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Collaborative data science activities are becoming pervasive in a variety of

communities, and are often conducted in teams, with people of different expertise

performing back-and-forth modeling and analysis on time-evolving datasets. Cur-

rent data science systems mainly focus on specific steps in the process such as

training machine learning models, scaling to large data volumes, or serving the data

or the models, while the issues of end-to-end data science lifecycle management are

largely ignored. Such issues include, for example, tracking provenance and deriva-

tion history of models, identifying data processing pipelines and keeping track of

their evolution, analyzing unexpected behaviors and monitoring the project health,

and providing the ability to reason about specific analysis results. We address these

challenges by ingesting, managing, and analyzing rich provenance information gen-

erated during data science projects, and using it to enable users to easily publish,

share, and discover data analytics projects.

We first describe the design of our unified provenance and metadata manage-



ment system, called ProvDB. We adopt a schema-later approach and use a flexible

graph-based provenance representation model that combines the core concepts in

version control and provenance management. We describe several ingestion mech-

anisms for this provenance model and show how heterogeneous data analysis envi-

ronments can be served with natural extensions to this framework. We also describe

a set of novel features of the system including graph queries for retrospective prove-

nance, fileviews for data transformations, introspective queries for debugging, and

continuous monitoring queries for anomaly detection.

We then illustrate how to support deep learning modeling lifecycle via the

extensibility mechanism in ProvDB. We describe techniques to compactly store and

efficiently query the rich set of data artifacts generated during deep learning model-

ing lifecycle. We also describe a high-level domain specific language that helps raise

the abstraction level during model exploration and enumeration and accelerate the

modeling process.

Lastly, we propose graph query operators and develop efficient evaluation tech-

niques to address the verbose and evolving nature of such provenance graphs. First,

we introduce a graph segmentation operator, which queries the provenance of a col-

lection of user-given vertices (e.g., versioned files, author names) via flexible bound-

ary criteria. Second, we propose a graph summarization operator to aggregate the

results of multiple segmentation operations, and allow multi-resolution interaction

with the aggregation result to understand similar and abnormal behaviors in those

segments.
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Chapter 1: Introduction

1.1 Motivation

Collaborative data science activities are becoming pervasive in a variety of

communities, and are often conducted in teams, with people of different exper-

tise performing back-and-forth modeling and analysis on time-evolving datasets.

Current data science systems mainly focus on specific steps in the process such

as supporting and accelerating training machine learning models in different data

processing frameworks and management systems, scaling to large data volumes by

exploiting distributed optimization schemes and system architectures, or serving

the data or the models to satisfy demanding service level agreements, while the

issues of end-to-end data science lifecycle management are largely ignored. Such

issues include, for example, tracking provenance and derivation history of models,

identifying data processing pipelines and keeping track of their evolution, analyzing

unexpected behaviors and monitoring the project health, and providing the ability

to reason about specific analysis results. Addressing these issues in a collaborative

data science environment is especially challenging because the process of collabora-

tive data science is often ad hoc, typically featuring highly unstructured datasets,

an amalgamation of different tools and techniques, significant back-and-forth among
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the members of a team, and trial-and-error to identify the right analysis tools, al-

gorithms, models, and parameters.

More specifically, many modern data analytics activities are ad hoc and reac-

tive to emerging day-to-day problems rather than locking in to a stable platform

on well-established business models or scientific workflows. There is no easy way to

capture and reason about ad hoc data science pipelines, many of which are often

spread across a collection of cleaning and modeling efforts in analysis scripts and

the back and forth steps in transient command line histories. Metadata or prove-

nance information about how datasets were generated, including the programs or

scripts used for generating them and/or values of any crucial parameters, is often

lost. Similarly, it is hard to keep track of any dependencies between the datasets.

As most datasets and analysis scripts evolve over time, there is also a need to keep

track of their versions over time; using version control systems like git can help

to some extent, but those do not provide sufficiently rich introspection capabilities

to deal with unexpected situations. Moreover, even in a managed version control

repository, learning curve for new team members is high, and understanding and

reproducing others’ work is challenging, e.g., many issues may occur and often one

has to contact the author when reproducing results using an open source repository,

as the derivation history is not present.

We argue that provenance and metadata about the versioned artifacts and

derivations during the analysis process are the key to solve the challenges that are

pervasive in the ad hoc data analytics activities. Due to the lack of platform sup-

port for capturing and analyzing such provenance and metadata information, data
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scientists are required to manually keep track of, and act upon, such information,

which is not only tedious, but error-prone. For example, data scientists must manu-

ally keep track of which derived datasets need to be updated when a source dataset

changes. They often use spreadsheets to list which parameter combinations have

been tried out during the development of a machine learning model. Debugging

becomes significantly harder; e.g., a small change in an analysis script may have

a significant impact on the final result, but identifying that change may be non-

trivial, especially in a collaborative setting. It is similarly challenging to identify

which input records are most relevant to a particular output record. Repeatability

can often be very difficult, even for the same researcher, because of an amalgama-

tion of constantly evolving tools and datasets being used, and because of a lack of

easy-to-use mechanism to keep track of the parameter values used during analysis or

modeling. Critical errors may be hidden in the mess of datasets and analysis scripts

that cannot be easily identified; e.g., a data scientist may erroneously be training

on the test dataset due to an inadvertent mistake while creating the testing and

training datasets.

1.2 Challenges & Opportunities

In this dissertation, we explore the challenges and the opportunities in uni-

fied management of versioned artifacts and all kinds of provenance and metadata

about collaborative data analytics activities that gets generated during the analysis

process; this includes the information about the different versions of the datasets
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that are created, derivation metadata about how derived artifacts were generated,

fine-granularity provenance information, dependencies across datasets, and so on.

Our hypothesis is that by combining all this information into one place, and making

it easy to analyze or query this information, we can enable a rich set of functionality

that can simplify the lives of data scientists, make it easier to identify and eliminate

errors, decrease the time to obtain actionable insights, and accelerate the process to

get into other data analytics activities.

This is hardly a new observation, and there has been much prior work on

capturing and analyzing provenance in a variety of communities. However, there is

still a lack of practical systems that treat different kinds of provenance and metadata

information in a unified manner, and that can be easily integrated in the workflow

of a data science project. At the same time, the widespread use of data science has

brought to the forefront several important and crucial challenges, such as ethics,

transparency, reproducibility, etc., and we posit that fine-granularity provenance is

key to addressing those challenges.

There are however several crucial systems requirements and conceptual chal-

lenges that must be addressed to fully exploit those opportunities.

1.2.1 Provenance Representation

It is hard to define a unified schema for multiple types of information at various

granularity a priori to support very diverse analytics processes, as different users of

different analytics workflows may wish to capture and analyze different types of such
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data. In a collaborative analytics project, such information includes:

• The raw datasets stored in files, which range from structured datasets (e.g.,

database files, CSV) to semi-structured (e.g., graphs, JSON, Jupyter note-

books) to highly unstructured (e.g., text datasets, audio, images);

• The derivation metadata that captures versioning information about how files

within or across versions were created and dependencies among them – a

program or a script normally changes files and generates versions, however,

such programs and scripts themselves may have different versions;

• Record-level provenance information that is used to connect records across

different versions, and structured results of running a data analysis pipeline

or an experiment;

• The details about work pipelines of a team, such as task assignments among

the team members, project conventions about certain tasks, which often evolve

during the process and exist implicitly in the team activities.

Existing solutions can not represent all the information. On one hand, there

are data model standardization efforts for general purpose provenance capturing, but

they do not treat project artifacts and their versions as first class citizens. On the

other hand, there are popular version control systems, such as git. Although they

can manage the artifact versions and derivations, metadata and provenance about

the files are out of their scope; even within the versions, what activities occurred

and the derivation dependencies among files are not captured.
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1.2.2 Ingestion Mechanism

Even if a data model can be designed, how to ingest the rich information with

as little effort as possible from the team is particularly challenging.

In practice, collaborative analytics teams use an amalgamation of software

libraries, tools and distributed systems. There are many important aspects of in-

formation about how a piece of data was derived that is typically lost by the tools.

An ingestion mechanism should be able to capture the information in different cir-

cumstances, including:

• The practitioners often tune model with different hyperparameter settings to

improve the results, and try different dataset transformations for the model

input. The dataset transformations and the model configuration scripts are

two pieces of continuously evolving artifacts, and it can be hard to keep track

of the relationships between them;

• For the cases when analysis scripts take user-specified parameters as command

line options, which are rarely carefully recorded, it is very difficult to repeat

an analysis or to understand the origins of a specific dataset, even by the task

owner herself;

• Fine-grained provenance information, i.e., keeping track of which input records

generated which output records, is also usually difficult to capture without

significant effort on the users’ part.

Moreover, unless specifically required (e.g., auditing), capturing metadata and
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provenance is far from the main project interests of a typical data science team.

The captured information has very high long-term value, but less short-term value

compared with working on tasks related to the main project objective. Both of the

observations lead to the following requirements for the ingestion mechanism:

• We must be able to capture the information with minimal involvement from

the users, otherwise the system is unlikely to be used in practice;

• The types of tools that the user can use in the pipeline should not be con-

strained, due to the rapid evolving nature of modeling paradigms;

• We should have extensible provenance ingestion mechanisms, in order to adapt

to different analytics processes and tool environments. For instance, a feature

engineering modeling practice is very different from an end-to-end learning

practice using deep neural networks, as they have different modeling artifacts,

tuning best practices, and corresponding practitioners’ work style and conven-

tions. Different extensions would be used for different workloads.

1.2.3 Designing Query Facilities

Perhaps conceptually the most difficult challenge is to develop query facilities

and/or declarative abstractions to make it easy and powerful to exploit this data.

First, there is a wide range of general queries and provenance analysis tasks

that are of interest. For example, such queries include:

• Identifying or retrieving versions of project artifacts;
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• Asking lineage of a particular artifact version or a record in that version;

• Comparing multiple lineages to show their differences;

• Finding all project artifact versions associated with a specific metadata.

These queries could be written in a general query language (e.g., SQL, SPARQL,

Cypher), once the information is captured in a corresponding structured data model

that is well understood by the query issuers. However, such queries often involve

versions and path expressions which, written in general query language, tend to be

verbose and difficult to compose. More importantly, the assumption that the user

is an expert with full understanding of the underlying workflow is hardly true in

practice, due to the complex derivations, and the ad-hoc and collaborative nature

of such projects.

Second, different development environments have their own modeling processes

and the users may ask questions at different levels; for example, a modeler using deep

learning may ask about network architecture and hyperparmeters, while a feature

engineering modeler may ask about selected features and regularization method. At

the same time, there are many potential advanced tasks that would be modeled over

such data including:

• Explanation queries where we are looking for origins of a piece of data or a

holistic view of a modeling artifact;

• Introspection queries that attempt to identify flaws with the data science pro-

cess (e.g., p-value hacking);
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• Continuous monitoring to identify issues during deployment of a data sci-

ence pipeline (e.g., concept drifts where a learned model doesn’t fit new data;

changes to input data formats).

Last but not least, analytics process is evolving, and there is often no work-

flow skeleton as seen in other provenance systems, such as scientific workflows and

business processes. The data science workflow consists of repetitive trails which

may have subtle differences, some of which include potential errors. The captured

provenance and metadata tend to be verbose, and the users who are the team mem-

bers or outsiders often only have partial knowledge of the project artifacts and

work steps. In that situation, designing an easy-to-use query facility to identify the

precise and concise information needed by the users is very challenging; some exam-

ple include: a) identifying the most relevant part in the lineage by just specifying

the artifacts that the user knows about; b) identifying the common and abnormal

pipelines among a set of artifact derivations. We should be able to induce contribut-

ing artifacts that otherwise may not be specified by the users having only partial

understanding of a project.

1.2.4 System Efficiency Issues

We expect many efficiency and optimization issues will arise as the variety

of the captured metadata and the volume of the captured data increase. This is

especially expected to be an issue in the following aspects: a) storing the versions of

different types of modeling artifacts, e.g., float numbers and matrices; b) answering
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graph queries on a progressively evolving workflows in the collaborative team.

In the analytics workflow, due to many repetitive steps, there are often very

similar artifacts that have a large storage footprint. One example is the dataset,

which is often split into training and testing splits and created as copies; this not

only wastes storage space, but also requires careful attention to make sure that the

two resultant datasets are disjoint. This can be even trickier if k-fold cross-validation

is being used. Another example is the artifact of trained model parameters. Popular

modeling methods such as deep learning use billions of float parameters, resulting in

model artifacts taking hundreds of GB to store. As the model is trained many times

with different network architectures and hyperparameters, many model artifact ver-

sions are generated. How to deal with the storage footprint of repetitive trails is

a challenge when designing new archiving algorithms. Existing systems (e.g., git

and GitHub) use a single versioning algorithm for all types of files and discourage

versioning important analytics artifacts, such as datasets and trained weights.

Moreover, the derivations among artifacts form graphs, and the evolving na-

ture of analytics workflow lead to verbose and large graphs. Query types of interest

in workflows typically involve expensive path queries on the collected graphs, which

still has limited support in modern graph databases. Designing efficient query eval-

uation algorithms for important query types of interest is a challenge and a very

important issue.
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1.2.5 Discovering Repositories & Learning From Others

In the “Big Data” era, datasets are collected blindly in different domains and

industries by logging user and system behavior or labeling data via crowd-sourcing,

and there is a large demand to conduct data science projects to find value from

it. With more experienced practitioners and better system support, more and more

data science projects are built and shared online. For example, there are tens of

thousands of hosted Github projects using Jupyter notebooks; deep learning models

have been shared by the community starting with publishing models on authors’

websites. Now training systems tend to have models hosted at a central portal for

practitioners, e.g., Caffe Model Zoo.

However, in current hosting services, identifying a repository which is related

to an analytics task is very difficult. For example, for a data science practitioner

who is working on her own project and willing to find references, it is not feasible

to use available systems to answer the queries such as:

• ‘What projects used a similar dataset like mine on a classification problem?

(e.g., US census data, 256x256 images)’;

• ‘Show me a set of diverse projects which explore this specific dataset or use

this particular modeling method (e.g., random forest)’;

• ‘Find or ensemble a model from projects having high recall but reasonable

accuracy on a given validation dataset’.

The main reason that the current systems can not answer such queries is
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because they view an analytics repository as a collection of files, but not as the

unified data and provenance model we discussed in this dissertation. By hosting the

enriched repository with the provenance and derivations among project artifacts, we

can open up the exciting opportunity to answer those discovery queries, facilitate

learning from others, and accelerate the data science project lifecycle.

1.3 Approach & Organization

In this dissertation, we address the aforementioned challenges in a systematic

manner. We take a system building approach and design a tool-agnostic system

(ProvDB) to ingest, manage and query provenance information, and to allow the

users to publish, share, and discover data analytics projects.

Collaborative systems are typically centered around the concept of versions,

and supported by distributed version control system (DVCS). Recent research ex-

tends version control systems (e.g., git) originally proposed for collaborative soft-

ware development to support large datasets [1]. In these types of systems, a version

is often immutable and any update to a version conceptually results in a new version

with a different version, ID.

ProvDB is a stand-alone system (Figure 1.1), designed to be used in con-

junction with a version control system (DVCS) like git or DataHub [2]. ProvDB

provides a workflow-aware version control commandline toolkit that integrates with

DVCS, which handles the actual version management tasks, including supporting

the standard checkout, commit, merge, etc., functionality. Using ProvDB, we en-
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Figure 1.1: ProvDB High-level System Architecture

vision a number of local DVCS “repositories”, each corresponding to a team of

researchers collaborating closely together. The contents of each repository will typi-

cally be replicated across a number of machines as different researchers “check out”

the repository contents to work on them. Since we leverage a concrete DVCS (e.g.,

git) for keeping these in sync, the repository contents are available as files for the

users to operate upon; the users can run tools as before on those after checking them

out, including distributed toolkits like Hadoop or Spark.

In ProvDB, broadly, the data maintained across the system can be catego-

rized into:

• Raw data that the users can directly access and analyze including the datasets,

analysis scripts, and any derived artifacts such as trained models;

• Metadata or provenance information transparently maintained by the system,

and used for answering queries over the versioning or provenance information.

To capture provenance information, ProvDB organizes metedata (version

graphs, workflow graphs, storage graphs) and raw data (versioned datasets, models,
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scripts, result files, etc.) in a unified graph data model and provides a set of ingestion

mechanisms to capture provenance. On the managed provenance data, ProvDB

supports a rich set of query facilities, including asking questions on data lineages,

and introspective queries on comparing two versions of a model and explaining the

differences. We describe the detailed design of these components in Chapter 3.

In order to better serve users who use specific modeling approaches, we design

an extension mechanism in ProvDB. With a concrete modeling paradigm, such

as feature engineering and deep learning, a clearer lifecycle can be defined, and we

can identify the steps that can be automated to accelerate the modeling process. In

Chapter 4, we illustrate our study on extending ProvDB for deep learning modelers

on computer vision tasks. We build a deep learning lifecycle management system,

ModelHub, to manage artifact versions and provenance of modeling steps in a deep

learning lifecycle. In the chapter, we show what kind of provenance information

is ingested, how a domain-specific query facility can be used for accelerating the

modeling process, and when general version control storage module is inappropriate.

Once the provenance is managed by a system like ProvDB and Model-

Hub, in Chapter 5, we study how to fully exploit the ingested provenance and help

data science project teams. As collaborative analytics projects often have unstable

lifecycles resulting in evolving and verbose provenance graphs, it is common that

team members only have partial knowledge of the provenance graph. Without a

predefined workflow skeleton and full understanding of contributing artifacts and

steps, it is difficult to write queries and explore the provenance graph using modern

graph databases and query languages. In the chapter, we formulate graph query op-
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erators for collaborative analytics workflows and propose efficient query evaluation

techniques on a modern property graph backend.

In Chapter 6, we examine the opportunities on the server side of lifecycle

management systems, and envision a model discovery service. Given the presence

of large collections of data science projects uploaded by different groups of data

scientists and hosted centrally by a system, model discovery is the problem of iden-

tifying relevant projects for a data science practitioner who is working on her own

project and willing to find reference. In this chapter, we propose a system around an

information retrieval approach, and decompose the discovery task into three major

steps: project query and matching, model comparison and ranking, and processing

and building ensembles with returned models. Then we describe our system vision,

and present opportunities, challenges and techniques for each step.
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Chapter 2: Related Work

This chapter surveys the state of the art in provenance systems, collaborative

systems as well as model management efforts in the database community. We begin

with prior work on provenance systems towards the goal of supporting scientific

workflow systems as well as database systems, followed by a review of recent so-

lutions in the version control systems space. Thereafter, we summarize work done

towards building systems for data analytics and associated lifecycles.

2.1 Provenance Systems

Provenance information is important in computer-aided tasks. The goal of a

provenance system is to capture and manage the origin and history of various objects

in its scope, and derivation and passage of an object through its various owners. The

prior work can be roughly categorized in two types: workflow (or coarse-grained)

provenance [3, 4] and data (or fine-grained) provenance [5].

2.1.1 Workflow Provenance

Many workflow provenance systems have been proposed in the scientific ap-

plications domain over the years, with some of the prominent systems being Ke-
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pler [6], Taverna [7], Galaxy [8], iPlant [9], VisTrails [10], Chimera [11], and Pega-

sus [12]. A scientific workflow is typically defined for complex data processing tasks,

and includes a precise definition of interactions among a collection of computation

steps and human-machine interaction steps.. Workflow provenance information in-

cludes [13]:

• Prospective information about the definition of the workflow,

• Retrospective information captured during the execution of the workflow,

• Metadata about steps and datasets in a workflow,

• Input/output lineages among steps.

The provenance information captured varies in different systems; it may include a

complete record of the sequence of steps taken in a workflow to produce all data

points, while in other cases, it may only entail a record of the versions of software

used, as well as the models and makes of hardware equipment used in the workflow.

Similar to other data management systems, considering the data being man-

aged is provenance information mentioned earlier, the workflow system consists of

key three components: a) ingestion mechanism for capturing the provenance data,

b) a representation schema for the provenance information, c) a storage and query

system infrastructure [3]. The workflow provenance systems can be distinguished

from their scope and design in these components. First, the ingestion mechanism

either explicitly requires workflow itself to use callbacks to input prospective and ret-

rospective provenance, or is implicitly implemented at lower levels (e.g., compilers,
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OS) to capture the retrospective provenance (e.g., [14–17]). Second, the represen-

tation schema is either workflow-specific, or generic, covering partial or thorough

prospective and retrospective aspects; there are modern provenance data models

standardized over a long period of time as a result of consolidation for scientific

workflows [18] and the Web [19]. Third, the infrastructure are dependent on the

representation language, ranging from a specialized ontology language (OWL) to

XML dialects stored as files to tuples stored in relational database tables.

There are lines of research to improve different aspects of the workflow sys-

tems, including proposing query languages to utilize provenance [20–22], operators

to transform provenance for ease of use [23–26], storing large provenance graphs

efficiently [27,28], and publishing provenance without disclosing important informa-

tion [29,30].

2.1.2 Data Provenance

On the other hand, fine-grained provenance is often not discussed in workflow

systems, but has been rather a topic of focus in the database community. In dataflow

systems where the operators are written in a declarative language (e.g., SQL, Pig

Latin, Spark), data provenance at record level can be captured if needed [5,31–35].

The fine-grained data provenance system is often built as an auxiliary system com-

ponent inside a dataflow engine (e.g., SQL database, Spark system). As the dataflow

program (e.g., SQL query, Spark program) itself is essentially a clear definition of

the prospective provenance, data provenance focuses on retrospective provenance
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at the level of individual items in query results. In this setting, verbose logging

of derivations of query results is often not affordable due to its large size. A line

of work [5] has focused on asking why, how, and where questions about the query

results when the detailed execution log is not available.

2.1.3 Our Contribution

Comparing with workflow provenance systems, they often center around creat-

ing, automating, and monitoring a well-defined workflow or data analysis pipeline.

However they cannot easily handle fast-changing pipelines, and typically are not

suitable for ad hoc collaborative data science workflows where clear established

pipelines may not exist except in the final, stable versions. Moreover, these systems

typically do not support the entire range of tools or systems that the users may want

to use, they impose a high overhead on the user time and can substantially increase

the development time, and often require using specific computational environments.

Further, many of these systems require centralized storage and computation, which

may not be an option for large modeling artifacts such as datasets and trained

weights.

For collaborative data science workflows, our work aims to combine versioned

modeling artifacts and their provenance together on top of a version control system,

to provide a uniform platform for collaborative data science workflows. First, we

address the challenges in developing a unified data model and tool-agnostic ingestion

mechanism for versioned modeling artifacts and their metadata and provenance
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during a collaborative data science lifecycle (Chapter 3). Second, given a concrete

modeling paradigm (e.g., deep learning), we advance the version storage techniques

and provenance query facilities (Chapter 4). Third, as there is no stable skeleton

and the users have partial knowledge of the underlying workflow, we develop new

provenance query operators (Chapter 5).

In terms of data provenance systems, our work is complementary to, and can

utilize, those prior techniques to capture the provenance information itself. In many

situations, analysis is not performed using dataflow programs (e.g., SQL), therefore

similar problem settings cannot be established in collaborative data scientific work-

flows without strong assumptions on tool preferences. In our work (Chapter 3), we

provide dataflow-based tools to let users write dataflow programs instead of using

scripts that may lose prospective provenance, and thus enable prior data provenance

work to be used in data science workflows. More importantly, we focus primarily on

how to exploit that information for providing richer introspection capabilities on en-

tities in data science workflows, which consists of heterogeneous artifacts at different

granularities in contrast to low-granularity tuples output by dataflow programs.

2.2 Collaborative Data Science Systems

2.2.1 Data Management for Collaborative Analytics

Alongside the emergence of big data in many domains, many data man-

agement systems have been designed focusing on specific aspects of collaborative

analytics. These include building public collaborative systems to share datasets
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and analysis findings among non-expert users (Google Fusion tables [36]), address-

ing data integration issues during sharing of datasets (Orchestra [37]), manag-

ing shared SQL queries (CQMS [38], SQLShare [39]) and literate programming

notebooks (LabBook [40]), organizing hosted data repositories and domain-specific

datasets to be accessible by applications (CKAN [41], Quandl [42], Factual [43]),

providing hosted data science platforms (OpenML [44], Domino [45], Amazon Sage-

Maker [46], Google Datalab [47]) and data publishing tools (DataMarket [48]), and

enterprise dataset and metadata management systems (GOODS [49], Ground [50],

Collibra [51], Apache Atlas [52], Alation [53]).

Most of them do not focus on artifacts and their provenance in the context of

data science activities, while there are two projects sharing similar views that aim

to improve collaborative data science workflows by reducing the cost of metadata

collection and management. LabBook [40], a social data science notebook, uses a

property graph to manage metadata captured during collaborative analytics and

features a web-based application architecture for analyzing the metadata. However,

LabBook does not treat versioning as a first-class construct, and does not focus

on developing passive provenance ingestion mechanisms or sophisticated querying

abstractions as we do here. Ground [50] is a data context service to manage all the

information that informs the use of data. It has a general data model and architec-

ture to import from and export to other systems. However, metadata ingestion and

useful high-level query facilities are left to the users.
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2.2.2 Version Control Systems for Data Science

For data science, a wide range of analytic packages like SAS [54], Excel [55],

R [56], Matlab [57], and Mahout [58], or data science toolkits such as IPython [59],

Scikit-Learn [60], and Pandas [61], are frequently used for performing analysis itself;

however, those lack comprehensive data management or collaboration capabilities.

In practice, version control systems (VCS), such as git, svn, were originally

proposed for collaborative open source software development. Now VCS and hosted

platforms (e.g., GitHub, GitLab, Bitbucket) have become the de facto collaboration

platforms for data scientists and many other collaborative projects, e.g., for sharing

datasets and IPython/Jupyter notebooks, writing articles, publishing open course

materials, etc. In particular, VCS provide transparent support for versioning and

sharing, while imposing no constraints on what types of tools can be used for the

data processing itself. Thus VCS and hosted platforms built around them are much

more appropriate for day-to-day needs in a collaborative data science team.

In terms of the underlying provenance data model and provenance ingestion

mechanism, though these systems keep version lineage among committed artifacts

and use commit messages to log derivation details, they are typically too “low-level”,

and have very little support for capturing higher-level workflows or for keeping track

of the operations being performed or any kind of provenance information. The

versioning APIs supported by these systems are based on a notion of files, and are

not capable of allowing data scientists to reason about that data contained within

versions and the relationships between the versions in a holistic manner.
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Storage Problem & Query Language in VCS

Recently, in a series of efforts [1, 2, 62–64], systems and techniques are proposed to

improve the storage infrastructure as well as the query interfaces of the VCS. First,

dataset versioning and sharing are identified as an important problem in the context

of collaborative data science [2]. The storage problem in VCS is later formally

studied in [1], which shows that popular VCS (e.g., git) use fairly simple algorithms

underneath that are optimized to work with modest-sized source code and have

significant limitations when handling large files (e.g., datasets) and large numbers

of versions. The storage-retrieval tradeoff of the problem under the delta-based

versioning strategy is explored and connected to the balanced minimum spanning

tree problem [65]. Next, on a VCS data model, a query language [62] for retrieving

versioned data items is proposed, and query evaluation techniques on versioned

datasets [63] and versioned relational tables [64] are studied.

