
ABSTRACT

Title of dissertation: DECOUPLING CONSISTENCY
DETERMINATION AND TRUST FROM THE
UNDERLYING DISTRIBUTED DATA STORES

Vasileios Lekakis, Doctor of Philosophy, 2018

Dissertation directed by: Professor Pete Keleher
Department of Computer Science

Building applications on cloud services is cost-effective and allows for rapid devel-

opment and release cycles. However, relying on cloud services can severely limit appli-

cations’ ability to control their own consistency policies, and their ability to control data

visibility during replication.

To understand the tension between strong consistency and security guarantees on one

hand and high availability, flexible replication, and performance on the other, it helps to

consider two questions. First, is it possible for an application to achieve stricter consis-

tency guarantees than what the cloud provider offers? If we solely rely on the provider

service interface, the answer is no. However, if we allow the applications to determine the

implementation and the execution of the consistency protocols, then we can achieve much

more.

The second question is, can an application relay updates over untrusted replicas with-

out revealing sensitive information while maintaining the desired consistency guarantees?

Simply encrypting the data is not enough. Encryption does not eliminate information leak-

age that comes from the meta-data needed for the execution of any consistency protocol.

The alternative to encryption—allowing the flow of updates only through trusted replicas—

leads to predefined communication patterns. This approach is prone to failures that can

cause partitioning in the system. One way to answer “yes” to this question is to allow trust

relationships, defined at the application level, to guide the synchronization protocol.

My goal in this thesis is to build systems that take advantage of the performance, scal-

ability, and availability of the cloud storage services while, at the same time, bypassing the

limitations imposed by cloud service providers’ design choices. The key to achieving this

is pushing application-specific decisions where they belong: the application.

I defend the following thesis statement: By decoupling consistency determination and

trust from the underlying distributed data store, it is possible to (1) support application-

specific consistency guarantees; (2) allow for topology independent replication protocols

that do not compromise application privacy.

First I design and implement Shell, a system architecture for supporting strict consis-

tency guarantees over eventually consistent data stores. Shell is a software layer designed

to isolate consistency implementations and cloud-provider APIs from the application code.

Shell consists of four internal modules and an application store, which together abstract

consistency-related operations and encapsulate communication with the underlying stor-

age layers. Apart from consistency protocols tailored to application needs, Shell provides

application-aware conflict resolution without relying on generic heuristics such as the “last

write wins.” Shell does not require the application to maintain dependency-tracking in-

formation for the execution of the consistency protocols as other existing approaches do. I

experimentally evaluate Shell over two different data-stores using real-application traces.

I found that using Shell can reduce the inconsistent updates by 10%. I also measure and

show the overheads that come from introducing the Shell layer.

Second, I design and implement T.Rex, a system for supporting topology-independent

replication without the assumption of trust between all the participating replicas. T.Rex uses

role-based access control to enable flexible and secure sharing among users with widely

varying collaboration types: both users and data items are assigned roles, and a user can

access data only if it shares at least one role. Building on top of this abstraction, T.Rex

includes several novel mechanisms: I introduce role proofs to prove role membership to

others in the role without leaking information to those not in the role. Additionally, I

introduce role coherence to prevent updates from leaking across roles. Finally, I use Bloom

filters as opaque digests to enable querying of remote cache state without being able to

enumerate it. I combine these mechanisms to develop a novel, cryptographically secure,

and efficient anti-entropy protocol, T.Rex-Sync. I evaluate T.Rex on a local test-bed, and I

show that it achieves security with modest computational and storage overheads.

DECOUPLING CONSISTENCY DETERMINATION AND TRUST
FROM THE UNDERLYING DISTRIBUTED DATA STORES

by

Vasileios Lekakis

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2018

Advisory Committee:
Professor Pete Keleher, Chair/Advisor
Professor Yiannis Aloimonos
Professor A. Udaya Shankar
Professor Mark A. Shayman
Professor Neil Spring

c© Copyright by
Vasileios Lekakis

2018

Dedication

To my wife, Jessica. Without her love and support, I certainly could not have completed

this thesis.

ii

Acknowledgments

I would like to thank my advisor Pete Keleher and my committee members Udaya

Shankar, Yiannis Aloimonos, Mark Shayman, and Neil Spring.

I am grateful to all my friends from the lab: Yunus Basagalar, Matt Lentz, Ramakrishna

Padmanabhan, Aaron Schulman, Adam Bender, Randy Baden, Greg Benjamin and Dave

Levin.

I am also grateful for my Greek friends: Evripidis Paraskevas, Theo Rekatsinas, and

Konstantinos Zampogiannis.

Finally, I am deeply grateful to my wife Jessica for her support and continuous encour-

agement. And my sweet dog Shaggy for keeping me company all these early mornings the

last few years.

iii

Table of Contents

Dedication ii

Acknowledgements iii

List of Figures ix

List of Tables ix

1 Introduction 1
1.1 Challenges: Managing Consistency . 3
1.2 Challenges: Topology-Independent Replication Without Information Leakage 6
1.3 Thesis . 7
1.4 Contributions . 8

2 Background and Related Work 11
2.1 Consistency Primer . 11
2.2 The Rise of NoSQL . 13
2.3 Data Access Objects (DAO) . 14
2.4 Communication Patterns In Replication Protocols 16
2.5 Synchronization Sessions . 18
2.6 Abstraction Leakage . 19
2.7 Shell Related Work . 21
2.8 T.Rex Related Work . 23
2.9 Summary . 25

3 Shell: Supporting strict consistency guarantees over eventually consistent
data stores 26
3.1 Design . 27

3.1.1 Shell objects . 28
3.1.2 Architecture . 30

iv

The Application-Broker Module 30
The Consistency-Enforcer Module 31
The Storage-Manager Module . 32
The Cloud-Manager Module . 33
Application storage . 33
PUT, GET, and Incoming Updates 35

3.2 Implementation . 37
3.2.1 Dealing With Unreliable cloud-manager 38

3.3 Evaluation . 39
3.3.1 Dataset . 40
3.3.2 Application: NBA Broadcast . 42
3.3.3 Setup . 43
3.3.4 Consistency . 44
3.3.5 Update Visibility, Not Bandwidth 48
3.3.6 Application Experience . 51

3.4 Summary . 55

4 Topology independence and Information Leakage in Replicated Storage Sys-
tems 57
4.1 System model . 58

4.1.1 Security goals . 59
4.2 T.Rex design . 60

4.2.1 Replication: State, Updates and Policies 61
4.2.2 Ramifications of consistency in T.Rex 62

4.3 T.Rex implementation . 64
4.3.1 Replication and information leakage 65
4.3.2 Role Coherence and object forking 68
4.3.3 Attacks . 69
4.3.4 Freshness . 70
4.3.5 Prototype . 71

4.4 Performance evaluation . 72
4.4.1 CPU costs . 72

Shard creation . 74
Anti-entropy . 75

4.4.2 Costs of update anonymity . 78
Bloom filters versus version vectors 78

4.4.3 Storage costs . 79
4.5 T.Rex on the cloud . 82
4.6 Summary . 84

5 Conclusions and Discussion 86
5.1 Future Work & Open Problems . 88

v

Bibliography 92

vi

List of Figures

1.1 Topology independence example. 5
1.2 Cloud replication . 5

2.1 DAO pattern in UML. 15
2.2 DAO block level diagram. 15
2.3 Client-Server replication. 16
2.4 Hierarchical topology for replication. 16
2.5 Distributed Hash table. 17
2.6 Topology independent replication. 17
2.7 Traditional anti-entropy protocol. 20

3.1 Shell block-level architecture. 28
3.2 Shell SO. 29
3.3 Shell storage-manager implementation example 30
3.4 Shell PUT flow . 34
3.5 Shell GET flow. 35
3.6 Shell Reception of an update. 36
3.7 Shell data-set summary. 40
3.8 Shell DIFF ji metric for the Dropbox implementation. 41
3.9 Shell DIFF ji metric for ZeroMQ implementation. 42
3.10 Shell (Dropbox) CDF for defer operations. 44
3.11 Shell (ZeroMQ) CDF for defer operations. 45
3.12 Shell (Dropbox) update-visibility metric for different consistency

protocols. 49
3.13 Shell (ZeroMQ) update-visibility metric for different consistency

protocols. 50
3.14 Shell Game duration over ZeroMQ. 51
3.15 Shell Game duration over Dropbox. 52
3.16 Shell comparison of update sizes. 53

4.1 T.Rex-Sync . 64
4.2 T.Rex anti-entropy protocol example . 65
4.3 T.Rex data-set summary . 73

vii

4.4 Shard creation CPU costs, and shard sizes. 74
4.5 Cost breakdown: T.Rex vs traditional sync 75
4.6 Cryptographic overhead T.Rex vs traditional sync 76
4.7 Bloom filter overhead with varying freshness. 78
4.8 T.Rex meta-data overhead . 80
4.9 T.Rex data overhead . 81
4.10 T.Rex cloud design . 83

viii

List of Tables

3.1 Shell defer operation summary for two data stores. 47

4.1 Representative version vector sizes (after serialization) 79
4.2 Meta-data storage overhead . 81

ix

Chapter 1

Introduction

The proliferation of mobile devices has resulted in personalized computing ecosystems

wherein users use whichever device suits their needs at the moment: a mobile phone on

the move, a desktop computer at home, a tablet in front of the TV, and so on. Users expect

that their data will be available and consistent across all of their devices. Moreover, as

collaborative software like Google Docs [49] has become popular, users have grown to

expect the data they share to be available and consistent, even as their collaborators make

updates.

Replicated data stores are the canonical approach to achieving consistency across mul-

tiple devices. Generally speaking, they function as follows: when a user modifies a data ob-

ject, the system updates a local version and records the change. This creates entropy in the

system until other replicas know about this update. Replicas perform anti-entropy [3, 33]

sessions either periodically or on-demand. In an anti-entropy session, replicas compare

their version vectors, inform one another of whatever updates they are missing, and update

their version vectors. Entropy decreases with each anti-entropy session, and as updates

spread from user to user, entropy eventually approaches zero.

Replicated data stores fall into two major categories. The first category is Peer-to-Peer

(P2P) systems [113] where every user’s device is an autonomous replica in the system. To

1

communicate, autonomous replicas can either follow a hierarchical communication pattern

or use discovery [43] mechanisms to find “close” replicas int the network. This paradigm

operates without a central trusted authority that coordinates replication.

Though P2P systems were very popular, they came with a series of limitations. These

limitations include low availability (due to high node churn rates [110]) and unreliable [61,

69] routing techniques [30]. These shortcomings meant that P2P systems could not meet

the ever-growing demand for always-available, highly durable, and low-cost storage solu-

tions that accompanied the explosion of the Internet and the World Wide Web (WWW).

Centrally managed cloud-based storage systems—the second category of replicated

data stores—have become more attractive. In this paradigm, a cloud provider maintains the

storage infrastructure. Replication follows the master-slave paradigm, usually with only

best-effort consistency guarantees. The customers interact with the storage layer through a

service interface that the cloud provider owns and maintains.

Though there is a large variety [6–9, 12, 48] of available replicated storage services,

the cornerstone of most applications today is NoSQL [26, 32] data stores. NoSQL data

stores can support high throughput workloads while combining low latency with high scale.

Furthermore, unlike the traditional relational databases, they do not impose any schema-

constraints on the data they store.

Unlike the traditional full-ACID [53] stores, NoSQL data stores choose availability

over strong consistency guarantees. Guaranteeing only eventual consistency allows them

to process operations even when some of their internal replicas are unreachable, either

because of hardware failures or, more commonly, because of network partitions. This

preference for high availability means that applications frequently operate with inconsistent

data.

To understand the tension between strong consistency and security guarantees on one

hand, and highly flexible, performant, and available replication on the other, it helps to

2

consider two questions. First, is it possible for an application to achieve stricter consistency

guarantees than what the cloud provider offers? If we solely rely on the provider service

interface, the answer is no. However, building a layer between applications and the cloud

allows us to achieve much more.

The second question is, is it possible for an application to relay updates over untrusted

replicas without revealing sensitive information, and while maintaining consistency guar-

antees? Encryption alone is not enough. Encrypting application data does not eliminate

information leakage that comes from the meta-data needed for the execution of any con-

sistency protocol. Another alternative — allowing the flow of updates only through trusted

replicas — leads to predefined communication patterns. The problem with this approach

is prone to failures that can cause partitioning in the system. One way to answer “yes” to

this question is to allow trust relationships, defined at the application-level, to guide the

synchronization protocol.

1.1 Challenges: Managing Consistency

It is challenging to offer consistency guarantees and a conflict resolution mechanism

tailored to application needs when operating over a third-party data store. One obvious

reason for this is that application developers have no control over the implementation of the

storage layer. Other reasons for this are (1) that cloud providers offer API interfaces with

limited expressiveness, and (2) that widely-used programming patterns for accessing the

storage layer, such as Data Access Object (DAO), fail to account for eventually consistent

data stores, which by definition do not support all of the ACID properties.

Cloud providers, fighting for market-share, create consistency abstractions that need

to be broadly applicable. The results are low level API calls which, in consistency terms,

translate to simple READ and WRITE operations. To make matters worse, application

3

developers are forced to use these generic abstractions to build their own consistency so-

lutions. There is no intuitive way to build a consistency protocol, like causal consistency,

using a plain READ and WRITE API interface.

A second challenge is that applications commonly access their data through data ac-

cess objects (DAO) [87] which provide abstract interfaces to databases or other persistence

mechanisms. By utilizing the Single Responsibility Principle [98], the pattern separates

the persistence layer from the application. The DAO pattern offers an object interface that

stays the same despite possible changes in the persistence layer. This pattern also hides

complexities in the underlying storage layer from the application. But while DAOs might

protect the application from schema and implementation changes, they are meant to be

used above storage layers that support all of the ACID properties. This is not a valid as-

sumption for NoSQL data stores. When the assumptions for an abstraction no longer hold,

the abstraction will leak complexity [64, 107]. Abstraction leakage exposes the complexity

and limitations of the underlying implementation. When applications are backed from a

NoSQL data store, eventual consistency seeps into the application code base.

The reality of complex distributed applications is that consistency-related assumptions

are scattered throughout the code base. Software evolves rapidly. Different developers,

primed to focus on the application functionality, add new features and bug fixes daily.

Bugs, with consistency as a cause, manifest themselves as application level errors and thus

are treated as such. When a production system is broken, it is difficult for developers

to translate from application semantics to consistency semantics, which take place in an

infrastructure that the cloud provider maintains and is not accessible to the developer.

The result is a system that is unwieldy to develop, difficult to maintain, and impossible

to transition from one provider to another. The creation and maintenance of a system in

this environment requires developers to manually translate application semantics to low-

level consistency guarantees that are set by someone else—the provider. This task is error-

4

Bob Laptop

Objects: X,Y

Bob Desktop

Objects: X,Y

Alice Tablet

Objects:Y

X' ,Y'

(Sync) (Sync)

X' ,Y'

Figure 1.1: A personal sharing system might schedule the desktop’s updates to be delivered to the
laptop via the tablet. Both the desktop and the laptop access X and Y , while the tablet only accesses
(has rights for) object Y . The data shown inside a box might be leaked because the tablet can see
that the desktop just modified X . The tablet may also be able to see the contents of the update.

X' ,Y'
Cloud

Alice TabletBob-Desktop

Objects: X,Y
Objects:Y

Bob Laptop

Objects: X,Y

(Sync)

X' ,Y'

Figure 1.2: Cloud services add cloud replicas to the set of user replicas that might stage data for
which they have no access rights. Data, and information about data, might leak to any of the user or
cloud replicas.

prone and requires thorough knowledge of both the application and the infrastructure. As a

result, many developers rely on adding redundancy to application code, essentially treating

application-level symptoms rather than treating their deeper consistency causes. While

these solutions are insightful when implemented, taking them out of context makes them

hard to understand and even harder to maintain.

5

1.2 Challenges: Topology-Independent Replication Without Information

Leakage

The explosion of mobile devices has created an “anywhere-anytime” mentality in the

users; they expect data to follow them wherever they go and to whatever device they use.

To achieve this goal, any device should have the ability to communicate with any other

device in a P2P system. In the case of a cloud sync-service like Dropbox, devices should

also be able to contact any of the provider’s meta-data servers. The ability to communicate

freely, without topology restrictions, makes a replication protocol topology-independent.

It is challenging to support topology-independent replication protocol without the as-

sumption of uniform trust among the participating replicas. Topology-independent proto-

cols [18, 113] allow replicas to push updates to any other replicas in the system, effectively

using them as data relays. This approach is flexible and can handle varying connectiv-

ity while maximizing the use of scarce resources. However, replicas can temporarily host

updates for objects in which they are not interested, and for which they have no rights to

access.

Figure 1.1 shows an example of this process in an anti-entropy [113] protocol in pure

P2P system. The figure shows a replication protocol that supports TI with three participat-

ing replicas: a desktop, a laptop, and a tablet. Both the desktop and the laptop store objects

X and Y . The third device, a tablet, stores only object Y and is owned by a second user:

Bob.

Such data placement exposes conventional replication and consistency protocols to data

leakage. The system starts with a consistent set of states: both X and Y have the same values

everywhere. The desktop updates X and Y , creating new versions X ′ and Y ′. The figure

shows the desktop sending new updates X ′ and Y ′ to the laptop, using Alice’s tablet as a

6

data relay. The issue is whether the tablet learns anything that it should not as it passes X ′

on to the laptop. If X ′ is not encrypted, Alice learns about its existence and contents. If it

is encrypted, Alice could learn the meta-data of the file. Finally, if data and meta-data are

both encrypted naively, Alice’s tablet would have no way to determine where to send the

update.

Cloud-based replication protocols also take advantage of TI in moving updates between

cloud replicas as well as between cloud replicas and their clients. Figure 1.2 shows a similar

example in which the Desktop again creates new updates X ′ and Y ′. A cloud software

agent running on the desktop, for example Dropbox [36], propagates the updates to a cloud

server, which then updates Alice’s other device, the laptop. The cloud is acting as a data

relay, resulting in the updates potentially being pushed to all of Alice’s client replicas and

to an arbitrary number of servers of the cloud provider.

In both examples the replication protocol leaks information. In the case of the P2P

scenario (Figure 1.1), the protocol leaks information to the tablet. In the cloud scenario

(Figure 1.2), the user information leaks to the provider’s cloud servers.

1.3 Thesis

Relying heavily on a plethora of cloud services is cost effective and allows for features

to be developed and released quickly. At the same time, this reliance can severely limit the

ability of the applications to define their own policies, get the consistency they want, and

retain control of what data is visible during replication.

My goal in this thesis is to build systems that take advantage of the performance, scal-

ability, and availability of the cloud storage services while, at the same time, bypassing the

limitations imposed by cloud-service providers’ design choices. The key to achieving this

is pushing application-specific decisions where they belong [103]: the application.

7

Policies should be application-specified decisions. The rules of applying and con-

suming data updates—a consistency protocol—is one example of a policy. The cloud

providers, through the highly available NoSQL data stores, provide best-effort consistency

mechanisms. Reliable, high performing mechanisms need to be simple. In the case of

NoSQL data stores, this simplicity comes from relaxing the consistency guarantees. This

does not mean that an application has to settle for inconsistent data. Instead, application

designs should take into account the nature of today’s data stores and shift the consistency

determination outside the core storage mechanism of the provider.

