapter 4, we

introduce a data-driven feature engineering approach that ranks features based on

their global importance. In Chapter 5, we study automatic feature engineering

problem for malware delivery campaign.
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Chapter 2: Related Work

2.1 Knowledge-based feature engineering

Research on mining scientific literature dates back to Swanson [69], who hy-

pothesized that fish oil could be used as a treatment for Raynaud’s disease by

observing that both had been linked to blood viscosity in disjoint sets of papers.

Building on this observation, Swanson et al. [70] designed the Arrowsmith system

for finding such missing links from biomedical articles. To reduce false positives,

the system relies on a long list of stopwords and can only process the paper ab-

stracts. Follow-on work proposed additional techniques, e.g. clustering [41] and

latent semantic indexing (LSI) [42], but still focuses on either abstracts or titles.

More recently, Spangler et al. mine paper abstracts and suggest kinases that are

likely to phosphorylate the protein p53, by using all the single words and bigrams

as the features but without checking whether all the features are meaningful [43].

In contrast to these approaches, we mine document bodies, we propose rules for

extracting multi-word malware behaviors and we link these behaviors to concrete

Android features.

Semantic networks are based on cognitive psychology research [36] that ob-

served that concepts that are mentioned together in natural language are more likely
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to be related, which provides a mechanism for estimating the semantic similarity

of two concepts. IBM Watson utilized a semantic network for answering Jeopardy!

questions from the “common bonds” and “missing links” categories [71]. Two ques-

tions are solved by searching for the entities that are close on the semantic network

to the entities provided in the question. Our approach differs from the previous work

on semantic networks in two aspects. The nodes in our semantic graph are behav-

iors (verb phrases instead of single words or noun phrases), as these behaviors are

more meaningful for capturing the malicious actions. Another difference is that our

semantic network is a tripartite graph, which mirrors the malware-behavior-feature

reasoning process and which reduces the computation time.

Few references in security utilize natural language processing in system design.

Neuhaus et al. analyze the trend of vulnerability by applying LDA to vulnerability

description [72]. Pandita et al. identify Android permissions that are implicitly

stated in the app description by using a dependency parser and first order logic [73].

Zhu et al. propose a framework to represent the knowledge available in security

literature and generate features for detecting malware [56]. Liao and Yuan et al.

propose a system to automatically extract OpenIOC items from blog posts [57].

Sun et al. design a system to generate human-friendly report for the results from

Cuckoo sandbox [74]. Panwar designs a framework to generate IOCs in STIX format

from Cuckoo sandbox results [75]. Zhu et al. propose a system to identify and

categorize IOCs from blog posts, and show a use case of combining qualitative data

to quantitative measurements [76]. A concurrent work by Husari et al. convert the

Symantec malware report to STIX format by utilizing a pre-defined ontology [77].
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In terms of the NLP techniques, we use word embedding instead of manually defined

rules to learn the semantics of sentences, which is more general and applicable to

a broader area. In addition, most of the work only focus on how to apply NLP to

security but do not show security implications behind it.

2.2 Data-driven feature engineering

Since it is difficult to engineer a good feature set for malware detection, people

tend to rely on the model to engineer features automatically from the data. How-

ever, due to the black-box nature of deep neural networks, researchers have limited

understanding about how the model is making decisions even if it achieves perfect

performance in testing. The absence of explanability makes the model vulnerable

to potential evasion and poisoning attacks. Therefore, a lot of work have been done

in recent years to interpret how models make decisions. The difficulty of generat-

ing explanation from model depends on the model complexity. For the traditional

machine learning models, like logistic regression, SVM, decision tree, the feature

importance can be derived either through rigorous statistical inference or from intu-

ition. For example, whether the parameter from regression model is non-zero can be

tested using t-test [78], which tells us if corresponding features are not significant.

In recent years, deep neural networks are widely used in malware detection,

because deep neural network is more flexible and can better fit the data. However,

the complexity of deep neural networks, on the other hand, makes it difficult to

interpret the detection results. Most of work on DNN explanation focus on iden-
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tifying the most important features used by model for a specific sample. Ribeiro

et al. propose LIME to explain the model locally by training a separate explana-

tion regression model [19]. A new data set is generated around the sample to be

explained using the trained model, which is then used to train a logistic regression

model. The feature importance can be derived directly from the weights of logis-

tic regression model. Guo et al. extend the idea of LIME and propose a system

LEMNA specific to security applications [18]. They add fused lasso to handle data

dependency from binary reverse engineering and mixed regression model to handle

non-linearity. Both solutions assume that the model is a black-box and we can only

infer the model from input-output relationships.

Without black-box solution, others try to obtain the explanation from gradi-

ent, which is also the basic of ReasonSmith technique. The key idea is that the

gradient of the output with respect to the input indicates the direction of input

in order to change output, which is an indicator of feature importance by itself.

Simonyan et al. first proposed the gradient solution to explain CNN image classi-

fiers [20]. They define the saliency map as the absolute value of output gradient.

Gan et al. proposed a spatial-temporal saliency map to event detection in video [79].

The gradient-guided techniques are widely adopted in adversarial machine learning

to efficiently create evasion samples [44, 45]. Instead of using gradient, Zhou et al.

proposed an class-specific saliency map that is derived from global average pooling

to explain object detectors [80].

Most of model interpretation work focuses on explaining a single instance.

However, explaining a few samples does not provide a strong evidence of the relia-
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bility of the model, because the sample may not be representative. In general, it is

hard to evaluate the general misbehaviors from the model. People have developed

several techniques to evaluate if the model generalizes the knowledge from data or

simply memorize it. Zhang et al. randomly change the labels and test the per-

formance drop of the model to see if the model actually memorizes the fake data.

Morcos et al. evaluate the robustness of model by testing the model reliance on

single directions [81]. They conclude that if the model is less reliance on single di-

rections, then the model is more likely to generalize knowledge from data. However,

both techniques can only be used to compare models and fail to develop a crite-

rion to determine if a model only memorizes the data. Pendlebury et al. proposed

a result-oriented strategy and developed some metrics to evaluate model and data

bias [82]. The key idea is that the performance of the model that is built on artifacts

will degrade in the future. However, this strategy requires the data in a long time

span. Our technique is feature-oriented, which models the feature influence as a

random variable. Different from image classifier where the individual features (pix-

els) are not meaningful, malware detector usually takes observations from static and

dynamic analysis as features, and each features have their own semantic meanings.

2.3 Malware detection

Android malware detection has been studied several years, Zhou et al. con-

ducted the first systematic analysis of Android malware behaviors, from the initial

infection to the malicious functionality [1]. As these behaviors often require specific
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Android permissions, Felt et al. [83] and then Au et al. [84] proposed static analysis

tools to analyze the Android permission specification.

Subsequently, considerable efforts have been devoted to detecting Android

malware, ranging from static and dynamic analysis [2,85] to machine learning tech-

niques [7,86,87]. Approaches based on static or dynamic analysis typically propose

heuristics or anomaly detection strategies for identifying malware. Zhou et al. first

apply permission-based filtering to filter out most of apps that are unlikely to be

malicious, and then generate behavioral footprints for from static and dynamic anal-

ysis [2]. Zhang et al. construct API dependency graphs for each app, and identify

the malware by detecting anomalies on these graphs [85].

Machine learning techniques typically model malware detection as a binary

classification problem. Peng et al. applied a Naive Bayes model to assess how

risky apps are given the permissions they request [86]. Aafer et al. used k -nearest

neighbors and extracted Android API calls as features [87]. Arp et al. built the

Drebin system, which utilizes features extracted from the manifest file and from

the bytecode (including permissions, intents, network addresses, API calls, etc.)

and trains an SVM classifier for malware detection [7]. In [12], Grosse et al. use

multi-layer perceptron to detect Android malware, and apply it to the same data

set as Drebin to study adversarial examples. In [16], Xu et al. use both multi-layer

perceptron and long short-term memory (LSTM) to detect Android malware, where

the former network is used for fast filtering and the latter network is to generate

more accurate result.

Different from Android system where API calls and permissions are semanti-
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cally meaningful by themselves, Windows API methods are only meaningful when

considering the arguments. For example, system information is stored in reg-

istry keys, and any attempts to edit the system configuration can be reflected

from registry keys and values. However, the API method to edit registry key (i.e.

RegSetValueExA or RegSetValueExW) only indicates the behavior, and cannot tell

if the program tries to edit sensitive configurations. To solve the missing semantic

problem, analysts manually create heuristics to label malware based on API calls and

their corresponding arguments. For example, Cuckoo sandbox is an open-source tool

to execute and analyze malware [88]. Cuckoo has a signature class that is manually

created to label malware. The signatures can be either general to all malware (for

example ...\Windows\CurrentVersion\Run\... represents autostart), or specific

to one malware family (e.g. wmpsl64.exe is the payload name of Bublik trojan).

Signatures label and detect malware in a deterministic way, and its coverage

is generally smaller compared to machine learning systems. For Windows malware

detection problem, features are usually the event sequence from dynamic analysis,

where the event is the combination of API call and its arguments. Schultz et al. use

loaded DLLs, strings and byte sequences as features to detect Windows malware,

and compare the performance of different machine learning models including Ripper

(rule-based model) and Naive Bayesian [89]. To capture temporal information from

execution traces, Kolter et al. use n-gram instead of single API calls as features,

and further compared different detection models including Naive Bayesian, decision

tree, support vector machine (SVM), and boosted decision trees. [90]. Association

rules are also used in detecting malware. In [91], Ye et al. use API sequence as
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feature and Objective-Oriented Association mining as the model. In [92], Ravi et

al. use 4-gram from Windows API call sequence as features. In addition, researchers

develop different tools to learn the meaning of arguments. Pascanu et al. propose

a 2-stage architecture, where the former network is used to extract feature from

arguments (e.g. file names) and the latter network is used for detection [93]. Au-

thors further evaluate different architecture and conclude that Echo state networks

(ESNs) and logistic regression are the optimal architecture for extracting features

from argument and final detection decision respectively For the same problem, Athi-

waratkun evaluate other architecture options including character-level CNN, long

short-term memory (LSTM) and gated recurrent unit (GRU) [17]. Results show

that the LSTM with temporal max pooling and logistic regression achieves optimal

performance. Similarly, the system from Tobiyama et al. consists of two stages, but

they use RNN to extract features and CNN for detection. Instead of using features

from dynamic analysis, Saxe et al. propose using features from PE meta for malware

detection [94].

2.4 Malware campaign and threat intelligence

Most prior measurement studies focused on only one stage of malware deliv-

ery campaigns. Prior work has identified social media advertising [95–97], spam

email [98, 99], compromised site [53], or SEO poisoning [52] as techniques used for

delivering payloads. However, most of the work did not quantify the volume of

malware downloads resulting from these techniques. Nelms et al. [97] measure the

34



influence of different persuasion techniques on malware downloads quantitatively

by parsing HTTP response and manually annotating the content. However, this

method is not scalable from both manual annotation and network monitoring. In

addition, this method fails if the package is encrypted using HTTPS. The advantage

of our technique is that there are less restrictions on measurement data, because the

campaign information is collected from independent sources.

Eshete et al. propose a system to detect if the URL is the landing page

of exploit kit based on the common techniques and behaviors of exploit kit. [54].

Moreover, Eshete et al. design a exploit kit infiltration toolkit to detect the exploited

vulnerabilities [55].

The malicious downloading behavior was analyzed by Kwon et al. in [30,33].

In [30], a classifier is designed to detect malware using downloader-payload relation-

ships. In [33], the authors propose a system to detect coordinated behaviors among

downloaders on multiple hosts. PUP delivery services were studied in [31,100]. The

former identifies the PUP publisher and the delivery service from the certificate

and structure of download relationships, while the latter closely investigates a few

prevalent PPI services and monitors the subsequent delivery behavior.

Zhang et al. propose a system to detect malicious servers and group them into

campaigns using HTTP traces from ISPs [101]. Plohmann et al. comprehensively

analyze domain generating algorithms and pre-compute the DGA domains in [102].

IOCs (indicators of compromise) are commonly used to model malware cam-

paigns. The IOCs specified in OpenIOC, STIX and CybOX standards [23–25] define

the role of an indicator in a campaign, for instance that an IP address corresponds
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to a C&C server. Researchers at Lockheed-Martin corporation proposed a cyber

kill chain model to describe the action sequence from attacker to launch malware

campaign [103]. STIX includes the cyber kill chain definition, however this is seldom

used in existing IOC feeds. For example, Hailataxii [29] is a repository for threat

intelligence data formatted according to the STIX standard. Although more than

700,000 indicators are provided by Hailataxii, none of them include the kill chain

phase, which can only be inferred manually from natural language description of

indicator.

In [57], Liao and Yuan et al. propose a system to automatically collect IOC

from blog posts in natural language. They model the problem as graph similarity

problem, and identify the IOC item if it has a similar graph structure as the training

set. However, the identified IOCs do not preserve their roles in a malicious campaign,

which makes it difficult to analyze the characteristics of campaign in different stages

and to correlate with field measurements. To address this problem, Zhu et al. and

Husari et al. propose two different approaches to further categorize and bring more

semantics to IOCs [76,77].
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Chapter 3: Knowledge-based feature engineering

In this chapter, we propose a system that automatically engineers features from

scientific literature for malware detection. In Chapter 3.1, we introduce semantic

network to represent security knowledge and engineer features from it. Then we

show how the semantic network is constructed for Android malware detection in

Chapter 3.2. We evaluate the performance of knowledge-based feature engineering

system in Chapter 3.3.

