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Over the years, many computer vision models, some inspired by human behavior,

have been developed for various applications. However, only handful of them are popular

and widely used. Why? There are two major factors: 1) most of these models do not have

any efficient numerical algorithm and hence they are computationally very expensive; 2)

many models, being too generic, cannot capitalize on problem specific prior information

and thus demand rigorous hyper-parameter tuning. In this dissertation, we design fast

and efficient algorithms to leverage application specific priors to solve unsupervised and

weakly-supervised problems. Specifically, we focus on developing algorithms to impose

structured priors, model priors and label priors during the inference and/or learning of

vision models.

In many application, it is known a priori that a signal is smooth and continuous

in space. The first part of this work is focussed on improving unsupervised learning

mechanisms by explicitly imposing these structured priors in an optimization framework

using different regularization schemes. This led to the development of fast algorithms



for robust recovery of signals from compressed measurements, image denoising and

data clustering. Moreover, by employing redescending robust penalty on the structured

regularization terms and applying duality, we reduce our clustering formulation to an

optimization of a single continuous objective. This enabled integration of clustering

processes in an end-to-end feature learning pipeline.

In the second part of our work, we exploit inherent properties of established models

to develop efficient solvers for SDP, GAN, and semantic segmentation. We consider models

for several different problem classes. a) Certain non-convex models in computer vision

(e.g., BQP) are popularly solved using convex SDPs after lifting to a high-dimensional

space. However, this computationally expensive approach limits these methods to small

matrices. A fast and approximate algorithm is developed that directly solves the original

non-convex formulation using biconvex relaxations and known rank information. b) Widely

popular adversarial networks are difficult to train as they suffer from instability issues.

This is because optimizing adversarial networks corresponds to finding a saddle-point of

a loss function. We propose a simple prediction method that enables faster training of

various adversarial networks using larger learning rates without any instability problems.

c) Semantic segmentation models must learn long-distance contextual information while

retaining high spatial resolution at the output. Existing models achieves this at the cost

of computationally expensive and memory exhaustive training/inference. We designed

stacked u-nets model which can repeatedly process top-down and bottom-up features. Our

smallest model exceeds Resnet-101 performance on PASCAL VOC 2012 by 4.5% IoU

with ∼ 7× fewer parameters.

Next, we address the problem of learning heterogeneous concepts from internet



videos using mined label tags. Given a large number of videos each with multiple concepts

and labels, the idea is to teach machines to automatically learn these concepts by leveraging

weak labels. We formulate this into a co-clustering problem and developed a novel bayesian

non-parametric weakly supervised Indian buffet process model which additionally enforces

the paired label prior between concepts.

In the final part of this work we consider an inverse approach: learning data priors

from a given model. Specifically, we develop numerically efficient algorithm for estimating

the log likelihood of data samples from GANs. The approximate log-likelihood function is

used for outlier detection and data augmentation for training classifiers.
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Chapter 1: Introduction

Many computer vision and machine learning models were developed using prior

knowledge derived from human experience. For example, humans are subconsciously

wired to notice structure, motion, and patterns in images and videos. This suggests that the

human brain carries some prior regarding continuity of objects across space and time. This

so-called structured prior is widely used in popular vision and imaging applications, and is

encoded in the form of conditional random fields (CRFs), total variation, and structured

prediction models. However, many algorithms incorporate these prior at the expense of

computation time, high memory consumption, and model approximation. This renders

many models infeasible for large scale applications. For instance, if implemented naively,

it is impractical to solve a fully connected CRF even on small images. It takes days for

popular inference algorithms such as Markov Chain Monte Carlo (MCMC) sampling and

graph cut methods to converge. However, an efficient implementation using mean-field

approximation and low-pass gaussian filtering [1] can solve a CRF in seconds.

Strong priors enable us to solve difficult computer visions problems with relatively

little data, but can we build computationally efficient algorithms for the resulting models?

In this work, we develop new optimization algorithms that inject application-specific prior

knowledge into selected computer vision problems. Specifically, we develop algorithms
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which impose structured priors, model priors, or label priors during the inference/learning

of unsupervised and weakly supervised vision models.

In many signal recovery applications, one is recovering a signal (image) which

should be smooth / continuous in space. One good example is the reconstruction of

sparse signals from compressed measurements. However, we note that most of the current

compressed sensing models do not explicitly impose smoothness priors. We propose the

use of spatial smoothness priors that assist in speeding up and improving the quality of

high definition image and video recovery. In the past, some models have already exploited

the priors using non-convex regularization in the form of wavelet trees [2], MRFs [3] etc,

which guarantees global convergence only for specific cases. In chapter 2, we develop

a new mechanism for signal recovery that regularizes pixel neighborhoods using block

sparse (l1,2) regularizers. This regularizer is convex and can explicitly impose the above

mentioned continuity criteria in many models involving sparse variables. This improves

recovery from compressed measurements, and also boosts results on image denoising,

robust PCA (RPCA), and structured dictionary learning applications [4].

Motivated by the successful application of spatial priors for signal recovery, in

chapter 3 we propose a new optimization formulation for data clustering. The set of

high-dimensional data samples is known to span a low-dimensional smooth manifold [5].

Similar to the imaging application, we argue that imposing a suitable local neighborhood

structure prior can be beneficial in finding the underlying data clusters. This led to the

development of a new clustering formulation, robust continuous clustering (RCC) [6],

which is regularized using the local connectivity structure tapped from an underlying

manifold space in an unsupervised manner. The advantage of our formulation over existing
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clustering formulations is that it optimizes a smooth continuous objective using efficient

linear solvers. The presented algorithm is fast, easy to use and scales efficiently to high

dimensions and large datasets. Moreover, it does not rely on prior knowledge of the number

of ground-truth clusters. Experiments demonstrate that our method achieves high accuracy

across datasets from multiple domains, outperforming the best prior algorithm by a factor

of 3 in average rank.

The use of global continuous formulation eliminates the discrete reconfigurations

of the objective that characterize prior clustering algorithms. This allows clustering to

be integrated as a module in an end-to-end feature learning pipelines. We demonstrate

this further in chapter 4 by extending the RCC algorithm to perform joint clustering

and non-linear dimensionality reduction by efficiently optimizing a global continuous

objective [7]. The integrated formulation can be easily optimized using the standard

gradient descent solvers. The data is embedded into a lower-dimensional space by a deep

autoencoder. The autoencoder is optimized as part of the clustering process while the

resulting low-dimensional projection produces clustered data. Experiments on multiple

datasets demonstrates that the presented algorithm outperforms state-of-the-art clustering

schemes, including RCC and recent methods that use deep networks.

In the second part of this dissertation, we independently analyze three different well-

established models and exploit their inherent properties to develop efficient solvers and

algorithms. Specifically, we present new solvers for semi-definite programming (SDP) and

generative adversarial networks (GAN) and a new deep network for semantic segmentation

tasks.

In chapter 5, we present a fast approximate SDP solver which is based on the
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biconvex relaxation procedure [8]. Many computer vision problems are being modeled in

the form of binary-valued quadratic problem (BQP). BQPs are non-convex formulation

and are popularly solved through semi-definite relaxation to continuous space. This is

made possible by lifting BQPs into the high-dimensional space and remodeling them

as SDPs. This reformulation is easily solved using convex SDP solvers. However, this

is achieved at the expense of high computational power (polynomial time) and memory

consumption (Θ(N2), for N unknowns). It is known that SDP matrices X ∈ RN×N can

be decomposed into X = YYT , where Y ∈ RN×k (k is the rank information; k = 1 for

BQPs). For the case where the rank information is known, one may indirectly try to solve

for the optimal SDP matrix X∗ by solving the non-linear optimization problem modeled

in the search space of Y. This can indeed give significant speedup for low rank SDPs

and reduces memory consumption to Θ(N(k + 1)). In practice, the optimal SDPs are

extremely low-rank i.e., k << N and hence defining a general rank-constrained model

will lead to a smaller search space for many problems. In the past, [9, 10] have suggested

different approaches to solve low rank SDP problems involving a linear objective and very

few linear matrix equalities or inequalities (LMI). However, in order to cater to the needs

of many vision applications, such as segmentation and metric learning, it is necessary

to solve a rank-constrained general SDP problem involving many linear equalities and

LMI. We propose a biconvex optimization algorithm that can solve general SDPs with any

number of linear equality and inequality constraints. The alternate sub-problem which

emerges out of the proposed formulation are convex, and they are readily solved using

proximal operators and least squares solvers. Consequently, the proposed solver runs

4− 35× faster than the previous state-of-the-art approach while achieving similar or better
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performance. Our algorithm, if properly initialized, is guaranteed to converge closer to

the global minima. Thus, we will also discuss a newly developed initialization technique

which is based on the generalized eigenvalue approach for matrices. Note that, apart from

the RCC formulation, the biconvex relaxation is another instance of my work wherein the

discrete assignment problem is transformed into a continuous objective.

In chapter 6, we present a simple modification to stochastic gradient descent that

can stabilize any adversarial neural networks (ANNs) [11]. ANNs solve many important

problems in data science, but are notoriously difficult to train. These difficulties come

from the fact that optimal weights for adversarial nets correspond to saddle points, and not

minimizers, of the loss function. The alternating stochastic gradient methods typically used

for such problems do not reliably converge to saddle points, and when convergence does

happen it is often highly sensitive to learning rates. Inspired by the well-known “predictor-

corrector” methods that have been successfully applied for saddle-point optimization in

the non-stochastic setting, we propose a new prediction method for solving saddle-point

problems in stochastic settings. We show, both in theory and practice, that the proposed

method reliably converges to saddle points, and is stable with a wider range of training

parameters than a non-prediction method. This makes adversarial networks less likely to

“collapse,” and enables faster training with larger learning rates. Moreover, our method adds

only a single prediction step to any stochastic solver with an increase of just 10% in training

time. We demonstrate the efficacy of prediction methods on three different categories of

adversarial networks: GANs, domain adaptation and learning fair classifiers. Furthermore,

the qualitative and quantitative comparison to Unrolled-GAN [12], Stacked-GAN [13] and

AC-GAN [14] (on ImageNet) suggests that our algorithm stabilizes GAN training across
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learning rates, momentum, and image resolutions while achieving comparable or better

inception scores.

In chapter 7, we present a novel deep neural network model for semantic image

segmentation [15]. Many imaging tasks require global information about all pixels in

an image. Conventional bottom-up classification networks globalize information by

decreasing resolution; features are pooled and down-sampled into a single output. But

for semantic segmentation and object detection tasks, a network must provide higher-

resolution pixel-level outputs. To globalize information while preserving resolution, many

researchers propose the inclusion of sophisticated auxiliary blocks such as dense CRF and

spatial pyramid pooling, but these come at the cost of a considerable increase in network

size and computational cost. We argue that in all contemporaneous work, the continued use

of conventional pre-trained classification networks as a backbone model is fundamentally

incorrect. This is due to the fact that classification networks were specifically designed to

work well on single object classification and not for pixel-level localization tasks. Thus,

when extended to object detection and segmentation tasks, it is not clear whether the

complete potential of these networks has been properly tapped. In this chapter, we propose

a stacked u-nets (SUNets) model, which explicitly characterizes the primary requirement

of the localization task. SUNets iteratively performs multiple top-down and bottom-up

processes which optimally exchange contextual information and combine features from

different resolution scales. SUNets leverage the information globalization power of u-nets

in a deeper network architecture that is capable of handling the complexity of natural

images. SUNets perform extremely well on image classification and semantic segmentation

tasks using a very small number of parameters. Indeed, our smallest model exceeds the
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performance of ResNet-101 on the PASCAL VOC 2012 semantic segmentation task by

4.5% mIoU, while having ∼ 7× fewer parameters. These results and other analysis

suggest that the use of conventional classification models hinders their performance on

pixel localization tasks.

In the third part of this dissertation (chapter 8), we present a weakly-supervised

framework for learning heterogeneous concepts from large scale internet videos using

co-occurrence label priors [16]. The idea is, given a large number of videos each with

multiple label tags, similar to ones we find on YouTube, can we build algorithms to teach

machines to identify and localize (both spatial and temporal) visual concepts (such as

objects, actions, persons, etc.)? Philosophically speaking, this problem is inspired by the

way babies learns. For example, consider a scenario in which a human is shown many

videos of an unknown celebrity. Each of these videos contain various concepts and some

of them have nothing to do with this particular celebrity. The videos are also provided

with multiple label tags which may be associated with these concepts. Some of these tags

are indeed related to this celebrity - possibly describing its action in the corresponding

videos. Given this scenario, there is a good chance that after watching many videos, a

human subject will be able to recognize and localize the celebrity in question along with

various other concepts. Ambiguity during the learning process is bound to occur due to the

presence of multiple label tags per video. Thus, to automate this process, one requires a

model that can learn to map each and every label tag to different concepts in each video

such that the similar tags coherently share the visual feature representation across the

video database. This being a difficult problem, a lot of research was focused on solving a

related but simplified problem on images using various context priors and deep learning

7



techniques [17, 18].

We developed a novel model that utilizes multiple paired labels of type (dog, walk-

ing), (cat, running) etc and jointly learns heterogeneous concepts from large scale video

databases. The commonly used phrases on the internet describe subjects, predicates, ob-

jects, and actions, and hence the paired labels can be readily extracted. By imposing these

types of weak but paired label priors into the learning algorithm, we believe that the local-

ization of one concept, for e.g.cat, in a video will in turn help to easily localize and learn

the visual appearance of its paired concept, for e.g.running. This process, if inculcated in

the model learning, will successfully learn faster as well as better visual appearance models.

We propose to solve the above problem by remodeling a non-parametric and unsupervised

Bayesian model named the Indian Buffet Process (IBP). Our weakly-supervised stacked

IBP model performs co-clustering while using the paired label priors. We also develop

posterior inference for the proposed formulation using mean-field variational approxi-

mation. The model parameters are learned during the inference process. Comparative

evaluations on the Casablanca and the A2D datasets show that the proposed approach

significantly outperforms other state-of-the-art techniques: 24% relative improvement for

pairwise concept classification in the Casablanca dataset and 9% relative improvement for

localization in the A2D dataset as compared to the most competitive baseline.

In the final chapter 9, we consider the completely reverse approach of learning a data

prior from a given trained model. Generative adversarial networks are trained to generate

data that is indistinguishable from the input training samples. Such adversarially trained

networks are known to generate high quality samples without the need for explicitly

specifying the likelihood function. Among the generative models, GANs are widely
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popular due to their simple training and sampling procedure. In contrast, models such

as RBMs [19] and DBMs [20], which are trained by explicitly maximizing the data

likelihood, suffer from complex training and sampling procedure due to the use of mean

field inference and MCMC. The variational autoencoder, which simultaneously learns a

generative model and approximate inference, produces blurry samples and is limited in its

application to low-dimensional deep representations. Ideally, a good generative model is

one that generates perceptually high quality samples while employing simpler training,

sampling, and evaluation. In this chapter, we develop a approximate procedure to estimate

the log-likelihood of the generated and test data samples using GANs. We investigate

this by building the Jacobian of the generator transformation function. We demonstrate

that this approximate function can be used for outlier detection and data augmentation for

training a classifier.
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Part I

Structured Prior
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Chapter 2: Block Sparsity

2.1 Introduction

A large number of existing models used in sparse signal processing and machine

learning rely on `1-norm regularization in order to recover sparse signals or to identify

sparse features for classification tasks. Sparse `1-norm regularization is also prominently

used in the image-processing and computer vision domain, where it is used for segmenta-

tion, tracking, and background subtraction tasks. In computer vision and image processing,

we are often interested in regions that are not only sparse, but also spatially smooth, i.e.,

regions with contiguous support structure. In such situations, it is desirable to have regu-

larizers that promote the selection of large, contiguous regions rather than merely sparse

(and potentially isolated) pixels. In contrast, simple `1-norm regularization adopts an

unstructured approach that induces sparsity wherein each variable is treated independently,

disregarding correlation among neighboring variables.

For imaging applications, `1-norm regularization may result in regions with spurious

active (or isolated) pixels or non-smooth boundaries in the support set. This issue is

addressed by the image-segmentation literature, where spatially correlated priors (such as

total variation or normalized cuts) are used to enforce smooth support boundaries [21–24].

An important hallmark of existing image-segmentation methods is that they are able to
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enforce spatially contiguous support. However, the concept of correlated support has yet

to be ported to more complex reconstruction tasks, including (but not limited to) robust

PCA, dictionary learning and compressive background subtraction. The development of

such structured sparsity models has been an active research topic [2, 3, 25–28], with new

models and applications still emerging [29, 30].

In this chapter, we develop a class of convex priors based on overlapping block/group

sparsity, which are able to enforce sparsity of the support set and promote spatial smooth-

ness. Our work is inspired by the `1/`2-norm spatial coherence priors used in [26], as

well as group sparsity priors used in statistics (e.g., group lasso) [31, 32]. Specifically,

we propose new regularizers for imaging and computer vision applications and develop

computationally efficient global minimization algorithms that are suitable for overlapping

pixel-cliques. Finally, we propose the use of our regularizers within greedy pursuit meth-

ods for compressive reconstruction. The code is available at https://github.com/

shahsohil/CoLaMP.

2.2 Related Work

Existing work on spatially-smooth support-set regularization can be divided into

two main categories: (i) non-convex models that rely on graphs and trees, and (ii) convex

models that rely on group-sparsity inducing norms. Cevher et al. [3] promote sparsity using

Markov random fields (MRFs) in combination with compressive-sensing signal recovery,

which is referred to as lattice matching pursuit (LaMP). LaMP recovers structured sparse

signals using fewer noisy measurements than methods that ignore spatially correlated

12
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Figure 2.1: Illustration of cliques and overlapping cliques.

support sets. Baraniuk et al. [2] prove theoretical guarantees on robust recovery of struc-

tured sparse signals using a non-convex algorithm; their approach has been validated using

wavelet-tree-based hierarchical group structure, as well as signals with non-overlapping

blocks in the support set. Huang et al. [25] developed a theory of greedy approximation

methods for general non-convex structured sparse models. All these methods, however,

are limited in that they are either non-convex, computationally expensive, or do not allow

for overlapping (or not aligned) group structure. Jenatton et al. [26] showed the possibility

of coming up with a problem-specific optimal group-sparsity-inducing norm using prior

knowledge of the underlying structure. While they consider a convex relaxation of the

structured sparsity problem, it remains unclear how their proposed active-set algorithm for

least squares regression can be generalized to a broader range of applications.
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2.3 Model and Algorithms

Consider the measurement model y = Φx0 + z0, where y ∈ RM is the observed

signal, x0 ∈ RN is the original sparse signal we wish to recover, z0 ∈ RM is a non-sparse

component of the signal (comprising both the background image and potential noise),

Φ ∈ RM×N is the linear operator that models the signal acquisition process. Based on this

model, we study signal recovery by solving convex optimization problems of the following

general form:

{ẑ, x̂} = arg min
z∈RM,x∈RN

D(x, z |y,Φ) + J(x). (2.1)

Here, D : RM × RM→R is a convex data-consistency term, and J : RM→R is a

regularizer that enforces both sparsity and support smoothness on the vector x. The

proposed regularizer is a hybrid `1/`2-norm penalty of the form

J(x) =
∑

c∈C ‖xc‖2, (2.2)

where C is a set of cliques over the graph G defined over the pixels of x. This regularizer

(2.2) is a natural generalization of the group (or block) sparsity model that has been

explored in the literature for a variety of purposes including statistics and radar [26, 28, 29,

31]. We focus on the case where the collection of sparse cliques consist of regularly-spaced

groups of adjacent pixels. For example, consider two types of cliques shown in Figure

2.1(a) and 2.1(b). Notice the (a) 2-clique and (b) 4-clique wherein all nodes are connected

to each other. These cliques can be translated over the entire image graph to generate

various overlapping clique geometries as shown in (c) and (d), respectively. In (c), eight

overlapping cliques, each of size two, overlap at a central point. In the image processing

14



literature this is referred to as an 8-connected neighborhood [33]. In contrast, Figure 2.1(d)

uses a higher-order connectivity model, which is obtained using four rectangular cliques of

size four (each shown in a different color). Overlapping group-sparsity models of the form

depicted in Figure 2.1(d) effectively enforce spatial coherence of the recovered support.

When such an overlapping group-sparsity model is used, all pixels in a clique tend to be

either zero or non-zero at the same time (see, e.g., [27]). Since each pixel shares multiple

overlapping cliques with its neighbors, this regularizer suppresses “rogue” (or isolated)

pixels from entering the support without their neighbors and hence, promotes smooth

(contiguous) support boundaries.

2.3.1 Applications

The proposed regularizer (2.2) can be used as a building block for various applica-

tions in computer vision, image processing, and compressive sensing. We will focus on

the following four imaging applications:

1) Compressive sensing signal recovery: Consider a signal x ∈ RN that is K-sparse,

i.e., only KN entries of x are non-zero. In the CS literature, the signal is acquired via

M < N linear projections y = Φx. The K-sparse signal x can then be recovered if, for

example, the matrix Φ satisfies the 2K-RIP or similar conditions [2, 34]. The underlying

recovery problem is usually formulated as follows:

x? = arg min
x∈RN

‖y −Φx‖2
2 subject to ‖x‖0 = K. (2.3)

When the sparse signals are images, simple sparse recovery may not exploit the entire

image structure; this is particularly true for background-subtracted surveillance video.
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Background-subtracted frames are generally more sparse than frames containing back-

ground information, and can thus be reconstructed from far fewer measurements M .

We propose to extend the problem in (2.3) by adding a regularizer of the form (2.2) to

promote correlation in the support set of the foreground objects. The optimization problem

defined in (2.3) is non-convex and is commonly solved using greedy algorithms [3, 35, 36].

We will show that the use of our prior (2.2) leads to faster signal recovery with a small

number of measurements compared to existing methods.

2) Total-variation denoising: Total variation (TV) denoising restores a noisy im-

age y (vectorized) by finding an image that lies close to y in an `2-norm sense, while

simultaneously having small total variation; This is accomplished by solving,

x? = arg min
x∈RN

1
2
‖x− y‖2 + λ‖∇dx‖1, (2.4)

where ∇d : RN → R2N is a discrete gradient operator that acts on an N -pixel image,

and produces a stacked horizontal and vertical gradient vector containing all first-order

differences between adjacent pixels. TV-based image processing assumes that images have

a piecewise constant representation, i.e., the gradient is sparse and locally contiguous [37,

38]. Numerous generalizations of TV exist, including the recently proposed vectorial TV

for color images [39, 40]. Such regularizers are of the form of (2.4) merely by changing

the definition of the discrete gradient operator.

We propose to extend total variation by penalizing the gradient of cliques in order to

enforce a greater degree of spatial coherence. In particular, we consider

x? = arg min
x∈RN

1
2
‖x− y‖2 + J(∇dx), (2.5)
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where J(·) denotes the regularizer (2.2). Furthermore, we explore formulations where the

discrete gradient operator is given by the decorrelated color TV operator described in [40]

and the structured sparsity prior is on 3-D blocks.

3) Robust PCA (RPCA): Suppose Y = [y1, . . . ,yL] is a matrix of L measurement

vectors, and Y is the sum of a low rank matrix Z and a sparse matrix X. For this case,

Candès et al.show that exact recovery of these components is possible using the following

formulation [41]:

{Ẑ, X̂} = arg min
Z,X∈RN×L

‖Z‖∗ + λ‖X‖1

subject to Y = Z + X.

(2.6)

The nuclear-norm in (2.6) promotes a low rank solution for Z; the `1-norm penalty

promotes sparsity in X. A well-known application of RPCA is background subtraction

in videos with a stationary background. For such datasets, the shared background in the

frames {yi} can be represented using a low-rank subspace. The moving foreground objects

often have sparse support, and thus are absorbed into the sparse term X.

We propose to replace the `1-norm regularization prior on X in (2.6) with the

proposed regularizer in (2.2); this enables us to promote spatial smoothness in the support

set of the foreground objects.

4) Structured Dictionary Learning: Similar to RPCA we consider another rank-

minimization application, where additionally the dictionary model is also being learned.

In [42], the authors demonstrated that given the labels it is possible to learn label consistent

dictionaries which can improve the discriminative capability of inferred latent coefficient
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Z. This formulation is given by,

{Ẑ, X̂, D̂} = arg min
Z∈RM×L,X∈RN×L,D∈RN×M

‖Z‖∗ + λ‖X‖1 + β‖Z‖1 + α‖Z−Q‖2
F

subject to Y = DZ + X. (2.7)

where Y denotes column-stacked feature input, Z’s are the latent codes and X denotes

some sparse noise. The class prior is given by the matrix Q. The final penalty term

propagate class structure into the learning process, hence helping dictionary atoms to

evolve and arrange according to the structure in Q. We propose to replace the penultimate

and the final penalty term on Z using the block sparse regularizer in (2.2). Note that, in

this model the block sparsity is promoted on the set of non-overlapping blocks.

2.3.2 Optimization Algorithms

We now develop efficient numerical methods for solving problems involving the

regularizer (2.2). A common approach to enforce group sparsity in the statistics literature

is consensus ADMM [43, 44], which we will briefly discuss in Section 2.3.2.1. For image

processing and vision applications, where the datasets as well as the cliques tend to be

large, the high memory requirements of ADMM render this approach unattractive. As

a consequence, we propose an alternative method that uses fast convolution algorithms

to perform gradient descent that exhibits low memory requirements and requires low

computational complexity. In particular, our approach is capable of handling large-scale

problems, such as those in video applications, which are out of the scope of memory-hungry

ADMM algorithms.

We note that numerical methods for overlapping group sparsity have been studied in
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the context of statistical regression [28, 44, 45], but for different purposes. Yuan et al. [45]

solves the regression variable selection problem using an accelerated gradient descent

approach, whereas Deng [43] and Boyd [44] use consensus ADMM, which does not

scale to high-dimensional problems. Compared to these methods, our approach provides

significant speedups (see Section 2.4).

2.3.2.1 Proximal Minimization and ADMM

The simplest instance of the problem (2.1) is the proximal operator for the penalty

term J in (2.2), defined as follows:

proxJ(v, λ) = arg min
x
‖x− v‖2 + λJ(x). (2.8)

Proximal minimization is a key sub-step in a large number of numerical methods. For ex-

ample, the ADMM for TV minimization [37, 38] requires the computation of the proximal

operator of the `1-norm. For such methods, the regularizer (2.2) is easily incorporated into

the numerical procedure by replacing this proximal minimization with (2.8).

In the simplest case where the cliques in C are small and no other regularizers are

needed, the proximal minimization (2.8) can be computed using ADMM [38, 44]. Similar

approaches have been used for other applications of overlapping group sparsity [43]. It is

key to realize that the regularization term in (2.8) can be reformulated as follows:

x̂ = arg min
x∈RN

‖x− v‖2
2 + λ

s∑

i=1

∑

c∈Ci

‖xc‖2. (2.9)

Here, C1, . . . , Cs are clique subsets for which the cliques in Ci are disjoint. For example,

consider the case where the set of cliques contains all 2 × 2 image patches as shown in
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Figure 2.1(d). For such a scenario, we need four subsets of disjoint cliques to represent

every possible patch. The reformulated problem for the example graph will be of the form

(8.10) with s = 4. In general, if cliques are formed by translating an l × l patch, l2 subsets

of cliques are required so that every subset contains only disjoint cliques.

To apply ADMM to this problem, we need to introduce s auxiliary variables

z1, . . . , zs each representing a copy of the original pixel values. The resulting problem is

{x̂, ẑi ∀i} = arg min
x,{zi}si=1

‖x− v‖2
2 + λ

s∑

i=1

∑

c∈Ci

‖zic‖2

subject to zi = x, ∀i.
(2.10)

This is an example of a consensus optimization problem, which can be solved using

ADMM (see [43] for more details). An important property of this ADMM reformulation

is that each vector zi can be updated in closed form—an immediate result of the disjoint

clique decomposition.

2.3.2.2 Forward-Backward Splitting (FBS) with Fast Fourier Transforms

The above discussed ADMM approach has several drawbacks. First, it is difficult

to incorporate more regularizers (in addition to the support regularizer J) without the

introduction of an excessive amount of additional auxiliary variables. Furthermore, the

method becomes inefficient and memory intensive for large clique sizes and large data-sets

(as it is the case for multiple images). For instance in RPCA, if the cliques are generated

by l × l patches, l2 variables {zi} are required, each having the same dimensionality as

original image data-set NL. Additionally, the dual variables for each equality constraints

in (2.10) will require another l2NL storage entries. As a consequence, for large values of
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l, the memory requirements of ADMM become prohibitive.

We propose a new forward-backward splitting algorithm that exploits fast convolu-

tion operators and prevents the excessive memory overhead of ADMM-based methods.

To this end, we propose to “smoothen” the objective via hyperbolic regularization of the

`2-norm as

‖xc‖2 ≈ ‖xc‖2,ε =
√
x2

1 + · · ·+ x2
n + ε2 (2.11)

for some small ε > 0. For the sake of clarity, we describe the forward-backward splitting

approach in the specific case of robust PCA. Note, however, that other regularizers are

possible with only minor modifications.