2.2.3 Our Contribution

Our system can be seen as a new type of workflow-aware version control sys-

tem with provenance management capabilities to aid collaborative activities during a

data science project lifecycle. Comparing with VCS and prior work (e.g., DataHub,

git), we enhance versioning data model with workflow provenance and artifacts’

metadata information in a unified manner (Chapter 3), and provide rich query facil-

ities spanning different stages of a lifecycle that are tailored for data scientists (e.g.,

introspection, monitoring, artifact understanding) (Chapter 3). Within a concrete
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modeling lifecycle (e.g., deep learning), we explore how to build a specialized system

by unifying data and provenance management in order to aid data scientists and

accelerate the lifecycle (Chapter 4). Moreover, with the unified model, we open the

opportunity to explore new research problems, e.g., discovering relevant data science

repositories shared in hosted services (Chapter 6).

In terms of VCS storage and query models, our work shows that the rich

set of artifacts (e.g., learned weights) in collaborative data analytics require more

general formulation of the VCS storage problems, as well as refined domain-specific

language and query facilities over managed modeling artifacts (e.g., explore existing

models, and enumerate new models) compared with those in prior work in this

aspect (Chapter 4).

2.3 Machine Learning Systems

2.3.1 Modern Machine Learning Software Systems

Nowadays, heterogeneous datasets (e.g., logs, text, images, graphs) are col-

lected in many different domains by logging user and system behavior or labeling

data via crowd-sourcing. The sizes of the datasets are increasing (e.g., web clicks

of an e-commerce site, graphs representing an entire social network), the complex-

ity of the models is much higher (e.g., millions of features, billions of dimension

float weights), and the data-driven algorithmic design-making scenarios have become

more common. Traditional analytics packages like SAS [54], Excel [55], R [56], and

Matlab [57], or business intelligence and data mining support in commercial rela-
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tional database systems, are not sufficient for the needs of modern analytics in terms

of a) the size of the input data and the complexity of the machine learning models,

b) the heterogeneous data types and the accessibility from expert and non-expert

users performing data analytics.

In the industry and academia, there has been increasing work on develop-

ing general-purpose machine learning software systems. On one hand, to address

the scalability w.r.t. the increasing model complexity and dataset sizes, there are

lines of work proposing software frameworks [58, 66] on top of popular distributed

dataflow platforms (e.g., Hadoop, Spark), or novel computation abstractions [67–69]

to support training phases of machine learning models. On the other hand, there

are single-machine software toolkits developed by supporting multi-dimensional ar-

rays and scientific computing operations [70, 71], integrating data transformation

capabilities [61], providing trending modeling methods [72], supporting popular pro-

gramming languages, and enabling literate programming notebooks [59].

Because many datasets and analytics are conducted in databases, in database

community, there are lines of work to support modern machine learning [73], includ-

ing pushing predictive models and optimization routines into databases [74,75], and

accelerating learning using database join optimization methods [76].

2.3.2 Modeling Pipeline & Lifecycle Management Systems

There is also emerging interest in developing general-purpose systems for han-

dling different aspects of model lifecycle management. Multiple industry tutorials
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on machine learning and systems discuss the modeling pipelines in practice [77,78],

which are iterative processes consisting of preparing and understanding datasets,

training and tuning models, and serving and monitoring model performances.

Accelerating the lifecycle by improving tasks spanning the process, e.g., un-

derstanding modeling artifacts and collaborating efficiently with others, will deliver

results faster and have drawn significant attention from the database and systems

communities.

First, there are lines of work focusing on important aspects spanning the life-

cycle, including accelerating iterative updating and training models [79], serving

predictive models online [80,81], managing and querying developed models [82–84],

organizing provenance and metadata generated in the lifecycle [50, 84, 85], hosting

and discovering reference models [44,86], and assisting collaboration (Section 2.2.1).

Second, there are also platform efforts to support the entire lifecycle [87, 88]

for expert modelers. Several products and research efforts go further with the goal

of using data provided by the user and automatically selecting good models [89,90].

2.3.3 Our Contribution

In terms of machine learning software systems, apart from building or training

machine learning models, versioning, collaboration and provenance of the modeling

process are largely ignored and left to the users. Our work is complementary to

them to a large extent; our focus is on the lifecycle management when a data-driven

project team consisting of data analysts/scientists at different skill levels are trying
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to collaboratively develop a model. ProvDB can be used as the provenance data

management layer for most such systems (Chapter 3, Chapter 5).

Our work overlaps with the model pipeline and lifecycle management sys-

tems. In contrast with existing research, our work features tool-neural and extensible

provenance ingesting mechanisms without tool or lifecycle assumptions (Chapter 3).

We also make contributions in this space by extending our provenance management

approach for the deep learning modeling process, which has not been studied in the

literature (Chapter 4). Morever, we further discuss important provenance query

primitives for iterative and repetitive data science lifecycle, which are not seen in

any of the existing work in this space (Chapter 5).
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Chapter 3: ProvDB System Design for Collaborative Analytics

In this chapter, we present an in-depth design of the core technical components

for the ProvDB system proposed in Chapter 1. First, we adopt a schema later

approach and show a flexible data model that combines various elements of data

files, model artifacts, versions, workflow derivations, and possible metadata. Next,

we explain how the rich provenance data is ingested and how heterogeneous data

analysis environments can be served well with natural extensions. Then, a set of

general query facilities that are orthogonal to specific environment are described and

illustrated in detail. Finally we show the usefulness of the system by a case study

on a deep learning project managed by ProvDB.

3.1 Unified Data Model

To encompass a large variety of situations, our goal is to have a flexible data

model that reflects versioning and workflow pipelines, and supports addition of

arbitrary metadata or provenance information. Though the version control system

has a clean model, the analysis steps between the versions are missing in modern

systems, and metadata of the versioned files are not addressed.

Based on a versioning data model, we use fixed “base schema” (Figure 3.1)
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to capture the information about the versions, the different data artifacts, and so

on, while allowing arbitrary properties to be added to the various entities. We map

this logical data model to a property graph model (Figure 3.3), which we use as our

physical data model to store the information. Comparing with other similar models

proposed in the past work [13, 40], our model differs from them primarily in the

explicit modeling of versions.

3.1.1 Conceptual Data Model

We view a data science project as a working directory with a set of artifacts

(files), and a development lifecycle as a series actions (shell commands, edits, trans-

formation programs) which perform create/read/update/delete (CRUD) operations

in the working directory.

Version
commit           Commit
snapshots {Snapshot}
is_usr_commit     bool
has_provenance  bool
parents         {Version}

Snapshot
action               C/U/D
parents     {Snapshot}
records         {Record}
properties   {Property}

DataFile
   

ResultFile
   

IsADerivation
from                Version
to                    Version
command          string
properties   {Property}

Property
ingestor      string
name          string
value          string     

Commit (Git)
id                 string
msg             string
user             string
timestamp 
...

Record
line            integer
action         C/U/D
parents   {Record}

Artifact
name                 string
path                   string
is_directory         bool
snapshots {Snapshot}
tag                      type
desc                  string

1

2

1

1 n1

1
n

1

n

ScriptFile
   

1
n

1
n

Figure 3.1: Conceptual Data Model

29



More specifically: an artifact is a file, which the user modifies, runs, and talks

about with peers. Artifacts can be tagged as belonging to one of three different types:

ResultFile, DataFile, ScriptFile, which helps with formulating appropriate queries.

A version is a checkpoint of the project; in our case, this refers to a physical commit

created via git. ProvDB has explicit versions and implicit versions ; the former

are created when a user explicitly issues commit command, whereas the latter are

created at provenance ingestion time when the user runs commands in the project

directory.

Snapshots are checkpointed versions of an artifact, and capture its evolution.

ProvDB monitors file changes during the lifecycle, and emits changed (CUD) ar-

tifacts as new snapshots, and the previous snapshot of the same artifact before the

change is called its parent. The content of a snapshot are modeled as records, to

allow fine-grained record-level provenance (some files, e.g., binary files, would be

modeled as having a single record).

Derivations capture the transformation context to the extent possible. If

a derivation is performed by running a program or a script, then the information

about it is captured along with any arguments. Derivation edges may also be created

when the system notices that one or more artifacts have changed (e.g., an edit made

using an editor, or a script ran outside the ProvDB context).

Finally, properties are used to encode any additional information about the

snapshots or the derivations, as key-value pairs (where values are often time series

or JSON documents themselves). Provenance ingestion tools (discussed in next sec-

tion) will generate these properties. In addition to the information about programs
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or scripts and their arguments, properties may include any information captured

by parsing shell scripts or analysis scripts themselves. Properties are also used to

extract statistics about the data within the snapshots as well, so that they can be

seamlessly queried. This starts blurring the distinction between data and metadata

to some extent; we make cleaner distinction for concrete environments, and the users

are allowed to annotate and distinguish between these two.

Example 1 Suppose a user starts an analysis using a script file script1 and a data

file datafile1 by copying them to a repository. She first tries out script1 on datafile1,

and a result file result1 with m records is generated in the directory. She opens the

result1 in an IDE and finds a number format issue, after which, she uses vim to

modify the script1, and runs it again on datafile1, then each record in result1 is

changed. In Figure 3.2, assuming the system has a commit at the end of each

command in the shell, we show the versions, artifacts, snapshots, and derivations.

Between the versions, the command is captured as a Derivation, whose properties

would be the command line arguments (i.e. options, parameters). Each version

includes a set of snapshots associated to an artifact. As shown in the figure, result1

is an artifact across three versions. It worth pointing out, some of the derivation

context happened in the IDEs when opening the result1 at the first time may be

important as well, which cannot be captured simply by looking at command lines. If

there is change before a derivation, ProvDB detects it and marks the derivation as

missing provenance.
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d1 d2 d3 d4
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V1 V2

record_n
...

record_1
record_2

datafile1

content
script1

cp script1 
datafile1 .

Derivation

Version

Snapshot
/Record

V3

record_m
...

record_1
record_2

result1

sh ./script1 
datafile1

datafile1

script1

V4

result1

vim script1 

datafile1

content
script1

V5

sh ./script1 
datafile1

script1

datafile1

record_m
...

record_1
record_2

result1

Figure 3.2: Example Workflow

3.1.2 Physical Property Graph Data Model

To actually store the conceptual data model, in addition to relational database,

we map the logical data model (with the exception of Record) above into a property

graph data model, allowing graph traversal queries and visual exploration over the

stored information easily. Nodes of the property graph are of types Version, Arti-

fact, etc., whereas the edges capture the parent-child and composition relationships.

Besides Derivation is handled as an edge between Versions. The edge properties

are used to store the detailed parameters and command options.

Example 2 For the data model instance in Figure 3.2, we show the actual physical

property graph in Figure 3.3. The shape of nodes are reflecting the entity types in

Figure 3.2. Between artifact and snapshots, (e.g. result1 and result s1), the edge
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has a composition relationship, while between snapshots, (e.g. result s1 and result

s2), the parent-child lineage is stored across versions. For instance, the artifact

result1 is unchanged in version V4, the snapshot parent of result s2 in V5 is the

snapshot result s1 in V3.

It is worth pointing out that providing entities across versions, the provenance

query can be asked directly from the perspective of artifacts and its changes on snap-

shots, without knowing the versions. For instance, compare the metadata of top-3

ResultFile snapshots of a classification result artifact.

result1 s1datafile1 s1script1 s1

d1 d2 d3 d4

V1 V2 V3 V4 V5

from to
parent

has

script1 result1 datafile1 

content record s1 record s1

script1 s1

content'

result1 s2

 record s2

has parent

has parent

Figure 3.3: Provenance Property Graph

3.2 Provenance Ingestion

The rich provenance information need to be ingested, which is particularly

challenging in a situation where the work environment is open world and very di-

verse. ProvDB captures provenance information or other metadata opportunisti-
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cally, and features a suite of mechanisms that can capture provenance for different

types of operations. Users can easily add provenance ingestion mechanisms, to both

capture more types of information as well as richer information. The list of ingestion

mechanisms are listed in Table 3.1

Ingestion Method Brief Description

Shell-based Ingestion General framework for command line work environment.

User Annotations GUI for the users to add important information for peers.

File Views Capture fine-grained record level provenance.

Extension Modules Ingestors for popular modeling tool chain.

Table 3.1: ProvDB Ingestion Methods

In this section, we briefly describe the ingestion mechanisms that ProvDB

currently supports, which include a general-purpose UNIX shell-based ingestion

framework, ingestion of DVCS versioning information, and a mechanism called file

views which is intended to both simplify workflow and aid in fine-grained prove-

nance capture.

3.2.1 Shell command-based Ingestion Framework

The provenance ingestion framework is centered around the UNIX comman-

dline shell (e.g., bash, zsh, etc). We provide a special command called provdb

ingest that users can prefix to any other command, and that triggers provenance

ingestion. Each run of the command results in creation of a new implicit version,
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which allows us to capture the changes at a fine granularity. These implicit ver-

sions are kept separate from the explicit versions created by a user through use of

git commit, and are not visible to the users. A collection of ingestors is invoked

by matching the command against a set of regular expressions, registered a priori

along with the ingestors. ProvDB schedules ingestor to run before/during/after

execution the user command, and expects the ingestor to return a JSON property

graph consisting of a set of key-value pairs denoting properties of the snapshots or

derivations. An ingestor can also provide record-level provenance information, if it

is able to generate such information.

A default ingestor handles abitrary commands by parsing them following

POSIX standard (IEEE 1003.1-2001) to annotate utility, options, option arguments

and operands. For example, provdb ingest ‘mkdir -p dir’ is parsed as utility

mkdir, option p and operand dir. Concatenations of commands are decomposed and

ingested separately, while a command with pipes is treated as a single command.

If an external tool has been used to make any edits (e.g., a text editor), an im-

plicit version is created next time provdb is run, and the derivation information is

recorded as missing.

3.2.2 User Annotations

Apart from plugin framework, ProvDB GUI allows users to organize, add,

and annotate properties, along with other query facilities. The user can annotate

project properties, such as usage descriptions for collaborations on artifacts, or notes
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to explain rationale for a particular derivation. A user can also annotate a property

as parameter and add range/step to its domains, which turns a derivation into a

template and enables batch run of an experiment. For example, a grid search of

a template derivation on a start snapshot can be configured directly in the UI.

Maintaining such user annotations (and file views discussed next) as the datasets

evolve is a complicated issue in itself [91].

3.2.3 File Views

ProvDB provides a functionality called file views to assist dataset transfor-

mations and to ingest provenance among data files. Analogous to views in relational

databases, a file view defines a virtual file as a transformation over an existing file.

A file view can be defined either: (a) as a script or a sequence of commands (e.g.,

sort | uniq -c, which is equivalent to an aggregate count view), or (b) as an SQL

query where the input files are treated as tables. For instance, the following query

counts the rows per label that a classifier predicts wrongly comparing with ground

truth.

provdb fileview -c -n=‘results.csv’ -q=‘

select t._c2 as label, count(*) as err_cnt

from {testfile.csv} as t, {predfile.csv} as r

where t._c0 = r._c0 and t._c2 != r._c2 group by t._c2’

The SQL feature is implemented by loading the input files into an in-memory sqlite
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database and executing the query against it. Instead of creating a view, the same

syntax can be used for creating a new file instead, saving a user from coding similar

functionality.

File views serves as an example of a functionality that can help make the ad

hoc process of data science more structured. Aside from making it easier to track

dependencies, SQL-based file views also enable capturing record-level provenance

by drawing upon techniques developed over the years for provenance in databases.

3.2.4 Extension Modules

ProvDB also supports several specialized ingestion plugins and configura-

tions to cover important data science workflows. In particular, it has an ingestor

capable of ingesting provenance information from runs of the caffe deep learning

framework; it not only ingests the learning hyperparameters from the configuration

file, but also the accuracy and loss scores by iteration from the result logging file.

Providing parsers for scripts written in popular data science tools such as Jupyter,

scikit-learn and pandas is an on-going effort, by building upon prior work [17].

Though ProvDB prototype is designed to be used in a command-line en-

vironment, ingesting provenance within other development environments such as

different IDEs requires a white box approach, such as providing IDE callbacks and

add features to them, which is out of the scope of the prototype. However, the

conceptual and physical data models work similarly.
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3.3 Query Facilities

Based on the unified data model ingested by various mechanisms ProvDB

supports, we identify a set of query workloads and discuss how ProvDB implements

them. As an overview, ProvDB queries facilities are as follows:

• Provenance queries about the Version/Workflow Graph and Properties part

in the data model.

• Workflow queries on derivations among nodes in the version graph.

• Introspective queries, such as diffing similar artifacts and derivation pipelines

in the data science processes.

• Monitoring queries on a given property of a series versions, for automatically

detecting problems during deployment.

• Apart from general query facilities, using ProvDB extension module, domain-

specific high level queries can be answered by extensions, for example, a deep

learning extension (Chapter 4) allows to ask the network architectures and

hyperparameters used in an experiment, while a feature engineering extension

could expose queries on selected feature set.

In the rest of this section, we discuss each type of the query facilities, and show

how our current prototype supports them with a case study. In the next chapter,

we illustrate the design of a deep learning plugin subsystem in ProvDB.
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3.3.1 Queries over Version/Workflow Graph and Properties

In a collaborative workflow, provenance queries to identify what revision and

which author last modified a line in an artifact are common (e.g., git blame).

ProvDB allows such queries at various levels (version, artifact, snapshot, record)

and also allows querying the properties associated with the different entities (e.g.,

details of what parameters have been used, temporal orders of commands, etc).

In fact, all the information exposed in the property graph can be directly queried

using the Neo4j Cypher query language, which supports graph traversal queries and

aggregation queries.

The latter types of queries are primarily limited by the amount of context

and properties that can be automatically ingested. ProvDB currently supports

ingestors for several popular frameworks, including a program analysis ingestor for

scikit-learn which extracts the scikit-learn APIs used in a program, and a hyper-

parameter and result-table ingestor for caffe for deep learning (the hyper-parameter

ingestor extracts experiment parameter metadata from caffe commands and ar-

guments, while the results-table ingestor extracts optimization errors and accuracy

metrics from training logs). Availability of this information allows users to ask more

meaningful queries like: what scikit-learn script files contain a specific sequence of

commands; what is the learning accuracy curve of a caffe model artifact; enumerate

all different parameter combinations that have been tried out for a given learning

task, and so on.

Many such queries naturally result in one or more time series of values (e.g.,
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properties of an artifact over time as it evolves, results of “diff” queries discussed

below); ProvDB supports a uniform visual interface for plotting such time series

data, and comparing different time series.

3.3.2 Reasoning about Pipelines

Similar to a workflow management system, we define a pipeline to be a se-

quence of derivation edges. A pipeline can be annotated by the user by brows-

ing the workflow graph and marking the start and the end edges of the pipeline.

Pipelines would also be inferred automatically by the system (e.g., via pattern min-

ing techniques) if the ingested history is large and clean. ProvDB UI allows a user

to browse and reuse pipelines present in the system. Being able to reason about

pipelines has the potential to hugely simplify the lives of data scientists, by allowing

them to learn from others and also helping them avoid mistakes (e.g., omission of a

crucial intermediate step). Moreover, it also makes lifecycle automations possible,

such as re-invoking an old pipeline on an old artifact to verify the results, or invoking

a pipeline on a different snapshot with different parameters, or schedule a cron job.

3.3.3 Introspective Diffs: Shallow vs Deep “Diff” Queries

“Diff” is a first-class operator in ProvDB, and can be used for finding differ-

ences at various different levels. Specifically, given a pair of nodes (corresponding to

two snapshots) in the property graph, a shallow diff operation, by default, focuses on

the ingested properties of the two snapshots, which are likely to contain the crucial
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differences in most cases. It attempts to “join” the two sets of properties as best as

it can, and highlights the differences; in case of time-series properties, it also allows

users to generate plots so they can more easily understand the differences. For ex-

ample, for two result table artifacts that may represent the outputs of two different

runs of the same script (e.g., model training logs), a line-by-line diff may be useless

because of irrelevant and minor numerical differences; however, by plotting the two

sets of results against each other, a user can more quickly spot important trends

(e.g., that a specific value of parameter leads to quicker convergence). The shallow

diff operator also allows differencing the contents of the two files line-by-line if so

desired.

A deep diff compares the ancestors of the two target snapshots by tracing

back their derivations to the common ancestor. It aligns the snapshots along the

two paths, and shows the differences between each pair of aligned snapshots. For

example, in a prediction workflow, a user may have tried out different prediction

models and configurations to identify the best model; using ProvDB, she can start

from two result table artifacts, and ask a deep diff query to compare how they are

derived.

3.3.4 Continuous Monitoring or Anomaly Detection

On ingested properties of artifacts and derivations, ProvDB provides a mon-

itoring and alerting subsystem to aid the user during the development lifecycle. We

envision two main use cases for this functionality. (a) First, it can be used to detect
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any major changes to the properties of an evolving dataset – e.g., a large change in

the distribution of values in a dataset may be cause for taking remedial action. (b)

Second, in most applications, there is usually a need to “deploy” an analysis script

or a trained model against live incoming data; it is important to keep track of how

well the model or the script is behaving and catch any problems as soon as possible

(e.g., changing input data properties; higher error rates than expected). ProvDB

supports analysis of historical data (as described above) and simple alert queries

that can monitor a property of an evolving artifact.

To elaborate, a property belong to an artifact could be registered as a mon-

itoring property. Once there is a new snapshot of the same artifact is committed,

the property of the new snapshot is ingested and compared with the alert condi-

tions, which are configured beforehand by the users. Numerical properties of a series

of snapshots naturally forms a time series. We support a limited set of time series

models, such as moving averages and standard derivation envelopes to be configured

as adaptive alert conditions.

3.4 Case Study

Example 3 We show the ProvDB Web GUI using a caffe deep learning project.

In this project, 41 deep neural networks are created for a face classification task. The

user tries out models by editing and training models. In Fig 3.4, an introspection

query asks how different are two trained models ( model-0 and 9). Using the GUI,

the user filters artifacts, and diffs their result logging files. In the right side query
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Figure 3.4: Diff Artifacts (Result logging files for two deep neural networks)

result pane, the ingested properties are diffed. The caffe ingestor properties are

numerical time series; using the provided charting tool, the user plots the training

loss and accuracy against the iteration number. From the results, we can see that

model-9 does not train well in the beginning, but ends up with similar accuracy. To

understand why, a deep diff between the two can be issued in the GUI and complex

Cypher queries can be used as well. In Figure 3.5, the query finds previous deriva-

tions and shared snapshots, which are training config files; more introspection can

be done by finding changed hyperparameters.
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Figure 3.5: Cypher Query to Find Related Changes via Derivations

3.5 Conclusion

In this chapter, we presented ProvDB, its high level system architecture and

our major design decisions for simplifying lifecycle management of ad hoc, collabo-

rative analysis workflows that are becoming prevalent in most application domains

today. We showed that a large amount of provenance and metadata information can

be captured passively, and argue analyzing it in novel ways can immensely simplify

the day-to-day processes undertaken by data analysts. Our ProvDB prototype

uses git and Neo4j, which provides a variety of provenance ingestion mechanisms

and the ability to query, analyze, and monitor the captured provenance informa-
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tion. Our experience with using this prototype for a deep learning workflow (for

a computer vision task) showed that even with limited functionality, it can sim-

plify the bookkeeping tasks and make it easy to compare the effects of different

hyperparameters and neural network structures.
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Chapter 4: ModelHub: Managing Deep Learning Projects on ProvDB

Deep learning models [92], also called deep neural networks (DNN), have im-

proved state-of-the-art results in many important fields, and have been the subject

of much research in recent years, leading to the development of several systems for

facilitating deep learning. Current systems, however, mainly focus on model build-

ing and training phases, while the issues of data management, model sharing, and

lifecycle management are largely ignored. Deep learning modeling lifecycle generates

a rich set of data artifacts, such as learned parameters and training logs, and com-

prises of several frequently conducted tasks, e.g., to understand the model behaviors

and to try out new models. Dealing with such artifacts and tasks is cumbersome

and largely left to the users.

In this chapter, we study the deep learning modeling practice and illustrate the

system design of ModelHub, a domain-specific extension of ProvDB, to manage

the rich set of modeling artifacts and their provenance over the lifecycle. We first list

the challenges of deep learning lifecycle management, derive the system requirements

for ModelHub, and illustrate its major components in Section 4.1, followed by

introducing background on related topics in DNN modeling lifecycle in Section 4.2.

We present an overview of ModelHub, and discuss the declarative interfaces in
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Section 4.3. Then we describe the parameter archival store (PAS) in Section 4.4

and present an experimental evaluation in Section 4.5.

4.1 Motivation & Approach

4.1.1 DNN Modeling Lifecycle and Challenges

Compared with the traditional approach of feature engineering followed by

model training [79], deep learning is an end-to-end learning approach, i.e., the fea-

tures are not given by a human but are learned in an automatic manner from the

input data. Moreover, the features are complex and have a hierarchy along with the

network representation. This requires less domain expertise and experience from the

modeler, but understanding and explaining the learned models is difficult; why even

well-studied models work so well is still a mystery and under active research. Thus,

when developing new models, changing the learned model (especially its network

structure and hyper-parameters) becomes an empirical search task.

In Figure 4.1, we show a typical deep learning modeling lifecycle (we present

an overview of deep neural networks in the next section). Given a prediction task,

a modeler often starts from well-known models that have been successful in similar

Create
/Update 
Model

Reference
Models

Train
/Test 

Model

Evaluate 
Model

Data & 
Labels

if accuracy is unsatisfactory, repeat

Serve
Model

Figure 4.1: Deep Learning Modeling Lifecycle
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task domains; she then specifies input training data and output loss functions, and

repeatedly adjusts the DNN on operators and connections like Lego bricks, tunes

model hyper-parameters, trains and evaluates the model, and repeats this loop until

prediction accuracy does not improve. Due to a lack of understanding about why

models work, the adjustments and tuning inside the loop are driven by heuristics,

e.g., adjusting hyper-parameters that appear to have a significant impact on the

learned weights, applying novel layers or tricks seen in recent empirical studies, and

so on. Thus, many similar models are trained and compared, and a series of model

variants needs to be explored and developed. Due to the expensive learning/training

phase, each iteration of the modeling loop takes a long period of time and produces

many (checkpointed) snapshots of the model. As we noted above, this is a common

workflow across many other ML models as well.