3.1 Semantic network

3.1.1 Definition

We model the concepts discussed in natural language using a semantic network,

defined as an undirected graph G = (V,E). The set of vertices V includes the

concepts extracted, and the set of edges E captures the pairwise relations between

the concepts. Each edge has a weight, which captures the semantic similarity of the

two concepts linked.

There are three types of nodes in the semantic network: threats Vt, behaviors

Vb, and features Vf . We define two types of edges: (1) links between threats and
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behaviors Etb = {{u, v},∀u ∈ Vt,∀v ∈ Vb}; and (2) links between behaviors and

features Efb = {{u, v}, ∀u ∈ Vb,∀v ∈ Vf}. An edge may not connect two nodes of

the same type. Nevertheless, two concepts from the same set may be semantically

related; for example, an API call might require certain permissions; and two mal-

ware families could have a shared module. We can establish these connections by

traversing one or more hops on the semantic network. This approach has the benefit

that the path between two concepts preserves the intermediate concepts (the API

call and the shared module, in our previous example), which helps the reasoning

process.

We create an edge if two nodes appear within N sentences for no less than M

times. In our experiments, we set N = 3 and M = 1. However, using a larger N

could on the contrary introduce more noise. M is another parameter to balance the

precision and recall. Because we aim to identify novel ideas, rather than common

sense, we choose a small M . Each edge is weighted by M . If two nodes appear

together frequently, then these two concepts are more likely to be related.

3.1.2 Behavior extraction

We extract suspicious behaviors discussed in the security literature in two

steps: (1) we identify phrases that may correspond to suspicious behaviors, and (2)

we apply filtering and weighting techniques to find the most relevant ones.

Behavior collection. We define a behavior as a tuple that consists of subject,

verb and object, where either subject or object could be missing. Single words or
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multi-word expressions are not sufficient to provide a semantic meaning without

ambiguity. For example, number could refer to phone number or random number

due to a missing modifier, and data could refer to steal data or inject data due to the

missing verb. Therefore, we define behavior as a basic primitive in our approach.

Behaviors are constructed from certain typed dependency and part-of-speech

as listed on Table 3.1. 1 We complete the missing component in behaviors if

another behavior with identical verb is found. Furthermore, we extend the subject

and object to noun phrases by adding adjective modifiers and identifying multi-word

expressions. To reduce the number of word variants, we can apply WordNet [105]

to lemmatize words based on their part of speech. From typed dependencies, we

decompose a complex sentence into several simple relations.

Table 3.2 shows one example of behavior extraction.

Filtering and weighting.

To determine which behaviors are most relevant to attacks, we assign weights

that capture how semantically close these behaviors are to the malicious function-

ality. We determine the weights in two steps:

1. Word weighting: assign weights for both verbs and noun phrases based on how

close they are to the problem.

2. Behavior weighting: assign weights to each behavior based on the weight of

subject, verb and object.

1We apply both collapsed and ccprocessed options in Standard typed dependency parser [104].

The former is to simplify the relationship with fewer prepositions and the latter is to propagate

the dependency if a conjunction is found.
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Table 3.1: Rules for matching behaviors. <gov> and <dep> represent the governor

word and dependent word in the typed dependency.

Rules Behavior

dependency type subj verb obj

dobj <gov> <dep>

nsubj <dep> <gov>

nsubjpass <gov> <dep>

nmod:agent <dep> <gov>

nmod:to <gov> to <dep>

nmod:with <gov> with <dep>

nmod:from <gov> from <dep>

nmod:over <gov> over <dep>

nmod:through <gov> through <dep>

nmod:via <gov> via <dep>

nmod:for <gov> for <dep>

We do not assign weights to behaviors directly because many behaviors appear only

few times in our paper corpus, which might bias our metrics.

In the first step, we should select a topic word that best describes the problem.

For example, we can select the word Android to engineer features for Android mal-

ware detection. We collect all the noun phrases from subject and object and verbs
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Table 3.2: An example of behavior extraction.

text ”For instance, the Zsone malware is designed to send

SMS messages to certain premium numbers, which will

cause financial loss to the infected users.” [2]

behaviors

design for instance

design Zsone malware

Zsone malware send SMS message

Zsone malware send to certain premium number

certain premium number cause financial loss

certain premium number cause to infected user

in behaviors. Then, we evaluate the importance of each word2 by computing the

mutual information of the word and the topic word; we do this for both the verbs

and noun phrases from the behaviors. Formally, mutual information compares the

frequencies of values from the joint distribution of two random variables (whether

the two terms appear together in a document) with the product of frequencies from

two distributions that correspond to the individual terms. Mutual information mea-

sures how much knowing one value reduces uncertainty about the other one and is

widely utilized in text classification. However, in our case mutual information tends

to find general words but ignores the less frequent words. To solve this problem, we

scale the mutual information by the entropy of the word. The weight of word S(w)

2We use the term “word” for both single words and phrases.
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is calculated using Equation (3.1), where H(w) is the entropy of word w, I(w;wT )

is the mutual information between word w and topic word wT . This metric captures

the fraction of uncertainty of word w given the topic word, and the value ranges

from 0 to 1.

S(w) =
I(w;wT )

H(w)
= 1− H(w|wT )

H(w)
(3.1)

In the last step, we assign an initial weight for each behavior W (b) based on

the weights of verb and noun phrases The behavior weight W (b) is the product of

the verb weight W (v) and the maximum noun phrase weight, as shown in Equation

(3.2),

W (b) = W (v) ∗ max
n∈{s,o}

W (n) (3.2)

where behavior b consists of subject s, verb v, and object o.

3.1.3 Feature generation

We utilize the semantic network to rank the features and to determine which

ones are most relevant for detecting attacks. Let T , B, F be three random variable

for threat, behavior and feature respectively. We compute the probability of feature

πF from the probability of malware πM using Equation (3.3):

πF = πT ∗ PB|T ∗ PF |B (3.3)

The transition probability PB|T and PF |B is estimated using the edge weight of

semantic network E and weight of behaviors W by Equation (3.4):
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PB|T (b|t) =
E(b, t)W (b)∑
bE(b, t)W (b)

PF |B(f |b) =
E(f, b)∑
f E(f, b)

(3.4)

The intuition behind this equation is that the most informative features corre-

spond to some malicious behaviors that are shared by multiple attacks, as captured

by the edge weights and the number of incoming edges. Additionally, we consider

the behavior weights to ensure that we propagate a higher weight to the behaviors

that are closely related to our problem.

3.2 Semantic network construction

We apply our technique to engineer features for Android malware detection.

Figure 3.1 shows the pipeline of feature engineering system.

3.2.1 Data sets

FeatureSmith analyzes three types of data: natural-language documents (e.g.

scientific papers), for extracting malware behaviors, lists of named entities related to

Android (e.g. development documentation that enumerate permissions, API calls,

etc.), for determining which features can be tested experimentally, and malware

samples, for validating the feature generation process. Table 3.3 summarizes these

data sets. In this chapter, we discuss the data collection process and the pre-

processing we apply to each type of data.

43



!"#$%&'(

)"&*+,-

./0

./0

.10

.20

.30

.20

.40

.10

.50

.50

.50

!('"%&'6'(

7'&",$&8,"

9%:,+':

;+(

<"=$>'+,?

@$A*$,"

!+8,("?

B"$&8,"?

C"'D=&":

<"=$>'+,?

@$A*$,"

EFGA$%$&'+%

Figure 3.1: General architecture for automatic feature engineering: (1) data col-

lection; (2) behavior extraction from scientific papers; (3) behavior filtering and

weighting; (4) semantic network; (5) feature generation; (6) explanation generation.

Black lines indicate the data flow and red dashed lines represent computations.
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3.2.2 Documents

Our primary data source consists of scientific papers. We utilize these pa-

pers to extract Android malware behaviors and to construct the semantic network.

From the electronic proceedings distributed to conference participants, we collect

the papers from the IEEE Symposium on Security and Privacy (S&P’08–S&P’15)3,

the Computer Security Foundations Symposium (CSF’00–CSF’14), and USENIX

Security (Sec’11). We complement this corpus by searching Google Scholar with the

keywords “Android malware”, and then we download the PDF files if a download

link is provided in the query results. This process may result in duplicate papers, if

a returned paper already exists in our corpus. Therefore, we record the hash of all

the papers in our corpus, and remove a PDF document if the file hash already exists

in the data set.4 Most of articles returned from Google Scholar are scientific papers

that require peer reviews before publication, which means that we can ensure the

quality of the corpus. Other data sources (e.g. analyst blogs) could be informative,

but the quality is not guaranteed. Google Scholar results include industry reports

as well. We believe that the industry reports are of high quality as well because

Google Scholar ranks articles based on citation [106] and these articles have high

ranks from it. In total, our corpus includes 1,068 documents. In addition, we also

collect the publication time for the articles using the conference year or the year

3Including workshop papers.
4It is possible that the same paper may have multiple hashes, for instance owing to multiple

versions of the same paper. We believe such cases are uncommon, and we do not attempt to detect

duplicated papers based on content similarity.
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Table 3.3: Summary of our data sets.

type source number total

malware
Mobile-Sandbox 210

280
Drebin 180

documents

S&P 465

1,068
Sec 35

CSF 327

Google 241

features

permissions 132

11,694intents 189

API 11,373

provided by Google Scholar, and successfully collect the time for 916 articles.

We extract the text from the papers in PDF format, for later processing.

Extracting clean text from PDF files is a non-trivial task as it is difficult to identify

figures, tables, algorithms and section titles embedded in the body content. We

develop several heuristics to address this problem. We convert the PDF files to text

with the Python pdfminer package, which also allows us to record the corresponding

font style and size. We consider that the body of the paper is written in the most

frequently used font in the document. We extract all the text in this font, as well as

single words in a different font but within the body content, which likely represent

emphasized words. This excludes the paper titles and the section headings; however,
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we found that this information is not necessary for automatic feature engineering.

Conversely, we also experimented with utilizing only the paper abstracts, which are

readily available on publisher web sites, but we found that they are insufficient for

our task.

3.2.3 Features

The features utilized for Android malware detection must be representative,

to capture the behavior of various malware families, and informative, to distinguish

the malware from benign apps. In this paper, we focus on permissions, intents, and

API calls as potential features for malware detection. We collect all the permissions,

intents and API calls from Android developer documents [107]. Then, we ignore

the class name for each feature, because we have found that class names are not

mentioned in most papers. However, removing the class name introduces ambiguity

in two cases: (1) the feature name coincides with a word or abbreviation that could

be frequently mentioned; (2) methods from different classes have the same name.

For the first case, we check if the function names can be split into several word

components based on the naming rules. For example, we could split onCreate into

on and Create, and SEND_SMS into SEND and SMS. Then we remove all the features

that cannot be split in this manner, which are more likely to collide with other words

and cause ambiguity. For the second case, most of identified informative features

are not ambiguous, e.g. sendTextMessage. For those ambiguous names, they often

have only one meaning in papers. For example, getDeviceId could be the method in
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either Telephony or UsbDevice, but the method refers to Telephony.getDeviceId

in almost every paper. In total, we have 132 permissions, 189 intents (including

both name and value), 11,373 API calls.

3.2.4 Malware families

We collect the malware family names from both the Drebin dataset [7] and

from a list of malware families [108] caught by the Mobile-Sandbox analysis plat-

form [109]. In total, we collect 280 malware names. We utilize these names when

mining the papers on Android malware to identify sentences that discuss malicious

behaviors. In addition to the concrete family names, we also utilize the term “mal-

ware” and its variants for this purpose.

For our experimental evaluation, we utilize malware samples from the Drebin

data set [7], shared by the authors. This data set includes 5,560 malware samples,

and also provides the feature vectors extracted from the malware and from 123,453

benign applications. While these feature vectors define values for 545,334 features,

FeatureSmith can discover additional features, not covered by Drebin. We therefore

extract these additional features from the apps.

We first select all malware samples and a random sample of equal size, drawn

from the benign apps. As the Drebin data set includes only malware samples, we

download the benign apps from VirusTotal [110], by searching for the corresponding

file hashes. After collecting the .apk files for all the apps, we use dex2jar to

decompile them to .jar files, and use Soot [111] to extract all the Android API
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calls. This allows us to expand the feature vectors and test the features omitted by

Drebin.

We obtain the expanded feature vectors for 5,552 malware samples and 5,553

benign apps.5 The collected applications exhibit 43,958 out of 545,334 Drebin fea-

tures and 133 out of 195 features generated by FeatureSmith. Note that we use

the malware samples only for the evaluation in Chapter 3.3; the feature generation

utilizes the malware names and the document corpus.

3.2.5 Network construction

After we extract the key components (i.e. malware, behaviors and features), we

construct the semantic network according to the definition in Chapter 3.1. Figure 3.2

shows part of our semantic network.

This step produces 339,651 unique behaviors. Then we choose the word An-

droid as the topic word to evaluate the importance of the behaviors. We remove the

behaviors that are unlikely relevant to Android, and obtain 82,035 behaviors. In

total, we have 47,186 noun phrases and 1,682 verbs. Table 3.4 shows the behaviors

with highest weights. Note that this is just the initial weight for how close the

behavior related to Android; the ranking of behaviors will change during feature

generation.