The trust relationships between replicas (user replicas or cloud servers) and data place-

ment are another example of what should be an application-specified policy. The mech-

anism of data dissemination—a replication protocol—cannot determine these trust rela-

tionships. Existing P2P replication protocols achieve the desired topology-independence

by assuming trust between every replica in the network. Today, this assumption has carried

on to the cloud based synchronization services, compromising security. Once again, an

application should not have to settle for this.

I defend the following thesis statement: By decoupling consistency determination and

trust from the underlying distributed data store, it is possible to (1) support application-

specific consistency guarantees; (2) allow for topology-independent replication protocols

that do not compromise application privacy.

1.4 Contributions

I use the principle of separating the mechanism from policy [70, 123] to provide appli-

cations with stricter consistency guarantees and to allow for replication protocols that do

not compromise users’ privacy. The rest of this thesis is as follows:

Chapter 2: An introduction to existing consistency and replication protocols. I

8

define and summarize various consistency protocols. I describe extensively the challenges

that arise for accessing eventually-consistent data stores through today’s programming pat-

terns. I describe existing replication protocols and the challenges of supporting topology-

independence. Additionally, I describe how related work addresses these challenges.

Chapter 3: Shell: An architecture for supporting strict consistency guarantees

over eventually consistent data stores. I design and implement Shell. The Shell ar-

chitecture consists of single-responsibility modules that together encapsulate consistency-

related code. The Shell layer is located between the cloud provider and the application,

executing the application-specified consistency implementation. In addition to consistency

protocols tailored to application needs, Shell also provides application-aware conflict re-

solvers without relying on generic heuristics such as the “last write wins”. Shell does not

require the application to maintain dependency-tracking for the execution of the consis-

tency protocols, as in existing approaches [14, 74]. I experimentally evaluate Shell over

two different data-stores using real-application traces. I found that using Shell can reduce

application-visible inconsistencies by up to 10%. I also show the overheads that come from

introducing the Shell layer.

Chapter 4: T.Rex, A system for supporting topology-independent replication with-

out the assumption of trust between all the participating replicas. T.Rex uses role-based

access control [42] to enable flexible and secure sharing among users with widely varying

collaboration types. Both users and data items are assigned roles, and users can access data

only if they share at least one role with that data. Building on top of this abstraction, T.Rex

includes several novel mechanisms: I introduce role proofs to prove role membership to

others in the role without leaking information to those not in the role. Additionally, I in-

troduce role coherence to prevent updates from leaking across roles. Finally, I use Bloom

filters as opaque digests to enable querying of remote cache state without being able to

enumerate it. I combine these mechanisms to develop a novel, cryptographically secure,

9

and efficient anti-entropy protocol, T.Rex-Sync. I evaluate T.Rex on a local test-bed, and I

show that it achieves security with modest computational and storage overheads.

10

Chapter 2

Background and Related Work

In this chapter, I provide background information about two common abstractions that

we use to build modern distributed systems. I explain in detail the mechanics of Data

Access Objects [87] and Topology Independence. I discuss their advantages and the as-

sumptions on which they are based. I show how these abstractions lead to leakage when

the assumptions they are based on no longer hold. By leakage, I refer to both exposure of

complexity (non-obvious limitations of the underlying implementation) and to information

leakage. Finally, I review research work related to my thesis and the two systems I built,

Shell and T.Rex.

2.1 Consistency Primer

In this section, I provide short definitions of some common consistency protocols.

Strong Consistency [1]: After an update on object X completes, every subsequent

access on X from every replica in the system will return the new value of X .

Eventual Consistency [113]: The storage layer guarantees that if no new updates are

applied to an object X , eventually all read requests will return the last updated value of X .

Causal Consistency [4]: All causally-related operations, reads, writes, are executed

11

in an order that reflects their causality. A case that establishes a causal relationship is a

read on variable X followed by a write on variable Y because the read of X might influ-

ence the write of Y . Another case is a write on variable X followed by a read on on the

same variable. Finally, two consecutive writes, even in different variables, are considered

causally related. Some recent works in causal consistency [14, 74] introduce the concept

of explicit causality. In the case of explicit causality the application developer provides the

dependency graph of the operations that the application considers causally related.

Session guarantees [114]: A storage system might make consistency guarantees for

the lifetime of a user- or application-defined session. Common models include Read-Your-

Writes, Monotonic Reads, Monotonic Writes, and Write follows Reads. The Read-Your-

Writes model specifies that after a replica updates an object X , it will never access an older

value for X . The Monotonic-Reads model specifies that after a replica has read a value for

object X , no later access will return older values of X . In Monotonic-Writes, a replica’s

writes are always serialized and applied in the same order everywhere. Finally, in the case

of Write follows Reads write operations are propagated after reads on which they depend

on.

Quorum protocols [67]: In this family of protocols there are three configuration pa-

rameters: N is the number of replicas in the system, W is the number of replicas that need

to confirm a write operation, and R is the number of replicas to contact when an object is

accessed for a read operation. Different values for the (N,W,R) variables provide different

guarantees. First, when W +R > N, there is strong consistency because this configuration

guarantees that any two quorums overlap, and therefore all prior decisions are seen. On the

other hand, W +R = N does not provide consistency guarantees because updates may not

have propagated to the reader replica. Furthermore the W < (N + 1)/2 configuration can

lead to conflicting writes because the write quorums do not overlap. Finally, the W +R≤N

configuration offers only eventual consistency.

12

2.2 The Rise of NoSQL

Building reliable distributed systems at a worldwide scale demands trade-offs between

consistency and availability [119]. The result of this trade-off was the rise of NoSQL

databases. NoSQL data stores favor high availability and low latency over consistency.

In terms of consistency guarantees NoSQL databases support eventual consistency (see

Section 2.1).

In contrast to relational databases, NoSQL data stores come without fixed schema. A

programmer may have different schema on a per object basis. Dynamic schema on a per

object basis allows applications to change without requiring any change to the underlying

data store. In a relational database, a programmer would need to alter a table and also the

application objects that are populated from this table. In the case of the dynamic schema,

the application programmer worries about the application objects.

A NoSQL database can scale horizontally by adding more servers. On the other hand,

relational databases scale for the most part vertically. Scaling vertically means that in order

to scale a database server we would need to add more CPU cores or more memory. Re-

lational databases can also scale vertically by sharding. With sharding, different database

servers hold part of the data and programmer must maintain the routing logic that deter-

mines the mapping of data to a particular server shard. The major advantage of relational

databases over NoSQL systems is the native support of transactions. However, it is difficult

to support transactions over multiple shards. Moreover, the application developer is the one

who must maintain this logic.

13

2.3 Data Access Objects (DAO)

The Data Access Object (DAO) design pattern abstracts details of the storage layer from

the application. The DAO is often associated with JAVA Enterprise Edition, but it is appli-

cable to most programming languages. For consistency purposes I will describe it using

JAVA terms.

The canonical implementation of the pattern involves three classes. The first class is an

interface that is exposed to the application, and which defines how the application interacts

with the storage layer. The second class is JAVABEAN, which is the medium to transfer

data between the application and the storage layer. A JAVABEAN class has a public con-

structor and get/set accessor methods. A JAVABEAN class must be serializable. The third

class is the DAO implementation. This class implements the client interface by passing and

accepting data through the JAVABEAN class.

Figure 2.1 illustrates the three basic parts of the DAO pattern for an application that

stores NBA game events. The JAVABEAN is the NBAEvent. The DAO interface is the

NBAEventDAO. NBAEventDAO defines how the application communicates with the storage

layer. The third part, DatabaseEventDAO, is a relational database implementation of the

NBAEventDAO.

The idea behind the DAO pattern is to allow for multiple implementations of the NBAEventDAO,

for example, such as a file-based implementation and a NOSQL-based implementation.

Although different implementations require storage-layer-specific domain knowledge to

account for the peculiarities of the underlying system, the DAO layer’s interface permits

the application to access the storage layer without regard for storage-layer-specific domain

information.

Applications, then, are responsible only for maintaining code that allows communica-

tion with the DAO layer. The interface between the application and the DAO layer will not

14

saveEvent(event: NBAEvent) void
getEvent(): NBAEvent

<<interface>>
NBAEventDAO

NBAEvent

getScore(): Integer
setScore(score: Integer) void
getGameId() String
setGameId(gameId: String) void

score: Integer
gameId: String

uses

saveEvent(event: NBAEvent) void
getEvent(): NBAEvent

DatabaseNBAEvent

implements

Figure 2.1: This is a high level class diagram of the implementation of the DAO pattern for an
NBA event store. The figure illustrates the interface that the pattern exposes to the applications,
NBAEventDAO. The data object that the pattern carries data, NBAEvent and one database implemen-
tation of the interface, DatabaseEventDAO.

change when the storage layer changes. Changing the storage layer does not affect the

application itself. Similarly, changes in the application logic remain isolated in the appli-

cation domain without the need to propagate them beyond the DAO layer. The result is that

two important parts of an application’s software stack, the business logic and the persis-

tence layer, can change independently. Furthermore, the DAO layer allows the application

to test its interaction with the storage layer through unit tests [58]. Figure 2.2 provides a

bird’s-eye view of the interaction between the DAO, persistence, and the application.

Application DAO Storage
layer

Figure 2.2: The DAO layer is located between the application and the storage layer. The DAO layer
isolates the application logic from persistence domain and allows them to evolve independently
providing them with a reference interface.

15

Figure 2.3: Representation of a traditional
client-server model. “Thin” clients retrieve
data from a server.

Figure 2.4: Hierarchical topology where
only a few clients talk to the central server
and act as caches for the rest of the replica in
the hierarchy

2.4 Communication Patterns In Replication Protocols

The literature contains a vast number of papers focused on distributed storage sys-

tems [5, 26, 29, 71, 74]. Two important properties of every distributed storage system are

their consistency and replication protocols. This section focuses on the replication aspect.

More specifically, I will examine the mechanisms that a replication protocol uses to dissem-

inate information to other replicas in the system. I divide the communication patterns used

by replication protocols into four major categories, which I will analyze in the following

paragraphs.

The most common pattern in network file systems (NFS) such as the AndrewFS [57],

Coda [105], SpriteFS [82] and LBFS [81], and modern cloud replication applications, like

Dropbox [36], is the client-server pattern. This pattern traditionally includes “thin” clients

that interact with the users and a master back-end server that manages data. To replicate

information between the clients, the information needs to travel first through the master

16

1/2

1/4

1/8

1/16

replica
 80

Figure 2.5: Representation of a DHT topol-
ogy. These protocols involve sophisticated
topology communication patterns between
their participating replicas. In this image I
show the finger table of node80. Finger ta-
bles are used to avoid linear look-ups.

Figure 2.6: Depiction of a topology indepen-
dent replication protocol where every replica
in the system can communicate freely with
any other replica in the system.

replica server. In modern applications, the master replica is often replaced by multiple

cloud servers [67, 86]. Figure 2.3 illustrates the topology setup in client-server systems.

Another common communication pattern in the evolution of replication protocols is

that of hierarchical [22] communication. This is the next logical step from the client-server

model. In the client-server pattern, the master replica becomes a bottleneck and a single

point of failure for large numbers of clients. The hierarchical model allows only a few

replicas to communicate directly with the master replica, providing intermediate caching

to the machines below them in the hierarchy. In practice this model of communication can

allow network file systems to scale better, and was part of the file sharing revolution of

the early 2000’s. Kazaa [83], one of the popular file sharing networks of the period, used

hierarchical caching for distributing the files to its users Figure 2.4 shows a hierarchical

topology.

Distributed hash table (DHT) storage systems (Chord [108], CAN [95], PAST [100],

Pastry [99], Tapestry [125], and CFS [31]) exemplify a third category of communication

17

patterns. Servers are split across multiple replicas on a per data object or per data block

basis. In most implementations, objects are replicated for high availability and data dura-

bility. DHTs use consistent hashing and map replica IDs onto a circular space. The object

keys are mapped onto the same circular space with every key to be assigned to the “nearest”

replica in the ID space. When a replica receives a query for an item with id7 , it first checks

whether it stores the item locally. If the replica does not store the item locally, it refers to

the local routing table and forwards the query to a replica with an id closer to id7. Figure 2.5

shows a DHT topology along a single replica (replica 80) and its finger table [108]. The k

finger in the finger table point to the 1/2n−k replica away around the ring space. DHTs use

finger tables to avoid linear look-up times.

The last category consists of replication protocols that do not impose any constraint

on the communication between the participating replicas. Replication protocols that allow

this fluid form of communication are called topology independent. Protocols in this cate-

gory often use epidemic [33] replication techniques to propagate data to other replicas in

the system. The synchronization session between replicas is usually called anti-entropy

because it reduces the total inconsistency (entropy) of the system. This family of proto-

cols can be utilized in low bandwidth/energy environments where the communication with

a master replica, in the cloud or elsewhere, would be very costly. Furthermore, the fully

distributed nature of these protocols and their lack of fixed communication patterns makes

them disaster-resilient [15]. The Figure 2.6 illustrates a topology independent replication

protocol.

2.5 Synchronization Sessions

Replicas participating in replication protocols that provide topology independence syn-

chronize with each other through anti-entropy sessions. In this setting, two replicas come

18

together and exchange meta-data that describes updates seen by the replicas If at the end of

this exchange one of the replicas is behind, the other transmits the missing data items.

The meta-data exchange and the status-check of the two replicas is mediated through

version vectors [77]. At a high level, a version vector is a list of the following pairs:

IDreplica, Clockreplica. The ID is a unique identifier for the replica. The Clock is usually

a number representing the number of local updates that the replica has already performed.

Each replica maintains a vector comprised of pairs. Each pair describes events seen by a

corresponding replica.

Two replicas’ version vectors are identical if the replicas have seen exactly the same set

of updates from all system replicas. Version vectors are ordered if one dominates (>= at

all positions, > in at least one) the other. Vectors are concurrent otherwise.

The synchronization session can be either unidirectional (push or pull-based) or bilat-

eral. In unidirectional sessions only one of the replicas updates the other. Only the replica

being updated (“pushed-to”, or “pulling”) will have a changed version vector at the end

of the session. Version vectors of two replicas are identical after they have completed a

bilateral anti-entropy session.

The Figure 2.7 shows a bilateral anti-entropy exchange between ReplicaA and ReplicaB.

In the first message, ReplicaA sends its version vector to ReplicaB. ReplicaB responds with

its version vector and any data known to it but not to ReplicaA. Finally, ReplicaA returns

any data not known to ReplicaB. In practice, anti-entropy sessions are more concise and

the data exchange happens asynchronously.

2.6 Abstraction Leakage

Abstraction in computer science and engineering is a way to manage complexity. Ab-

stractions are simplifications of more complicated concepts and eliminate any complexity

19

ReplicaA ReplicaB

ReplicaA:
This is what I know)

ReplicaB:
This is what I know and here is

what you’re missing

ReplicaA:
 This is what you’re missing

VVReplicaA

{ VVReplicaB | !,!,",#}

{ !,$,%,&}

Figure 2.7: Bilateral anti-entropy session.

that is not relevant to the current context. For example, when an application uses the DAO

pattern it can write and read data from an underlying data store without being exposed to

the complexity of the implementation of these read and write operations. The same is true

for an application that uses a replication protocol to keep its data in sync across multiple de-

vices. All the complexity of the replication will remain encapsulated in the implementation

of the synchronization protocol and will not reach the application.

Unfortunately, software abstractions are not really abstract. In reality, they are imple-

mented by real code that runs on physical or virtual hardware. This code has properties that

depend on their implementation or their infrastructure. For example, in the traditional DAO

pattern setup, the data store is assumed to be a relational database. Relational databases

support all the ACID [53] properties: Atomicity, consistency, isolation, and durability.

Having ACID properties means that applications do not have to worry about the ordering

of concurrent writes. This is a non-trivial assumption. Many replication protocols assume

that every participating replica is known and trustworthy. This is another non-trivial as-

sumption.

As Kiczales [64] and Spolsky [107] explain: all non-trivial abstractions leak complex-

20

ity (non-obvious limitations of the underlying implementation). In this thesis I examine

how this principle applies to data access, replication, and consistency in a distributed stor-

age system. I show that the DAO pattern usage over NoSQL storage systems leads to leak

of complexity. The Shell project examines the ramifications of using DAOs in cloud-

powered applications. On the other hand, the T.Rex project shows that not all the replicas

that participate in a replication protocol are equally trusted. In the case of T.Rex, the re-

sult of the trust assumption is information leakage. In Shell, the assumption of strong

consistency leads to complexity leakage.

2.7 Shell Related Work

The massive scale of online applications led to the emergence of a new family of stor-

age technologies that follow the BASE [92] principle. In contrast to ACID [53], BASE

refers to data stores that are basically available to support the constant demand of always-

on and five nines (99.999%) of availability. BASE systems rely on soft-state, as described

by Clark [28], so they can be flexible and use eventual consistency [113]. Eventual con-

sistency is the most common way to achieve high availability in environments character-

ized by the CAP theorem [23] without the use of special hardware [29]. The popularity

of eventual consistency paradigm led to the development of a series of systems such as

DynamoDB [32] and Big Table [26]. While these systems proliferated, traditional SQL

databases have lost traction because they do not scale.

When a system does not support strong consistency, a programmer should not expect

that a READ request issued to the DAO layer will return the latest value of data object.

Programming without causality is extremely hard. This is the complexity leakage that

sources from the DAO abstraction.

Many researchers, like Bailis [14] and Lloyd [74], have analyzed the question of how to

21

support causal consistency in a cloud storage system. Causal consistency is important be-

cause is the strongest consistency scheme achievable [75] when operating in environments

that face partitions and need high availability. These works [14, 38, 74] track the READS

and WRITES of an application to create dependency graphs in the application layer that

ship to the storage layer. Such storage systems can use these dependencies to provide the

application with an enhanced form of causal consistency, called causal-plus [74].

Dependency tracking is a powerful tool. However, it relies on application developers to

not only write and maintain software for tracking dependencies, but also to agree to send

them to the cloud provider. The latter might not even be feasible, especially in bandwidth or

energy constrained environments. This also forces an application to implement dependency

tracking according to the specification of a single provider.

Several approaches rely on solutions that make assumptions on guarantees available

from the cloud layer or its infrastructure. Li [71] differentiates operations into two groups,

one that requires strong consistency and one that can tolerate best-effort consistency. Almeida [5]

shows how to achieve Causal-plus by assuming that the provider relies on chain replication.

Chain replication is achievable by a series of servers that are ordered in the form of a chain.

Du [39] uses a periodic algorithm that relies on the physical clocks to track application

dependencies. These approaches focus on specific providers’ internal implementations,

leaving applications, the users of the storage systems, out of the loop.

A layer-based approach somewhat similar to Shell appears in Bermbach [20] where

application users have the illusion of causality with the system implementing session-

consistency. This differs from Shell in that Shell explicitly supports causal and other

consistency protocols. Zawirski [124] also proposes a scheme for supporting transaction-

enabled causal-plus consistency by extending the storage layer to the actual devices of the

users, which are considered partial replicas and act as caches. Both approaches [20, 124]

offer a one-size-fits-all solution that deprives the application developer of the ability to se-

22

lect the desired consistency scheme. Moreover, in Swift [124] the researchers assume that

it is possible to make the users devices an extension of the a storage layer, which is not

always the case in reality.