Using the proposed support prior (8.7), we write

{Ẑ,X̂}=arg min
Z,X

‖Z‖∗+λJε(X)+ µ
2
‖Y−Z−X‖2

F (2.12)

where

Jε(X) =
∑L

t=1

∑
c∈C ‖Xt,c‖2,ε (2.13)

is the smoothed support regularizer, and Xt,c refers to the clique c drawn from column

t of X. We note that this formulation differs from that in Liu et al. [46], where the

structured sparsity is induced across columns of X rather than blocks, and is solved using

conventional ADMM.

The forward-backward splitting (or proximal gradient) method is a general frame-

work for minimizing objective functions with two terms [47]. For the problem (2.12), the

method alternates between gradient descent steps that only act on the smooth terms in

(2.12), and a backward/proximal step that only acts on the nuclear norm term. The gradient
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of the (smoothed) proximal regularizer in (2.12) is given column-wise (i.e., image-wise)

by

∇Jε(Xt) =
∑

c∈C Xt,c‖Xt,c‖−1
2,ε . (2.14)

The gradient formula (2.14) requires the computation of the sum (2.13) for every clique

c, and then, a summation over the reciprocals of these sums; this is potentially expensive

if done in a naı̈ve way. Fortunately, every block sum can be computed simultaneously

by squaring all of the entries in X, and then convolving the result with a block filter.

The result of this convolution contains the value of ‖Xt,c‖2
2,ε for all cliques c. Each entry

in the result is then raised to the −1/2 power, and convolved again with a block filter

to compute the entries in the gradient (2.14). Both of these two convolution operations

can be computed quickly using fast Fourier transforms (FFTs), so that the computational

complexity becomes independent of clique size.

Algorithm 1 shows the pseudocode for solving (2.12). In Steps 1 and 2, the values

of X and Z are updated using gradient descent on (2.12), ignoring the nuclear norm

regularizer. Step 3 accounts for the nuclear-norm term using its proximal mapping, which

is given by

prox∗(Q, δ) = U(sign(S) ◦max{|S| − δ, 0})VT ,

where Q = USVT is a singular value decomposition of Q, |S| denotes element-wise

absolute value, and ◦ denotes element-wise multiplication.

The forward-backward splitting (FBS) procedure in Algorithm 1 is known to con-

verge for sufficiently small stepsizes α [48]. Practical implementations of FBS 1 include

adaptive stepsize selection [49], backtracking line search, or acceleration [48]. We use the
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Algorithm 1 Forward-backward proximal minimization
Input: Y, µ > 0, λ, Ci, α > 0
Initialize: X(0) = 0, Z(0) = 0
Output: X(n),Z(n)

1: while not converged do
2: Step 1: Forward gradient descent on X ,
3: X

(n)
k = X

(n−1)
k − αλ∇Jε(X)

+αµ(Yk − Z
(n−1)
k −X

(n−1)
k )

4: Step 2: Forward gradient descent on Z,
5: Z

(n)
k = Z

(n−1)
k + αµ(Yk − Z

(n−1)
k −X

(n−1)
k )

6: Step 3: Backward gradient descent on Z,
7: Z(n) = prox∗(Z

(n), α)
8: end while

FASTA solver from [47], which combines such acceleration techniques.

We note that FBS 1 only requires a total of 4NL storage entries for X,Y,Z and

gradient∇Jε(X). However, in order to solve RPCA formulation using ADMM we require

2l2NL storage entries for auxiliary variables (as discussed before) and 4NL storage entries

for the variables X,Y,Z and dual variable of Y = X + Z, leading to total of (2l2 + 4)NL

storage entries. Since the memory usage and runtime of FBS is independent of the clique

size, the advantage of FBS over ADMM is much greater for larger cliques.

2.3.2.3 Matching Pursuit Algorithm

For compressive-sensing problems involving large random matrices, matching pur-

suit algorithms (such as CoSaMP [36]) are an important class of sparse recovery methods.

When signals have structured support, model-based matching pursuit routines have been

proposed that require non-convex minimizations over Markov random fields [3]. In this

section, we propose a model-based matching pursuit algorithm that achieves structured

compressive signal recovery using convex sub-steps for which global minimizers are
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efficiently computable.

The proposed method, Convex Lattice Matching Pursuit (CoLaMP), is a greedy

algorithm that attempts to solve

x̂ = arg min
x
‖Φx− y‖2

2 + λJ(x)

subject to ‖x‖0 ≤ K.

(2.15)

The complete method is listed in Algorithm 2. In Step 1, CoLaMP proceeds like other

matching pursuit algorithms; the unknown signal is estimated by multiplying the residual

by the adjoint of the measurement operator. In Step 2, this estimate is refined by solving a

support regularized problem of the form (2.8). We solve this problem either via ADMM

or the FBS method in Algorithm 1). In Step 3, a least-squares (LS) problem is solved to

identify the signal that best matches the observed data, assuming the correct support was

identified in Step 2. This LS problem is solved by a conjugate gradient method. Finally, in

Step 4, the residual (the discrepancy between Φx and the data vector y) is calculated. The

algorithm is terminated if the residual becomes sufficiently small or a maximum number

of iterations is reached.

CoLaMP has several desirable properties. First, the support set regularization (Step

2) helps to prevent signal support from growing quickly, and thus minimizes the cost of

the least-squares problem in Step 3. Secondly, the use of a convex prior guarantees that a

global minimum is obtained for every subproblem in Step 2, regardless of the considered

clique structure. This is in stark contrast to other model-based recovery algorithms, such

as LaMP1, and model-based CoSaMP [2], which requires the solution to non-convex

optimization problems to enforce structured support set models.
1It is possible to restrict LaMP to planar Ising models, in which case a global optimum is computable [3].
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Algorithm 2 CoLaMP - Convex Lattice Matching Pursuit
Input: y,Φ, K, λ, ε
Initialize: x(0) = 0, s(0) = 0, r(0) = y
Output: x(n)

1: while n ≤ max iterations and ‖r(n)‖2 > ε do
2: Step 1: Form temporary target signal
3: v(n) ← ΦT r(n−1) + x(n−1)

4: Step 2: Refine signal support using convex prior
5: x

(n)
r = arg minx ‖x− v(n)‖2

2 + λJ(x),

6: s← supp(x
(n)
r )

7: Step 3: Estimate target signal
8: Solve ΦT

s Φsxs = ΦT
s y, with Φs = Φ(:, s)

9: Set all but largest K entries in xs to zero,
10: x(n)(s) = xs(s)
11: Step 4: Calculate data residual
12: r(n) ← y −Φx(n)

13: n← n+ 1
14: end while

2.4 Experiments

We now apply the proposed regularizer to a range of datasets to demonstrate its

efficacy for various applications. Unless stated otherwise, we showcase our algorithms

using overlapping cliques of size 2× 2 as shown in Figure 2.1(b). Note that the numerical

algorithms need not be restricted to those discussed above as different schemes (such as

primal-dual decomposition) are needed for different situations.

2.4.1 Compressive Image Recovery

We first consider the recovery of background-subtracted images from compressive

measurements. We use the “walking2” surveillance video data [50] with frames of dimen-

sion 288× 384. Test data is generated by choosing two frames from a video sequence and

computing the pixel-wise difference between their intensities. We compare the output of
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Target CoLaMP (proposed) Overlapping Group Lasso FPC CoSaMP

Figure 2.2: Compressed sensing recovery results for background subtracted images using
M = 3K.

our proposed CoLaMP algorithm to that of other state-of-the-art recovery algorithms, such

as overlapping group lasso [31], fixed-point continuation (FPC) [51] and CoSaMP [36].

Note that CoSaMP defines the support set using the 2K largest components of the error

signal. The group lasso algorithm is equivalent to minimizing the objective in (2.15) using

variational method. Unlike the CoLaMP algorithm, this method does not consider pre-

scribed signal sparsity K. An example recovery using M = 3K measurements is shown

in Figure 2.2. The sparsity level K is chosen such that the recovered images account for

97% of the compressive signal energy. The average K across datasets is 2800 and we fix

λ = 2. Note that the spatially clustered pixels are recovered almost perfectly. Further,

we randomly generated 50 such test images from the above dataset and compared the

performance of the CoLaMP, group lasso, and FPC algorithms under varying numbers of

measurements from 1K to 5K. The performance is measured in terms of the magnitude

of reconstruction error normalized by the original image magnitude. Results are shown

in Figure 2.4 (left). We clearly see that the proposed smooth sparsity prior significantly

improves the reconstruction quality over FPC. Furthermore, our algorithm is 7× faster
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Target CoLaMP Iter. #1 CoLaMP Iter. #2 CoLaMP Iter. #4, 12.9s CoLaMP Iter. #10, 19.9s 

CoLaMP 8-connected, 13.6s CoSaMP Iter. #10, 782.7s FPC Iter. #10, 11.27s FPC Iter. #1000, 42.85s Group Lasso, 9.1s 

Target CoLaMP Iter. #1 CoLaMP Iter. #2 CoLaMP Iter. #4, 12.9s CoLaMP Iter. #10, 19.9s 

CoLaMP 8-connected, 13.6s CoSaMP Iter. #10, 782.7s FPC Iter. #10, 11.27s FPC Iter. #1000, 42.85s Group Lasso, 9.1s 

Target CoLaMP Iter. #1 CoLaMP Iter. #2 CoLaMP Iter. #4, 12.9s CoLaMP Iter. #10, 19.9s 

CoLaMP 8-connected, 13.6s CoSaMP Iter. #10, 782.7s FPC Iter. #10, 11.27s FPC Iter. #1000, 42.85s Group Lasso, 9.1s 

Overlapping Group Lasso, 20s

Figure 2.3: Robust recovery results for the phantom image from a noisy compressed signal.

than the group lasso algorithm. For M/K = 3, the average runtime is 215s for CoLaMP

and 1510s for the group lasso algorithm.

2.4.2 Robust Signal Recovery

We next showcase the suitability of CoLaMP for signal recovery from noisy com-

pressive measurements. We consider a 100 × 100 Shepp—Logan phantom image with

a support size of K = 2636. A Gaussian random measurement matrix was used to sam-

ple M = 2K measurements, and the measurements were corrupted with additive white

Gaussian noise. The signal-to-noise ratio of the resulting measurements is 10 dB. Figure

2.3 shows the original and recovered images for various recovery algorithms. We also

show the output from the first few iterates of the CoLaMP algorithm. The support of the

target signal is almost exactly recovered within four iterations of CoSaMP and stabilizes

by the end of 10 iterations. Figure 2.3 also shows the recovery times of various algorithms

running on the same laptop computer. CoLaMP is approximately 40× faster than the

CoSaMP algorithm and it is at least 2× faster than FPC.
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Figure 2.4: Quantitative Comparison: (left) Recovery performance of compressed sensing
on background subtracted images; (center) Robust compressed sensing recovery error at
various SNR; (right) Average denoising gain in PSNR (dB) for various values of κ

To enable a fair comparison, we also show the output obtained with CoLaMP using

the 8-connected pixel clique in Figure 2.1(c), as well as the output of the group lasso

algorithm [32], where each clique is of size 2× 2. All these algorithms and our proposed

method are implemented using ADMM. Not surprisingly, while all these algorithms beat

CoLaMP in terms of runtime, their recovered signals do not match CoLaMP in terms

of perceived closeness to target signal as shown in Figure 2.3. The CoLaMP results

are regularized by λ0 = 16. We then used an increasing value of λn = 1.02nλ0 where

n is the iteration number. In practice, we obtain better results if λ increases over time
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as it will heavily penalize sparse, blocky noise. For all other algorithms, we used the

implementations provided by the authors.

For detailed quantitative comparisons, we repeat the above experiment using 100

Gaussian random measurement matrices and record the average reconstruction error

with SNR varying from 5 dB to 20 dB. For each algorithm, M is fixed to the minimal

measurement number required to give close to perfect recovery in the presence of noise.

For CoLaMP and overlapping group lasso, we set M = 2K, whereas for FPC and non-

overlapping group lasso we set M = 3.5K. Figure 2.4 (center) illustrates that CoSaMP

outperforms FPC at all SNRs even with 1.5K fewer measurements. Group lasso performs

best at low SNR while its performance flattens out starting at 10 dB.

2.4.3 Color Image Denoising

We now consider a variant of the denoising problem (2.5) where the image gradient

is defined over color images using the decorrelated vectorized TV (D-VTV) proposed

in [40]

x̂ = arg min
x∈R3N

∑

c∈C

λ‖∇dx
`
c‖2 + ‖∇dx

ch
c ‖2

subject to ‖x− y‖2 ≤ κm. (2.16)

Here, ∇dx
` ∈ R2N and ∇dx

ch ∈ R4N represent the stacked gradients of luminance and

chrominance channels of the input color image, the constant m depends on the noise level,

and κ is a fidelity parameter. To solve this problem numerically, we use the primal-dual

algorithm described in [40], but we replace the shrinkage operator with the proximal

operator (2.8) to adapt our clique-based regularizer.
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D-VTV 30.41 dB 

D-VTV 32.29 dB 

Block D-VTV 31.09 dB 

Block D-VTV 32.82 dB Original Noisy 

Figure 2.5: Restoration of noisy images using Block D-VTV and existing D-VTV (best
viewed in color).

Following a protocol similar to D-VTV [40], we conduct experiments using 300

images from the Berkeley Segmentation Database [52]. Noisy images with average PSNR

20 dB are obtained by adding white Gaussian noise. The resulting denoised output of our

method (Block D-VTV) is compared to D-VTV in Figure 2.5. The zoomed-in version

reveals that our method exhibits less uneven color artifacts and less pronounced staircasing

artifacts than the D-VTV results. A quantitative comparison measured using average PSNR

gain (in dB) is drawn in Figure 2.4 (right) for various values of κ. Our method outperforms

D-VTV by 0.25 dB. Also note that our method, Block D-VTV, obtains relatively better

PSNR gain than the state-of-the-art D-VTV method at smaller values of κ. This observed

gain is significant because smaller κ values lead to a tighter fidelity constraint and thus a

smaller solution space around the noisy input. In such situations, Block D-VTV helps to

improve image quality by leveraging input from neighboring pixels.
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Original Frames Low rank component - background Original Robust PCA Robust PCA with block sparsity of 3x3 With block sparsity of 10x10 

Figure 2.6: Sparse-and-low-rank decomposition using original robust PCA and proposed
approach.

2.4.4 Video Decomposition

We consider the robust PCA (RPCA) problem for structured sparsity of size 10× 10

as formulated in (2.12) and using Algorithm 2. We consider the same airport surveillance

video data [53] as in [41] with frames of dimension 144× 176. For a clique formed from

l × l patches, we observed that λ = 1/(l
√
n1) works best for our experiments as opposed

to λ = 1/
√
n1 used in [41]. This is because each element of the matrix X is shared by l2

sparsity inducing terms. The resulting low rank components (background) and foreground

components of three such example video frames are shown in Figure 2.6. For all the

approaches, the low rank components are nearly identical. We observe that the rank of

the low-rank component remains the same. As highlighted with the green box, the noisy

sparse edges appearing in the original RPCA disappear from the foreground component

using our proposed method. We also display the foreground component obtained using
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smaller overlapping cliques of size 3× 3, but solved using ADMM as opposed to forward-

backward splitting (Algorithm 1). We found that for clique size of 10× 10 the ADMM

method becomes intractable because it requires approximately 50× more memory than

the proposed forward-backward splitting method with fast convolutions (i.e., 204NL vs.

4NL).

2.4.5 Structured Dictionary Learning

We finally consider learning structured dictionary on the Extended YaleB Face

database. This database contains 2,414 frontal face cropped images of 38 people taken

under various lighting conditions. The original images of sizes 192× 168 is downsampled

by eight for our experiments. Following the protocol in [42] we randomly select 32

images from each class for training and learn 20 dictionary atoms per class. Hence the

non-overlapping structured sparsity on Z is of size 20 × 32. The above procedure is

repeated five times and the average recognition accuracy on test samples is reported in

Table 2.1. During inference, each test sample is classified based on the maximum group

energy of the inferred latent coefficients maxg∈G ‖zg‖2. The upper half represents all the

Method Accuracy
Ours 97.1

Label consistent low rank [42] 90
Low Rank with structural coherence [54] 89.5

Discriminative Low Rank∗∗ [55] 98.2
Low Rank and Sparse face representation [56] 84.5

Locally constrained linear coding [57] 76
LC-KSVD∗∗ [58] 96.7

Table 2.1: Recognition accuracy on Extended YaleB database using various dictionary
learning approach.

algorithm involving low-rank decomposition of matrix Z whereas ∗∗ indicates the result
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using all the training samples as dictionary atoms.

2.5 Conclusions

We have proposed a novel structured support regularizer for convex sparse recovery.

Our regularizer can be applied to a variety of problems, including sparse-and-low-rank

decomposition and denoising. For compressive signal recovery using large unstructured

matrices, our convex regularizer can be used to improve the recovery quality of existing

matching-pursuit algorithms. Compared to existing algorithms for this task, our proposed

approach enjoys the capability of fast signal reconstruction from fewer measurements

while exhibiting superior robustness against spurious artifacts and noise. For color image

denoising, the restored images reveal more homogeneous color effects. For robust PCA,

we achieve improved foreground-background separation with far fewer artifacts. For

dictionary learning, our proposed approach promotes diversity among the dictionary

atoms with an improved classification accuracy. We envision many more applications that

could benefit of the proposed regularizer, including deblurring, inpainting and multitask

classification.
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Chapter 3: Robust Continuous Clustering

3.1 Introduction

The success with the use of spatial prior for signal recovery motivated us to explore

further and study the utilization of local structure prior used in relevant vision problems.

The literature survey led us to draw connection with the recent algorithm developed for

segmentation and clustering [59–62]. Indeed, most of these algorithm requires similarity

graph as input prior. In a widely used spectral clustering [59] algorithm the similarity graph

is utilized to construct a graph Laplacian matrix. This is followed by eigen-decomposition

and bipartition of graph using second smallest eigen vector. In [60–62], the authors explore

the concept of cluster formation based on continuous MRF objective. Each of these work

independently proposes different algorithm for different penalty on the pairwise term.

The pairwise terms are once again constructed based on the similarity graph input prior.

However, we noted that all of these clustering algorithms are non-scalable, very sensitive

to the hyper-parameters and outliers. Moreover, most of these algorithms is designed to

operate using the number of ground truth clusters which is practically not feasible to obtain

for real world data.

In this chapter, we present a clustering algorithm that is fast, easy to use, and

effective in high dimensions. The algorithm optimizes a clear continuous objective using
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standard numerical methods that scale to massive datasets. The number of clusters need

not be known in advance. The hyper-parameters can be set automatically and need not be

tuned for different datasets. As we will see later, unlike the spectral and other traditional

algorithms, the advantage of optimizing over continuous objective is differentiability and

hence it can be easily back-propagated.

The operation of the algorithm can be understood by contrasting it with other popular

clustering techniques. In center-based algorithms such as k-means [63, 64], a small set of

putative cluster centers is initialized from the data and then iteratively refined. In affinity

propagation [65], data points communicate over a graph structure to elect a subset of

the points as representatives. In the presented algorithm, each data point has a dedicated

representative, initially located at the data point. Over the course of the algorithm, the

representatives move and coalesce into easily separable clusters.

Our formulation is indeed based on the convex relaxations for clustering [60–62].

However, our objective is deliberately not convex. We use redescending robust estimators

that allow even heavily mixed clusters to be untangled by optimizing a single continuous

objective. Despite the nonconvexity of the objective, the optimization can still be performed

using standard linear least-squares solvers, which are highly efficient and scalable. Since

the algorithm expresses clustering as optimization of a continuous objective based on

robust estimation, we call it Robust Continuous Clustering (RCC).

One of the characteristics of the presented formulation is that clustering is reduced

to optimization of a continuous objective. This enables the integration of clustering in

end-to-end feature learning pipelines. We demonstrate this by extending RCC to perform

joint clustering and dimensionality reduction. The extended algorithm, called RCC-DR,
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learns an embedding of the data into a low-dimensional space in which it is clustered.

Embedding and clustering are performed jointly, by an algorithm that optimizes a clear

global objective.

We evaluate RCC and RCC-DR on a large number of datasets from a variety of

domains. These include image datasets, document datasets, a dataset of sensor readings

from the Space Shuttle, and a dataset of protein expression levels in mice. Experiments

demonstrate that our method significantly outperforms prior state-of-the-art techniques.

RCC-DR is particularly robust across datasets from different domains, outperforming the

best prior algorithm by a factor of 3 in average rank. The code is available at https:

//bitbucket.org/sohilas/robust-continuous-clustering/src.

3.2 Model and Algorithms

3.2.1 Formulation

We consider the problem of clustering a set of n data points. The input is denoted

by X = [x1,x2, . . . ,xn], where xi ∈ RD. Our approach operates on a set of representa-

tives U = [u1,u2, . . . ,un], where ui ∈ RD. The representatives U are initialized at the

corresponding data points X. The optimization operates on the representation U, which

coalesces to reveal the cluster structure latent in the data. Thus the number of clusters need

not be known in advance.

The Robust Continuous Clustering (RCC) objective has the following form:

C(U) =
1

2

n∑

i=1

‖xi − ui‖2
2 +

λ

2

∑

(p,q)∈E

wp,q ρ
(
‖up − uq‖2

)
. (3.1)
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Here E is the set of edges in a graph connecting the data points. The graph is constructed

automatically from the data. We use mutual k-nearest neighbors (m-kNN) connectiv-

ity [66], which is more robust than commonly used kNN graphs. The weights wp,q balance

the contribution of each data point to the pairwise terms and λ balances the strength of

different objective terms.

The function ρ(·) is a penalty on the regularization terms. The use of an appropriate

robust penalty function ρ is central to our method. Since we would like representatives

ui of observations from the same latent cluster to collapse into a single point, a natural

penalty would be the `0 norm (ρ(y) = [y 6= 0], where [·] is the Iverson bracket). However,

this transforms the objective into an intractable combinatorial optimization problem. At

another extreme, recent work has explored the use of convex penalties, such as the `1

and `2 norms [60, 61]. This has the advantage of turning objective (3.1) into a convex

optimization problem. However, convex functions—even the `1 norm—have limited

robustness to spurious edges in the connectivity structure E , because the influence of

a spurious pairwise term does not diminish as representatives move apart during the

optimization. Given noisy real-world data, heavy contamination of the connectivity

structure by connections across different underlying clusters is inevitable. Our method

uses robust estimators to automatically prune spurious intercluster connections while

maintaining veridical intracluster correspondences, all within a single continuous objective.

The second term in objective (3.1) is related to the mean shift objective [67]. The

RCC objective differs in that it includes an additional data term, uses a sparse (as opposed

to a fully-connected) connectivity structure, and is based on robust estimation.

Our approach is based on the duality between robust estimation and line pro-
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cesses [68]. We introduce an auxiliary variable lp,q for each connection (p, q) ∈ E and

optimize a joint objective over the representatives U and the line process L = {lp,q}:

C(U,L) =
1

2

n∑

i=1

‖xi − ui‖2
2 +

λ

2

∑

(p,q)∈E

wp,q

(
lp,q‖up − uq‖2

2 + Ψ(lp,q)

)
. (3.2)

Here Ψ(lp,q) is a penalty on ignoring a connection (p, q): Ψ(lp,q) tends to zero when the

connection is active (lp,q → 1) and to one when the connection is disabled (lp,q → 0). A

broad variety of robust estimators ρ(·) have corresponding penalty functions Ψ(·) such

that objectives (3.1) and (3.2) are equivalent with respect to U: optimizing either of the

two objectives yields the same set of representatives U. This formulation is related to

iteratively reweighted least squares (IRLS) [69], but is more flexible due to the explicit

variables L and the ability to define additional terms over these variables.

Objective (3.2) can be optimized by any gradient-based method. However, its form

enables efficient and scalable optimization by iterative solution of linear least-squares

systems. This yields a general approach that can accommodate many robust nonconvex

functions ρ, reduces clustering to the application of highly optimized off-the-shelf linear

system solvers, and easily scales to datasets with hundreds of thousands of points in tens

of thousands of dimensions. In comparison, recent work has considered a specific family

of concave penalties and derived a computationally intensive majorization-minimization

scheme for optimizing the objective in this special case [62]. Our work provides a highly

efficient general solution.

While the presented approach can accommodate many estimators in the same com-

putationally efficient framework, our exposition and experiments will use a form of the
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well-known Geman-McClure estimator [70]:

ρ(y) =
µy2

µ+ y2
, (3.3)

where µ is a scale parameter. The corresponding penalty function that makes objectives

(3.1) and (3.2) equivalent with respect to U is

Ψ(lp,q) = µ(
√
lp,q − 1)2. (3.4)

3.2.2 Optimization

Objective (3.2) is biconvex on (U,L). When variables U are fixed, the individual

pairwise terms decouple and the optimal value of each lp,q can be computed independently

in closed form. When variables L are fixed, objective (3.2) turns into a linear least-squares

problem. We exploit this special structure and optimize the objective by alternatingly up-

dating the variable sets U and L. As a block coordinate descent algorithm, this alternating

minimization scheme provably converges.

When U are fixed, the optimal value of each lp,q is given by

lp,q =

(
µ

µ+ ‖up − uq‖2
2

)2

. (3.5)

This can be verified by substituting (3.5) into (3.2), which yields objective (3.1) with

respect to U.

When L are fixed, we can rewrite (3.2) in matrix form and obtain a simplified

expression for solving U:

arg min
1

2
‖X−U‖2

F +
λ

2

∑

(p,q)∈E

wp,qlp,q‖U(ep − eq)‖2
2, (3.6)
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where ei is an indicator vector with the ith element set to 1. This is a linear least-squares

problem that can be efficiently solved using fast and scalable solvers. The linear least-

squares formulation is given by

UM = X, where M = I + λ
∑

p,q∈E

wp,qlp,q(ep − eq)(ep − eq)
>. (3.7)

Here I ∈ Rn×n is the identity matrix. It is easy to prove that

A ,
∑

p,q∈E

wp,qlp,q(ep − eq)(ep − eq)
> (3.8)

is a Laplacian matrix and hence M is symmetric and positive-semidefinite. As with any

multigrid solver, each row of U in (3.7) can be solved independently and in parallel.

The RCC algorithm is summarized in Algorithm 3. Note that all updates of U and L

optimize the same continuous global objective (3.2).

Algorithm 3 Robust Continuous Clustering
1: input: Data samples {x}ni=1.
2: output: Cluster assignment {ĉi}ni=1.
3: Construct connectivity structure E .
4: Precompute χ = ‖X‖2, wp,q, δ.
5: Initialize ui = xi, lp,q = 1, µ >>max ‖xp − xq‖2

2, λ = χ
‖A‖2 .

6: while |Ct −Ct−1| < ε or t < maxiterations do
7: Update lp,q using (3.5) and A using (3.8).
8: Update {ui}ni=1 using (3.7).
9: Every four iterations, update λ = χ

‖A‖2 , µ = max
(
µ
2
, δ

2

)
.

10: end while
11: Construct graph G = (V ,F) with fp,q = 1 if ‖u∗p − u∗q‖2 < δ.
12: Output clusters given by the connected components of G.

The algorithm employs graduated nonconvexity [71]. It begins with a locally convex

approximation of the objective, obtained by setting µ such that the second derivative of the

estimator is positive (ρ̈(y) > 0) over the relevant part of the domain. Over the iterations,
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µ is automatically decreased, gradually introducing nonconvexity into the objective. The

optimization of U is illustrated in Figure 4.2.

3.2.3 Convergence

Under certain assumptions, such continuation schemes are known to attain solutions

that are close to the global optimum [72]. We briefly outline the argument for the con-

vergence of Algorithm 3 which is based on the convergence of alternating minimization

for biconvex problems [73, 74]. Due to the duality between robust estimation and line

processes, it is sufficient to show convergence w.r.t. objective 3.2. The clustering objective

at iteration t is given by

Et = C(Ut,Lt) =

I︷ ︸︸ ︷
1

2
‖X−U‖2

F +
λ

2

∑

(p,q)∈E

wp,q

(
lp,q‖U(ep − eq)‖2

2 + Ψ(lp,q;µ)

)

︸ ︷︷ ︸
II

.

(3.9)

For convergence we need to prove that Et+1 ≤ Et.

For a fixed λ, Algorithm 3 alternates between optimizing I and II. Each of these

are convex w.r.t. U and L, respectively. This is due to their Hessians being positive

semidefinite:

∂2I
∂U2 = M � 0 (3.10)

∂2II
∂lp,q

2 =
1

2lp,q
√
lp,q
≥ 0 (3.11)

Due to convexity, the stationary points computed for U and L using the first order

condition at each intermediate time step are nothing but the minima of the functions I and
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DRAFT

(a) Initialization (b) Iteration 20 (c) Final

Fig. 1. Robust Continuous Clustering (RCC) on the MNIST dataset. Each data point xi has a corresponding representative ui. The representatives are optimized to reveal the
structure of the data. The different parts of the figure visualize the representation U using the t-SNE algorithm [23]. Ground-truth clusters are coded by color. (a) The initial
state, U = X. (b) The representation U after 20 iterations of the optimization. (c) The final representation produced by the algorithm.

Formulation

We consider the problem of clustering a set of n data points. The input
is denoted by X = [x1,x2, . . . ,xn], where xi œ RD . Our approach
operates on a set of representatives U = [u1,u2, . . . ,un], where
ui œ RD . The representatives U are initialized at the correspond-
ing data points X. The optimization operates on the representation
U, which coalesces to reveal the cluster structure latent in the data.
Thus the number of clusters need not be known in advance. The
optimization of U is illustrated in Figure 1.