Table 3.5 shows the top 5 features extracted in this manner. The sendTextMessage

method and the SEND_SMS, RECEIVE_SMS permissions correspond to apps that send

text messages. The behaviors that contribute to these two features are also related

5For a few applications, we were unable to either decompile them or extract the method calls.
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Figure 3.2: Excerpt from our semantic network. The nodes correspond to mal-

ware families, malware behaviors, and concrete features. Unlike in an ontology, the

categories of malware behavior are not predetermined.

to text messages, e.g. “send SMS message”, “subscribe premium-rate service”. Mal-

ware often listens for the BOOT_COMPLETED event, which indicates that the system

finished booting. The corresponding behavior contains “register for related system-

wide event” and “kick off background service”. Papers using static or dynamic analy-

sis often mention onStart, as it is usually an entry point for malware behavior. This

feature can be reached from multiple behavior nodes, e.g. “send data to server” and

“register premium-rate service”, as it may be involved in various malicious activi-

ties. Besides, some other features related to user’s sensitive information have high

rank, for example, getDeviceId and READ_PHONE_STATE. The corresponding behav-

iors reveal the malicious actions like “return IMEI ” and “return privacy-sensitive

information”.
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Table 3.4: Top 5 behaviors related to Android.

rank behavior

1 Over-privileged apps overstep permission

2 manufacturer customize smartphone OS

3 malware author download Android’s source code

4 download from official Android Market

5 download from app store

Table 3.5: Top 5 features.

rank feature type

1 sendTextMessage API method

2 SEND_SMS permission

3 BOOT_COMPLETED intent

4 RECEIVE_SMS permission

5 onStart API method

3.3 Evaluation results

We evaluate FeatureSmith by measuring the effectiveness of the automatically

generated features. In our experiments, we utilize a corpus of malicious and benign

Android apps, collected as described in Chapter 3.2. We train random forest clas-

sifiers [112] with (i) the features generated by FeatureSmith and (ii) the manually

engineered features from Drebin [7]. We compare the performance of these classi-
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Figure 3.3: ROC curve of malware detection for classifiers with different feature sets

(including the count of features utilized from each set, as the apps in our corpus

exhibit a subset of the manually and automatically engineered features).

fiers in Chapter 3.3.1. In Chapter 3.3.2, we drill down into FeatureSmith’s ability

to discover informative features that may be overlooked during the manual fea-

ture engineering process. Finally, we characterize the evolution of our community’s

knowledge about Android malware in Chapter 3.3.3.

3.3.1 Feature effectiveness

To evaluate the overall effectiveness of automatically engineered features, we

train 3 random forest classifiers with the same ground truth but different feature

sets:

• FS: All features from FeatureSmith

• F ′S: Top 10 features from FeatureSmith (F ′S ⊆ FS)
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• FD: Drebin features (FS * FD)

We randomly select 2/3 of apps for our training set and utilize the rest for the

testing set. We choose the random forest algorithm, which trains multiple decision

trees on random subsets of features and aggregates their votes for the final prediction,

because this technique is less prone to overfitting than other classifiers [112].

Figures 3.3a and 3.3b compare the performance of the three classifiers using

a receiver operating characteristic (ROC) plot. This plot illustrates the relation-

ship between false positives and true positives rates of these classifiers. The figure

suggests that automatically and manually engineered features are almost equally ef-

fective, as the ROC curves are practically indistinguishable. At 1% false positive

rate, the classifiers using FD and FS both have 92.5% true positives.6 FS contains

much fewer features compared to FD (173 instead of 43,958 and 44 in common), but

this dimensionality reduction does not degrade the performance of classifier. The

features themselves are not equally informative; if we randomly select 173 features

from FD, the ROC curve is close to the diagonal, which means that the classifier is

equivalent to making a random guess. This suggests that FeatureSmith is able to

discover representative and informative features from scientific papers. When using

only the top 10 features suggested by FeatureSmith (feature set F ′S), our classifier

6We note that our goal is not to reproduce or exceed the performance of the Drebin malware

detector—we use random forests while Drebin uses SVM—but to perform a fair comparison of the

feature sets. Nevertheless, our classifier using FD achieves the same performance as reported in

the Drebin paper [7].
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achieves 44.9% true positives for 1% false positives. This is comparable to the perfor-

mance of three older malware detection techniques, which provide detection rates

between 10%–50% at this false-positive rate [7]. This shows that FeatureSmith’s

ranking mechanism singles out the most informative features for separating benign

and malicious apps.

We further examine all the false positive results (18 apps) from the testing set.

8 apps are labeled as malicious by at least one of VirusTotal’s anti-virus products,

perhaps because they were determined to be malicious after the Drebin paper was

published. Although these apps are considered benign in our dataset, they are

actually malicious, which suggests that our real false positive rate may be even

lower. Other benign apps from our false positive set exhibit behavior similar to

malware, including two Chinese security apps, which intercept incoming phone calls

and filter spam short messages, one Korean parental supervision app, which tracks

a child’s location, and a banking app. We could not find any information about the

remaining 6 apps.

3.3.2 Tapping into hidden knowledge

We evaluate the contribution of individual features to the classifier’s perfor-

mance by using the mutual information metric [34]. Intuitively, mutual information

quantifies the loss of uncertainty for malware detection when the app has the given

feature. Table 3.6 lists the 5 features with the highest mutual information. When

present together, these features indicate an app that triggers some activity right
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Table 3.6: 5 most informative features.

feature MI
#usage ranking

malicious benign FeatureSmith Keyword-TF

BOOT_COMPLETED 0.27 3,555(64%) 441(8%) 3 151

SEND_SMS 0.26 3,227(58%) 302(5%) 2 9

READ_PHONE_STATE 0.22 5,011(90%) 2,236(40%) 11 16

startService 0.18 3,408(61%) 791(14%) 60 37

RECEIVE_BOOT_COMPLETED 0.17 2,672(48%) 373(7%) 54 351

after booting the system, starts a background service, accesses sensitive information

and sends SMS messages. FeatureSmith ranks these features in the top-60, and the

three best features in the top-11.

To provide a baseline for comparison, we also compute a simpler ranking that,

unlike FeatureSmith, does not take into account the semantic similarity between fea-

tures and malicious behaviors. We extract all the API calls, intents and permissions

mentioned in our paper corpus, whether they are related to malware or not, and

we rank them by how often they are mentioned. This term frequency (TF) metric

is commonly used in text mining for extracting frequent keywords. This ranking

does not place the features from Table 3.6 among the top features. For example,

BOOT_COMPLETED and RECEIVE_BOOT_COMPLETED are not mentioned frequently in

papers, and therefore have a low TF rank. Figure 3.4 shows the cumulative mutual

information for the top 150 features in the FeatureSmith and TF rankings. Be-
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Figure 3.4: Cumulative mutual information of top-ranked features.

cause it uses a semantic network, FeatureSmith assigns consistently higher ranks

for the features more likely to be related to malware, even if they are not men-

tioned very frequently. Additionally, we compute the Kendall rank correlation [113]

between FeatureSmith’s ranking and the mutual information based ranking, and

perform a Z-test to determine if the two ranking systems are correlated. The p-

value is 1.9 ∗ 10−4 (< 0.05) which demonstrates that FeatureSmith based ranking is

statistically dependent with the mutual information based ranking. We repeat the

hypothesis test for the TF based ranking, and we obtain a p-value is 0.14 (> 0.05).

Among the features with a low mutual information, we also find several in-

stances that are related to malware behaviors. For example, FeatureSmith identifies

createFromPdu, getOriginatingAddress and getMessageBody from [85], which

are used in Zitmo for extracting the message sender phone number of message con-

tent. FeatureSmith also identifies onNmeaReceiced and onLocationChanged, which
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could potentially leak location data [114], and isMusicActive, which can be used

to infer the user’s location [115]. These features do not help the classifier, as they

might not be representative of the malware families from the Drebin malware data

set, or the data set might not cover all the malware behavior. Nevertheless, these

features provide useful information to researchers interested in malware behavior.

FeatureSmith generates several informative features that are not included in

the Drebin feature set. For example, getSimOperatorName is mentioned in two

papers, as a method that apps often call after requesting the READ_PHONE_STATE per-

mission [116] and as a method that leaks private data [114]. getNetworkOperatorName

is another method that potentially leaks private data [117]. These two API calls are

not among the manually engineered Drebin features, but they have a high mutual in-

formation for malware detection. 884 malware samples invoke getSimOperatorName,

compared to 85 benign apps; getNetworkOperatorName appears in 1,341 malware

samples and in 378 benign apps. This suggests that automatic feature engineering

is able to mine published information that remains hidden to the manual feature

engineering process, as human researchers and analysts are unable to assimilate the

entire body of publicly available knowledge.

FeatureSmith can extract informative features effectively, but it can also gener-

ate explanations for features. For example, the behaviors associated to BOOT_COMPLETED

reveal that this feature could be an indicator of starting background service for the

malware. Instead of providing just a basic description of the feature, extracted

from Android developer documents, the explanation links the feature to malware

behaviors reported in the literature. Besides the BOOT_COMPLETED example, many
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Table 3.7: An example of feature explanation.

getSimOperatorName

Behavior

return privacy-sensitive information

leak privacy-sensitive return value

leak to remote web server

· · ·

Reference

[114]: Examples of such methods are getSimOperatorName in the Telephony-

Manager class (returns the service provider name), getCountry in the Locale

class, and getSimCountryIso in the TelephonyManager class (both return the

country code), all of which are correctly classified by SUSI.

features are related to “steal sensitive information” behavior, which will never be

identified by parsing developer documents only. Table 3.7 shows an explanation for

an API call that leaks personal data. These explanations refer to abstract concepts

that human analysts associate with malware behavior and provide semantic insights

into the operation of the malware detector, which is key for operational deployments

of such detectors [35].

3.3.3 Knowledge evolution over time

Our results from the previous chapter suggest that manual feature engineer-

ing may overlook some informative features, perhaps because it is challenging for

researchers and analysts to consider the entire body of published knowledge. In this

chapter, we characterize the growth of FeatureSmith’s semantic network, which is a

representation of the existing knowledge about Android malware. Intuitively, as we
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Figure 3.5: ROC curve of malware detection for classifiers with feature sets from

different years

add more documents to the system, we create more behavior nodes, and the underly-

ing structure of the network reflects the semantic similarity among these behaviors.

We investigate how this evolution affects our ability to engineer effective features

for malware detection. However, because we cannot identify the publish year for

some articles, we cannot reliably tell the earliest year that a feature is discovered by

FeatureSmith. For those features that we are able to identify the discovered year,

we train 4 malware detectors using the same algorithm with the features discovered

before 2012, 2013, 2014 and 2015.

Figure 3.5 shows the ROC curve of the classifier trained using features discov-

ered in different years. The figure shows that, as more papers are published over

time and knowledge accumulates, FeatureSmith is able to generate more informa-

tive features and the performance of the corresponding classifier improves. At 1%

false positive rate, the true positive rate increases from 73.1% in 2012 to 89.2% in
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2015.7 In addition, we use the classifiers in different years to detect the malware

samples from different families. We determine the threshold by setting a fixed 1%

false positive rate. With a growing knowledge on malware behaviors, the classifier

performs better. For example, we are able to detect most of the samples from the

Gappusin family using the classifier in 2014, while we cannot detect any apps from

this family using the classifier in 2012. In 2012, the feature set primarily consists

of the permissions and API calls related to some obvious behaviors like SMS fraud.

However, in the later years, the publications started covering functions that could

leak sensitive information. As a result, we can detect Gappusin using the features

extracted two years later. In addition, the performance improvement diminishes

after 2013. This suggests that the most important and salient features are likely to

be discovered first. By using these features, we can capture the core behaviors from

malware. The follow-up work is able to tell the new behaviors or missing knowledge

from prior work. And the discovered features are complementary to the original

feature set and are useful in improving the detection performance.

7Because we cannot identify the publication years for some documents downloaded from Google

Scholar, in this experiment the true positive rate does reach our top rate of 92.5%.

60



Chapter 4: Data-driven feature engineering

In this chapter, we introduce a data-driven feature engineering method called

ReasonSmith, which ranks features based on their global importance. In Chapter

4.1, we introduce the design of ReasonSmith. Then we evaluate ReasonSmith for

both Android and Windows malware detection. In Chapter 4.2, we demonstrate the

data set and data preprocessing used in the experiment. In Chapter 4.3, we compare

ReasonSmith with traditional metric mutual information, and further identify data

biases and artifacts.

4.1 Method

4.1.1 Feature importance criterion

To capture feature global importance, we would like to select a subset of

features (k out of n) that maximize the performance in testing. Let TPRF be the

true positive rate of a malware detector in testing using feature set F . Equation

(4.1) shows the criterion of feature selection based on the global importance, where

|F | is the cardinality of feature set F . We focus on the true positive rate when false

positive rate is 1%, which is also used in other work to evaluate malware detector
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performance [7, 56,89].

max
F

TPRF

s.t. |F | = k

(4.1)

Intuitively, if we only use a subset of features in testing, the malware detector

should perform worse than the original system, because the model uses additional

features (i.e. the removed features) for training. If the performance of malware

detector does not drop after feature removal, then the model does not learn security

knowledge from the removed features. However, if the performance drops dramat-

ically, then the removed features should be important to characterize the security

knowledge learned by the model.