2.8 T.Rex Related Work

In an era where almost everything comes with Internet connectivity and coffee makers

can be used to mount large cyber-attacks [120], any assumption that security is not a priority

because of a specific environment is fragile. Most of the existing replication protocols

focus on data placement, coherence, and consistency, omitting discussion of security and

privacy. Removing the assumption of implicit trust leads to information leakage where

replicas, which might participate in the replication protocol even though not fully trusted,

will gain access to all of the users’ information.

As I will describe in Chapter 4 T.Rex is a system that supports partial replication, ar-

bitrary consistency, and topology independence but without compromising application pri-

vacy. Except PRACTI [18] no other replication system provides all three properties. The

list includes Bayou [90, 113] and Ficus [52], two of the first works to establish the anti-

entropy synchronization sessions with the use of version-vectors. Systems like Anzere [97],

Perspective [102], Eyo [109], Cimbiosys [94], PodBase [91], and UIA [43] use policies

to abstract replication rules, data placement, and durability. In addition, systems like

BluFS [85], EnsemBlue [89], and ZZFS [78] use high-level policies in similar environ-

ments to conserve energy. Moreover, PADS [19] and PRACTI [18], which are policy

architectures and replication frameworks, can be used to build highly flexible replicated

storage systems.

As demonstrated in the previous paragraph the “partial replication, arbitrary consis-

tency, and topology independence” taxonomy is hard to achieve. Most of the work in

23

this area concentrates on data placement, consistency, and coherence without seriously ad-

dressing security concerns. Furthermore, the assumption is that security issues like access

control, authentication, and confidentiality are orthogonal to issues of data replication and

consistency, and these issues could therefore be handled by mechanisms in higher levels.

Another common assumption is that all participating devices have the same access control

policies. In T.Rex, I show that a straightforward application of these assumptions results in

information leakage.

One exception is the access control extension of Cimbiosys [121] that defines access

rules through SecPal [17]. This approach, when used with Cimbiosys [94], may be prob-

lematic because policies are propagated as regular objects, and Cimbiosys supports even-

tual consistency. As a result, security changes may be lost because there is no convergence.

However, though SecPal statements are signed, data is unencrypted, the system assumes a

single trusted authority, and the underlying system relies on a tree-structured replica topol-

ogy.

T.Rex uses fork consistency to avoid inter-role information leakage. It borrows ideas

from a series of systems. The object coherence in T.Rex has similarities to Qufiles [118]

and SUNDR [72]. Qufiles are a system abstraction that gives a server the ability to support

different trans-coded versions of a file under one common umbrella. SUNDR proposed

fork consistency, which allows attacks to be constrained to forking version histories, which

can then be detected.

At the other end of the spectrum are replicated object systems that tolerate Byzantine

faults, like PBFT [25], Farsite [2], and even Oceanstore [66]. These systems differ from

T.Rex in their use (T.Rex is designed for sharing and collaboration, with roles defined by

high-level predicates) and in their goals (T.Rex adds information leakage to access control

and confidentiality).

24

2.9 Summary

In this chapter, I presented two major abstractions that I examine throughout this thesis:

(1) the DAO pattern that helps applications access their data without knowing the details

of the underlying storage layer and (2) the replication protocols that keep the application

data in sync across different devices. I also examined instances where existing works make

assumptions necessary to support their abstractions, and I examined the nature of these as-

sumptions. Moreover, I showed that these assumptions lead to complexity and information

leakage.

25

Chapter 3

Shell: Supporting strict consistency guarantees over even-

tually consistent data stores

In this chapter, I present Shell, a layered architecture that can provide applications with

stronger consistency guarantees when operating over best-effort distributed data stores.

The contributions of this work can be summarized as follows:

• I show how to eliminate DAO-induced abstraction leakage by designing a layered

system I call Shell. The architecture consists of single-responsibility modules that

collectively encapsulate consistency-related artifacts of the underlying cloud imple-

mentation, isolating application code from any reliance on specific implementations.

• I show how to support protocols stricter than eventual consistency without requiring

applications to explicitly track dependencies [14, 74], or having control over the

provider’s programmatic interfaces. I further show that Shell’s architecture allows

applications to customize conflict resolution of concurrent writes; eliminating the

need to rely on one-size-fits-all generic heuristics (e.g., “last write wins”).

• I use a trace driven evaluation, four different data-center topology setups, and two

different data stores to examine the performance and possible overheads Shell in-

26

troduces for applications operating over eventually consistent data stores. Our high-

level findings are that (1) up to 9% of updates seen by the application would be

inconsistent without a consistency enforcing layer like Shell, and (2) the number

and character of those inconsistencies varies according to the underlying providers.

My key insight is that separating consistency enforcement from what cloud providers

do extremely well (providing availability and data durability) allows applications to be

written without consideration of the underlying consistency. The Shell layering archi-

tecture isolates the application code from both consistency implementations and the cloud

communication libraries. Shell introduces well-defined boundaries between layers allows

application code to be easier to develop and to maintain. Furthermore, pluggable consis-

tency implementations can be modeled and developed independently from the rest of the

application.

The rest of the chapter is organized as follows. In Sections 3.1, 3.2 and 3.3 I present

the design, implementation, and experimental evaluation of Shell. Finally, I summarize

with the lessons learned and conclude in Section 3.4.

3.1 Design

Shell is a software layer (Figure 3.1) designed to isolate consistency implementations

and cloud-provider APIs from application code. I use the term replica to refer to an in-

stantiation of a running application, together with a linked Shell layer and a binding to a

cloud provider. Replicas interact solely through reads and writes to the underlying cloud

provider.

An application can use the Shell abstraction with only two steps. First, the application

chooses a consistency level by instantiating a consistency object. Second, all application

objects that are to be shared across replicas are derived from Shell’s consistency-enabled

27

Application-broker

Consistency
Enforcer

Storage Manager

listenerwriter

Cloud Manager Application
Store

Application

Cloud layer

Shell

Figure 3.1: Shell consists of four software modules along with an application-store.

objects, discussed below. Optionally, applications can provide per-object conflict resolvers.

Shell consists of four internal modules and an application store, which together ab-

stract consistency-related operations and encapsulate communication with the underlying

storage layers. Figure 3.1 illustrates the four building blocks of Shell along with the

application-store which in the current implementation is the in-memory data store

REDIS [104]

This section describes the Shell programming abstraction that provides access to Shell

guarantees and the overall Shell architecture. I also describe the life cycle of incoming

updates: how they reach Shell from other replicas, and how applications interact with the

Shell layer.

3.1.1 Shell objects

Shell introduces a consistency enabled object (SO) that applications must inherit to

use the system. SOs contain a version object that I use to enforce consistency semantics

when I send the object to another replica. Applications may provide conflict resolution

code by implementing the resolve(otherShellObject) function that is part of the main object.

28

public abstract class SO {
 private AppDomain domain;
 private ShellVersion version;
 public abstract SO resolve(SO other);
 public abstract Class identify();
 public abstract String guid();
}

Figure 3.2: The SO implemented Java. Shell operates in application-agnostic containers I call
generic shell objects (SO). Shell isolates any application logic; it thus provides interfaces that
application developers need to implement so the system knows how to read and write application
data.

The SO contains application domain information that differentiates the objects of different

applications from one another. Finally, the SO contains an identify() function where the

application should provide a way to identify the type of object, so that the system may later

serialize the object and send it over the network. Figure 3.2 provides an example of a JAVA

based implementation of the SO.

Each Shell replica has a global unique identifier (GUID) and can serve multiple ap-

plications. Each application is identified by another GUID. The hash of the module and

application GUID is called instance-id (IID).

Internally, Shell maintains a version vector [52, 88, 105, 113] for every application

it supports. The vector is a list of IID, counter pairs. The counter signifies the number

of updates Shell has seen for this particular application. Shell is able to differentiate

between writes of different applications by leveraging the SO’s domain information.

The version object, part of the SO, has two parts. The first part is the snapshot of the

application’s version vector the time an object reaches Shell. Other systems have used this

technique, most notably systems like Cimbiosys [94] and WinFS [76] refer to this approach

as made-with-knowledge. The second part is the instance id.

29

public interface AppStorageManager {
 void put(SO event);
 SO get(String key);
 List<SO> scan(String key);

 Future<SO> getAsync(String key);
 Future<List<SO>> scanAsync(String key);
}

Figure 3.3: An example of a Java-based implementation of storage-manager

3.1.2 Architecture

Shell consists of four major modules and the application-store. The application-broker

module is the contact point between applications and Shell. The consistency-enforcer

module is responsible for executing the consistency protocol of choice. The storage-manager

module handles incoming updates once they become consistent. The cloud-manager

module isolates all cloud-provider APIs from the application and encapsulates all accesses

to and from the provider storage layer. Finally, the application-store serves outgoing

application data and buffers incoming updates that do not yet meet application consistency

criteria. In this section, I describe each in more detail.

The Application-Broker Module

The application-broker facilitates the communication between applications and

Shell. The system provides three generic operations to applications: PUT, GET and SCAN.

The module passes GET or SCAN requests on to the application-store. When receiving

a PUT request, the module passes the request to both the consistency-enforcer and the

cloud-manager modules, and sends an accept acknowledgment (ACK) back to the appli-

cation. The current implementation’s default is to treat PUT requests as non-blocking, so

30

the ACK is sent immediately. However, applications can also configure PUT requests to be

blocking.

The Consistency-Enforcer Module

The consistency-enforcer is responsible for applying the consistency protocol of

choice on every update it receives. Updates reach the module by two paths: local updates

that the application-broker propagates and network updates from other Shell replicas.

Shell acts as a daemon that constantly evaluates updates. Each incoming update is eval-

uated for conformance to the chosen consistency protocol, resolving to either drop, apply,

defer, or conflict.

A drop results when the consistency protocol detects an obsolete update. For example,

if an application requiring monotonic reads has seen update i for object X , any update of X

prior to i is obsolete, and should be dropped when detected. In this particular scenario the

consistency-enforcer will drop any incoming update with a stale value.

An outcome of defer signifies that an update, while potentially useful, is being tem-

porarily blocked by the consistency protocol. For example, when enforcing causal con-

sistency the module will only apply updates conforming to causal order. In this case the

consistency-enforcer temporarily stages incoming updates that do not comply with the

consistency invariants until a later re-evaluation unblocks them. The arrival of a new update

will cause the re-evaluation of staged updates.

The local version vector and the update’s version vector might be in conflict, implying

concurrent writes.

As mentioned in Section 3.1.1, the SO may include an application-supplied resolve

method that is called by Shell to resolve the conflict. If no conflict implementation is

provided, Shell will engage a last-write-wins strategy. I implement this heuristic for two

31

SOs by comparing their globally-unique creation timestamps.

The Storage-Manager Module

The consistency-enforcer operates on the meta-data carried by the SOs, treating

application data as opaque byte streams. After the SO representing a new write becomes

consistent, the consistency-enforcer will move it to the application-store and

make it directly accessible by application operations. However, such a SO must first be

translated into its application-specific format.

The storage-manager module guides this transformation, and also hides the applica-

tion storage APIs from the rest of the architecture. Figure 3.3 shows a JAVA based example

of a simple storage-manager interface providing both synchronous and asynchronous

operations for reading and writing data to the application storage.

The existence of the storage-manager module highlights a basic principle behind the

design of Shell: Isolation between layers (in this case, isolation between the application

logic and Shell.) Other proposals [14] that use layering have the application track explicit

causal relationships between applications objects. Having explicit application information,

these systems can achieve tighter consistency that meets the application needs. While this

approach may offer precise tracking of these relationships, it forces the application de-

velopers to maintain and update them every time they want to add a new feature or fix a

software bug. However, the application space changes rapidly. Software products are de-

veloped by employing the minimum viable product (MVP) [112] approach where only a

set of few critical features are developed to attract enough people to use it initially. This

usually proves the product’s concept and creates a feedback loop. By constantly adding

features, the accidental complexity [24] of the application code remains high for longer

periods of time. I believe that maintaining consistency information in the application level

32

leads to errors, especially in software where products are developed in multiple iterations

under the agile software principles [56].

The Cloud-Manager Module

The cloud-manager consists of two sub-modules, the updatewriter and updatelistener.

The updatelistener identifies incoming updates and passes them to the appropriate consistency-enforcer

for evaluation. The updatewriter receives updates from the application-broker, encap-

sulates them in a form that the underlying provider software understands, and pushes them

to the cloud layer. Updates pushed to the cloud are immutable objects [16], identified by

GUIDS. Shell offloads the burden of replication and durability to the provider, which are

strengths of cloud services [11, 12, 36, 44].

While the storage-manager isolates consistency from the application (above), the

cloud-manager isolates the application from the cloud provider APIs (below), keeping all

the providers’ API calls in one place.

Having a central controller for talking with cloud services allows transparent mobility

across multiple cloud providers. Existing research [21, 27, 122] has shown that employing

multiple providers can be cost effective, more secure, and help avoid vendor lock-in.

Application storage

Shell includes an application-store to serve generic key-value methods such as

PUT, GET, and SCAN. Shell also uses the application-store to temporarily buffer

updates that do not meet the application consistency guarantees: Such as SOs that the

consistency-enforcer marks as defer (the defer buffer). The defer buffer holds incom-

ing updates until they meet application consistency guarantees (SOs marked as defer by

the consistency-enforcer).

33

Application-broker

Consistency
Enforcer

Storage Manager

listenerwriter

Cloud Manager

Applciation

(0) put

(1) publish (2)

(2)

(3)

(3)

VVguid

vk

(4)

Shell

(K, V)

(K, V)

cloud

Application
Store

Application

Figure 3.4: An overview of the PUT flow in Shell. (0): the application issues a PUT request. (1):
The application-broker assigns a version (GUID, version vector and in (2) propagates the SO
to consistency-enforcer and the cloud-manager. During (3) the cloud-manager pushes the
update in the cloud and the consistency-enforcer evaluates. (4): The update is marked as apply
and storage-manager stores it in the local application storage.

A Shell-enabled architecture also uses the providers’ storage infrastructure as its sole

channel for communication among replicas. After a SO has been communicated to and

marked consistent at all replicas, it becomes obsolete and can be garbage-collected.

In this implementation of Shell, I use REDIS [104] to implement the application-store.

REDIS lives in-memory, and is fast and lightweight. I maintain two different key spaces to

differentiate between consistent and defer-marked data. Moreover, REDIS offers message

brokering capabilities that I use to transfer messages between the different Shell mod-

34

Application-broker

Storage Manager

Applciation

(0) get
(2)

vk

Shell(K)

(K, V)

(1)

Application
Store

Application

Figure 3.5: An overview of the GET flow in Shell. (0): the application issues a GET re-
quest. With the help of storage-manager the application-broker retrieves the data from the
application-store, at (1). Finally, the application-broker serves the data to the application
in (2).

ules. For example in Figure 3.4 during step (2) REDIS propagates the messages from the

application-broker to consistency-enforcer and cloud-manager, through publish-

subscribe messaging.

PUT, GET, and Incoming Updates

PUT: Figure 3.4 shows the flow of a PUT request. I have divided the flow into five

steps. During step (0) the application issues a PUT request to the application-broker.

At this stage, the application object is already encapsulated in an SO, but without an

assigned version. Upon receiving a request, the application-broker (1) assigns it a

version and publishes the SO to the consistency-enforcer and cloud-manager. The

consistency-enforcer then (2) evaluates the update and encapsulates it in the format

35

Consistency
Enforcer

Storage Manager

listenerwriter

Cloud Manager

(2)

(1)

(3)

(0)

VVguid

(4) (K, V)

cloud

Application
Store

vk

Shell

Application

Figure 3.6: An overview of the reception of a cloud update. step (0): The cloud-manager monitors
the provider storage for incoming updates and receives one. During step (1), the cloud-manager

extracts the SO from the cloud update and pushes it to consistency-enforcer. At step (2) the
consistency-enforcer evaluates the update. If the result is apply uses the storage-manager

(step (3)) which translates the update to application object and saves it (step (4)) in the application
storage.

of the underlying cloud provider. Next, the cloud-manager (3) pushes the update to the

cloud and the consistency-enforcer after evaluating the update as apply and (4) using

the storage-manager to save it in the application storage.

The figure also illustrates how the data is encapsulated. A application-broker re-

ceives the data in a form of an application object, which inherits the SO, and attaches meta-

data. The consistency-enforcer operates only on meta-data. The cloud-manager en-

capsulates the data even further by adding appropriate cloud semantics around the SO; for

example by translating the SO to an S3Object or to a DynamoDB record.

GET: Figure 3.5 shows the flow of a GET request, which consists of three steps. First

(0) the application-broker accepts the request. The storage-manager then (1) reads

the data from the application data store and (2) serves the data back to the application.

36

INCOMING UPDATE: Figure 3.6 shows an example flow of an incoming update

from the cloud to another Shell-enabled replica. The UpdateListener, described in Sec-

tion 3.1.2, constantly monitors the provider store for incoming updates. In this example the

UpdateListener discovers a new update.

The UpdateListener (0) transforms the update from a cloud-specific form to a SO, and

then (1) passes the update to consistency-enforcer. At step (2) the update is evaluated

against consistency constraints. In this example the update has been marked as apply by the

consistency-enforcer module, but other outcomes (drop, defer, conflict) are possible

as well. If the result of the evaluation is an apply, the consistency-enforcer will update

the local version vectors. Finally, the SO is (3) translated to an application object with the

help of the storage-manager and (4) saved into the consistent application data store.

3.2 Implementation

Shell is implemented in 3.2K lines of JAVA source code. The communication inter-

face between the application-broker and its clients is based on ZeroMQ [60]. It uses

REDIS [104] for the defer buffer and application store. In our implementation REDIS also

acts a message broker between Shell’s internal modules by utilizing its built-in publish-

subscribe capabilities.

I developed two different cloud-manager implementations. The first uses publish-

subscribe to propagate updates. Every replica subscribes to the update stream of every

other replica in the system. In this setup the UpdateWriter module is the publisher, and the

UpdateListener module is the subscriber. The UpdateListener of every replica subscribes to the

update topic stream of every other replica in the system. Upon the reception of a new update

from the application-broker, the UpdateWriter will publish the update to its subscribers.

For the implementation of the publish-subscribe, I used the ZeroMQ implementation [59]

37

of the pattern, which maps cleanly to the pragmatic general multicast (PGM) protocol [50].

In the second setup I operate Shell over Dropbox [36] with the cloud-manager to be

responsible for all the communications from and to Dropbox. In this case the UpdateWriter

is a Dropbox client that uploads every update to the Dropbox server. On the other hand, the

UpdateListener uses long polling to query Dropbox for new updates. In the implementation

I used publicly available Dropbox APIs and I did not alter the default rate limiting policy

that is in place.

I have implemented three consistency protocols: causal consistency (CC) [4], mono-

tonic reads (MR) [114] and eventual consistency (EV). In eventual consistency I only rely

on what the cloud-manager gives us, having Shell writing and reading updates as they

come.

Why two different storage layers: Applications that operate over a cloud distributed

replicated data store are bound to experience inconsistencies. With the ZeroMQ implemen-

tation I show that application-visible inconsistencies occur even when an application com-

pletely controls the communication layer. This is mainly due to propagation delays in the

network layer, but can also be caused by heavy replica loads. I use the Dropbox back-end to

show the effects of not having control over the communication layer, and of the application

being susceptible to the providers’ design choices and implementation. Thus, for Dropbox

I expect inconsistencies due to both propagation delays in the network layer as well as API

and service implementations.