The Robust Continuous Clustering (RCC) objective has the fol-
lowing form:

C(U) = 1
2

nÿ

i=1

Îxi ≠ uiÎ2
2 + ⁄

2
ÿ

(p,q)œE

wp,q fl
!
Îup ≠ uqÎ2

"
. [1]

Here E is the set of edges in a graph connecting the data points. The
graph is constructed automatically from the data. We use mutual
k-nearest neighbors (m-kNN) connectivity [27], which is more robust
than commonly used kNN graphs. The weights wp,q balance the
contribution of each data point to the pairwise terms and ⁄ balances
the strength of different objective terms.

The function fl(·) is a penalty on the regularization terms. The use
of an appropriate robust penalty function fl is central to our method.
Since we would like representatives ui of observations from the same
latent cluster to collapse into a single point, a natural penalty would be
the ¸0 norm (fl(y) = [y ”= 0], where [·] is the Iverson bracket). How-
ever, this transforms the objective into an intractable combinatorial
optimization problem. At another extreme, recent work has explored
the use of convex penalties, such as the ¸1 and ¸2 norms [25, 26].
This has the advantage of turning objective (1) into a convex optimiza-
tion problem. However, convex functions—even the ¸1 norm—have
limited robustness to spurious edges in the connectivity structure E ,
because the influence of a spurious pairwise term does not dimin-
ish as representatives move apart during the optimization. Given
noisy real-world data, heavy contamination of the connectivity struc-
ture by connections across different underlying clusters is inevitable.
Our method uses robust estimators to automatically prune spurious
intercluster connections while maintaining veridical intracluster cor-
respondences, all within a single continuous objective.

The second term in objective (1) is related to the mean shift objec-
tive [9]. The RCC objective differs in that it includes an additional
data term, uses a sparse (as opposed to a fully-connected) connectivity
structure, and is based on robust estimation.

Our approach is based on the duality between robust estimation
and line processes [28]. We introduce an auxiliary variable lp,q for
each connection (p, q) œ E and optimize a joint objective over the

representatives U and the line process L = {lp,q}:

C(U,L) = 1
2

nÿ

i=1

Îxi ≠ uiÎ2
2 [2]

+ ⁄

2
ÿ

(p,q)œE

wp,q

3
lp,qÎup ≠ uqÎ2

2 + �(lp,q)
4
.

Here �(lp,q) is a penalty on ignoring a connection (p, q): �(lp,q)
tends to zero when the connection is active (lp,q æ 1) and to one
when the connection is disabled (lp,q æ 0). A broad variety of robust
estimators fl(·) have corresponding penalty functions �(·) such that
objectives (1) and (2) are equivalent with respect to U: optimizing
either of the two objectives yields the same set of representatives
U. This formulation is related to iteratively reweighted least squares
(IRLS) [29], but is more flexible due to the explicit variables L and
the ability to define additional terms over these variables.

Objective (2) can be optimized by any gradient-based method.
However, its form enables efficient and scalable optimization by
iterative solution of linear least-squares systems. This yields a general
approach that can accommodate many robust nonconvex functions fl,
reduces clustering to the application of highly optimized off-the-shelf
linear system solvers, and easily scales to datasets with hundreds of
thousands of points in tens of thousands of dimensions. In comparison,
recent work has considered a specific family of concave penalties
and derived a computationally intensive majorization-minimization
scheme for optimizing the objective in this special case [30]. Our
work provides a highly efficient general solution.

While the presented approach can accommodate many estimators
in the same computationally efficient framework, our exposition and
experiments will use a form of the well-known Geman-McClure
estimator [31]:

fl(y) = µy2

µ + y2 , [3]

where µ is a scale parameter. The corresponding penalty function that
makes objectives (1) and (2) equivalent with respect to U is

�(lp,q) = µ(


lp,q ≠ 1)2. [4]

Optimization

Objective (2) is biconvex on (U,L). When variables U are fixed, the
individual pairwise terms decouple and the optimal value of each lp,q
can be computed independently in closed form. When variables L are
fixed, objective (2) turns into a linear least-squares problem. We ex-
ploit this special structure and optimize the objective by alternatingly
updating the variable sets U and L. As a block coordinate descent
algorithm, this alternating minimization scheme provably converges.

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
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Figure 3.1: Robust Continuous Clustering (RCC) on the MNIST dataset. Each data point
xi has a corresponding representative ui. The representatives are optimized to reveal the
structure of the data. The different parts of the figure visualize the representation U using
the t-SNE algorithm [75]. Ground-truth clusters are coded by color. (a) The initial state,
U = X. (b) The representation U after 20 iterations of the optimization. (c) The final
representation produced by the algorithm.

II. This gives us

Et+
1
2 = C(Ut,Lt+1) ≤ Et = C(Ut,Lt) (3.12)

Et+1 = C(Ut+1,Lt+1) ≤ Et+
1
2 = C(Ut,Lt+1) (3.13)

The above steps show that Et+1 ≤ Et+ 1
2 ≤ Et.

This proves convergence. However, the result is not guaranteed to be a global

optimum due to the non-convexity of the problem. We alleviate this issue by starting with a

convex approximation and gradually introducing non-convexity. Every update for µ and λ

can be considered the start of a new optimization with the initial values for U and L given

by the previous iterate. This ensures that non-convex subproblems are properly initialized.

Recent theoretical analyses of such continuation schemes [72] have shown that they can

approach the global optimum of the original non-convex function.
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3.2.4 Hyper-parameters

The RCC algorithm has five parameters: wp,q, λ, µ, δ, and k for the k-nearest

neighbor graph. The value of k is set to 10. All other parameters are set automatically

using corresponding formulas. Each formula is justified as follows:

1.

wp,q =

∑n
i=1 Ni/n√
NpNq

. (3.14)

This is effectively the ratio of the average degree in the graph to the geometric mean

of the degrees of nodes p and q.

2. The parameter λ in the RCC objective (3.1) balances the strength of the data terms

and pairwise terms. The reformulation of RCC as a linear least-squares problem

enables setting λ automatically. Specifically, equation (3.7) suggests that the data

terms and pairwise terms can be balanced by setting

λ =
‖X‖2

‖A‖2

. (3.15)

This can be easily obtained by considering the objective in 3.2 and differentiating.

The gradient w.r.t. U is given by,

∂C

∂U
= −X + U + λU


 ∑

(p,q)∈E

wp,qlp,q(ep − eq)(ep − eq)
T


 (3.16)

= −X + U + λUA (3.17)

In order to prevent any one term from dominating the gradient, one should balance

the spectral norm of each of the contributing terms. Neglecting the term U in (3.17),

this balance is approximately achieved by setting the ratio ‖X‖2
λ‖A‖2 to one. This leads
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to (3.15). The value of λ is updated automatically according to this formula after

every update of µ. An update only involves computing the largest eigenvalue of the

Laplacian matrix A. The spectral norm of X is precomputed at initialization and

reused.

3. In order to start RCC algorithm with a locally convex approximation of the objective,

µ should be initialize such that the second derivative of the estimator is positive

(ρ̈(y) > 0). In our case, the second derivative is given by

ρ̈(y) =
2µ(µ− 3y2)

(µ+ y2)3
. (3.18)

In order to guarantee ρ̈(y) > 0, one should set µ > 3y2. Given that ui’s are

initialized to xi, this leads us to initialize µ = 3 max ‖xp − xq‖2
2.

4. The threshold δ is set to the mean of the lengths of the shortest 1% of the edges

in E . We assume that the shortest edge in the original graph E is spanned by two

nodes from the same cluster. The length of this shortest edge is therefore a natural

threshold for the connected components in the new graph. However, due to noisy

data, sparse features, and data sample replication, this value is unreliable and can be

as low as zero. Hence, we set δ to an average over 1% of the shortest edge lengths in

E .

The termination conditions are set to maxiterations = 100 and ε = 0.1.

3.2.5 Joint Clustering and Dimensionality Reduction

The RCC formulation can be interpreted as learning a graph-regularized embedding

U of the data X. In the algorithm presented in the preceding sections, the dimensionality
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of the embedding U is the same as the dimensionality of the data X. However, since

RCC optimizes a continuous and differentiable objective, it can be used within end-to-end

feature learning pipelines. We now demonstrate this by extending RCC to perform joint

clustering and dimensionality reduction. Such joint optimization has been considered

in recent work [76, 77]. The algorithm we develop, RCC-DR, learns a linear mapping

into a reduced space in which the data is clustered. The mapping is optimized as part

of the clustering objective, yielding an embedding in which the data can be clustered

most effectively. RCC-DR inherits the appealing properties of RCC: clustering and

dimensionality reduction are performed jointly by optimizing a clear continuous objective,

the framework supports nonconvex robust estimators that can untangle mixed clusters, and

optimization is performed by efficient and scalable numerical methods.

We begin by considering an initial formulation for the RCC-DR objective:

C(U,Z,D) = ‖X−DZ‖2
2 + γ

n∑

i=1

‖zi‖1 + ν




n∑

i=1

‖zi − ui‖2
2 +

λ

2

∑

(p,q)∈E

wp,qρ (‖up − uq‖2)


 .

(3.19)

Here D ∈ RD×d is a dictionary, zi ∈ Rd is a sparse code corresponding to the ith data

sample, and ui ∈ Rd is the low-dimensional embedding of xi. For a fixed D, the parameter

ν balances the data term in the sparse coding objective with the clustering objective in the

reduced space. This initial formulation (3.19) is problematic because in the beginning of

the optimization the representation U can be noisy due to spurious intercluster connections

that have not yet been disabled. This had no effect on the convergence of the original RCC

objective (3.1), but in formulation (3.19) the contamination of U can infect the sparse

coding system via Z and corrupt the dictionary D. For this reason, we use a different
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formulation that has the added benefit of eliminating the parameter ν:

C(U,Z,D) = ‖X−DZ‖2
2 + γ

n∑

i=1

‖zi‖1 +
n∑

i=1

ρ1 (‖zi − ui‖2) +
λ

2

∑

(p,q)∈E

wp,qρ2 (‖up − uq‖2) .

(3.20)

Here we replaced the `2 penalty on the data term in the reduced space with a robust penalty.

We use the Geman-McClure estimator (3.3) for both ρ1 and ρ2.

To optimize objective (3.20), we introduce line processes L1 and L2 corresponding

to the data and pairwise terms in the reduced space, respectively, and optimize a joint

objective over U, Z, D, L1, and L2. The optimization is performed by block coordinate

descent over these groups of variables. The line processes L1 and L2 can be updated in

closed form as in (3.5). The variables U are updated by solving the linear system

UMdr = ZH, (3.21)

where

Mdr = H + λ
∑

p,q∈E

wp,ql
2
p,q(ep − eq)(ep − eq)

> (3.22)

and H is a diagonal matrix with hi,i = l1i .

The dictionary D and codes Z are initialized using PCA. (The K-SVD algorithm can

also be used for this purpose [78].) The variables Z are updated by accelerated proximal

gradient descent steps [79]:

Z̄ = Zt + ωt(Zt − Zt−1) (3.23)

Zt+1 = proxτγ‖.‖1

(
Z̄− τ

(
D>(−X + DZ̄) + (Z̄−U)H

))
,

where τ = 1

‖D>D‖
2
+‖H‖2

and ωt = t
t+3

. The proxε‖.‖1 operator performs elementwise
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Algorithm 4 Joint Clustering and Dimensionality Reduction
1: input: Data samples {x}ni=1, dimensionality d, parameters γ, ξ, η.
2: output: Cluster assignment {ĉi}ni=1 and latent factors D.
3: Construct connectivity structure E .
4: Initialize dictionary D and codes Z.
5: Precompute wp,q, δ1, δ2.
6: Initialize ui = zi, l

1
i = 1, l2p,q = 1, µ1 = ξδ1, µ2 >>max ‖zp − zq‖2

2, λ.
7: while |Ct −Ct−1| < ε or t < maxiterations do
8: Update l1i and l2p,q using (3.5).
9: Update {zi}ni=1 using (3.23).

10: Update {ui}ni=1 using (3.21).
11: Every four iterations, update λ, µi = max

(
µi
2
, δi

2

)
.

12: Every ten iterations, update D using (3.26).
13: end while
14: Construct graph G = (V ,F) with fp,q = 1 if ‖u∗p − u∗q‖2 < δ2.
15: Output clusters given by the connected components of G.

soft thresholding:

proxε‖.‖1(v) = sign(v) max
(
0, |v| − ε

)
. (3.24)

The variables D are updated using

D̄ = XZ>
(
ZZ> + βI

)−1
(3.25)

Dt+1 = ηDt + (1− η)D̄, (3.26)

where β is a small regularization value set to β = 10−4 trace(ZZ>).

The RCC-DR algorithm is summarized in Algorithm 4. The RCC-DR algorithm

has additional sparse coding parameters: d, γ, η, and ξ. They are set to heuristic values

that are fixed across all datasets; d = 100, ξ = 8, γ = 0.2, and η = 0.9. In next section,

we demonstrates that the RCC-DR algorithms is robust to different settings of these sparse

coding parameters. The dictionary is initialized using PCA components. Due to the small

input dimension, we set d = 8 for the Shuttle, Pendigits, and Mice Protein datasets. The

parameters δ2 and µ2 in RCC-DR are computed using Z, by analogy to their counterparts
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in RCC. To set δ1, we compute the distance ri of each data point zi from the mean of data

Z and set δ1 = mean(2ri). The initial value of µ1 is set to µ1 = ξδ1. The parameter λ is

initialize and updated automatically using,

λ =
‖ZH‖2

‖A‖2 + ‖H‖2

. (3.27)

3.3 Experiments

3.3.1 Datasets

We have conducted experiments on datasets from multiple domains. The dimension-

ality of the data in the different datasets varies from 9 to just below 50,000. Reuters-21578

is the classic benchmark for text classification, comprising 21,578 articles that appeared

on the Reuters newswire in 1987. RCV1 is a more recent benchmark of 800,000 manually

categorized Reuters newswire articles [80]. (Due to limited scalability of some prior

algorithms, we use 10,000 random samples from RCV1.) Shuttle is a dataset from

NASA that contains 58,000 multivariate measurements produced by sensors in the radia-

tor subsystem of the Space Shuttle; these measurements are known to arise from seven

different conditions of the radiators. Mice Protein is a dataset that consists of the

expression levels of 77 proteins measured in the cerebral cortex of 8 classes of control and

trisomic mice [81]. The last two datasets were obtained from the UCI machine learning

repository [82].

MNIST is the classic dataset of 70,000 hand-written digits [83]. Pendigits is

another well-known dataset of hand-written digits [84]. The Extended Yale Face Database

B (YaleB) contains images of faces of 28 human subjects [85]. The YouTube Faces
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Table 3.1: Datasets used in experiments. For each dataset, the table reports the number
of instances, number of dimensions, number of ground-truth clusters, and the imbalance,
defined as the ratio of the largest and smallest cardinalities of ground-truth clusters.

Name Instances Dimensions Classes Imbalance

MNIST [83] 70,000 784 10 ∼1
Coil-100 [87] 7,200 49,152 100 1
YaleB [85] 2,414 32,256 38 1
YTF [86] 10,036 9,075 40 13
Reuters-21578 9,082 2,000 50 785
RCV1 [80] 10,000 2,000 4 6
Pendigits [84] 10,992 16 10 ∼1
Shuttle 58,000 9 7 4,558
Mice Protein [81] 1,077 77 8 ∼1

Database (YTF) contains videos of faces of different subjects [86]; we use all video frames

from the first 40 subjects sorted in chronological order. Columbia University Image Library

(COIL-100) is a classic collection of color images of 100 objects, each imaged from 72

viewpoints [87]. The datasets are summarized in Table 3.1.

3.3.2 Implementation

We use approximate nearest neighbor search to construct the connectivity structure

[88] and a conjugate gradient solver for linear systems [89].

3.3.3 Baselines

We compare RCC and RCC-DR to thirteen baselines, which include widely known

clustering algorithms as well as recent techniques that were reported to achieve state-of-

the-art performance. Our baselines are k-means++ [64], Gaussian mixture models (GMM),

fuzzy clustering, mean shift clustering (MS) [67], two variants of agglomerative clustering
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(AC-Complete and AC-Ward), normalized cuts (N-Cuts) [59], affinity propagation (AP)

[65], Zeta l-links (Zell) [90], spectral embedded clustering (SEC) [91], clustering using

local discriminant models and global integration (LDMGI) [92], graph degree linkage

(GDL) [93], and path integral clustering (PIC) [94].

3.3.4 Measures

The normalized mutual information (NMI) has emerged as the standard measure

for evaluating clustering accuracy in the machine learning community [95]. However,

NMI is known to be biased in favor of fine-grained partitions. For this reason, we use the

adjusted mutual information (AMI), which removes this bias [96]. This measure is defined

as follows:

AMI(c, ĉ) =
MI(c, ĉ)− E[MI(c, ĉ)]√
H(c)H(ĉ)− E[MI(c, ĉ)]

. (3.28)

Here H(·) is the entropy, MI(·, ·) is the mutual information, and c and ĉ are the two

partitions being compared.

3.3.5 Results

Results on all datasets are reported in Table 4.2. In addition to accuracy on each

dataset, the table also reports the average rank of each algorithm across datasets. For

example, if an algorithm achieves the third highest accuracy on half of the datasets and

the fourth highest on the other half, its average rank is 3.5. If an algorithm did not yield a

result on a dataset due to its size, that dataset is not taken into account in computing the

average rank of the algorithm.
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RCC or RCC-DR achieve the highest accuracy on 7 of the 9 datasets. RCC-DR

achieves the highest or second highest accuracy on 8 of the 9 datasets and RCC achieves

the highest or second highest accuracy on 5 datasets. The average rank of RCC-DR and

RCC is 1.6 and 2.4, respectively. The best-performing prior algorithm, LDMGI, has an

average rank of 4.9, three times higher than the rank of RCC-DR. This indicates that

the performance of prior algorithms is not only lower than the performance of RCC and

RCC-DR, it is also inconsistent, since no prior algorithm clearly leads the others across

datasets. In contrast, the low average rank of RCC and RCC-DR indicates consistently

high performance across datasets.

3.3.6 Clustering gene expression data

We have conducted an additional comprehensive evaluation on a large-scale bench-

mark that consists of more than thirty cancer gene expression datasets, collected for the

purpose of evaluating clustering algorithms [97]. The maximum number of samples across

datasets is only 248 and for all but one dataset the dimension D >> n. Since these datasets

are statistically very different from those discussed earlier, for each algorithm we retune the

major parameters. For both RCC and RCC-DR, we set k = 9. For RCC-DR we set d = 12

and γ = 0.5. The author-provided code for GDL breaks on these datasets. The results are

reported in Table 3.4. RCC-DR achieves the highest accuracy on 8 of the datasets. Among

the prior algorithms, affinity propagation achieves the highest accuracy on 6 of the datasets

and all others on fewer. Overall, RCC-DR achieves the highest average AMI across the

datasets.
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3.4 Analysis

3.4.1 Running time

The execution time of RCC-DR optimization is visualized in Figure 3.2. For ref-

erence, we also show the corresponding timings for affinity propagation, a well-known

modern clustering algorithm [65], and LDMGI, the baseline that demonstrated the best

performance across datasets [92]. Figure 3.2 shows the running time of each algorithm

on randomly sampled subsets of the 784-dimensional MNIST dataset. We sample subsets

of different sizes to evaluate runtime growth as a function of dataset size. Performance is

measured on a workstation with an Intel Core i7-5960x CPU clocked at 3.0 GHz. RCC-DR

clusters the whole MNIST dataset within 200 seconds, whereas affinity propagation takes

37 hours and LDMGI takes 17 hours for 40,000 points.

3.4.2 Visualization

We now qualitatively analyze the output of RCC by visualization. We use the MNIST

dataset for this purpose. On this dataset, RCC identifies 17 clusters. Nine of these are large

clusters with more than 6,000 instances each. The remaining eight are small clusters that

encapsulate outlying data points: seven of these contain between 2 and 11 instances, and

one contains 148 instances. Figure 3.3(a) shows 10 randomly sampled data points xi from

each of the large clusters discovered by RCC. Their corresponding representatives ui are

shown in Figure 3.3(b). Figure 3.3(c) shows 2 randomly sampled data points from each of

the small outlying clusters. Additionally, figure 3.4(a) shows 10 randomly sampled data
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points xi from each of 10 clusters randomly sampled from the clusters discovered by RCC

on the Coil-100 dataset and figure 3.4(b) shows the corresponding representatives ui.

Table 3.3 compares the representation U learned by RCC to representations learned

by the best-performing prior algorithms, LDMGI and N-Cuts. We use the MNIST dataset

for this purpose and visualize the output of the algorithms on a subset of 5,000 randomly

sampled instances from this dataset. Both of the prior algorithms construct Euclidean

representations of the data, which can be visualized by dimensionality reduction. We use

t-SNE [75] to visualize the representations discovered by the algorithms. As shown in

Table 3.3, the representation discovered by RCC cleanly separates the different clusters by

significant margins. In contrast, the prior algorithms fail to discover the structure of the

data and leave some of the clusters intermixed.
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Figure 3.2: Runtime comparison of RCC-DR with AP and LDMGI. Runtime is evaluated
as a function of dataset size, using randomly sampled subsets of different sizes from the
MNIST dataset.
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(a) Samples from large clusters discovered by RCC (b) Corresponding samples from the learned representation U (c) Outliers

Fig. 3. Visualization of RCC output on the MNIST dataset. (a) 10 randomly sampled instances xi from each large cluster discovered by RCC, one cluster per row. (b)
Corresponding representatives ui from the learned representation U. (c) 2 random samples from each of the small outlying clusters discovered by RCC.

(a) RCC (b) LDMGI (c) N-Cuts

Fig. 4. Visualization of the representations learned by RCC and the best-performing prior algorithms, LDMGI and N-Cuts. The algorithms are run on 5,000 randomly sampled
instances from the MNIST dataset. The learned representations are visualized using t-SNE.
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Figure 3.3: Visualization of RCC output on the MNIST dataset. (a) 10 randomly sampled
instances xi from each large cluster discovered by RCC, one cluster per row. (b) Corre-
sponding representatives ui from the learned representation U. (c) 2 random samples from
each of the small outlying clusters discovered by RCC.

(a) Samples xi from 10 random clusters produced by RCC (b) Corresponding representatives ui

Fig. 7. Visualization of RCC output on the Coil-100 dataset. (a) 10 randomly sampled instances xi from each of 10 clusters randomly sampled from clustered discovered by
RCC, one cluster per row. (b) Corresponding representatives ui from the learned representation U.

Table 6. Success of the learned representation U in capturing the structure of the data, evaluated by running prior clustering algorithms
on U instead of X. Left: using the representation learned by RCC as input to prior clustering algorithms. Right: using the representation
learned by RCC-DR. Accuracy is measured by AMI. The accuracy of prior algorithms increases substantially when a representation learned
by RCC or RCC-DR is used as input instead of the original data.

Dataset
RCC RCC-DR

k-means++ AC-W AP SEC LDMGI GDL k-means++ AC-W AP SEC LDMGI GDL

MNIST 0.879 0.879 0.647 0.866 0.863 n/a 0.808 0.809 0.679 0.808 0.808 n/a
Coil-100 0.958 0.963 0.956 0.937 0.932 0.919 0.959 0.960 0.956 0.930 0.942 0.916
YTF 0.800 0.814 0.840 0.737 0.638 0.455 0.803 0.817 0.879 0.726 0.689 0.464
YaleB 0.960 0.964 0.975 0.957 0.872 0.566 0.967 0.967 0.974 0.958 0.872 0.541
Reuters 0.544 0.544 0.511 0.472 0.372 0.341 0.545 0.545 0.525 0.492 0.528 0.421
RCV1 0.460 0.425 0.368 0.461 0.301 0.018 0.488 0.474 0.384 0.455 0.209 0.026
Pendigits 0.750 0.717 0.759 0.730 0.526 0.630 0.742 0.729 0.756 0.706 0.742 0.676
Shuttle 0.255 0.291 0.338 0.343 0.132 n/a 0.275 0.340 0.344 0.495 0.327 n/a
Mice Protein 0.584 0.543 0.641 0.465 0.312 0.335 0.538 0.539 0.630 0.434 0.376 0.261
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Figure 3.4: Visualization of RCC output on the Coil-100 dataset. (a) 10 randomly sampled
instances xi from each of 10 clusters randomly sampled from clustered discovered by RCC,
one cluster per row. (b) Corresponding representatives ui from the learned representation
U.
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3.4.3 Robustness to hyperparameter settings

The parameters of the RCC algorithm are set automatically based on the data.

The RCC-DR algorithm does have a number of parameters but is largely insensitive to

their settings. In the following experiment, we vary the sparse-coding parameters d, η,

and γ in the ranges d = (40 : 20 : 200), η = (0.55 : 0.05 : 0.95), and γ = (0.1 : 0.1 : 0.9).

Figures 3.5(a) and 3.5(b) compare the sensitivity of RCC-DR to these parameters with

the sensitivity of the best-performing prior algorithms to their key parameters. For each

baseline, we use the default search range proposed in their respective papers. The x-axis in

Figure 3.5 corresponds to the parameter index. As the figure demonstrates, the accuracy of

RCC-DR is robust to hyperparameter settings: the relative change of RCC-DR accuracy

in AMI on YaleB is 0.005, 0.008, and 0 across the range of d, η, and γ, respectively.

On the other hand, the sensitivity of the baselines is much higher: the relative change in

accuracy of SEC, LDMGI, N-Cuts, and GDL is 0.091, 0.049, 0.740, and 0.021, respectively.

Moreover, for SEC, LDMGI, and GDL no single parameter setting works best across

different datasets.

3.4.4 Robustness to dataset imbalance

We now evaluate the robustness of different approaches to imbalance in class sizes.

This experiment uses the MNIST dataset. We control the degree of imbalance by varying a

parameter s between 0.1 and 1. The class “0” is sampled with probability s, the class “9”

is sampled with probability 1, and the sampling probabilities of other classes vary linearly

between s and 1. For each value of s, we sample 10,000 data points and evaluate the
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Table 3. Parameter settings for baselines.

Baseline Parameters

GMM Diagonal covariance; regularization constant = 10≠3

fuzzy Exponent œ
!
1.1, 1.2[1:1:9]

"

MS Flat kernel; Estimated bandwidth h’s quantile parameter œ
[0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1]

N-Cuts Graph construction parameters: order = 3,
scale œ (0.1 : 0.1 : 1) ◊ maxwij

AP preference = median of similarities, damping factor = 0.9,
max iter = 1000, convergence iter = 100

Zell Graph construction parameter a œ
!
10[≠2:0.5:2]

"

SEC µ œ
!
10[≠9:3:15]

"
, “ = 1

LDMGI Regularization constant ⁄ œ
!
10[≠8:2:8]

"

GDL Graph construction parameter a œ
!
10[≠2:0.5:2]

"

PIC Graph construction parameter a œ
!
10[≠2:0.5:2]

"

for each algorithm we retune the major parameter for the same range
as given in Table 3. For both RCC and RCC-DR, we set k = 9. For
RCC-DR we set d = 12 and “ = 0.5. The author-provided code for
GDL breaks on these datasets.

Robustness to hyperparameter settings. The parameters of the
RCC algorithm are set automatically based on the data. The RCC-DR
algorithm does have a number of parameters but is largely insensitive
to their settings. In the following experiment, we vary the sparse-
coding parameters d, ÷, and “ in the ranges d = (40 : 20 : 200),
÷ = (0.55 : 0.05 : 0.95), and “ = (0.1 : 0.1 : 0.9). Figures 5(a) and
5(b) compare the sensitivity of RCC-DR to these parameters with
the sensitivity of the best-performing prior algorithms to their key
parameters. For each baseline, we use the default search range pro-
posed in their respective papers. The x-axis in Figure 5 corresponds
to the parameter index. As the figure demonstrates, the accuracy of
RCC-DR is robust to hyperparameter settings: the relative change of
RCC-DR accuracy in AMI on YaleB is 0.005, 0.008, and 0 across the
range of d, ÷, and “, respectively. On the other hand, the sensitivity of
the baselines is much higher: the relative change in accuracy of SEC,
LDMGI, N-Cuts, and GDL is 0.091, 0.049, 0.740, and 0.021, respec-
tively. Moreover, for SEC, LDMGI, and GDL no single parameter
setting works best across different datasets.

Robustness to dataset imbalance. We now evaluate the robust-
ness of different approaches to imbalance in class sizes. This experi-
ment uses the MNIST dataset. We control the degree of imbalance by
varying a parameter s between 0.1 and 1. The class “0” is sampled
with probability s, the class “9” is sampled with probability 1, and the
sampling probabilities of other classes vary linearly between s and 1.
For each value of s, we sample 10,000 data points and evaluate the
accuracy of RCC, RCC-DR, and the top-performing baselines on the
resulting dataset. The results are reported in Figure 6. The RCC and
RCC-DR algorithms retain their accuracy advantage on imbalanced
datasets.

Visualization. Figure 7(a) shows 10 randomly sampled data points
xi from each of 10 clusters randomly sampled from the clusters
discovered by RCC on the Coil-100 dataset. Figure 7(b) shows the
corresponding representatives ui.
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Fig. 5. Robustness to hyperparameter settings on the YaleB and Reuters datasets.
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Fig. 6. Robustness to dataset imbalance.