However, we cannot find an optimal solution for this problem in practice be-

cause we need to test the performance of all
(
n
k

)
feature subsets. As an alternative

solution, we can estimate the global importance for individual features, and further

select the features based on the importance. Therefore the original problem changes

to finding a ranking method such that the model can achieve high true positive rate

in testing by using the top k features.

4.1.2 ReasonSmith

Different from prior work on explaining instances [18–20], we focus on the over-

all performance of the features on the model, which extends the idea of generating

local interpretation and further derives a global interpretation. We call our ranking

method ReasonSmith. It first estimates feature importance for single instances, and
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then evaluates the global importance based on the local interpretations.

Local interpretation. Let x be the feature vector and w be the local inter-

pretation for the corresponding feature. A greater absolute value means that the

corresponding feature is more important. Feature influence w captures the local

influence of input x for the machine learning model y = f(x). There are several

techniques from prior work to obtain a local interpretation of a specific input. But

in our case, we need to collect the feature influence for individual instances in a

large scale. So we have a stronger constraint on computational complexity. Some

techniques like LIME [19] and LEMNA [18] do not satisfy our requirements, since

they need to train a separate model for each instance to be explained. To this end,

we choose gradient-based solution [20] to learn the feature importance. For each

instance to be explained, we can obtain the result by passing the input to the model

only once, and consequently it is possible for us to collect feature influence in a

large scale. In this dissertation, we define local interpretation as the gradient of

the output with respect to the input (as shown in Equation (4.2)). For malware

detection problem, the output is usually the probability that a sample is malware.

By definition, if the gradient is close to 0, then the corresponding feature is less

important to make this specific decision.

w =
∂

∂x
f(x) (4.2)

Global interpretation. From a global view, the interpretation is a random vari-

able. We use Gaussian mixture model to estimate the distribution of feature in-

fluence w. Let us assume that the machine learning model generalizes security
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knowledge from data and the knowledge can be summarized with K rules and each

local explanation comes from one of its rules.

Let us define feature importance score S as the metric of feature global impor-

tance, which is defined as the probability that w is non-zero. For a specific feature

j, the probability that its value is small can be written in Equation (4.3), where Rk

is the kth Gaussian distribution. For each Gaussian distribution, parameters can

be estimated using EM algorithm.

Sj = 1− P (wj = 0) = 1−
∑
k

P (wj = 0 | j ∈ Rk)P (j ∈ Rk) (4.3)

In a special case, let us assume that there is only one rule learned by the

model. Then we can estimate mean and covariance using Equation (4.4) and (4.5).

Because only one primary rule exists in this case, we can save much computation

from EM algorithm, which allows us to obtain a less precise but faster result. In

this paper, we use this special case to estimate the underlying feature influence.

µw =
1

N

N∑
i=0

wi (4.4)

Σ =
1

N − 1

N∑
i=0

(wi − µw)(wi − µw)T (4.5)

In addition, the malware detector takes binary features as input. We set the

local interpretation to 0 if the corresponding feature is 0, because the model should

not be influenced by absent events. Equation (4.6) is the formula for binary features

in this paper, where � is element-wise product.

wi =
∂

∂x
f(xi)� xi (4.6)
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4.1.3 Data bias analysis

The bias evaluation process consists of three steps:

1. Split data into several groups based on time.

2. Train individual models on different data groups, and apply ReasonSmith to

rank all the features by feature importance score S.

3. Compare feature rankings in different data groups.

Data split. Prior work shows that the performance of malware detector generally

degrades over time due to either concept drift or training biases [82]. It is difficult

to evaluate the future performance drop using conventional evaluation method like

cross validation. Therefore, we split the data based on time, which makes it possible

to identify the changes of data and model over time.

Then we train individual malware detectors using the same model and calcu-

late feature rankings from ReasonSmith for each data set.

Importance over time. We rank features by importance score S, and the features

with high scores are on the top of the list. We can obtain multiple rankings from

different data groups for features. Then we can calculate the average ranking and

ranking variance for a specific feature, which can be used to distinguish data artifacts

and data biases.

A higher ranking mean suggests that the feature is consistently important

across different groups. The features with high ranking mean are robust and useful
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Table 4.1: Data set after preprocessing

time span usage # of samples

Android

S1 07/01/2009 - 06/30/2012 train 21,635

S2 07/01/2012 - 08/31/2012 test 7,070

S3 09/01/2012 - 09/30/2012 test 18,873

S4 10/01/2012 - 01/01/2015 test 4,491

Windows
S5 07/01/2018 - 07/31/2018 train 71,919

S6 08/01/2018 - 08/20/2018 test 34,341

in different period of time, and are more likely to be indicative to the main func-

tionalities of malware. By manually examining these features, analysts can generate

hypotheses about the malware behaviors from the training data set. However, these

features can also be data artifacts. Different from data biases, data artifacts might

result from data generation mechanism and exist for a long period of time. Therefore

the features from data artifacts are likely to have a high ranking mean as well.

A high ranking variance indicates that the importance of the corresponding

feature changes a lot and the feature is only important in particular data groups.

Because data biases result from data sampling process, features from data biases

are likely to have high uncertainty values. By manually examining high-uncertainty

features, analysts can learn the malware trend over time.
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4.2 Data sets

4.2.1 Data collection

We collect malware samples for both Windows and Android systems from

VirusTotal [110] and Drebin [7]. Table 4.1 summarizes our data sets. Drebin pro-

vides a data set of Android reports from static analysis for 129,013 apps. Drebin

extracts 8 type of features: hardware components, requested permissions, app com-

ponents, filtered intents, restricted API calls, used permissions, suspicious API calls

and network addresses.

We collect Windows data set of 114,482 samples from VirusTotal by using

version 2 of their API. When a user submits a file under 8 megabytes in size which has

never been submitted before to VirusTotal, the sample is dynamically analyzed in a

custom Cuckoo Sandbox and the report becomes available via the /file/behaviour

API endpoint. In order to pull back all Windows samples which contain a sandbox

report, we use the behaviour search modifier and pair it with common file formats

used by malware. To gather our dataset, we pulled hashes that have an analysis

report attached to them which contain one of the following types:

1. PE executables: *.exe, *.dll

2. Python scripts: *.py

3. Malicious documents: *.rtf, *.doc(x), *.xls(x)

The dynamic analysis report is composed of two main parts; the sequence of
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windows API calls performed by the submitted sample and any of its descendants, as

well as all network traffic observed. Each observed API call contains all parameters

passed to that API call. For example, CreateProcessInternalW contains the full

file path of the launched process in the lpApplicationName parameter, and the

command line used to launch it will be in the lpCommandLine parameter. Network

traffic is made up of all HTTP, DNS, and IP traffic. HTTP requests contain all

relevant fields, such as HTTP method, user agent, destination host, URI, and request

body. DNS traffic contains the hostname requested and the IP it resolved it. IP

traffic contains the source and destination IP and ports used, as well as the protocol.

4.2.2 Data processing

For Android data, we apply the same data processing as we did in Chapter

3.2.1. Therefore, we only introduce the feature extraction and data filtering for

Windows data set in this chapter.

Feature extraction. Different from Android system where individual API calls

and permissions are semantically meaningful, Windows API calls only define the

actions, and are only meaningful with the arguments. Therefore, we define the

features as a combination of action (i.e. API calls) and target (i.e. arguments). We

further define several high-level actions based on API calls, which are listed in Table

4.2.

Target can be one of 6 types, including processes, files, domains, URIs, IP

addresses and registry keys. Then we apply the following rules to normalize the
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Table 4.2: Mapping between API calls and high-level actions.

Observed API Call Action

RegCreateKeyExW Created Key

RegEnumKeyExW Enum Key

RegEnumValueW Enum Value

RegOpenKeyExA Open Key

RegOpenKeyExW Open Key

RegQueryValueExW Query Value

RegSetValueExA Set Value

RegSetValueExW Set Value

CreateFileW File Created

DeleteFileW File Deleted

CopyFileExW File Copied

MoveFileWithProgressW File Moved

ReadFile File Read

WriteFile File Written

ShellExecuteEx Shell Command Executed

CreateProcessInternal Process Lanunched

CreateRemoteThrea Process Injected

LoadLibrary Module Loaded

CreateMutexW Mutex Creation
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Table 4.3: Relationship between target types and high-level actions.

Target type Actions

Processes Launched, Injected

Files Created, Deleted, Copied, Moved, Read, Written

Registry Key Created Key, Enum Key, Enum Value, Open Key, Open

Key, Query Value, Set Value,Set Value

Modules Loaded

Shell Command Executed

Addresses Connected To, Resolves To

URLs URI Of, HTTP Request To

Domain DNS Query For, Domain Of

target string.

1. Normalize Windows file path by using default environment variable. For ex-

ample, C:\Program Files is normalized to %ProgramFiles%.

2. Identify GUID, SID, and replace them by a fixed token <GUID> or <SID>.

3. Replace SHA256 process names by <SELF>, because VirusTotal renames sub-

mitted executables to the SHA256 hash of their contents.

Then we encode the high-level action and normalized argument string as binary

features that are readable by neural networks.. Table 4.3 lists all types of features

in Windows data set.
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Sample filtering. Because Windows feature set is collected from dynamic analysis

instead of static analysis, it is likely that we cannot observe the correct and complete

execution traces. There we remove the samples if their total execution time is less

than 2 seconds, or drwtsn32 is called which is an indicators for crashes.

Creation time estimation. We approximate the sample creation time using the

first submission time from VirusTotal report, which is an upper bound for the sample

creation time. We split the samples into different data sets to by their creation time

identify data biases. Table 3.3 gives basic statistics for different data sets.

Label Creation. In addition, the label of samples are determined from anti-virus

labels. For Windows application, we label it as malicious if it has more than a 30%

detection rate from VirusTotal, which is the same threshold used in prior work [30,

100]. While for Android application, we label it as malicious if there are more than

4 detections from AV vendors, which is also in line with prior work [82, 118]. If

there are no AV detections, we label the application as benign. We drop the rest of

applications if they do not satisfy either malicious or benign criterion.

4.2.3 Analyst features

We define analyst features as the features that are manually engineered by

analysts and are used for detecting malware. For the Android data set, we select

4 Drebin feature categories as the analyst features: permissions, real permissions,

restricted API calls and suspicious API calls. Because permissions are important in

Android to protect sensitive data and crucial services, they are used as key features
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in most of Android malware detectors. Similarly, restricted APIs are the API calls

protected by the permissions, and can also be considered as analyst features. In

Drebin, the authors manually developed heuristic rules to identify suspicious API

calls. In total, we consider 373 features as semantic features (out of 11,731 features).

For the other 4 feature types, the analysts simply use all the features that observed

in the data set for example, a specific URL or a user-defined activity name. As a

result, we do not consider them as analyst features.

Cuckoo sandbox provides over 400 manually crafted signatures to analyze ex-

ecution traces and label suspicious behaviors. Although these signatures include

many human-defined conditions, which are difficult to be directly applied to ML

systems, the individual rules used in signatures can also be a good indicator of

maliciousness. We extract all the regular expressions in the Signature class from

Cuckoo repository [88], and then check if our features match any of the regular ex-

pressions. As a result, we identify 1271 compilable regular expressions, from which

we further label 867 features as semantic features (out of 41,858 features).

4.3 ReasonSmith evaluation

First, we train 2 deep neural networks for Android and Windows malware

detection. We use multi-layer perceptron as basic architecture which contains two

hidden layers with 1024 and 32 nodes respectively. The detector takes binary fea-

tures as input and returns the likelihood of maliciousness. We use ReLU as the

activation function for all hidden nodes and sigmoid function in the output layer.
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Table 4.4: Performance of Windows and Android malware detectors. Note that S1

and S5 are used as the training sets.

testing set TP(FP=0.01) TP(FP=0.05) TP(FP=0.1)

Android

S1 0.962 1.000 1.000

S2 0.896 0.951 0.957

S3 0.858 0.878 0.890

S4 0.890 0.917 0.926

Windows S5 0.996 1.000 1.000

S6 0.948 0.956 0.992

Since the feature set contains some features that have low occurrence which might

negatively affect the system performance, we remove those uncommon features dur-

ing training. In this work, the feature occurrence threshold is 50 for both detectors.

As a results, the size of input feature is 41,858 for the Windows detector and 11,731

for the Android detector. Table 4.4 shows the performance of the two malware detec-

tors, and both models have high true positives and low false positives in testing. We

use these two detectors as the example in this dissertation, and apply ReasonSmith

to examine the model and the data.

4.3.1 Feature ranking performance

As we discussed in Chapter 4.1.1, we measure the performance loss if we use a

subset of features in testing. In general, dropping features causes the model losing
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information learned during training, and therefore performance should decrease1.

We choose mutual information as the baseline metric to rank features, which is

usually used to measure feature global importance in tree-based models. For a fair

comparison, two feature sets must contain the same number of features. Because

machine learning system returns the likelihood of maliciousness, which will have

different results using different thresholds. To make the performance comparable,

we use true positive rate as basic performance metric when false positive rate reaches

0.01.