3.2.1 Dealing With Unreliable cloud-manager

Dropbox was the source of the most problems throughout the implementation. Al-

though Dropbox supports particularly low read/write rates, it was consistently missing up-

dates while on the wire. To overcome this, I implemented a robust retry mechanism based

38

on the failsafe [54] library.

Dealing with the cloud-manager failures highlights the benefits of having a layered

approach like Shell in place. Shell abstracts the GET, and PUT for the application.

This lets the developer to focus solely on application code rather than dealing with the

cloud-manager peculiarities. In addition, the application code, I later developed (Sec-

tion 3.3) to evaluate Shell, remained free from any Dropbox and failsafe related APIs.

3.3 Evaluation

The traditional way of accessing, using a DAO, a non-ACID storage layer from the

application code leads to inconsistencies. In this section, I experimentally show this phe-

nomenon by using a trace driven approach. I use an example application (Section 3.3.2) to

replay a data-set (Section 3.3.1) that exhibits causal relationships between its events. Ini-

tially, I rely on eventual consistency or the build-in consistency guaranties of the storage

layer, and I measure the inconsistencies that surface in the application.

Using the results of the eventual consistency as baseline, I show that if I enable Shell’s

layered approach, I can minimize inconsistencies. Furthermore, I allow the application to

use a consistency protocol of choice like monotonic reads or causal consistency.

I repeat our experiment for two different back-end layers (ZeroMQ, Dropbox). I use

four different network topology setups by assigning the replicas in different data-centers.

Apart from measuring the consistency our driver application receives, I also examine how

often it has access to fresh updates by introduction the metric of update-visibility

(Section 3.3.5).

39

800 850 900 950 1000 1050 1100

Bytes

0.000

0.005

0.010

0.015

0.020

0.025

0.030

µ=918.60
median =913.00
σ=28.84

Event size (Bytes)

300 350 400 450 500 550 600
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

µ=450.93
median =448.00
σ=31.82

Events per game (#Num)P
ro

b
a
b
ili

ty

Figure 3.7: A summary of the NBA data-set I use to evaluate Shell. Every trace contains on
average 451 causally related events. Every event is on average 919 bytes. The graph shows the
median and the standard deviation σ for both the number of events and the event size.

3.3.1 Dataset

The data-set contains play-by-play NBA game traces [13] from all the regular season

games of the last 10 years which accounts to 8550 game traces. The events of every trace

have an integer identifier id ∈ (1,max(game trace)). An event carries information about

what takes place in the game and also carries information about the score and the time

remaining in the game. Figure 3.7 shows that each game trace contains on average 450.9

events and that every event on average has size of 918.6 bytes. All the events of a trace

are causally related which means that if the events were executed in a single machine the

event with id1 happens before the id2. The events of a single game trace form a causality

chain with length to be equal max(idtrace). This data-set offers substantially longer event

chains compared to existing studies [14] where the average length was at most 25 events

long. The event id is artificial, I have attached it to the events so I have a ground truth for

40

our experiments. I believe that longer event chains provide a benchmark that focuses on

the cost of consistency-related operations.

Why this is a representative data-set: In environments where availability is a prior-

ity and partitions are unavoidable existing studies [75] have shown that causal consistency

is the strongest scheme achievable. However, other consistency schemes [114, 119] which

provide weaker guarantees might be appropriate depending the application needs. I choose

a data-set rich in causal relationships, and I run Shell’s evaluation over multiple consistency

protocols (causal consistency, monotonic reads, eventual consistency) to observe whether

or not Shell can satisfy the causal guarantees and what is the ordering to achieve this.

6 5 4 3 2 1 0 1 2 3 4 5 6 7
DIFFji

0.0

0.2

0.4

0.6

0.8

1.0

EC
MR
CC

Figure 3.8: Dropbox Backend: DIFF ji metric for the East-West data center topology with LANSync
disabled. Shell maintains the causality chain (DIFF ji =1) across every replica. For monotonic
reads, Shell applies updates where DIFF ji ≥ 1, which means that some are future updates. Finally
in eventual consistency I observe both future and stale events

41

4 3 2 1 0 1 2 3 4 5 6
DIFFji

0.0

0.2

0.4

0.6

0.8

1.0

EC
MR
CC

Figure 3.9: ZeroMQ Backend: DIFF ji metric for the East-West data center topology. I observe
similar behavior with Figure 3.8

3.3.2 Application: NBA Broadcast

Our evaluation is trace driven. For every experiment with the ZeroMQ back-end I replay

the events from 30 NBA games, while with the Dropbox back-end I replay the events of 10

games (the ZeroMQ backend is much faster than the Dropbox back-end). I use a multiple

writers/readers approach that make concurrent updates more likely.

In the broadcasting application, replicas communicate their state through two shared

objects: lastEvent, which holds the most recent application-visible event, and eventList,

which holds all locally-seen events. The eventList is a log of apply events, ordered by

the times at which the consistency-enforcer marked them as apply.

I divide the events of the games traces to all participating replicas and I broadcast games

sequentially. The replica that has in its possession the event with id0 starts the game by

submitting a PUT request to Shell. Then the event is replicated to every other replica in

42

the system. Upon the reception of an event with idi, a replica that in its local trace has

the idi+1, will broadcast the next event. If a replica has last seen an event with idx+1 but

receives an event with idx+4 it will search its local trace for the event of idx+5. If the replica

has the event idx+5, it will broadcast it next without waiting to receive the events with idx+2

and idx+3. The replicas do a read every 100 ms; this pause denotes the end of a round for

the broadcast application.

To capture how well Shell maintained the happens before relationship of the events

of every trace, I introduce a new consistency metric I call DIFF ji. I define DIFF ji as id j−

idi,∀(i, j)∈ {0, leneventList | j− i= 1}. When DIFF ji = 1 between two events in the eventList,

it means that they were consecutive in the original trace. A DIFF ji > 1, means that the

replica instead of receiving the event with idi+1 received an update further in the future.

This can also happen when two conflicting updates take place in parallel. Finally, when

DIFF ji < 0, it means that the replica received a stale update.

3.3.3 Setup

For the experiments, Shell system includes 12 replicas. I distribute them in four dif-

ferent data-center topology setups. These setups are: Single where all the replicas are in

a single data-center. West: It divides the replicas in two data centers, in Oregon and Cali-

fornia. East-West: It places 3 replicas in California, Oregon, Ohio, and Virginia. Finally,

Global places each one of the 12 replicas in 12 different data-centers around the world; it

includes locations in Dublin, Frankfurt, Sydney, Seoul, Tokyo, Sao Paulo, Singapore, and

Mumbai along with the location in the East-West topology. For the topology setups where

I have more than one replica in the same data-center, I place all the replicas in the same

availability zone [10].

I used m4.2xlarge EC2 instances. In the case of the Dropbox implementation I repeat

43

the experiments with the LANSync [37] feature both enabled and disabled.

0 5 10 15 20
Defer operations (num)

0.90

0.92

0.94

0.96

0.98

1.00

Figure 3.10: Dropbox: CDF of the defer operations throughout the causal consistency experiments
for every participating replica. In the case of the Dropbox back-end I observe, that 98% of the
updates are not marked as defer and can be applied as soon as they arrive in Shell, following
causal consistency. However, the rest 2% might experience up to 14 defer operations before Shell
is ready to apply it.

3.3.4 Consistency

In this section, I measure the inconsistencies our application experiences when operat-

ing above an eventually consistent data store. I also show how enabling the Shell layer

along with the SOs help to achieve the desired consistency. The results I present are for the

East-West data-center topology. In the case of the Dropbox back-end I show the results for

the LANSync feature disabled. Figures 3.8 and 3.9 show the CDF of the DIFF ji metric for

all the consistency protocols for both back-ends. The X-axis holds the values of the DIFF ji

metric. In the case of eventual consistency, since this is the baseline, Shell will not affect

the value of the DIFF ji metric at all. In eventual consistency when the Shell layer receives

an update it marks it as apply and passes it to the storage-manager.

44

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Defer operations (num)

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Figure 3.11: ZeroMQ: The figure shows the CDF of the defer operations throughout the causal
consistency experiments across all the participating replicas. The 97% of updates are applied with-
out any defer operation but throughout the experiment an update might experience up to 4 defer
operations before it gets to be applied in a causal order. The difference between the two back-ends
(Figure 3.10) comes from the fact that the custom ZeroMQ back-end updates propagate in the entire
topology faster than they do in the case of the Dropbox back-end.

In the case of the Dropbox back-end, Figure 3.8, for eventual consistency the appli-

cation experiences both future (DIFF ji > 1) and stale (DIFF ji < 1) events. For eventual

consistency, 7% of the total messages are not ordered, and of them 34.5% consist of stale

updates. In this setup the most stale update that reached the application had DIFF ji =-6

and the update that was furthest in the future had DIFF ji =7. In the case of the ZeroMQ,

Figure 3.9, back-end I observe similar behavior. The DIFF ji metric takes values ∈ [−4,6],

7.5% of the updates are reaching the replicas not ordered, and of those 35% consist of stale

updates.

In monotonic reads, by definition, I cannot observe stale updates at least throughout a

session; in the experiment a single game is a session. As expected, I observe events only

with DIFF ji ≥ 1. By definition in monotonic reads the DIFF ji metric takes values ∈ [1,3] and

45

[1,5] for Dropbox and ZeroMQ. Future updates (DIFF ji > 1) consist of 1.8% of the total

updates. Finally, Causal consistency, respects 100% of the chains and all the messages

maintain the DIFF ji =1 invariant for both back-ends.

In the rest of our topology setups I observe the following for the DIFF ji metric: In the

case of the Dropbox back-end I observe: In eventual consistency, the DIFF ji 6= 1 events

range ∈ [5.7, 9]% of the total updates, and from those on average 34% are stale. For

monotonic reads the percentage of updates with DIFF ji > 1 ranges ∈ [1.7, 3.4]%. In all

setups, causal consistency gave 100% of events with DIFF ji = 1. In this setup every update

that leaves from a replica first goes to a Dropbox server which stores the update and then

propagates it to the rest of the replicas in the topology. The main variations are due to the

network distance between the Dropbox and the replicas in our topology.

On the other hand, for the ZeroMQ back-end I observe different behavior. In the Single

data center topology, I observe no inconsistencies for all three protocols. More specifically

for the eventual consistency, 99.998% of the updates come with DIFF ji = 1. However, this

changes dramatically when the replicas are in different data centers. For example in the

Global topology setup, I observe that the percentage of updates with DIFF ji = 1 falls to

90.07%. Monotonic reads follows similar behavior but less extreme. In this case, I observe

the variation to be between 99.999% to 97.4%. As in the case of the Dropbox, the ZeroMQ

back-end does not affect causal consistency which maintain the DIFF ji = 1 invariant for

100% of the updates.

Figures 3.10 and 3.11 show the CDF of defer operations that the consistency-enforcer

took throughout the causal consistency experiments. For the Dropbox back-end, on average

every replica has to defer 84 updates accounting for 1.77% of the total update population.

For every update that is marked as defer, Shell does on average 3.3 (median = 2.0) more

defer operations to satisfy causal consistency for a given update. For the ZeroMQ back-

end, per replica I observed 352 updates to be marked as defer, but with a standard deviation

46

Single
LANSync Single West

LANSync West
EastWest
LANSync EastWest

Global
LANSync Global

XD:
Total defer
Dropbox

µXD=229.16
σXD=18.51

MdXD=223.5
7.9% of total

µXD=289.16
σXD=19.12
MdXD=285

9.8% of total

µXD =309.83
σXD=13.92
MdXD=312

10.5% of total

µXD=449.41
σXD=33.12

MdXD=450.5
14.5% of total

µXD=290.25
σXD=11.6

MdXD=293
9.6% of total

µXD=299.3
σXD=19.8

MdXD =296.5
9.9% of total

µXD =267.9
σXD=23.3

MdXD=275.0
9.0% of total

µXD=279.5
σXD=32.4

MdXD=277.5
9.4% of total

YD:
Single defer

Dropbox

µYD=3.9
σYD=3.6
MdYD=3

maxYD=20

µYD=3.9
σYD=3.6
MdYD=3

maxYD=23

µYD=3.9
σYD=3.8
MdYD=3

maxYD=23

µYD=6.4
σYD=7.5
MdYD =3

maxYD=36

µYD=4
σYD=3.7
MdYD=3

maxYD=23

µYD=4.2
σYD=4

MdYD=3
maxYD =23

µYD=3.3
σYD=2.7
MdYD=3

maxYD=18

µYD=4.2
σYD=4

MdYD=3
maxYD=23

XZ :
Total defer
ZeroMQ

µXZ =0
σXZ =0

MdXZ =0
0% of total

µXZ =1.08
σXZ =1.6

MdXZ = 0.5
0.007% of total

µXZ =429.4
σXZ =429.7
MdXZ =255
3% of total

µXZ =476.41
σXZ =415.30
MdXZ =480.5

3.36% of total

YZ :
Single defer

ZeroMQ

µYZ =0
σYZ =0

MdYZ =0
maxYZ =0

µYZ =1
σYZ =0

MdYZ =1.
maxYZ =1

µYZ =1.21
σYZ =0.48
MdYZ =1
maxYZ =4

µYZ =1.14
σYZ =0.6
MdYZ =1
maxYZ =9

Table 3.1: I define X as the variable of the total number of updates that marked defer throughout the
experiment. I define Y as the variable of the number of defer for a single update. I show the mean
µ , standard deviation σ and median Md for both X ,Y . I also show the percentage of updates that
marked as defer from consistency-enforcer for the X variable and the max number of defer
operations per update for the Y variable. Finally, the subscripts D,Z represent Dropbox and ZeroMQ
back-end.

of 339.8 and median of 227. Additionally, the total number of updates that experienced a

defer operation amounts to 2.6% of the updates.

Table 3.1 shows a summary for the defer updates that are delayed due to consistency

operations needed for all four topology setups of our evaluation. For the Dropbox back-end

I see that enabling the LANSync feature leads to less defer operations. This is true even

in the case of the Global setups where no replicas are co-located in a data-center. For the

ZeroMQ back-end, I see very different behavior when I introduce higher network distance

between the replicas. For both Single and West setups the number of defer operations

is close to zero and significantly than the other two setups (Global, East-West). This is

expected because the main reason for the inconsistencies that I observe come from the

propagation delays between the replicas and not because of the implementation of a third

party service such as Dropbox.

47

The take-away from this experiment is that different back-ends, network topologies,

and environments can dramatically affect the number of consistency anomalies seen by an

application with the default (weak) eventual consistency. However, a Shell-enabled archi-

tecture give applications the ability to select stronger consistencies, which are maintained

regardless of the environment.

This is important, because in a web service industry in which services are graded by the

number of nines to the right of the decimal point, 10% or even 3% of problematic updates

is substantial. Even relatively rare events are not rare at scale [55].

3.3.5 Update Visibility, Not Bandwidth

Shell decouples consistency from durability and replication through an indirection

layer. This layer can add delays from both consistency interlocks, and from the compu-

tational overhead of processing incoming updates. Figures 3.10 and 3.11 and Table 3.1 I

show a quantitative breakdown of this overhead. But this is not enough to understand the

effect of this indirection on the actual application.

I define update-visibility to measure the effect of consistency-required interven-

tions. I define update-visibility as Tapply− TRx, where Tapply is the time Shell ap-

plies the incoming update to application-visible storage, and TRx is the time when Shell

first receives the update from the cloud-manager. Figure 3.12 shows, in log-scale, the

update-visibility metric for each consistency protocol and back-end. For eventual

consistency, the update-visibility is minimal with the 100% of the updates to expe-

rience delays less than 2 ms. This is consistent with the internal implementation of even-

tual consistency where Shell allows every update to reach the application as soon as it

receives it. I observe similar behavior for monotonic reads, where the 98% of the up-

dates reach the application within 1.4 ms. However, a few updates experience noticeable

48

0 100 101 102 103 104

milliseconds (log)

0.75

0.80

0.85

0.90

0.95

1.00

EC
MR
CC

Figure 3.12: Dropbox: CDF (log-scale) of the update-visibility metric for eventual consis-
tency, monotonic reads, and causal consistency.

update-visibility that can reach up to 70 ms. The reason for this extra delay is the

additional wait-time needed to satisfy the consistency protocol.

In causal consistency, 87.5% of the updates experience update-visibility of less

than 10 ms and 97% less than 600 ms. However, the rest of the graph shows that I have

a heavy tail, and some updates can experience delays that reach up to 30 seconds. These

measurements are tightly coupled with the behavior of the underlying storage layer, in this

case Dropbox. I do not expect such high delays as these for other storage layers that can

deliver updates faster and have higher throttling limits. But I do expect the same trend.

Indeed, the same trend appears in the case of the ZeroMQ back-end. Figure 3.13 shows

the update-visibility metric for the ZeroMQ back-end in log-scale. For eventual con-

sistency, 99.7% become visible within 1 ms. For monotonic reads, more than the 95% of

the updates is visible within 3 ms, but a few updates experience higher visibility latency

49

0 100 101 102 103 104

milliseconds (log)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

EC
MR
CC

Figure 3.13: ZeroMQ: CDF (log-scale) of the update-visibility metric for eventual consis-
tency, monotonic reads, and causal consistency.

that reaches up to 110 ms. Finally, for causal consistency, over 98% of the updates expe-

rience update-visibility latency less than 100 ms. However, for updates that Shell

has to temporarily stage until it receives all the causally preceding updates, I see higher

latency that can reach 3 sec. In the case of ZeroMQ implementation, I am not limited by a

provider’s throttling policies, and the highest update-visibility latency is one order of

magnitude lower than in the case of Dropbox.

While update-visibility is a good metric to show how Shell affects an applica-

tion, the operations bandwidth it can achieve is not a good metric. In the current Shell

implementation, everything is asynchronous. Shell accepts every PUT operation, but does

not apply it immediately. Every GET operation returns immediately as well, returning only

data that is consistent. The only thing a bandwidth plot would show is the performance

of the application storage, which in Shell is differentiated from the cloud-manager. In

50

EC MR CC
4.0

4.5

5.0

5.5

6.0

6.5

7.0
West-Zmq

EC MR CC

2

4

6

8

10

Single-Zmq

EC MR CC

40

60

80

100

120

140

160
Global-Zmq

EC MR CC
7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0
East_West-Zmq

G
am

e
du

ra
tio

n(
se

c)

Figure 3.14: Box plots for the duration of replaying 30 game traces under different data center
topology setups for the ZeroMQ back end.

the current implementation, the application storage is REDIS, which supports very high

throughput [96]. For completeness, Shell can push only up to 8 updates per minute to

Dropbox without receiving throttles. On the other hand, a single threaded cloud-manager

for ZeroMQ achieved up to 100 requests per second.

3.3.6 Application Experience

In the previous section I analyzed how Shell, the storage layer, and the consistency

protocol affect a single update. In this section, I examine the experience of the application

as a whole. More specifically, how much time on average takes for an application to see all

the events of a game.