Learned representation. One way to quantitatively evaluate the
success of the learned representation U in capturing the structure
of the data in to use it as input to other clustering algorithms and to
evaluate whether they are more successful on U than they are on the
original data X. The results of this experiment are reported in Table 6.
The left part of the table reports the performance of multiple baselines
when they are given, as input, the representation U produced by RCC.
The right part of the table reports corresponding results when the
baselines are given the representation U produced by RCC-DR.

The results indicate that the performance of prior clustering al-
gorithms improves significantly when they are run on the represen-
tations learned by RCC and RCC-DR. The accuracy improvements
for k-means++, AC-Ward, and affinity propagation are particularly
notable.
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Figure 3.5: Robustness to hyperparameter settings on the YaleB and Reuters datasets.

accuracy of RCC, RCC-DR, and the top-performing baselines on the resulting dataset. The

results are reported in Figure 3.6. The RCC and RCC-DR algorithms retain their accuracy
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advantage on imbalanced datasets.
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Figure 3.6: Robustness to dataset imbalance.

3.4.5 Learned representation

One way to quantitatively evaluate the success of the learned representation U in

capturing the structure of the data in to use it as input to other clustering algorithms and

to evaluate whether they are more successful on U than they are on the original data X.

The results of this experiment are reported in Table 3.5. The left part of the table reports

the performance of multiple baselines when they are given, as input, the representation

U produced by RCC. The right part of the table reports corresponding results when the

baselines are given the representation U produced by RCC-DR.

The results indicate that the performance of prior clustering algorithms improves

significantly when they are run on the representations learned by RCC and RCC-DR. The

accuracy improvements for k-means++, AC-Ward, and affinity propagation are particularly

notable.
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3.4.6 Connection with Solution Path and Mean Shift Clustering

The RCC objective (3.1) shares similarity with that of solution path [62] (SPC)

and mean-shift [67] (MS) clustering formulation. In this section, we highlight subtle but

significant differences which led to establishment of highly efficient - RCC and RCC-DR

algorithms.

1. SPC considers a specific family of concave penalties and derives a computationally

intensive majorization-minimization scheme for optimizing the objective for this

special case. It transforms the original objective to an approximate dual objective

using the majorization step. With this approximation, SPC can only optimize for

an upper bound of the original objective. In contrast, our work provides a highly

efficient general solution and it is based on an exact duality between robust estimation

and line processes. As noted in section 3.2.2, solving for the dual variables and

substituting them in (3.2) gives back the original objective (3.1). Hence, there is no

approximation involved.

2. In SPC, a pairwise penalty is imposed between every pair of datapoints. This is a

major drawback that prevents SPC from scaling to large datasets. The largest dataset

considered in the SPC work is of 5,765 samples and dimensionality 16.

3. In order to speed up the clustering process, SPC merges centroids intermittently

and then restarts the process with a new objective. This step establishes SPC to

be similar to the existing agglomerative hierarchical clustering algorithms. The

only difference w.r.t. hierarchical clustering is that SPC has a different objective

and merging criterion. All this was based on an assumption that is at the center

61



of the SPC formulation: that “with iteration the number of clusters should always

decrease”. However, this is not necessarily true. In Table 3.6, we plot clustering

accuracy and the number of clusters on the MNIST dataset over the course of the

RCC algorithm. The clustering accuracy increases monotonically. But the number of

clusters (according to the criterion in lines 11-12 of Algorithm 3) is not monotonic:

it increases and decreases over time, indicating that clusters split and merge during

the optimization. This is also consistent with theory.

4. SPC has two major parameters: λ and δ. These are analogous to λ and µ in RCC. In

SPC the penalty function is a function of both λ and δ. This leads to a complex rule

for λ updates and for the initialization of δ, requiring three additional user-defined

parameters: ω, φ, and τ . On the other hand, RCC only has a single user-defined

parameter, k.

5. SPC does not provide a single clustering solution. Instead, it provides a set of

solutions to choose from. Like hierarchical clustering, SPC is run until all the data

points are merged into a single cluster. Any of the intermediate configurations can

be chosen as the output of the algorithm. In contrast, RCC optimizes an objective

deterministically while yielding a stable non-trivial clustering at the end, which

serves as the output.

6. MS is based on the theory of kernel density estimation [67, 98]. In MS, each

individual data sample xi is associated with its centroid zi. The MS objective is

given by

F (Z) =
∑

i,j

H(zi − zj;h), (3.29)
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where H(·) is a smoothing kernel and h is a bandwidth parameter. The commonly

used smoothing kernels are Epanechnikov and Gaussian functions. The zi’s are

initialized with xi’s and updated every iteration using the above objective. Note

that (3.29) is similar to the pairwise term in 3.1. A major difference between the

two objectives is that 3.1 has an additional data term. This data term constraints the

representatives to remain near their data points. This impedes outliers from merging

into legitimate clusters. In comparison, the MS objective does not include this data

term and is hence more susceptible to outliers.

7. MS usually employs flat or Gaussian kernels whereas RCC utilizes robust M-

estimators. The use of a redescending penalty function is critical to RCC’s success,

since spurious edge connections are automatically pruned as part of the continuous

optimization.

8. It is well known that MS does not scale to large datasets. Like SPC, MS also imposes

a pairwise term on every pair of datapoints. This quadratic increase in the number

of terms severely limits the scalability of MS. We note that the flat kernel, which

is popularly employed in MS, imposes a cut-off distance for the consideration of

pairwise terms, but identifying the active pairwise terms is still a procedure with

quadratic complexity in the limit, and the number of active terms can be quadratic.

9. In MS, during every iteration each representative zi is updated using a different set

of neighbors. This is due to the fact that the set of active pairwise terms can change

from iteration to iteration. In contrast, in RCC the underlying sparse graph is fixed.

10. In MS, the bandwidth parameter h is fixed throughout the algorithm. In RCC, with

the application of graduated non-convexity, the shape of the penalty changes during
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the optimization.

3.5 Conclusion

We have presented a clustering algorithm that optimizes a continuous objective

based on robust estimation. The objective is optimized using linear least-squares solvers,

which scale to large high-dimensional datasets. The robust terms in the objective enable

separation of entangled clusters, yielding high accuracy across datasets and domains.

The continuous form of the clustering objective allows it to be integrated into end-

to-end feature learning pipelines. We have demonstrated this by extending the algorithm

to perform joint clustering and dimensionality reduction. In the next chapter, we further

leverage this property of the presented formulation by optimizing compositional nonlinear

mappings of the data into Euclidean spaces in which clustering is performed. This supports

the use of clustering as an objective for unsupervised end-to-end feature learning.
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Chapter 4: Deep Continuous Clustering

4.1 Introduction

Despite decades of progress of clustering algorithms, reliable clustering of noisy high-

dimensional datasets remains an open problem. High dimensionality poses a particular

challenge because assumptions made by many algorithms break down in high-dimensional

spaces [99–101]. One such example is that the interpoint distances can become less

informative in high-dimensional spaces.

There are techniques that reduce the dimensionality of data by embedding it in a

lower-dimensional space [102]. Such general techniques, based on preserving variance or

dissimilarity, may not be optimal when the goal is to discover cluster structure. Dedicated

algorithms such as RCC-DR and [103, 104] have been developed that combine dimension-

ality reduction and clustering by fitting low-dimensional subspaces. Such algorithms can

achieve better results than pipelines that first apply generic dimensionality reduction and

then cluster in the reduced space. However, frameworks such as subspace clustering and

projected clustering operate on linear subspaces and are therefore limited in their ability to

handle datasets that lie on nonlinear manifolds.

Recent approaches have sought to overcome this limitation by constructing a nonlin-

ear embedding of the data into a low-dimensional space in which it is clustered [105–108].
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Ultimately, the goal is to perform nonlinear embedding and clustering jointly, such that the

embedding is optimized to bring out the latent cluster structure. These works have achieved

impressive results. Nevertheless, they are based on classic center-based, divergence-based,

or hierarchical clustering formulations and thus inherit some limitations from these classic

methods. In particular, these algorithms require setting the number of clusters a priori. And

the optimization procedures they employ involve discrete reconfigurations of the objective,

such as discrete reassignments of datapoints to centroids or merging of putative clusters in

an agglomerative procedure. Thus it is challenging to integrate them with an optimization

procedure that modifies the embedding of the data itself.

We seek a procedure for joint nonlinear embedding and clustering that overcomes

some of the limitations of prior formulations. There are a number of characteristics we

consider desirable. First, we wish to express the joint problem as optimization of a single

continuous objective. Second, this optimization should be amenable to scalable gradient-

based solvers such as modern variants of SGD. That is, we wish to largely abstract the

objective from the optimization algorithm and its implementation. Third, the formulation

should not require setting the number of clusters a priori, since this number is often not

known in advance.

While any one of these desiderata can be fulfilled by some existing approaches,

the combination is challenging. For example, it has long been known that the k-means

objective can be optimized by SGD [109]. But this family of formulations requires

positing the number of clusters k in advance. Furthermore, the optimization is punctuated

by discrete reassignments of datapoints to centroids, and is thus hard to integrate with

continuous embedding of the data.
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In this chapter, we present a formulation for joint nonlinear embedding and clustering

that possesses all of the aforementioned desirable characteristics. Our approach is rooted

in RCC. The basic RCC formulation (3.1) has the characteristics we seek, such as a

clear continuous objective and no prior knowledge of the number of clusters. However,

integrating it with deep nonlinear embedding is still a challenge. For instance, a RCC-

DR formulation for joint linear embedding and clustering relies on a complex alternating

optimization scheme with linear least-squares subproblems, and does not apply to nonlinear

embeddings.

We present an integration of the RCC objective with dimensionality reduction

that is simpler and more direct than RCC-DR, while naturally handling deep nonlinear

embeddings. New formulation avoids alternating optimization and the introduction of

auxiliary dual variables. A deep nonlinear embedding of the data into a low-dimensional

space is optimized while the data is clustered in the reduced space. The optimization is

expressed by a global continuous objective and conducted by standard gradient-based

solvers. The code is available at https://github.com/shahsohil/DCC.

4.2 Model and Algorithm

4.2.1 Formulation

Let X = [x1, . . . ,xN ] be a set of points in RD that must be clustered.Generic

clustering algorithms that operate directly on X rely strongly on interpoint distances.

When D is high, these distances become less informative [99, 100]. Hence most clustering

algorithms do not operate effectively in high-dimensional spaces. To overcome this
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problem, we embed the data into a lower-dimensional space Rd. The embedding of the

dataset into Rd is denoted by Z = [z1, . . . , zN ]. The function that performs the embedding

is denoted by fθ : RD → Rd. Thus zi = fθ(xi) for all i.

Our goal is to cluster the embedded dataset Z and to optimize the parameters θ of

the embedding as part of the clustering process. This formulation presents an obvious

difficulty: if the embedding fθ can be manipulated to assist the clustering of the embedded

dataset Z, there is nothing that prevents fθ from distorting the dataset such that Z no longer

respects the structure of the original data. We must therefore introduce a regularizer on θ

that constrains the low-dimensional image Z with respect to the original high-dimensional

dataset X. To this end, we also consider a reverse mapping gω : Rd → RD. To constrain

fθ to construct a faithful embedding of the original data, we require that the original data

be reproducible from its low-dimensional image [110]:

minimize
Ω

‖X−Gω(Z)‖2
F , (4.1)

where Z = Fθ(X), Ω = {θ,ω}. Here Fθ(X) = [fθ(x1), . . . , fθ(xN)], Gω(Z) =

[gω(z1), . . . , gω(zN)], and ‖·‖F denotes the Frobenius norm.

To perform nonlinear embedding and clustering jointly, we wish to integrate the re-

construction objective (4.1) and the RCC objective (3.1). The Deep Continuous Clustering

(DCC) algorithm optimizes the following objective:

L(Ω,U) =
1

D
‖X−Gω(Z)‖2

F︸ ︷︷ ︸
reconstruction loss

+
1

d

(∑

i

ρ1

(
‖ui − zi‖2;µ1

)

︸ ︷︷ ︸
data loss

+λ
∑

(i,j)∈E

wi,jρ2

(
‖ui − uj‖2;µ2

)

︸ ︷︷ ︸
pairwise loss

)

where Z = Fθ(X). (4.2)

Figure 4.1 summarizes the processing within a deep network.
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Reconstruction Loss
<latexit sha1_base64="et2oU0ZsvOVwAOxnx4qYNfpf6/g=">AAAB/HicbZBLSwMxFIUzPmt9jXbpJlgEV2WmG10W3bhwUcU+oB1KJr3ThmaSIckIw1D/ihsXirj1h7jz35hpK6j1QODwnXvJ5YQJZ9p43qezsrq2vrFZ2ipv7+zu7bsHh20tU0WhRSWXqhsSDZwJaBlmOHQTBSQOOXTCyWWRd+5BaSbFnckSCGIyEixilBiLBm7lFqgU2qiUFgBfS60HbtWreTNh/9sskSpaqDlwP/pDSdMYhKGcaN3zvcQEOVGGUQ7Tcj/VkBA6ISPoWStIDDrIZ8dP8YklQxxJZZ8weEZ/buQk1jqLQzsZEzPWf7MC/pf1UhOdBzkTSWpA0PlHUcqxkbhoAg+ZAmp4Zg2hitlbMR0TRaixfZVtCf5SCUumXa/5Xs2/qVcbF4s6SugIHaNT5KMz1EBXqIlaiKIMPaJn9OI8OE/Oq/M2H11xFjsV9EvO+xcb5JUL</latexit><latexit sha1_base64="et2oU0ZsvOVwAOxnx4qYNfpf6/g=">AAAB/HicbZBLSwMxFIUzPmt9jXbpJlgEV2WmG10W3bhwUcU+oB1KJr3ThmaSIckIw1D/ihsXirj1h7jz35hpK6j1QODwnXvJ5YQJZ9p43qezsrq2vrFZ2ipv7+zu7bsHh20tU0WhRSWXqhsSDZwJaBlmOHQTBSQOOXTCyWWRd+5BaSbFnckSCGIyEixilBiLBm7lFqgU2qiUFgBfS60HbtWreTNh/9sskSpaqDlwP/pDSdMYhKGcaN3zvcQEOVGGUQ7Tcj/VkBA6ISPoWStIDDrIZ8dP8YklQxxJZZ8weEZ/buQk1jqLQzsZEzPWf7MC/pf1UhOdBzkTSWpA0PlHUcqxkbhoAg+ZAmp4Zg2hitlbMR0TRaixfZVtCf5SCUumXa/5Xs2/qVcbF4s6SugIHaNT5KMz1EBXqIlaiKIMPaJn9OI8OE/Oq/M2H11xFjsV9EvO+xcb5JUL</latexit><latexit sha1_base64="et2oU0ZsvOVwAOxnx4qYNfpf6/g=">AAAB/HicbZBLSwMxFIUzPmt9jXbpJlgEV2WmG10W3bhwUcU+oB1KJr3ThmaSIckIw1D/ihsXirj1h7jz35hpK6j1QODwnXvJ5YQJZ9p43qezsrq2vrFZ2ipv7+zu7bsHh20tU0WhRSWXqhsSDZwJaBlmOHQTBSQOOXTCyWWRd+5BaSbFnckSCGIyEixilBiLBm7lFqgU2qiUFgBfS60HbtWreTNh/9sskSpaqDlwP/pDSdMYhKGcaN3zvcQEOVGGUQ7Tcj/VkBA6ISPoWStIDDrIZ8dP8YklQxxJZZ8weEZ/buQk1jqLQzsZEzPWf7MC/pf1UhOdBzkTSWpA0PlHUcqxkbhoAg+ZAmp4Zg2hitlbMR0TRaixfZVtCf5SCUumXa/5Xs2/qVcbF4s6SugIHaNT5KMz1EBXqIlaiKIMPaJn9OI8OE/Oq/M2H11xFjsV9EvO+xcb5JUL</latexit><latexit sha1_base64="et2oU0ZsvOVwAOxnx4qYNfpf6/g=">AAAB/HicbZBLSwMxFIUzPmt9jXbpJlgEV2WmG10W3bhwUcU+oB1KJr3ThmaSIckIw1D/ihsXirj1h7jz35hpK6j1QODwnXvJ5YQJZ9p43qezsrq2vrFZ2ipv7+zu7bsHh20tU0WhRSWXqhsSDZwJaBlmOHQTBSQOOXTCyWWRd+5BaSbFnckSCGIyEixilBiLBm7lFqgU2qiUFgBfS60HbtWreTNh/9sskSpaqDlwP/pDSdMYhKGcaN3zvcQEOVGGUQ7Tcj/VkBA6ISPoWStIDDrIZ8dP8YklQxxJZZ8weEZ/buQk1jqLQzsZEzPWf7MC/pf1UhOdBzkTSWpA0PlHUcqxkbhoAg+ZAmp4Zg2hitlbMR0TRaixfZVtCf5SCUumXa/5Xs2/qVcbF4s6SugIHaNT5KMz1EBXqIlaiKIMPaJn9OI8OE/Oq/M2H11xFjsV9EvO+xcb5JUL</latexit>

X
<latexit sha1_base64="+aV40/1Z2cRE7CEqfWEX4duCw14=">AAAB8XicbVA9SwNBEJ3zM8avqKXNYhCswp2NNmLQxjKC+cDkCHubvWTJ3t6xOyeEI+CPsLFQxNYfYm/nv3EvSaGJDwYe780wbyZIpDDout/O0vLK6tp6YaO4ubW9s1va22+YONWM11ksY90KqOFSKF5HgZK3Es1pFEjeDIbXud984NqIWN3hKOF+RPtKhIJRtNJ9J6I4CMKsNe6Wym7FnYAsEm9GypefxYtHAKh1S1+dXszSiCtkkhrT9twE/YxqFEzycbGTGp5QNqR93rZU0YgbP5skHpNjq/RIGGtbCslE/T2R0ciYURTYzjyhmfdy8T+vnWJ47mdCJSlyxaaLwlQSjEl+PukJzRnKkSWUaWGzEjagmjK0TyraJ3jzJy+SxmnFcyverVuuXsEUBTiEIzgBD86gCjdQgzowUPAEL/DqGOfZeXPep61LzmzmAP7A+fgBOqCSxQ==</latexit><latexit sha1_base64="Fk2KYYRhJL57pQ48LhV8zuDgUq8=">AAAB8XicbVA9SwNBEJ2LX/H8ilraLAbBKtzZaCMGbSwjmA9MjrC32UuW7O0tu3tCOPIvbCwU0dIfYm8j/hv3khSa+GDg8d4M82ZCyZk2nvftFJaWV1bXiuvuxubW9k5pd6+hk1QRWicJT1QrxJpyJmjdMMNpSyqK45DTZji8yv3mPVWaJeLWjCQNYtwXLGIEGyvddWJsBmGUtcbdUtmreBOgReLPSPniwz2Xb19urVv67PQSksZUGMKx1m3fkybIsDKMcDp2O6mmEpMh7tO2pQLHVAfZJPEYHVmlh6JE2RIGTdTfExmOtR7Foe3ME+p5Lxf/89qpic6CjAmZGirIdFGUcmQSlJ+PekxRYvjIEkwUs1kRGWCFibFPcu0T/PmTF0njpOJ7Ff/GK1cvYYoiHMAhHIMPp1CFa6hBHQgIeIAneHa08+i8OK/T1oIzm9mHP3DefwAsL5Q5</latexit><latexit sha1_base64="Fk2KYYRhJL57pQ48LhV8zuDgUq8=">AAAB8XicbVA9SwNBEJ2LX/H8ilraLAbBKtzZaCMGbSwjmA9MjrC32UuW7O0tu3tCOPIvbCwU0dIfYm8j/hv3khSa+GDg8d4M82ZCyZk2nvftFJaWV1bXiuvuxubW9k5pd6+hk1QRWicJT1QrxJpyJmjdMMNpSyqK45DTZji8yv3mPVWaJeLWjCQNYtwXLGIEGyvddWJsBmGUtcbdUtmreBOgReLPSPniwz2Xb19urVv67PQSksZUGMKx1m3fkybIsDKMcDp2O6mmEpMh7tO2pQLHVAfZJPEYHVmlh6JE2RIGTdTfExmOtR7Foe3ME+p5Lxf/89qpic6CjAmZGirIdFGUcmQSlJ+PekxRYvjIEkwUs1kRGWCFibFPcu0T/PmTF0njpOJ7Ff/GK1cvYYoiHMAhHIMPp1CFa6hBHQgIeIAneHa08+i8OK/T1oIzm9mHP3DefwAsL5Q5</latexit><latexit sha1_base64="twgBz/Y7SI036qGaquMZsi0RWBA=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiRu7LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmljc2t7p7xb2ds/ODyqHp90TJxqxtsslrHuBdRwKRRvo0DJe4nmNAok7wbT29zvPnFtRKwecJZwP6JjJULBKFrpcRBRnARh1psPqzW37i5A1olXkBoUaA2rX4NRzNKIK2SSGtP33AT9jGoUTPJ5ZZAanlA2pWPet1TRiBs/WySekwurjEgYa/sUkoX6eyOjkTGzKLCTeUKz6uXif14/xbDhZ0IlKXLFlh+FqSQYk/x8MhKaM5QzSyjTwmYlbEI1ZWhLqtgSvNWT10nnqu65de/erTVvijrKcAbncAkeXEMT7qAFbWCg4Ble4c0xzovz7nwsR0tOsXMKf+B8/gDLWZD4</latexit>

Y
<latexit sha1_base64="ckhq7+L9Pe3bNkv/jnT+W/ngel0=">AAAB8XicbVA9SwNBEJ2LX/H8ilraLAbBKuzZaCMGbSwjmA9NjrC32UuW7O0du3tCOAL+CBsLRWz9IfZ2/hv3khSa+GDg8d4M82aCRHBtMP52CkvLK6trxXV3Y3Nre6e0u9fQcaooq9NYxKoVEM0El6xuuBGslShGokCwZjC8yv3mA1Oax/LWjBLmR6QvecgpMVa670TEDIIwuxt3S2VcwROgReLNSPni0z1/BIBat/TV6cU0jZg0VBCt2x5OjJ8RZTgVbOx2Us0SQoekz9qWShIx7WeTxGN0ZJUeCmNlSxo0UX9PZCTSehQFtjNPqOe9XPzPa6cmPPMzLpPUMEmni8JUIBOj/HzU44pRI0aWEKq4zYrogChCjX2Sa5/gzZ+8SBonFQ9XvBtcrl7CFEU4gEM4Bg9OoQrXUIM6UJDwBC/w6mjn2Xlz3qetBWc2sw9/4Hz8ADwlksY=</latexit><latexit sha1_base64="xIqGWA3mbWh4T48pr3ZJoiCLmVs=">AAAB8XicbVA9SwNBEJ2LX/H8ilraLAbBKtzZaCMGbSwjmA9NjrC32UuW7O0tu3tCOPIvbCwU0dIfYm8j/hv3EgtNfDDweG+GeTOh5Ewbz/tyCguLS8srxVV3bX1jc6u0vdPQSaoIrZOEJ6oVYk05E7RumOG0JRXFcchpMxxe5H7zjirNEnFtRpIGMe4LFjGCjZVuOzE2gzDKbsbdUtmreBOgeeL/kPLZu3sqXz/dWrf00eklJI2pMIRjrdu+J02QYWUY4XTsdlJNJSZD3KdtSwWOqQ6ySeIxOrBKD0WJsiUMmqi/JzIcaz2KQ9uZJ9SzXi7+57VTE50EGRMyNVSQ6aIo5cgkKD8f9ZiixPCRJZgoZrMiMsAKE2Of5Non+LMnz5PGUcX3Kv6VV66ewxRF2IN9OAQfjqEKl1CDOhAQcA+P8ORo58F5dl6mrQXnZ2YX/sB5+wYttJQ6</latexit><latexit sha1_base64="xIqGWA3mbWh4T48pr3ZJoiCLmVs=">AAAB8XicbVA9SwNBEJ2LX/H8ilraLAbBKtzZaCMGbSwjmA9NjrC32UuW7O0tu3tCOPIvbCwU0dIfYm8j/hv3EgtNfDDweG+GeTOh5Ewbz/tyCguLS8srxVV3bX1jc6u0vdPQSaoIrZOEJ6oVYk05E7RumOG0JRXFcchpMxxe5H7zjirNEnFtRpIGMe4LFjGCjZVuOzE2gzDKbsbdUtmreBOgeeL/kPLZu3sqXz/dWrf00eklJI2pMIRjrdu+J02QYWUY4XTsdlJNJSZD3KdtSwWOqQ6ySeIxOrBKD0WJsiUMmqi/JzIcaz2KQ9uZJ9SzXi7+57VTE50EGRMyNVSQ6aIo5cgkKD8f9ZiixPCRJZgoZrMiMsAKE2Of5Non+LMnz5PGUcX3Kv6VV66ewxRF2IN9OAQfjqEKl1CDOhAQcA+P8ORo58F5dl6mrQXnZ2YX/sB5+wYttJQ6</latexit><latexit sha1_base64="l4mZWhYZngOVDS/6abRwR2oCQi0=">AAAB8XicbVC7TsMwFL0pr1JeBUYWiwqJqUpYYKxgYSwSfUAbVY7rtFYdJ7JvkKqof8HCAEKs/A0bf4PTZoCWI1k6Oude+dwTJFIYdN1vp7S2vrG5Vd6u7Ozu7R9UD4/aJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJTe53nrg2Ilb3OE24H9GREqFgFK302I8ojoMwe5gNqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDKz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z696dW2tcF3WU4QRO4Rw8uIQG3EITWsBAwTO8wptjnBfn3flYjJacYucY/sD5/AHM3pD5</latexit>

Z
<latexit sha1_base64="VQ10bxlF+N68iNYvf2EI6vU3qhY=">AAAB8XicbVA9SwNBEJ2LX/H8ilraLAbBKuzZaCMGbSwjmA+SHGFvs5cs2ds7dveEcAT8ETYWitj6Q+zt/DfuJSk08cHA470Z5s0EieDaYPztFFZW19Y3ipvu1vbO7l5p/6Ch41RRVqexiFUrIJoJLlndcCNYK1GMRIFgzWB0k/vNB6Y0j+W9GSfMj8hA8pBTYqzU7kbEDIMwa096pTKu4CnQMvHmpHz16V4+AkCtV/rq9mOaRkwaKojWHQ8nxs+IMpwKNnG7qWYJoSMyYB1LJYmY9rNp4gk6sUofhbGyJQ2aqr8nMhJpPY4C25kn1IteLv7ndVITXvgZl0lqmKSzRWEqkIlRfj7qc8WoEWNLCFXcZkV0SBShxj7JtU/wFk9eJo2ziocr3h0uV69hhiIcwTGcggfnUIVbqEEdKEh4ghd4dbTz7Lw577PWgjOfOYQ/cD5+AD2qksc=</latexit><latexit sha1_base64="VioHRbU9qJcFlTgR+MX9Epuaku4=">AAAB8XicbVA9SwNBEJ3zM55fUUubxSBYhTsbbcSgjWUE80GSI+xt9pIle3vL7p4QjvwLGwtFtPSH2NuI/8a9JIUmPhh4vDfDvJlQcqaN5307S8srq2vrhQ13c2t7Z7e4t1/XSaoIrZGEJ6oZYk05E7RmmOG0KRXFcchpIxxe537jnirNEnFnRpIGMe4LFjGCjZVanRibQRhlrXG3WPLK3gRokfgzUrr8cC/k25db7RY/O72EpDEVhnCsddv3pAkyrAwjnI7dTqqpxGSI+7RtqcAx1UE2STxGx1bpoShRtoRBE/X3RIZjrUdxaDvzhHrey8X/vHZqovMgY0KmhgoyXRSlHJkE5eejHlOUGD6yBBPFbFZEBlhhYuyTXPsEf/7kRVI/Lfte2b/1SpUrmKIAh3AEJ+DDGVTgBqpQAwICHuAJnh3tPDovzuu0dcmZzRzAHzjvPy85lDs=</latexit><latexit sha1_base64="VioHRbU9qJcFlTgR+MX9Epuaku4=">AAAB8XicbVA9SwNBEJ3zM55fUUubxSBYhTsbbcSgjWUE80GSI+xt9pIle3vL7p4QjvwLGwtFtPSH2NuI/8a9JIUmPhh4vDfDvJlQcqaN5307S8srq2vrhQ13c2t7Z7e4t1/XSaoIrZGEJ6oZYk05E7RmmOG0KRXFcchpIxxe537jnirNEnFnRpIGMe4LFjGCjZVanRibQRhlrXG3WPLK3gRokfgzUrr8cC/k25db7RY/O72EpDEVhnCsddv3pAkyrAwjnI7dTqqpxGSI+7RtqcAx1UE2STxGx1bpoShRtoRBE/X3RIZjrUdxaDvzhHrey8X/vHZqovMgY0KmhgoyXRSlHJkE5eejHlOUGD6yBBPFbFZEBlhhYuyTXPsEf/7kRVI/Lfte2b/1SpUrmKIAh3AEJ+DDGVTgBqpQAwICHuAJnh3tPDovzuu0dcmZzRzAHzjvPy85lDs=</latexit><latexit sha1_base64="W9uVwrhW+uF0yLowQITriw/P+r4=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiRudFl047KCfdA2lMn0ph06mYSZiVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSATXxnW/ndLG5tb2Tnm3srd/cHhUPT5p6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWB6l/udJ1Sax/LRzBL0IzqWPOSMGiv1BhE1kyDMevNhtebW3QXIOvEKUoMCzWH1azCKWRqhNExQrfuemxg/o8pwJnBeGaQaE8qmdIx9SyWNUPvZIvGcXFhlRMJY2ScNWai/NzIaaT2LAjuZJ9SrXi7+5/VTE974GZdJalCy5UdhKoiJSX4+GXGFzIiZJZQpbrMSNqGKMmNLqtgSvNWT10n7qu65de/BrTVuizrKcAbncAkeXEMD7qEJLWAg4Rle4c3Rzovz7nwsR0tOsXMKf+B8/gDOY5D6</latexit>