Figure 4.1 shows the true positive rate for both training and testing sets when

true positive rate is 0.01. Figure 4.1a and 4.1e shows the experiment for training

set. If we remove the features with low ranks, then the performance drop is smaller

for ReasonSmith ranking than that for mutual information ranking. ReasonSmith

outperforms mutual information in all feature sizes, which shows that ReasonSmith

captures important features learned by neural networks. It also suggests that some

important features by neural networks are invisible by only looking at the rela-

tionship between output and individual features. In addition, ReasonSmith has a

better performance than mutual information based ranking in most of experiments

for testing sets. However, because the estimation is based on training sets and it is

not a guarantee that the underlying distribution of testing set is the as training set,

ReasonSmith ranking has lower false positive rate than mutual information ranking

in some cases.

1If the model over-fits the data, then dropping features might enhance the detector performance.

74



0.4

0.6

0.8

1.0

1000 2000 3000 4000

#{features}

T
P

R
 (

F
P

R
=

0
.0

1
)

ranking

mi
rs

(a) Android S1

0.4

0.6

0.8

1000 2000 3000 4000

#{features}

T
P

R
 (

F
P

R
=

0
.0

1
)

ranking

mi
rs

(b) Android S2

0.4

0.5

0.6

0.7

0.8

1000 2000 3000 4000

#{features}

T
P

R
 (

F
P

R
=

0
.0

1
)

ranking

mi
rs

(c) Android S3

0.25

0.50

0.75

1000 2000 3000 4000

#{features}

T
P

R
 (

F
P

R
=

0
.0

1
)

ranking

mi
rs

(d) Android S4

0.3

0.4

0.5

0.6

0.7

0.8

1000 2000 3000 4000

#{features}

T
P

R
 (

F
P

R
=

0
.0

1
)

ranking

mi
rs

(e) Windows S5

0.2

0.4

0.6

0.8

1000 2000 3000 4000

#{features}

T
P

R
 (

F
P

R
=

0
.0

1
)

ranking

mi
rs

(f) Windows S6

Figure 4.1: Performance of malware detector when only a subset of features is used in

testing. “rs” represents ReasonSmith based ranking, while “mi” represents mutual

information based ranking. Note that S1 and S5 are used as training set.
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4.3.2 Malicious behaviors

To identify the features that are robust over time, we train separate models

for each data set using the same configuration, and run ReasonSmith to rank the

features. Then we calculate mean and variance of the rankings from different data

set.

Features that are consistently important across different training sets are ro-

bust against concept drift or sampling biases. However, These features can be either

suspicious behaviors or artifacts caused by a particular environment. To verify if

DNN model actually learns and generalizes suspicious behaviors, we manually ex-

amine the features with high ranking mean.

For Windows data set, top 10 features are listed below.

1. Load advapi32.dll

2. Load user32.dll

3. Load kernel32.dll

4. Execute (null)

5. Write c:\docume~1\alluse~1\applic~1\mozilla\ctvqzym.exe

6. Write %path%\tasks\hiqvsnd.job

7. Open HKLM\system\setup\software\microsoft\windows

\currentversion\explorer\user shell folders

8. Query value HKLM\software\microsoft\cryptography
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9. Open HKLM\software\policies\microsoft\windows\safer\codeidentifiers

10. Load user32

The following features have highest average ranking in Android experiment.

1. Feature android.hardware.touchscreen

2. API call getSystemService

3. Intent android.intent.action.MAIN

4. API call android.content.Intent.setDataAndType

5. Intent android.intent.category.LAUNCHER

6. Permission SEND_SMS

7. Activity .MainActivity

8. Permission READ_PHONE_STATE

9. API call org.apache.http.impl.client.DefaultHttpClient

10. Permission INTERNET

Known behaviors. We compare features with highest ranking mean with analyst

features to test if machine learning model and human analysts can reach an agree-

ment on important features. Figure 4.2 shows the number of overlapping features

between two feature sets. In general, the top features selected by models are dif-

ferent from analyst features. Only 27 features (Android) and 2 features (Windows)

are in the top 100 features for the models.
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Figure 4.2: The number of overlapping features between data-driven features and

knowledge-based features. Biases removed means feature set is selected based on

significance across different data groups, and we use the feature ranking directly

from training set in the case without bias removal.

In addition, we do the same analysis for the feature ranking without removing

data biases. We use the ranking from S1 and S5 as examples. We find that it is more

likely to include analyst features if we use ranking mean to rank features than simply

using ranking from one data set. It suggests that data biases memorized by the

machine learning model is less important in a long-term evaluation. By combining

the knowledge over time, the model is more likely to generalize the knowledge that

is close to human analysts. It also suggests that human analysts take into account

if the features are useful in the future when they engineer features.

We find that machine learning system actually learns some similar knowledge

as human analysts. For example, the presence of vboxminirdrdn (rank 20) can be

used detect if the program is running in virtual environment, which is included in
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greater than 0.025.

Cuckoo signatures.

Compared to Windows experiment, the Android model is more likely to reach

an agreement with human analysts. One possible reason is that Android features

have higher occurrence in general, and human analysts are good at finding features

from common behaviors. However, Windows features, which includes the argument

string, have more variations, which makes it difficult for human analysts to identify

the common behaviors. Figure 4.3 shows the feature frequency for both Android

and Windows.

New behaviors. Machine learning model is also able to learn suspicious behaviors

that are overlooked by human analysts. For example, querying value from registry

key HKLM\software\microsoft\cryptography (rank 8) indicates an intent to get

machine GUID. This behavior itself is not malicious, but it is usually the first step
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for attackers to fingerprint the victims and keep tracking them. Similar behaviors

are also used for Android malware, which uses API call getDeviceId to get the

machine ID.

Another example of the missing behavior is querying value from registry key

...\explorer\shell folders, which ranks 17 in our experiment. The registry

key stores the default path of user shell folders, for example, “My Documents”,

“My Photos”, etc.. It might correspond to the attempts to access user’s data, e.g.

steal personal information or encrypt user documents.

4.3.3 Artifacts

Since machine learning model only generalizes security knowledge from data,

the most significant and robust features used by the model is likely to result from

data artifacts. We find that many top features in our experiment come from data

artifacts. Even though the model can achieve high true positive rate with low false

positive rate in experimental setting, the features may not be meaningful for human

analysts.

In summary, we find 3 types of data artifacts from our experiments, i.e.

environment-sensitive features, side-effects from malicious behaviors, and missing

components.

Environment-sensitive features.

Environment-sensitive features are the features that directly relate to the ma-

licious behaviors of malware, but the behaviors might be different in different envi-

80



ronment.

For example, ...\mozilla\ctvqzym.exe (rank 5) and %path%\tasks\hiqvsnd.job

(rank 6) are two malicious payloads from Win32/Kryptik malware family. Our

dataset contains 4589 samples from this family, and every sample show the same

pattern of activity: an executable payload named ctvqzym.exe is dropped in a

folder mimicking mozilla and a schedule task to maintain persistence is created us-

ing the hiqvsnd.job file. All samples used the exact same names and file paths for

their dropped files.

Although these features are important in our dataset to distinguish malicious

and benign samples, they may not be extended outside Cuckoo sandbox environ-

ment. For example, while the combination of dropping the executable in a mozilla

folder and creating the scheduled task in a .job file is a behavior performed by

all samples in the Kryptik family, the consistent file names is not. We find that

running the same samples in a different sandbox yield different file names for both

the scheduled task file and the dropped executable. We run the sample in two other

sandboxes, on the first, the executable is named byiamvi.exe and the scheduled

task file is named rwdqoxi.job, on the second, they are named ltyfsyc.exe and

bikzrwg.job. At a high level, the way the model learned to detect samples from the

Kryptik family is through the combination of the above two features, creating the

executable and setting up the scheduled task. In reality, the model learned to hone

in on two values which are artifacts of the used sandbox environment. In practice,

the model will not be able to correctly classify Kryptik samples on any host that is

not configured the exact same way the sandbox was.
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Another example of environment-sensitive artifact is connecting to 10.0.2.2,

which ranks 18 in our experiment. The IP address is in internal IP ranges, which is

used as the gateway for guest OS by default in Windows when it tries to connect to

host OS. The event can appear when the malware scans network ranges, or attempts

to move laterally to other machines. All the activities from the malware are isolated

in sandbox environment, and the network connection is guarded through an internal

gateway, which in our case is 10.0.2.2. However, the network traffic will never go

through the internal gateway in practice.

The third example is executing (null) commend (rank 4). This feature is

the event that an command execution is monitored but Cuckoo fails to obtain the

actual command string. This is possibly because malware launches other application

via an unusual way which causes some unexpected errors in Cuckoo to obtain the

command string. It does not tell the actual command the program trying to run,

but makes the behavior stands out by accident.

Side-effects from malicious behaviors. Different from environment-sensitive

features, we use side-effects to refer to the behaviors that are not from attackers,

but are highly correlated with malicious behaviors.

For example, dynamic analysis is likely to include behaviors from operating

system. To run start a new process, system might check software restriction policy

from registry key ...\safer\codeidentifiers (rank 9) and search for the com-

mand under registry key HKCR\*\shell (rank 16). To communicate with remote

server, the system might open registry key ...networkprovider\hworder (rank
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19) that stores the network provider order and open pipe pipe\wkssvc (rank 21)

that maintains network connection with remote server. In addition, the relationship

between these correlated behaviors might be difficult to verify if they are applicable

in different environments, e.g. different Windows versions.

Missing components. Because malware usually have limited functionalities, mal-

ware may not have some common modules that are usually implemented in benign

applications. For example, feature android.hardware.touchscreen (rank 1) is

common and present in the manifest in almost every Android applications that re-

quire touch screen, and therefore it is impossible to be considered as important for

human analysts. Table 4.5 shows the percentage of applications that do not require

touch screen feature. We find that the percentage of malware is high for the apps

without touchscreen feature especially when the apps exhibit sensitive behaviors.

One possible reason is that there is no need for malware author to implement a

UI if the malware is only a service. Another benefit for disabling touchscreen is

that the malware is likely to be exposed to more devices from Android market like

Google Play where the app list is determined by customers’ devices. However, these

features cannot tell any actual behaviors of Android apps, event though they are

useful to distinguish malicious from benign apps. In addition, attackers can easily

create evasive samples by adding those missing components in Android manifest,

which makes the system vulnerable in practice.
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Table 4.5: Percentage of malware under certain conditions.

Condition Total No touchscreen

Call bin/su 83.5% 100%

Call getSubscriberId 62.2% 92.3%

Call getDeviceId 38.8% 72.7%

Connect to maps.google.com 50.9% 89.7%

4.3.4 Biases and concept drift

Features that are important to only a few training sets indicates the differences

of data sets. Such difference possibly results from sampling bias and concept drift.

It is likely that during a specific time one particular malware family is prevalent but

suddenly becomes inactive at some point. The sampling bias makes system vulner-

able by emphasizing the behaviors from a specific malware family. Additionally, the

difference in data sets can be the result of concept drift as well. It is well-known

in security community that malware is always showing new behaviors in order to

evade detections. Top 10 features with highest ranking variance in Android data

are listed below.

1. Intent android.intent.action.BATTERY_CHANGED_ACTION

2. API call android.os.Handler.sendMessageDelayed

3. Service receiver com.google.update.UpdateService

4. Activity com.google.update.Dialog
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5. Service receiver com.google.update.Receiver

6. API call java.util.SortedMap.entrySet

7. API call java.util.GregorianCalendar.after

8. API call android.widget.TextView.setInputType

9. Activity .Activity1

10. API call java.io.RandomAccessFile.writeByte

The top 10 features with highest ranking variance for Windows are listed below.

1. Write c:\python27\pythonw.exe

2. Open key HKCR\jpegfile

3. Open key HKCR\http

4. Open key HKLM\software\microsoft\windows\currentversion\

internet settings\zonemap\domains\dnsnb8.net

5. Copy %programfiles%\winrar\rar.exe

6. Open key HKCU\software\microsoft\windows\currentversion\

internet settings\zonemap\domains\dnsnb8.net

7. Create key HKLM\software\gtplus

8. Open HKLM\system\currentcontrolset\control\securityproviders\saslprofiles

9. Create c:\documents and
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10. Create c:\documents

Figure 4.4 shows the top 10 features with highest ranking variance for Android

data set. Most of features are dominant in one particular family (either benign or

malicious). If one malware family is prevalent in a particular time, then the model

learns it as the general knowledge for security. If the malware family becomes less

prevalent or changes the behavior, then the important features learned from the

past is no longer useful. For example, intent BATTERY_CHANGED_ACTION is used only

in DroidKungfu family in our data set, and therefore is useful in detecting mal-

ware for the model. However, DroidKungfu family becomes less and less prevalent

in dataset. 9.2% of malicious apps belong to this family in S1, but the percent-

age decreases to 4.7%, 1.9% and 2.1% in S2, S3 and S3 respectively. It suggests

that this intent becomes less useful in detecting malware over time. Similarly, ac-

tivity com.google.update.Dialog, service receiver com.google.update.Receiver

and com.google.update.UpdateService become less important since DroidKungfu

gradually disappears. It is common in security that malware keeps evolving due to

arms race. If the malware is detected and the attack becomes less effective, then the

attackers have to change their strategy. Since we cannot distinguish if the malware

indeed disappears in the wild, the drifted security knowledge can be a result from

sampling bias as well.

We find a similar trend for Windows experiment as well. Figure 4.5 shows

the distribution of malware families for the top 10 features with high uncertainty.