Before the experiment I expected to observe the following: DurationEC < DurationMR

< DurationCC for both storage layers. The duration over the ZeroMQ verified our expec-

tations. Figure 3.14 shows the box plots of the game duration. The X-axis shows different

consistency protocols and the Y-axis shows game duration (seconds). Over eventual con-

sistency consistently I see the best performance (shorter time to complete a trace). For the

topology setups that introduce some network distance between the replicas (Global, East-

West), monotonic reads outperforms causal consistency. This is expected because in causal

51

consistency updates need to be in certain order before become visible in the application.

The difference between eventual consistency and monotonic reads is not significant, and I

believe that comes from the fact that replicas have to carry more meta-data (Figure 3.16)

and some extra overhead to examine the version vectors before I apply the update. For all

the setups most games complete within 80 seconds, but a few games in the Global setup

reach 160 sec.

EC MR CC
1842

2092

2342

2592

2888
West-Sync

EC MR CC
1842

2092

2342

2592

2888
West-Nosync

EC MR CC
1842

2092

2342

2592

2888
Single-Sync

EC MR CC
1842

2092

2342

2592

2888
Single-Nosync

EC MR CC
1842

2092

2342

2592

2888
Global-Sync

EC MR CC
1842

2092

2342

2592

2888
Global-Nosync

EC MR CC
1842

2092

2342

2592

2888
East_West-Sync

EC MR CC
1842

2092

2342

2592

2888
East_West-Nosync

G
am

e
du

ra
ti

on
(s

ec
)

Figure 3.15: Box plots for the duration of replaying 10 game traces under different data center topol-
ogy setups and storage layer configurations for the Dropbox back end. I show the game duration for
each one of the four topology setups for both LANSync enabled, in the graph shown as LanSync,
and disabled.

Surprisingly in the case of the Dropbox, I did not observe the expected behavior. Fig-

ure 3.15 shows the duration I observe over all the topology setups over Dropbox. At the

top of every plot I show the topology along with the LanSync configuration. Plots with title

Sync, show the duration when the LanSync is enabled. No protocol outperformed all con-

sistently. More surprisingly, I see that for the Global topology, eventual consistency is as

slow the other two protocols. In other cases, the higher delays come from monotonic reads,

again not expected, especially when all the replicas are located in the same data-center and

52

250 300 350 400 450 500 550 600 650
Notification sizes (Bytes)

EC

MR

CC

Figure 3.16: Box plots showing how the update sizes change for different protocols. In eventual
consistency Shell sends only the data but in the other two protocols includes the necessary version
vectors as well.

in the same availability zone (Single-setup).

I can only speculate why this is the observed behavior, because I do not have access

to the internals of the Dropbox implementation, as I do in the case of ZeroMQ. First,

the duration metric for Dropbox is two orders of magnitude slower than ZeroMQ. The

reason for the is the very low write-rate that Dropbox allows before it starts throttling. The

throttling mechanism returns a back-off delay that an application has to respect before any

retry. Moreover, in contrast with ZeroMQ, the Dropbox communication pattern is different.

The updates for the most part travel to the Dropbox server and then are propagated in the

rest of the replicas. One would expect that the LANSync feature would accelerate the trace

replay, especially in the Single-setup.But having all the replicas in the same availability

zone is not the same as having all the replicas in the same LAN.

The Dropbox back-end shows what most cloud based applications face today. Applica-

53

tions do not have access to the internals of the providers’ implementations and thus, have

to face unexpected behavior similar to what I observed in this experiment. When it comes

to data consistency, unexpected behavior usually leads to inconsistent data. The Shell

project advocates that defensive designs can isolate unexpected behavior and make it eas-

ier for the application to satisfy its semantics. This is what Shell offers. An application

that uses Shell over Dropbox would get better experience than an application that is not.

But the point of this experiment is not to compare the two admittedly different purposed

data stores, nor to show that for Dropbox I found an anomaly where causal consistency can

complete a traced faster than eventual consistency. I do not expect to see in the general

case of high-throughput data-stores.Rather I show that when placing an application above

the storage layer of a third party provider, the application inherits characteristics of the

provider’s implementation which might not be always in favor of the application needs.

For completeness, Figure 3.16 shows the size of updates that Shell exchanges between

replicas. The updates include both data and meta-data. The meta-data is necessary for the

implementations of various consistency protocols. For eventual consistency, since this is

our baseline and is not needed, I do not include any meta-data; I only pass around Shell

SOs without populating the Shell version. On the other hand, in the other two protocols I

include version vectors which leads to a significant increase of the update size. The increase

accounts to almost 60% when compared to eventual consistency. Given that our application

messages are relatively small, this overhead is significant. Notification overheads remain

the same for both back-ends since the messages I send to every replica do not change

format.

54

3.4 Summary

In this chapter I presented Shell, an architecture that provides an abstraction of cloud

services. Shell translates abstract method calls to service-specific calls, allowing applica-

tion code to remain unchanged while running on different underlying cloud services.

Further, Shell is able to provide strong consistency guarantees customized to the ap-

plication needs, even if the underlying provider supports only weak eventually-consistent

guarantees. Strong consistency is guaranteed by regulating the flow of updates reaching

the application from the cloud storage service.

The ability to separate application code from provider implementations allows them

to evolve independently. This freedom allows application developers to focus solely on

feature development while keeping the application free from code dealing with specific

provider APIs or issues. Moreover, Shell also isolates the consistency protocol imple-

mentations, which no longer have to evolve as quickly as the application code.

Our experimental evaluation relies on two very different communication layers. Drop-

box, used as a communication layer, provides only low, throttled throughput, and no access

to layer internals. However, it does provide durability guarantees based on its use as a

file-sharing service.

The ZeroMQ library is not a data-sharing service at all, only a communication channel.

As such it provides no durability or consistency guarantees. Messages, once delivered, are

forgotten. However, our ZeroMQ-based layer on top of the communication library has high

throughput and low latency, and differs from the Dropbox layer only in implementation of

the cloud-manager module, not in any consistency-related code.

In both cases I evaluated system performance across three consistency protocols, using

eventual consistency as the baseline. Both back-ends delivered misordered updates to the

application in their native, eventually-consistent state. System performance differed under

55

the two layers. The ZeroMQ layer was faster, and the Dropbox layer had inconsistent

performance, especially across different consistencies.

Despite these differences, Shell is always able to provide causal guarantees with-

out requiring the application to participate in dependency tracking. Shell cannot pro-

vide cross-provider performance guarantees. However, the separation of application from

provider-specific code allows the underlying service to be transparently replaced with an-

other service, potentially one that provides performance that is better tuned to a specific

application’s needs.

The basic principle behind this work is that of isolation between distinct layers. Other

proposals [14] that use layering require applications to explicitly provide causally-preceding

write identifiers. While this approach may give precise information, it forces the applica-

tion developers to intermingle consistency-related and application-specific code, while the

latter rapidly evolves. This approach can lead to errors.

Cloud-supported applications are now the norm. Current approaches mean that choices

made by service-providers inevitably influence the evolution of applications built on top

of their services. Shell, by contrast, allows applications to develop independently from

constraints imposed by any specific provider, allowing mobility across consistency levels,

and across providers.

56

Chapter 4

Topology independence and Information Leakage in Repli-

cated Storage Systems

A user may collaborate and share data with many other users and across many devices.

Replicated storage systems have traditionally treated all sharing equally and assumed that

security can be layered on top. On the contrary, I show that security needs to be integrated

into the consistency and replication mechanisms to prevent information leakage.

The traditional assumption in such systems is that all interacting users trust one another.

In the case of Topology Independent replication systems, this assumption can severely limit

performance: if users only perform anti-entropy sessions with those they trust, then updates

can only propagate as quickly as trusted users encounter one another. It would be far more

efficient to use untrusted users to “ferry” updates between trusted ones. In the case of

cloud-based replication systems, users are required to trust the third-party cloud provider.

In this chapter, I present T.Rex, a replicated data system that achieves various forms of

consistency without requiring all interacting users to trust one another. At first glance, it

may appear that simply encrypting the data is enough. While this prevents any information

leakage from the data itself, it does not prevent leakage from the meta-data that users share

during anti-entropy sessions. As I discuss, this meta-data can reveal user trust relationships,

57

behaviors, and update frequency.

T.Rex uses role-based access control [42] to enable flexible and secure sharing among

users with widely varying collaboration types: both users and data items are assigned roles,

and a user can access data only if they share at least one role. Building on top of this

abstraction, T.Rex includes several novel mechanisms: I introduce role proofs to prove

role membership to others in the role without leaking information to those not in the role. I

introduce role coherence to prevent updates from leaking across roles. Finally, I use Bloom

filters as opaque digests to enable querying of remote cache state without being able to

enumerate it. I believe these to be generally applicable beyond replicated data systems.

I combine these mechanisms to develop a novel, cryptographically secure, and efficient

anti-entropy protocol. To demonstrate its general-purpose use, I have built several different

consistency schemes on top of it, including eventual consistency [113], PRAM [73], causal

consistency [4], and causal+ consistency [74]. I have implemented T.Rex and these con-

sistency schemes, and with an evaluation on a local testbed, I demonstrate that it achieves

security with modest computational and storage overheads.

The rest of this chapter is organized as follows. Section 4.1 describes our model and

security goals. Section 4.2 describes T.Rex’s overall design. Section 4.3 describes the im-

plementation, and how this implementation meets security challenges. Section 4.4 covers

the experimental evaluation of T.Rex, Section 4.5 describes application of our approach to

cloud services, and conclude in Section 4.6.

4.1 System model

T.Rex is a storage management system designed to manage user and application data on

personal or cloud servers and mobile devices. Every participating device or server acts as

a replica that eagerly replicates all or part of the total data collection.

58

T.Rex sharing is defined and constrained through interaction between possibly overlap-

ping roles. A role consists of a unique name, a secret key, and the role predicate. The role

predicate is defined over per-file meta-information called labels. A predicate for the collec-

tion of tax documents might be filetype=pdf && context=taxes, for example. A role

defines data collections, via the predicates, and access groups, via the group of devices that

participate in the role.

Replicas periodically push data (created either locally or received from other replicas)

to other replicas through one-way anti-entropy sessions [113]. The choice of destination

could be random, or determined by availability, stability, or available bandwidth. Data is

eventually relayed from where it is created to all interested replicas through a succession

of such anti-entropy sessions.

The system as a whole contains many devices and users. We distinguish between T.Rex

replicas, those running the protocol, and cloud replicas, which replicate cloud data under

the control of cloud service providers. We assume that devices each play only a small num-

ber of roles (<10), and are single-user, with the usual convention of a multi-user machine

being treated as multiple virtual devices. Each device hosts a single replica, so we use the

two terms interchangeably, depending on context.

4.1.1 Security goals

We assume Byzantine failures [68]. Replicas may maliciously and arbitrarily deviate

from correct protocol execution in an attempt to subvert the protocol. By contrast, software

running in cloud services is often assumed to be “honest-but-curious” [46]. Such repli-

cas would follow the protocol honestly but might analyze the protocol messages to infer

information about users and their data. However, given the multitude of reports of cloud

services inadvertently exposing data [35, 62, 63, 79, 84, 101, 111], together with recent

59

disclosures of national intelligence agencies compelling data disclosure, there seems little

reason to differentiate the cloud failure model from that of the standard T.Rex Byzantine

model.

Our security goals are to provide data confidentiality, data integrity, and to prevent

information (including metadata) leakage. More specifically, we attempt to prevent the

following types of information flow:

• replica or user roles - Other than roles common to both, replica ri should not be able

to learn which roles r j plays.

• data written in object updates - Any data written in the context of role ri should not

be visible in plaintext to a replica that does not play role ri.

• role activity - For roles that it does not play, a replica should not be able to identify

the roles of encrypted data. As a simple example, Alice may wish to avoid dark

corridors if she detects heightened activity in the Down-With-Alice role, even if the

precise nature of that activity is unknown.

4.2 T.Rex design

This section provides a high-level overview of the T.Rex system. A T.Rex “group”

consists of a set of devices, possibly owned by many users, each with a T.Rex replica.

Replicas interact in the context of a set of roles defined by a single, distinguished role

master, though this responsibility can be delegated. The role master defines roles and their

keys, maps rights and capabilities onto roles, and maps roles onto users or devices. The

role master also generates and disseminates certificates for the public keys of devices and

users. Interaction between groups (different role masters) is possible,but they share in the

context of a single group. If Alice in group Wonderland wants to share data with Han

60

Solo in group Star Wars, either Alice must join Star Wars or Han Solo must join

Wonderland.

The role master is also responsible for key revocation. We follow an approach similar

to SPORC [41]. A replica is removed from an existing role by creating a new update-

role-key message signed by the role master. This message contains a new role key and a

timestamp, encrypted with the public keys of the replicas that remain in the role. Replicas

removed from the role can still see old updates but not those created after the update-role-

key message.

4.2.1 Replication: State, Updates and Policies

Replicas interact through a one-way push-style synchronization protocol [33], also

known as an anti-entropy. To be accurate most of the times anti-entropy refers to pull-style

protocols but we use this term here as well. A source replica initiates the synchronization

with an arbitrary target replica, pushing data seen by the source and not by the target.

Each replica has a global unique ID named RID. Each replica also has a clock, which

is a counter that is incremented each time a local object update occurs. Every object in the

replica has a version consisting of the triple <OID,RID,clock> where OID is a unique ID

for the object. Each object also has a set of key-value attributes defining the object’s labels.

Replicas also have version vectors, which describe the latest updates seen from the rest of

the systems replicas.

A data item consists of two parts: meta-data (label, size, permissions) and the actual

data of the item. Each object stored by a replica must have labels that satisfy at least one of

the replica’s role predicates.

The time between two anti-entropy sessions is called the update period, During the

update period, a replica merely records object updates created locally. Updates include

61

object creations, deletions, and modifications, and object label definitions and deletions.

At the end of an update period, a replica gathers the actions created in the previous

period and creates two types of per-role entities: kernels, which contain meta-information

describing the actions of the previous period, and shards, which include the same meta-

information as well as any actual update data. The kernel contains a unique GUID, a role

ID, connection information about the replica, and the version vectors of the replica at the

beginning and the end of the current period.

Update periods are always non-overlapping, as consistency protocols are otherwise

quite complex and can duplicate information flow (Section 4.2.2). We enforce this in-

variant by ending the current periods when data is requested by another replica or when

meta-data arrives from another replica in an anti-entropy session.

A replica’s update policy determines whether it will send kernels or shards when com-

municating with other replicas. These choices are analogous to choosing an invalidate or

update policy in a shared memory multiprocessor. Currently, T.Rex supports three policies.

Under the kernel policy replicas exchange only kernels (meta-data). A replica locally inval-

idates copies of objects specified by incoming kernels, requiring the corresponding data to

be demand-fetched before they can be used again. The shard policy sends both where data

and meta-data together. Finally, kernel-shard-based during which the source replica of the

update sends shards, data and meta-data for the roles that shares with the target replica and

only kernels (meta-data) for the rest.

4.2.2 Ramifications of consistency in T.Rex

T.Rex implements several different consistency protocols, including eventual consis-

tency [113], PRAM [73], causal consistency [4], and causal+ consistency [74]. The choice

of consistency protocol is not strictly relevant to this work. More relevant is whether these

62

consistency protocols are supported at the object or role level.

Users might creating overlapping roles. This choice is necessary, as roles are defined

by high-level user-defined predicates. Ensuring that logical predicates are non-overlapping

is difficult, and may not always be possible.

Consider a replica, ri, that plays two roles: rolex and roley, and suppose that the inter-

section of rolex and roley is object oa. If ri receives an update for object oa in the context of

rolex, a straightforward implementation would immediately apply it to the local copy of oa,

assuming consistency requirements are met. However, if ri now reads oa in the context of

roley, it sees the altered value. Worse, its copy of oa is now different from copies on replicas

that only play roley, and the distinct versions will never converge. This violates the base

consistency model supported by nearly all mobile storage systems, eventual consistency,

which requires that all copies of the same object eventually converge.

One way to support eventual consistency is to transfer the update from one role to

another. However, this transfer raises several questions. First, might two replicas playing

both rolex and roley each transfer the same update? How are the two resulting updates to

be recognized as the same?

Second, a model like causal consistency demands that if update u1 is read at a replica

before u2 is created, u1 happens-before u2, and must be applied before u2 anywhere u2 is

applied. If updates are transferred from one role to another, the transferred updates must

obey the same consistency constraints. However, this effectively implies that two updates

of rolex might be ordered only through updates that were created in an entirely different

role. The correctness criteria in such situations is not clear. Further, additional ordering

constraints can also affect performance.

A more damning critique is that moving updates among roles can be seen as a leak of

information from one role to another. Users should have the option of allowing updates to

leak across roles, but the system should be able to enforce the stronger semantics.

63

Source s Target t

{Sk}tpub
{Ns}Sk

{Ns,Nt }spub

Nt,{AEid,Nr}Sk

{AEid,<role proofs>, BFt}Sk

{AEid,<data>}Sk

Secure channel
establishment

Zero knowledge
role verification

1

2

3

4

5 Data transfer

Figure 4.1: T.Rex-Sync

For all of these reasons, we take a second approach: splitting any object that is updated

in the context of more than one role into two physical representations, effectively forking

the object’s version history.

4.3 T.Rex implementation

This section describes protocol and mechanism detail of our implementation. T.Rex’s

protocols differ from that of “personal” sharing systems [43, 89, 91, 94, 102] in the use

of cryptographic primitives, extra handshakes for cryptographic challenges, and in guiding

consistency transfers through opaque digests.

64

Replica r2

"guest"

Anti-Entropy at T1
Replica r1

"friend"
Kernel Cache

friend

Role
friend

10
5

TTL

Kf,1,2

Kernel ID
Kf,1,1

931
86

GUID

role proofs,
shard Bloom filter

{86, 931} sk

{ }s
T1

Replica r3

"friend"

1

2

Kernel Cache

20Kg,3,1 guest523
friend

Role
friend

10

5
TTL

-

Kernel ID
-

931

86
GUID

3

 Anti-Entropy at T2

shard Bloom Filter
{523, 931} sk

{ }sk

Kernel Cache

18- guest523
friend

Role
friend

7
8

TTL

Kf,1,2

Kernel ID
Kf,1,0

931
721

GUID

role proofs,4

Figure 4.2: Anti-entropy: Replicas r1 and r3 communicating through r2, which is of another role.
Kr,x,y refers to the kernel in role r for period y of replica x. For r1 to push data to r2, it first sends a
request to r2 (not shown). (1) r2 responds with proofs describing roles played locally, and a Bloom
filter describing locally cached kernels. (2) r1 responds with new encrypted kernels not represented
in the Bloom filter. Only the GUIDs (86, 931) of K f ,1,1 and K f ,1,2 are visible to r2, the rest is
encrypted. (3) After this exchange, r2 locally makes a decision to drop kernel 86 because the TTL
expires, and (4) r2 initiates anti-entropy with r3. The replication update then repeats between r2
and r3. r3 is able to decrypt kernel K f ,1,2 but not apply it, as it is missing K f ,1,1 (GUID 86) (see
Section 4.2.2).

4.3.1 Replication and information leakage

A conventional replication protocol handshake consists of the target replica t initiating

a session with a request for the target’s version vector. The source replica compares its

version vector with the target’s vector to determine the set of updates that should be sent to

the target.