Current systems (Caffe [72], Theano, Torch, TensorFlow [69], etc.) mainly

focus on model building and training phases, while the issues of data management,

model sharing, and lifecycle management are largely ignored. Modelers are required

to write external imperative scripts, edit configurations by hand and manually main-

tain a manifest of model variations that have been tried out; not only are these tasks

irrelevant to the modeling objective, but they are also challenging and nontrivial

due to the complexity of the model as well as large footprints of the learned mod-

els. More specifically, the tasks and data artifacts in the modeling lifecycle expose

several systems and data management challenges, which include:

• Understanding & Comparing Models : It is difficult to keep track of the many
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models developed and/or understand the differences amongst them. Differ-

ences among both the metadata about the model (training sample, hyperpa-

rameters, network structure, etc.), as well as the actual learned parameters, are

of interest. It is common to see a modeler write all configurations in a spread-

sheet to keep track of temporary folders of input, setup scripts, snapshots and

logs, which is not only a cumbersome but also an error-prone process.

• Repetitive Adjusting of Models : The development lifecycle itself has time-

consuming repetitive sub-steps, such as adding a layer at different places to

adjust a model, searching through a set of hyper-parameters for the different

variations, reusing learned weights to train models, etc., which currently have

to be performed manually.

• Model Versioning : Similar models are possibly trained and run multiple times,

reusing others’ weights as initialization (finetuning).Maintaining the different

model versions generated over time and their relationships can help with iden-

tifying errors and concept drifts, comparing models over new inputs, and po-

tentially reverting back to a previous model. Even for a single learned model,

storing the different checkpointed snapshots can help with “warm-start” and

can provide important insights into the training processes.

• Parameter Archiving : The storage footprint of deep learning models tends to

be very large. Recent top-ranked models in the ImageNet task have billions

of floating-point parameters and require hundreds of MBs to store one snap-

shot during training. Due to resource constraints, the modeler has to limit
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the number of snapshots, even drop all snapshots of a model at the cost of

retraining when needed.

• Reasoning about Model Results: Another key data artifact that often needs to

be reasoned about is the results of running a learned model on the training or

testing dataset. By comparing the results across different models, a modeler

can get insights into difficult training examples or understand correlations

between specific adjustments and the performance.

4.1.2 ModelHub Approach

We extend ProvDB and build the ModelHub system to address these chal-

lenges. The ModelHub system is not meant to replace popular training-focused

DNN systems, but rather designed to be used with them to accelerate modeling tasks

and manage the rich set of lifecycle artifacts. It consists of three key components:

1. DLV: a model versioning system to store, query and aid in understanding the

models and their versions. It extends the ProvDB shell command ingestion

mechanism by adding deep learning artifact extractors, as well as lifecycle-

specific command line suites.

2. DQL: In addition to general ProvDB query facilities, we propose a model

network adjustment and hyper-parameter tuning domain specific language to

serve as an abstraction layer to help modelers focus on the creation of the

models.
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3. ModelHub: a hosted deep learning model sharing system to exchange DLV

repositories and enable publishing, discovering and reusing models from others.

Comparing with other deep learning systems and provenance management

systems, the key features and innovative design highlights of ModelHub are:

• We use a git-like VCS as a familiar UI to let the modeler manage and explore

the created models in a repository, and an SQL-like model enumeration DSL

to aid modelers in making and examining multiple model adjustments easily.

• Behind the declarative constructs, ModelHub manages different artifacts in

a split back-end storage: structured data, such as network structure, training

logs of a model, lineages of different model versions, output results, are stored

in a relational database, while learned float-point parameters of a model are

viewed as a set of float matrices and managed in a read-optimized archival

storage (PAS).

• Parameters dominate the storage footprint and floats are well-known at being

difficult to compress. We study PAS implementation thoroughly under the

context of DNN query workload and advocate a segmented approach to store

the learned parameters, where the low-order bytes are stored independently of

the high-order bytes. We also develop novel model evaluation schemes to use

high order bytes solely and progressively uncompress less-significant chunks if

needed to ensure the correctness of an inference query.

• Due to the different utility of developed models, archiving versioned models
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using parameter matrix deltas exhibits a new type of dataset versioning prob-

lem which not only optimizes between storage and access tradeoff but also has

model-level constraints.

• Finally, the VCS model repository design extends naturally to a collabora-

tive format and online system which contain rich model lineages and enables

sharing, reusing, reproducing DNN models.

4.2 Background

To support our design decisions, we overview the artifacts and common task

practices in DNN modeling lifecycle.

4.2.1 Deep Neural Networks

A deep learning model is a deep neural network (DNN) consisting of many

layers having nonlinear activation functions that are capable of representing complex

transformations between input data and desired output. Let D denote a data domain

and O denote a prediction label domain (e.g., D may be a set of images; O may

be the names of the set of objects we wish to recognize, i.e, labels). As with any

prediction model, a DNN is a mapping function f : D→ O that minimizes a certain

loss function L, and is of the following form:

f0 = σ0(W0d + b0) d ∈ D
fi = σi(Wifi−1 + bi) 0 < i ≤ n

L(fn, ld) ld ∈ O

d

f0

f1

f2

l̂d
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Here i denotes the layer number, (Wi, bi) are learnable weights and bias parameters

in layer i, and σi is an activation function that non-linearly transforms the result

of the previous layer (common activation functions include sigmoid, ReLU, etc.).

Given a learned model and an input d, applying f0, f1, ..., fn in order gives us the

prediction label for that input data. In the training phase, the model parameters

are learned by minimizing L(fn, ld), typically done through iterative methods, such

as stochastic gradient descent.

Figure 4.2 shows a classic convolutional DNN, LeNet. LeNet is proposed to

solve a prediction task from handwritten images to digit labels {0 · · · 9}. In the

figure, a cube represents an intermediate tensor, while the dotted lines are unit

transformations between tensors. More formally, a layer, Li : (W,H,X) 7→ Y , is a

function which defines data transformations from tensor X to tensor Y . W are the

parameters which are learned from the data, and H are the hyperparameters which

are given beforehand. A layer is non-parametric if W = ∅.

In the computer vision community, the layers defining transformations are

considered building blocks of a DNN model, and referred to using a conventional
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name, such as full layer, convolution layer, pool layer, normalization layer, etc. The

chain is often called the network architecture. The LeNet architecture has two

convolution layers, each followed by a pool layer, and two full layers, shown with

layer shapes and hyperparameters in Figure 4.2. Moreover, winning models in recent

ILSVRC (ImageNet Large Scale Vision Recognition Competitions) are shown in

Table 4.1, with their architectures described by a composition of common layers

in regular expressions syntax for illustrating the similarities (Note the activation

functions and detailed connections are omitted).

DNN models are learned from massive data based on some architecture, and

modern successful computer vision DNN architectures consist of a large number

of float weight parameters (flops) shown in Table 4.1, resulting in large storage

footprints (GBs) and long training times (often weeks). Furthermore, the training

process is often checkpointed and variations of models need to be explored, leading

to many model copies.

Network Architecture (in regular expression) |W | (flops)

LeNet [93] (LconvLpool){2}Lip{2} 4.31× 105

AlexNet [94] (LconvLpool){2}(Lconv{2}Lpool){2}Lip{3} 6× 107

VGG [95] (Lconv{2}Lpool){2}(Lconv{4}Lpool){3}Lip{3} 1.96× 1010

ResNet [96] (LconvLpool)(Lconv){150}LpoolLip 1.13× 1010

Table 4.1: Popular CNN Models for Object Recognition
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4.2.2 Modeling Data Artifacts

Unlike many other prediction methods, DNN modeling results in a very large

number of weight parameters, a rich set of hyperparameters, and learning measure-

ments, which are used in unique ways in practice, resulting in a mixture of structured

data, files and binary floating number artifacts:

• Non-convexity & Hyperparameters : A DNN model is typically non-convex,

and {W} is a local optimum of the underlying loss-minimization problem.

Optimization procedure employs many tricks to reach a solution quickly [97].

The set of hyperparameters (e.g., learning rate, momentum) w.r.t. to the

optimization algorithm need to be maintained.

• Iterations & Measurements : Models are trained iteratively and checkpointed

periodically due to the long running times. A set of learning measurements are

collected in various logs, including objective loss values and accuracy scores.

• Fine-tuning & Snapshots : Well-known models are often learned from massive

real-world data (ImageNet), and require large amounts of resources to train;

when prediction tasks do not vary much (e.g., animal recognition vs dog recog-

nition), the model parameters are reused as initializations and adjusted using

new data; this is often referred to as fine-tuning. On the other hand, not all

snapshots can be simply deleted, as the convergence is not monotonic.

• Provenance & Arbitrary Files : Alternate ways to construct architectures or to

set hyperparameters lead to human-in-the-loop model adjustments. Initializa-
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tion, preprocessing schemes, and hand-crafted scripts are crucial provenance

information to explore models and reproduce results.

4.2.3 Model Adjustment

In a modeling lifecycle for a prediction task, the update-train-evaluate loop is

repeated in daily work, and many model variations are adjusted and trained. In

general, once data and loss are determined, model adjustment can be done in two

orthogonal steps: a) network architecture adjustments where layers are dropped or

added and layer function templates are varied, and b) hyperparameter selections,

which affect the behavior of the optimization algorithms. There is much work on

search strategies to enumerate and explore both.

4.2.4 Model Sharing

Due to the good generalizability, long training times, and verbose hyperparam-

eters required for large DNN models, there is a need to share the trained models. Jia

et al. [72] built an online venue (Caffe Model Zoo) to share models. Briefly, Model

Zoo is part of a github repository1 with a markdown file edited collaboratively. To

publish models, modelers add an entry with links to download trained parameters

in caffe format. Apart from the caffe community, similar initiatives are in place

for other training systems.

1Caffe Model Zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo
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4.3 ModelHub System Overview

We show the ModelHub architecture including the key components and their

interactions in Figure 4.3. At a high level, the ModelHub functionality is divided

among a local component and a remote component. The local functionality includes

the integration with popular DNN systems such as caffe, torch, tensorflow, etc.,

on a local machine or a cluster. The remote functionality includes sharing of models,

and their versions, among different groups of users. We primarily focus on the local

functionality in this chapter.

On the local system side, DLV is a version control system (VCS) implemented

as a command-line tool (dlv), that serves as an interface to interact with the rest

of the local and remote components. Use of a specialized VCS instead of a general-

purpose VCS such as git or svn allows us to better portray and query the internal
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Figure 4.3: ModelHub System Architecture
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structure of the artifacts generated in a modeling lifecycle, such as network defi-

nitions, training logs, binary weights, and relationships between models. The key

utilities of dlv are listed in Table 4.2, grouped by their purpose; we explain these

in further detail in Section 4.3.2. DQL is a DSL we propose to assist modelers in

deriving new models; the DQL query parser and optimizer components in the figure

Type Command Description

model version

management

init Initialize a dlv repository.

add Add model files to be committed.

commit Commit the added files.

copy Scaffold model from an old one.

archive Archive models in the repository.

model exploration

list List models and related lineages.

desc Describe a particular model.

diff Compare multiple models.

eval Evaluate a model with given data.

model enumeration query Run DQL clause.

remote interaction

publish Publish a model to ModelHub.

search Search models in ModelHub.

pull Download from ModelHub.

Table 4.2: A list of key dlv utilities.
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are used to support this language. The model learning module interacts with ex-

ternal deep learning tools that the modeler uses for training and testing. They are

essentially wrappers on specific DNN systems that extract and reproduce modeling

artifacts. Finally, the ModelHub service is a hosted toolkit to support publishing,

discovering and reusing models, and serves similar role for DNN models as github

for software development or DataHub for data science [2].

4.3.1 Data Model

ModelHub works with two data models: a conceptual DNN model, and a

data model for the versions in a DLV repository.

4.3.1.1 DNN Model

A DNN model can be understood in different ways, as one can tell from the

different model creation APIs in popular deep learning systems. In the formulation

mentioned in Section 4.1, if we view a function fi as a node and dependency rela-

tionship (fi, fi−1) as an edge, it becomes a directed acyclic graph (DAG). Depending

on the granularity of the function in the DAG, either at the tensor operator level

(add, multiply), or at a logical composition of those operators (convolution layer,

full layer), it forms different DAGs. In ModelHub, we consider a DNN model node

as a composition of unit operators (layers), often adopted by computer vision mod-

els. The main reason for this decision is that we focus on productivity improvement

in the lifecycle, rather than implementation efficiencies of training and testing.
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4.3.1.2 VCS Data Model

When managing DNN models in the VCS repository, a model version repre-

sents the contents in a single version. It consists of a network definition, a collection

of weights (each of which is a value assignment for the weight parameters), a set of

extracted metadata (such as hyper-parameter, accuracy and loss generated in the

training phase), and a collection of files used together with the model instance (e.g.,

scripts, datasets). In addition, we enforce that a model version must be associated

with a human readable name for better utility, which reflects the logical groups of

a series of improvement efforts over a DNN model in practice.

In the implementation, model versions can be viewed as the following relation

model version(name, id, N, W, M, F), where id is part of the primary key of model

versions and is auto-generated to distinguish model versions with the same name. In

brief, N,W,M,F are the network definition, weight values, extracted metadata and

associated files respectively. The DAG, N, is stored as two tables: Node(id, node,

A), where A is a list of attributes such as layer name, and Edge(from, to). W is

managed in our learned parameter storage (PAS, Section 4.4). M , the metadata,

captures the provenance information of training and testing a particular model; it

is extracted from training logs by the wrapper module, and includes the hyperpa-

rameters when training a model, the loss and accuracy measures at some iterations,

as well as dynamic parameters in the optimization process, such as learning rate

at some iterations. Finally, F is file list marked to be associated with a model

version, including data files, scripts, initial configurations, and etc. Besides a set
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of model versions, the lineage of the model versions are captured using a separate

parent(base, derived, commit) relation. All of these relations are maintained/up-

dated in a relational backend when the modeler runs the different dlv commands

that update the repository.

4.3.2 Query Facilities

Once the DNN models and their relationships are managed in DLV, the modeler

can interact with them easily. The query facilities we provide can be categorized

into two types: a) model exploration queries and b) model enumeration queries.

4.3.2.1 Model Exploration Queries

Model exploration queries interact with the models in a repository, and are

used to understand a particular model, to query lineages of the models, and to

compare several models. For usability, we design it as query templates via dlv

sub-command, similar to other VCS.

List Models & Related Lineages

By default, the query lists all versions of all models including their commit de-

scriptions and parent versions; it also takes options, such as showing results for a

particular model, or limiting the number of versions to be listed.

dlv list [--model_name] [--commit_msg] [--last]

Describe Model

dlv desc shows the extracted metadata from a model version, such as the net-
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work definition, learnable parameters, execution footprint (memory and runtime),

activations of convolutional DNNs, weight matrices, and evaluation results across

iterations. Note the activation is the intermediate output of a DNN model in com-

puter vision and often used as an important tool to understand the model. The

output formats are a result of discussions with computer vision modelers to deliver

tools that fit their needs. In addition to printing to console, the query supports

HTML output for displaying the images and visualizing the weight distribution.

dlv desc [--model_name | --version] [--output]

Compare Models

dlv diff takes a list of model names or version ids and allows the modeler to

compare the DNN models. Most of desc components are aligned and returned in

the query result side by side.

dlv diff [--model_names | --versions] [--output]

Evaluate Model

dlv eval runs test phase of the managed models with an optional config specifying

different data or changes in the current hyper-parameters. The main usages of

exploration query are two-fold: 1) for the users to get familiar with a new model, 2)

for the user to test known models on different data or settings. The query returns

the accuracy and optionally the activations. It is worth pointing out that complex

evaluations can be done via model enumeration queries in DQL.

dlv eval [--model_name | --versions] [--config]

62



4.3.2.2 Model Enumeration Queries

Model enumeration queries are used to explore variations of currently available

models in a repository by changing network structures or tuning hyper-parameters.

There are several operations that need to be done in order to derive new models:

1) Select models from the repository to improve; 2) Slice particular models to get

reusable components; 3) Construct new models by mutating the existing ones; 4)

Try the new models on different hyper-parameters and pick good ones to save and

work with. When enumerating models, we also want to stop exploration of bad

models early.

To support this rich set of requirements, we propose the DQL domain specific

language, that can be executed using “dlv query”. Challenges of designing the

language are: a) the data model is a mix of relational and the graph data models and

b) the enumeration includes hyper-parameter tuning as well as network structure

mutations, which are very different operations. We describe the language and show

the key operators and constructs along with a set of examples (Query 4.1∼4.4) to

show how requirements are met.

select m1

where m1.name like "alexnet_%" and

m1.creation_time > "2015 -11 -22" and

m1["conv [1,3,5]"].next has POOL("MAX")

Query 4.1: DQL select query to pick the models.
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slice m2 from m1

where m1.name like "alexnet -origin%"

mutate m2.input = m1["conv1"] and

m2.output = m1["fc7"]

Query 4.2: DQL slice query to get a sub-network.

construct m2 from m1

where m1.name like "alexnet -avgv1%" and

m1["conv*($1)"].next has POOL("AVG")

mutate m1["conv*($1)"]. insert = RELU("relu$1")

Query 4.3: DQL construct query to derive more models on existing ones.

evaluate m

from "query3"

with config = "path to config"

vary config.base_lr in [0.1, 0.01, 0.001] and

config.net["conv*"].lr auto and

config.input_data in ["path1", "path2"]

keep top(5, m["loss"], 100)

Query 4.4: DQL evaluate query to enumerate models with different network

architectures, search hyper-parameters, and eliminate models.
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Key Operators

We adopt the standard SQL syntax to interact with the repository. DQL views the

repository as a single model version table. A model version instance is a DAG, which

can be viewed as object types in modern SQL conventions. In DQL, attributes can

be referenced using attribute names (e.g. m1.name, m1.creation_time, m2.input,

m2.output), while navigating the internal structures of the DAG, i.e. the Node and

Edge EDB, we provide a regexp style selector operator on a model version to access

individual DNN nodes, e.g. m1["conv[1,3,5]"] in Query 4.1 filters the nodes in

m1. Once the selector operator returns a set of nodes, prev and next attributes of

the node allow 1-hop traversal in the DAG. Note that POOL("MAX") is one of the

standard built-in node templates for condition clauses. Using SPJ operators with

object type attribute access and the selector operator, we allow relational queries to

be mixed with graph traversal conditions.

To retrieve reusable components in a DAG, and mutate it to get new mod-

els, we provide slice, construct and mutate operators. Slice originates in pro-

gramming analysis research; given a start and an end node, it returns a subgraph

including all paths from the start to the end and the connections which are needed

to produce the output. Construct can be found in graph query languages such as

SPARQL to create new graphs. We allow construct to derive new DAGs by using

selected nodes to insert nodes by splitting an outgoing edge or to delete an outgoing

edge connecting to another node. Mutate limits the places where insert and delete

can occur. For example, Query 4.2 and 4.3 generate reusable subgraphs and new

graphs. Query 4.2 slices a sub-network from matching models between convolution
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layer ‘conv1’ and full layer ‘fc7’, while Query 4.3 derives new models by appending

a ReLU layer after all convolution layers followed by an average pool. All queries

can be nested.

Finally, evaluate can be used to try out new models, with potential for early

out if expectations are not reached. We separate the network enumeration compo-

nent from the hyper-parameter turning component; while network enumeration can

be nested in the from clause, we introduce a with operator to take an instance of a

tuning config template, and a vary operator to express the combination of activated

multi-dimensional hyper-parameters and search strategies. auto is keyword imple-

mented using default search strategies (currently grid search). To stop early and

let the user control the stopping logic, we introduce a keep operator to take a rule

consisting of stopping condition templates, such as top-k of the evaluated models,

or accuracy threshold. Query 4.4 evaluates the models constructed and tries com-

binations of at least three different hyper-parameters, and keeps the top 5 models

w.r.t. the loss after 100 iterations.

4.3.3 ModelHub Implementation

On the local side, the implementation of ModelHub maintains the data

model in multiple back-ends and utilizes git to manage the arbitrary file diffs. Var-

ious queries are decomposed and sent to different backends and chained accordingly.

On the other hand, as the model repository is standalone, we host the repositories

as a whole in a ModelHub service. The modeler can use the dlv publish to push
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the repository for archiving, collaborating or sharing, and use dlv search and dlv

pull to discover and reuse remote models. We envision such a form of collaboration

can facilitate a learning environment, as all versions in the lifecycle are accessible

and understandable with ease. The online video2 highlights the interactions with

the prototype and illustrate the described concepts in this section.

4.4 Parameter archival storage (PAS)

Modeling lifecycle for DNNs, and machine learning models in general, is cen-

tered around the learned parameters, whose storage footprint can be very large.

The goal of PAS is to maintain a large number of learned models as compactly as

possible, without compromising on the query performance. Before introducing our

design, we first discuss the queries of interest, and some key properties of the model

artifacts. We then describe different options to store a single float matrix, and to

construct deltas (differences) between two matrices. We then formulate the opti-

mal version graph storage problem, discuss how it differs from the prior work, and

present algorithms for solving it. Finally, we develop a novel approximate model

evaluation technique, suitable for the segmented storage technique that PAS uses.

4.4.1 Weight Parameters & Query Types of Interest

We illustrate the key weight parameter artifacts and the relationships among

them in Figure 4.4, and also explain some of the notations used in this section.

2https://youtu.be/noEXdahlj_4
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Figure 4.4: Relationships of Model Versions and Snapshots

At a high level, the predecessor-successor relationships between all the developed

models is captured as a version graph. These relationships are user-specified and

conceptual in nature, and the interpretation is left to the user (i.e., an edge vi → vj

indicates that vj was an updated version of the model that the user checked in after

vi, but the nature of this update is irrelevant for storage purposes). A model version

vi itself consists of a series of snapshots, s1, ..., sn, which represent checkpoints during

the training process (most systems will take such snapshots due to the long running

times of the iterations). We refer the last or the best checkpointed snapshot sn as

the latest snapshot of vi, and denote it by svi .

One snapshot, in turn, consists of intermediate data X and trained parameters

W (e.g., in Figure 4.2, the model has 431080 parameters for W , and 19694 · b

dimensions for X, where b is the minibatch size). Since X is useful only if training

needs to be resumed, only W is stored in PAS. Outside of a few rare exceptions, W
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can always be viewed as a collection of float matrices, Rm×n,m ≥ 1, n ≥ 1, which

encode the weights on the edges from outputs of the neurons in one layer to the

inputs of the neurons in the next layer. Thus, we treat a float matrix as a first class

data type in PAS3.

The retrieval queries of interest are dictated by the operations that are done

on these stored models, which include: (a) testing a model, (b) reusing weights to

fine-tune other models, (c) comparing parameters of different models, (d) comparing

the results of different models on a dataset, and (e) model exploration queries (Sec-

tion 4.3.2). Most of these operations require execution of group retrieval queries,

where all the weight matrices in a specific snapshot need to be retrieved. This is

different from range queries seen in array databases (e.g., SciDB), and also have

unique characteristics that influence the storage and retrieval algorithms.

• Similarity among Fine-tuned Models : Although non-convexity of the train-

ing algorithm and differences in network architectures across models lead to

non-correlated parameters, the widely-used fine-tuning practices (Section 4.2)

generate model versions with similar parameters, resulting in efficient delta

encoding schemes.

• Co-usage constraints: Prior work on versioning and retrieval [1] has focused

on retrieving a single artifact stored in its entirety. However, we would like

to store the different matrices in a snapshot independently of each other, but

3We do not make a distinction about the bias weight; the typical linear transformation W ′x+ b

is treated as W · (x, 1) = (W ′, b)T · (x, 1).
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we must retrieve them together. These co-usage constraints make the prior

algorithms inapplicable as we discuss later.

• Low Precision Tolerance: DNNs are well-known for their tolerance to using

low-precision floating point numbers, both during training and evaluation.

Further, many types of queries (e.g., visualization and comparisons) do not

require retrieving the full-precision weights.

• Unbalanced Access Frequencies : Not all snapshots are used frequently. The

latest snapshots with the best testing accuracy are used in most of the cases.

The checkpointed snapshots have limited usages, including debugging and

comparisons.

4.4.2 Parameters As Segmented Float Matrices

4.4.2.1 Float Data Type Schemes

Although binary (1/-1) or ternary (1/0/-1) matrices are sometimes used in

DNNs, in general PAS handles real number weights. Due to different usages of

snapshots, PAS offers a handful of float representations to let the user trade-off

storage efficiency with lossyness using dlv. In Table 4.3, we list the schemes sup-

ported in PAS:

1. Float Point : DNNs are typically trained with single precision (32 bit) floats.

This scheme uses the standard IEEE 754 floating point encoding to store the

weights with sign, exponent, and mantissa bits. IEEE half-precision proposal
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(16 bits) and tensorflow truncated 16bits [69] are supported as well and can

be used if desired.

2. Fixed Point : Fixed point encoding has a global exponent per matrix, and each

float number only has sign and mantissa using all k bits. This scheme is a

lossy scheme as tail positions are dropped, and a maximum of 2k different

values can be expressed. The entropy of the matrix also drops considerably,

aiding in compression.

3. Quantization: Similarly, PAS supports quantization using k bits, k ≤ 8,

where 2k possible values are allowed. The quantization can be done in random

manner or uniform manner by analyzing the distribution, and a coding table

is used to maintain the integer codes stored in the matrices in PAS. This is

most useful for snapshots whose weights are primarily used for fine-tuning or

initialization.

Scheme Param. Bits Compress Lossyness Usage

Float Point 64/32/16 Fair Lossless Latest

Fixed Point 32/16/8 Good Good Latest

Quantization 8/k Excellent Poor Other

Table 4.3: Float Representation Scheme Trade-offs

The float point schemes present here are not new, and are used in DNN systems

in practice [98–100]. As a lifecycle management tool, PAS lets experienced users
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select schemes rather than deleting snapshots due to resource constraints. Our

evaluation shows storage/accuracy tradeoffs of these schemes.

4.4.2.2 Bytewise Segmentation for Float Matrices

One challenge for PAS is the high entropy of float numbers in the float arith-

metic representations, which leads to them being very hard to compress. Compres-

sion ratio shown in related work for scientific float point datasets, e.g., simulations,

is very low. The state of art compression schemes do not work well for DNN pa-

rameters either. By exploiting DNN low-precision tolerance, we adopt bytewise

decomposition from prior work [101, 102] and extend it to our context to store the

float matrices. The basic idea is to separate the high-order and low-order mantissa

bits, and so a float matrix is stored in multiple chunks; the first chunk consists of

8 high-order bits, and the rest are segmented one byte per chunk. One major ad-

vantage is the high-order bits have low entropy, and standard compression schemes

(e.g., zlib) are effective for them.