Open registry key ...\zonemap\domains\dnsnb8.net is mostly observed from fam-
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Figure 4.4: Top 10 features with the highest uncertainty (Android). An empty

family represents benign samples
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ily wapomi. The frequency of this malware family is 2.7%, and the frequency of this

family decreases to 0.5%. Although the frequency change is not large, the machine

learning model is sensitive and is able to capture the changes in the data.
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Figure 4.5: Top 10 features with the highest uncertainty (Windows). An empty

family represents benign samples.
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Chapter 5: Feature engineering for malware campaigns

In this chapter, we explore the feature engineering problem for malware de-

livery campaigns. In Chapter 5.1, we introduce a chain model for malware delivery

campaigns, which considers both existing campaign ontology and common informa-

tion mentioned in security blogs. In Chapter 5.2, we evaluates the performance of

IOC detection and categorization. In Chapter 5.3, we analyze the effect of different

baiting techniques on binary delivery.

5.1 Malware delivery model

5.1.1 Definition

The emerging standards for sharing threat intelligence [23–25] are based on the

observation that cyber attacks often follow certain high-level patterns. This allows

analysts to define generic models for representing and sharing the information.

In particular, the STIX standard [25] has been adopted by an increasing num-

ber of security products [119]. STIX defines a comprehensive schema that uses

IOCs to describe campaigns [25]. In this schema, a campaign consists of a set of

indicators which specify an attack pattern. An Indicator is then defined to be
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a set of observables, which includes all the resources and infrastructure in the

attack pattern. An Observable, defined in CybOX (v2.1) [24], contains 88 different

types including URI, IP address, file, registry key, etc.. To add semantics for the

attack pattern, STIX defines kill_chain_phase as an attribute for indicator. A

kill chain1 breaks down an attack in a sequence of stages. The original definition of

the cyber kill chain [103] specified 7 stages: reconnaissance, weaponization, delivery,

exploitation, installation, command & control and actions on objective.

Malware delivery campaigns. To represent malware delivery campaigns, we

adopt three stages from the STIX data model: exploitation, installation, and com-

mand & control. Additionally, we redefine the first stage of these campaigns based

on our observation that, while attackers will sometimes gain an initial foothold on

a host by delivering malicious files (e.g. as email attachments), in other causes they

rely on malvertising to lure users to an exploit kit’s landing page or to persuade

them to download and install a dropper. We therefore replace the delivery stage

with a baiting stage, which captures all these strategies.

There are 4 different types of indicators, which cover the most common and

important stages involved in malware delivery.

1. Baiting : This is the first stage of delivery campaign. The most common ap-

proaches to draw users to the malware delivery chain are email spam, malver-

tising and compromised sites. Once the user clicks on a link from a spam

1“Kill chain” is a military term describing the stages of an attack that results in the destruction

of a target (i.e. a “kill”). Separating the attack stages is helpful for identifying different defensive

techniques that could break the chain and disrupt the attack.
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message, or visits a compromised site, the browser will be redirected to a ma-

licious site. Before landing on the exploit server, users might be redirected

through several relay pages, which are included this stage.

2. Exploitation: After user is redirected to the landing page of an exploit kit, the

exploit server fingerprints the browser and the installed plugins and tries to

identify open vulnerabilities. The server then tries to exploit a vulnerability

and deliver a payload.

3. Installation: A malicious payload is downloaded on the end host, and the

exploit server installs and executes the malware. Without using exploits, at-

tackers can also lure users to install and execute the malware through social

engineering.

4. Command & Control : The executed malware contacts its command and con-

trol server and receives remote commands. The commands may involve down-

loading the next stage of the malware, dropping unrelated samples (e.g. in

the case of a Pay-per-Install infrastructure [31]) or performing other malicious

actions (e.g. spam, DDoS).

These stages are not necessary for every payload delivery. For example, campaigns

can entice users to download and install the payload by users themselves through

social engineering. In this case, the exploit stage would be unnecessary.

Table 5.1 lists all the observables we use for each type of indicators. Observable

contains 6 types, i.e. URL, IP address, file hash, malware family, exploit kit, and

vulnerability, in which CybOX observable includes the former 3 types. Figure 5.1
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shows one example of how the malware delivery schema can well fit the actual blog

posts. Our payload delivery model simplifies the data model in STIX in that (1) we

primarily focus on network activity in the campaign rather than the behavior on the

victim machine, and (2) many observables are unlikely to be discussed in security

articles and cannot be used to uniquely determine the campaign. Note that the

term IOC (indicator of compromise) is equivalent to the concept of an observable

in STIX. In order not to confuse the reader, we use the terms IOC and indicator

phase instead of STIX’s observable and indicator in rest of this paper.

A campaign group corresponds to the actors of a campaign, represented by a

set of IOCs. A supplier corresponds to an actor that provides delivery services by

controlling droppers in the field. A tier-1 supplier is a supplier that operates baiting

and exploitation domains.

High-risk binaries. We utilize the VirusTotal service [110] to assess the binaries

recorded in the measurement data. VirusTotal provides file scan reports for up to 54

anti-virus (AV) products. In line with prior work [33], if a binary receives more than

30% anti-virus detection from VirusTotal, then we considered it a high-risk binary.

Because the blog posts discuss both malware and potentially unwanted programs

(PUPs), we do not aim to distinguish if a specific binary is malware or PUP. Instead,

we focus on binaries that present a high risk to the end hosts because (1) they are

highlighted as security threats in the articles we analyze, and (2) they have a high

detection rate among AV products. A high-risk download is a download event with

a high-risk binary payload.
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(b) Structured malware delivery campaign

Figure 5.1: An example of mapping unstructured blog post to structured schema

for malware delivery.
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Table 5.1: IOCs and indicator phase in malware delivery model.

Phase IOCs IOC Type

baiting

attachment_hash hash

attachment_family malware family

server_URL URL

server_IP IP

exploitation

exploit_site_URL URL

exploit_site_IP IP

exploited_vulnerability vulnerability

exploit_kit exploit kit

installation
malware_hash hash

malware_family malware family

C&C
C&C_server_URL URL

C&C_server_IP IP

Generality. Our system for mining security articles requires a model of the mali-

cious activity to extract the relevant semantics. The model defined in this section

is specific to malware delivery campaigns; however, our NLP techniques are generic

and may be applied to other models. The results in this paper could be extended

to other cyber threats by defining a pertinent model, for example by starting from

an existing standard such as STIX.
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5.1.2 Classification

In this section we describe the design of ChainSmith, a system that extracts

and categorizes IOCs from security technical articles in colloquial English, according

to the schema defined in Chapter 5.1.1. The key intuition behind ChainSmith is that

the context words in adjacent sentences indicate the stage of a campaign, and the

context words that directly relate to the IOC determine its level of maliciousness.

In addition, we are able to group IOCs from different actors by considering the

campaign stages and article post time.

Figure 5.2 shows the architecture of ChainSmith. The system consists of 6

components: article crawler, expression detector, syntactic parser, semantic parser,

named entity recognition, and IOC classifier. In this chapter, we first describe the

data collection in Chapter 5.1.3 and then introduce the design of the classifier in

Chapter 5.1.4.

5.1.3 Data collection

Just like the actors involved in malware delivery tend to specialize on narrow

tasks, security analysts also focus on specific phases of the delivery campaigns. The

full picture of an end-to-end campaign often emerges only after reading articles from

multiple sources. We therefore implemented a generic crawler to collect security

articles published online.

We use our crawler to mine 10 sources, listed in Table 5.2. We select these

sources in that (1) the articles are likely to include detailed information about the
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Figure 5.2: Architecture of ChainSmith. The article crawler module is not shown

in this figure.

campaign, and (2) the sources are diverse—including news websites covering cyber

threats, blogs from anti-virus companies, or the personal blogs of security experts.

5.1.4 Campaign extraction

Since the design of expression detector, syntactic parser, semantic parser,

named entity recognition follows standard syntactic analysis (Chapter 1.4) or has

been used in FeatureSmith, we focus on IOC classifier in this chapter.

The primary goal of this step is to identify whether the given word is an IOC

as well as the stage of the campaign it belongs to. Basically, we select 2 types of

features for this task.

Sentence-level feature. This type of feature captures the topic of the sentence

and is useful to detecting the categories of features. First, we identify informative
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Table 5.2: Summary of security articles. For some articles, we fail to identify the

posting time.

Article source Time span Count

Forcepoint 2010-02-11 – 2017-05-13 227

Hexacorn 2011-10-01 – 2017-05-15 331

Malwarebytes 2012-04-20 – 2017-05-15 1590

Sophos 2000-11-24 – 2017-04-17 1171

Sucuri 2009-09-13 – 2017-05-12 927

TaoSecurity 2003-12-01 – 2017-05-08 2653

Trend Micro 2009-09-13 – 2017-05-15 1382

Virus Bulletin 2005-09-01 – 2016-01-29 601

WeLiveSecurity 2009-05-08 – 2017-05-16 4295

Webroot 2009-03-23 – 2017-05-14 978

Total 2000-11-24 – 2017-05-16 14155

words in the sentence. We use Equation (5.1) to estimate the importance of a word

in identifying topics,

S(w) = max
t∈T

p(w|t)
p(w)

(5.1)

where T is the set of categories, w is word we evaluated, p(w) is the probability

of word w, and p(w|t) is the probability that word w will be used for describing

topic t. A higher word score means that w is more likely to be used in a certain

campaign phase. For example, iframe, src, malvertising have high scores for the
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topic phishing, and exploit-serving has a high score for topic of exploitation. We

consider informative words to be words with high score and high occurrence. For

each sentence, we determine the context from 3 sources: (1) informative words

from the current sentence; (2) informative words from previous sentences, if no

informative words are found for the current sentence; and (3) informative words

from the previous sentence that mention the same IOC. The motivation behind

source 2 is that the topic of an article is usually consistent. For example, if the topic

of current sentence is command and control, then it is very likely that the next

sentence is also discussing command and control. The last context source comes

from the observation that the same entity can be discussed repeatedly in different

sentences. We use 3 types of features to identify the sentence topic:

• Average word embedding of the context words.

• Average word embedding of the article title.

• Number of entities of each type.

Word-level feature. This type of feature provides word-specific information and

is useful to provide additional validation for classification results. The entities in

the same sentence may not be of the same category. Therefore, I propose some

word-level features that differentiate between the entities.

• Average dependency embedding for all dependencies connected to the named

entity.

• Type specific feature.
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The first feature is useful in determining which category the named entity belongs

to, since the dependency tells the grammatical structure within a sentence. The type

specific feature is useful to tell if an entity is malicious. For example, the mis-click

prevention strategy (e.g. “hxxp” and “[dot]”) is an indicator of the maliciousness

of URLs and IP addresses.

Classifier design. We first train a classifier to check if the topic of a sentence falls

in any of these 4 phases using sentence-level features. Because the topic may not

be mutually exclusive, we train 4 binary classifiers to identify topic probabilities.

We implement the classifier using neural network with 1 hidden layer and 50 hidden

nodes. To reduce the false positives, we skip the IOC candidates if no informative

words are found.

Next, we use the result of topic classification as the feature for another neural

net for IOC classification. The candidate IOCs extracted in the previous steps may

not be related to malware delivery campaigns. For example, a file hash mentioned

in the blog post may refer to a benign executable, such as a new patch or anti-virus

product. To verify that the named entities identified represent IOCs of a campaign,

we train a multi-class classifier for each entity type (e.g. URL, IP address) using

both topic probabilities and word-level features. Instead of applying a softmax layer

to the output layer, we use a logistic function to scale the output probability, such

that the sum of the probabilities is not necessarily to be 1. To reduce the false

positive rate, we add a special label “malicious” as another output, for the case

when the classifier returns more than one label from a single sentence. For these

100



IOCs, the classifier cannot reliably tell which stages they belong to. Therefore,

rather than drop the results, we label them as “malicious”.

Campaign group identification. Technical articles are likely to mention both

suppliers and customers in the underground economy. From our manual investi-

gation, we find that different from scientific literature, security blogs usually dis-

cuss one observation from single campaign rather than investigate the problem in a

broader view. For example, blog posts are likely to record the current status of single

campaign as shown in Figure 5.1. However, unlike scientific literature, the compar-

ison between different campaigns is usually absent from blog posts. Therefore, we

assume that each technical article discusses one supplier and multiple customers. For

each article, we group all the IOCs in baiting and exploitation phase as one group

and consider the other IOCs as individual groups (one IOC for each group). In

addition, as campaigns may change infrastructure and strategies over time to evade

detection, we must connect campaigns from different articles in order to study the

long-term behavior and campaign evolution. We use a more conservative idea to

connect different campaigns with the same IOCs than the method in [57] . If two

campaigns contain identical IOCs and appear within a short time frame of another,

then we consider that they are in fact the same campaign. For example, if one

domain is mentioned by two articles in May 2012 and August 2012, then we group

the campaigns from two articles. In this study, we choose the time window to be

6 months, which means that the campaign groups are merged only if they share

common IOCs and are discussed within 6 months of one another.
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Figure 5.3: Screenshot of annotation website.