T.Rex’s handshake is designed to make this determination without allowing either the

source or target learn information data held by the other, except for roles in common. The

first three messages of the handshake shown in Figure 4.1 are used by the source and target

to authenticate each other. However, the third message also contains the role challenge

and session ID (AEid), and the fourth allows the target to respond with role proofs. The

challenge is just a random nonce. A proof is an HMAC of the nonce and the role key (rki is

the role key for role i): a per-role key shared by all devices that play that role. Aside from

65

HMAC proofs, the key is also used to encrypt data and updates for that role1. A device

that plays multiple roles will return a proof for each role. The source compares the target’s

proofs against locally created proofs to identify roles in common.

The challenge and proofs allow the target to prove it plays specific roles, but only to

other replicas that also play those roles. A source replica does not learn of any target role

that it does not also share. This is a fundamental difference between T.Rex and existing anti-

entropy protocols, where targets completely summarize their state for arbitrary sources in

the very first message.

The fourth message also contains the target’s Bloom filter. We term these Bloom filters

opaque digests to point out that the Bloom filters have security value. The Bloom filter is

constructed with a cryptographic hash, and values in the filter are kernel GUIDs chosen

uniformly at random from a large (128-bit) space. The source gains no information about

any kernels present at the target unless it has those kernels as well. This Bloom filter

summarizes IDs of kernels known to the target, much like a summary cache [40]. The

source queries the Bloom filter for kernel IDs cached locally, sending to the target any not

contained in the filter.

Bloom filters are used to obfuscate data cached by the target. Kernels are encrypted to

prevent information leaking to other roles. In more detail:

An encrypted kernel reveals neither the role in which it was created, nor the

local clock value when it was created, nor the replica at which it was created.

This update anonymity means that a target only learns explicit information about kernels,

or updates, of roles shared with the source. Replica i does not know which kernels it has

seen from replica j, as kernels created by j for roles not shared by i will be encrypted.

1Our implementation currently uses an AES key as a role key, but in the future we may use a public key,
with hybrid encryption for confidentiality.

66

A target can only describe its state by enumerating all kernels seen locally, or by using

some sort of summary data structure. An enumeration is not bandwidth-efficient, but more

importantly would reveal explicit information about the target. A listing of kernels cached

at the target reveals its target policy (how it chooses partners for anti-entropy), and caching

policy (which kernels to cache for forwarding to other replicas in subsequent anti-entropy

sessions). A replica’s local caching policy will often prefer kernels of roles it shares. There-

fore, a snapshot of cached kernels at replica i, when compared with a snapshot of cached

kernels at replica j, could reveal commonalities. These commonalities, in turn, could show

that either the target or cache policies of the two replicas are similar, giving good evidence

that the replicas share at least one role.

The final step of the protocol is data transfer. The source identifies roles in common

with the target by comparing role proofs. Call this set of common roles Rcom. Kernel kr,i, j

is the jth kernel created by replica i for role r. All kernels kr,i, j, such that kr,i, j 6∈ BFt and

r ∈ Rcom, can be sent to the target without extra encryption by the role key rki, since both

source and target share role rolei. The data will still be encrypted with the session key

before it is sent out over the network. Kernels for roles not common to both the source and

target are doubly encrypted: first with the role key, and again with the session key.

Kernels not common to both the source and target still might be in a role played by the

target. The target therefore must try to decrypt the header of each unknown kernel with

each of it’s keys. This is not a large overhead given our assumption that devices play only

a small number of roles.

Figure 4.2 shows the outline of two complete anti-entropy sessions in T.Rex. Replica

r1 initiates a session with r2, with which it shares no roles. Two kernels are sent to r2, and

at some future point in time r2 makes a local decision to drop kernel 86 from it’s cache.

Hence, kernel 86 never makes it to r3. Replica r3 will discover this omission when it later

learns of subsequent updates in the same role, or by the same device.

67

4.3.2 Role Coherence and object forking

We term the object-forking approach role coherence. Objects are initially created

tagged with all roles in which they are visible. An object updated in the context of one

role is forked into a version history for that role, and a version history for all other roles

that can see the object. At the limit, an object visible in n roles is forked into n logically

distinct objects, each of which may continue to be updated. Inside a role, all of the consis-

tency schemes work as before. This approach is similar to that of Qufiles [118], in which

a single file can have multiple physical instantiations, transcoded for different bandwidth

requirements.

Role coherence requires accesses to be associated with a single role. Updates from

remote replicas are carried in role-specific containers (shards), and therefore have explicit

role associations. An early version of T.Rex handled local reads and writes by passing the

role context through the POSIX file system interface as a modifier on the base filename, as

in “filename@role”. We currently handle local reads and writes by defining an interface

that allows applications to specify a current role, and use this role to implicitly tag object

reads and writes. Labeling could also be done automatically [106] or by using the hints of

a provenance tracking subsystem [80].

Object forking creates overhead in both metadata and object data. A straightforward

implementation of the underlying object-forking storage mechanism would fork a new copy

of an object with each incoming update, causing storage overheads to increase rapidly with

the number of roles.

Instead, we represent objects as recipes, which are ordered lists of block hashes [45,

115]. An object’s data consists of the concatenation of the blocks from the recipe, in order.

Instead of replicating the whole object to create a new version, we only update the recipe

(metadata) of the object to include the new blocks, and save only modified blocks to disk.

68

4.3.3 Attacks

In this section we describe how T.Rex defends against a variety of attacks.

Passive eavesdropping: Anti-entropy sessions use public keys to establish secure chan-

nels. The secure channel is established before replicas reveal any information about replica

identity or state.

Impersonation: Session establishment is secure against replay attacks because of fresh

nonce challenges. An attacker could replay the first message from an earlier exchange.

However, replaying the third message would fail because the target’s challenge nonce in

message two will change.

Role Leakage: In this family of attacks a malicious replica tries to find role common-

ality among two other replicas. Trudy could initiate anti-entropy sessions with both Alice

and Bob, using the same role challenge, Nr, with both. Both would return vectors of role

proofs (message 4 in Figure 4.1), one for each role they play. Trudy could determine how

many roles the two play in common by comparing the proof vectors.

T.Rex prevents this attack by tying the challenge to the current session. Nr is defined as

being equal to Ns⊕Nt .

Activity Inference: We define activity inference as a replica learning about updates in

roles that it does not share. Assume Trudy and Alice participate in an anti-entropy session,

but do not share any roles. The protocol should allow Trudy to update Alice without Alice

revealing anything about her state, or what she knows about other replicas. This is a funda-

mental difference between T.Rex and other anti-entropy protocols, which require the target

of an update to summarize its state to the source. T.Rex lets Alice summarize state through

an opaque digest, revealing nothing about updates unknown to Trudy.

Drop out-of-role updates: Trudy could discard all updates that do not belong to her

roles. This will not affect either liveness or correctness, but it will impact performance.

69

4.3.4 Freshness

We use Bloom filters to compare replicas’ cache contents without revealing unnecessary

information. Bloom filters may be efficiently queried without allowing enumerations, but

they can grow large if they contain many objects, or are required to have low false positive

rates. Our Bloom filters are currently structured to have false positive rates of less than or

equal to 0.5%.

Constantly adding newly-seen kernels to a Bloom filter with a constant false positive

rate would result in ever-increasing filter sizes. We bound this growth by defining a fresh-

ness (f) interval. The target is constrained to include in his Bloom filters all cached ker-

nels not older than the freshness interval, and kernels older than the freshness interval are

dropped from the cache once they have been applied locally.

Freshness allows us to bound Bloom filter growth, but admits the possibility that kernels

may not survive long enough to be propagated everywhere. T.Rex’s consistency module

eventually detects these events and requests the shards directly from the creator, which is

guaranteed to hold onto locally-created shards for some tunable, but long, period of time.

For example, a replica with f =10 is interested in updates that have been created (or re-

ceived, since replicas can act relays) from the source during its last 10 anti-entropy periods.

If a target is tuned to initiate one anti-entropy session each minute, then f =10 means that

the replica is interested for updates that are at most 10 minutes old. In other words, fresh-

ness is a metric of time, defined as the number of anti-entropy sessions since an update was

created, or received. Systems in highly-connected environments might use a low value of

freshness, since high connectivity allows them to quickly learn of newly created updates.

On the other hand, devices and systems with low connectivity might use higher values of f.

By default, freshness is a per-device attribute, but T.Rex also supports per-role f values.

70

4.3.5 Prototype

T.Rex’s primary interface is the POSIX file system interface, using FUSE to bind our

user-level servers to the Linux kernel’s VFS interface. The T.Rex prototype consists of ap-

proximately 24,000 lines of C code compiled with gcc-4.6.3. The prototype uses Google

protocol buffers 2.5 [117] to serialize messages exchanged between replicas, and the ZMQ-

2.2.0 [60] networking library to communicate. We use libTomcrypt-1.17 [34] to implement

all cryptographic operations, with 160-bit SHA-1 hashes, 256-bit AES for payload encryp-

tion, and 2048-bit RSA keys. Metadata is stored in sqlite3. We also use several data

structures provided by the UTHash library [116].

T.Rex is divided into a set of high-level, communicating modules. The net module

handles all network communications, and implements T.Rex-Sync logic. The consistency

module checks consistency-related prerequisites of incoming kernels and applies or blocks

them. The sk-factory module produces and manages the storage of shards and kernels, both

locally and remotely created. Finally, the FS module provides a file system interface for

the system by plugging into the kernel’s virtual file system (VFS) layer.

In more detail, an incoming kernel is passed by the net module to sk-factory. If the

kernel matches a local role, sk-factory will decrypt it, verify it, and pass it to the consistency

module. Kernels that do not match any local role are sent to disk. The consistency module

checks whether the kernel can be applied without violating consistency invariants. If so,

each non-stale (overwritten by a logically later update) update contained in the kernel is

applied to the local object store. If not, it is stored on a pending queue until later kernels

unblock it, or supersede it. Updates are generally applied by replaying appropriate file

system operations from the FS module. Finally, the state of the replica is updated in the

database.

Outgoing kernels are created by sk-factory at the start of an anti-entropy session (Sec-

71

tion 4.3.1). The net module, implementing T.Rex-Sync, determines whether each kernel

should be pushed to the target.

4.4 Performance evaluation

Our goal in building T.Rex is to explore the potential for eliminating information leaks

in replicated storage systems. Sections 4.2 and 4.3 discuss new functionality in our replica-

tion and consistency protocols; this section quantifies the cost of supporting that function-

ality.

We evaluate three categories of overhead. First, CPU overheads arise from the extra

cryptographic operations used for authentication and confidentiality. Second, our protocols

include extra authentication messages, and potentially send duplicated data because of up-

date anonymity. Finally, the new functionality adds space overhead both because of new

data structures, and because of duplicated data across roles.

We drive our evaluation through a data-set (Figure 4.3) modeled on a large collection of

images from the online picture-sharing site 500px [51]. There are 18,315 files, with mean

size of 358.1 KBytes and median size of 335.1 KBytes.

4.4.1 CPU costs

The goal of our first experiment is to compare T.Rex-Sync with existing synchronization

protocols. Existing protocols roughly follow the same approach. The replicas exchange

version vectors to inform each other of updates they have seen. Next, the source uses the

target’s version vector to determine which locally seen updates should be sent to the target.

Our first experiment compares T.Rex-Sync with a stripped down version of T.Rex-Sync

called trad-sync, which models the conventional anti-entropy approach.

We use two replicas, residing on different machines and communicating over a 100-

72

0 200 400 600 800 1000
File Size (KB)

0

200

400

600

800

1000
Nu

m
be

r o
f F

ile
s

Figure 4.3: Data-set modeled on online image sharing site. There are 18,315 files, with mean size
of 358.1 KBytes and median size of 335.1 KBytes.

Mbit local area network (LAN). During each 60-second period, the source selects 10,000

files from the initial dataset and performs random data and metadata updates. The source

then initiates an anti-entropy with the target. The total duration of a single run of this

experiment is five hours. We vary the number of roles, R, that the two replicas play, where

R ∈ [1,32]. For each R we performed three runs, each using a different distribution of

updates in update periods. The distributions we used are uniform, zipf with s = 2, and

Poisson with λ = 50. We present results only for the uniform case, as the other results were

qualitatively similar. Both machines run Linux Ubuntu 12.04 with an Intel i5-7502.67 GHz

for the source and an Intel Core 2 Duo-E84003.00GHz for the target.

73

1 2 4 8 16 32
Number of Roles

0

20

40

60

80

100

120

140

160

M
ea

n
sh

ar
d

cr
ea

tio
n

tim
e

(m
se

c)

other
aes
signature
data

0

5

10

15

20

25

30

35

40

45

M
ea

n
sh

ar
d

si
ze

 (
M

B)

Figure 4.4: Shard creation CPU costs, and shard sizes.

Shard creation

Figure 4.4 shows the average data exchanged over the course of the 300 anti-entropy

sessions, with varying number of roles. The average shard is 40MB in size, and requires

approximately 100ms to be created for runs where the replicas participate in 4 or fewer

roles, or 120ms or more when R is higher. The extra cost is caused by larger R values

increasing the percentage of updates that must be role-encrypted. A creation time of 100ms

to 140ms is large, but is amortized across 10,000 distinct updates, 4k bytes each.

As shown by the left bars, roughly comparable portions of shard creation time are spent

on public-key encryption (the initial handshake, plus signature generation and verification

for shards), and AES encryption (all outgoing and incoming data). The remaining time,

marked ‘other’ on the figure, includes disk accesses to store shard data and metadata, seri-

alization of messages to and from protocol buffers, and miscellaneous copying. This latter

74

1 2 4 8 16 32
Number of Roles

0

5

10

15

20

25

30

35

40

M
ea

n
sy

nc
 ti

m
e

(m
s)

vvc
db
disk
net
hnds
rxchng
bloom

Figure 4.5: Overhead breakdown Traditional synchronization protocol (trad-sync) on the left,
T.Rex-Sync on the right.

category increases linearly as a function of R. The public-key overhead is constant.

Anti-entropy

Figure 4.5 shows the average time needed to complete a single anti-entropy session

for trad-sync (the bar on the left) and T.Rex-Sync (the bar on right). Version vector check

(“vvc”) is the time spent by the source in checking for shards needed by the target, as

indicated by the target’s version vector. This cost is associated only with trad-sync since

T.Rex uses Bloom filters to determine this information. Database (“db”) is time spent by

the source in loading all the metadata needed to construct shards. Disk is the overhead of

loading the shard’s actual data from the disk. Network (“net”) is the aggregate time-on-

the-wire network costs throughout an anti-entropy session, minus the network latency of

sending the shard data. The actual sending of data can happen asynchronously (if using

75

1 2 4 8 16 32
Number of Roles

0.0

0.5

1.0

1.5

2.0

2.5

av
er

ag
e

cr
yp

to
 o

pe
ra

tio
ns

 (m
se

c) rsa
hmac
aes

Figure 4.6: Cryptographic overhead: Costs of cryptographic operations. Bars on the left are for
the source, and on the right for the target.

kernels rather than shards), and is therefore not strictly relevant here. Note, however, that

the cost of sending 40MB of updates dwarfs all of these costs, even that of the public-key

crypto. Handshake (“hnds”) is the time to create the first two messages of the handshake

in Figure 4.1. This cost is dominated by the creation and verification of the public-key

challenges, and only exists in T.Rex-Sync. Role exchange (“rxchng”) is the duration of the

role-exchange procedure, as described in Section 4.3.1. As in the case of the handshake, the

value of rxchang represents the time spent on local computations at the replicas, rather than

time on the wire. Tasks include role proof creation and verification, database operations to

retrieve role keys, and message preparation costs. The cost of the extra RPCs is shown in

net. Bloom-Check (“bloom”) is the time needed to query the target’s Bloom filter.

As Figure 4.5 indicates, the largest overheads incurred by either T.Rex-Sync or trad-

sync are from disk accesses. Our current implementation saves all file data, including

76

new updates, on disk. This performance could be improved by writing to the disk asyn-

chronously, and possibly through use of a cache in DRAM. However, as much of the data is

merely being relayed among multiple replicas, a cache might have little locality to exploit.

Handshake cost is insensitive to the number of roles, as the number of public-key cryp-

tographic operations is constant. On the other hand, the cost of checking role proofs does

increase with roles, as the number of available roles determines the number of HMAC oper-

ations needed by the source and target. Network costs (net) are higher for T.Rex, as T.Rex-

sync requires more RPCs during an anti-entropy session. The cost of using Bloom filters

(bloom) is comparable to that of using version vectors (VVC). However, T.Rex’s “freshness”

constraint allows the costs associated with Bloom filters to be bounded (Section 4.4.2).

Figure 4.6 shows the data another way, breaking down costs of cryptographic opera-

tions with varying numbers of roles. Public-key operations are the most expensive, but as

discussed above, do not vary with the number of roles. The numbers of HMAC and AES

operations do vary. HMAC operations are needed for each role proof during the role ex-

change step, and all data is encrypted, but data for roles not known to either of the source

and target is doubly encrypted. As the number of roles increases, the odds that a given role

is not played by both replicas increases, implying that more data is doubly encrypted.

The new overheads are not negligible, but only become significant with many roles.

However, recent user studies [65] have shown that even a static allocation of four roles

serves many users well. While four roles might not suffice for the more expansive vision of

sharing assumed by this work, the number of roles that can usefully be used in a group is

likely to remain relatively low. Additionally, Figures Figures 4.5 and 4.6 does not consider

the costs of sending data, which dwarfs the overhead we consider.

77

1 2 4 8 16 32
Number of roles

0

1

2

3

4

5

6

7

8

Bl
oo

m
 fi

lte
r s

iz
e

(K
B)

f:4
f:8
f:16
f:32
f:64
f:128

Figure 4.7: Bloom filter overhead with varying freshness.

4.4.2 Costs of update anonymity

T.Rex has update anonymity in that kernels for roles not played locally are opaque; the

local replica knows literally nothing about them other than the randomly-created kernel

GUID. While a conventional protocol can summarize known kernels through version vec-

tors, T.Rex uses Bloom filters and local caches to store and forward kernels obliviously.

This section investigates the overhead of this oblivious approach. We measure the direct

overhead of using and sending Bloom filters instead of the more common version vectors.

Bloom filters versus version vectors

Figure 4.7 shows the size of the Bloom filters needed by T.Rex to support a false positive

error rate of less than 0.5%. The number of elements in a Bloom filter is the number of

78

Number of Replicas Version Vector (Bytes)
5 118

15 360
35 836
55 1295

Table 4.1: Representative version vector sizes (after serialization)

roles multiplied by the degree of freshness, e.g., the largest Bloom filter shown in Figure 4.7

contains 128x32 = 212 elements. The figure demonstrates a worst-case cost, as kernels are

only generated for those roles with activity during an update period. Hence, actual Bloom

filter sizes are usually smaller than the numbers shown.

Version vectors grow linearly with the number of replicas that participate in the system.

Our prototype implements vectors a set of tuples, each containing two integers. However,

their final size is determined based on serialization algorithm of the protocol buffer imple-

mentation. Table 4.1 shows the size of the version vectors with different group sizes. These

numbers were collected after the version vectors were serialized into protocol buffers. Pro-

tocol buffers shrink the space consumed by integers by representing them in as few bits as

possible.

4.4.3 Storage costs

A final type of overhead is increased storage costs. Most of our protocol adds only

small constant overheads, but role coherence duplicates objects across roles, and therefore

potentially increases storage costs by a factor of R. However, this only occurs if objects are

shared and modified in all roles, an unlikely worst-case scenario.