Apart from the simplicity of the approach, the key benefits of segmented ap-

proach are two-fold: (a) it allows offloading low-order bytes to remote storage, (b)

PAS queries can read high-order bytes only, in exchange for tolerating small errors.

Comparison and exploration queries (dlv desc, dlv diff) can easily tolerate such

errors and, as we show later in the chapter, dlv eval queries can also be made

tolerant to these errors.
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4.4.2.3 Delta Encoding Across Snapshots

We observed that, due to the non-convexity in training, even re-training the

same model with slightly different initializations results in very different parameters.

However, the parameters from checkpoint snapshots for the same or similar mod-

els tend to be close to each other. Furthermore, across model versions, fine-tuned

models generated using fixed initializations from another model often have simi-

lar parameters. The observations naturally suggest use of delta encoding between

checkpointed snapshots in one model version and latest snapshots across multiple

model versions; i.e., instead of storing all matrices in entirety, we can store some

in their entirety and others as differences from those. Two possible delta functions

(denoted 	) are arithmetic subtraction and bitwise XOR. We find the compression

footprints when applying the diff 	 in different directions are similar. We study the

delta operators on real models in Section 4.5.

4.4.3 Optimal Parameter Archival Storage

Given the above background, we next address the question of how to best

store a collection of model versions, so that the total storage footprint occupied by

the large segmented float matrices is minimized while the retrieval performance is

not compromised. This recreation/storage tradeoff sits at the core of any version

control system. In recent work [1], the authors study six variants of this problem,

and show the NP-hardness of most of those variations. However, their techniques

cannot be directly applied in PAS, primarily because their approach is not able to
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handle the group retrieval (co-usage) constraints.

We first introduce the necessary notation, discuss the differences from prior

work, and present the new techniques we developed for PAS. In Figure 4.4, a model

version v ∈ V consists of time-ordered checkpointed snapshots, Sv = s1, ..., sn. Each

snapshot, si consists of a named list of float matrices Mv,i = {mk} representing the

learned parameters. All matrices in a repository, M =
⋃
v∈V

⋃
si∈Sv Mv,i, are the

parameter artifacts to archive. Each matrix m ∈ M is either stored directly, or is

recovered through another matrix m′ ∈M via a delta operator 	, i.e. m = m′ 	 d,

where d is the delta computed using one of the techniques discussed above. In the

latter case, the matrix d is stored instead of m. To unify the two cases, we introduce

a empty matrix ν0, and define ∀	∀m ∈M,m 	 ν0 = m.

Definition 1 (Matrix Storage Graph) Given a repository of model versions V ,

let ν0 be an empty matrix, and V =M∪ {ν0} be the set of all parameter matrices.

We denote by E = {mi 	 mj} ∪ {mi 	 ν0} the available deltas between all pairs of

matrices. Abusing notation somewhat, we also treat E as the set of all edges in a

graph where V are the vertices. Finally, let GV (V , E , cs, cr) denote the matrix storage

graph of V , where edge weights cs, cr : E 7→ R+ are storage cost and recreation cost

of an edge respectively.

Definition 2 (Matrix Storage Plan) Any connected subgraph of GV (V , E) is called

a matrix storage plan for V , and denoted by PV (VP , EP ), where VP = V and EP ⊆ E.

Example 4 In Figure 4.5, we show a matrix storage graph for a repository with

two snapshots, s1 = {m1,m2} and s2 = {m3,m4,m5}. The weights associated with
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s1 
s2 
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m2
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(1,0.5)
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(2,1)
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(4,1)

(8,2)

Figure 4.5: A Matrix Storage Graph Example

an edge e = (ν0,mi) reflect the cost of materializing the matrix mi and retrieving it

directly. On the other hand, for an edge between two matrices, e.g., e = (m2,m5),

the weights denote the storage cost of the corresponding delta and the recreation cost

of applying that delta. In Figure 4.6 and 4.7, two matrix storage plans are shown.

s1 
s2 

m1

m2

m3

v0

m4

(2,1)

(8,2)
(1,0.5)

(4,1)
m5(4,1)

Figure 4.6: Optimal Matrix Storage Plan without Constraints

For a matrix storage plan PV (VP , EP ), PAS stores all its edges and is able to
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Figure 4.7: Optimal Matrix Storage Plan Constrained by Crψi(s1) ≤ 3 ∧ Crψi(s2) ≤ 6

recreate any matrix mi following a path starting from ν0. The total storage cost of

PV , denoted as Cs(PV ), is simply the sum of edge storage costs, i.e.

Cs(PV ) =
∑
e∈EP

cs(e)

Computation of the average snapshot recreation cost is more involved and depends

on the retreival scheme used:

• Independent scheme recreates each matrix mi one by one by following the

shortest path (Υν0,mi) to mi from ν0. In that case, the recreation cost is

simply computed by summing the recreation costs for all the edges along the

shortest path.

• Parallel scheme accesses all matrices of a snapshot in parallel (using multiple

threads); the longest shortest path from ν0 defines the recreation cost for the

snapshot.

• Reusable scheme considers caching deltas on the way, i.e., if paths from ν0
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to two different matrices overlap, then the shared computation is only done

once. In that case, we need to construct the lowest-cost Steiner tree (TPV ,si)

involving ν0 and the matrices in the snapshot. However, because multiple large

matrices need to be kept in memory simultaneously, the memory consumption

of this scheme can be large.

Retrieval Scheme Recreation Crψ(PV , si) Solution of Prob.1

Independent (ψi)
∑

mj∈si

∑
ek∈Υν0,mj

cr(ek) Spanning tree

Parallel (ψp) maxmj∈si{
∑

ek∈Υν0,mj
cr(ek)} Spanning tree

Reusable (ψr)
∑

ek∈TPV ,si
cr(ek) Subgraph

Table 4.4: Recreation Cost of a Snapshot si Cr(PV , si) in a plan PV

PAS can be configured to use any of these options during the actual query

execution. However, solving the storage optimization problem with Reusable scheme

is nearly impossible; since the Steiner tree problem is NP-Hard, just computing the

cost of a solution becomes intractable making it hard to even compare two different

storage solutions. Hence, during the storage optimization process, PAS can only

support Independent or Parallel schemes.

In the example above, the edges are shown as being undirected indicating

that the deltas are symmetric. In general, we allow for directed deltas to handle

asymmetric delta functions, and also for multiple directed edges between the same

two matrices. The latter can be used to capture different options for storing the

delta; e.g., we may have one edge corresponding to a remote storage option, where
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the storage cost is lower and the recreation cost is higher; whereas another edge

(between the same two matrices) may correspond to a local SSD storage option,

where the storage cost is the highest and the recreation cost is the lowest. Our

algorithms can thus automatically choose the appropriate storage option for different

deltas.

Similarly, PAS is able to make decisions at the level of byte segments of float

matrices, by treating them as separate matrices that need to be retrieved together in

some cases, and not in other cases. This, combined with the ability to incorporate

different storage options, is a powerful generalization that allows PAS to make

decisions at a very fine granularity.

Given this notation, we can now state the problem formally. Since there are

multiple optimization metrics, we assume that constraints on the retrieval costs are

provided and ask to minimize the storage.

Problem 1 (Optimal Parameter Archival Storage) Given a matrix storage graph

GV (V , E , cs, cr), let θi be the snapshot recreation cost budget for each si ∈ S. Un-

der a retrieval scheme ψ, find a matrix storage plan PV ∗ that minimizes the total

storage cost, while satisfying recreation constraints, i.e.:

minimize
PV

Cs(PV ); s.t. ∀si ∈ S, Crψ(PV , si) ≤ θi

Example 5 In Figure 4.6, without any recreation constraints, we show the best

storage plan, which is the minimum spanning tree based on cs of the matrix stor-

age graph, Cs(PV ) = 19. Under independent scheme ψi, Crψi(PV , s1) = 3 and

Crψi(PV , s2) = 7.5. In Figure 4.7, after adding two constraints θ1 = 3 and θ2 = 6,
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we shows an optimal storage plan PV ∗ satisfying all constraints. The storage cost

increases, Cs(PV ∗) = 24, while Crψi(PV ∗, s1) = 3 and Crψi(PV ∗, s2) = 6.

Although this problem variation might look similar to the ones considered

in recent work [1], none of the variations studied there can handle the co-usage

constraints (i.e., the constraints on simultaneously retrieving a group of versioned

data artifacts). One way to enforce such constraints is to treat the entire snapshot

as a single data artifact that is stored together; however, that may force us to

use an overall suboptimal solution because we would not be able to choose the

most appropriate delta at the level of individual matrices. Another option would

be to sub-divide the retrieval budget for a snapshot into constraints on individual

matrices in the snapshot. As our experiments show, that can lead to significantly

higher storage utilization. Thus the formulation above is a strict generalization of

the formulations considered in that prior work.

Theorem 1 Optimal Parameter Archival Storage Problem is NP-hard for all re-

trieval schemes in Table 4.4.

Proof 1 We reduce Prob.5 in [1] to the independent scheme ψi, and Prob.6 to the

parallel scheme ψp in [1], by mapping each datasets as vertices in storage graph,

and introducing a snapshot holding all matrices with recreation bound Θg. For reuse

scheme ψr, it is at least as hard as weighted set cover problem if reducing a set to

an edge e with storage cost cs(e) as weight, an item to an vertex in GV (V , E), and

set recreation budget Θg =∞.
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Lemma 1 The optimal solution for Problem 1 is a spanning tree when retrieval

scheme ψ is independent or parallel.

Proof 2 Suppose we have a non-tree solution PV satisfying the constraints, and

also minimize the objective. Note that parallel and independent schemes are based

on shortest path Υν0,m in PV from ν0 to each matrix m, so the union of each shortest

path forms a shortest path tree. If we remove edges which are not in the shortest path

tree from the plan to PV ′, it results in a lower objective Cs(PV ′), but still satisfying

all recreation constraints, which leads to a contradiction.

Note the above lemma is not true for the reusable scheme (ψr); snapshot

Steiner trees satisfying different recreation constraints may share intermediate nodes

resulting in a subgraph solution.

Lemma 1 shows PV ∗ is a spanning tree and connects our problem to a class of

constrained minimum spanning tree problems.

4.4.3.1 Constrained Spanning Tree Problem

In Problem 1, storage cost minimization while ignoring the recreation con-

straints leads to a minimum spanning tree (MST) of the storage matrix; whereas

the snapshot recreation constraints are best satisfied by using a shortest path tree

(SPT). These problems are often referred to as constrained spanning tree prob-

lems [103] or shallow-light tree constructions [104], which have been studied in areas

other than dataset versioning, such as VLSI designs. Khuller et al. [65] propose an

algorithm called LAST to construct such a “balanced” spanning tree in an undi-
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rected graph G. LAST starts with a minimum spanning tree of the provided graph,

traverses it in a DFS manner, and adjusts the tree by changing parents to ensure

the path length in constructed solution is within (1+ε) times of shortest path in G,

i.e. Cr(T, vi) ≤ (1 + ε)Cr(Υν0,vi , vi), while total storage cost is within (1+2
ε
) times of

MST. In our problem, the co-usage constraints of matrices in each snapshot form

hyperedges over the matrix storage graph making the problem more difficult.

In the rest of the discussion, we adapt meta-heuristics for constrained MST

problems to develop two algorithms: the first one (PAS-MT) is based on an iterative

refinement scheme, where we start from an MST and then adjust it to satisfy con-

straints; the second one is a priority-based tree construction algorithm (PAS-PT),

which adds nodes one by one and encodes heuristic in the priority function. Both

algorithms aim to solve the parallel and independent schemes, and can also find fea-

sible solution for reusable scheme. Due to large memory footprints of intermediate

matrices, we do not discuss algorithm for improving reusable scheme solutions.

4.4.3.2 PAS-MT

The algorithm starts with T as the MST of GV (V , E), and iteratively adjusts

T to satisfy the broken snapshot recreation constraints, U = {si|Cr(T, si) > θi},

by swapping one edge at a time. We denote pi as the parent of vi, (pi, vi) ∈ T

and p0 = φ, and successors of vi in T as Di. A swap operation on (pi, vi) to edge

(vs, vi) ∈ E − T changes parent of vi to vs in T .

Lemma 2 A swap operation on vi changes storage cost of Cs(T ) by cs(pi, vi) −
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cs(vs, vi), and changes recreation costs of vi and its successors Di by: Cr(T, vi) −

Cr(T, vs)− cr(vs, vi).

The proof can be derived from definition of Cs and Cr by inspection. When

selecting edges in E − T , we choose the one which has the largest marginal gain for

unsatisfied constraints:

Eq. 4.1 sums the gain of recreation cost changes among all matrices in the same

snapshot si (for the independent scheme), while Eq. 4.2 uses the max change instead

(for the parallel scheme). The actual formula used is somewhat more complex, and

Input: GV (V , E , cs, cr), snapshots S, recreation cost {θi ≥ 0 | si ∈ S}.

Output: A spanning tree T satisfying constraints {Cr(T, si) ≤ θi}

1: let T = MST of GV (V , E);

2: while unsatisfied constraints U = {si | Cr(T, si) > θi} 6= ∅ do

3: for each edge esi = (vs, vi) ∈ E − T do

4: calculate gain(esi) with Eq. 4.1 (Eq. 4.2 for scheme ψp)

5: end for

6: find e′si = max{esi | gain(esi)}

7: break if gain(e′si) ≤ 0

8: swap (pi, vi) with e′si: T = (T − {(pi, vi)}) ∪ {e′si}

9: end while

10: return T unless U 6= ∅
Algorithm 1: PAS-MT
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handles negative denominators.

ψi : max
(vs,vi)∈E−T

{
∑

sk∈U
∑

vj∈sk∩Di (Cr(T, vi)− Cr(T, vs)− cr(vs, vi))
cs(vs, vi)− cs(pi, vi)

} (4.1)

ψp : max
(vs,vi)∈E−T

{
∑

sk∈U (Cr(T, vi)− Cr(T, vs)− cr(vs, vi))
cs(vs, vi)− cs(pi, vi)

} (4.2)

The algorithm iteratively swaps edges and stops if all recreation constraints

are satisfied or no edge returns a positive gain. A single step examines |E − T |

edges and |U | unsatisfied constraints, and there are at most |E| steps. Thus the

complexity is bounded by O(|E|2|S|). The pseudo-code is shown in Algorithm 1.

4.4.3.3 PAS-PT

This algorithm constructs a solution by “growing” a tree starting with an

empty tree. In the matrix storage graph GV (M,D, cs, cr), due to the co-usage con-

straint, previous tree growth algorithms [1,65] do not work any more, as adding one

node at a time cannot determine whether a group constraint is satisfied. Instead,

PAS-PT examines the edges in GV (V , E) in the increasing order by the storage cost

cs; a priority queue is used to maintain all the candidate edges and is populated

with all the edges from v0 in the beginning. At any point, the edges in Q are the

ones that connect a vertex T , to a vertex outside T . Using an edge eij = (vi, vj)

(s.t., vi ∈ VT ∧ vj ∈ V − VT ) popped from Q, the algorithm tries to add vj to T

with minimum storage increment cs(eij). Before adding vj, it examines whether

the constraints of affected groups sa (s.t., vj ∈ sa) are satisfied using actual and
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estimated recreation costs for vertices {vk ∈ sa} in VT and V − VT respectively; if

vk ∈ VT , actual recreation cost Cr(T, vk) is used, otherwise the lower bound of it,

i.e. cr(ν0, vk) is used as an estimation. We refer the estimation for sa as Ĉr(T, sa).

Once an edge eij is added to T , the inner edges IjT = {(vk, vj)|vk ∈ VT} of newly

added vj are dequeued from Q, while the outer edges OjT = {(vj, vk) | vk ∈ V − VT}

are enqueued. If the storage cost of existing vertices in T can be improved (i.e.

Cs(T, vk) > cs(vk, vj)), and recreation cost is not more (i.e. Cr(T, vk) ≥ Cr(T, vj) +

cr(vk, vj)), then the parent pk of vk in T is replaced to vj via the swap operation,

decreasing the storage but not increasing affected group recreation cost.

The algorithm stops if Q is empty and T is a spanning tree. In the case when

Q is empty but VT ⊂ V , an adjustment operation on T to increase storage cost and

satisfy the group recreation constraints is performed. For each vu ∈ V − VT , we

append it to ν0, then in each unsatisfied group si that vu belongs to, optimally,

we want to choose a set of {vg} ⊆ si ∩ T to change their parents in T , such that

the decrement of storage cost is minimized while recreation cost is satisfied. The

optimal adjustment itself can be viewed as a knapsack problem with extra non-cyclic

constraint of T , which is NP-hard. Instead, we use the same heuristic in Eq. 4.1

to adjust vg ∈ si ∩ T one by one by swapping its parent pg to vs until the group

constraints cannot improved. Similarly, the parallel scheme ψp uses Eq. 4.2 for

the adjustment operation. The complexity of this algorithm is O(|E|2|S|). The

pseudo-code is shown in Algorithm 2.
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Input: GV (V, E , cs, cr), snapshots S, recreation cost {θi ≥ 0 | si ∈ S}.

Output: A spanning tree T satisfying constraints {Cr(T, si) ≤ θi}

1: let T = ∅ and Q be a priority queue of edges based on cs

2: push {(ν0, vi) | vi ∈ V} in Q

3: while Q 6= ∅ do

4: pop eij = (vi, vj) from Q; let T = T ∪ {eij}

5: let constraints satisfaction flag be Θ
eij
satisfy = true

6: for each snapshot constraint sa ∈ {s | s ∈ S ∧ vj ∈ s} do

7: estimate recreation cost Ĉr(T, sa)

8: Θ
eij
satisfy = false and break if Ĉr(T, sa) > θa

9: end for

10: if Θ
eij
satisfy is false, then T = T − {eij} and goto line 3

11: pop inner edges of vj IjT = {(vk, vj) | vk ∈ T} from Q

12: push outer edges OjE−T = {(vj , vk) | vk ∈ E − T} to Q

13: for (vk, vj) ∈ T , change pk improves Cs, and no worse Cr do

14: swap (pk, vk) ∈ T with (vj , vk)

15: end for

16: end while

17: if T is not a spanning tree then

18: for each vu ∈ V − VT , do T = T ∪ {e0u = (ν0, vu)}

19: adjust T using PAS-MT heuristic.

20: end if

21: return T if T is a matrix storage plan
Algorithm 2: PAS-PT
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4.4.4 Model Evaluation Scheme in PAS

Model evaluation, i.e., applying a DNN forward on a data point to get the

prediction result, is a common task to explore, debug and understand models. Given

a PAS storage plan, an dlv eval query requires uncompressing and applying deltas

along the path to the model. We develop a novel model evaluation scheme utilizing

the segmented design, that progressively accesses the low-order segments only when

necessary, and guarantees no errors for arbitrary data points.

The basic intuition is that: when retrieving segmented parameters, we know

the minimum and maximum values of the parameters (since higher order bytes are

retrieved first). If the prediction result is the same for the entire range of those

values, then we do not need to access the lower order bytes. However, considering

the high dimensions of parameters, non-linearity of the DNN model, unknown full

precision value when issuing the query, it is not clear if this is feasible.

We define the problem formally, and illustrate the determinism condition that

we use to develop our algorithm. Our technique is inspired from theoretical stability

analysis in numerical analysis. We make the formulation general to be applicable

to other prediction functions. The basic assumption is that the prediction function

returns a vector showing relative strengths of the classification labels, then the

dimension index with the maximum value is used as the predicted label.

Problem 2 (Parameter Perturbation Error Determination) Given a predic-

tion function F(d,W ) : Rm × Rn 7→ Rc, where d is the data and W are the learned

weights, the prediction result cd is the dimension index with the highest value in the
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output o ∈ Rc. When W value is uncertain, i.e., each wi ∈ W in known to be in the

range [wi,min, wi,max], determine whether cd can be ascertained without error.

When W is uncertain, the output o is uncertain as well. However, if we can

bound the individual entries in o, then the following condition is an applicable

necessary condition for determining error:

Lemma 3 Let oi ∈ o vary in range [oi,min, oi,max]. If ∃k such that ∀i, ok,min > oi,max,

then prediction result cd is k.

Next we illustrate a query procedure, that given data d, evaluates a DNN with

weight perturbations and determines the output perturbation on the fly. Recall that

DNN is a nested function (Section 4.2), we derive the output perturbations when

evaluating a model while preserving perturbations step by step:

x0,k =
∑
j

W0,k,jdj + b0,k

x0,k,min =
∑
j

min{W0,k,jdj}+ min{b0,k}

x0,k,max =
∑
j

max{W0,k,jdj}+ max{b0,k}

Next, activation function σ0 is applied. Most of the common activation functions are

monotonic functions: R 7→ R, (e.g. sigmoid, ReLu), while pool layer functions are

min, max, avg functions over several dimensions. It is easy to derive the perturbation

of output of the activation function, [f0,k,min, f0,k,max]. During the evaluation query,

instead of 1-D actual output, we carry 2-D perturbations, as the actual parameter

value is not available. Nonlinearity decreases or increases the perturbation range.
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Now the output perturbation at fi can be calculated similarly, except now both W

and fi−1 are uncertain:

xi,k =
∑
j

Wi,k,jfi−1,j + bi,k

xi,k,min =
∑
j

min{Wi,k,jfi−1,j}+ min{bi,k}

xi,k,max =
∑
j

max{Wi,k,jfi−1,j}+ max{bi,k}

Applying these steps iteratively until last layer, we can then apply Lemma 3,

the condition of error determinism, to check if the result is correct. If not, then

lower order segments of the float matrices are retrieved, and the evaluation is re-

performed.

This progressive evaluation query techniques dramatically improve the utility

of PAS, as we further illustrate in our experimental evaluation. Note that, other

types of queries, e.g., matrix plots, activation plots, visualizations, etc., can often

be executed without retrieving the lower-order bytes either.

4.5 Evaluation Study

ModelHub is designed to work with a variety of deep learning backends; our

prototype interfaces with caffe [72] through a ProvDB ingestor extension that

can extract caffe training logs, and read and write parameters for training. We

have also built a custom layer in caffe to support progressive queries. Similar to

ProvDB shell ingestor, the dlv command-line suite is implemented as a Ruby gem,

utilizing git as internal VCS and sqlite3 and PAS as backends to manage the set
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of heterogeneous artifacts in the local client. PAS is built in C++ with gcc 5.4.0.

All experiments are conducted on a Ubuntu Linux 16.04 machine with an 8-core

3.0GHz AMD FX-380 processor, 16GB memory, and NVIDIA GTX 970 GPU. We

use zlib for compression; unless specifically mentioned, the compression level is set

to 6. When wrapping and modifying caffe, the code base version is rc3.

In this section, we present a comprehensive evaluation with real-world and

synthetic datasets aimed at examining our design decisions, differences of config-

urations in PAS, and performance of archiving and progressive query evaluation

techniques proposed in earlier sections.

4.5.1 Dataset Description

4.5.1.1 Real World Dataset

To study the performance of PAS design decisions, we use a collection of

shared caffe models listed in Table 4.5 published in caffe repository or Model Zoo.

In brief, LeNet-5 [93] is a convolutional DNN with 431k parameters. The reference

model has 0.88% error rate on MNIST. AlexNet [94] is a medium-sized model with 61

million parameters, while VGG-16 [95] has 1.9 billion parameters. Both AlexNet and

VGG-16 are tested on ILSVRC-2012 dataset. The downloaded models have 43.1%,

and 31.6% top-1 error rate respectively. Besides, to study the delta performance

on model repositories under different workloads (i.e., retraining, fine-tuning): we

use VGG-16/19 and CNN-S/M/F [105], a set of similar models developed by VGG

authors to study model variations. They are similar to VGG-16, and retrained from
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Network |W | (flops) Size Purpose

LeNet-5 4.31× 105 5MB Small model

AlexNet 6× 107 200MB Medium model

VGG-16 [95] 1.96× 1010 500MB Large model

CNN-S/M/F [105] 1.13× 1010 199/300MB Similar models

VGG-Salient 1.96× 1010 500MB Fine-tuning

Table 4.5: Real World DNN Models used in the Experiment Study

scratch; for fine-tuning, we use VGG-Salient [106] a fine-tuning VGG model which

only changes last full layer.

4.5.1.2 Synthetic Datasets

Lacking sufficiently fine-grained real-world repositories of models, to evaluate

performance of parameter archiving algorithms, we developed an automatic modeler

to enumerate models and hyperparameters to produce a dlv repository. We gener-

ated a synthetic dataset (SD): simulating a modeler who is enumerating models to

solve a face recognition task, and fine-tuning a trained VGG. SD results in similar

DNNs and relatively similar parameters across the models. As retraining is always

used, SD1 has a set of different models w.r.t. network architecture and parameters,

while finetuning practice used in SD2 results in similar network architecture, and

more similar parameters. The datasets are shared online4.

To elaborate, the automation is driven by a state machine that applies model-

4Dataset Details: http://www.cs.umd.edu/~hui/code/modelhub
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ing practices from the real world. For SD1, the modeler mutates the network archi-

tecture intensively by inserting/deleting layers and changing layer shapes, as well

as by updating optimization related hyperparameters. While in SD2, the modeler

updates the VGG network architecture slightly and changes VGG object recognition

goal to a face prediction task (prediction labels changed from 1000 to 100, so the

last layer is changed); various fine-tuning hyperparameter alternations are applied

by mimicking practice [107]. SD in total has 54 model versions, each of which has

10 snapshots. A snapshot has 16 parametric layers and a total of 1.96× 1010 floats.

4.5.2 Evaluation Results

4.5.2.1 Float Representation & Accuracy

We show the effect of different float encoding schemes on compression and

accuracy in Figure 4.8; this is a tradeoff that the user often needs to consider when

configuring ModelHub to save a model. In Figure 4.8, for each scheme, we plot

the average compression ratio versus the average accuracy drop when applying PAS

float schemes on the three real-world models. Here, random and uniform denote two

standard quantization schemes. As we can see, we can get very high compression

ratios (a factor of 20 or so) without a significant loss in accuracy, which may be

acceptable in many scenarios.
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Figure 4.8: Compression-Accuracy Tradeoff for Float Representation Schemes

4.5.2.2 Delta Encoding & Compression Ratio Gain

Next we study the usefulness of delta encoding in real-world models in the fol-

lowing scenarios: a) Similar : latest snapshots across similar models (CNN-S/M/F,

VGG-16); b) Fine-tuning : fine-tuning models (VGG-16, VGG-Salient); and c)

Snapshots : snapshots for the same VGG models in SD between iterations. In

Figure 4.9, for different delta schemes, namely, storing original matrices (Material-

ize), arithmetic subtraction (Delta-SUB), and bitwise XOR diff (Delta-XOR), the

comparison is shown (i.e., we show the results of compressing the resulting matrices

using zlib). The figure shows the numbers under lossless compression scheme (float

32), which has the largest storage footprint.