U
<latexit sha1_base64="I69U2BBVUlRYn7n5SM3B9Sq3yd8=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VTFtsS9lsN+3SzSbsvggl9F948aCIV/+NN/+NmzYHbR1YGGbeY+dNkEhh0HW/ndLa+sbmVnm7srO7t39QPTxqmTjVjPsslrHuBNRwKRT3UaDknURzGgWSt4PJbe63n7g2IlYPOE14P6IjJULBKFrpsRdRHAdh5s8G1Zpbd+cgq8QrSA0KNAfVr94wZmnEFTJJjel6boL9jGoUTPJZpZcanlA2oSPetVTRiJt+Nk88I2dWGZIw1vYpJHP190ZGI2OmUWAn84Rm2cvF/7xuiuF1PxMqSZErtvgoTCXBmOTnk6HQnKGcWkKZFjYrYWOqKUNbUsWW4C2fvEpaF3XPrXv3l7XGTVFHGU7gFM7BgytowB00wQcGCp7hFd4c47w4787HYrTkFDvH8AfO5w/ICpD5</latexit><latexit sha1_base64="I69U2BBVUlRYn7n5SM3B9Sq3yd8=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VTFtsS9lsN+3SzSbsvggl9F948aCIV/+NN/+NmzYHbR1YGGbeY+dNkEhh0HW/ndLa+sbmVnm7srO7t39QPTxqmTjVjPsslrHuBNRwKRT3UaDknURzGgWSt4PJbe63n7g2IlYPOE14P6IjJULBKFrpsRdRHAdh5s8G1Zpbd+cgq8QrSA0KNAfVr94wZmnEFTJJjel6boL9jGoUTPJZpZcanlA2oSPetVTRiJt+Nk88I2dWGZIw1vYpJHP190ZGI2OmUWAn84Rm2cvF/7xuiuF1PxMqSZErtvgoTCXBmOTnk6HQnKGcWkKZFjYrYWOqKUNbUsWW4C2fvEpaF3XPrXv3l7XGTVFHGU7gFM7BgytowB00wQcGCp7hFd4c47w4787HYrTkFDvH8AfO5w/ICpD5</latexit><latexit sha1_base64="I69U2BBVUlRYn7n5SM3B9Sq3yd8=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VTFtsS9lsN+3SzSbsvggl9F948aCIV/+NN/+NmzYHbR1YGGbeY+dNkEhh0HW/ndLa+sbmVnm7srO7t39QPTxqmTjVjPsslrHuBNRwKRT3UaDknURzGgWSt4PJbe63n7g2IlYPOE14P6IjJULBKFrpsRdRHAdh5s8G1Zpbd+cgq8QrSA0KNAfVr94wZmnEFTJJjel6boL9jGoUTPJZpZcanlA2oSPetVTRiJt+Nk88I2dWGZIw1vYpJHP190ZGI2OmUWAn84Rm2cvF/7xuiuF1PxMqSZErtvgoTCXBmOTnk6HQnKGcWkKZFjYrYWOqKUNbUsWW4C2fvEpaF3XPrXv3l7XGTVFHGU7gFM7BgytowB00wQcGCp7hFd4c47w4787HYrTkFDvH8AfO5w/ICpD5</latexit><latexit sha1_base64="I69U2BBVUlRYn7n5SM3B9Sq3yd8=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VTFtsS9lsN+3SzSbsvggl9F948aCIV/+NN/+NmzYHbR1YGGbeY+dNkEhh0HW/ndLa+sbmVnm7srO7t39QPTxqmTjVjPsslrHuBNRwKRT3UaDknURzGgWSt4PJbe63n7g2IlYPOE14P6IjJULBKFrpsRdRHAdh5s8G1Zpbd+cgq8QrSA0KNAfVr94wZmnEFTJJjel6boL9jGoUTPJZpZcanlA2oSPetVTRiJt+Nk88I2dWGZIw1vYpJHP190ZGI2OmUWAn84Rm2cvF/7xuiuF1PxMqSZErtvgoTCXBmOTnk6HQnKGcWkKZFjYrYWOqKUNbUsWW4C2fvEpaF3XPrXv3l7XGTVFHGU7gFM7BgytowB00wQcGCp7hFd4c47w4787HYrTkFDvH8AfO5w/ICpD5</latexit>

Figure 4.1: Visualization of forward pass step with their corresponding loss application
and back-propagation step.

This formulation bears some similarity to RCC-DR, but differs in three major

respects. First, RCC-DR only operates on a linear embedding defined by a sparse dictionary,

while DCC optimizes a more expressive nonlinear embedding parameterized by Ω. Second,

RCC-DR alternates between optimizing dictionary atoms, sparse codes, representatives U,

and dual line process variables; in contrast, DCC avoids duality altogether and optimizes

the global objective directly. Third, DCC does not rely on closed-form or linear least-

squares solutions to subproblems; rather, the joint objective is optimized by modern

gradient-based solvers, which are commonly used for deep representation learning and are

highly scalable.

We now discuss objective (4.2) and its optimization in more detail. The mappings Fθ

and Gω are performed by an autoencoder with fully-connected or convolutional layers and

rectified linear units after each affine projection [110, 111]. The parameters wi,j , µ1 and µ2

are set following their initialization for RCC and RCC-DR. The graph E is constructed
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on X using the mutual kNN criterion [66], augmented by the minimum spanning tree

of the kNN graph to ensure connectivity to all datapoints. The role of M-estimators ρ1

and ρ2 is to pull the representatives of a true underlying cluster into a single point, while

disregarding spurious connections across clusters. For both robust estimators, we use

scaled Geman-McClure functions [70]. The parameter λ balances the relative strength

of the data loss and the pairwise loss. To balance the different terms, we set λ = ‖Z‖2
1+‖A‖2 ,

where A =
∑

(i,j)∈E wi,j(ei − ej)(ei − ej)
> and ‖ · ‖2 denotes the spectral norm. This

ratio approximately ensures similar maximum curvature for different terms. Since the

setting for λ is independent of the reconstruction loss term, the ratio is similar to that

considered for RCC-DR. However, in contrast to RCC-DR, the parameter λ need not be

updated during the optimization.

4.2.2 Optimization

Objective (4.2) can be optimized using scalable modern forms of stochastic gradient

descent (SGD). Note that each ui is updated only via its corresponding loss and pairwise

terms. On the other hand, the autoencoder parameters Ω are updated via all data samples.

Thus in a single epoch, there is bound to be a difference between the update rates for U and

Ω. To deal with this imbalance, an adaptive solver such as Adam should be used [112].

Another difficulty is that the graph E connects all datapoints such that a randomly

sampled minibatch is likely to be connected by pairwise terms to datapoints outside the

minibatch. In other words, the objective (4.2), and more specifically the pairwise loss,

does not trivially decompose over datapoints. This requires some care in the construction
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of minibatches. Instead of sampling datapoints, we sample subsets of edges from E . The

corresponding minibatch B is defined by all nodes incident to the sampled edges. However,

if we simply restrict the objective (4.2) to the minibatch and take a gradient step, the

reconstruction and data terms will be given additional weight since the same datapoint

can participate in different minibatches, once for each incident edge. To maintain balance

between the terms, we must weigh the contribution of each datapoint in the minibatch.

The rebalanced minibatch loss is given by

LB(Ω,U) =
1

|B|
∑

i∈B

wi

(
‖xi − gω(zi)‖2

2

D
+
ρ1

(
‖ui − zi‖2

)

d

)
+

λ

d|B|
∑

(i,j)∈EB

wi,jρ2

(
‖ui − uj‖2

)

where zi = fθ(xi) ∀i ∈ B. (4.3)

Here wi =
nBi
ni

, where nBi is the number of edges connected to the ith node in the subgraph

EB.

The gradients of LB with respect to the low-dimensional embedding Z and the

representatives U are given by

∂LB
∂zi

=
1

|B|

(
wiµ

2
1(zi − ui)

d(µ1 + ‖ui − zi‖2
2)2

+
2wi(gω(zi)− xi)

D

∂gω(zi)

∂zi

)
(4.4)

∂LB
∂ui

=
1

d|B|

(
wiµ

2
1(ui − zi)

(µ1 + ‖ui − zi‖2
2)2

+ λµ2
2

∑

(i,j)∈EB

wi,j(ui − uj)

(µ2 + ‖ui − uj‖2
2)2

)
(4.5)

These gradients are propagated to the parameters Ω.

4.2.3 Initialization, Continuation, and Termination

Initialization. The embedding parameters Ω are initialized using the stacked denoising

autoencoder (SDAE) framework [113]. Each pair of corresponding encoding and decoding

layers is pretrained in turn. Noise is introduced during pretraining by adding dropout
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to the input of each affine projection [114]. Encoder-decoder layer pairs are pretrained

sequentially, from the outer to the inner. After all layer pairs are pretrained, the entire SDAE

is fine-tuned end-to-end using the reconstruction loss. This completes the initialization of

the embedding parameters Ω. These parameters are used to initialize the representatives

U, which are set to U = Z = Fθ(X).

Continuation. The price of robustness is the nonconvexity of the estimators ρ1 and ρ2.

One way to alleviate the dangers of nonconvexity is to use a continuation scheme that

gradually sharpens the estimator [71, 72]. Following RCC, we initially set µi to a high

value that makes the estimator ρi effectively convex in the relevant range. The value of µi

is decreased on a regular schedule until a threshold δi
2

is reached. We follow the similar

setting for δ1 and δ2.

Stopping criterion. Once the continuation scheme is completed, DCC monitors the

computed clustering. At the end of every epoch, a graph G = (V ,F) is constructed

such that fi,j = 1 if ‖ui − uj‖ < δ2. The cluster assignment is given by the connected

components of G. DCC compares this cluster assignment to the one produced at the end

of the preceding epoch. If more than 0.1% of the edges in E changed from intercluster to

intracluster or vice versa, DCC outputs the computed clustering and terminates.

Complete algorithm. The complete algorithm is summarized in Algorithm 5.
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Algorithm 5 Deep Continuous Clustering
1: input: Data samples {xi}i.
2: output: Cluster assignment {ci}i.
3: Construct a graph E on X.
4: Initialize Ω and U.
5: Precompute λ,wi,j, δ1, δ2. Initialize µ1, µ2.
6: while stopping criterion not met do
7: Every iteration, construct a minibatch B defined by a sample of edges EB.
8: Update {ui}i∈B and Ω.
9: Every M epochs, update µi = max

(
µi
2
, δi

2

)
.

10: end while
11: Construct graph G = (V ,F) with fi,j = 1 if ‖u∗i − u∗j‖2 < δ2.
12: Output clusters given by the connected components of G.

4.3 Experiments

4.3.1 Datasets

We conduct experiments on six high-dimensional datasets, which cover domains

such as handwritten digits, objects, faces, and text. We used the same datasets as for RCC

but only the ones that had dimensionality above 100. All features are normalized to the

range [0, 1]. Note that DCC is an unsupervised learning algorithm. Unlabelled data is

embedded and clustered with no supervision. There is thus no train/test split.

4.3.2 Baselines

The presented DCC algorithm is compared to 13 baselines, which include both

classic and deep clustering algorithms. The baselines include k-means++ [64], DB-

SCAN [115], two variants of agglomerative clustering: Ward (AC-W) and graph degree

linkage (GDL) [93], two variants of spectral clustering: spectral embedded clustering

(SEC) [116] and local discriminant models and global integration (LDMGI) [92], and
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two variants of robust continuous clustering: RCC and RCC-DR. We also include an

SGD-based implementation of RCC-DR, referred to as RCC-DR (SGD): this baseline uses

the same optimization method as DCC, and thus more crisply isolates the improvement in

DCC that is due to the nonlinear dimensionality reduction (rather than a different solver).

The deep clustering baselines include four recent approaches that share our basic

motivation and use deep networks for clustering: deep embedded clustering (DEC) [106],

joint unsupervised learning (JULE) [107], the deep clustering network (DCN) [108], and

deep embedded regularized clustering (DEPICT) [105]. These are strong baselines that

use deep autoencoders, the same network structure as our approach (DCC). The key

difference is in the loss function and the consequent optimization procedure. The prior

formulations are built on KL-divergence clustering, agglomerative clustering, and k-means,

which involve discrete reconfiguration of the objective during the optimization and rely

on knowledge of the number of ground-truth clusters either in the design of network

architecture, during the embedding optimization, or in post-processing. In contrast, DCC

optimizes a robust continuous loss and does not rely on prior knowledge of the number of

clusters.

4.3.3 Implementation

We report experimental results for two different autoencoder architectures: one with

only fully-connected layers and one with convolutional layers. This is motivated by prior

deep clustering algorithms, some of which used fully-connected architectures and some

convolutional.
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For fully-connected autoencoders, we use the same autoencoder architecture as

DEC [106]. Specifically, for all experiments on all datasets, we use an autoencoder with

the following dimensions: D–500–500–2000–d–2000–500–500–D. This autoencoder

architecture follows parametric t-SNE [117].

For convolutional autoencoders, the network architecture is modeled on JULE [107].

Table 4.1 summarizes the architecture of the convolutional encoder used for the con-

volutional configuration of DCC. As in [107], the number of layers depends on image

resolution in the dataset and it is set such that the output resolution of the encoder is about

4×4. Convolutional kernels are applied with a stride of two. The input to convolutional

layers with 4×4 and 5×5 kernels is zero-padded by one and two pixels, respectively.

The encoder is followed by a fully-connected layer with output dimension d and a con-

volutional decoder with kernel size that matches the output dimension of conv5. The

decoder architecture mirrors the encoder and the output from each layer is appropriately

zero-padded to match the input size of the corresponding encoding layer. All convolutional

and transposed convolutional layers are followed by batch normalization and rectified

linear units [111, 118].

MNIST Coil100 YTF YaleB

conv1 4× 4 4× 4 4× 4 4× 4

conv2 5× 5 5× 5 5× 5 5× 5

conv3 5× 5 5× 5 5× 5 5× 5

conv4 – 5× 5 5× 5 5× 5

conv5 – 5× 5 – 5× 5

output 4× 4 4× 4 4× 4 6× 6

Table 4.1: Convolutional encoder architecture.

DCC uses three hyperparameters: the embedding dimensionality d, the nearest neigh-
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bor parameter k for m-kNN graph construction, and the update period M for graduated

nonconvexity. In both architectures and for all datasets, the dimensionality of the reduced

space is set to d = 10 based on the grid search on MNIST. (It is only varied for controlled

experiments that analyze stability with respect to d.) No dataset-specific hyperparameter

tuning is done. For fair comparison to RCC and RCC-DR, we fix k = 10 and the cosine

distance metric is used. The hyperparameter M is architecture specific. We set M to 10

and 20 for convolutional and fully-connected autoencoders respectively and it is varied for

varying dimensionality d during the controlled experiment.

For autoencoder initialization, a minibatch size of 256 and dropout probability of

0.2 are used. SDAE pretraining and finetuning start with a learning rate of 0.1, which

is decreased by a factor of 10 every 80 epochs. Each layer is pretrained for 200 epochs.

Finetuning of the whole SDAE is performed for 400 epochs. For the fully-connected

SDAE, the learning rates are scaled in accordance with the dimensionality of the dataset.

During the optimization using the DCC objective, the Adam solver is used with its default

learning rate of 0.001 and momentum 0.99. Minibatches are constructed by sampling 128

edges. DCC was implemented using the PyTorch library.

For the baselines, we use publicly available implementations. For k-means++,

DBSCAN and AC-W, we use the implementations in the SciPy library and report the best

results across ten random restarts. For a number of baselines, we performed hyperparameter

search to maximize their reported performance. For DBSCAN, we searched over values of

Eps, for LDMGI we searched over values of the regularization constant λ, for SEC we

searched over values of the parameter µ, and for GDL we tuned the graph construction

parameter a. For SGD implementation of RCC-DR the learning rate of 0.01 and momentum
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of 0.95 were used.

The DCN approach uses a different network architecture for each dataset. Wherever

possible, we report results using their dataset-specific architecture. For YTF, Coil100,

and YaleB, we use their reference architecture for MNIST. For DEC algorithm, we fix the

the tuning parameter λ to be 40. This is supposedly to work best across all datasets, as

reported in their paper [106].

4.3.4 Measures

In addition to AMI measure used for evaluating in the previous chapter, we also

report ACC measure. Both the measures lies in a range [0, 1]. Higher is better. Note that

the ACC measure is biased on imbalanced datasets [96]. It favors large classes.

4.3.5 Results

The results are summarized in Table 4.2. Among deep clustering methods that use

fully-connected networks, DCN and DEC are not as accurate as fully-connected DCC and

are also less consistent: the performance of DEC drops on the high-dimensional image

datasets, while DCN is far behind on MNIST and YaleB. Among deep clustering methods

that use convolutional networks, the performance of DEPICT drops on COIL100 and

YTF, while JULE is far behind on YTF. The GDL algorithm failed to scale to the full

MNIST dataset and the corresponding measurement is marked as ‘n/a’. The performance

of RCC-DR (SGD) is also inconsistent. Although it performs on par with RCC-DR on

image datasets, its performance degrades on text datasets. Note that the reported accuracy
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for all deep clustering baselines is based on the outcome of an independent run.

4.4 Analysis

4.4.1 Importance of joint optimization

We now analyze the importance of performing dimensionality reduction and cluster-

ing jointly, versus performing dimensionality reduction and then clustering the embedded

data. To this end, we use the same SDAE architecture and training procedure as fully-

connected DCC. We optimize the autoencoder but do not optimize the full DCC objective.

This yields a standard nonlinear embedding, using the same autoencoder that is used by

DCC, into a space with the same reduced dimensionality d. In this space, we apply a

number of clustering algorithms: k-means++, AC-W, DBSCAN, SEC, LDMGI, GDL, and

RCC. The results are shown in Table 4.3 (top).

These results should be compared to results reported in Table 4.2. The comparison

shows that the accuracy of the baseline algorithms benefits from dimensionality reduction.

However, in all cases their accuracy is still lower than that attained by DCC using joint

optimization. Furthermore, although RCC and DCC share the same underlying nearest-

neighbor graph construction and a similar clustering loss, the performance of DCC far

surpasses that achieved by stagewise SDAE embedding followed by RCC. Note also that

the relative performance of most baselines drops on Coil100 and YaleB. We hypothesize

that the fully-connected SDAE is limited in its ability to discover a good low-dimensional

embedding for very high-dimensional image datasets (tens of thousands of dimensions for

Coil100 and YaleB).
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Next, we show the performance of the same clustering algorithms when they are

applied in the reduced space produced by DCC. These results are reported in Table 4.3

(bottom). In comparison to Table 4.3 (top), the performance of all algorithms improves

significantly and some results are now on par or better than the results of DCC as reported

in Table 4.2. The improvement for k-means++, Ward, and DBSCAN is particularly striking.

This indicates that the performance of many clustering algorithms can be improved by first

optimizing a low-dimensional embedding using DCC and then clustering in the learned

embedding space.

Dataset k-means++ AC-W DBSCAN SEC LDMGI GDL RCC DCC

Clustering in a reduced space learned by SDAE

MNIST 0.669 0.784 0.115 n/a 0.828 n/a 0.881 0.912
Coil100 0.333 0.336 0.170 0.384 0.318 0.335 0.589 0.952
YTF 0.764 0.831 0.595 0.527 0.612 0.699 0.827 0.877
YaleB 0.673 0.688 0.503 0.493 0.676 0.742 0.812 0.955
Reuters 0.501 0.494 0.042 0.435 0.517 0.488 0.542 0.572
RCV1 0.454 0.430 0.075 0.442 0.060 0.055 0.410 0.495

Clustering in a reduced space learned by DCC

MNIST 0.880 0.883 0.890 n/a 0.868 n/a 0.912 0.912
Coil100 0.947 0.947 0.569 0.604 0.919 0.915 0.891 0.952
YTF 0.845 0.841 0.896 0.586 0.762 0.658 0.879 0.877
YaleB 0.811 0.809 0.809 0.584 0.815 0.660 0.814 0.955
Reuters 0.553 0.554 0.560 0.479 0.586 0.401 0.581 0.572
RCV1 0.536 0.472 0.496 0.452 0.178 0.326 0.474 0.495

Table 4.3: Importance of joint optimization. This table shows the accuracy (AMI) achieved
by running prior clustering algorithms on a low-dimensional embedding of the data. For
reference, DCC results from Table 4.2 are also listed. Top: The embedding is performed
using the same autoencoder architecture as used by fully-connected DCC, into the same
target space. However, dimensionality reduction and clustering are performed separately.
Clustering accuracy is much lower than the accuracy achieved by DCC. Bottom: Here
clustering is performed in the reduced space discovered by DCC. The performance of all
clustering algorithms improves significantly.
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(a) Raw

(b) SDAE

(c) DCC

Figure 4.2: Effect of joint dimensionality reduction and clustering on the embedding. (a) A
randomly sampled subset of 10K points from the MNIST dataset, visualized using t-SNE.
(b) An embedding of these points into Rd, performed by an SDAE that is optimized for
dimensionality reduction. (c) An embedding of the same points by the same network,
optimized with the DCC objective. When optimized for joint dimensionality reduction
and clustering, the network produces an embedding with clearly separated clusters. Best
viewed in color.
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4.4.2 Visualization

A visualization is provided in Figure 4.2. Here we used Barnes-Hut t-SNE [75, 119]

to visualize a randomly sampled subset of 10K datapoints from the MNIST dataset. We

show the original dataset, the dataset embedded by the SDAE into Rd (optimized for

dimensionality reduction), and the embedding into Rd produced by DCC. As shown in the

figure, the embedding produced by DCC is characterized by well-defined, clearly separated

clusters. The clusters strongly correspond to the ground-truth classes (coded by color in

the figure), but were discovered with no supervision.
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(a) MNIST
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(b) Reuters

Figure 4.3: Robustness to dimensionality of the latent space. Clustering accuracy as a
function of the dimensionality d of the latent space. AMI on the left, ACC on the right.
Best viewed in color.
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4.4.3 Robustness to dimensionality of the latent space

Next we study the robustness of DCC to the dimensionality d of the latent space.

For this experiment, we consider fully-connected DCC. We vary d between 5 and 60 and

measure AMI and ACC on the MNIST and Reuters datasets. For comparison, we report

the performance of RCC-DR, DEC, which uses the same autoencoder architecture, as well

as the accuracy attained by running k-means++ on the output of the SDAE, optimized for

dimensionality reduction. The results are shown in Figure 4.3.

The results yield two conclusions. First, the accuracy of DCC, RCC-DR, DEC, and

SDAE+k-means gradually decreases as the dimensionality d increases. This supports

the common view that clustering becomes progressively harder as the dimensionality of

the data increases. Second, the results demonstrate that DCC and RCC-DR are more

robust to increased dimensionality than DEC and SDAE. For example, on MNIST, as the

dimensionality d changes from 5 to 60, the accuracy (AMI) of DEC and SDAE drops by

28% and 35%, respectively, while the accuracy of DCC and RCC-DR decreases only by

9% and 7% respectively. When d = 60, the accuracy attained by DCC is higher than the

accuracy attained by DEC and SDAE by 27% and 40%, respectively. Given that both DCC

and RCC-DR utilize robust estimators and also share similarity in their formulations, it is

not surprising that they exhibit similar robustness across datasets and measures.

4.4.4 Running Time

The runtime of DCC is mildly better than DEPICT and more than an order of

magnitude better than JULE. For instance, on MNIST (the largest dataset considered), the
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total runtime of conv-DCC is 9,030 sec. For DEPICT, this runtime is 12,072 sec and for

JULE it is 172,058 sec.

4.5 Conclusion

We have presented a clustering algorithm that combines nonlinear dimensionality

reduction and clustering. Dimensionality reduction is performed by a deep network that

embeds the data into a lower-dimensional space. The embedding is optimized as part of

the clustering process and the resulting network produces clustered data. The presented

algorithm does not rely on a priori knowledge of the number of ground-truth clusters.

Nonlinear dimensionality reduction and clustering are performed by optimizing a global

continuous objective using scalable gradient-based solvers.

All algorithms are evaluated on high-dimensional datasets of images and documents.

Experiments demonstrate that our formulation performs on par or better than state-of-

the-art clustering algorithms across all datasets. This includes recent approaches that

utilize deep networks but do not use a global continuous formulation and rely on prior

knowledge of the number of ground-truth clusters. Controlled experiments confirm that

joint dimensionality reduction and clustering is more effective than a stagewise approach,

and that the high accuracy achieved by the presented algorithm is stable across different

dimensionalities of the latent space. Moreover, the algorithm performance is architecture

agnostic. We hope that the presented continuous formulation can usefully inform future

developments in data analysis.
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Chapter 5: Fast SDP Solver

5.1 Introduction

Optimization problems involving either integer-valued vectors or low-rank matri-

ces are ubiquitous in computer vision. Graph-cut methods for image segmentation, for

example, involve optimization problems where integer-valued variables represent region

labels [23, 120–122]. Problems in multi-camera structure from motion [123], manifold

embedding [124], and matrix completion [125] all rely on optimization problems involving

matrices with low rank constraints. Since these constraints are non-convex, the design of

efficient algorithms that find globally optimal solutions is a difficult task.

For a wide range of applications [124, 126–130], non-convex constraints can be

handled by semidefinite relaxation (SDR) [126]. In this approach, a non-convex optimiza-

tion problem involving a vector of unknowns is “lifted” to a higher dimensional convex

problem that involves a positive semidefinite (PSD) matrix, which then enables one to

solve a SDP [131]. While SDR delivers state-of-the-art performance in a wide range of

applications [121, 122, 124–126, 132], the approach significantly increases the dimension-

ality of the original optimization problem (i.e., replacing a vector with a matrix), which

typically results in exorbitant computational costs and memory requirements. Nevertheless,

SDR leads to SDPs whose global optimal solution can be found using robust numerical

86



methods.

A growing number of computer-vision applications involve high-resolution images

(or videos) that require SDPs with a large number of variables. General-purpose (interior

point) solvers for SDPs do not scale well to such problem sizes; the worst-case complexity

is O(N6.5 log(1/ε)) for an N × N problem with ε objective error [133]. In imaging

applications, N is often proportional to the number of pixels, which is potentially large.

The prohibitive complexity and memory requirements of solving SDPs exactly with

a large number of variables has spawned interest in fast, non-convex solvers that avoid

lifting. For example, recent progress in phase retrieval by Netrapalli et al. [134] and Candès

et al. [135] has shown that non-convex optimization methods provably achieve solution

quality comparable to exact SDR-based methods with significantly lower complexity.

These methods operate on the original dimensions of the (un-lifted) problem, which

enables their use on high-dimensional problems. Another prominent example is max-norm

regularization by Lee et al. [136], which was proposed for solving high-dimensional matrix-

completion problems and to approximately perform max-cut clustering. This method was

shown to outperform exact SDR-based methods in terms of computational complexity,

while delivering acceptable solution quality. While both of these examples outperform

classical SDP-based methods, they are limited to very specific problem types, and cannot

handle more complex SDPs that typically appear in computer vision.

In this chapter, we introduce a novel framework for approximately solving SDPs

with positive semi-definite constraint matrices in a computationally efficient manner and

with small memory footprint. The proposed bi-convex relaxation (BCR), transforms an

SDP into a biconvex optimization problem, which can then be solved in the original,
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low-dimensional variable space at low complexity. The resulting biconvex problem is

solved using a computationally-efficient AM procedure. Since AM is prone to get stuck

in local minima, we propose an initialization scheme that enables BCR to start close to

the global optimum of the original SDP—this initialization is key for our algorithm to

quickly converge to an optimal or near-optimal solution. We showcase the effectiveness of

the BCR framework by comparing to highly-specialized SDP solvers for a selected set of

problems in computer vision involving image segmentation, co-segmentation, semantic

segmentation and metric learning on manifolds. Our results demonstrate that BCR enables

high-quality results while achieving speedups ranging from 4× to 35× over state-of-the-

art competitor methods [137–141] for the studied applications. The code is available at

https://github.com/shahsohil/biconvex-relaxation.

5.2 Related Work

We now briefly review semidefinite programs (SDPs) and discuss prior work on fast,

approximate solvers for SDPs in computer vision and related applications.

5.2.1 Semidefinite Programs (SDPs)

SDPs find use in a large and growing number of fields, including computer vi-

sion, machine learning, signal and image processing, statistics, communications, and
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control [131]. SDPs can be written in the following general form:

minimize
Y∈S+N×N

〈C,Y〉

subject to 〈Ai,Y〉 = bi, ∀i ∈ E ,

〈Aj,Y〉 ≤ bj, ∀j ∈ B,

(5.1)

where S+
N×N represents the set of N ×N symmetric positive semidefinite matrices, and

〈C,Y〉 = trace(CTY) is the matrix inner product. The sets E and B contain the indices

associated with the equality and inequality constraints, respectively; Ai and Aj are

symmetric matrices of appropriate dimensions.