To summarize, updates to objects shared by multiple roles are forked (split into two

distinct versions), rather than allowing updates from one role to be seen in another role.

Assume rolex and roley have intersection Ix,y. An update Ui ∈ Ix,y, created in role rolex,

will not be seen in role roley.

79

1 2 4 8 16 32
number of roles

0

1

2

3

4

5

ra
tio

I= 25%
I= 50%
I=100%
baseline

Figure 4.8: Data overheads after 10000 updates determined to 1000 files. The x axis is log-scale,
while y is not. Meta-data overhead with varying number of roles.

We quantify the overhead of role coherence by directly measuring the increase in stor-

age costs as the number of roles increases. Our experimental setup consists of 1,000 ran-

domly selected objects from our dataset, with differing intersection sizes, I. We varied I

from 25% of the original group, to 50%, and finally to 100%.

Files that fall into the intersection are assigned every available role r in the system with

r ∈ [1− 32]. The remaining files are each placed into a single, randomly selected role.

Each run consists of 10,000 4KB file updates. Files to be updated are selected using a zipf

distribution that biases towards smaller files. This is intended to model “hot” files, small

files that are used and updated frequently. We also ran experiments selecting files uniformly

at random, but the results were similar. We selected 4KB as the update size by observing

block changes as image filters are applied to image files.

Table 4.2 shows the absolute overhead for storing the role-based versions when the

80

1 2 4 8 16 32
Number of roles

0

2

4

6

8

10

12

Si
ze

 (G
Bs

)

 25% ext4
 50% ext4
100% ext4
trex
blk

Figure 4.9: Data overheads after 10000 updates determined to 1000 files. The x axis is log-scale,
while y is not. Total data consumption with varying number of roles. blk and trex are flat.

Roles Baseline(MB) Role Based (MB) Cost (%)
1 30.08 38.93 29.4%
2 30.44 41.06 34.62%
4 30.96 45.88 45.54%
8 31.08 55.27 77.93%

16 34.26 73.52 114.59%
32 38.62 110.05 184.95%

Table 4.2: Absolute values of meta-data storage overhead between the baseline case and the storage
mechanism supporting the role based consistency. The intersection level is at 50% over the total
number of files. Role-based overhead scales linearly with the number of roles.

intersection I = 50%. Figure 4.8 shows the relative overhead of the role-based approach

over the baseline case, where objects are shared among all intersecting roles. Metadata

costs for the role-based approach are roughly twice those of the baseline case for all I size

and up to 4 roles, but rises to nearly six times as much for 32 roles with 100% intersection.

Again, however, these numbers represent worst-case overheads. For example, 32 roles

81

with 100% intersection describes a system with 32 absolutely identical roles, neither useful

nor likely in practice.

Figure 4.9 shows the computed overhead in file data storage for the experiment de-

scribed in Figure 4.8, for three distinct types of systems. We use ext4 as a straw-man to

represent a generic whole-file forking approach. Assume a file x is present in both roles

friends and colleagues, and then written in the context of friends. The whole-file ap-

proach of ext4 would duplicate the entire file and then modify one version, resulting in an

overhead of 100%. The more sophisticated blk represents files as ordered sets of fixed-size

blocks [45, 93], and only duplicates blocks that differ. A 4KByte update might only modify

a single file block. Finally, trex represents our prototype, which uses the blk approach,

but also retains blocks from prior file versions. There are three different lines for ext4,

as the overhead for the whole-file approach varies according to how much overlap there is

among roles. Storage requirements of systems using a block-based approach, however, are

unaffected by the number of roles. The storage costs of trex are slightly higher than those

of blk because of the need to store old blocks.

4.5 T.Rex on the cloud

Thus far, I have presented T.Rex from the perspective of users who directly interact with

one another. Recall from Figure 1.2, however, that many of the same issues encountered

with local replicated services also present with cloud providers. Both data and meta-data

can leak to replicated cloud servers. The T.Rex mechanisms deal with these issues ef-

fectively, so it is natural to explore whether T.Rex mechanisms can be used effectively in

concert with cloud providers.

T.Rex potentially addresses another issue with cloud services: consistency. Cloud ser-

vices vary greatly in their guarantees. Some guarantee response times, some make session

82

user space

T.Rex
Lo

ca
l H

ar
d

D
riv

e

Cloud Local folders

Encrypted
space

Replica A

user space

T.Rex

Lo
ca

l H
ar

d
D

riv
e

Cloud Local folders

Encrypted
space

Replica B

Cloud Sync channel

Figure 4.10: This figure illustrates how T.Rex can be used together with the existing auto-sync
replication software. In this case T.Rex handles the security as well as the consistency and leaves
the replication and the fault-tolerance to the cloud software agents that run locally in every user
device. Every interaction of the users application is done through T.Rex which has hooks

guarantees [114], and at least one makes global guarantees of single-object coherence.

T.Rex makes hard consistency guarantees, and could potentially be used to regular-

ize guarantees across multiple clouds similarly to bolt-on consistency [14]. Our approach

would differ in that the consistency guarantees would be made along with security guaran-

tees.

T.Rex-Cloud would differ from standard T.Rex mostly in that all communication would

be through the cloud. If each T.Rex replica is connected to the same cloud services account,

we can effectively use the cloud as a fast and wide communication channel.

The use of cloud services would allow us to dispense with the anti-entropy protocol.

Kernels and shards would be created as in T.Rex, and then deposited into cloud storage

83

where they would be retrieved by other T.Rex replicas.

Clouds and shards contain encrypted dependency information. A replica pulling a shard

out of the cloud channel only applies if the consistency criteria in Section 4.2.2 are met.

Security guarantees would also still be enforced, as kernels are created and encrypted as

before.

Versus T.Rex, T.Rex-Cloud might have more durability; cloud updates would be present

on many cloud servers, and might be backed up. T.Rex-Cloud also gets communication

scheduling for free, and is simplified by the elimination of the anti-entropy protocol.

4.6 Summary

Traditional replicated data systems have assumed that all interacting users trust one

another. In this paper, we have challenged this assumption by arguing that it can lead to

sub-optimal performance and, particularly in the case of cloud-based systems, can lead to

information leakage. Moreover, we have demonstrated that various consistency schemes

can be efficient and secure without requiring all interacting users to trust one another.

T.Rex makes this possible by combining several novel mechanisms to create a cryptograph-

ically secure, efficient anti-entropy protocol. Our implementation and test-bed evaluation

of T.Rex demonstrate that it achieves security with modest computation and storage over-

heads.

We view T.Rex as the first step towards securing replicated storage systems; there re-

main many interesting open problems. Users worried about meta-data leakage might also

worry about visible communication paths and other subtle issues; combining T.Rex’s tech-

niques with anonymous communication systems like Onion Routing [47] is an interesting

area of future work. We have sketched the design of a cloud-enabled T.Rex: one that would

allow users to benefit from the reliability and availability of the cloud while maintaining

84

control over the privacy and consistency of their data. The basic approach we take in doing

so is to treat the cloud provider as a communication channel, one that potentially increases

reliability. Another interesting area of future work is to understand how well consistency

schemes “layer” upon one another. Moreover, with a system like T.Rex implementing end-

to-end consistency, it is worth investigating whether cloud systems must invest in sophis-

ticated consistency schemes of their own, or if the end-to-end argument [103] should be

applied.

85

Chapter 5

Conclusions and Discussion

In this thesis I designed, built, and evaluated systems that allow cloud-based applica-

tions to fully use the cloud services without limiting the applications’ ability to define their

own consistency and information-sharing policies. My work allows applications to get

the consistency they want (Shell) and retain control over the data that is visible during

replications (T.Rex).

The end-to-end principle [103] states that application-specific functionality should be

located at the edges of the system. In my work I separate the consistency and information-

sharing polices from the mechanics of replication. Both of my designs are layers that can

be placed between the application and the storage layer (Figures 3.1 and 4.10). Both of

the designs are modular and can be used to support existing applications without causing

major disruptions. Both Shell and T.Rex introduce new layers that are located between the

applications and their storage layer. The introduction of these layers allows an application

to regulate the flow of updates that it receives from the storage layer. By regulating the flow

of updates, either by temporarily buffering inconsistent updates or by effectively encrypting

them based on application-based sharing policies, an application can get consistency and

privacy customized to its needs.

The Shell project (Chapter 3) focuses on consistency guarantees. In Shell I used

86

a layered design to provide applications with higher consistency guarantees over eventu-

ally consistent data stores. The Shell layer is located between the application and the

cloud services, and allows applications to achieve causal consistency guarantees without

explicitly relying on dependency tracking. This design also allows applications to register

customized conflict resolution handlers. Most importantly, my design illustrates a general

approach of isolating application code from the cloud provider APIs. This isolation allows

the application to evolve independently from any provider’s API calls. Furthermore, the

design isolates the consistency implementation to a unit level, allowing for correct consis-

tency implementations that remain unchanged despite frequent changes to the application

code.

The T.Rex project (Chapter 4) focuses on information leakage during replication. In

T.Rex I used the idea of layering to assign the replicas of a distributed system to different

levels of trust. I achieved this by designing a cryptographically-secure replica synchro-

nization protocol that supports Topology Independence, but does not assume uniform trust

among participating replicas. T.Rex allows applications to use cloud synchronization ser-

vices such as Dropbox without having to reveal any of their data to a third-party provider.

I defended the following thesis statement: By decoupling consistency determination

and trust from the underlying distributed data store, it is possible to (1) support application-

specific consistency guarantees; (2) allow for topology-independent replication protocols

that do not compromise application privacy.

The way we build cloud applications inherently shifts some of the control from the

application developers to providers. This means that cloud service implementations ex-

ist between applications and their data. Moreover, provider implementations might have

other dependencies, internally relying on other cloud services. Unfortunately, abstraction

leakage–faulty assumptions made on the application layer (for example assuming ACID

behavior over a BASE data store)–and tight coupling between provider APIs and applica-

87

tion code leads to high complexity, which makes application code hard to understand and

even harder to maintain.

In this work I focused on consistency and replication. My primary finding is that modu-

lar designs resulting from a layered approach can effectively insulate applications from the

vagaries of specific cloud service implementations. This, in turn, allows us to fully exploit

the benefits of cloud services, without sacrificing application flexibility.

5.1 Future Work & Open Problems

In this section, I present open problems that arose during my work in Shell (Chapter 3)

and T.Rex (Chapter 4).

Consistency Testbed: The Shell architecture provides an easy way to plug a con-

sistency protocol into an application stack. In this work I implemented two consistency

protocols, monotonic reads and causal consistency, and tested their behavior over two dif-

ferent data stores. The easy introduction of a new consistency protocol, coupled with the

fact that there is no need to change either the application code or the storage layer, makes

the Shell paradigm a good candidate for the creation of a consistency testbed. In this

scenario, it is possible to use the Shell architecture to evaluate the effects of different

consistency protocols.

Probabilistic Update-Visibility: I would like to explore how a probabilistic model can

be used to characterize the update-visibility. This would help applications to develop

more effective caching schemes that will minimize any unnecessary communication with

the cloud provider.

Support of Transactions: In Shell I support only weak consistency protocols. I

would like to explore how someone can support transactions while using the layer paradigm

of Shell.

88

Garbage collection: In Shell I used two types of storage. In the first type I store

data that is visible to the application. In the second type I store the incoming updates that

Shell cannot apply yet because they do not comply with the consistency protocol (defer-

buffer). The defer-buffer is only visible to the Shell layer. Updates in the defer-buffer are

immutable and have a global unique identifier. After an update is consumed from all the

participating replicas, it loses its relevance. The current Shell implementation does not

garbage collect these updates.

One solution could be for Shell or the source replica to assign an expiration timer

(TTL) to each update. Then the Shell layer of the replica responsible for each update could

garbage collect the update based on this TTL value. A good TTL value should be above

the update-visibility metric. Although this approach would work most of the time,

care should be taken when choosing this value because the update-visibility for some

consistency protocols has a long tail. More specifically as I showed in Figures 3.12 and 3.13

the value of the update-visibility metric depends on how fast the underlying storage

layer can do replication. For example, in the case of Dropbox and causal consistency an

update might take up to 30 seconds to reach every other replica in the system.

Another solution to the garbage collection problem could be a quorum protocol like

Paxos [67]. However, partial majority will not be enough in this case for every consistency

protocol. Without seeing all the updates, Shell could not enforce correctness in the case

of causal consistency, for example.

Division of Storage layers: Another open question is related to the existence of two

storage locations. Shell uses the application-store for two purposes: storing consistent

application data and as a defer buffer. The reason for this separation comes from the need

to have the replicas pushing immutable updates. I did this because some NoSQL data stores

might overwrite consecutive updates on the same object [14].

The overwritten histories of an object might be a problem for some consistency pro-

89

tocols like causal consistency but not for others for example monotonic reads. Existing

research [14, 74] has shown that dependency tracking can help solve this issue in the case

of causal consistency. Unfortunately, the application needs to maintain these dependencies,

and of course the application developers to have maintain the development tracking soft-

ware. In Shell I was aware of this trade-off and made the conscious decision to use two

logical partitions of the storage.

Version Clocks at Scale: Unfortunately, version clocks do not scale since they require

replicas to store information that grows linearly with the number of clients or updates.

DIFF ji metric and Partial Ordering: In Shell I used traces from NBA games. Every

trace contains a totally ordered set of events. During the experiment I replayed every game

sequentially. In other words, replicas first completed the gameX and then moved on to the

gameX+1. Because of this, the DIFF ji metric was able to quantify inconsistencies without

having the application domain field in the Shell SO populated.

In a parallel execution of NBA games, the set of their events would be partially ordered.

In this case, the application programmer must populate the application domain field, for

example by using the game identifier, in order to maintain correctness at per NBA-game

basis. The consistency-enforcer will not unnecessarily delay events that belong to

different games under causal consistency. But within a single application domain, nothing

changes, and every update will be applied only when it meets the consistency protocol

criteria.

Shell implements causal consistency by only looking at the version vectors. For a single

application domain, this is conservative because Shell might treat two events as causally

related when they are not. To avoid this limitation I could potentially ask for application-

level dependencies. However, this defeats the purpose of Shell because one of my major

goals was to isolate consistency from both application and the storage layer.

IoT Replication IoT devices would certainly benefit from the secure replication pro-

90

tocol of T.Rex. T.Rex-Sync is topology independent replication protocol and will allow for

secure replication of configuration changes and caching even between different IoT de-

vices of different owners. However, T.Rex requires some heavy cryptographic operations

that might not be suitable for an environment of low-power devices.

91

Bibliography

[1] Strong consistency. https://en.wikipedia.org/wiki/Strong_consistency.

[2] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cermak, J. R. Douceur, J. Howell,
J. R. Lorch, M. Theimer, and R. Wattenhofer. FARSITE: Federated, available, and
reliable storage for an incompletely trusted environment. In OSDI, 2002.

[3] Divyakant Agrawal, Amr El Abbadi, and Robert C Steinke. Epidemic algorithms
in replicated databases. In Proceedings of the sixteenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages 161–172. ACM, 1997.

[4] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto.
Causal memory: Definitions, implementation, and programming. Distributed Com-
puting, 9:37–49, 1995.

[5] Sérgio Almeida, João Leitão, and Luı́s Rodrigues. Chainreaction: A causal+ consis-
tent datastore based on chain replication. In Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, 2013.

[6] Amazon. Aurora: Relational database build for the cloud. https://aws.amazon.
com/rds/aurora/.

[7] Amazon. Glacier: Long-term, secure, durable object storage. https://aws.

amazon.com/glacier/.

[8] Amazon. Kinesis: Real time data streams. https://aws.amazon.com/kinesis/.

[9] Amazon. Redshift: Fast simple data warehousing. https://aws.amazon.com/

redshift/.

[10] Amazon. Regions and availability zones. http://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/using-regions-availability-zones.html.

[11] Amazon. S3 product details. https://aws.amazon.com/s3/details/.

92

https://en.wikipedia.org/wiki/Strong_consistency
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/glacier/
https://aws.amazon.com/glacier/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://aws.amazon.com/s3/details/

[12] Amazon. S3: Simple storage service. https://aws.amazon.com/

documentation/s3/.

[13] National Basketball Association. Nba stats. http://stats.nba.com/.

[14] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Bolt-on causal
consistency. In SIGMOD, 2013.

[15] Suman Banerjee, Seungjoon Lee, Bobby Bhattacharjee, and Aravind Srinivasan. Re-
silient multicast using overlays. In Proceedings of the 2003 ACM SIGMETRICS In-
ternational Conference on Measurement and Modeling of Computer Systems, SIG-
METRICS ’03, pages 102–113, New York, NY, USA, 2003. ACM.

[16] Yunus Basagalar, Vassilios Lekakis, and Pete Keleher. Growing secure distributed
systems from a spore. In ICDCS. IEEE Computer Society, 2012.

[17] Moritz Y. Becker, Cédric Fournet, and Andrew D. Gordon. Secpal: Design and
semantics of a decentralized authorization language. J. Comput. Secur., 18(4):619–
665, December 2010.

[18] Nalini Moti Belaramani, Michael Dahlin, Lei Gao, Amol Nayate, Arun Venkatara-
mani, Pravee Yalagandula, and Jiandan Zheng. Practi replication. In NSDI.
USENIX, 2006.

[19] Nalini Moti Belaramani, Jiandan Zheng, Amol Nayate, Robert Soulé, Michael
Dahlin, and Robert Grimm. PADS: A policy architecture for distributed storage
systems. In NSDI. USENIX Association, 2009.

[20] David Bermbach, Jorn Kuhlenkamp, Bugra Derre, Markus Klems, and Stefan Tai. A
middleware guaranteeing client-centric consistency on top of eventually consistent
datastores. In Proceedings of the 2013 IEEE International Conference on Cloud
Engineering, IC2E ’13. IEEE Computer Society, 2013.

[21] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and Paulo
Sousa. Depsky: Dependable and secure storage in a cloud-of-clouds. In Proceedings
of the Sixth Conference on Computer Systems, EuroSys ’11, New York, NY, USA,
2011. ACM.

[22] Matthew Addison Blaze. Caching in Large-scale Distributed File Systems. PhD
thesis, Princeton University, Princeton, NJ, USA, 1993. UMI Order No. GAX93-
11182.

[23] Eric A. Brewer. Towards robust distributed systems (abstract). In PODC, New York,
NY, USA, 2000. ACM.

[24] Frederick P. Brooks, Jr. No silver bullet essence and accidents of software engineer-
ing. Computer, 1987.

93

https://aws.amazon.com/documentation/s3/
https://aws.amazon.com/documentation/s3/
http://stats.nba.com/

[25] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceed-
ings of the third symposium on Operating systems design and implementation, OSDI
’99, 1999.

[26] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A
distributed storage system for structured data. In OSDI. USENIX Association, 2006.

[27] Jae Yoon Chung, Carlee Joe-Wong, Sangtae Ha, James Won-Ki Hong, and Mung
Chiang. Cyrus: Towards client-defined cloud storage. In EuroSys ’15, New York,
NY, USA, 2015. ACM.

[28] D. Clark. The design philosophy of the darpa internet protocols. In Symposium Pro-
ceedings on Communications Architectures and Protocols, SIGCOMM ’88, pages
106–114, New York, NY, USA, 1988. ACM.