As we can see, delta scheme is not always good, due to the non-convexity

and high entropy of parameters. For models under similar architectures, storing
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Figure 4.9: Compression Performance for Different Delta Schemes & Models

materialized original parameters is often better than applying delta encoding. With

fine-tuning and nearby snapshots, the delta is always better, and arithmetic subtrac-

tion is consistently better than bitwise XOR. We saw similar results for many other

models. These findings are useful for PAS implementation decisions, where we only

perform delta between nearby snapshots in a single model, or for the fine-tuning

setting among different models.

Table 4.6 shows the delta encoding results when using two lossy schemes, fixed

point conversion and normalization, for fine-tuned VGG datasets, but without re-

ducing the number of bits used (i.e., we still use 32 bits to store the numbers).

Normalization refers to adding a sufficiently large number to all the floats so that

the radixes and the signs are aligned, whereas fixed point conversion uses a sin-

gle exponent for all the numbers in a matrix. As we can see, for both of these,

delta encoding can result in sigificant gains. Introducing additional lossiness, e.g.,
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Schemes Configuration Materialize Delta-SUB

Float Number Lossless 92.83% 86.39%

Representation Lossless, bytewise 83.85% 76.89%

Fix point 72.43% 57.15%

Fix point, bytewise 58.68% 49.34%

After Lossless 68.06% 47.69%

Normalization Lossless, bytewise 56.15% 36.60%

Fix point 69.11% 48.94%

Fix point, bytewise 55.36% 36.88%

Table 4.6: Delta Performance For Lossless & Lossy Schemes, 32-bits

through using fewer bits, further improves the performance, but at the expense of

significantly higher accuracy loss.

4.5.2.3 Optimal Parameter Archival Storage

Figure 4.10 shows the results of comparing PAS-PT, PAS-MT and the base-

line LAST [65] for the optimal parameter archival problem. Using dataset SD, we

derive nearby snapshot deltas as well as model-wise deltas among the latest snap-

shots. To compare with LAST clearly, we vary the recreation threshold using a

scalar α to mimic a full precision archiving problem instance with different con-

straints, i.e., Cr(T, si) ≤ α · Cr(SPT, si). The SPT for SD is 22.77Gb and the MST

is 15.44Gb. In Figure 4.10, the left y-axis denotes the storage cost (Cs) while the
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Figure 4.10: Comparing PAS Archival Storage Algorithms for SD

right y-axis is the recreation cost (Cr).

As we can see, in most cases, PAS-MT and PT find much better storage solu-

tions that are very close to the MST (the best possible) by exploiting the recreation

thresholds. In contrast, LAST, which cannot handle group constraints, returns

worse storage plans and cannot utilize the recreation constraints fully. Between

MT and PT, since MT starts from the MST and adjusts it, when the constraints

are tight (i.e., α < 1.5), MT cannot alter it to very different trees and the recre-

ation constraints are underutilized; however, PT can exploit the constraints when

selecting edges to grow the tree. On the other hand, when the threshold is loose

(α ∈ [1.5, 2]), MT’s edge swapping strategy is able to refine MST extensively, while

PT prunes edges early and cannot find solutions close to MST. When the constraints
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Storage Plan Query Independent (s) Parallel (s)

Materialization Full 3.49 2.16

Min Storage Full 8.47 4.85

PAS (α = 1.6) Full 8.1 4.59

2 bytes 3.19 0.38

1 byte 1.60 0.18

Table 4.7: Recreation Performance Comparison of Storage Plans

continue to loosen, both PAS algorithms find good plans, while LAST can only do

so at very late stages (α > 3). In practice, the best option might be to execute both

algorithms and pick the best solution for a given setting.

4.5.2.4 Retrieval Performance

Next we show the retrieval performance for PAS storage plans using the SD

dataset. The main query type of interest is snapshot retrieval, which would retrieve

all segments of a snapshot or, for a partial retrieval query, the high-order segments.

In Table 4.7, the average recreation time of a snapshot for a moderate PAS storage

plan (α = 1.6) is compared with the two extreme cases, full materialization, and

minimum storage without recreation constraints. As we can see, PAS is not only

able to find good solutions which satisfy recreation constraints, but also supports

flexible access schemes. Under partial access of high order bytes, the query times for

segmented snapshots are better than uncompressing the fully materialized model.
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4.5.2.5 Progressive Query Evaluation

We study the efficiency of the progressive evaluation technique using pertur-

bation error determination scheme on real-world models (LeNet, AlexNet, VGG16)

and their corresponding datasets. The original parameters are 4-byte floats, which

are archived in segments in PAS. We modify caffe implementation of involved

layers and pass two additional blobs (min/max errors) between layers. The pertur-

bation error determination algorithm uses high order segments, and answers eval

query on the test dataset. The algorithm determines whether top-k (1 or 5) result

needs lower order bytes (i.e., matched index value range overlaps with k + 1 index

value range). The result is summarized in Figure 4.11. The y-axis shows the error

rate. The x-axis shows the percentage of data that needs to be retrieved (i.e., 2

bytes or 1 byte per float). As one can see, the prediction errors requiring full pre-

Figure 4.11: Progressive Evaluation Query Processing Using High-Order Bytes
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cision lower-order bytes are very small. The less high-order bytes used, higher the

chance of potential errors. The consistent result of progressive query evaluation on

real models supports our design decision of segmented float storage.

4.6 Conclusion

In this chapter, we described how to build domain-specific ProvDB extensions

to address some of the key data management challenges in learning, managing, and

adjusting deep learning models. ModelHub attempts to address those challenges in

a systematic fashion. The goals of ModelHub are multi-fold: (a) to make it easy for

a user to explore the space of potential models by tweaking the network architecture

and/or the hyperparameter values, (b) to minimize the burden in keeping track of

the metadata including the accuracy scores and the fine-grained results, and (c)

to compactly store a large number of models and constituent snapshots without

compromising on query or retrieval performance. We presented several high-level

abstractions, including a command-line version management tool and a domain-

specific language, for addressing the first two goals. Anecdotal experience with

our early users suggests that both of those are effective at simplifying the model

exploration tasks. We also developed a read-optimized parameter archival storage

for storing the learned weight parameters, and designed novel algorithms for storage

optimization and for progressive query evaluation. Extensive experiments on real-

world and synthetic models verify the design decisions we made and demonstrate

the advantages of proposed techniques.
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Chapter 5: Querying Collaborative Analytics Lifecycle Provenance

To support non-intrusive and extensible provenance ingestion mechanisms to

collect rich information, ProvDB and other lifecycle management systems often use

a graph data model (e.g., property graph) and query languages (e.g., Cypher) to

represent and manipulate the stored provenance. However, due to the schema-later

nature of the metadata, multiple versions of the same files, unfamiliar artifacts intro-

duced by team members, and enormous provenance records collected continuously,

querying the ingested provenance graph and utilizing it to a large extent is very

challenging for the users. As the provenance graph is verbose and evolving, and the

users only have partial knowledge of it, just using standard graph languages makes

it very difficult to compose queries and utilize the valuable information. These ob-

servations echo the development of provenance systems in other domains, such as

cybersecurity, where a clear workflow is not present and query issuers need to deal

with verbose and evolving provenance graphs.

In this chapter, we propose general provenance graph query operators on stan-

dard PROV graph data model to address the verboseness and evolving nature of

such provenance graphs. We mainly focus on querying workflow provenance for data

science lifecycles which are collaboration pipelines consisting of versioned artifacts
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and parametrized derivation steps. We discussed studies on data provenance for

data science systems in Chapter 2. In Section. 5.1, we first overview the issues of

querying provenance graphs on modern graph databases, and motivate the problem.

Then in Section 5.2, we review the standard PROV data model, and point out the

challenges and desiderata of querying collaborative analytics provenance graphs. In

Section 5.3 and 5.4, we introduce graph query operators to induce and summarize

provenance subgraphs of interest by allowing the users to only have partial knowl-

edge of the lifecycle. We show the semantics of such queries and propose efficient

evaluation techniques on top of a property graph data store. Next, the implementa-

tion of the operators and their position in ProvDB are illustrated in Section 5.5. In

Section 5.6, we evaluate our query methods extensively on a variety of provenance

graph datasets and show the effectiveness and efficiency of the proposed methods.

5.1 Introduction

As mentioned in early chapters, provenance management has been identified as

an important problem for the prosperous data science activities [50,85]. In general,

capturing provenance allows the practitioners introspect the data analytics trajec-

tories, monitor the ongoing modeling activities, and communicate the practice with

others [85].

Compared with well-established data provenance systems for databases [5],

and scientific workflow systems for e-science [3], building provenance systems for

data science faces an unstable data science lifecycle that is often ad hoc, typically
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featuring highly unstructured datasets, an amalgamation of different tools and tech-

niques, significant back-and-forth among team members, and trial-and-error to iden-

tify the right analysis tools, models, and parameters.

Schema-later approaches and graph data model are often used to capture the

lifecycle, versioned artifacts and associated rich information [50, 85], which also

echoes the modern provenance data model standardization over a long period of

time as a result of consolidation for scientific workflows [18] and the Web [19].

Though there is an enormous potential value of data science lifecycle prove-

nance and high hype to reproduce the results or accelerate the modeling process, the

evolving and verbose nature of the captured provenance graphs makes them difficult

to store and manipulate. Depending on the granularity, storing the graphs could

take dozens of GBs within several minutes [108]. More importantly, given the evolv-

ing lifecycle and verbose provenance graphs, it is difficult to write general queries

to explore the graph and utilize it, because there are no predefined workflows, i.e.,

the pipelines change as the project evolves, and because of arbitrary steps (e.g.,

trial and error) in the modeling process. Though storing the provenance graph in

a graph database seems like a natural choice, most of the provenance query types

of interest involve paths [109], and require returning paths instead of answering

questions about reachability [21], which are beyond the capability of the pattern

matching query (BPM) and regular path query (RPQ) support in popular modern

graph databases [110, 111]. For example, answering ‘how is today’s result file gen-

erated from today’s data file’ requires a segment of the provenance graph including

not only the mentioned files but also other files that are not on the path and the
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user may not know at all (e.g., ‘a configuration file’); answering ‘how do the team

members typically generate the result file from the data file?’ requires summarizing

several of the query results of the above query and visualize at different resolutions.

Lack of proper query facilities in modern graph databases not only limits the

value of lifecycle provenance systems for data science, but also of other provenance

systems. Provenance queries have specialized query types of interest [21, 109], and

provenance systems often implement specialized storage systems [112] and query

interfaces [22,23] on their own [3]. Recent works on provenance graphs in the prove-

nance community propose various graph transformations for different tasks, which

are essentially different template queries from the graph querying perspective, such

as grouping nodes together to handle publishing policies [24], summarizing verbose

graphs by node types to understand commonalities and outliers [25], segmenting

provenance graphs via declarative languages to support feature extractions for cy-

bersecurity [26]. We attempt to draw connections between provenance graph query

types of interest and modern graph databases capabilities while building a prove-

nance system to aid the data analytics lifecycle.

In this chapter, we propose two graph operators for common provenance

queries to let the user explore the evolving provenance graph without fully un-

derstanding the underlying provenance graph structure. The operators not only

help our purpose in the context of data science but also the applications using stan-

dard provenance data models [18,19] that have no clear workflow skeletons and are

verbose in nature [25,26,108,113].

First, we introduce a flexible graph segmentation operator, which queries the
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provenance of a collection of user-given nodes (e.g., versioned file snapshots, au-

thors, an entered command) given boundary criteria (e.g., hops, timestamps, path

patterns). We show the semantics of such a query in a context free language, and

discuss the connection with RPQ and propose efficient evaluation techniques on top

of a property graph store. Second, we propose a graph summarization operator for

aggregating the segmentation results, which allows multi-resolution interaction with

the query results to understand similar and abnormal behaviors in those segments.

5.2 Challenges & Desiderata

Next, we give motivating examples, and introduce standard provenance data

model and adaptations in our context. Then we summarize the typical provenance

query types of interest and analyze them from the perspective of graph queries.

5.2.1 Motivating Example

In the lifecycle of a data analytics project [?,77,78,83], given specific datasets

(e.g., face images and labels) and a goal (e.g., prediction function from a face to a

label with high accuracy), the data scientists in a team collaborate with each other

and try different models repetitively. Using a lifecycle provenance management

system [50,85], details of the project progress, versions of the artifacts and associated

provenance are captured and managed. In Example 6, we use a classification task

using neural networks to illustrate the system background, provenance model and

query type.
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Entity PropertyActivity
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model ref: vgg16
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dataset

iter: 20000

exp: v1
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url: http://.
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Alice commit

Entity PropertyActivity

opt: -gpu
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exp: v2
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weight
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Alice commit

Entity PropertyActivity

opt: -gputrain
lr: 0.01

exp: v3

solverupdate

acc: 0.75
weight
logs

Bob commitV1 V2 V3

Figure 5.1: A Data Analytics Project Lifecycle Example & Associated Provenance

Example 6 In Figure 5.1, Alice and Bob work together on a classification task to

predict face ids given an image. Alice starts the project and creates a neural net-

work by modifying a popular model. She downloads the dataset and edits the model

definitions and solver hyperparameters, then invokes the training program with spe-

cific command options. After training the first model, she examines the accuracy in

the log file, annotates the weight files, then commits a version using git. As the

accuracy of the first model is not ideal, she changes the neural network by editing

the model definition, trains it again and derives new log files and weight parame-

ters. However the accuracy drops, and she turns to Bob for help. Bob examines

what she did, trains a new model following some best practices by editing the solver

configuration in version v1, and commits a better model.

Behind the scene, a lifecycle management system tracks user activities, man-

ages project artifacts (e.g., datasets, models, solvers) and ingests provenance. In the

Figure 5.1 tables, we show ingested information in detail: a) history of user activ-

ities (e.g., the first train command uses model v1 and solver v1 and generates logs

v1 and weights v1), b) versions and changes of entities (e.g., weights v1, v2 and v3)
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and derivations among those entities (e.g., model v2 is derived from model v1), and

c) provenance records as associated properties to activities and entities, ingested via

provenance system ingestors (e.g., dataset is copied from some url, Alice changes a

pool layer type to AVG in v2, accuracy in logs v3 is 0.75).

5.2.2 Provenance Model

The ingested provenance of the project lifecycle naturally forms a provenance

graph, which is a directed acyclic graph1 and encodes information with multiple

aspects, such as a version graph representing the artifact changes, a workflow graph

reflecting the derivations of those artifact versions, and a conceptual model graph

showing the involvement of problem solving methods in the project [50, 85]. To

represent the provenance graph and keep our discussion general to other provenance

systems, we choose the W3C PROV data model [114], which is a standard inter-

change model for different provenance systems. Different aspects of the provenance

graph are supported via a rich set of query facilities (Section 5.5) on top of the

PROV data model.

The full PROV data model is complex in order to satisfy application needs

for different domains [114]. For simplicity, we use the core subset of it, which is

shown in Figure 5.2. There are three types of vertices (V) in the provenance graph:

• Entities (E): are the project artifacts (e.g., files, datasets, scripts) which the

users work on and talk about in a project, and the underlying lifecycle man-

1In our system, we use versioning to avoid cyclic self-derivations of the same entity and over-

written entity generations by some activity.
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Figure 5.2: Illustration of the W3C PROV Data Model

agement system manages their provenance.

• Activities (A): are the system or user actions (e.g., train, git commit, cron

jobs) which act upon or with entities over a period of time, [ti, tj).

• Agents (U): are the parties who are responsible for some activity (e.g., a team

member, a system component).

Among the vertices, we focus our discussion to five types of directed edges2 (E):

• ‘used’ (U⊆ A× E): An activity started at time ti often uses some entities.

• ‘wasGeneratedBy’ (G⊆ E× A): Then some entities would be generated by

the same activity at time tj (tj ≥ ti).

• ‘wasAssociatedWith’ (S⊆ A× U): An activity is always associated with some

agent during its period of execution.

2There are 13 type of relationships among Entity, Activity and Agent. The proposed techniques

in the chapter can be extended naturally to support more relation types in other provenance

systems.
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For instance, in Example 6, the activity train was associated with Alice, used a set

of artifacts (model, solver, and dataset) and generated other artifacts (logs, weights).

• ‘wasAttributedTo’ (A⊆ E× U): Besides an entity’s presence would be at-

tributed to some agent, e.g., the dataset in Example 6 was added from external

sources and attributed to Alice.

• ’wasDerivedFrom’ (D⊆ E× E): An entity would be derived from another

entity, such as different versions of the same artifact (e.g., different model

versions in v1 and v2 in Figure 5.1).

In the provenance graph, both vertices and edges have a label to encode their vertex

type in {E , A, U} or edge type in {U , G , S , A, D}. All other provenance records

are modeled as properties, ingested by a set of configured project ingestors during

the period of activity executions and represented as key-value pairs.

PROV standard defines various serializations of the concept model, such as

RDF, XML, and JSON [19]. In our system, we use a physical property graph data

model to store it, as it is more natural for the users to think of the artifacts as nodes

when writing queries using Cypher or Gremlin. It is also more compact than RDF

graph for the large amount of provenance records, which are treated as literal nodes.

We discuss implementation details in Section 5.5. As a summary, we formally define

the provenance graph used in the rest of the chapter.

Definition 3 (Provenance Graph) Provenance in a data analytics project is rep-

resented as a directed acyclic graph, G(V,E, λv, λe, σ, ω), where vertices have three

types, V= E∪ A∪ U , and edges have five types, E= U∪ G∪ S∪ A∪ D. Label

107



functions, λv: V 7→ {E , A, U}, and λe: E7→ {U , G , S , A, D} are total functions as-

sociating each vertex and each edge to its type. Given a project, we refer to the set of

property types as P and their values as V, then vertex properties σ: V× P7→ V and

edge properties ω: E× P7→ V are partial functions from vertex/edge and property

type to some value.

Example 7 Using the PROV data model, in Figure 5.3, we show the corresponding

provenance graph of the project lifecycle listed in Figure 5.1. Vertex shapes follow

their type in Figure 5.2. Names of the vertices (e.g., ‘model-v1’, ‘train-v3’, ‘Alice’)

are made by using their representative properties (i.e., project artifact names for en-

tities, operation names for activities, and first names for agents) and suffixed using

the version ids to distinguish different snapshots. Activity vertices are ordered from

left to right w.r.t. the temporal order of their executions. We label the edges using

their types and show a subset of the edges in Figure 5.1 to illustrate usages of five

relationship types. Note there are many snapshots of the same artifact in different

versions, and between the versions, we maintain derivation edges ‘wasDerivedFrom’

(D) for efficient versioning storage. The figure shows the provenance of those en-

tities in all three versions. The property records are shown as white rectangles but

not treated as vertices in the property graph model.
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Characteristics

The provenance graph has the following characteristics, which we need to consider

when designing query facilities:

• Versioned Artifact: Each entity is a point-in-time snapshot of some artifact

in the project. For instance, the query ‘accuracy of this version of the model’

discusses a particular snapshot of the model artifact, while ‘what are the

common updates for solver before train’ refer to the artifact but not an

individual snapshot. R1: The query facilities need to support both aspects in

the graph.

• Evolving Workflows: Data analytics lifecycle is explorative and collabora-

tive in nature, so there is no static workflow skeleton, and no clear boundaries

for individual runs in contrast with workflow systems [3]. For instance, the

modeling methods may change (e.g., from SVM to neural networks), the data

processing steps may vary (e.g., split, transform or merge data files), and the

user-committed versions may be mixed with code changes, error fixes, thus

may not serve as boundaries of provenance queries for entities. R2: The query

facility for snapshots should not assume workflow skeleton and should allow

flexible boundary conditions.

• Partial Knowledge in Collaboration: Each team member may work on

and be familiar with a subset of artifacts and activities, and may use dif-

ferent tools or approaches, e.g., in Example 6, Alice and Bob use different

approaches to improve accuracy. When querying retrospective provenance of
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the snapshots attributed to other members or understanding activity process

over team behaviors, the user may only have partial knowledge at query time,

thus may find it difficult to compose the right graph query. R3: The query

facility should support provenance queries with partial information reflecting

users’ understanding and induce correct result.

• Verboseness for Usage: In practice, the provenance graph would be very

verbose for humans to use and in large volume for the system to store. With

similar goals to recent research efforts [21, 24–26], our system aims to let the

users understand the essence of provenance at their preference level by trans-

forming the provenance graph. R4: The query facility should be able to ag-

gregate snapshots derivations, not only to reflect the commonalities but also

anomalies among derivations.

5.2.3 Provenance Queries & Challenges

Despite the exchange data model, the provenance standards (e.g., PROV,

OPM) do not describe query models, as different systems have their own application-

level meanings of those nodes [18,19]. Many provenance systems focus on ingestion

methods and rely on standard query language (e.g., SQL, SPARQL, Cypher) pro-

vided by the backend DBMS to let the user manipulate the underlying informa-

tion [3]. However, general queries to express provenance retrieval tend to be very

complex. To improve usability, a few systems provide novel query facilities [10, 23],

and some of them propose special query languages [21, 22]. Recent provenance
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systems which adopt W3C PROV data model naturally use graph stores as back-

ends [108, 113]; while the usability of standard graph query language often cannot

satisfy the needs [21,110], a set of graph manipulation techniques is often proposed

to utilize the provenance [24–26].

Along the same lines, we aim to draw connections between the research to

improve provenance graph usages with graph query techniques. By observing the

characteristics of the provenance graph in analytics lifecycle and identifying the

requirements for the query facilities (Section 5.2.2), we propose two graph opera-

tors (i.e., segmentation and summarization) for general provenance graphs in PROV

data model. We first illustrate the queries in examples and emphasize the differences

from prior work. We defer their formal discussion to Section 5.3 and 5.4.

5.2.3.1 Segmentation

A very important provenance query type of interest is querying ancestors and

descendants of entities, which have different names (e.g., reachability, lineage) and

subtle differences in formulations (only return true/false or construct paths; support

regular paths). In our context, the users introspect the lifecycle and identify issues

by analyzing dependencies among snapshots. Lack of a workflow skeleton and clear

boundaries makes the queries over the provenance graph more difficult. Also note

that the user may not specify all interested entities in a query due to partial knowl-

edge. We propose a segmentation operator that allows the user to specify sets of

source and destination entities, and the operator induces other important unknown
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Figure 5.4: Segmentation Query Examples

entities in the query result. We also allow a set of boundary criteria to address the

verboseness of the return graph.

Example 8 In Figure 5.4, we show two examples of provenance graph segmentation

query. In Query 1 (Q1), Bob was interested in what Alice did in version v2. He

did not know the details of activities and the entities Alice touched, instead he set

{dataset, weight} as querying entities to see how the weight in Alice’s version v2

was connected to the dataset. To exclude actions in earlier commits (e.g., v1), he

set the boundaries as two activities away from those querying entities. In the figure,

the system found connections among the querying entities, and included the vertices

within the boundaries. After interpreting the result, Bob knew Alice updated the

model definitions in model. On the other hand, Alice would ask query to understand

how Bob improved the accuracy and learn from him. In Query 2 (Q2), instead of

learned weight, accuracy property associated log entity is used as querying entity
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along with dataset. The result showed Bob only updated solver configuration and

did not use her new model committed in v2.

In contrast with similar queries in scientific workflow provenance systems [3,

17], their processes are predefined in template workflow skeletons, and multiple

executions generate different instance-level provenance run graphs. By taking ad-

vantages of the workflow skeleton, there are lines of research for advanced ancestry

query processing, such as defining user views over such skeleton to aid queries on ver-

bose run graphs [23], executing reachability query on the run graphs efficiently [115],

storing run graphs generated by the workflow skeletons compactly [27], and using

workflow visualization as examples to ease query construction [10].

5.2.3.2 Summarization

In workflow systems, querying the workflow skeleton (a.k.a prospective prove-

nance) is an important use case (e.g., business process [20]) and included in the

provenance challenge [109]. In our context, even though a static workflow skele-

ton is not present, summarization of activity commonalities and identifying abnor-

mal behaviors are very useful query capabilities. However, general graph summa-

rization techniques [116–118] are not applicable to provenance graphs due to con-

straints of the data model definitions [24, 25, 119]. Inspired by the graph analytics

work [116,117,120] and graph manipulations specific to provenance graphs [24,25],

we propose a summarization operator with multi-resolution capabilities for prove-

nance graphs. To support different aspects of the provenance, we design summa-
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Figure 5.5: Summarization Query Examples

rization operator to be performed over query results of the segmentation operator;

to ensure the rigidness of provenance entities, we use path constraints as vertex

identifiers [25,121].

Example 9 We show a summarization query example in Figure 5.5. An outsider

to the team (e.g., some auditor, new team member, or project manager) wanted to

understand the activity overview in the project. Segmentation queries (e.g., Q1, Q2

in Figure 5.4) only show individual trails of the analytics process at the snapshot

level. The outsider issued a summarization query, Query 3 (Q3), by specifying the

aggregation over three types of vertices, and defining the provenance types. The

query result merged Q1 and Q2 into a summary graph GS according to the query. In

the figure, the vertices in GS suffixed name with provenance types to show alternative

generation process, while edges are labeled with their frequency of appearance among

vertices in GS. The query issuer would change the query conditions to derive various

GS at different resolutions.
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In contrast with other summarization work [118], our operator is designed for

provenance graphs which include multiple types of nodes rather than a single node

type [120, 122]; it works on query results rather than entire graph structure [116];

the summarization requirements are specific to provenance graphs rather than gen-

eral ones [117]; we also consider aggregating graph structure and property values

together, which is not studied before to the best of our knowledge.

In the following sections, we describe the proposed query models in detail.

In Section 5.3, we introduce the segmentation operator (PgSeg) for snapshot-level

retrospective analysis of the project activities. It returns an induced subgraph of the

evolving workflow by allowing the users to only have partial knowledge of the project.

In Section 5.4, a summarization operator (PgSum) is described for queries at the

artifact level. It merges a set of segmentation results and generates a prospective

overview for identifying commonalities and abnormalities at certain resolution by

user-defined aggregations.

5.3 Segmentation Operation

Among the snapshots, collected provenance graph describes important ances-

try relationships which form ‘the heart of provenance data’ [21]. Often lineages

w.r.t. a query or a run graph trace w.r.t. a workflow are used to formulate ancestry

queries in relational databases or scientific workflows [22]. However, in our context,

there are no clear boundaries of logical runs, or query scopes to cleanly define the

input and the output. Though a provenance graph could be collected, the key ob-
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stacle is lack of formalisms to analyze the verbose information. In similar situations

for querying script provenance [17], Prolog was used to traverse graph imperatively,

which may be an overkill and require additional skill-set for team members. In our

system, we design PgSeg to let the users who may only have partial knowledge

to query retrospective provenance. PgSeg semantics induce a connected subgraph

to show the ancestry relationships (e.g., lineage) among the entities of interest and

include other causal and participating vertices within a specified boundary that is

adjustable by the users. Next we first define the elements of the operator and query

semantics, followed by query evaluation techniques.