The key advantages of SDPs are that (i) they enable the transformation of certain

non-convex constraints into convex constraints via semidefinite relaxation (SDR) [126]

and (ii) the resulting problems often come with strong theoretical guarantees.

In computer vision, a large number of problems can be cast as SDPs of the general

form (5.1). For example, [124] formulates image manifold learning as an SDP, [130]

uses an SDP to enforce a non-negative lighting constraint when recovering scene lighting

and object albedos, [142] uses an SDP for graph matching, [123] proposes an SDP that

recovers the orientation of multiple cameras from point correspondences and essential

matrices, and [125] uses low-rank SDPs to solve matrix-completion problems that arise in

structure-from-motion and photometric stereo.

5.2.2 SDR for Binary-Valued Quadratic Problems

Semidefinite relaxation is commonly used to solve binary-valued labeling problems.

For such problems, a set of variables take on binary values while minimizing a quadratic
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cost function that depends on the assignment of pairs of variables. Such labeling problems

typically arise from Markov random fields (MRFs) for which many solution methods

exist [143]. Spectral methods, e.g., [23], are often used to solve such binary-valued

quadratic problems (BQPs)—the references [120, 121] used SDR inspired by the work

of [122] that provides a generalized SDR for the max-cut problem. BQP problems have

wide applicability to computer vision problems, such as segmentation and perceptual

organization [120, 137, 144], semantic segmentation [145], matching [121, 146], surface

reconstruction including photometric stereo and shape from defocus [129], and image

restoration [147].

BQPs can be solved by lifting the binary-valued label vector b ∈ {±1}N to an

N2-dimensional matrix space by forming the PSD matrix B = bbT , whose non-convex

rank-1 constraint is relaxed to PSD matrices B ∈ S+
N×N with an all-ones diagonal [126].

The goal is then to solve a SDP for B in the hope that the resulting matrix has rank 1; if B

has higher rank, an approximate solution must be extracted which can either be obtained

from the leading eigenvector or via randomization methods [126, 148].

5.2.3 Specialized Solvers for SDPs

General-purpose solvers for SDPs, such as SeDuMi [149] or SDPT3 [150], rely on

interior point methods with high computational complexity and memory requirements.

Hence, their use is restricted to low-dimensional problems. For problems in computer

vision, where the number of variables can become comparable to the number of pixels in

an image, more efficient algorithms are necessary. A handful of special-purpose algorithms

90



have been proposed to solve specific problem types arising in computer vision. These

algorithms fit into two classes: (i) convex algorithms that solve the original SDP by

exploiting problem structure and (ii) non-convex methods that avoid lifting.

For certain problems, one can exactly solve SDPs with much lower complexity than

interior point schemes, especially for BQP problems in computer vision. Ecker et al. [129]

deployed a number of heuristics to speed up the Goemans-Williamson SDR [122] for

surface reconstruction. Olsson et al. [147] proposed a spectral subgradient method to solve

BQP problems that include a linear term, but are unable to handle inequality constraints.

A particularly popular approach is the SDCut algorithms of Wang et al. [137]. This

method solves BQP for some types of segmentation problems using dual gradient descent.

SDCut leads to a similar relaxation as for BQP problems, but enables significantly lower

complexity for graph cutting and its variants. To the best of our knowledge, the method by

Wang et al. [137] yields state-of-the-art performance—nevertheless, our proposed method

is at least an order of magnitude faster, as shown in Section 5.4.

Another algorithm class contains non-convex approximation methods that avoid

lifting altogether. Since these methods work with low-dimensional unknowns, they are

potentially more efficient than lifted methods. Simple examples include the Wiberg

method [151] for low-rank matrix approximation, which uses Newton-type iterations to

minimize a non-convex objective. A number of methods have been proposed for SDPs

where the objective function is simply the trace-norm of Y (i.e., problem (5.1) with

C = I) and without inequality constraints. Approaches include replacing the trace norm

with the max-norm [136], or using the so-called Wirtinger flow to solve phase-retrieval

problems [135]. One of the earliest approaches for non-convex methods are due to Burer
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and Montiero [9], who propose an augmented Lagrangian method. While this method

is able to handle arbitrary objective functions, it does not naturally support inequality

constraints (without introducing auxiliary slack variables). Furthermore, this approach

uses non-convex methods for which convergence is not well understood and is sensitive to

the initialization value.

While most of the above-mentioned methods provide best-in-class performance at

low computational complexity, they are limited to very specific problems and cannot be

generalized to other, more general SDPs.

5.3 Model and Algorithms

We now present the proposed biconvex relaxation (BCR) framework. We then

propose an alternating minimization procedure and a suitable initialization method.

5.3.1 Biconvex Relaxation

Rather than solving the general SDP (5.1) directly, we exploit the following key fact:

any matrix Y is symmetric positive semidefinite if and only if it has an expansion of the

form Y = XXT . By substituting the factorization Y = XXT into (5.1), we are able to

remove the semidefinite constraint and arrive at the following problem:

minimize
X∈RN×r

trace(XTCX)

subject to trace(XTAiX) = bi, ∀i ∈ E ,

trace(XTAjX) ≤ bj, ∀j ∈ B,

(5.2)
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where r = rank(Y).1 Note that any symmetric semi-definite matrix A has a (pos-

sibly complex-valued) square root L of the form A = LTL. Furthermore, we have

trace(XTAX) = trace(XTLTLX) = ‖LX‖2
F , where ‖ · ‖F is the Frobenius (matrix)

norm. This formulation enables us to rewrite (5.2) as follows:

minimize
X∈RN×r

trace(XTCX)

subject to Qi = LiX, ‖Qi‖2
F = bi, ∀i ∈ E ,

Qj = LjX, ‖Qj‖2
F ≤ bj, ∀j ∈ B.

(5.3)

If the matrices {Ai}, {Aj}, and C are themselves PSDs, then the objective function in

(5.3) is convex and quadratic, and the inequality constraints in (5.3) are convex—non-

convexity of the problem is only caused by the equality constraints. The core idea of BCR

explained next is to relax these equality constraints. Here, we assume that the factors

of these matrices are easily obtained from the underlying problem structure. For some

applications, where these factors are not readily available this could be a computational

burden (worst case O(N3)) rather than an asset.

In the formulation (5.3), we have lost convexity. Nevertheless, whenever r < N, we

achieved a (potentially large) dimensionality reduction compared to the original SDP (5.1).

We now relax (5.3) in a form that is biconvex, i.e., convex with respect to a group of

variables when the remaining variables are held constant. By relaxing the convex problem

in biconvex form, we retain many advantages of the convex formulation while maintaining

low dimensionality and speed. In particular, we propose to approximate (5.3) with the

1Straightforward extensions of our approach allow us to handle constraints of the form trace(XTAkX) ≥

bk,∀k ∈ A, as well as complex-valued matrices and vectors.

93



following biconvex relaxation (BCR):

minimize
X,Qi,i∈{B∪E}

trace(XTCX) +
α

2

∑

i∈{E∪B}

‖Qi − LiX‖2
F −

β

2

∑

j∈E

‖Qj‖2
F

subject to ‖Qi‖2
F ≤ bi, ∀i ∈ {B ∪ E},

(5.4)

where α > β > 0 are relaxation parameters (discussed in detail below). In this BCR

formulation, we relaxed the equality constraints ‖Qi‖2
F = bi, ∀i ∈ E , to inequality

constraints ‖Qi‖2
F ≤ bi, ∀i ∈ E , and added negative quadratic penalty functions −β

2
‖Qi‖,

∀i ∈ E , to the objective function. These quadratic penalties attempt to force the inequality

constraints in E to be satisfied exactly. We also replaced the constraints Qi = LiX and

Qj = LjX by quadratic penalty functions in the objective function.

The relaxation parameters are chosen by freezing the ratio α/β to 2, and following

a simple, principled way of setting β. Unless stated otherwise, we set β to match the

curvature of the penalty term with the curvature of the objective i.e., β = ‖C‖2, so that the

resulting bi-convex problem is well-conditioned.

Our BCR formulation (5.4) has some important properties. First, if C ∈ S+
N×N then

the problem is biconvex, i.e., convex with respect to X when the {Qi} are held constant,

and vice versa. Furthermore, consider the case of solving a constraint feasibility problem

(i.e., problem (5.1) with C = 0). When Y = XXT is a solution to (5.1) with C = 0, the

problem (5.4) assumes objective value −β
2

∑
j bj, which is the global minimizer of the

BCR formulation (5.4). Likewise, it is easy to see that any global minimizer of (5.4) with

objective value −β
2

∑
j bj must be a solution to the original problem (5.1).

94



5.3.2 Alternating Minimization (AM) Algorithm

One of the key benefits of biconvexity is that (5.4) can be globally minimized with

respect to Q or X. Hence, it is natural to compute approximate solutions to (5.4) via

alternating minimization. Note the convergence of AM for biconvex problems is well

understood [152, 153]. The two stages of the proposed method for BCR are detailed next.

Stage 1: Minimize with respect to {Qi}. The BCR objective in (5.4) is quadratic

in {Qi} with no dependence between matrices. Consequently, the optimal value of Qi

can be found by minimizing the quadratic objective, and then reprojecting back into a unit

Frobenius-norm ball of radius
√
bi. The minimizer of the quadratic objective is given by

α
α−βiLiX, where βi = 0 if i ∈ B and βi = β if i ∈ E . The projection onto the unit ball

then leads to the following expansion–reprojection update:

Qi ←
LiX

‖LiX‖F
min

{√
bi,

α

α− βi
‖LiX‖F

}
. (5.5)

Intuitively, this expansion–reprojection update causes the matrix Qi to expand if i ∈ E ,

thus encouraging it to satisfy the relaxed constraints in (5.4) with equality.

Stage 2: Minimize with respect to X. This stage solves the least-squares problem:

X← arg min
X∈RN×r

trace(XTCX) +
α

2

∑

i∈{E∪B}

‖Qi−LiX‖2
F . (5.6)

The optimality conditions for this problem are linear equations, and the solution is

X←


C + α

∑

i∈{E∪B}

LT
i Li



−1
 ∑

i∈{E∪B}

LT
i Qi


, (5.7)

where the matrix inverse (one-time computation) may be replaced by a pseudo-inverse if

necessary. Alternatively, one may perform a simple gradient-descent step with a suitable
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Algorithm 6 AM for Biconvex Relaxation
1: inputs: C, {Li}, bi, α, and β, output: X
2: Compute an initializer for X as in Section 5.3.3
3: Precompute M =

(
C + α

∑
i∈{E∪B} L

T
i Li

)−1

4: while not converged do
5: Qi ← LiX

‖LiX‖F
min

{√
bi,

α
α−βi‖LiX‖F

}

6: X←M
(∑

i∈{E∪B} L
T
i Qi

)
,

7: end while

step size, which avoids the inversion of a potentially large-dimensional matrix.

The resulting AM algorithm for the proposed BCR (5.4) is summarized in Algo-

rithm 6.

5.3.3 Initialization

The problem (5.4) is biconvex and hence, a global minimizer can be found with

respect to either {Qi} or X, although a global minimizer of the joint problem is not

guaranteed. We hope to find a global minimizer at low complexity using the AM method,

but in practice AM may get trapped in local minima, especially if the variables have been

initialized poorly. We now propose a principled method for computing an initializer for X

that is often close to the global optimum of the BCR problem—our initializer is key for

the success of the proposed AM procedure and enables fast convergence.

The papers [134, 135] have considered optimization problems that arise in phase

retrieval where B = ∅ (i.e., there are only equality constraints), C = I being the identity,

and Y being rank one. For such problems, the objective of (5.1) reduces to trace(Y). By

setting Y = xxT , we obtain the following formulation:

minimize
x∈RN

‖x‖2
2 subject to qi = Lix, ‖qi‖2

2 = bi, ∀i ∈ E . (5.8)
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Netrapali et al. [134] proposed an iterative algorithm for solving (5.8), which has been

initialized by the following strategy. Define

Z =
1

|E|
∑

i∈E

biL
T
i Li. (5.9)

Let v be the leading eigenvector of Z and λ the leading eigenvalue. Then x = λv is an

accurate approximation to the true solution of (5.8). In fact, if the matrices Li are sampled

from a random normal distribution, then it was shown in [134,135] that E‖x?− λv‖2
2 → 0

(in expectation) as |E| → ∞, where x? is the true solution to (5.8).

We are interested in a good initializer for the general problem in (5.3) where X can

be rank one or higher. We focus on problems with equality constraints only—note that

one can use slack variables to convert a problem with inequality constraints into the same

form [131]. Given that C is a symmetric positive definite matrix, it can be decomposed

into C = UTU. By the change of variables X̃ = UX, we can rewrite (5.1) as follows:

minimize
X∈RN×r

‖X̃‖2
F subject to 〈Ãi, X̃X̃T 〉 = bi, ∀i ∈ E , (5.10)

where Ãi = U−TAiU
−1, and we omitted the inequality constraints. To initialize the

proposed AM procedure in Algorithm 6, we make the change of variables X̃ = UX to

transform the BCR formulation into the form of (5.10). Analogously to the initialization

procedure in [134] for phase retrieval, we then compute an initializer X̃0 using the leading r

eigenvectors of Z scaled by the leading eigenvalue λ. Finally, we calculate the initializer

for the original problem by reversing the change of variables as X0 = U−1X̃0. For most

problems the initialization time is a small fraction of the total runtime.
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5.3.4 Advantages of Biconvex Relaxation

The proposed framework has numerous advantages over other non-convex methods.

First and foremost, BCR can be applied to general SDPs. Specialized methods, such

as Wirtinger flow [135] for phase retrieval and the Wiberg method [151] for low-rank

approximation are computationally efficient, but restricted to specific problem types.

Similarly, the max-norm method [136] is limited to solving trace-norm-regularized SDPs.

The method of Burer and Montiero [9] is less specialized, but does not naturally support

inequality constraints. Furthermore, since BCR problems are biconvex, one can use

numerical solvers with guaranteed convergence. Convergence is guaranteed not only for

the proposed AM least-squares method in Algorithm 6 (for which the objective decreases

monotonically), but also for a broad range of gradient-descent schemes suitable to find

solutions to biconvex problems [154]. In contrast, the method in [9] uses augmented

Lagrangian methods with non-linear constraints for which convergence is not guaranteed.

5.4 Experiments

We now evaluate our solver using both synthetic and real-world data. We begin with

a brief comparison showing that biconvex solvers outperform both interior-point methods

for general SDPs and also state-of-the-art low-rank solvers. Of course, specialized solvers

for specific problem forms achieve superior performance to classical interior point schemes.

For this reason, we evaluate our proposed method on three important computer vision

applications, i.e., segmentation, co-segmentation, semantic segmentation and manifold

metric learning, using public datasets, and we compare our results to state-of-the-art
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methods. These applications are ideal because (i) they involve large scale SDPs and (ii)

customized solvers are available that exploit problem structure to solve these problems

efficiently. Hence, we can compare our BCR framework to powerful and optimized solvers.

5.4.1 General-Form Problems

We briefly demonstrate that BCR performs well on general SDPs by comparing

to the widely used SDP solver, SDPT3 [150] and the state-of-the-art, low-rank SDP

solver CGDSP [10]. Note that SDPT3 uses an interior point approach to solve the convex

problem in (5.1) whereas the CGDSP solver uses gradient-descent to solve a non-convex

formulation. For fairness, we initialize both algorithms using the proposed initializer

and the gradient descent step in CGDSP was implemented using various acceleration

techniques [155]. Since CGDSP cannot handle inequality constraints we restrict our

comparison to equality constraints only.

Experiments: We randomly generate a 256× 256 rank-3 data matrix of the form

Ytrue = x1x
T
1 + x2x

T
2 + x3x

T
3 , where {xi} are standard normal vectors. We generate a

standard normal matrix L and compute C = LTL. Gaussian matrices Ai ∈ R250×250 form

equality constraints. We report the relative error in the recovered solution Yrec measured as

‖Yrec−Ytrue‖/‖Ytrue‖. Average runtimes for varying numbers of constraints are shown in

Figure 5.1(a), while Figure 5.1(b) plots the average relative error. Figure 5.1(a) shows that

our method has the best runtime of all the schemes. Figure 5.1(b) shows convex interior

point methods do not recover the correct solution for small numbers of constraints. With

few constraints, the full lifted SDP is under-determined, allowing the objective to go to
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zero. In contrast, the proposed BCR approach is able to enforce an additional rank-3

constraint, which is advantageous when the number of constraints is low.
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Figure 5.1: Results on synthetic data for varying number of linear constraints.

5.4.2 Image Segmentation

Consider an image of N pixels. Segmentation of foreground and background

objects can be accomplished using graph-based approaches, where graph edges encode the

similarities between pixel pairs. Such approaches include normalized cut [23] and ratio

cut [156]. The graph cut problem can be formulated as an NP-hard integer program [122]

minimize
x∈{−1,1}N

xTLx, (5.11)
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where L encodes edge weights and x contains binary region labels, one for each pixel.

This problem can be “lifted” to the equivalent higher dimensional problem

minimize
X∈S+

N×N

trace(LTX) subject to diag(X) = 1, rank(X) = 1. (5.12)

After dropping the non-convex rank constraint, (5.12) becomes an SDP that is solvable us-

ing convex optimization [120,132,146]. The SDP approach is computationally intractable

if solved using off-the-shelf SDP solvers (such as SDPT3 [150] or other interior point

methods). Furthermore, exact solutions cannot be recovered when the solution to the SDP

has rank greater than 1. In contrast, BCR is computational efficient for large problems and

can easily incorporate rank constraints, leading to efficient spectral clustering.

BCR is also capable of incorporating annotated foreground and background pixel

priors [157] using linear equality and inequality constraints. We consider the SDP based

segmentation presented in [157], which contains three grouping constraints on the pixels:

(tTf Px)2 ≥ κ‖tTf Px‖2
1, (tTb Px)2 ≥ κ‖tTb Px‖2

1 and ((tf−tb)
TPx)2 ≥ κ‖(tf−tb)

TPx‖2
1,

where κ ∈ [0, 1]. P = D−1W is the normalized pairwise affinity matrix and tf and tb

are indicator variables denoting the foreground and background pixels. These constraints

enforce that the segmentation respects the pre-labeled pixels given by the user, and also

pushes high similarity pixels to have the same label. The affinity matrix W is given by

Wi,j =





exp
(
−‖fi−fj‖22

γ2f
− d(i,j)2

γ2d

)
, if d(i, j) < r

0, otherwise,

(5.13)

where fi is the color histogram of the ith super-pixel and d(i, j) is the spatial distance

between i and j. Considering these constraints and letting X = YYT , (5.12) can be
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written in the form of (5.2) as follows:

minimize
Y∈RN×r

trace(YTLY)

subject to trace(YTAiY) = 1, ∀i = 1, . . . , N

trace(YTB2Y) ≥ κ‖tTf Px‖2
1, trace(YTB3Y) ≥ κ‖tTb Px‖2

1

trace(YTB4Y) ≥ κ‖(tf − tb)
TPx‖2

1, trace(YTB1Y) = 0.

(5.14)

Here, r is the rank of the desired solution, B1 = 11T , B2 = Ptft
T
f P, B3 = Ptbt

T
b P,

B4 = P(tf − tb)(tf − tb)
TP, Ai = eie

T
i , ei ∈ Rn is an elementary vector with a 1 at the

ith position. After solving (5.14) using BCR (5.4), the final binary solution is extracted

from the score vector using the swept random hyperplanes method [148].

We compare the performance of BCR with the highly customized BQP solver

SDCut [137] and biased normalized cut (BNCut) [138]. BNCut is an extension of the

Normalized cut algorithm [23] whereas SDCut is currently the most efficient and accurate

SDR solver but limited only to solving BQP problems. Also, BNCut can support only one

quadratic grouping constraint per problem.

Experiments: We consider the Berkeley image segmentation dataset [52]. Each

image is segmented into super-pixels using the VL-Feat [158] toolbox. For SDCut and

BNCut, we use the publicly available code with hyper-parameters set to the values sug-

gested in [137]. For BCR, we set β = λ/
√
|B ∪ E|, where λ controls the coarseness of the

segmentation by mediating the tradeoff between the objective and constraints, and would

typically be chosen from [1, 10] via cross validation. For simplicity, we just set λ = 5 in

all experiments reported here.

We compare the runtime and quality of each algorithm. Figure 5.2 shows the
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Original

BNCut

SDCut

BCR

Figure 5.2: Image segmentation results on the Berkeley dataset. The red and blue marker
indicates the annotated foreground and background super-pixels, respectively.

segmentation results while the quantitative results are displayed in Table 5.1. For all the

considered images, our approach gives superior foreground object segmentation compared

to SDCut and BNCut. Moreover, as seen in Table 5.1, our solver is 35× faster than

SDCut and yields lower objective energy. Segmentation using BCR is achieved using only

rank 2 solutions whereas SDCut requires rank 7 solutions to obtain results of comparable

accuracy.2 Note that while BNCut with rank 1 solutions is much faster than SDP based

methods, the BNCut segmentation results are not on par with SDP approaches.

5.4.3 Co-segmentation

We next consider image co-segmentation, in which segmentation of the same object

is jointly computed on multiple images simultaneously. Because co-segmentation involves

2The optimal solutions found by SDCut all had rank 7 except for one solution of rank 5.
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multiple images, it provides a testbed for large problem instances. Co-segmentation

balances a tradeoff between two criteria: (i) color and spatial consistency within a single

image and (ii) discrimination between foreground and background pixels over multiple

images. We closely follow the work of Joulin et al. [144], whose formulation is given by

minimize
x∈{±1}N

xTAx subject to (xT δi)
2 ≤ λ2, ∀i = 1, . . . ,M, (5.15)

where M is the number of images and N =
∑M

i=1Ni is the total number of pixels over all

images. The matrix A = Ab + µ
N

Aw, where Aw is the intra-image affinity matrix and Ab

is the inter-image discriminative clustering cost matrix computed using the χ2 distance

between SIFT features in different images (see [144] for a details).

To solve this problem with BCR, we re-write (5.15) in the form (5.2) to obtain

minimize
X∈RN×r

trace(XTAX)

subject to: trace(XTZiX) = 1, ∀i = 1, . . . , N

trace(XT∆iX) ≤ λ2, ∀i = 1, . . . ,M,

(5.16)

where ∆i = δiδi
T and Zi = eie

T
i . Finally, (5.16) is solved using BCR (5.4), following

which one can recover the optimal score vector x∗p as the leading eigenvector of X∗. The

final binary solution is extracted by thresholding x∗p to obtain integer-valued labels [139].

Experiments: We compare BCR to two well-known co-segmentation methods,

namely low-rank factorization [139] (denoted LR) and SDCut [137]. We use publicly

available code for LR and SDCut. We test on the Weizman horses3 and MSRC4 datasets

with a total of four classes (horse, car-front, car-back, and face) containing 6 ∼ 10

3www.msri.org/people/members/eranb/
4www.research.microsoft.com/en-us/projects/objectclassrecognition/
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Table 5.1: Results on image segmentation. Numbers are the mean over the images in Fig.
5.2. Lower numbers are better. The proposed algorithm and the best performance are
highlighted.

Method BNCut SDCut BCR
Time (s) 0.08 27.64 0.97
Objective 10.84 6.40 6.34

Rank 1 7 2

Table 5.2: Co-segmentation results. The proposed algorithm and the best performance is
highlighted.

Test Cases
Dataset horse face car-back car-front

Number of images 10 10 6 6
Variables in BQPs 4587 6684 4012 4017

Time (s)
LowRank 2647 1614 724 749

SDCut 220 274 180 590
BCR 18.8 61.8 46.7 44.7

Objective
LowRank 4.84 4.48 5.00 4.17

SDCut 5.24 4.94 4.53 4.27
BCR 4.64 3.29 4.36 3.94

Rank
LowRank 18 11 7 10

SDCut 3 3 3 3
BCR 2 2 2 2

images per class. Each image is over-segmented to 400 ∼ 700 SLIC superpixels using

the VLFeat [158] toolbox, giving a total of around 4000 ∼ 7000 super-pixels per class.

Relative to image segmentation problems, this application requires 10× more variables.

Qualitative results are presented in Figure 5.3 while Table 5.2 provides a quantitative

comparison. From Table 5.2, we observe that on average our method converges ∼ 9.5×

faster than SDCut and ∼ 60× faster than LR. Moreover, the optimal objective value

achieved by BCR is significantly lower than that achieved by both SDCut and LR methods.

Figure 5.3 displays the visualization of the final score vector x∗p for selected images,

depicting that in general SDCut and BCR produce similar results. Furthermore, the

optimal BCR score vector x∗p is extracted from a rank-2 solution, as compared to rank-3

and rank-7 solutions needed to get comparable results with SDCut and LR.
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Figure 5.3: Co-segmentation results on the Weizman horses and MSRC datasets. From
left to right: the original images, the results of LR, SDCut, and BCR, respectively.
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5.4.4 Conditional Random Fields

Next, we consider solving maximum a posteriori(MAP) inference on fully con-

nected CRFs for semantic segmentation [1]. Unlike previously discussed segmentation

approaches, in this model each node is connected to every other node in an image and

the label assignment is non-binary. Through this application, we wish to demonstrate that

unlike other SDP solvers our proposed method is scalable and it can efficiently handle large

number of variables. A fully connected CRF on N nodes, denoted by random variables

x = {x1, x2, . . . , xN}, consists of N2 edges and each variable can be assigned discrete

labels from the set L = {1, . . . , L}. The MAP inference problem is given by,

minimize
x∈LN

E(x) =
∑

i

φi(xi) +
∑

i,j,i<j

φi,j(xi, xj) (5.17)

where φi denotes unary potential and φi,j = µ(xi, xj)
∑M

m=1w
(m)k(m)(fi, fj) denotes

pairwise potential. Here, fi is the feature vector corresponding to variable xi, µ(xi, xj) =

δ(xi 6= xj) is Potts model based label compatibility function, k is the kernel function and

w indicates the weights. Following [145], the (5.17) can be expressed as BQP,

minimize
X∈{0,1}N×L

trace(HTX)− 1

2
trace(XTKX) +

1

2
1TK1

subject to:
L∑

l=1

Xi,l = 1 ∀ i ∈ N
(5.18)

where Hi,l = φi(l) and Ki,j =
∑M

m=1 w
(m)k(m)(fi, fj). We solve this problem in the

continuous label space using BCR. We introduce an additional equality constraint in (5.18)

given by,

trace(XTZiX) = 1 ∀ i = 1, . . . , N (5.19)
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where Zi = eie
T
i . This constraint in combination with the ones in (5.18) forces solution to

be one of the vertices of simplex. Once solved, the discrete label assignment x∗i is obtained

by assigning to the maximum indices along each row.

Experiments: We compare our algorithm with mean-field approximation [1] on

the test data of MSRC 21-class database. The unary potentials are obtained from the

corresponding author of [1]. Following the procedure in [145], we approximate the kernel

K using the Nystrom method. Each of the image contains around 60,000 pixels and hence

the large number of variables. The quantitative result is summarized in Table 5.3 whereas

Figure 5.4 displays the qualitative results. The runtime comparison does not seem fair as

our MATLAB implementation runtime is compared against that of C++ implementation

of [1]. The code for [145] is not released and hence cannot be compared.

Method Standard GT Accurate GT Time (s)
Unary 82.94 83.70 -
BCR 85.35 89.34 268

MF+filter [1] 86 88.2 4.5

Table 5.3: Comparison of quantitative results on MSRC-21 test dataset for fully connected
CRF’s.

5.4.5 Metric Learning on Manifolds

Large SDPs play a central role in manifold methods for classification and dimen-

sionality reduction on image sets and videos [140, 141, 159]. Manifold methods rely

heavily on covariance matrices, which accurately characterize second-order statistics of

variation between images. Typical methods require computing distances between matrices

along a Riemannian manifold—a task that is expensive for large matrices and limits the

applicability of these techniques. It is of interest to perform dimensionality reduction on
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Figure 5.4: Qualitative results of Image segmentation on MSRC-21 dataset using fully
connected CRF’s. From top to bottom: original image, groundtruth segmentation, unary
potential, mean-field and ours

SPD matrices, thus enabling the use of covariance methods on very large problems.

In this section, we discuss dimensionality reduction on manifolds of SPD matrices

using BCR, which is computationally much faster than the state-of-the-art while achieving

comparable (and often better) performance. Consider a set of high-dimensional SPD

matrices {S1, . . . ,Sn} where Si ∈ S+
N×N . We can project these onto a low-dimensional

manifold of rank K < N by solving

minimize
X∈S+

N×N ,ηij≥0
trace(X) + µ

∑
i,j ηij

subject to DX(Si,Sj) ≤ u+ ηij, ∀(i, j) ∈ C

DX(Si,Sj) ≥ l − ηij, ∀(i, j) ∈ D

(5.20)
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where X is a (low-dimensional) SPD matrix, DX is Riemannian distance metric, and ηij

are slack variables. The sets C and D contain pairs of similar/dissimilar matrices labeled

by the user, and the scalars u and l are given upper and lower bounds. For simplicity, we

measure distance using the log-Euclidean metric (LEM) defined by [140]

D(Si,Sj) = ‖ log(Si)− log(Sj)‖2
F = trace

(
(Ri −Rj)

T (Ri −Rj)
)
, (5.21)

where Ri = log(Si) is a matrix logarithm. When X has rank K, it is a transformation onto

the space of rank K covariance matrices, where the new distance is given by [140]

DX(Si,Sj) = trace
(
X(Ri −Rj)

T (Ri −Rj)
)
. (5.22)

We propose to solve the semi-definite program (5.20) using the representation

X = YYT which puts our problem in the form (5.2) with Aij = (Ri −Rj)
T (Ri −Rj).