5.2 Evaluation results

A key challenge for semantics extraction is the lack of a ground truth. While

IOCs are available on several threat intelligence platforms, the malware delivery

phase that these IOCs correspond to are usually unavailable. To train and evaluate

ChainSmith, we built a web application for manually annotating articles, as shown in

Figure 5.3. The annotators can first specify which campaign stage the IOC belongs

to and then enter the IOC name in the box. This tool allows us to collect the

ground truth for our system. 4 graduate students from our group participated in the

annotation exercise. To increase their chances of extracting meaningful information

about malware delivery campaigns, we presented only articles that contain at least

20 named entities for labeling. In this way, we annotate 153 articles and 6264 IOCs.
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Even with the ground truth collected from manual annotation, off-the-shelf

NLP techniques are inadequate for characterizing malware delivery campaigns. We

design a baseline system that models the campaign stage classification using tradi-

tional topic modeling. We consider each sentence as an individual document, and

train a topic model using Latent Dirichlet allocation (LDA) [121]. LDA is an unsu-

pervised algorithm widely used for topic modeling. For example, the Toronto Paper

Matching System (TPMS) [122] employs LDA to model the reviewers’ research ar-

eas and the areas of papers under submission. Additionally, a growing number of

conferences utilize TPMS for making automated reviewer assignments. After train-

ing in this manner, we identify the topic for each stage using the training set. If

a sentence belongs to one malware campaign stage, then we extract all the named

entities and label them as the attribute of that stage.

We use 5-fold cross-validation to evaluate the performance of ChainSmith and

of our baseline system. Table 5.3 shows the results. ChainSmith achieves 91.9%

precision and 97.8% recall, which is 13.7% and 31.1% higher than the baseline

model, respectively. Since the campaign stage classification is a multi-class problem,

we take the average precision and recall for all classes. Out of the detected IOCs, we

are able to classify 86.2% of them into a campaign stage with 78.2% precision and

80.7% recall, which is more than twice as high as the baseline model. 2 ChainSmith

outperforms the baseline because it is able to better determine the sentence context

2Because ChainSmith is able to detect but fails to categorize part of IOCs, we cannot precisely

calculate the recall . For a fair comparison to the baseline model, we calculate the lower bound by

multiplying the classification rate (86.2%) to the recall (80.7%).
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Table 5.3: Performance comparison of ChainSmith and a baseline NLP system,

which utilizes Latent Dirichlet Allocation.

IOC detection

Precision Recall

ChainSmith 91.9% 97.8%

Baseline 78.2% 66.7%

Stage classification

Precision avg Recall avg

ChainSmith 78.2% 69.6%– 80.7%

Baseline 37.0% 28.7%

and the informative words.

We run ChainSmith on all 14,155 articles we collected, and discover 24,653

IOCs. Table 5.4 shows the summary for each type of IOCs. In addition, from

the extracted IOCs, we further identify 8,902 campaign groups mentioning either

suppliers or customers. We use one Sun Fire X2200 M2 server with 8 logical proces-

sors and 8GB RAM for this experiment. Extracting IOCs from one security article

requires 0.214 seconds on average for each article.

To assess the need for ChainSmith, we collect 568,348 fully qualified domains

and 297,218 IPv4 addresses from Hailataxii [29], a repository providing threat in-

telligence feeds in the STIX format [25]. 3 Compared to the IOCs collected from

3The data is collected by 2016-12-15.
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Table 5.4: Summary of extracted IOCs.

Stage Attribute Count

baiting
server_URL 4,874

server_IP 1,001

exploitation

exploit_site_URL 3,735

exploit_site_IP 732

exploited_vulnerability 554

exploit_kit 572

installation
malware_hash 4,263

malware_family 1,604

C&C
C&C_server_URL 2,161

C&C_server_IP 1,271

unknown 3,879

Total 24,653
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ChainSmith, only 60 overlapping domains and 26 overlapping IP addresses are found

in both data sets, and Jaccard index is 1.0 ∗ 10−4 and 8.7 ∗ 10−5 for domain and IP

address respectively. This illustrates the fact that most of the indicators discussed

in the threat intelligence reports are not made available in a machine-readable for-

mat. Moreover, none of the IOCs from Hailataxii specifies the kill_chain_phase

attribute, which would preclude the analysis we conduct in the rest of this section

from being performed on the dataset.

Next, we link the campaign groups extracted from blog posts to Kwon et al.’s

data set of download events [30]. This data set is based on Symantec’s WINE plat-

form, which provides security telemetry from real-world hosts. Each download event

in the data set specifies the file hash of the downloader and its payload (the down-

loaded file), and optionally the URL or IP from which the payload was downloaded.

In total, the telemetry data records 50.5M download events from 5M real-world

users. Using the download event data, we check if IOCs for each campaign group

are used as the downloader or downloading portal. We are able to find the subse-

quent download events for 59 groups, 37 of which produce high-risk downloads in

the measurement data. We label all the suspicious download events based on the

campaign IOCs. Consequently, we further discover 224 suspicious downloaders and

3,395 suspicious payloads.

Data release. We plan to release the ChainSmith system in the form of a Web

application at http://ioc-chainsmith.org. We set up a web crawler for collecting

articles each week. Then ChainSmith parses the articles and updates the database
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with new results. The website provides the entire data for download as well as a

search interface to access the data.

5.3 Security implications

5.3.1 Persuasion techniques

To entice users to download the payloads, attackers are creative in designing

persuasion methods. Email spam, compromised websites, and malvertising can be

used as the basic approaches to targeting large group of individuals. In addition, the

attacker can post deceptive advertisements to persuade users to click on malicious

link. By integrating human discovery from blog posts and the real-world download

data from WINE, we aim to study different persuasion strategies as well as their

impact on subsequent download behaviors.

We identify 59 campaign groups that are both reported by security analysts

and WINE. Then we manually label the campaign groups based on the platform

where the information is displayed and the trigger that initiated the download, e.g.

the message that lures users to click or exploit kit that exploits a machine directly.

As a result, we are able to label baiting techniques for 44 campaign groups.4

Table 5.5 shows the top campaign groups that drop the most high-risk binaries

in WINE. To study the timeline of campaign groups, we further define active time

4Some blog posts focus more on the payload and only report the fact where the payload is

dropped, without describing the download infrastructure. In this case, we are not able to collect

the baiting techniques.
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Table 5.5: Top 10 campaign groups that drop the most suspicious binaries. The

group name is identified from the information provided by the references. Active

time corresponds to the time span of suspicious downloads, and discovery time

corresponds to the date when the references are posted. hrd: high-risk download,

hrb: high-risk binaries.

Rank Name # of hrb. # of hrd. Active time Discovery time Persuasion technique

1 Pinball Corp 874 25,578 05/19/2010 - 10/06/2013 03/29/2011 Advertise missing codec.

2 InstallCore 281 502 03/19/2012 - 02/07/2014 06/24/2013 - 10/18/2013 Advertise missing codec.

3 YieldManager 167 29,756 10/06/2012 - 06/28/2014 12/20/2012 - 07/03/2013 Advertise Flash Player.

4 Somoto installer 137 4,703 04/16/2012 - 06/27/2014 05/15/2013 - 07/26/2013 Advertise missing codec.

5 EzDownloaderpro 29 119 07/06/2012 - 09/30/2013 10/22/2013 Download portal.

6 OpenCandy 18 497 07/29/2013 - 06/15/2014 05/02/2014 Download portal.

7 Clikug 16 450 11/20/2013 - 06/30/2014 12/04/2013- 02/13/2014 Advertise Skype credit generator.

8 Awimba LLC 14 144 05/28/2012 - 05/23/2013 06/19/2013 Flash update notification.

9 BubbleDock 10 58 08/08/2013 - 01/05/2014 11/11/2013 Advertise missing codec.

10 – 6 88 02/04/2013 - 10/27/2013 03/02/2013 Flash update notification.
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to be the time span when high-risk downloads are observed in measurement data,

and discovery time as the time period that the corresponding blogs are posted.

26 campaign groups start from social engineering, which is the most commonly

used technique in our data. Unlike drive-by downloads, social engineering does not

involve exploitation and intrusion, and malware delivery is initiated by user actions.

Table 5.5 shows that all the top campaign groups entice users simply through social

engineering, which suggests that social engineering is prevalent and effective.

To dig deeper into the social engineering methods, we group the high-risk

binary payloads according to the persuasion technique utilized, and we calculate the

daily rate of high-risk downloads produced by each technique. Figure 5.4 shows the

daily high-risk downloads for the top 10 baiting techniques. For a fair comparison

among the social engineering methods, we remove drive-by downloads that deliver

payloads directly using exploits. Figure 5.4a shows the total daily downloads of

high-risk binaries. Media player related advertisement involves providing deceptive

information that entices users to download something in order to watch an online

video. For example, group 1 in Table 5.5 provides a fake video, and asks users to

download the missing plug-in in order to play it. Most high-risk download events

occur in response to media player advertising. In fact, this ruse can be substantially

more persuasive than other techniques: groups 1 and 3 from Table 5.5 generate an

order of magnitude more downloads than other groups.

Figure 5.4b shows the daily downloads per file, for each persuasion technique,

which reflects the delivery ability from the perspective of customers. The most pro-

lific campaign group sends messages containing the download URL to the contacts
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of compromised Skype accounts. The effectiveness of this technique in distributing

high-risk files suggests that users are less alert to the message received from their

friends and colleagues. However, we do not observe a large volume of downloads

for these campaigns, which are limited by the number of compromised accounts.

Another effective baiting trick is to present a fake software update notification, and

the common target applications are Flash Player and IE. To enhance credibility,

the page hosting the supposed plug-in can even mimic the Flash Player installation

process; instead, a dropper is usually installed on the user’s machine. The least

attractive baiting content is anti-virus scanners. These anti-virus scanners are usu-

ally labeled as PUP (potentially unwanted program) since they do not behave as

they claimed and ask users to buy the license. The low rate of downloads suggests

that users are less susceptible to the rogue anti-virus advertisement, which is also

supported by prior work [97]. Interestingly, an application that warns about an im-

pending zombie invasion produces a higher download rate than the rogue anti-virus

scanners.

We do not include drive-by downloads in our analysis, as the total number

of downloads is too small to accurately estimate the influence and effectiveness of

the technique. This suggests that attackers likely change the domains used for

exploitation and intrusion frequently so that the IOCs collected from blog posts

cannot be used to capture the download behaviors. The binary download behaviors

from three exploit kits are recorded in WINE. However, the total number of high-

risk downloads is less than 10 for each of groups, which suggests that the domains

can change rapidly for the exploitation and intrusion campaigns.
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Figure 5.4: Daily downloads of high-risk binaries. Total daily download (a) reflects

the frequency that a specific baiting technique is used in high-risk download; while

the average of individual file (b) reflects the effectiveness of binary delivery of a

single file.
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Table 5.5 shows the dates when campaigns from the top tier-1 groups were

active. This shows that these campaigns are long lasting, usually exceeding 1 year

in duration. Because the download event data-set was collected until June 2014,

we cannot track the full length of some campaigns persisting past that date. The

campaigns for half of the top tier-1 groups remain active at that date, suggesting

that the real duration may be significantly longer. These long durations suggest

that we currently lack the technical means to stop the delivery campaigns involved

in social engineering. Interestingly, for 7 out of the 10 campaigns, the articles

mentioning them are published well within the activity period of the campaigns,

suggesting that the campaigns go on after they are discovered by security analysts.

This suggests that the baiting techniques remain effective in luring users, and the

benefits of switching to another baiting technique do not outweigh the costs.

Implications. Comparing the effectiveness of the persuasion techniques employed

by malicious actors suggests areas where public awareness and education are most

likely to have an impact on malware delivery. In addition, the campaigns from tier-1

suppliers usually go on for at least 1 year—even after they have been discovered.

This reveals the limitations of existing security tools in preventing campaigns that

rely upon social engineering. Because most tier-1 suppliers employing social engi-

neering do not exhibiting any exploitation or intrusion intentions, and because the

downloaded payload may not expose obvious malicious behavior, it is difficult to

detect and determine whether to block such campaigns in the gray area.
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5.3.2 Underground business relationships

To study the business relationship between tier-1 suppliers and their cus-

tomers, we identify the ownership of payloads from the certificate and the anti-virus

signatures. If the payload is signed, which is often the case for PUPs, then we con-

sider the publisher in the certificate as the owner of the payload. If the payload is not

signed, then we identify the malware family using the AVclass tool [123]. As a result,

we identify 289 payload owners. The payload owners maintain a direct relationship

with tier-1 suppliers if the payload is dropped from the domains of tier-1 suppliers.

Otherwise, we consider the relationship as indirect if the binary is bundled by the

reseller without establishing direct relationship with tier-1 suppliers. 87.5% of pay-

load owners maintain a direct relationship with the tier-1 suppliers, which suggests

that the majority of downloads are directly associated with the baiting techniques.5

In addition, one actor might have different ways to deliver its payloads. For ex-

ample, Somoto better installer has its own advertising network [124], but it is also

delivered through OpenCandy in our data set.

Some business relationships might be hidden from the measurement data be-

cause the real creator of a binary may not be the parent process. For example,

if the application creates a service, then svchost.exe might be recorded as the

parent of any subsequent behaviors from the service. Therefore, the parent-child

5The actual percentage of direct should be higher, because the payload owner and tier-1 supplier

can be the same. In this case, the customer of the payload dropper also has a direct relationship

with tier-1 suppliers.
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relationship might be incomplete from the measurement data. However, blog posts

provide another complementary data source to bridge the missing relations because

security analysts are able to differentiate and report the real causal relationships.