5.3.1 Semantics of Segmentation (PgSeg)

At a high level, we view the PgSeg operator as a 3-tuple query (Vsrc,Vdst,B)

on a provenance graph G asking how a set of source entities Vsrc ⊆ E are involved

in generating a set of destination entities Vdst ⊆ E . PgSeg induces induced vertices

(entities, activities and agents) Vind that show the detailed generation process and

satisfy certain boundary criteria B. It returns a connected subgraph S(VS ,ES) ⊆

G, where VS=Vsrc∪Vdst∪Vind, and ES=E ∩ VS×VS .

When discussing the elements of PgSeg below, we use the following notations

for paths in G. A path πv0,vn connecting vertices v0 and vn is a vertex-edge alter-

nating sequence 〈v0, e1, v1, · · · , vn−1, en, vn〉, where n > 1, ∀i ∈ [0, n] vi ∈ V, and

∀j ∈ (0, n] ej = (vj−1, vj) ∈ E.

Given a path πv0,vn , we define its path segment π̂v0,vn by simply ignoring v0
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and vn from the beginning and end of its path sequence, i.e., 〈e1, v1, · · · , vn−1, en〉.

A path label function τ maps a path π or path segment π̂ to a word by

concatenating labels of the elements in its sequence order. Unless specifically men-

tioned, the label of each element (vertex or edge) is derived via λv(v) and λe(e).

For example, from a to c, there is a path πa,c= 〈a, ea, b, eb, c〉, where a, c ∈E , b ∈A,

ea ∈G and eb ∈U ; its path label τ(πa,c) =EGAU E, and its path segment label

τ(π̂a,c) =GAU .

For ease of describing path patterns, for ancestry edges (used, wasGenerat-

edBy), i.e., ek = (vi, vj) with label λe(ek) =U or λe(ek) =G , we introduce its virtual

inverse edge ek
−1= (vj, vi) with the inverse label λe(ek

−1) =U −1or λe(ek
−1) =G−1

respectively. A inverse path is defined by reversing the sequence, e.g., πa,c
−1=

〈c,eb−1, b,ea−1, a〉, while τ(πa,c
−1) =EU −1AG−1E , τ(π̂a,c

−1) =U −1AG−1.

Next we discuss PgSeg semantics and our rationale in detail.

5.3.1.1 Source (Vsrc) and Destination Entities (Vdst)

Provenance is about the entities. In a project, users know the committed snap-

shots (e.g., data files, scripts, and their metadata) better than the detailed processes

generating them. When writing a PgSeg query, we assume the user believes Vsrc

may be ancestry entities w.r.t. Vdst. Then PgSeg reasons the connectivity among

Vsrc and Vdst, and shows other vertices and the generation process which the user

may not know and be able to write query with. Note that the user may not know

the existence order of entities either, so we allow Vsrc and Vdst to overlap, and even
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be identical. In the latter case, the user could be a program [26] and not familiar

with the generation process at all.

5.3.1.2 Induced Vertices Vind

Given Vsrc and Vdst, we refer Vind as the induced vertices (entities, activities

and agents) contributing to the generation process. What vertices should be in

Vind is the core question to ask. It should reflect the generation process precisely

and concisely in order to assist the user introspect the generation details to make

decisions.

Prior work on inducing subgraphs from a set of vertices do not fit our needs.

First, lineage query would generate all ancestors of Vdst, which is not concise or even

precise: siblings of Vdst and siblings of entities along the paths may be excluded as

they do not have path from Vdst or to Vsrc in G. Second, at another extreme, a

provenance subgraph induced from some paths [22] or all paths [24] among vertices

in Vsrc∪Vdst will only include vertices on the paths, thus exclude other contributing

ancestors for Vdst. Moreover, quantitative techniques used in other domains other

than provenance cannot be applied directly either, such as keyword search over

graph data techniques [123] which also do not assume that users have full knowl-

edge of the graph, and let users use keywords to match vertices and then induce

connected subgraph among keyword vertices. However, the techniques often use

tree structures (e.g., least common ancestor, Steiner tree) connecting Vsrc∪Vdst and

are not aware of provenance domain knowledge, thus cannot reflect the ancestry
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relationships precisely.

Instead of defining Vind quantitatively, we define PgSeg qualitatively by a

set of domain rules: (a) to be precise, PgSeg includes other participating vertices

not in the lineage and not in the paths among Vsrc∪Vdst; (b) to be concise, PgSeg

utilizes the path shapes between Vsrc and Vdst given by the users as a heuristic to

filter the ancestry lineage subgraph. We define and categorize the rules that generate

subsets of Vind as follows:

1. Vertices on Direct Path (VC1
ind): Activities and entities along any direct path

πvj ,vi between an entity vi ∈ Vsrc and an entity vj ∈ Vdst are the most important

ancestry information. It helps the users answer classic provenance questions,

such as reachability, i.e., whether there exists a path; workflow steps, i.e., if

there is a path, what activities occurred. We refer entities and activities on

such direct path as VC1
ind, which is defined as follows:

VC1
ind =

⋃
vi∈Vsrc,vj∈Vdst

{vk| ∃πvj ,vi vk ∈ π̂vj ,vi}

Note not only the shortest path are of interest, but all such path πvj ,vi in the

DAG G should be derived.

2. Vertices on Similar Path (VC2
ind): Though VC1

ind is important, due to the partial

knowledge of the user, just considering the direct paths may miss important

ancestry information including: a) the entities generated together with Vdst,

b) the entities used together with Vsrc, and c) more importantly, other entities

and activities which are not on the direct path, but contribute to the deriva-

tions. The contributing vertices are particularly relevant to the query in our
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context, as data analytics project consists of many back-and-forth repetitive

and similar steps, such as preparing data in alternative ways, adjusting model

templates, and evaluating experiments.

To define the induction scope, on one hand, all ancestors w.r.t. Vdst in the

lineage subgraph would be returned, however it is very verbose and not concise

to interpret. On the other hand, it is also difficult to let the user specify all the

details of what should/should not be returned. Here we use a heuristic: induce

ancestors which are not on the direct path but contribute to Vdst in a similar

way, i.e., path labels from VC2
ind to Vdst are the same with some directed path

from Vsrc. In other words, one can think it is similar to a radius concept [26]

to slice the ancestry subgraph w.r.t. Vdst, but the radius is not measured by

how many hops away from Vdst but by path patterns between both Vdst and

Vsrc entities that are specified by the user query. Next we first formulate the

path pattern in a context free language [124], L(SimProv), then VC2
ind can be

defined as a L−constrained reachability query from Vsrc via Vdst over G, only

accepting path labels in the language.

A context-free grammar (CFG) over a provenance graph G and a PgSeg

query Q is a 6-tuple (Σ, N, P, S,G, Q), where

• Σ = {E ,A,U} ∪ {U ,G ,S ,A,D}∪Vdst is the alphabet consisting of vertex

labels, edge labels in G and Vdst vertex identifiers (e.g., id in Neo4j) in Q

• N is a set of non-terminals, and S is the start symbol.

• P is the set of production rules. Each production rule in the form of
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l → (Σ ∪ N)∗ defines an acceptable way of concatenations of the RHS

words for the LHS non-terminal l.

Given a CFG and a non-terminal li ∈ N as the start symbol, a context-free

language (CFL), L(li), is defined as the set of all finite words over Σ by

applying its production rules.

The following CFG defines a language L(SimProv) that describes the heuris-

tic path segment pattern for the induced vertex set. The production rules

expand from some vj ∈Vdst both ways to reach vi and vk, such that the

concatenated path πvi,vk has the destination vj in the middle.

SimProv→ G−1E SimProv EG

| U −1A SimProv AU

| G−1vjG ∀vj ∈ Vdst

Now we can use L(SimProv) to define VC2
ind accordingly: for any vertex vk in

VC2
ind, there should be at least a path from a vi ∈ Vsrc going through a vj ∈ Vdst

and vk then reaching some vertex vt, such that the path segment label τ(π̂vi,vt)

is a word in L(SimProv):

VC2
ind =

⋃
vi∈Vsrc

{vk| ∃πvi,vt τ(π̂vi,vt) ∈ L(SimProv) ∧ vk ∈ πvi,vt}

Using CFG allows us to express the heuristic properly. Note that L(SimProv)

cannot be described by regular expressions over the path(segment) label, as

it can be viewed as a palindrome language [124]. Moreover, it allows us to

extend the query easily by using other label functions, for example, instead of
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λv(v) and λe(e) whose domains are PROV types, using property value σ(v, pi)

or ω(e, pj) in G allows us to describe interesting constraints, e.g., the induced

path should use the same commands as the path from Vsrc to Vdst, or the

matched entities on both sides of the path should be attributed to the same

agent. For example, the former case can simply modify the second production

rule in the CFG as follows:

U −1 σ(ai, p0) SimProv σ(aj, p0) U

s.t. ai, aj ∈ A ∧ p0 = ‘command’ ∧ σ(ai, p0) = σ(aj, p0)

This is a powerful generalization that allows PgSeg to constrain induction

scope by describing repetitiveness and similarily ancestry paths at a very fine

granularity.

3. Entities Generated By Activities on Path (VC3
ind): As mentioned earlier, the

sibling entities generated together with Vdst may not be induced from directed

paths. The same applies to the siblings of entities induced in VC1
ind and VC2

ind, if

the siblings do not have paths to Vdst. We refer to those entities as VC3
ind and

define it as:

VC3
ind =

⋃
vi∈V ′
{vε| (vε, vi) ∈ G ∧ vε /∈ VC1

ind ∪ VC2
ind}

where V ′ = (VC1
ind ∪ VC2

ind) ∩ A

4. Involved Agents (VC4
ind): Finally, the agents in the provenance graph may be

important in some situations, e.g., from the derivation, identify who makes a

mistake, like git blame in version control settings. On a provenance graph
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G, agents can be derived easily:

VC4
ind =

⋃
vi∈V ′
{vu| vu ∈ U ∧ (vi, vu) ∈ S ∪ A}

where V ′ = Vsrc ∪ Vdst ∪ VC1
ind ∪ VC2

ind ∪ VC3
ind

Note we not only induce agents of Vdst and Vsrc, but also other induced vertices.

5.3.1.3 Boundary Criteria B

On the induced subgraph, besides path shapes, the segmentation operator

should be able to express users’ logical boundaries when asking the ancestry queries.

It is particulary useful in an interactive setting once the user examines the returned

induced subgraph and wants to make adjustments. We categorize the boundary

criteria support as a) exclusion constraints and b) expansion specifications.

First, boundaries would be constraints to exclude some parts of the graph,

such as limiting ownership (authorship) (who), time intervals (when), project

steps (particular version, file path patterns) (where), understanding capabilities

(neighborhood size) (what), etc. Most of the boundaries can be defined as boolean

functions mapping from a vertex or edge to true or false, i.e., bv(v) : V 7→ {0, 1},

be(e) : E 7→ {0, 1}, which can be incorporated easily to the CFG framework for

subgraph induction. We define the exclusion boundary criteria as two sets of boolean

functions (Bv for vertices and Be for edges), which could be provided by the system

or defined by the user. Then the labeling function used for defining Vind would be
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adjusted by applying the boundary criteria as follows:

Fv =


λv(v)

∧
bi∈Bv bi(v) = 1

ε otherwise

, F e =


λe(e)

∧
bi∈Be bi(e) = 1

ε otherwise

In other words, a vertex or an edge that satisfies all exclusion boundary conditions,

is mapped to its original label. Otherwise the empty word is used as its label, so

that the membership of paths having that vertex to L(SimProv) would become

invalid.

Second, instead of exclusion constraints, the user may wish to expand the in-

duced subgraph. We allow the users to specify expansion criteria, Bx = {bx(Vx, k)},

denoting including paths which are k activities away from entities in Vx ⊆ Vind.

5.3.1.4 Discussion

Validness of provenance graph is an important constraint [26, 119]. In our

system, the PgSeg operator does not introduce new vertices or edge. As long as

the original provenance graph is valid, the induced subgraph is valid. However, at

query time, the boundaries criteria could possibly let the operator result exclude

important vertices. As an interactive system, we leave it to the user to adjust the

vertex set of interest and boundary criteria in their queries.
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5.3.2 Query Evaluation

5.3.2.1 Overview: Two-Step Approach

Given a PgSeg(Vsrc,Vdst,B) query, we separate the query evaluation into two

steps: 1) induce: induce Vind and construct the induced graph S using Vsrcand Vdst,

2) adjust: apply B interactively to filter induced vertices or retrieve more vertices

from the property graph store backend. The rationale of the two-step approach is

that the operator is designed for the users with partial knowledge who are willing to

understand a local neighborhood in the provenance graph. Any induction heuristic

applied would be unlikely to match the user’s implicit interests and would require

back-and-forth explorations.

In the rest of the discussion, we assume a) the provenance graph is stored in

a backend property graph store, with constant time complexity to access arbitrary

vertex and arbitrary edge by corresponding primary identifier; b) given a vertex,

both its incoming and outgoing edges can be accessed equally, with linear time

complexity w.r.t. the in- or out-degree. In our implementation (Section 5.5), we

use Neo4j as our storage backend, which satisfies the conditions – both nodes and

relationships are accessed via their id.

5.3.2.2 Induce Step

Given Vsrc and Vdst, PgSeg induces Vind which consists of four categories.

We mainly focus our discussion on inducing vertices on direct and similar paths,
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as the other two types, i.e., sibling entities and related agents can be derived in a

straightforward manner by scanning 1-hop neighborhoods of the first two sets of

results.

Cypher:

The definition of vertices on similar path requires a context-free language, and can-

not be expressed by a regular language. When developing the system, we realize it

can be decomposed into two regular language path segments, and express the query

using path variables [125, 126]. We handcraft a Cypher query shown in Query 5.1.

The query uses Vsrc (b) and Vdst (e1) to return all directed paths VC1
ind via path vari-

ables (p1), and uses Cypher with clause to hold the results. The second match finds

the other half side of the SimProv via path variable p2 which then joins with p1 to

match p1=(b:E) <-[:U|G*]-(e1:E)

with p1

where id(b) in [0,1] and id(e1) in [30 ,31]

match p2=(c:E) <-[:U|G*]-(e2:E)

where id(e2) in [30 ,31] and

extract(x in nodes(p1) | labels(x)[0])

= extract(x in nodes(p2) | labels(x)[0]) and

extract(x in relationships(p1) | type(x))

= extract(x in relationships(p2) | type(x))

return p2;

Query 5.1: Cypher Q1 for L(SimProv), Vsrc= {0, 1}, Vdst= {30, 31}
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compare the node-by-node and edge-by-edge conditions to induce VC2
ind. If we do not

need to check properties, then we can use length(p1) = length(p2) instead of the

two extract clauses. However, as shown later in the evaluation (Section 5.6), Neo4j

takes more than 12 hours to return results for even very small graphs with about a

hundred vertices. Note that regular pattern queries (RPQ) with path variables are

not supported well in modern graph query languages and graph database [111,125],

we develop our own PgSeg algorithm for provenance graphs.

CFL-reachability:

Given a vertex v and a CFL L, the problem of finding all vertieces {u} such that

there is a path πv,u with label τ(πv,u) ∈ L is often referred as single source CFL-

reachability (CFLR) problem or single source L-Transitive Closure problem [127,

128]. The all-pairs version, which aims to find all such pairs of vertices connected

by a L path of the problem, has the same complexity. As Vsrc would be all vertices,

we do not distinguish between the two in the rest of the discussion. Though the

problem has been first studied in our community [127], there is little follow up and

support in the context of modern graph databases. CFLR finds its main application

in programming analysis and is recognized as a general formulation method for

many program analysis tasks [128]. On graph representations of programs, program

analysis tasks such as program slicing and pointer analysis, can be described in a

CFL to specify path patterns.

State of the art CFLR algorithm [129] solves the problem in O(n3/log(n)) time

and O(n2) space w.r.t. the number of vertices in the graphs. It is based on a classic
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r0 : Qd→ vj ∀vj ∈Vdst

r1 : Lg→ G−1 Qd r3 : La→ A Rg r6 : Ru→ Lu U

| G−1 Re r4 : Ra→ La A r7 : Le→ E Ru

r2 : Rg→ Lg G r5 : Lu→ U −1 Ra r8 : Re→ Le E

Figure 5.6: SimProv Normal Form, SimProv→ Re. Lg ⊆ A×E ; Rg, La, Ra ⊆

A×A; Lu ⊆ E ×A; Ru, Le, Re, Qd ⊆ E × E .

cubic time dynamic programming scheme [128, 130] which derives production facts

non-repetitively via graph traversal, and uses the method of four Russians [131]

during the traversal. In the rest of the discussion, we refer it as CflrB.

We first describe the algorithm briefly and then present improvement tech-

niques for L(SimProv) on provenance graphs. Given a CFG, it works on its normal

form [124], where each production has at most two RHS symbols, i.e., A→ BC or

A → B. We show the SimProv normal form in Figure 5.6. At a high level, the

algorithm traverses the graph and uses grammar as a guide to find new production

facts N(i, j), where N is a LHS nonterminal, i, j are graph vertices, and the found

fact N(i, j) denotes that there is a path from i to j whose path label satisfies N . To

elaborate, similar to BFS, it uses a worklist W (queue) to track newly found fact

N(i, j) and a fast set data structure H with time complexity O(n/log(n)) for set

diff/union and O(1) for insert to memorize found facts. In the beginning, all facts

F (i, j) from all single RHS symbol rules F → A are enqueued. In SimProv case (r0

in Figure 5.6), each vj ∈Vdst is added to W as Qd(vj, vj). From W , the algorithm

processes one fact F (i, j) at a time until W is empty. When processing a dequeued
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fact F (i, j), if F appears in any rule in the following cases:

N(i, j)→ F (i, j)

N(i, v)→ F (i, j)A(j, v)

N(u, j)→ A(u, i)F (i, j)

the new LHS fact N(i, v) is derived by set diff {v ∈ A(j, v)} \ {v ∈ N(i, v)} or

N(u, j) by {u ∈ A(u, i)} \ {u ∈ N(u, j)} in H. Then the new facts of N are added

to H to avoid repetition and W to explore it later. Once W is empty, the start

symbol L facts L(i, j) in H include all vertices pairs (i, j) which have a path with

label that satisfies L. If path is needed, a parent table would be used similar to

BFS. In SimProv(Figure. 5.6), the start symbol is Re, ∀vi ∈ Vsrc, Re(vi, vt) facts

include all vt, s.t. between them there is τ(π̂i,t) ∈ L(SimProv).

L(SimProv)-reachability on PROV:

Next we study the performance of CflrB for SimProv on a PROV graph, and

show the fast set method is not suitable for PROV graph. Then we further explore

grammar and PROV graph properties, instead of normal form, we rewrite the

grammar to allow several pruning strategies and propose a linear-time algorithm if

|Vdst| can be viewed as a constant.

Lemma 4 CflrB solves L(SimProv)-reachability on a PROV graph in O( |A||E|
2

log |A|+

|E||A|2
log |E| ) time if using fast set. Otherwise, it solves it in O(|G ||E|+ |U ||A|) time.

Proof 3 On SimProv normal form (Figure 5.6), for i ∈ [1, 8], CflrB derives ri

LHS facts by a ri−1 LHS fact dequeued from W (Note it also derives r1 from r8).

For i ∈ {1, 2}, ri(u, v) uses G edges in the graph during the derivation, e.g., from
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r8 LHS Re to r1 : Lg(u, v) → G−1(u, k) Re(k, v). As Re(k, v) can only be in the

worklist W once, we can see that each 3-tuple (u, k, v) is formed only once on the

RHS and there are at most |G ||E| of such 3-tuples. To make sure Lg(u, v) is not

found before, H is checked. If not using fast set but a O(1) time procedure for each

instance (u, k, v), then it takes O(|G ||E|) to produce the LHS; on the other hand,

if using a fast set on u′s domain A for each u, for each Re(k, v), O( |A|
log |A|) time

is required, thus it takes O( |A||E|
2

log |A| ) in total. Applying similar analysis on r5 and r6

using U to derive new facts, we can see it takes O( |E||A|
2

log |E| ) with fast set and O(|U ||A|)

without fast set. Finally r3, r4 and r7, r8 can be viewed as following a vertex self-loop

edge and does not affect the complexity result.

In our context, the PROV graph is often sparse, and both the numbers of en-

tities that an activity uses and generates can be viewed as a small constant, however

the domain size of A and E are potentially large. The lemma shows a quadratic time

scheme for L(SimProv)-reachability if we can view the average in/out degree as a

constant. Note that the quadratic time complexity is not surprising, as SimProv

is a linear CFG, i.e., there is at most one nonterminal on RHS of each production

rule. The CFLR time complexity for any linear grammar on general graphs G(V,E)

have been shown in theory as O(|V ||E|) by a transformation to general transitive

closures [127].

Rewriting SimProv:

Most CFLR algorithms require the normal form mentioned earlier. However, under

the normal form, it a) introduces more worklist entries, and b) misses important
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r′1 : Ee→ vj ∀vj ∈ Vdst r′2 : Aa→ G−1 Ee G

| U −1 Aa U | A Aa A

| E Ee E

Figure 5.7: Proposed SimProv Rewriting, SimProv → Ee. Aa ⊆ A × A; Ee ⊆

E × E .

grammar properties. Instead, we rewrite SimProv as shown in Figure 5.7, and

propose SimProvAlg and SimProvTst by adjusting CflrB. Comparing with

standard normal forms, r′1 and r′2 have more than two RHS symbols. SimProvAlg

utilizes the rewritten grammar and PROV-graph properties to improve CflrB.

Moreover, SimProvTst solves L(SimProv)-reachability on a PROV graph in

linear time and sublinear space if viewing |Vdst| as constant. The properties of

the rewritten grammar and how SimProvAlg and SimProvTst utilize them are

described below, which can be used in other CFLR problems:

1. Reduction for Worklist tuples: Note that r′2 in Figure 5.7 combines rules r1, r2

in the normal form, i.e., Rg(a1, a2) → Lg(a1, e2)G(e2, a2) and Lg(a1, e2) →

G−1(a1, e1)Re(e1, e2), is derived by

Aa(a1, a2)→ G−1(a1, e1) Ee(e1, e2) G(e2, a2)

Instead of enqueue Lg(a1, e2) and then Rg(a1, a2), SimProvAlg adds Aa(a1, a2)

to W directly. In the previous normal form, there may be other cases that

can also derive Aa(a1, a2), i.e., in presence of Lg(a1, ek) and G(ek, a2). In

the worst case, CflrB enqueued |E| number of Lg in W which later find the
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same fact Rg(a1, a2). It’s worth mentioning that in SimProvAlg because

Aa(a1, a2) now would be derived by many Ee(ei, ej) in r′2, before adding it

to W , we need to check if it is already in W . In SimProvAlg, we use two

pairs of bitmaps for Ee and Aa for W and H respectively, the space cost is

O( |E|
2

log |E| +
|A|2

log |A|). Compressed bitmaps would be used to improve space usage

at the cost of non-constant time random read/write.

2. Symmetric property: In the rewritten grammar, both nonterminals Ee and Aa

are symmetric, i.e., Ee(ei, ej) implies Ee(ej, ei), Aa(ai, aj) implies Aa(aj, ai),

which is not held in normal forms. Intuitively Ee(e1, e2) means some path

label from e1 to vj ∈Vdst is the same with some path label from e2 to vj. Using

symmetric property, in SimProvAlg, we can use a straightforward pruning

strategy: only process (ei, ej) in both H and W if id(ei) ≤id(ej), and (ai, aj)

if id(ai) ≤id(aj); and an early stopping rule: for any Aa(ai, aj) that both

ai’s and aj’s order of being is before all PgSeg query Vsrc entities, we do

not need to proceed further. Note the early stopping rule is SimProv and

PROV-graph specific, while solving general CFLR, even in the single-source

version, cannot take source information and we need to evaluate until the end.

Though both strategies used by SimProvAlg do not improve the worst-case

time complexity, as shown later in empirical studies (Section 5.6), they are

very useful in realistic PROV graphs.

3. Transitive property: By definition SimProv does not have transitivity, i.e.,

given Ee(e1, e2) and Ee(e2, e3), it does not imply Ee(e1, e3). This is because
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a PgSeg query allows multiple Vdst, Ee(e1, e2) and Ee(e2, e3) may be found

due to different vj ∈Vdst. However, if we evaluate vj ∈Vdst separately, then

Ee and Aa have transitivity, which leads to a linear algorithm SimProvTst

for each vj: instead of maintaining Ee(ei, ej) or Aa(ai, aj) tuples in H and

W , we can use a set [e]m or [a]n to represent an equivalence class at iteration

m or n where any pair in the set is a fact of Ee or Aa respectively. If at

iteration m, the current W holds a set [e]m, then Aa(a, a)→G−1(a, e)Ee(e, e)

is used to infer the next W (a set [a]m+1); otherwise, W must hold a set

[a]m, then Ee(e, e)→U −1(e, a)Aa(a, a) is used to infer next equivalence class

[e]m+1 as the next W . In the first case, as there are at most |G | possible

(a, e) tuples, the step takes O(|G |) time; in the later case, similarly the step

takes O(|U |) time. The algorithm returns vertices in any equivalence classes

[vi]m, s.t.vi ∈ Vsrc. Overall, because there are multiple Vdst vertices, the algo-

rithm runs in O(|Vdst||G |+|Vdst||U |) time and O( |E|
log|E|+

|A|
log|A|) space. The early

stop rule can applied as well, instead of a pair of activities in SimProvAlg,

in SimProvTst all activities in an equivalent class [a]m are compared with

entities in Vsrc in terms of their order of being; while the pruning strategy is

not necessary, as all pairs are represented compactly in an equivalent class.

Theorem 2 SimProvTst solves L(SimProv)-reachability on a PROV graph

in O(|G |+ |U |) time, if |Vdst| can be viewed as a constant.
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5.3.2.3 Adjust Step

Once the induced graph S(VS ,ES) is derived, the adjustment step applies

boundary criteria to filter existing vertices and retrieve more vertices. Comparing

with induction step, applying boundary criteria is rather straightforward. For ex-

clusion constraints Bv and Be, we apply them on vertices and edges in S(VS ,ES)

linearly if present. For Bx, we traverse the backend store with specified entities

for 2k hops through G−1and U −1edges to their ancestry activities and entities. To

support back and forth interaction, we cache the induced graph instead of inducing

multiple times. We expect k is small constant in our context as the generated graph

is for human users to interpret, otherwise, a reachability index is needed.