This problem is then solved using BCR, where the slack variables {ηij} are removed

and instead a hinge loss penalty approximately enforces the inequality constraints in

(5.4). In our experiments we choose u = ρ − ξτ and l = ρ + ξτ , where ρ and τ are the

mean and standard deviation of the pairwise distances between {Si} in the original space,

respectively. The quantities ξ and µ are treated as hyper-parameters.

Experiments: We analyze the performance of our approach (short BCRML) against

state-of-the-art manifold metric learning algorithms using three image set classification

databases: ETH-80, YouTube Celebrities (YTC), and YouTube Faces (YTF) [86]. The

ETH-80 database consists of a 10 image set for each of 8 object categories. YTC contains

1,910 video sequences for 47 subjects from YouTube. YTF is a face verification database

containing 3,425 videos of 1,595 different people. Features were extracted from images

as described in [140]. Faces were cropped from each dataset using bounding boxes, and
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scaled to size 20× 20 for the ETH and YTC datasets. For YTF we used a larger 30× 30

scaling, as larger images were needed to replicate the results reported in [140].

We compare BCR to three state-of-the-art schemes: LEML [140] is based on a log-

Euclidean metric, and minimizes the logdet divergence between matrices using Bregman

projections. SPDML [141] optimizes a cost function on the Grassmannian manifold

while making use of either the affine-invariant metric (AIM) or Stein metric. We use

publicly available code for LEML and SPDML and follow the details in [140, 141] to

select algorithm specific hyper-parameters using cross-validation. For BCRML, we fix

α to be 1/
√
|C ∪ D| and µ as α/2. The ξ is fixed to 0.5, which performed well under

cross-validation. For SPDML, the dimensionality of the target manifold K is fixed to 100.

In LEML, the dimension cannot be reduced and thus the final dimension is the same as the

original. Hence, for a fair comparison, we report the performance of BCRML using full

target dimension (BCRML-full) as well as for K = 100 (BCRML-100).

Table 5.4 summarizes the classification performance on the above datasets. We

observe that BCRML performs almost the same or better than other ML algorithms. One

can apply other algorithms to gain a further performance boost after projecting onto the

low-dimensional manifold. Hence, we also provide a performance evaluation for LEML

and BCRML using the LEM based CDL-LDA recognition algorithm [159]. The last three

columns of Table 5.4 display the runtime measured on the YTC dataset. We note that

BCRML-100 trains roughly 2× faster and overall runs about 3.5× faster than the next

fastest method. Moreover, on testing using CDL-LDA, the overall computation time is

approximately 5× faster in comparison to the next-best performing approach.
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Method ETH-80 YTC YTF Train (s) Test (s) Total (s)
AIM 89.25 ± 1.69 62.77 ± 2.89 59.82 ± 1.63 - 5.189 1463.3
Stein 89.00 ± 2.42 62.02 ± 2.71 57.56 ± 2.17 - 3.593 1013.3
LEM 90.00 ± 2.64 62.06 ± 3.04 59.78 ± 1.69 - 1.641 462
SPDML-
AIM [141]

91.00 ± 3.39 65.32 ± 2.77 61.64 ± 1.46 3941 0.227 4005

SPDML-
Stein [141]

90.75 ± 3.34 66.10 ± 2.92 61.66 ± 2.09 1447 0.024 1453.7

LEML [140] 92.00 ± 2.18 62.13 ± 3.13 60.92 ± 1.95 93 1.222 437.7
BCRML-full 92.00± 3.12 64.40 ± 2.92 60.58 ± 1.75 189 1.222 669.7
BCRML-100 92.25 ± 3.78 64.61 ± 2.65 62.42 ± 2.14 45 0.291 127
CDL-
LDA [159]

94.25 ± 3.36 72.94 ± 1.81 N/A - 1.073 302.7

LEML+CDL-
LDA [140]

94.00 ± 3.57 73.01 ± 1.67 N/A 93 0.979 369

BCRML-100
+CDL-LDA

93.75 ± 3.58 73.48 ± 1.83 N/A 45 0.045 57.7

Table 5.4: Image set classification results for state-of-the-art metric learning algorithms.
The last three columns report computation time in seconds. The last 3 rows report
performance using CDL-LDA after dimensionality reduction. Methods using the proposed
BCR are listed in bold.

5.5 Conclusion

We have presented a novel biconvex relaxation framework (BCR) that enables the

solution of general semidefinite programs (SDPs) at low complexity and with a small

memory footprint. We have provided an alternating minimization (AM) procedure along

with a new initialization method that, together, are guaranteed to converge, computationally

efficient (even for large-scale problems), and able to handle a variety of SDPs. Comparisons

of BCR with state-of-the-art methods for specific computer vision problems, such as

segmentation, co-segmentation, and metric learning, show that BCR provides similar or

better solution quality with significantly lower runtime.

Acknowledgement: This work was done jointly in collaboration with Abhay Yadav.
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Chapter 6: Stabilizing Adversarial Nets

6.1 Introduction

Adversarial networks play an important role in a variety of applications, including

image generation [160, 161], style transfer [161–164], domain adaptation [163, 165, 166],

imitation learning [167], privacy [168, 169], fair representation [168, 170], etc. One

particularly motivating application of adversarial nets is their ability to form generative

models, as opposed to the classical discriminative models [171–174].

While adversarial networks have the power to attack a wide range of previously

unsolved problems, they suffer from a major flaw: they are difficult to train. This is

because adversarial nets try to accomplish two objectives simultaneously; weights are

adjusted to maximize performance on one task while minimizing performance on another.

Mathematically, this corresponds to finding a saddle point of a loss function - a point that

is minimal with respect to one set of weights, and maximal with respect to another.

Conventional neural networks are trained by marching down a loss function until a

minimizer is reached (Figure 6.1(a)). In contrast, adversarial training methods search for

saddle points rather than a minimizer, which introduces the possibility that the training

path “slides off” the objective functions and the loss goes to −∞ (Figure 6.1(b)), resulting

in “collapse” of the adversarial network. As a result, many authors suggest using early
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(a)

saddle

(b)

Figure 6.1: A schematic depiction of gradient methods. (a) Classical networks are trained
by marching down the loss function until a minimizer is reached. Because classical loss
functions are bounded from below, the solution path gets stopped when a minimizer is
reached, and the gradient method remains stable. (b) Adversarial net loss functions may be
unbounded from below, and training alternates between minimization and maximization
steps. If minimization (or, conversely, maximization) is more powerful, the solution path
“slides off” the loss surface and the algorithm becomes unstable, resulting in a sudden
“collapse” of the network.

stopping, gradients/weight clipping [175], or specialized objective functions [171,175,176]

to maintain stability.

In this chapter, we present a simple “prediction” step that is easily added to many

training algorithms for adversarial nets. Finally, we use a wide range of experiments to

show that prediction enables faster training of adversarial networks using large learning

rates without the instability problems that plague conventional training schemes. The code

is available at https://github.com/shahsohil/stableGAN.

6.2 Related Work

6.2.1 Adversarial Networks as a Saddle-Point Problem

We now discuss a few common adversarial network problems and their saddle-point

formulations.
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Generative Adversarial Networks (GANs) fit a generative model to a dataset using a

game in which a generative model competes against a discriminator [171]. The generator,

G(z; θg), takes random noise vectors z as inputs, and maps them onto points in the target

data distribution. The discriminator, D(x; θd), accepts a candidate point x and tries to

determine whether it is really drawn from the empirical distribution (in which case it

outputs 1), or fabricated by the generator (output 0). During a training iteration, noise

vectors from a Gaussian distribution G are pushed through the generator network G to

form a batch of generated data samples denoted by Dfake. A batch of empirical samples,

Dreal, is also prepared. One then tries to adjust the weights of each network to solve a

saddle point problem, which is popularly formulated as,

min
θg

max
θd

Ex∼Dreal f(D(x; θd)) + Ez∼G f(1−D(G(z; θg); θd)). (6.1)

Here f(.) is any monotonically increasing function. Initially, [171] proposed using f(x) =

log(x).

Domain Adversarial Networks (DANs) [166, 168, 177] take data collected from a

“source” domain, and extract a feature representation that can be used to train models that

generalize to another “target” domain. For example, in the domain adversarial neural

network (DANN [166]), a set of feature layers maps data points into an embedded feature

space, and a classifier is trained on these embedded features. Meanwhile, the adversarial

discriminator tries to determine, using only the embedded features, whether the data points

belong to the source or target domain. A good embedding yields a better task-specific
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objective on the target domain while fooling the discriminator, and is found by solving

min
θf ,θyk

max
θd

∑

k

αkLyk
(
xs; θf , θyk

)
− λLd (xs,xt; θf , θd) . (6.2)

Here Ld is any adversarial discriminator loss function and Lyk denotes the task specific loss.

θf , θd, and θyk are network parameter of feature mapping, discriminator, and classification

layers.

6.2.2 Stabilizing saddle point solvers

It is well known that alternating stochastic gradient methods are unstable when using

simple logarithmic losses. This led researchers to explore multiple directions for stabilizing

GANs; either by adding regularization terms [175, 176, 178, 179], a myriad of training

“hacks” [180, 181], re-engineering network architectures [176], and designing different

solvers [12]. Specifically, the Wasserstein GAN (WGAN) [175] approach modifies the

original objective by replacing f(x) = log(x) with f(x) = x. This led to a training scheme

in which the discriminator weights are “clipped.” However, as discussed in [175], the

WGAN training is unstable at high learning rates, or when used with popular momentum

based solvers such as Adam. Currently, it is known to work well only with RMSProp [175].

The unrolled GAN [12] is a new solver that can stabilize training at the cost of

more expensive gradient computations. Each generator update requires the computation of

multiple extra discriminator updates, which are then discarded when the generator update

is complete. While avoiding GAN collapse, this method requires increased computation

and memory.

In the convex optimization literature, saddle point problems are more well studied.
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One popular solver is the primal-dual hybrid gradient (PDHG) method [182, 183], which

has been popularized by Chambolle and Pock [184], and has been successfully applied to a

range of machine learning and statistical estimation problems [185]. PDHG relates closely

to the method proposed here - it achieves stability using the same prediction step, although

it uses a different type of gradient update and is only applicable to bi-linear problems.

Stochastic methods for convex saddle-point problems can be roughly divided into

two categories: stochastic coordinate descent [186–192] and stochastic gradient descent

[193, 194]. Similar optimization algorithms have been studied for reinforcement learning

[195, 196]. Recently, a “doubly” stochastic method that randomizes both primal and

dual updates was proposed for strongly convex bilinear saddle point problems [197]. For

general saddle point problems, “doubly” stochastic gradient descent methods are discussed

in [198], [199], in which primal and dual variables are updated simultaneously based on

the previous iterates and the current gradients.

6.3 Model and Algorithm

As discussed above, saddle-point optimization problems have the general form

min
u

max
v
L(u, v) (6.3)

for some loss function L and variables u and v. Most authors use the alternating stochastic

gradient method to solve saddle-point problems involving neural networks. This method

alternates between updating u with a stochastic gradient descent step, and then updating v

with a stochastic gradient ascent step. When simple/classical SGD updates are used, the
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steps of this method can be written

uk+1 = uk − αkL′u(uk, vk) | gradient descent in u, starting at (uk, vk)

vk+1 = vk + βkL′v(uk+1, vk) | gradient ascent in v, starting at (uk+1, vk) .

(6.4)

Here, {αk} and {βk} are learning rate schedules for the minimization and maximization

steps, respectively. The vectors L′u(u, v) and L′v(u, v) denote (possibly stochastic) gradi-

ents of L with respect to u and v. In practice, the gradient updates are often performed by

an automated solver, such as the Adam optimizer [112], and include momentum updates.

We propose to stabilize the training of adversarial networks by adding a prediction

step. Rather than calculating vk+1 using uk+1, we first make a prediction, ūk+1, about

where the u iterates will be in the future, and use this predicted value to obtain vk+1.

The proposed Prediction SDG method is given by (6.5).

Prediction Method

uk+1 = uk − αkL′u(uk, vk) | gradient descent in u, starting at (uk, vk)

ūk+1 = uk+1 + (uk+1 − uk) | predict future value of u

vk+1 = vk + βkL′v(ūk+1, vk) | gradient ascent in v, starting at (ūk+1, vk) .

(6.5)

The Prediction step (6.5) tries to estimate where u is going to be in the future by

assuming its trajectory remains the same as in the current iteration.
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6.4 Interpretations of the prediction step

We present three ways to explain the effect of prediction: an intuitive, non-mathematical

perspective, a more analytical viewpoint involving dynamical systems, and finally a rigor-

ous proof-based approach.

6.4.1 An intuitive viewpoint

The standard alternating SGD switches between minimization and maximization

steps. In this algorithm, there is a risk that the minimization step can overpower the

maximization step, in which case the iterates will “slide off” the edge of saddle, leading to

instability (Figure 6.1(b)). Conversely, an overpowering maximization step will dominate

the minimization step, and drive the iterates to extreme values as well.

The effect of prediction is visualized in Figure 6.2. Suppose that a maximization

step takes place starting at the red dot. Without prediction, the maximization step has no

knowledge of the algorithm history, and will be the same regardless of whether the previous

minimization update was weak (Figure 6.2(a)) or strong (Figure 6.2(b)). Prediction allows

the maximization step to exploit information about the minimization step. If the previous

minimizations step was weak (Figure 6.2(a)), the prediction step (dotted black arrow) stays

close to the red dot, resulting in a weak predictive maximization step (white arrow). But if

we arrived at the red dot using a strong minimization step (Figure 6.2(b)), the prediction

moves a long way down the loss surface, resulting in a stronger maximization step (white

arrows) to compensate.
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(a) (b)

Figure 6.2: A schematic depiction of the prediction method. When the minimization step
is powerful and moves the iterates a long distance, the prediction step (dotted black arrow)
causes the maximization update to be calculated further down the loss surface, resulting
in a more dramatic maximization update. In this way, prediction methods prevent the
maximization step from getting overpowered by the minimization update.

6.4.2 A more mathematical perspective

To get stronger intuition about prediction methods, let’s look at the behavior of

Algorithm (6.5) on a simple bi-linear saddle of the form

L(u, v) = vTKu (6.6)

where K is a matrix. When exact (non-stochastic) gradient updates are used, the iterates

follow the path of a simple dynamical system with closed-form solutions. We give here a

sketch of this argument: a detailed derivation is provided in the Supplementary Material.

When the (non-predictive) gradient method (6.4) is applied to the linear problem

(6.6), the resulting iterations can be written

uk+1 − uk
α

= −KTvk,
vk+1 − vk

α
= (β/α)Kuk+1.

When the stepsize α gets small, this behaves like a discretization of the system of differen-
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tial equations

u̇ = −KTv, v̇ = β/αKu

where u̇ and v̇ denote the derivatives of u and v with respect to time. These equations

describe a simple harmonic oscillator, and the closed form solution for u is

u(t) = C cos(Σ1/2t+ φ)

where Σ is a diagonal matrix, and the matrix C and vector φ depend on the initialization.

We can see that, for small values of α and β, the non-predictive algorithm (6.4) approxi-

mates an undamped harmonic motion, and the solutions orbit around the saddle without

converging.

The prediction step (6.5) improves convergence because it produces damped har-

monic motion that sinks into the saddle point. When applied to the linearized problem

(6.6), we get the dynamical system

u̇ = −KTv, v̇ = β/αK(u+ αu̇) (6.7)

which has solution

u(t) = UA exp(−tα
2

√
Σ) sin(t

√
(1− α2/4)Σ + φ).

From this analysis, we see that the damping caused by the prediction step causes the orbits

to converge into the saddle point, and the error decays exponentially fast.

6.4.3 A rigorous perspective

While the arguments above are intuitive, they are also informal and do not address

issues like stochastic gradients, non-constant stepsize sequences, and more complex loss
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functions. We now provide a rigorous convergence analysis that handles these issues.

We assume that the function L(u, v) is convex in u and concave in v. We can then

measure convergence using the “primal-dual” gap, P (u, v) = L(u, v?)−L(u?, v) where

(u?, v?) is a saddle. Note that P (u, v) > 0 for non-optimal (u, v), and P (u, v) = 0 if (u, v)

is a saddle. Using these definitions, we formulate the following convergence result. The

proof for the same can be found in [11].

Theorem 1 Suppose the function L(u, v) is convex in u, concave in v, and that the partial

gradient L′v is uniformly Lipschitz smooth in u (‖L′v(u1, v)−L′v(u2, v)‖ ≤ Lv‖u1 − u2‖).

Suppose further that the stochastic gradient approximations satisfy E‖L′u(u, v)‖2 ≤ G2
u,

E‖L′v(u, v)‖2 ≤ G2
v for scalars Gu and Gv, and that E‖uk − u?‖2 ≤ D2

u, and E‖vk −

v?‖2 ≤ D2
v for scalars Du and Dv.

If we choose decreasing learning rate parameters of the form αk = Cα√
k

and βk =
Cβ√
k
,

then the SGD method with prediction converges in expectation, and we have the error

bound

E[P (ûl, v̂l)] ≤ 1

2
√
l

(
D2
u

Cα
+
D2
v

Cβ

)
+

√
l + 1

l

(
CαG

2
u

2
+ CαLvG

2
u + CαLvD

2
v +

CβG
2
v

2

)

where ûl = 1
l

∑l
k=1 u

k, v̂l = 1
l

∑l
k=1 v

k.

6.5 Experiments

We present a wide range of experiments to demonstrate the benefits of the proposed

prediction step for adversarial nets. We consider a saddle point problem on a toy dataset

constructed using MNIST images, and then move on to consider state-of-the-art models

for three tasks: GANs, domain adaptation, and learning of fair classifiers.
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6.5.1 MNIST Toy problem

We consider a classic MNIST digits dataset [200] consisting of 60,000 training

images and 10,000 testing images each of size 28 × 28. For simplicity, let us consider

a task (T1) of classifying into odd and even numbered images. Let’s say, that ∼ 50%

of data instances were corrupted using salt and pepper noise of probability 0.2 and this

distortion process was biased. Specifically, only 30% of even numbered images were

distorted as against the 70% of odd-numbered images. We have observed that any feature

representation network θf (for example, LeNet network [200]) trained using the binary

classification loss function for task T1 also encodes noise bias within it. However, when

a noise vs no-noise classifier is trained on the deep features generated by LeNet, it gets

100% accuracy.

The goal of this task is to force LeNet to ignore the noise when making decisions.

This lead us to design of simple adversarial network to “unlearn” the noise bias from the

feature learning pipeline. We create an adversarial model of the form (6.2) in which Ld is

a softmax loss for the task (T2) of classifying whether the input sample is noisy or not.

Ly is a softmax loss for task T1 and λ = 1. A LeNet network [200] is considered for

training on task T1 while a two-layer MLP is used for training on task T2. LeNet consist

of two convolutional (conv) layers followed by two fully connected (FC) layers at the top.

The parameters of conv layers form θf while that of FC and MLP layers forms θy and θd

respectively. We train the network in three stages. Following the training on task T1, θf

were fixed and MLP is trained independently on task T2. The default learning schedule

of the LeNet implementation in Caffe [201] were followed for both the tasks. The total
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training iterations on each task were set to 10, 000. After pretraining, the whole network

is jointly finetuned using the adversarial approach. (6.2) is alternatively minimized w.r.t.

θf , θy and maximized w.r.t. θd. The predictive steps were only used during the finetuning

phase.

Figure 6.3 summarizes our findings. In this experiment, we considered applying

prediction to both the classifier and discriminator. We note that our task is to retain

good classification accuracy while preventing the discriminator from doing better than

the trivial strategy of classifying odd digits as noisy and even digits as non-noisy. This

means that the discriminator accuracy should ideally be ∼ 0.7. As shown in Figure 6.3(a),

the prediction step hardly makes any difference when evaluated at the small learning rate

of 10−4. However, when evaluated at higher rates, Figures 6.3(b) and 6.3(c) show that

the prediction solvers are very stable while one without prediction collapses (blue solid

line is flat) very early. Figure 6.3(c) shows that the default learning rate (10−3) of the

Adam solver is unstable unless prediction is used. Finally, Figure 6.3(d) provides head-to-

head comparison of two popular solvers Adam and SGD using the predictive step. Not

surprisingly, the Adam solver shows relatively better performance and convergence even

with an additional predictive step. This also suggests that the default hyper-parameter for

the Adam solver can be retained and utilized for training this networks without resorting

to any further hyper-parameter tuning (as it is currently in practice).
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Figure 6.3: Comparison of the classification accuracy (digit parity) and discriminator
(noisy vs. no-noise) accuracy using SGD and Adam solver with and without prediction
steps. θf and θd refers to variables in eq. (6.2). (a) Using SGD with learning rate lr = 10−4.
Note that the solid lines of red, blue and green are overlapped. (b) SGD solver with higher
learning rate of lr = 10−3, (c) using Adam solver with its default parameter and (d)
Comparison of the classification accuracy of parity classification and noise discrimination
using the SGD and Adam solvers with and without prediction step.

6.5.2 Domain Adaptation

Next, we consider the domain adaptation task [165,166,202] wherein the representa-

tion learned using the source domain samples is altered so that it can also generalize to

samples from the target distribution. We use the problem setup and hyper-parameters as

described in [166]using the OFFICE dataset [202]. OFFICE is a small scale dataset con-

sisting of images collected from three distinct domains: AMAZON, DSLR and WEBCAM.

For such a small scale dataset, it is non-trivial to learn features from images of a single

domain. For instance, consider the largest subset AMAZON, which contains only 2,817

125



labeled images spread across 31 different categories. However, one can leverage the power

of domain adaptation to improve cross domain accuracy. We follow the protocol listed

in [166] and the same network architecture is used. Caffe [201] is used for implementation.

The training procedure from [166] is kept intact except for the additional prediction step.

In Table 6.1, comparisons are drawn with respect to target domain accuracy on six

pairs of source-target domain tasks. The test accuracy is reported at the end of 50,000

training iterations. We observe that the prediction step has mild benefits on the “easy”

adaptation tasks with very similar source and target domain samples. However, on the

transfer learning tasks of AMAZON-to-WEBCAM, WEBCAM-to-AMAZON, and DSLR-to-

AMAZON which has noticeably distinct data samples, an extra prediction step gives an

absolute improvement of 1.3− 6.9% in predicting target domain labels.

Method
Source AMAZON WEBCAM DSLR WEBCAM AMAZON DSLR

Target WEBCAM AMAZON WEBCAM DSLR DSLR AMAZON

DANN [166] 73.4 51.6 95.5 99.4 76.5 51.7
DANN + prediction 74.7 58.5 96.1 99.0 73.5 57.6

Table 6.1: Comparison of target domain accuracy on OFFICE dataset.

6.5.3 Fair Classifier

Finally, we consider a task of learning fair feature representations [168, 170, 203]

such that the final learned classifier does not discriminate with respect to a sensitive

variable. As proposed in [168] one way to measure fairness is using discrimination,

ydisc =

∣∣∣∣∣
1

N0

∑

i:si=0

η(xi)−
1

N1

∑

i:si=1

η(xi)

∣∣∣∣∣ . (6.8)
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Here si is a binary sensitive variable for the ith data sample andNk denotes the total number

of samples belonging to the kth sensitive class. Similar to the domain adaptation task, the

learning of each classifier can be formulated as a minimax problem in (6.2) [168, 170].

Unlike the previous example though, this task has a model selection component. From

a pool of hundreds of randomly generated adversarial deep nets, for each value of t, one

selects the model that maximizes the difference

yt,Delta = yacc − t ∗ ydisc. (6.9)

The “Adult” dataset from the UCI machine learning repository is used, which consists

of census data from ∼ 45, 000 people. The task (yacc) is to classify whether a person earns

≥ $50k/year. The person’s gender is chosen to be the sensitive variable. We binarize all the

category attributes, giving us a total of 102 input features per sample. We randomly split

data into 35,000 samples for training, 5000 for validation and 5000 for testing. The result

reported here is an average over five such random splits. To demonstrate the advantage of

using prediction for model selection, we follow the protocol developed in [168]. In this

work, the search space is restricted to a class of models that consist of a fully connected

autoencoder, one task specific discriminator, and one adversarial discriminator. The

encoder output from the autoencoder acts as input to both the discriminators. In our

experiment, 100 models are randomly selected. During the training of each adversarial

model, Ld is a cross-entropy loss while Ly is a linear combination of reconstruction and

cross-entropy loss. Once all the models are trained, the best model for each value of t is

selected by evaluating (6.9) on the validation set.

Figure 6.4(a), 6.4(b) respectively plots the results on the test and validation set for
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the AFLR approach with and without prediction steps in their default Adam solver. For

each value of t, Figure 6.4(c), 6.4(d) also compares the number of layers in the selected

encoder and discriminator networks. When using prediction for training, relatively stronger

encoder models are produced and selected during validation, and hence the prediction

results generalize better on the test set.

6.5.4 Generative Adversarial Networks

Next, we test the efficacy and stability of our proposed predictive step on generative

adversarial networks (GAN), which are formulated as saddle point problems (6.1) and

are popularly solved using a heuristic approach [171]. We consider an image modeling

task using CIFAR-10 [204] on the recently popular convolutional GAN architecture,

DCGAN [172]. We compare our predictive method with that of DCGAN and the unrolled

GAN [12] using the training protocol described in [172]. Note that we compared against the

unrolled GAN with stop gradient switch1 and K = 5 unrolling steps. All the approaches

were trained for five random seeds and 100 epochs each.

We start with comparing all three methods using the default solver for DCGAN

(the Adam optimizer) with learning rate=0.0002 and β1=0.5. Figure 6.5 compares the

generated sample images (at the 100th epoch) and the training loss curve for all approaches.

The discriminator and generator loss curves in Figure 6.5(e) show that without prediction,

the DCGAN collapses at the 45th and 57th epochs. Similarly, Figure 6.5(f) shows that the

training for unrolled GAN collapses in at least three instances. The training procedure using

1We found the unrolled GAN without stop gradient switch as well as for smaller values of K collapsed

when used on the DCGAN architecture.
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Figure 6.4: Model selection for learning a fair classifier. (a) Comparison of yt,delta (higher
is better), and also ydisc (lower is better) and yacc on the test set using AFLR with and
without predictive steps. (b) On validation set. (c) Number of encoder layers in the selected
model. (d) Number of discriminator layers (both adversarial and task-specific) in the
selected model.
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predictive steps never collapsed during any epochs. Qualitatively, the images generated

using prediction are more diverse than the DCGAN and unrolled GAN images.

Figure 6.6 compares all approaches when trained with 5× higher learning rate (0.001)

(the default for the Adam solver). As observed in [172], the standard and unrolled solvers

are very unstable and collapse at this higher rate. However, as shown in Figure 6.6(d),

& 6.6(a), training remains stable when a predictive step is used, and generates images of

reasonable quality. The training procedure for both DCGAN and unrolled GAN collapsed

on all five random seeds. The results on various additional intermediate learning rates

using DCGAN as well as on high resolution Imagenet dataset using ACGAN [14] can be

found in [11]. Overall, of the 25 training settings we ran on (each of five learning rates for

five random seeds), the DCGAN training procedure collapsed in 20 such instances while

unrolled GAN collapsed in 14 experiments (not counting the multiple collapse in each

training setting). On the contrary, we find that our simple predictive step method collapsed

only once.

Note that prediction adds trivial cost to the training algorithm. Using a single TitanX

Pascal, a training epoch of DCGAN takes 35 secs. With prediction, an epoch takes 38 secs.

The unrolled GAN method, which requires extra gradient steps, takes 139 secs/epoch.

Finally, we draw quantitative comparisons based on the inception score [180], which

is a widely used metric for visual quality of the generated images. For this purpose,

we consider the current state-of-the-art Stacked GAN [13] architecture. Table 6.2 lists

the inception scores computed on the generated samples from Stacked GAN trained

(200 epochs) with and without prediction at different learning rates. The joint training of

Stacked GAN collapses when trained at the default learning rate of adam solver (i.e., 0.001).
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However, reasonably good samples are generated if the same is trained with prediction

on both the generator networks. The right end of Table 6.2 also list the inception score

measured at fewer number of epochs for higher learning rates. It suggest that the model

trained with prediction methods are not only stable but also allows faster convergence

using higher learning rates. For reference the inception score on real images of CIFAR-10

dataset is 11.51± 0.17.

Learning rate 0.0001 0.0005 0.001 0.0005 (40) 0.001 (20)

Stacked GAN 8.44± 0.11 7.90± 0.08 1.52± 0.01 5.80± 0.15 1.42± 0.01
Stacked GAN + prediction 8.55± 0.12 8.13± 0.09 7.96± 0.11 8.10± 0.10 7.79± 0.07

Table 6.2: Comparison of Inception Score on Stacked GAN network with and w/o G
prediction.
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Figure 6.5: Comparison of GAN training algorithms for DCGAN architecture on Cifar-10
image datasets. Using default parameters of DCGAN; lr = 0.0002, β1 = 0.5.
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Figure 6.6: Comparison of GAN training algorithms for DCGAN architecture on Cifar-10
image datasets at higher learning rate, lr = 0.001, β1 = 0.5.