By integrating the results from security articles, we are able to formulate hypotheses

about the business relationship between campaign groups. For example, tpstneuk-

nash[dot]com is reported as the C&C server for ZeroAccess, and it delivers Tro-

janSpy:Win32/Bafi.E in WINE. Therefore, it is likely that the victim of ZeroAccess

receives the command to download Win32/Bafi from tpstneuknash[dot]com. More-

over, such business relationship might be previously unknown, since Win32/Bafi

is absent from malware families that are dropped by ZeroAccess [125]. Moreover,

Symantec security response lists two malware families dropped by ZeroAccess, and

the payload malware we discovered is not on the list, which implies that the business

relationship might be previously unknown.

Implications. Although not all campaign groups have infrastructure for baiting,

most of the groups are the direct customer of tier-1 suppliers. In addition, the

tier-1 suppliers can also be the customer of another group. This suggests that the

business relationship is prevalent and the actors in the underground market can

be highly connected. Moreover, there might be more business relationships hidden

from measurement data due to the fact that it is hard to find the real parent of a

download event.
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5.3.3 Lifecycles of campaigns and infrastructures

As noted in Chapter 5.3.1, most of campaign groups use social engineering

for binary delivery. This suggests that most of the domains used in exploitation

and intrusion may change frequently, and consequently it is difficult to use IOCs

for detecting long-running campaigns. Figure 5.5 shows the distribution of IOC

occurrence in technical blogs for file hash, URL and IP address.6 Owing to malware

polymorphism and domain generating algorithms, most domains and malware will

not be identical during the same campaign and therefore security analysts are likely

to report different IOCs from the same campaign. In addition, IP addresses are

more likely to be discussed in different articles, because they are more difficult to

be changed than URLs and file hashes. This suggests that attackers are likely to

change the domains they used in order to evade detection, and therefore IOCs are

usually short-lived and may never be used again.

While their utility for real-time detection is limited, IOCs can be useful in

security forensics to identify long-term campaign groups. Domains can be changed

frequently, but the attackers are still likely to reuse part of the infrastructure, which

makes it possible to connect the dots and observe the long-term evolution of a cam-

paign. Figure 5.6 shows examples of spam campaigns related to the Cridex family

collected from 6 different articles. All the spam emails redirect users to the BlackHole

exploit kit, and drop one version of Cridex malware. The malware communicates

with different command and control servers, and the IP of the C&C server keeps

6We use fully qualified domain for counting URL, which ignores the associated path name.
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Figure 5.5: Percentage of the IOC occurrence in technical blogs for file hash, URL

and IP address. The distribution of IOC occurrence is highly skewed, and therefore

we only show the percentage of the occurrence less than 3.

changing over time, which is likely because the server’s IP gets blacklisted. But

in some cases, the attacker reuses old C&C IPs. For example, as shown in Figure

5.6, attacker reused 210.56.23.100 on November 19 (4 months later), and reused

95.142.167.193 on November 26 (3 months later). One possible explanation for this

behavior is that IPs are removed from blacklists after several months so that the at-

tackers may add them back to the campaign infrastructure. Kührer et al. studied 15

blacklists from which they estimated the average blacklisting time [126]. Although

the average listing time varies for different blacklists, the malicious domain will be

delisted after 100 days on average. This suggests that attackers might actively check

if the domain and IP are removed from blacklist, and utilize the old delisted domain

and IP.

Implications. Our findings provide important lessons for the most effective uses of

threat intelligence. The premise of threat intelligence is that sharing the technical
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Figure 5.6: Spam campaigns that drop Worm:Win32/Cridex.E.

details of breaches and attacks makes everybody safer because it makes it harder

for attackers to reuse attack methods and artifacts, thus increasing their work fac-

tor [21]. Our results suggest that the detection of IOCs based on URLs and IPs is

not an effective mitigation, as the network identities of servers involved in malware

delivery campaigns already change frequently. While several domain generation al-

gorithms have been reverse engineered in prior work [102], future IP and domain

name changes within one campaign cannot, in general, be predicted based only on

the threat intelligence. Even though the URLs and IP addresses of malicious servers

are short-lived, campaigns using this infrastructure can be long-lasting and they may
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continue after some components are taken down. This suggests that the connections

established among IOCs and the qualitative insights about the campaigns are the

most useful outcomes of threat intelligence.
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Chapter 6: Discussion

6.1 Automatic feature engineering

The fundamental reason why we can extract salient malware features from

scientific papers is that researchers tend to show the useful features and ignore

those that do not work. Additionally, as the publication process focuses on novelty,

papers often show examples that are absent in prior work. This enables us to extract

features automatically by mining scientific papers. Moreover, the features that are

not related to malware are seldom mentioned in papers, which facilitates feature

mining process.

In some cases, the relationship between malware and features is not stated

explicitly. For example, researchers illustrate the behavior of malware without

mentioning any specific API calls; similarly, when analyzing the Android API, re-

searchers may list the calls that leak personal data without mentioning specific mal-

ware families. In these cases, the middle behavior nodes from our semantic network

help us link the malware to features. These nodes also allow us to discover more

related features from Android developer documents. These documents illustrate the

functionality of API calls, which reveals the relationships between behaviors and

features. This allows us to fill some gaps left in the research papers on Android
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malware.

A potential direction for further improving FeatureSmith is to combine the

behaviors with the same semantic meaning. One method is to manually create a

task-specific ontology, which would require an intensive annotation effort. An alter-

native solution is to utilize word embeddings, like our system in Chapter 5, which

allows us to determine whether two behaviors are identical. Another benefit from

embedding words or behaviors with the semantic meaning is constructing behavior

sequences. For example, we could identify features that represent the initial step in

a sequence of actions, such as the onClick feature that is usually the entry point of

the malicious activity.

FeatureSmith provides a general architecture for extracting informative fea-

tures from natural language, which could be adapted to other security topics. For

example, we could extract the features for iOS or Windows malware by using a

different set of concrete malware families and features. However, our feature engi-

neering process works under the assumption that a feature is be a named entity. If

the features are associated with some operations, such as “max”, “number of”, our

current implementation cannot identify these features automatically. Besides mal-

ware detection using function calls as features, network protocols is another area

where we can identify a large amount of named entities. For example, instead of

malware we could look at network attacks and instead of API calls we could utilize

various fields from protocol packets.

Since knowledge from scientific literature cannot cover every aspects of secu-

rity, we propose another data-driven feature engineering approach that learns im-
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portant features directly from data. The key difference between ReasonSmith and

the state-of-the-art technique for model explanation is that we model the feature

importance as a random variable, and the analysis is feature-oriented. In security

applications like malware detection, features usually have their own semantic mean-

ing. By identifying most important features, researchers can easily verify if the

features are indicators for new behaviors or artifacts learned from training data.

However, the state-of-the-art techniques are sample-oriented, which focus on inter-

preting individual features. The explanation only shows the local representation of

the system, and it is still unclear how the model works for the whole data set. In

addition, the sample-oriented technique is able to tell if a feature is important by

giving one example, but not able to tell if a feature is not important.

In this dissertation, we only test the case when local interpretation can be

modeled by single Gaussian distribution, which is a strong assumption. To better

estimate the distribution, we should evaluate the performance for Gaussian mixture

model, where k is greater than 1. Another approach is to use non-parametric es-

timation, for example, neural representation. The idea is similar to GAN, which

models the input distribution by a feed-forward generator [127]. The generator re-

turns a fake local interpretation and can be trained together with a discriminator

that tries to distinguish the real local interpretation and the generated one. Then

we can further apply Monte Carlo method to generator to estimate the probability

that interpretation w is non-zero.

We propose two different methods to engineer feature hypotheses for malware

detection from security literature and malware data set, which helps analysts to effi-
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ciently identify important features and data artifacts. However, in this dissertation,

we did not answer how to select features in practice. Because we show that data

artifacts are common in security in Chapter 4, it is difficult to develop some criteria

to select features automatically. Whether the features are meaningful to security an-

alysts should be a primary metric to evaluate the feature quality. As a future work,

we could study how security analysts think about the important features through a

user study, and further develop a framework for feature selection.

6.2 Malware delivery campaign

As social engineering is the prevalent strategy to start the delivery campaign,

human factors play an important role in the security arms race. The state-of-the-art

detection systems focus more on blocking network intrusion and removing malicious

programs, but they usually ignore whether the behaviors are consistent with what

is as expected. In many cases, especially for PUP delivery, the message provided in

the campaign is inconsistent with the behavior behind the scenes. This provides an

opportunity for stopping these campaigns by blocking the misleading advertisement,

regardless of whether the downloaded payload is malicious or not. For example, a

benign download should be blocked when it is bundled with a fake Flash update

notification. In this case, understanding the semantics of advertisement is the key

to preventing the deception.

In this dissertation, we compare the IOCs collected from blog posts to the

real-world measurement data. We show that threat intelligence is useful in secu-
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rity forensics, because it provides semantics to the measurement data and make it

possible for security researchers to explain the measurement data. However, measur-

ing the effectiveness of IOCs in detecting malicious campaigns is equally important

and has not been studied thoroughly. In fact, that few IOCs are shared in both

measurement data and security articles suggests that the infrastructure in the cam-

paign is likely to change frequently. Therefore, how to make the most use of threat

intelligence in real-time campaign detection should be an important next step.

Automatically extracting the semantics of security threats from natural lan-

guage documents is a promising direction for the analysis of long-lasting cam-

paigns. In particular, determining semantics of the relationships among indica-

tors of compromise is key to reconstructing chains of actions and distinguish dif-

ferent actors in the campaign. Prior techniques for extracting IOCs from tech-

nical documents [57, 128, 129] are unable to reconstruct campaigns automatically

(in [57], the authors established some links between a C&C infrastructure and the

exploits utilized through manual analysis). In contrast, ChainSmith automatically

reconstructs the semantics of entire delivery campaigns. One benefit of semantic

relationships is that they allow us to identify different actors in campaigns. To

stimulate further research on cyber threat intelligence, we released a Web appli-

cation (http://ioc-chainsmith.org) for providing data extracted automatically

from natural language reports in a timely manner.
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Chapter 7: Conclusion

In this dissertation, we study automatic feature engineering for malware de-

tection using both qualitative data (e.g. scientific literature and security blogs) and

quantitative data (e.g. malware execution traces).

Knowledge-base feature engineering. In Chapter 3, we describe FeatureSmith

system that automatically engineers features for Android malware detection by min-

ing scientific papers. The system’s operation mirrors the human feature engineering

process and represents the knowledge described using a semantic network, which

captures the semantic similarity between abstract malware behaviors and concrete

features that can be tested experimentally. FeatureSmith incorporates novel text

mining techniques, which address challenges specific to the security literature. We

use FeatureSmith to characterize the evolution of our body of knowledge about

Android malware, over the course of four years. Compared to a state-of-the-art

feature set that was created manually, our automatically engineered features shows

no performance loss in detecting real-world Android malware, with 92.5% true pos-

itives and 1% false positives. In addition, FeatureSmith can single out informative

features that are overlooked in the manual feature engineering process, as human

researchers are unable to assimilate the entire body of published knowledge. We
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also propose a mechanism for utilizing our semantic network to generate feature ex-

planations, which link the features to human-understandable concepts that describe

malware behaviors. Our semantic network and the automatically generated features

are available at http://featuresmith.org.

Data-driven feature engineering. In Chapter 4, we describe ReasonSmith sys-

tem that evaluates the global importance of all features for deep neural network

based models. The system models feature importance as random variable that can

be estimated empirically from a given data set. We evaluate our system using both

Windows and Android data sets with more than 100k samples in each. By remov-

ing the features that are less important, the DNN-based malware detectors can still

have high true positive rate with low false positive rate, which shows that Reason-

Smith provides better feature score that captures the global influence. In addition,

we further distinguish data biases and artifacts by applying ReasonSmith to data

in different time spans. We find that many important features learned by neural

networks are artifacts that potentially degrade the performance of malware detector

in practice.

Feature engineering for malware campaigns. In Chapter 5, we describe Chain-

Smith, a system that automatically extracts IOCs from technical articles and in-

dustry reports, and classifies them into different campaign stages, i.e. baiting, ex-

ploitation, installation and command and control. This provides a semantic layer

on top of IOCs that captures the role of indicators in a malicious campaign. Chain-

Smith achieves 91.9% precision and 97.8% recall in extracting IOCs from natural
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language documents and is able to determine the campaign stage for 86.2% of IOCs

with 78.2% precision and 80.7% recall. In addition, we identify 8,902 campaign

groups from IOCs based on the stages and article post time. This makes it possi-

ble to combine threat intelligence with field-gathered data. The data is released at

http://ioc-chainsmith.org.

We use a data set of download events to measure the effectiveness of different

persuasion strategies employed in the baiting stage. We find that most campaigns

deliver payloads through social engineering, without exhibiting any intrusion inten-

tions. Media player advertising is most persuasive and generates the largest number

of high-risk downloads, but “friends recommendations” and fake update notifica-

tions are most effective, as they generate the most daily downloads per file. In

addition, we find that most of the customers in the malware delivery ecosystem

have direct relationships to the suppliers that operate baiting services. Finally, we

give use cases for leveraging IOCs in security forensics, which sheds new light on

the best uses of threat intelligence.
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