For other purposes where the two-step approaches are not ideal, the exclusion

constraints Bv and Be can be evaluated together using CflrB, SimProvAlg and

SimProvTst with small modifications. In CflrB the label function Fv of Bv can

be applied at r0, r3, r4, r7, r8 on A or E , while Fe of Be can be applied at rest of the

rules involving U and G . For SimProvAlg and SimProvTst, Fv and Fe can be

applied together at r′1, r
′
2.

5.3.2.4 Discussion

We focus on the ad-hoc query evaluation schemes. As of now, the granularity

of provenance is at the level of command executions, the number of activities are

constrained by project members’ work rate. In case when the PROV graph becomes

extremely large, indexing techniques and incremental algorithms are more practical.
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5.4 Summarization Operation

In a collaborative analytics project, collected provenance graph of the repeti-

tive modeling trails records verbose steps of various pipelines and reflects different

roles and work routines of the team members. Using PgSeg, the users can navigate

to their segments of interest, which may be about similar pipeline steps. For exam-

ple, the query result of a single PgSeg(Vsrc,Vdst,B), e.g., ‘yesterday’s input data and

prediction result ’, shows a pipeline subgraph S1 about how Vdst (prediction result)

was derived from Vsrc (input data) together with other induced Vind (e.g., modeling

steps). As there is no skeleton for the pipeline, given a different tuple (V2
src,V2

dst,B2)

to get another segment S2, e.g., ‘today’s input data and model result ’, the pipeline

subgraph S2 may or may not be the same as S1. Given a set of segments, our de-

sign goal of PgSum is to produce a precise and concise provenance summary graph,

Psg, which will not only allow the users to see commonality among those segments

of interest (e.g., yesterday’s and today’s pipelines are almost the same), but also let

them understand alternative routines (e.g., an old step excluded in today’s pipeline).

Though no workflow skeleton is defined, with that ability, Psg would enable the

users to reason about prospective provenance in evolving workflows of analytics

projects.

One way to combine PgSeg segment graphs is to use context-free graph gram-

mars (CFGG) [20] which are able to capture recursive substructures. However with-

out a predefined workflow skeleton CFGG, and due to the workflow noise resulting

from the nature of analytics workload, inferring a minimum CFGG from a set of
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subgraphs is not only an intractable problem, but also possibly leads to complex

graph grammars that are more difficult to be understood by the users [132]. Instead,

we view it as a graph summarization task by grouping vertices and edges in the set

of segments to a Psg.

5.4.1 Semantics of Summarization (PgSum)

Although there are many graph summarization schemes proposed over the

years [118], they are neither aware of provenance domain desiderata [25] nor the

meaning of PgSeg segments. Most of the work focuses on finding smaller repre-

sentations for a very large graph by methods such as compression [133], attribute-

aggregation [116] and bisimulation [134]; while there are a few works aiming at

combining a set of query-returned trees [135] or graphs [117] to form a compact

representation. Our PgSum operator falls into the latter category, and is tailored

for PgSeg segments which consist of similar or alternative steps among a set of

entities of interest. A PgSum query is designed to take a 2-tuple (K,Rk) as input

which describes the level of details of vertices and constrains the rigidness of the

provenance; then it outputs a minimum provenance summary graph (Psg).

5.4.1.1 Property Aggregations & Provenance Types

Given a set of segments S, each S i of which is a PgSeg result, to combine

vertices and edges across the segments, we first introduce two concepts: a) property

aggregation (K) and b) provenance type (Rk), which PgSum takes as input and
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allow the user to obfuscate vertex details and retain structural constraints.

Property Aggregation (K):

Similar to an attribute-aggregation summarization query on a general graph [116],

depending on the granularity level of interest, not all the details of a vertex are

interesting to the user and some properties should be omitted, so that they can be

combined together. For example, the user may neither care who performs an activity,

nor an activity’s detailed configuration; in the former case, all agent type vertices

regardless of their property values (e.g., name) should be indistinguishable and in

the latter case, the same activity type vertices even with different configuration

settings (e.g., training parameters) in various PgSeg segments should be viewed as

if the same thing (e.g., a training activity) has happened.

Formally, property aggregation K is a 3-tuple (KE , KA, KU), where each of the

tuple elements is a subset of the PROV graph property types, i.e., KE ,KA,KU⊆P

(Definition 3). When used in a PgSum query, it discards other irrelevant properties

for each vertex type, e.g., properties of entity E type in P\KE are ignored. For

example, in Figure 5.5, KE= {‘filename’}, KA= {‘command’}, KU= ∅, so properties

such as version of the entity, details of an activity, names of the agents are ignored.

Provenance Type (Rk):

In contrast with general-purpose graphs, in a provenance graph, the vertices with

identical labels and property values may be very different [25]. For example, two

identical activities that use different numbers of inputs or generate different entities

should be considered different. In [25], Moreau proposes using a recursive definition
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over a vertex’s k-hop neighborhood to assign a vertex type for later aggregation.

However, the definition ignores input/output degrees of vertices, and the recursive

definition is exponential w.r.t. to k. It is worth mentioning that the former issue

occurs in bisimulation-based method as well [134].

We extend the idea of preserving provenance meaning of a vertex and use the

k-hop local neighborhood of a vertex to capture its provenance type: given a PgSeg

segment S(VS ,ES), and a constant k, k ≥ 0, provenance type Rk(v) is a function

that maps a vertex v ∈VS to its k-hop neighborhood subgraph in its segment S,

Rk⊆S. For example, in Figure 5.5, k = 1, thus provenance type of vertices is the

1-hop neighborhood, the vertices with label ‘update’, ‘model’ and ‘solver’ all have

two different provenance types (marked as ‘t1’, ‘t2’).

Note one can generalize the definition of Rk(v) as a subgraph within k−hop

neighborhood of v satisfying a pattern matching query, which has been proposed

in [121] with application to entity matching where similar to provenance graphs,

just using the vertex properties are not enough to represent the conceptual identity

of a vertex.

Vertex Equivalence Relation (≡kκ):

Given a set of segments S= {S i(VS i,ES i)}, denoting the union of vertices as VS=⋃
iVS i, with the user specified property aggregation K and provenance type Rk, we

define a binary relation ≡kκ over VS×VS, such that for each vertex pair (vi, vj) ∈ ≡kκ:

a) vertex labels are the same, i.e., λv(vi) = λv(vj),

b) all property values in K are equal, i.e., ∀p∈K σ(vi, p) = σ(vj, p),
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c) Rk(vi) and Rk(vj) are graph isomorphic w.r.t. the vertex label and properties in

K, i.e., there is a bijection f between Vi ∈Rk(vi) and Vj ∈Rk(vj), s.t., f(vm) = vn if

1. λv(vm) = λv(vn),

2. ∀p∈K σ(vm, p) = σ(vn, p),

3. ∀(vm, vt) ∈ Ei, (vn, f(vt)) ∈ Ej.

It is easy to see that ≡kκ is an equivalence relation on VS by inspection. Using

≡kκ, we can derive a partition P≡
k
κ of VS, s.t., each set in the partition is an equiva-

lence class by ≡kκ, denoted by [v], s.t., [vi] ∩ [vj] = ∅ and
⋃
i[vi] = VS. For each [v],

we can define its canonical label, e.g., the smallest vertex id, for comparing vertices.

In other words, vertices in each equivalence class [v] by ≡kκ describe the homo-

geneous candidates which can be merged by PgSum. Its definition not only allows

the users to specify property aggregations K to obfuscate unnecessary details in dif-

ferent resolutions, but also allows the users to set provenance types Rk in order to

preserve local structures and ensure the meaning of provenance of a merged vertex.

5.4.1.2 Provenance Summary Graph (Psg)

Next, we introduce the output summary graph of PgSum operator, Psg.

Desiderata:

Due to the nature of provenance, the produced Psg should be precise, i.e., we should

preserve paths that exist in one or more segments, at the same time, we should not

introduce any path that does not exist in any segment. On the other hand, Psg
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should be concise; the more vertices we can merge, the better summarization result

it is considered to be. In addition, as a summary, to show the commonality and the

rareness of a path among the segments, we annotate each edge with its appearance

frequency in the segments.

Minimum Psg:

PgSum combines segment vertices in their equivalence classes and ensures the paths

in the output summary graph satisfy above conditions. Next we define a valid

summary graph.

Given a set of segments S = {S i(VS i,ES i)}, and a PgSum(K,Rk) query, a

provenance summary graph, Psg(M, E, ρ, γ), is a directed acyclic graph, where

• Each µ ∈ M represents a subset of an equivalence class µ ⊆ [v] w.r.t. ≡kκ

over VS, and one segment vertex v can only be in one Psg vertex µ, i.e.,

∀µm, µn ∈ M, µm ∩ µn = ∅; the vertex label function ρ : M 7→ P≡
k
κ maps a

Psg vertex to its equivalence class;

• An edge em,n = (µm, µn) ∈ E exists if there is a corresponding edge in some

segment, i.e., ∃Si µm × µn ∩ ES i 6= ∅; the edge label function γ : E 7→ [0, 1]

annotates the edge’s frequencies over segments, i.e., γ(em,n) = |{S i|µm× µn ∩

ES i 6= ∅}|/|S|;

• There is a path πm,n from µm to µn iff ∃Sivs ∈ µm ∩ VS i ∧ vt ∈ µn ∩ VS i,

there is a path πs,t from vs to vt in S i, and their path labels are the same

τ(πm,n) = τ(πs,t). Note that for Psg, we use equivalence classes’ canonical

label (e.g., smallest vertex id) as the vertex label in τ .
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It is easy to see
⋃
i S i the union of all segments in S is a valid Psg. However,

we are interested in a concise summary with fewer vertices. The best Psg one can

get is the optimal solution of the following problem.

Problem 3 (Minimum Psg) Given a set of segments S and a PgSum(K,Rk)

query, find the Psg(M, E, ρ, γ) with minimum |M|.

5.4.1.3 Discussion

Though requiring all paths in Psg must exist in some segment may look strict

and affect the compactness of the result, PgSum operator allows using the property

aggregation (K) and provenance types (Rk) to tune the compactness of Psg. Due

to the rigidness and the utility of provenance, allowing paths that do not exist

in any segment in the summary would cause misinterpretation of the provenance,

thus would not be suitable for our context. In situations where extra paths in

the summary graph is not an issue, problems with objectives such as minimizing

the number of introduced extra paths, and minimizing the description length are

interesting ones to be explored further.

5.4.2 Query Evaluation

Given S= {S i(VS i,ES i)}, after applying K andRk, Psg g0 =
⋃
i S i is a labeled

graph and contains all paths in segments; to find a smaller Psg, we have to merge

vertices in VS=
⋃
iVS i in g0 while keeping the Psg invariant, i.e., not introducing

new paths.
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In order to describe merging conditions, we describe trace equivalence relations

in a Psg.

• in-trace equivalence ('tin): If for every path πa,u ending at u ∈ VS, there is

a path πb,v ending at v ∈ VS with the same label, i.e., τ(πa,u) = τ(πb,v), we

say u is in-trace dominated by v, denoted as u≤tinv. The u and v are in-trace

equivalent, written u'tinv, iff u≤tinv ∧ v≤tinu.

• out-trace equivalence ('tout): Similarly, if for every path starting at u, there is

a path starting at v with the same label, then we say u is out-trace dominated

by v, written u≤toutv. u and v are out-trace equivalent, i.e., u'toutv, iff u≤toutv∧

v≤toutu.

Lemma 5 Merging u to v does not introduce new paths, if and only if 1) u'tinv,

or 2) u'toutv, or 3) u≤tinv ∧ u≤toutv.

The lemma defines a partial order over the vertices in VS. By applying the

above lemma, we can merge vertices in a Psg greedily until no such pair exist, then

we derive a minimal Psg. However, the problem of checking in-/out-trace equiva-

lence is PSPACE-complete [136], which implies that the decision and optimization

versions of the minimum Psg problem are PSPACE-complete.

Theorem 3 Minimum Psg is PSPACE-complete.

Instead of checking trace equivalence, we use simulation relations as its ap-

proximation [137, 138], which is less strict than bisimulation and can be computed

efficiently in O(|VS||ES|) in Psg g0 [137]. A vertex u is in-simulate dominated by a
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vertex v, written u≤sinv, if i) their label in Psg is the same, i.e., ρ(u) = ρ(v) and

ii) for each parent pu of u, there is a parent of pv of v, s.t., pu≤sinpv. We say u

and v in-simulate each other, u'sinv, iff u≤sinv ∧ v≤sinu. Similarly, u is out-simulate

dominated (≤sout) by v, if ρ(u) = ρ(v) and for each child cu of u, there is a child of cv

of v, s.t., cu≤soutcv; and u and v out-simulate each other u'soutv iff they out-simulate

dominate each other.

Note that a binary relation ra approximates rb, if (ei, ej) ∈ ra implies (ei, ej) ∈

rb [138]. In other words, if (u, v) in-/out-simulates each other, then (u, v) is in-/out-

trace equivalence. By using simulation instead of trace equivalence in Lemma 5 as

the merge condition, we can ensure the invariant.

Lemma 6 If 1) u'sinv, or 2) u'soutv, or 3) u≤sinv ∧ u≤soutv, merging u to v does

not introduce new paths.

We develop the PgSum algorithm by using the partial order derived from

Lemma 6 merge condition in a Psg (initialized as g0) to merge the vertices. To

compute ≤sin and ≤sout, we apply the similarity checking algorithm in [137] twice in

O(|VS||ES|) time.

From Lemma 6, we can ensure there is no new path introduced, and the

merging operation does not remove paths, so PgSum algorithm finds a valid Psg.

Note that unlike Lemma 5, as the reverse of Lemma 6 does not hold, so we may not

able to find the minimum Psg, as there may be (u, v) is in trace equivalence but

not in simulation.
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Figure 5.8: Position of Proposed Graph Query Operators in ProvDB

5.5 System Implementation

The proposed operators and techniques are implemented in ProvDB (Chap-

ter 3) for data science project lifecycles. We highlight the positions of the proposed

operators in ProvDB in Figure 5.8. As mentioned in Chapter 3, ProvDB collects

provenance via a git-like command line interface (CLI) called provdb, which is sup-

posed to be prefixed over command line executions of day-to-day commands (e.g.,

provdb ingest ‘cp model.config new model.config’) by the users. Therefore

the context of the executed command (Activity, User) and changes of project arti-

facts (Entity) occurred before/during/after the execution can be captured by provdb

and stored in a property graph store; currently we use Neo4j. On the other hand,

ProvDB can replace git and acts as a data version control system (DVCS) to

manage the versioned project artifacts. It is tailored for analytics project artifacts,
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such as large model files mainly consisting of float numbers (Chapter 4).

Once versions of the project artifacts and provenance of the team activities

are managed by ProvDB, the data science team members and stakeholders are

able to analyze the lifecycle provenance using the rich set of query facilities in

ProvDB (Chapter 3). The segmentation and summarization operators proposed

in this chapter are implemented with templated query interface in the front end:

• For the segmentation operator, the users are allowed to identify snapshots of

interest via search interface and specify boundary criteria within HTML GUI;

• For the summarization operator, previous segmentation operator results are

selectable in the GUI and the property aggregation and the provenance type

can be specified accordingly.

Returned results of both operators can be visualized and interacted with via d3.js.

The query execution engine for the proposed operators and their algorithms

described in Section 5.3 and 5.4 are implemented in Java using Neo4j in embedded

mode for better performance.

Discussion

Note the design decision of using a general purpose native graph backend (Neo4j) for

high-performance provenance ingestion may not be ideal, as the volume of ingested

provenance records would be very large in some applications, e.g., whole-system

provenance recording at kernel level [108, 112] would generate GBs of data in min-

utes. The support of flexible and high performance graph ingestion on modern

graph databases and efficient query evaluation remain an open question [139]. We
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leave the issue to support similar operators for general PROV graph for our future

steps. The proposed techniques in the chapter focus on enabling better utilization

of the ingested provenance information via novel query facilities and are orthogonal

to storage layers in provenance systems.

5.6 Evaluation Study

In this section, we study the proposed operators and techniques comprehen-

sively. We first evaluate the efficiency of proposed techniques for the segmentation

operator by varying provenance graph properties and comparing with state-of-the-

art CFLR algorithm [129, 130] and the crafted Cypher query. We then study the

effectiveness of the summarization operator on segmentation results with differ-

ent stableness and compare with a summarization technique on graph query re-

sults [117]. All experiments are conducted on a Ubuntu Linux 16.04 machine with

an 8-core 3.0GHz AMD FX-380 processor and 16GB memory. For the backend

property graph store, we use Neo4j 3.2.5 community edition in embedded mode and

access it via its Java APIs. ProvDB query operators are implemented in Java in

order to work with Neo4j APIs. To limit the performance impact from the Neo4j,

we always use the node id to seek the nodes, which can be done in constant time in

Neo4j’s physical storage. Unless specifically mentioned, the page cache for Neo4j is

set to 2GB and the JVM version is 1.8.0 25 and -Xmx is set to 4GB.
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5.6.1 Dataset Description

Unless lifecycle provenance management systems (e.g., Ground [50], ProvDB)

are used by the practitioners for a long period of time, it is difficult to get real-world

provenance graph from data science teams. Though using VCS (e.g., git) is common

practice, VCS repositories only consist of versions of artifacts, but not the activities

that occurred between commits. Publicly available real-world PROV provenance

graph datasets in various application domains [25] are very small (KBs). We instead

develop several synthetic PROV graph generators to examine different aspects of

the proposed operators. The datasets and the generators are available online3.

5.6.1.1 Provenance Graphs & PgSeg Queries

To study the efficiency of PgSeg, we generate a provenance graphs dataset

(PG) for collaborative analytics projects by mimicking a group of project members

performing a sequence of activities in a lifecycle management system. Each project

artifact has many versions and each version is an entity in the graph. An activity

uses one or more input entities and produces one or more output entities.

To elaborate, given N , the number of vertices in the output graph, we intro-

duce |U| = blog(N)c agents. To determine who performs the next activity, we use a

Zipf distribution with skew sw to model their work rate. Each activity is associated

with an agent and uses 1 +m input entities and generates 1 + n output entities. m

and n are generated from two Poisson distributions with mean λi and λo to model

3Datasets: http://www.cs.umd.edu/~hui/code/provdbquery
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Name PG50 PG100 PG500 PG1k PG5k PG10k PG50k

|E| 37 88 343 796 3676 7580 37749

|A| 13 26 126 251 1251 2501 12501

|U | 37 74 381 726 3784 7473 37532

|G | 33 84 342 794 3670 7579 37743

Table 5.1: Summary of Provenance Graph Datasets (PG)

different input and output size. In total, the generator produces |A| =
⌊

N
2+λo

⌋
ac-

tivities, so that at the end of generation, the sum of entities |E|, activities |A| and

agents |U| is close to N . The m input entities are picked from existing entities; the

probability of an entity being selected is modeled as the pmf of a Zipf distribution

with skew se at its rank in the reverse order of being. If se is large, then the activity

tends to pick the latest generated entity, while se is small, an earlier entity has

better chance to be selected. The n output entities are always new entities, which

would be the first version of an artifact, or a new version of an existing artifact. For

the latter, we add a derivation edge to an ancestor entity uniformly.

We use the following values as default for the parameters: sw = 1.2, λi = 2,

λo = 2, and se = 1.5. In Table 5.1, we show the information about generated

provenance graphs for varying N ∈ [50, 100, 500, 1000, 5000, 10000, 50000].

On the provenance graphs in PG, we pick pairs (Vsrc, Vdst) as PgSeg queries

to evaluate. Unless specifically mentioned, given a PG dataset, Vsrc are the first

two entities, and Vdst are the last two entities, as they are always connected by some
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path and the query is the most challenging PgSeg instance. In one evaluation, we

vary Vsrc to show the effectiveness of the proposed pruning strategy.

5.6.1.2 Similar Segments & PgSum Queries

In order to study the effectiveness of PgSum, we design a synthetic genera-

tor (Sd) with the ability to vary shapes of conceptually similar provenance graph

segments. In brief, the intuition is that as at different stages of the project, the

stability of the underlying pipelines tends to differ, the effectiveness of summary

operator could be affected; e.g., at the beginning of a project, many activities (e.g.,

clean, plot, train data) would happen after another one in no particular order, while

at later stages, there are more likely to be stable pipelines, i.e., an activity type

(e.g., preprocessing) is always followed by another activity type (e.g., train). For

PgSum, the former case is more challenging than the latter one.

In detail, we model a segment as a Markov chain with k states and a transition

matrix M ∈ [0, 1]k×k among states. Each row of the transition matrix is generated

from a Dirichlet prior with the concentration parameter ~α, i.e., the ith row is a

categorical distribution for state i; each Mij represents the probability of moving

to state j, i.e., pick an activity of type j. We set a single α for the vector ~α; for

higher α, the transition tends to be a uniform distribution, while for lower α, the

probability is more concentrated, i.e., fewer types of activities would be picked from.

Given a transition matrix, we can generate a set of segments S, each of which

consists of n activities labeled with k types, derived step by step using the transition
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matrix. For the input/output entities and edges of each activity, we use λi, λo, and

se the same way in PG, and all introduced entities have the same equivalent class.

We vary α, |S|, k and n to study the PgSum effectiveness on different sets

of segments. A PgSum query is applied on each S, and produces a Psg. The

effects of property aggregation and provenance types are reflected in the above label

assignment process.

5.6.2 Evaluation Results

5.6.2.1 Segmentation Operator

Next, we show the evaluation results for PgSeg algorithms. We compare

our algorithm SimProvAlg and SimProvTst with the state-of-the-art general

context-free language reachability algorithm, CflrB [129]. It uses bit-based set

operations to improve the Reps’ [130] dynamic programming algorithm. We imple-

ment the fast set using Java BitSet in order to have constant random access time,

which is not true for compressed BitMap alternatives. We also compare with the

Cypher query mentioned in Section 5.3.2 in Neo4j.

Varying Graph Size N

In Figure 5.9, we study the scalability of all algorithms. x axis denotes N of the PG

graph, while y axis shows the runtime in seconds to finish the PgSeg query. Note

the figure is log-scale for both axes. As we see, SimProvAlg and SimProvTst

run at least one order of magnitude faster than CflrB on all PG datasets. The

main reasons are the utilization of the properties of the grammar and efficient prun-
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Figure 5.9: Comparing Cyper Query 5.1, CflrB, SimProvAlg and SimProvTst

Efficiency by Varying Graph Size N

ing strategies. Note CflrB runs out of memory on PG50k because of the much

faster growth of the worklist than SimProvAlg, as CflrB uses normal forms and

introduces an extra level. SimProvAlg runs slightly faster than SimProvTst

for small instances while becomes much slower for large instances, e.g., PG50k, it is

3x slower than SimProvTstfor the query. The reason that small instances Sim-

ProvAlg slightly faster is the because SimProvTst run |Vdst| times on the graph

and each run’s performance gain is not large enough. When the size of the graph

instance increases, the superiority of the SimProvTst by using the transitivity

property becomes significant.

On the other hand, the Cypher query can only return correct result for a

very small graph PG50 and takes orders of magnitude longer. Surprisingly, even for
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PG100, it runs over 12 hours and we have to terminate it. From its query profiler, we

know that Neo4j uses a path variable to hold all paths and joins them later which

is exponential w.r.t. the path length and average out-degree. Due to the query

language expressiveness, grammar properties cannot be used by the query planer.

Varying Input Selection Skew se

Next, in Figure 5.10, we study the effect of different selection behaviors on PG10k.

The x axis is se and the y axis is the runtime in seconds in log-scale. In practice, some

analytics activities tend to try many model alternatives to get the best performance

for an analytics task, e.g., through a grid search over hyperparameters, or changing

a neural network architecture; while there are other analytics activities, where there

are long chains of data transformation pipelines, e.g., feature engineering efforts.

The former types of projects tend to always take an early entity as input (e.g.,

dataset, label), while the latter tend to take new entities (i.e., the output of the

previous pipeline step) as inputs. Tuning se in opposite directions can mimic those

project behaviors, as it tunes the probability of earlier entities been selected as

inputs. In Figure 5.10, we vary se from 1.1 to 2.1, and the result is quite stable

for SimProvAlg, SimProvTst and CflrB, which implies the query formulation

and techniques can be applied to different project types with similar performance.

Varying Activity Input Mean λi

We study the effect of varying density of the graph in Figure 5.11 on PG10k. The x

axis varies the mean λi of the number of input entities. The y axis shows the runtime

in seconds. Having a larger λi, the number of |U | edges will increases linearly, thus
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the algorithms runtime increases as well. In Figure 5.11, we see SimProvAlg

grows much more slowly than CflrB. Due to the pruning strategies, the growth

in worklist utilization is avoided in SimProvAlg. SimProvTst further improves

the SimProvAlg due to the utilization of the transitivity.

Effectiveness of Early Stopping

The above evaluations all use the most challenging PgSeg query on start and

end entities. In practice, we expect the users will ask queries whose result they

can understand by simple visualization. CflrB and general CFL don’t have early

stopping properties. SimProvAlg and SimProvTst use the temporal constraints

of the provenance graph to support early stopping growing the result. In Figure 5.12,

we vary the Vsrc of a PgSeg query and study the performance on PG50k. The x

axis is the starting position among all the entities, e.g., x = 20 means Vsrc is selected
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at the end of 20% percentile w.r.t. the ranking of the order of being. The y axis

is the runtime in seconds. As we can see, the shorter of the gap between Vsrc and

Vdst, the shorter the SimProvAlg and SimProvTst runtime. By utilizing the

property of PROV graphs, we get better performance empirically even though the

worst case complexity does not change.

5.6.2.2 Summarization Operator

Given a S= {S i(VS i,ES i)}, PgSum generates a precise summary graph Psg(M, E)

by definition. Here we study its effectiveness in terms of conciseness. We use the

compaction ratio defined as cr = |M|/|⋃iVS i|. As there are few graph query re-

sult summarization techniques available, in our study, we compare with pSum [117]

which is designed for summarizing a set of graphs from keyword search graph queries.

pSum works on undirected graphs and preserves path among keyword pairs and was

shown to be more effective than summarization techniques on one large graph, e.g.,

SNAP [116]. To make pSum work on PgSeg segments, we introduce a conceptual

(start, end) vertex pair as the keyword vertices, and let the start vertex connect to

all vertices in S having 0 in-degree, and similarly let the end vertex connect to all

vertices having 0 out-degree. In the rest of the experiments, by default, α = 0.1,

k = 5, n = 20 and |S| = 10, and y-axis denotes the compaction ratio cr in all figures.