[29] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexan-
der Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao,
Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang,
and Dale Woodford. Spanner: Google’s globally-distributed database. In Proceed-
ings of the 10th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’12, pages 251–264, Berkeley, CA, USA, 2012. USENIX Association.

[30] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A decentral-
ized network coordinate system. SIGCOMM Comput. Commun. Rev., 2004.

[31] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.
Wide-area cooperative storage with cfs. In Proceedings of the Eighteenth ACM Sym-
posium on Operating Systems Principles, SOSP ’01, pages 202–215, New York, NY,
USA, 2001. ACM.

[32] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly available key-value store. In SOSP.
ACM, 2007.

[33] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for repli-
cated database maintenance. In Proceedings of the sixth annual ACM Symposium on
Principles of distributed computing, pages 1–12. ACM, 1987.

[34] Tom St Denis. Libtomcrypt. https://github.com/libtom/libtomcrypt.

94

https://github.com/libtom/libtomcrypt

[35] Przemysaw Wegrzyn Dhiru Kholia. Looking inside the (drop) box. In 7th Usenix
Wokshop on offensive Technologies, 2013.

[36] DropBox. File synchronization service. https://www.dropbox.com/.

[37] Dropbox. What is lansync. https://www.dropbox.com/help/

syncing-uploads/lan-sync-overview.

[38] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel. Orbe: Scalable
causal consistency using dependency matrices and physical clocks. In Proceedings
of the 4th Annual Symposium on Cloud Computing, SOCC ’13, New York, NY, USA,
2013.

[39] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. Gentlerain:
Cheap and scalable causal consistency with physical clocks. In Proceedings of the
ACM Symposium on Cloud Computing, SOCC ’14, 2014.

[40] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache: a scalable
wide-area web cache sharing protocol. IEEE/ACM Trans. Netw., 8(3):281–293, June
2000.

[41] Ariel J. Feldman, William P. Zeller, Michael J. Freedman, and Edward W. Felten.
Sporc: group collaboration using untrusted cloud resources. In Proceedings of the
9th USENIX conference on Operating systems design and implementation, OSDI’10,
pages 1–, Berkeley, CA, USA, 2010. USENIX Association.

[42] David Ferraiolo and Richard Kuhn. Role-based access control. In National Com-
puter Security Conference, 1992.

[43] Bryan Ford, Jacob Strauss, Chris Lesniewski-Laas, Sean Rhea, Frans Kaashoek, and
Robert Morris. Persistent personal names for globally connected mobile devices. In
OSDI, Seattle, Washington, November 2006.

[44] Apache Software Foundation. Cassandra: Manage massive amounts of data, fast,
without losing sleep. http://cassandra.apache.org/.

[45] S. Ghemawat, H. Gobioff, and S. Leung. The Google file system. In Proceedings of
the nineteenth Symposium on Operating Systems Principles (SOSP’03), pages 29–
43, Bolton Landing, NY, USA, October 2003. ACM, ACM Press.

[46] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game.
In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 218–229. ACM, 1987.

[47] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing. Communica-
tions of the ACM, 42(2):39–41, 1999.

95

https://www.dropbox.com/
https://www.dropbox.com/help/syncing-uploads/lan-sync-overview
https://www.dropbox.com/help/syncing-uploads/lan-sync-overview
http://cassandra.apache.org/

[48] Google. Cloud dataflow. https://cloud.google.com/dataflow/.

[49] Google. Write, edit, collaborate wherever you are. https://www.google.com/

docs/about/.

[50] Network Working Group. Pgm reliable transport protocol specification. https:

//tools.ietf.org/html/rfc3208.

[51] Oleg Gutsol. 500px. http://500px.com.

[52] Richard G. Guy, John S. Heidemann, Wai Mak, Thomas W. Page, Jr., Gerald J.
Popek, and Dieter Rothmeier. Implementation of the Ficus replicated file system. In
USENIX Conference Proceedings, Anaheim, CA, 1990.

[53] Theo Haerder and Andreas Reuter. Principles of transaction-oriented database re-
covery. ACM Comput. Surv., 1983.

[54] Jonathan Halterman. Failsafe: Simple sophisticated failure handling. https://

github.com/jhalterman/failsafe.

[55] James Hamilton. At scale, rare events aren’t rare. http://perspectives.

mvdirona.com/2017/04/at-scale-rare-events-arent-rare/.

[56] Jim Highsmith and Alistair Cockburn. Agile software development: The business
of innovation. Computer, 2001.

[57] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satya-
narayanan, Robert N. Sidebotham, and Michael J. West. Scale and performance in a
distributed file system. ACM Trans. Comput. Syst., 6(1):51–81, February 1988.

[58] IEEE. Standard for software unit testing, 1986.

[59] iMatrix. Advanced pub-sub patterns. http://zguide.zeromq.org/php:

chapter5.

[60] iMatrix. Zeromq: Distributed messaging. http://zeromq.org/.

[61] Mohamed Ali Kaafar, Laurent Mathy, Thierry Turletti, and Walid Dabbous. Virtual
networks under attack: Disrupting internet coordinate systems. In Proceedings of
the 2006 ACM CoNEXT Conference, CoNEXT ’06. ACM, 2006.

[62] Michael Kassner. Researchers reverse-engineer the dropbox client: What it means.
http://goo.gl/YVdguD.

[63] Dhiru Kholia. Long promised post module for hijacking dropbox accounts. https:
//github.com/rapid7/metasploit-framework/pull/1497, 2013.

96

https://cloud.google.com/dataflow/
https://www.google.com/docs/about/
https://www.google.com/docs/about/
https://tools.ietf.org/html/rfc3208
https://tools.ietf.org/html/rfc3208
http://500px.com
https://github.com/jhalterman/failsafe
https://github.com/jhalterman/failsafe
http://perspectives.mvdirona.com/2017/04/at-scale-rare-events-arent-rare/
http://perspectives.mvdirona.com/2017/04/at-scale-rare-events-arent-rare/
http://zguide.zeromq.org/php:chapter5
http://zguide.zeromq.org/php:chapter5
http://zeromq.org/
http://goo.gl/YVdguD
https://github.com/rapid7/metasploit-framework/pull/1497
https://github.com/rapid7/metasploit-framework/pull/1497

[64] Gregor Kiczales. Towards a new model of abstraction in software engineering. In
Object Orientation in Operating Systems, 1991. Proceedings., 1991 International
Workshop on, pages 127–128. IEEE, 1991.

[65] Tiffany Hyun-Jin Kim, Lujo Bauer, James Newsome, Adrian Perrig, and Jesse
Walker. Challenges in access right assignment for secure home networks. In Pro-
ceedings of the 5th USENIX conference on Hot topics in security, HotSec’10, pages
1–, Berkeley, CA, USA, 2010. USENIX Association.

[66] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,
Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley
Weimer, Chris Wells, and Ben Zhao. Oceanstore: An architecture for global-scale
persistent storage. In ASPLOS, 2000.

[67] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–
169, May 1998.

[68] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Transactions on Programming Languages and Systems (TOPLAS),
4(3):382–401, 1982.

[69] Jonathan Ledlie, Paul Gardner, and Margo Seltzer. Network coordinates in the wild.
In Proceedings of the 4th USENIX Conference on Networked Systems Design &
Implementation, NSDI’07. USENIX Association, 2007.

[70] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. Policy/mechanism sepa-
ration in hydra. SIGOPS Oper. Syst. Rev., 1975.

[71] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Ro-
drigo Rodrigues. Making geo-replicated systems fast as possible, consistent when
necessary. In Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, 2012.

[72] Jinyuan Li, Maxwell Krohn, David Mazières, and Dennis Shasha. Secure untrusted
data repository (sundr). In Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, 2004.

[73] R.J. Lipton and J.S. Sandberg. PRAM: a scalable shared memory. Number no.
180 in Research report // Princeton University, Department of Computer Science.
Princeton University, Department of Computer Science, 1988.

[74] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Don’t settle for eventual: Scalable causal consistency for wide-area storage with
cops. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11. ACM, 2011.

97

[75] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, availability, convergence.
Technical Report TR-11-22, Computer Science Department, University of Texas at
Austin, May 2011.

[76] Dahlia Malkhi and Doug Terry. Concise version vectors in winfs. Distributed Com-
puting, 3:209–219, 2007.

[77] Friedemann Mattern. Virtual time and global states of distributed systems. In PAR-
ALLEL AND DISTRIBUTED ALGORITHMS, pages 215–226. North-Holland, 1988.

[78] Michelle L. Mazurek, Eno Thereska, Dinan Gunawardena, R.Harper, and James
Scott. Zzfs: A hybrid device and cloud file system for spontaneus users. In FAST,
2012.

[79] Martin Mulazzani, Sebastian Schrittwieser, Manuel Leithner, Markus Huber, and
Edgar Weippl. Dark clouds on the horizon: Using cloud storage as attack vector and
online slack space. In USENIX Security Symposium, 2011.

[80] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and Margo I.
Seltzer. Provenance-aware storage systems. In USENIX, pages 43–56. USENIX,
2006.

[81] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A low-bandwidth net-
work file system. In Proceedings of the Eighteenth ACM Symposium on Operating
Systems Principles, SOSP ’01, pages 174–187, New York, NY, USA, 2001. ACM.

[82] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. Caching in the sprite
network file system. ACM Trans. Comput. Syst., 6(1):134–154, February 1988.

[83] Sharman Networks. Kazaa: P2p file sharing. https://en.wikipedia.org/wiki/
Kazaa.

[84] Derek Newton. Dropbox authentication: insecure by design. http://

dereknewton.com/2011/04/dropbox-authentication-static-host-ids/,
2011.

[85] Edmund B. Nightingale and Jason Flinn. Energy-efficiency and storage flexibility in
the blue file system. In OSDI, 2004.

[86] Diego Ongaro and John Ousterhout. In search of an understandable consensus al-
gorithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual Tech-
nical Conference, USENIX ATC’14, pages 305–320, Berkeley, CA, USA, 2014.
USENIX Association.

[87] Oracle. Core j2ee patterns - data access objects. http://www.oracle.com/

technetwork/java/dataaccessobject-138824.html.

98

https://en.wikipedia.org/wiki/Kazaa
https://en.wikipedia.org/wiki/Kazaa
http://dereknewton.com/2011/04/dropbox-authentication-static-host-ids/
http://dereknewton.com/2011/04/dropbox-authentication-static-host-ids/
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html

[88] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, E. Walton, J. M.
Chow, D. Edwards, S. Kiser, and C. Kline. Detection of Mutual Inconsistency in
Distributed Systems. Software Engineering, IEEE Transactions on, 1983.

[89] Daniel Peek and Jason Flinn. Ensemblue: Integrating distributed storage and con-
sumer electronics. In OSDI, pages 219–232, 2006.

[90] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer, and Alan J.
Demers. Flexible update propagation for weakly consistent replication. In Pro-
ceedings of the sixteenth ACM symposium on Operating systems principles, pages
288–301. ACM, 1997.

[91] Ansley Post, Juan Navarro, Petr Kuznetsov, and Peter Druschel. Autonomous stor-
age management for personal devices with podbase. In USENIX Annual Technical
Conference. USENIX, 2011.

[92] Dan Pritchett. Base: An acid alternative. Queue, 6(3):48–55, May 2008.

[93] Sean Quinlan and Sean Dorward. Venti: A new approach to archival storage. In Pro-
ceedings of the First USENIX conference on File and Storage Technologies, pages
89–101, Monterey,CA, January 2002.

[94] Venugopalan Ramasubramanian, Thomas L. Rodeheffer, Douglas B. Terry, Meg
Walraed-Sullivan, Ted Wobber, Catherine C. Marshall, and Amin Vahdat. Cim-
biosys: A platform for content-based partial replication. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implementation, NSDI’09.
USENIX Association, 2009.

[95] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.
A scalable content-addressable network. In Proceedings of the 2001 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cations, SIGCOMM ’01, pages 161–172, New York, NY, USA, 2001. ACM.

[96] RedisLab. How fast is redis? https://redis.io/topics/benchmarks.

[97] Oriana Riva, Qin Yin, Dejan Juric, Ercan Ucan, and Timothy Roscoe. Policy ex-
pressivity in the anzere personal cloud. In Proceedings of the 2nd ACM Symposium
on Cloud Computing, SOCC ’11, pages 14:1–14:14. ACM, 2011.

[98] Martin Robert C. Agile Software Development, Principles, Patterns, and Practices.
Pearson Higher Education; International ed edition, 2013.

[99] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In Middleware, 2001.

99

https://redis.io/topics/benchmarks

[100] Antony Rowstron and Peter Druschel. Storage management and caching in past, a
large-scale, persistent peer-to-peer storage utility. In Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles, SOSP ’01, pages 188–201, New
York, NY, USA, 2001. ACM.

[101] Nicolas Ruff and Florian Ledoux. A critical analysis of dropbox software security.
ASFWS 2012, Application Security Forum, 2012.

[102] Brandon Salmon, Steven W. Schlosser, Lorrie Faith Cranor, and Gregory R. Ganger.
Perspective: semantic data management for the home. In Proccedings of the 7th
conference on File and storage technologies, pages 167–182. USENIX Association,
2009.

[103] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design.
ACM Trans. Comput. Syst., 1984.

[104] Salvatore Sanfilippo. Redis In Memory Data Structure . https://redis.io/.

[105] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki,
Ellen H. Siegel, David, and C. Steere. Coda: A highly available file system for
a distributed workstation environment. IEEE Transactions on Computers, 39:447–
459, 1990.

[106] Craig A. N. Soules and Gregory R. Ganger. Connections: using context to enhance
file search. In Proceedings of the twentieth ACM symposium on Operating systems
principles, SOSP ’05, pages 119–132, New York, NY, USA, 2005. ACM.

[107] Joel Spolsky. The law of leaky abstractions. https://www.joelonsoftware.com/
2002/11/11/the-law-of-leaky-abstractions/.

[108] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet applications. In Pro-
ceedings of the 2001 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, SIGCOMM ’01, pages 149–160, New
York, NY, USA, 2001. ACM.

[109] Jacob Strauss, Justin Mazzola Paluska, Chris Lesniewski-Laas, Bryan Ford, Robert
Morris, and Frans Kaashoek. Eyo: device-transparent personal storage. In Pro-
ceedings of the 2011 USENIX conference on USENIX annual technical conference,
USENIXATC’11, pages 35–35, Berkeley, CA, USA, 2011. USENIX Association.

[110] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer networks.
In IMC. ACM, 2006.

[111] Graham Sutherland. Installing dropbox? prepare to lose
aslr. http://codeinsecurity.wordpress.com/2013/09/09/

installing-dropbox-prepare-to-lose-aslr/, 2013.

100

https://redis.io/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
http://codeinsecurity.wordpress.com/2013/09/09/installing-dropbox-prepare-to-lose-aslr/
http://codeinsecurity.wordpress.com/2013/09/09/installing-dropbox-prepare-to-lose-aslr/

[112] TechoPedia. Minimum viable product. https://www.techopedia.com/

definition/27809/minimum-viable-product-mvp.

[113] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer, and C. H.
Hauser. Managing update conflicts in bayou, a weakly connected replicated storage
system. In Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles, SOSP ’95, New York, NY, USA, 1995. ACM.

[114] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin Theimer,
and Brent W. Welch. Session guarantees for weakly consistent replicated data. In
PDIS, Washington, DC, USA, 1994. IEEE Computer Society.

[115] Niraj Tolia, Michael Kozuch, Mahadev Satyanarayanan, Brad Karp, Adrian Per-
rig, and Thomas Bressoud. Opportunistic use of content addressable storage for
distributed file systems. In Proceedings of the USENIX 2003 Annual Technical Con-
ference, pages 127–140, San Antonio, TX, June 2003.

[116] Arthur O’Dwyer Troy D. Hanson. Uthash. http://uthash.sourceforge.net.

[117] Kenton Varda. Protocol buffers: Google’s data interchange format. http://google-
opensource.blogspot.com/2008/07/protocol-buffers-googlesdata.html, 2008.

[118] Kaushik Veeraraghavan, Jason Flinn, Edmund B. Nightingale, and Brian Noble.
qufiles: the right file at the right time. In FAST, 2010.

[119] Werner Vogels. All things distributed - eventually consistent revisited. http://

www.allthingsdistributed.com/2008/12/eventually_consistent.html.

[120] Wikipedia. Dyn 2016 cyberattack. https://en.wikipedia.org/wiki/2016_

Dyn_cyberattack.

[121] Ted Wobber, Thomas L. Rodeheffer, and Douglas B. Terry. Policy-based access
control for weakly consistent replication. In Proceedings of the 5th European con-
ference on Computer systems, EuroSys ’10, pages 293–306, New York, NY, USA,
2010. ACM.

[122] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V.
Madhyastha. Spanstore: Cost-effective geo-replicated storage spanning multiple
cloud services. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, New York, NY, USA, 2013. ACM.

[123] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack.
Hydra: The kernel of a multiprocessor operating system. Commun. ACM, 1974.

101

https://www.techopedia.com/definition/27809/minimum-viable-product-mvp
https://www.techopedia.com/definition/27809/minimum-viable-product-mvp
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
https://en.wikipedia.org/wiki/2016_Dyn_cyberattack
https://en.wikipedia.org/wiki/2016_Dyn_cyberattack

[124] Marek Zawirski, Nuno Preguiça, Sérgio Duarte, Annette Bieniusa, Valter Balegas,
and Marc Shapiro. Write fast, read in the past: Causal consistency for client-side ap-
plications. In Proceedings of the 16th Annual Middleware Conference, Middleware
’15. ACM, 2015.

[125] B. Y. Zhao, Ling Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatow-
icz. Tapestry: A resilient global-scale overlay for service deployment. IEEE J.Sel.
A. Commun., 22(1):41–53, September 2006.

102

	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Challenges: Managing Consistency
	Challenges: Topology-Independent Replication Without Information Leakage
	Thesis
	Contributions

	Background and Related Work
	Consistency Primer
	The Rise of NoSQL
	Data Access Objects (DAO)
	Communication Patterns In Replication Protocols
	Synchronization Sessions
	Abstraction Leakage
	Shell Related Work
	T.Rex Related Work
	Summary

	Shell: Supporting strict consistency guarantees over eventually consistent data stores
	Design
	Shell objects
	Architecture
	The Application-Broker Module
	The Consistency-Enforcer Module
	The Storage-Manager Module
	The Cloud-Manager Module
	Application storage
	put, get, and Incoming Updates

	Implementation
	Dealing With Unreliable cloud-manager

	Evaluation
	Dataset
	Application: NBA Broadcast
	Setup
	Consistency
	Update Visibility, Not Bandwidth
	Application Experience

	Summary

	Topology independence and Information Leakage in Replicated Storage Systems
	System model
	Security goals

	T.Rex design
	Replication: State, Updates and Policies
	Ramifications of consistency in T.Rex

	T.Rex implementation
	Replication and information leakage
	Role Coherence and object forking
	Attacks
	Freshness
	Prototype

	Performance evaluation
	CPU costs
	Shard creation
	Anti-entropy

	Costs of update anonymity
	Bloom filters versus version vectors

	Storage costs

	T.Rex on the cloud
	Summary

	Conclusions and Discussion
	Future Work & Open Problems

	Bibliography