Varying Transition Concentration α

In Figure 5.13, we change the concentration parameter to mimic segment sets at

various stage of a project with different stableness. x axis denotes the value of α
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Figure 5.13: Studying PgSum on Segments at Different Stages of a Project by

Varying Concentration α

in log-scale. Increasing α, the transition probability tends to be uniform, in other

words, the pipeline is less stable, and paths are more likely be different, so the vertex

pairs which would be merged become infrequent. As we can see, PgSum algorithm

always performs better than pSum, and the generated Psg is about half the result

produced by pSum, as pSum cannot combine some 'tin and 'tout pairs, which are

important for workflow graphs. The finding is consistent in other experiments.

Varying Activity Types k

Next, in Figure 5.14, we vary the possible transition states, which reflects the com-

plexity of the underlying pipeline. It can also be viewed as the effect of using

property aggregations on activities (e.g., distinguish the commands with the same

name but different options). Increasing k leads to more different path labels, as
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Figure 5.14: Studying PgSum on Segments with Different Complexity by Varying

Activity Types k

shown in the Figure 5.14, and it makes the summarization less effective. Note that

when varying k, the number of activities n in a segment is set to be 20, so the effect

of k on compaction ratio tends to disappear when k increases.

Varying Segment Size n

We vary the size of each segment n when fixing α and k to study the performance

of PgSum. Intuitively, the larger the segment is, the more intermediate vertices

there are. The intermediate vertices are less likely to satisfy the merging conditions.

As shown in Figure 5.15, the compaction ratio increases as the input instances are

more difficult.

Varying Number of Segments |S|

With all the shape parameters set (α = 0.25), we increase the number of similar
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segments. As the segments are generated from the same transition matrix, they

tend to have similar paths. As shown in Figure 5.16, the compaction ratio becomes

better when more segments are given as input.

5.7 Conclusion

In this chapter, we described the key challenges of querying provenance graphs

generated in evolving workflows without predefined skeletons, such as the ones col-

lected by lifecyle management systems in collaborative analytics projects. At query

time, the users only have partial knowledge about the ingested provenance, due to

the schema-later nature of the properties, multiple versions of the same files, un-

familiar artifacts introduced by team members, and enormous provenance records

collected continuously. Just using standard graph query model, it is very difficult

to compose queries and utilize the valuable information. We presented two high-

level graph query operators to address the verboseness and evolving nature of such

provenance graphs. First, we introduced a graph segmentation operator that allows

the users to only provide the vertices they are familiar with and then induces a

subgraph representing the retrospective provenance of the vertices of interest. We

formulated the semantics of such a query in a context free language, and developed

efficient algorithms on top of a property graph backend. Second, we described a

graph summarization operator that combines the results of multiple segmentation

queries to assist the users to understand similar and abnormal behaviors in those

conceptually similar segments with multi-resolution capabilities. Extensive experi-
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ments on synthetic provenance graphs with different project characteristics show the

operators and evaluation techniques are effective and efficient. The operators are

also applicable for querying provenance graphs generated in other scenarios where

there are no workflow skeletons, such as cybersecurity and system diagnosis.
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Chapter 6: Discovering Hosted Analytics Projects

Alongside developing systems for scalable machine learning and collaborative

data science activities, there is an increasing trend toward publicly shared data

science projects, hosted in general or dedicated hosting services, such as GitHub,

DataHub, Model Zoo, etc. The artifacts of the hosted projects are rich and include

not only text files, but also versioned datasets, trained models, project documents,

etc. With lifecycle management systems, like ProvDB, the shared project will

even consist of provenance of the lifecycle, and rich set of metadata about those

artifacts. Under the fast pace and expectation of data science activities, we argue

model discovery, i.e., finding relevant data science projects to reuse is an important

task.

In this chapter, we study the discovery task and explore system designs and

research problems. Proper investigation of this issue requires a large number of

hosted projects, which is not true for our ProvDB system. On the other hand,

in general collaborative systems, such as GitHub, there is no clean structured data

model for data science projects. Instead of structured queries, we propose a system

vision via an information retrieval approach, and decompose the discovery task into

three major steps: 1) project query and matching, 2) model comparison and ranking,
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and 3) processing and building ensembles with returned models. We first describe

the motivation and desiderata of the model discovery problem, then we overview

ongoing effort of enriching project repositories in Section 6.1. Then we describe our

system vision, and present opportunities, challenges and techniques for each step in

Section 6.2. In Section 6.3, we illustrate preliminary evaluation results of proposed

techniques.

6.1 Motivation

In the “Big Data” era, datasets are collected blindly in different domains and

industries by logging user and system behavior or labeling data via crowd-sourcing,

and there is a large demand to conduct data science projects to find value from

it. With more experienced practitioners and better system support to utilize the

collected data and help the data science activities, more and more data science

projects are built and shared. For example, there are tens of thousands of hosted

Github projects using IPython/Jupyter notebooks (Figure 6.1) and the numbers

have grown rapidly in the past few years; in 2016, Github made ‘Jupyter Notebook’

as a supported language type in the search engine for its repositories. For predictive

models, due to the widely-used finetuning techniques and long training times, deep

learning models have been shared by the community starting with publishing models

on authors’ websites; now training systems tend to have models hosted at a central

portal for practitioners, e.g., Caffe Model Zoo. Along the same line, ProvDB

and ModelHub mentioned in previous chapters in the dissertation also include a
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Figure 6.1: Growth of Github Repositories using iPyhont Notebooks (based on

Github Weekly Dump Dataset on Google Big Query)

hosting service for data science projects with comprehensive model revision histories

and provenance information generated during the process. In feature engineering-

based modeling practice, users tend to try many combination of features; recent

commercial platforms save the produced models and the context to help future

modeling activities.

6.1.1 Model Discovery

Given the presence of large collections of data science projects uploaded by

different groups of data scientists and hosted centrally by a system, the problem of

model discovery is underserved by existing hosting services and is not well-studied
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by machine learning lifecycle management tools. Model discovery is the problem of

identifying relevant projects for a data science practitioner who is working on her

own project and willing to find references, by asking queries such as

• ‘What projects used a similar dataset like mine on a classification problem?

(e.g. US census data, 256x256 images)’,

• ‘Show me a set of diverse projects which explore this specific dataset or use

this particular modeling method (e.g., random forest)’,

• ‘Find or ensemble a model from projects having high recall but reasonable

accuracy on a given validation dataset’.

Current hosting systems, such as Github, cannot answer such queries, as they

do not distinguish data science projects from open source software repositories and

data scientists from software developers, and they do not understand modeling ar-

tifacts and associated metadata and provenance in the lifecycle.

Example 10 For example, a modeler wishes to identify others’ projects that do

mortgage default rate prediction and use a linear regression method in Python in

GitHub. Using today’s systems, the user could use ‘site:github.com predict mortgage

default rate linear regression python’ on a modern search engine. However, gen-

eral web search treats each URL separately and does not index repo as a whole; the

returned results could not rank the most relevant repository properly. Instead, indi-

vidual files, such as dataset, code snippet with some search keywords in the comments

were returned. On the other hand, if the user uses GitHub directly, currently, it still

uses repositories’ names to match the queries, and no repository may be returned.
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Figure 6.2: Enriched Information for Data Science Projects

We envision that by having properly designed model discovery system, a hosted

data science project site should be able to help practitioners answer those queries

and accelerate the modeling lifecycle and deliver results faster.

6.1.2 Enriched Project Repository

Data science projects are ad hoc, exploratory and have many iterations. With-

out proper data and lifecycle management systems for the modeling process, they

are no more than a collection of files and possibly file histories if a version control

system is used.

Similar to ProvDB described in earlier chapters, recently, there is a line of

work, proposing what we call lifecyle management systems (LMS), that capture

provenance metadata and manage modeling artifacts and lifecycle beyond the files,
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so that practitioners can ask detailed queries about the artifact and the workflow [15,

17, 40, 50, 82, 83, 85] and potentially accelerate or even automate some steps in the

lifecycle. Though the focus and the provenance data model vary in these systems,

we argue a rich representation and storage of a data science project can be derived

and stored. Such information, for modeling artifacts, includes the modeling method

types, parameters, hyperparameters, input data and output result files, etc.; for

project workflows, it includes file-level dependencies, function dependency graphs in

scripts, temporal dependencies among different versions of files. We summarize the

enriched information in different works in Figure 6.2.

The enriched information by the ongoing efforts leads to opportunities for

novel approaches to the model discovery problem. In the rest of the discussion, we

assume a data science project is enriched and managed by such an LMS, so that

the projects include files as well as captured rich information from such systems.

6.2 Model Discovery System Vision

In this section, we present a system design to approach the model discovery

problem. We refer the system as ModelHub Discovery. To simplify discussion, we

focus on predictive models, i.e., given an observation dataset with labels, the goal

is to find a prediction function that fits the observations. In the current proto-

type development, we also assume the models are a call to existing library routines

with users’ parameters, without special customization or self-implementation, for

example, writing ones’ own logistic regression implementation in Python due to
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project-specific requirements. We argue that the impact of this assumption is ac-

ceptable as it covers many data science activities and could be addressed during the

development of LMS.

6.2.1 System Overview

Data Model

ModelHub Discovery is a server-side service, designed to be used with client-side

LMS, in particular ModelHub and ProvDB discussed in earlier chapters. The

detailed data model for a project is described in Figure 3.1, and uses a schema-later

approach with a property graph data model for ingested information and a minimal

schema for version control. It has logical views (i.e., models and artifacts to lift

file snapshots) and heterogeneous backends for different artifacts (e.g., binary store

for weights, graph store for properties, and version index, etc.). When discussing

techniques, we keep them general to use with other LMS.

Query Model

An important design decision we made for the query facility is supporting NLP key-

word queries as a first-class citizen as in information retrieval (IR) systems. Using

NLP queries, practitioners can easily describe project background, goals, datasets

and methods using keywords and documents. We chose this option over category-

based project organization or structured queries with ontological conditions because:

• There are many text files (e.g., READMEs, comments) and symbols (e.g.,

library methods) in a project, however, different teams have their own dialects
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and preferences, and there is lack of a unified ontology or schema over data

science projects;

• In structured queries, relevant ranking of matched projects needs to be pro-

vided by users;

• Many structural properties (e.g., accuracy, loss) of a model are project-specific,

so a query condition over them for all projects does not make sense, but those

are more meaningful as adjunctive filters to match similar projects.

Besides NLP queries, we envision a query facility by datasets. In Datahub,

datasets are hosted with identifiers, versions and possibly schemas. When a user

needs to explore a dataset, which might be public, proprietary, or hosted in Datahub,

allowing her to use dataset information, such as structured metadata (i.e., name,

columns), or samples of the dataset (i.e., a set of rows) to query hosted projects is

a very useful navigation facility. However, it requires the LMS to have detailed file

dependencies for good user experience.

System Architecture

We present the preliminary design of the ModelHub Discovery system in Figure 6.3.

We show the query processing pipelines and data serving components. As an infor-

mation retrieval approach, for each project, we use a bag-of-words model to represent

it as a document, which includes words from its text artifacts, function symbols, code

comments, etc. Then the vector-space model [140] is used and the project is indexed

using the Apache Lucene full-text indexing engine. The project catalog is a graph-

store which combines enriched information from lifecycle management systems, and
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Figure 6.3: Overview of ModelHub Discovery Pipeline

is used in adjunctive conditions to filter the matched projects and constraints on

the relevance to the query.

To deduplicate and rank returned projects and have diverse results, a com-

parison and ranking module is proposed. It uses pair-wise similarities of projects

and prunes query results. In Section 6.2.2, we discuss the similarity problem among

models and propose a novel strategy, which also allows embedding models as vectors,

accelerates all-pairs similarity search and enables learn-to-rank strategies.

When the returned models solve the same problem on a dataset (e.g., deep

learning models for ImageNet), we discuss the possibility of incorporating model

ensemble techniques as a post processing step (Section 6.2.3), in order to support the

case when the users have additional constraints in their projects, such as precision-

recall, accuracy-fairness, or accuracy-resource trade-offs.
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6.2.2 Compare & Rank Models

Model Similarity

A query potentially returns many projects with similar or even duplicated models.

As one can observe from GitHub, a popular IPython/Jupyter notebook may be

forked hundreds of times. In deep learning, finetuning is a common practice as a

popular model trained from massive data may be transferred to other tasks; the

weights are reused and finetuned, resulting in similar models.

Returning similar models affects usability dramatically. Deduplication is com-

mon practice in information retrieval systems. As the projects come from different

teams, in order to compare projects we need a similarity model for models. However,

it is challenging to determine when two models are similar. By just looking at the

associated model properties, such as accuracy and confidence, it is not meaningful,

as the measurements are specific to data points. To characterize a model, aside from

the enriched information, the input datasets, I, the output result tables, O, and the

trained parameters, P, can characterize model performance well. O is typically a

structured table (data, label), while P is often float vectors, matrices or tensors, all

of which are ordered multi-dimensional sequences. Due to the order, similar models

are possibly obfuscated, e.g., the same dataset rows or columns may vary for differ-

ent projects, while the parameter dimension may refer to different input dimensions.

To address it, we propose an alignment operation to process the model pairs in the

best way in order to develop a similarity method.

Alignment Operation
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For ease of illustration, we focus on 2D matrices for P, as vectors and tensors

alignment can be formulated similarly, while I and O can be operated on using

similar ideas. The basic idea is given two matrices A and B, we permute B’s rows

and columns to determine the most similar B′ w.r.t. a given distance function, e.g.,

euclidean distance, string edit distance, etc. As the matrices to be aligned do not

necessarily have the same dimensions, we first define a permutation matrix capable

of adapting to differences in dimensions.

Definition 4 (Permutation Matrix) Let a permutation ψ = (ψ1, ψ2, · · · , ψn) ∈

Ψ, where Ψ is the set of all possible n! permutations. Given two positive integers

s, t ∈ N+, a permutation matrix of ψ is a matrix P (ψ, s, t) ∈ [0, 1]s×t, where

P (ψ, s, t)i,j =


1 when i ≤ n, ψi = j

0 otherwise

Using the permutation matrix, a permutation can be used in matrix multipli-

cation to reorder matrix by rows or columns.

Example 11 A row permutation ψ = (2, 1) of A ∈ R2×4 to R3×4:

P(ψ, 3, 2)× A =


0 1

1 0

0 0

×
8 2 5 3

4 1 2 2

 =


4 1 2 2

8 2 5 3

0 0 0 0


A column permutation φ = (1, 3, 2, 4) of A ∈ R2×4 to R2×3:
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A× P(φ, 4, 3) =

8 2 5 3

4 1 2 2

×



1 0 0

0 0 1

0 1 0

0 0 0


=

8 5 2

4 2 1



With the permutation matrix, given two matrices and a distance function, we

formulate the alignment problem as follows:

Problem 4 (Matrix Alignment) Given two real matrices, A ∈ Rm×n, B ∈ Rs×t,

we want to find two permutations to reorder B to A, ψ = (ψ1, ψ2, · · · , ψs) ∈ Ψrow

and φ = (φ1, φ2, · · · , φt) ∈ Φcol, s.t.:

ψ∗, φ∗ = arg min
ψ∈Ψrow,φ∈Φcol

D(A− P(ψ,m, s)×B × P(φ, t, n))

where D : Rm×n 7→ R is a distance function. We denote the best aligned matrix as

∆∗A,B = A− P(ψ∗,m, s)×B × P(φ∗, t, n).

Example 12 Let D be the ‖.‖2 norm, the two matrices:

A =

8 2 5 3

4 1 2 2

 , B =



1 1 1

8 5 2

4 2 1

2 2 2


,

the permutations ψ∗ = (2, 3, 1, 4), φ∗ = (1, 3, 2) minimize the distance function:

D(∆∗A,B) = ‖A− P(ψ∗, 2, 4)×B × P(φ∗, 3, 4))‖2=
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∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

8 2 5 3

4 1 2 2

−
0 1 0 0

0 0 1 0





1 1 1

8 5 2

4 2 1

2 2 2




1 0 0 0

0 0 1 0

0 1 0 0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

= 13

Complexity Analysis

As the solutions of this matrix alignment problem lie in two permutation spaces, it is

not easy to solve. A reduction from the graph edit distance problem (GED) [141] can

be used to show it is NP-hard. Similar to state-of-the-art heuristic for GED [141],

bipartite matching-based approximations can be used to find good solutions.

Alignment Property & Its Usages

Interestingly, the alignment operation can also be used to construct distance metric

to calculate diverse results efficiently. We define the alignment distance of two

matrices after alignment: A(A,B) = D(∆∗A,B) + D(∆∗B,A) + ε(A,B), where ε is D

on natively aligned matrices by indices and 0 padding.

Lemma 7 If the distance D is a metric, then A is also a metric.

Since the alignment distance A is also a metric, an embedding space of models

can be computed using approaches such as multidimensional scaling (MDS) [142].

The central idea of MDS is to learn an inner product space so that the distances

between points can be preserved or approximated. The objective function is defined

by minx
∑

i,j(||xi − xj|| − d(i, j))2 where d(i, j) is the distance between model i

and model j after alignment, and xi, xj are their embedding vectors respectively.
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The solution of MDS produces a vector for each given project model, which allows

us to find similar and diverse models efficiently in online settings [143], and even

enables the hosting service to use a model vector representation to improve query

performances by learning to rank from click logs.

Discussion & Challenges

The unstructured nature of project artifacts and workflows makes it challenging to

identify similar projects and return diverse results. In addition to using alignment

and scaling to reason about parameters and input-output result tables, we also

need to develop techniques to analyze the workflows, the program scripts, and the

datasets to both compare different projects and to rank them. There is also a need

to develop interactive techniques that allow a user to navigate through the returned

models to quickly identify the most suitable models for their needs.

6.2.3 Process & Ensemble Returned Models

Constrained Query Results

In many scenarios, users are interested in the most accurate predictive models for

their specific tasks. Instead of returning the best model from the hosted projects,

it is likely that a combination of multiple models performs better than any single

model. Ensemble modeling is a widely used practice, and has been studied exten-

sively [144]. The model ensemble could greatly benefit from a hosted service having

many projects with a diverse set of ideas.

At the same time, users may have multiple search criteria about a model,
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such as constraints on precision-recall, accuracy-fairness, accuracy-resource, etc. For

example:

• Instead of the most accurate model, users may also query for a model which

performs similarly to a specified precision-recall curve [145].

• Due to the possibility of disparate impact, a model returned should deal with

the fairness requirements [146].

• The performance of a predictive model is also measured by the resources it

requires, e.g., time consumption and computer memory cost. It is often the

case that under limited resources, e.g., mobile systems, users may compromise

by asking for any models that have accuracy above a given lower bound.

All of these constrained query scenarios require processing the returned models to

meet the user’s demand. We explore supporting model ensemble, an important case

with well-established methodologies.

Ensemble models

The question for model assembly is how we generate one model from K selected

models from repositories which are applicable to the same task in order to satisfy

the user-provided measurements. This could be achieved by two meta-approaches:

1) creating a new model by parallel-connecting all of the models, whose output is

a weighted average or voting of the output of all the models, and 2) creating a

(tree-structured) cascade or decision tree of models such that each node contains

one of the models and a decision function to decide whether to use the output

of the current model or the rest of the models. Both of these approaches can be
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realized by learning the averaging weights, voting weights or decision functions with

the given evaluation measurements of single models to approximate the user-desired

measurements.

The system problem of model assembly is to incrementally find models that

are to be used in the final ensemble model. Caruana et al. [147] study the problem

of ensemble selection from a model library, and propose a general approach: 1)

initialize ensemble as empty; 2) pick the model that maximizes the performance

and add it to the ensemble; 3) repeat 2 until constraints are reached or all models

are selected; 4) output the generated ensemble.

Discussion & Challenges

However, to build such system, a discovery system should be able to validate models,

and better train the models in different projects. In practice, there may be only a

subset of projects that have such a property. ModelHub Discovery prototype is now

built on top of ModelHub, which now only contains deep learning projects. The

model training and testing procedures in each repository are well understood, so

that it allows us to explore this direction. On the other hand, model ensemble is also

an important task for automatic model selections services [89, 147]; compared with

discovering hosted projects, they deal with finding the best model via predefined

prediction methods by giving a dataset and a goal. Identifying scalable system

methods in this task is useful to improve the productivity for practitioners.
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6.3 Evaluation Study

In this section, we study the usefulness of model alignment technique to iden-

tify similar models. Note that it is a challenge to find ground truth in the real-world

repositories, as the prediction results need to be reproduced from the selected repos-

itories. Instead, we finetune a VGG deep learning model to derive a synthetic model

dataset.

6.3.1 Dataset Description

Fine-tuning is a popular modeling practice in deep learning, when the user has

an existing model properly trained in a large dataset (such as ImageNet) and wants

to apply such model to a new dataset which can have a different set of prediction

labels. The motivation of fine-tuning is that a well trained model should have good

generalization to various data so it becomes unnecessary to do end-to-end training

of every model which may consume a large amount of time.

We start from the VGG-16 network which was originally trained using Ima-

geNet dataset and fine-tune the model on CASIA face recognition dataset. CASIA

dataset has 10575 face categories while we sample 1000 of them as the last layer pre-

diction output. The way to fine-tune a model is to replace the last fully connected

layer with a new one and set small or even zero learning rates for existing layers.

The newly mutated model trained on the new dataset will converge much faster

than an end-to-end training. It is often unnecessary to fine-tune early layers but it

is necessary to set a small non-zero learning rates to some later existing layers. By
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enumerating different pivot layers for fine-tuning, our fine-tuning model generator

replicates such behavior.

To elaborate, each time, we first choose a pivot parametric layer in VGG16,

before which the parameters are fixed while after which the parametric layers are

retained. The layer-wise learning rate and weight decay scalars are set to be (1, 2)

and (1, 0) for (weight, bias) respectively. For the last full layer (fc8 in VGG16,

fc8 casia1k in new models), the scalars are set to be (10, 10) for (weight, bias). Once

the pivot layer is chosen, then we enumerate global optimization hyperparameters,

learning rate in [10−3, 10−4, 5 × 10−5], and weight decay in [2 × 10−4, 5 × 10−4]. In

total, there are 54 different model configurations. Each of them are retrained over

10000 iterations, and checkpointed per 1000 iteration.

The models with their fine-tuning configurations and validation accuracies are

shown in Figure 6.4. Each oval node is a model which is labeled with its generation

order and the accuracy. The path from root to a model shows the detailed retraining

configurations. Red circled models have the top 3 validation accuracies.

6.3.2 Evaluation Result

On the generated models, we first compute pair-wise weights distances (L2)

of the model pairs. Then we derive their prediction performance difference. Note

each model produces a vector in [0, 1]1000 from the last layer, which we refer to as

result table. On the testing dataset, we compute pairwise cosine distances between

the model results.
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Figure 6.4: Finetuned VGG Models

In Figure 6.5, we show the relationship between model weight alignment dis-

tances and prediction performance distances; x axis shows the alignment distance,
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Figure 6.5: Correlation Between Aligned Distance and Prediction Results

y axis is the prediction performance distance. We normalized both of them to [0, 1],

so that the closer to 0, the more similar they are. As we can see from the figure,

the smaller x (alignment distance) tend to have smaller y (prediction result table

difference) as well. The Pearson correlation between x and y is 0.8224. From the

preliminary evaluation, it shows the model similarly technique we propose would

work for some modeling practices.

In a model discovery service, often the performance result is not known, due

to the possible correlation between model weight alignment distance and the perfor-

mance result difference, the service implementation would use the aligned distance

as a signal to improve query results.
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6.4 Conclusion

In this chapter, we explored systems research opportunity to enable data sci-

entists to query and reuse data science projects hosted in a central service. In a

hosted service storing enriched repositories from lifecycle management tools, we pre-

sented our vision of querying managed data science projects. Instead of querying

on structured stores, we chose an information retrieval approach in order to better

serve the needs from practitioners and described a search service allowing the user to

query using project requirement languages, such as goals, datasets, model methods.

We outlined the system architecture and proposed several challenging problems in

building it, including developing model similarity methods and model assembly for

constrained queries. Because in the real world, there were not that many reposito-

ries with well-extracted information yet, we conducted preliminary evaluation using

synthetic models generated by following best practice, and showed the potential

value and performance of proposed techniques.
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Chapter 7: Conclusions

In this dissertation, we studied the practice of data science and explored the

issues in the end-to-end lifecycle management of collaborative analytics workflows.

We took a systems approach to unify the provenance and project artifacts man-

agement for a collaborative analytics team, and studied how to track provenance

and derivation history of models, query modeling artifacts and processing pipelines,

analyze unexpected behaviors, and search hosted repositories.

We first described ProvDB in Chapter 3, which is a general provenance in-

gestion and graph-based storage system that introduces a command line toolkit to

wrap user commands and captures static and runtime information when users ex-

ecute scripts. The capturing is done via a set of ingestor plugins, such as UNIX

POSIX ingestors for basic commands (e.g., mv source and target), deep learning

training tool ingestors (e.g., training accuracy and loss), core data science library

ingestors (e.g., scikit-learn usages in a script), etc. It also features with a rich set of

general query facilities tailored for data science lifecycles, such as introspecting the

project artifacts and pipelines and monitoring the ongoing modeling activities.

By extending ProvDB ingestion mechanism, query facilities and storage back-

end, we described the ModelHub system in Chapter 4. It includes a specialized
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version control system to capture parameters, hyperparameters, and relationships

between revised deep learning models when the user adds and commits versions.

Using this information, it extends ProvDB query facility and features a domain-

specific query language to explore existing models and enumerate new models. By

exploiting the model metadata and derivation history, it uses novel modeling archiv-

ing technique, which compacts the model storage while ensuring that higher quality

models can be accessed within desired time constraints.

In Chapter 5, we studied how to fully exploit the ingested provenance and

help analytics project teams. As collaborative analytics projects often have unstable

lifecycles resulting in evolving and verbose provenance graphs, it is common that

team members only have partial knowledge of the provenance graph. Without a

predefined workflow skeleton and full understanding of contributing artifacts and

steps, it is difficult to write graph queries and explore the provenance graph using

modern graph databases and query languages. We formulated two graph query

operators, segmentation and summarization, to query retrospective and prospective

provenance of analytics workflows. The segmentation operator is able to induce

a certain scope in the lineages of user-specified vertices to get insight about the

derivation relationships among the vertices of interest. The summarization operator

can combine similar segments together to show the common and alternative pipelines

among those segments.

In the real world, there are more and more collaborative analysis projects being

shared online. In Chapter 6, we presented our vision of a model discovery service, a

system that enables data scientists to query and reuse data science projects hosted in
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a central service, such as GitHub or ModelHub. Assuming many projects’ reposito-

ries are enrinched by lifecycle management tools, we outlined a system architecture

and proposed several challenging problems in building it, including developing model

similarity methods and model assembly for constrained queries.
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