6.6 Conclusion

We present a simple modification to the alternating SGD method, called a prediction

step, that improves the stability of adversarial networks. We present theoretical results

showing that the prediction step is asymptotically stable for solving saddle point problems.

We show, using a variety of test problems, that prediction steps prevent network collapse

and enable training with a wider range of learning rates than plain SGD methods.

Acknowledgement: This work was done jointly in collaboration with Abhay Yadav.

132



Chapter 7: Stacked U-Nets

7.1 Introduction

Semantic segmentation methods decompose an image into groups of pixels, each

representing a common object class. While the output of a segmentation contains object

labels assigned at the local (pixel) level, each label much have a global field of view; each

such label depends on global information about the image, such as textures, colors, and

object boundaries that may span large chunks of the image. Simple image classification

algorithms consolidate global information by successively pooling features until the fi-

nal output is a single label containing information from the entire image. In contrast,

segmentation methods must output a full-resolution labeled image (rather than a single

label). Thus, a successful segmentation method must address this key question: how can

we learn long-distance contextual information while at the same time retaining high spatial

resolution at the output for identifying small objects and sharp boundaries?

For natural image processing, most research has answered this question using one

of two approaches. One approach is to use very few pooling layers, thus maintaining

resolution (although methods may still require a small number of deconvolution layers [205–

209]). Large fields of view are achieved using dilated convolutions, which span large

regions. By maintaining resolution at each layer, this approach preserves substantial
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amounts of signal about smaller and less salient objects. However, this is achieved at

the cost of computationally expensive and memory exhaustive training/inference. The

second related approach is to produce auxiliary context aggregation blocks [1, 210–218]

that contain features at different distance scales, and then merge these blocks to produce a

final segmentation. This category includes many well-known techniques such as dense

CRF [1] (conditional random fields) and spatial pyramid pooling [210].

These approaches suffer from the following challenges:

1. Deconvolutional (i.e., encoder-decoder) architectures perform significant nonlinear

computation at low resolutions, but do very little processing of high-resolution fea-

tures. During the convolution/encoding stage, pooling layers can move information

over large distances, but information about small objects is often lost. During the de-

convolution/decoding stage, high- and low-resolution features are merged to produce

upsampled feature maps. However, the high-resolution inputs to deconvolutional

layers come from relatively shallow layers that do not effectively encode semantic

information.

2. Image classification networks are parameter heavy (44.5M parameters for ResNet-

101), and segmentation methods built on top of these classification networks are often

even more burdensome. For example, on top of the resnet-101 architecture, PSP-

Net [217] uses 22M additional parameters for context aggregation, while the ASPP

and Cascade versions of the Deeplab network utilize 14.5M [210] and 40M [218]

additional parameters, respectively.

A popular and simple approach to segmentation is u-nets, which perform a chain of

convolutional/downsampling operations, followed by a chain of deconvolutional/upsampling
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layers that see information from both low- and high-resolution scales. These u-net archi-

tectures are state-of-the art for medical image segmentation [219], but they do not perform

well when confronted with the complex color profiles, lighting effects, perspectives, and

occlusions present in natural images.

In this chapter, we expand the power of u-nets by stacking u-net blocks into deep

architectures. This addresses the two challenges discussed above: As data passes through

multiple u-net blocks, high-resolution features are mixed with low-resolution context

information and processed through many layers to produce informative high-resolution

features. Furthermore, stacked U-net models require fewer feature maps per layer than

conventional architectures, and thus achieve higher performance with far fewer parameters.

Our smallest model exceeds the performance of ResNet-101 on the PASCAL VOC 2012

semantic segmentation task by 4.5% mIoU, while having ∼ 7× fewer parameters. The

code is available at https://github.com/shahsohil/sunets.

7.2 Related Work

Many models [205, 207, 209, 210, 217, 218, 220, 221] have boosted the performance

of semantic segmentation networks. These gains are mainly attributed to the use of pre-

trained models, dilated convolutional layers [210,216] and fully convolutional architectures

(DCNN) [222]. These works employ a range of strategies to tap contextual information,

which fall into three major categories.

Context Aggregation Modules: These architectures place a special module on top

of a pre-trained network that integrates context information at different distance scales. The

135

https: //github.com/shahsohil/sunets


development of fast and efficient algorithm for DenseCRF [1] led to the development of

numerous algorithms [210–213] incorporating it on top of the output belief map. Moreover,

the joint training of CRF and CNN parameters was made possible by [214, 215]. In [216],

context information was integrated by processing a belief map using a cascade of dilated

layers operating at progressively increasing dilation rates, and [221] proposed a hybrid

dilation convolution framework to alleviate gridding artifacts. ParseNet [223] exploits

image-level feature information at each layer to learn global contextual information. In

contrast, [210, 217, 218] realized substantial performance improvements by employing

parallel layers of spatial pyramid pooling. The work [217] spatially pools output feature

maps at different scales, while [210,218] advocates applying dilated convolution at varying

dilation rates.

Image Pyramid: The networks proposed in [224, 225] learn context information

by simultaneously processing inputs at different scales and merging the output from all

scales. An attention mechanism was used to perform fusion of output maps in [225],

while [224] concatenates all the feature maps produced by blocks of parallel layers, each

learned exclusively for differently scaled inputs. Recently, [226] developed a deformable

network that adaptively determines an object’s scale and accordingly adjusts the receptive

field size of each activation function. On the other hand, [227] proposed a new training

paradigm for object detection networks that trains each object instance only using the

proposals closest to the ground truth scale.

Encoder-Decoder: These models consist of an encoder network and one or many

blocks of decoder layers. The decoder fine-tunes the pixel-level labels by merging the

contextual information from feature maps learned at all the intermediate layers. Usually, a
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popular bottom-up pre-trained classification network such as ResNet [228], VGG [229]

or DenseNet [230] serves as an encoder model. U-net [219] popularly employs skip

connections between an encoder and its corresponding decoding layers. On a similar note,

the decoder in Segnet [231] upsamples the lower resolution maps by reusing the pooling

indices from the encoder. Deconvolution layers were stacked in [206–208], whereas [209]

uses a Laplacian pyramid reconstruction network to selectively refine the low resolution

maps. Refinenet [205] employs sophisticated decoder modules at each scale on top of the

ResNet encoder, while [232] utilizes a simple two-level decoding of feature maps from the

Xception network [233]. In short, the structure in [209, 232] is a hybrid of decoding and

context aggregation modules. Any task that requires extracting multi-scale information

from inputs can benefit from an encoder-decoder structure. The recent works on object

detection [234, 235] also utilize this structure.

7.2.1 Use of Pre-Trained Nets

Many of the networks described above make extensive use of image classification net-

works that were pre-trained for other purposes. ResNet employs an identity mapping [236]

which, along with batch-normalization layers, facilitates efficient learning of very deep

models. VGG was popular before the advent of ResNet. Although parameter heavy,

much fundamental work on segmentation (FCN [222], dilated nets [216], u-nets [219] and

CRF [214]) was built on VGG. All these architectures share common origins in that they

were designed for the ImageNet competition and features are processed bottom-up. This

prototype works well when the network has to identify only a single object without exact
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pixel localization. However, when extended to localization tasks such as segmentation and

object detection, it is not clear whether the complete potential of these networks has been

properly tapped. Recent work on object detection [227] also echoes a similar concern.

7.3 U-Nets Revisited

The original u-net architecture was introduced in [219], and produced almost perfect

segmentation of cells in biomedical images using very little training data. The structure

of u-nets makes it possible to capture context information at multiple scales and prop-

agate them to the higher resolution layers. These higher order features have enabled

u-nets to outperform previous deep models [222] on various tasks including semantic

segmentation [208, 237, 238], depth-fusion [239], image translation [240] and human-pose

estimation [241]. Moreover, driven by the initial success of u-nets, many recent works

on semantic segmentation [205–209, 231] and object detection [234, 235] also propose an

encoder-decoder deep architecture.

The u-net architecture evenly distributes its capacity among the encoder and decoder

modules. Moreover, the complete network can be trained in an end-to-end setting. In

contrast, the more recent architectures reviewed in Section 7.2 do not equally distribute the

processing of top-down and bottom-up features. Since these architectures are built on top

of pre-trained feature extractors [228,229,233], the decoder modules are trained separately

and sometimes in multiple stages. To overcome these drawbacks, [208] proposed an

equivalent u-net based on the Densenet [230] architecture. However, DenseNet is memory

intensive, and adding additional decoder layers leads to a further increase in memory usage.
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Given these drawbacks, the effectiveness of these architectures on different datasets and

applications is unclear.

The goal of this work is to realize the benefits of u-nets (small size, easy trainability,

high performance) for complex natural image segmentation problems.

Specifically, we propose a new architecture composed of multiple stacks of u-nets.

The network executes repeated processing of both top-down as well as bottom-up features

and captures long-distance spatial information at multiple resolutions. The network

is trained end-to-end on image classification tasks and can be seamlessly applied to

semantic segmentation without any additional modules on top (except for replacing the

final classifier).

Our stacked u-net (SUNet) architecture shares some similarity with other related

stacked encoder-decoder structures [207, 241]. Fu et al. [207] uses multiple stacks of

de-convolutional networks (maximum of three) on top of a powerful encoder (DenseNet)

while [241] applies multiple stacks of u-net modules for human-pose estimation. However,

the processing of features inside each u-net module in [241] differs from ours. [241]

replaces each convolutional block with a residual module and utilizes nearest-neighbor up-

sampling for deconvolution. In contrast, SUNets retain the basic u-net structure from [219].

Also, SUNet operates without any intermediate supervision and processes features by

progressively downsampling while [241] operates at fix resolution.
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322
<latexit sha1_base64="CiugEef6SQZd1JVgj1iLtfI55Dc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoN6KXjxWMLbQxrLZbtqlu5uwuxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8MOFMG9f9dkorq2vrG+XNytb2zu5edf/gQcepItQnMY9VJ8Saciapb5jhtJMoikXIaTsc3+R++4kqzWJ5byYJDQQeShYxgk0unTUeG/1qza27M6Bl4hWkBgVa/epXbxCTVFBpCMdadz03MUGGlWGE02mll2qaYDLGQ9q1VGJBdZDNbp2iE6sMUBQrW9Kgmfp7IsNC64kIbafAZqQXvVz8z+umJroMMiaT1FBJ5ouilCMTo/xxNGCKEsMnlmCimL0VkRFWmBgbT8WG4C2+vEz8Rv2q7t6d15rXRRplOIJjOAUPLqAJt9ACHwiM4Ble4c0Rzovz7nzMW0tOMXMIf+B8/gCBXY1q</latexit><latexit sha1_base64="CiugEef6SQZd1JVgj1iLtfI55Dc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoN6KXjxWMLbQxrLZbtqlu5uwuxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8MOFMG9f9dkorq2vrG+XNytb2zu5edf/gQcepItQnMY9VJ8Saciapb5jhtJMoikXIaTsc3+R++4kqzWJ5byYJDQQeShYxgk0unTUeG/1qza27M6Bl4hWkBgVa/epXbxCTVFBpCMdadz03MUGGlWGE02mll2qaYDLGQ9q1VGJBdZDNbp2iE6sMUBQrW9Kgmfp7IsNC64kIbafAZqQXvVz8z+umJroMMiaT1FBJ5ouilCMTo/xxNGCKEsMnlmCimL0VkRFWmBgbT8WG4C2+vEz8Rv2q7t6d15rXRRplOIJjOAUPLqAJt9ACHwiM4Ble4c0Rzovz7nzMW0tOMXMIf+B8/gCBXY1q</latexit><latexit sha1_base64="CiugEef6SQZd1JVgj1iLtfI55Dc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoN6KXjxWMLbQxrLZbtqlu5uwuxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8MOFMG9f9dkorq2vrG+XNytb2zu5edf/gQcepItQnMY9VJ8Saciapb5jhtJMoikXIaTsc3+R++4kqzWJ5byYJDQQeShYxgk0unTUeG/1qza27M6Bl4hWkBgVa/epXbxCTVFBpCMdadz03MUGGlWGE02mll2qaYDLGQ9q1VGJBdZDNbp2iE6sMUBQrW9Kgmfp7IsNC64kIbafAZqQXvVz8z+umJroMMiaT1FBJ5ouilCMTo/xxNGCKEsMnlmCimL0VkRFWmBgbT8WG4C2+vEz8Rv2q7t6d15rXRRplOIJjOAUPLqAJt9ACHwiM4Ble4c0Rzovz7nzMW0tOMXMIf+B8/gCBXY1q</latexit>

322
<latexit sha1_base64="CiugEef6SQZd1JVgj1iLtfI55Dc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoN6KXjxWMLbQxrLZbtqlu5uwuxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8MOFMG9f9dkorq2vrG+XNytb2zu5edf/gQcepItQnMY9VJ8Saciapb5jhtJMoikXIaTsc3+R++4kqzWJ5byYJDQQeShYxgk0unTUeG/1qza27M6Bl4hWkBgVa/epXbxCTVFBpCMdadz03MUGGlWGE02mll2qaYDLGQ9q1VGJBdZDNbp2iE6sMUBQrW9Kgmfp7IsNC64kIbafAZqQXvVz8z+umJroMMiaT1FBJ5ouilCMTo/xxNGCKEsMnlmCimL0VkRFWmBgbT8WG4C2+vEz8Rv2q7t6d15rXRRplOIJjOAUPLqAJt9ACHwiM4Ble4c0Rzovz7nzMW0tOMXMIf+B8/gCBXY1q</latexit><latexit sha1_base64="CiugEef6SQZd1JVgj1iLtfI55Dc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoN6KXjxWMLbQxrLZbtqlu5uwuxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8MOFMG9f9dkorq2vrG+XNytb2zu5edf/gQcepItQnMY9VJ8Saciapb5jhtJMoikXIaTsc3+R++4kqzWJ5byYJDQQeShYxgk0unTUeG/1qza27M6Bl4hWkBgVa/epXbxCTVFBpCMdadz03MUGGlWGE02mll2qaYDLGQ9q1VGJBdZDNbp2iE6sMUBQrW9Kgmfp7IsNC64kIbafAZqQXvVz8z+umJroMMiaT1FBJ5ouilCMTo/xxNGCKEsMnlmCimL0VkRFWmBgbT8WG4C2+vEz8Rv2q7t6d15rXRRplOIJjOAUPLqAJt9ACHwiM4Ble4c0Rzovz7nzMW0tOMXMIf+B8/gCBXY1q</latexit><latexit sha1_base64="CiugEef6SQZd1JVgj1iLtfI55Dc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoN6KXjxWMLbQxrLZbtqlu5uwuxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8MOFMG9f9dkorq2vrG+XNytb2zu5edf/gQcepItQnMY9VJ8Saciapb5jhtJMoikXIaTsc3+R++4kqzWJ5byYJDQQeShYxgk0unTUeG/1qza27M6Bl4hWkBgVa/epXbxCTVFBpCMdadz03MUGGlWGE02mll2qaYDLGQ9q1VGJBdZDNbp2iE6sMUBQrW9Kgmfp7IsNC64kIbafAZqQXvVz8z+umJroMMiaT1FBJ5ouilCMTo/xxNGCKEsMnlmCimL0VkRFWmBgbT8WG4C2+vEz8Rv2q7t6d15rXRRplOIJjOAUPLqAJt9ACHwiM4Ble4c0Rzovz7nzMW0tOMXMIf+B8/gCBXY1q</latexit> 642

<latexit sha1_base64="a1vfEnc2bFdl/Cy/RoBByqNz31Q=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkpftyKXjxWMLbQxrLZbtqlu5uwuxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8MOFMG9f9dlZW19Y3Nktb5e2d3b39ysHhg45TRahPYh6rTog15UxS3zDDaSdRFIuQ03Y4vsn99hNVmsXy3kwSGgg8lCxiBJtcOm881vuVqltzZ0DLxCtIFQq0+pWv3iAmqaDSEI617npuYoIMK8MIp9NyL9U0wWSMh7RrqcSC6iCb3TpFp1YZoChWtqRBM/X3RIaF1hMR2k6BzUgvern4n9dNTXQZZEwmqaGSzBdFKUcmRvnjaMAUJYZPLMFEMXsrIiOsMDE2nrINwVt8eZn49dpVzb1rVJvXRRolOIYTOAMPLqAJt9ACHwiM4Ble4c0Rzovz7nzMW1ecYuYI/sD5/AGI+Y1v</latexit><latexit sha1_base64="a1vfEnc2bFdl/Cy/RoBByqNz31Q=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkpftyKXjxWMLbQxrLZbtqlu5uwuxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8MOFMG9f9dlZW19Y3Nktb5e2d3b39ysHhg45TRahPYh6rTog15UxS3zDDaSdRFIuQ03Y4vsn99hNVmsXy3kwSGgg8lCxiBJtcOm881vuVqltzZ0DLxCtIFQq0+pWv3iAmqaDSEI617npuYoIMK8MIp9NyL9U0wWSMh7RrqcSC6iCb3TpFp1YZoChWtqRBM/X3RIaF1hMR2k6BzUgvern4n9dNTXQZZEwmqaGSzBdFKUcmRvnjaMAUJYZPLMFEMXsrIiOsMDE2nrINwVt8eZn49dpVzb1rVJvXRRolOIYTOAMPLqAJt9ACHwiM4Ble4c0Rzovz7nzMW1ecYuYI/sD5/AGI+Y1v</latexit><latexit sha1_base64="a1vfEnc2bFdl/Cy/RoBByqNz31Q=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkpftyKXjxWMLbQxrLZbtqlu5uwuxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8MOFMG9f9dlZW19Y3Nktb5e2d3b39ysHhg45TRahPYh6rTog15UxS3zDDaSdRFIuQ03Y4vsn99hNVmsXy3kwSGgg8lCxiBJtcOm881vuVqltzZ0DLxCtIFQq0+pWv3iAmqaDSEI617npuYoIMK8MIp9NyL9U0wWSMh7RrqcSC6iCb3TpFp1YZoChWtqRBM/X3RIaF1hMR2k6BzUgvern4n9dNTXQZZEwmqaGSzBdFKUcmRvnjaMAUJYZPLMFEMXsrIiOsMDE2nrINwVt8eZn49dpVzb1rVJvXRRolOIYTOAMPLqAJt9ACHwiM4Ble4c0Rzovz7nzMW1ecYuYI/sD5/AGI+Y1v</latexit>

642
<latexit sha1_base64="a1vfEnc2bFdl/Cy/RoBByqNz31Q=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkpftyKXjxWMLbQxrLZbtqlu5uwuxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8MOFMG9f9dlZW19Y3Nktb5e2d3b39ysHhg45TRahPYh6rTog15UxS3zDDaSdRFIuQ03Y4vsn99hNVmsXy3kwSGgg8lCxiBJtcOm881vuVqltzZ0DLxCtIFQq0+pWv3iAmqaDSEI617npuYoIMK8MIp9NyL9U0wWSMh7RrqcSC6iCb3TpFp1YZoChWtqRBM/X3RIaF1hMR2k6BzUgvern4n9dNTXQZZEwmqaGSzBdFKUcmRvnjaMAUJYZPLMFEMXsrIiOsMDE2nrINwVt8eZn49dpVzb1rVJvXRRolOIYTOAMPLqAJt9ACHwiM4Ble4c0Rzovz7nzMW1ecYuYI/sD5/AGI+Y1v</latexit><latexit sha1_base64="a1vfEnc2bFdl/Cy/RoBByqNz31Q=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkpftyKXjxWMLbQxrLZbtqlu5uwuxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8MOFMG9f9dlZW19Y3Nktb5e2d3b39ysHhg45TRahPYh6rTog15UxS3zDDaSdRFIuQ03Y4vsn99hNVmsXy3kwSGgg8lCxiBJtcOm881vuVqltzZ0DLxCtIFQq0+pWv3iAmqaDSEI617npuYoIMK8MIp9NyL9U0wWSMh7RrqcSC6iCb3TpFp1YZoChWtqRBM/X3RIaF1hMR2k6BzUgvern4n9dNTXQZZEwmqaGSzBdFKUcmRvnjaMAUJYZPLMFEMXsrIiOsMDE2nrINwVt8eZn49dpVzb1rVJvXRRolOIYTOAMPLqAJt9ACHwiM4Ble4c0Rzovz7nzMW1ecYuYI/sD5/AGI+Y1v</latexit><latexit sha1_base64="a1vfEnc2bFdl/Cy/RoBByqNz31Q=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkpftyKXjxWMLbQxrLZbtqlu5uwuxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8MOFMG9f9dlZW19Y3Nktb5e2d3b39ysHhg45TRahPYh6rTog15UxS3zDDaSdRFIuQ03Y4vsn99hNVmsXy3kwSGgg8lCxiBJtcOm881vuVqltzZ0DLxCtIFQq0+pWv3iAmqaDSEI617npuYoIMK8MIp9NyL9U0wWSMh7RrqcSC6iCb3TpFp1YZoChWtqRBM/X3RIaF1hMR2k6BzUgvern4n9dNTXQZZEwmqaGSzBdFKUcmRvnjaMAUJYZPLMFEMXsrIiOsMDE2nrINwVt8eZn49dpVzb1rVJvXRRolOIYTOAMPLqAJt9ACHwiM4Ble4c0Rzovz7nzMW1ecYuYI/sD5/AGI+Y1v</latexit>

642
<latexit sha1_base64="a1vfEnc2bFdl/Cy/RoBByqNz31Q=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkpftyKXjxWMLbQxrLZbtqlu5uwuxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8MOFMG9f9dlZW19Y3Nktb5e2d3b39ysHhg45TRahPYh6rTog15UxS3zDDaSdRFIuQ03Y4vsn99hNVmsXy3kwSGgg8lCxiBJtcOm881vuVqltzZ0DLxCtIFQq0+pWv3iAmqaDSEI617npuYoIMK8MIp9NyL9U0wWSMh7RrqcSC6iCb3TpFp1YZoChWtqRBM/X3RIaF1hMR2k6BzUgvern4n9dNTXQZZEwmqaGSzBdFKUcmRvnjaMAUJYZPLMFEMXsrIiOsMDE2nrINwVt8eZn49dpVzb1rVJvXRRolOIYTOAMPLqAJt9ACHwiM4Ble4c0Rzovz7nzMW1ecYuYI/sD5/AGI+Y1v</latexit><latexit sha1_base64="a1vfEnc2bFdl/Cy/RoBByqNz31Q=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkpftyKXjxWMLbQxrLZbtqlu5uwuxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8MOFMG9f9dlZW19Y3Nktb5e2d3b39ysHhg45TRahPYh6rTog15UxS3zDDaSdRFIuQ03Y4vsn99hNVmsXy3kwSGgg8lCxiBJtcOm881vuVqltzZ0DLxCtIFQq0+pWv3iAmqaDSEI617npuYoIMK8MIp9NyL9U0wWSMh7RrqcSC6iCb3TpFp1YZoChWtqRBM/X3RIaF1hMR2k6BzUgvern4n9dNTXQZZEwmqaGSzBdFKUcmRvnjaMAUJYZPLMFEMXsrIiOsMDE2nrINwVt8eZn49dpVzb1rVJvXRRolOIYTOAMPLqAJt9ACHwiM4Ble4c0Rzovz7nzMW1ecYuYI/sD5/AGI+Y1v</latexit><latexit sha1_base64="a1vfEnc2bFdl/Cy/RoBByqNz31Q=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkpftyKXjxWMLbQxrLZbtqlu5uwuxFK6F/w4kHFq7/Im//GTZuDtj4YeLw3w8y8MOFMG9f9dlZW19Y3Nktb5e2d3b39ysHhg45TRahPYh6rTog15UxS3zDDaSdRFIuQ03Y4vsn99hNVmsXy3kwSGgg8lCxiBJtcOm881vuVqltzZ0DLxCtIFQq0+pWv3iAmqaDSEI617npuYoIMK8MIp9NyL9U0wWSMh7RrqcSC6iCb3TpFp1YZoChWtqRBM/X3RIaF1hMR2k6BzUgvern4n9dNTXQZZEwmqaGSzBdFKUcmRvnjaMAUJYZPLMFEMXsrIiOsMDE2nrINwVt8eZn49dpVzb1rVJvXRRolOIYTOAMPLqAJt9ACHwiM4Ble4c0Rzovz7nzMW1ecYuYI/sD5/AGI+Y1v</latexit>

FoV 1<latexit sha1_base64="xtYtqk/NAQjj/df88nu05b7+fg0=">AAAB53icbVBNT8JAEJ36ifiFevSykZh4Ii0X9Ub04hESKyTQkO0yhZXtttndmpCGX+DFgxqv/iVv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZ377CZXmibw3kxSDmA4ljzijxkotr1+pujV3DrJKvIJUoUCzX/nqDRKWxSgNE1TrruemJsipMpwJnJZ7mcaUsjEdYtdSSWPUQT4/dErOrTIgUaJsSUPm6u+JnMZaT+LQdsbUjPSyNxP/87qZia6CnMs0MyjZYlGUCWISMvuaDLhCZsTEEsoUt7cSNqKKMmOzKdsQvOWXV4lfr13X3Fa92rgp0ijBKZzBBXhwCQ24gyb4wADhGV7hzXl0Xpx352PRuuYUMyfwB87nD+hJjIY=</latexit><latexit sha1_base64="xtYtqk/NAQjj/df88nu05b7+fg0=">AAAB53icbVBNT8JAEJ36ifiFevSykZh4Ii0X9Ub04hESKyTQkO0yhZXtttndmpCGX+DFgxqv/iVv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZ377CZXmibw3kxSDmA4ljzijxkotr1+pujV3DrJKvIJUoUCzX/nqDRKWxSgNE1TrruemJsipMpwJnJZ7mcaUsjEdYtdSSWPUQT4/dErOrTIgUaJsSUPm6u+JnMZaT+LQdsbUjPSyNxP/87qZia6CnMs0MyjZYlGUCWISMvuaDLhCZsTEEsoUt7cSNqKKMmOzKdsQvOWXV4lfr13X3Fa92rgp0ijBKZzBBXhwCQ24gyb4wADhGV7hzXl0Xpx352PRuuYUMyfwB87nD+hJjIY=</latexit><latexit sha1_base64="xtYtqk/NAQjj/df88nu05b7+fg0=">AAAB53icbVBNT8JAEJ36ifiFevSykZh4Ii0X9Ub04hESKyTQkO0yhZXtttndmpCGX+DFgxqv/iVv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZ377CZXmibw3kxSDmA4ljzijxkotr1+pujV3DrJKvIJUoUCzX/nqDRKWxSgNE1TrruemJsipMpwJnJZ7mcaUsjEdYtdSSWPUQT4/dErOrTIgUaJsSUPm6u+JnMZaT+LQdsbUjPSyNxP/87qZia6CnMs0MyjZYlGUCWISMvuaDLhCZsTEEsoUt7cSNqKKMmOzKdsQvOWXV4lfr13X3Fa92rgp0ijBKZzBBXhwCQ24gyb4wADhGV7hzXl0Xpx352PRuuYUMyfwB87nD+hJjIY=</latexit> 3
<latexit sha1_base64="t8aF3VUl9YvEkj0lnfv71JJep+U=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIndYqB3RxhIST0jgQvaWOVjZ27vs7pkQwi+wsVBj61+y89+4wBUKvmSSl/dmMjMvTAXXxnW/ncLa+sbmVnG7tLO7t39QPjx60EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6nfmtJ1SaJ/LejFMMYjqQPOKMGis1L3rlilt15yCrxMtJBXI0euWvbj9hWYzSMEG17nhuaoIJVYYzgdNSN9OYUjaiA+xYKmmMOpjMD52SM6v0SZQoW9KQufp7YkJjrcdxaDtjaoZ62ZuJ/3mdzERXwYTLNDMo2WJRlAliEjL7mvS5QmbE2BLKFLe3EjakijJjsynZELzll1eJX6teV91mrVK/ydMowgmcwjl4cAl1uIMG+MAA4Rle4c15dF6cd+dj0Vpw8plj+APn8wfrT4yI</latexit><latexit sha1_base64="t8aF3VUl9YvEkj0lnfv71JJep+U=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIndYqB3RxhIST0jgQvaWOVjZ27vs7pkQwi+wsVBj61+y89+4wBUKvmSSl/dmMjMvTAXXxnW/ncLa+sbmVnG7tLO7t39QPjx60EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6nfmtJ1SaJ/LejFMMYjqQPOKMGis1L3rlilt15yCrxMtJBXI0euWvbj9hWYzSMEG17nhuaoIJVYYzgdNSN9OYUjaiA+xYKmmMOpjMD52SM6v0SZQoW9KQufp7YkJjrcdxaDtjaoZ62ZuJ/3mdzERXwYTLNDMo2WJRlAliEjL7mvS5QmbE2BLKFLe3EjakijJjsynZELzll1eJX6teV91mrVK/ydMowgmcwjl4cAl1uIMG+MAA4Rle4c15dF6cd+dj0Vpw8plj+APn8wfrT4yI</latexit><latexit sha1_base64="t8aF3VUl9YvEkj0lnfv71JJep+U=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIndYqB3RxhIST0jgQvaWOVjZ27vs7pkQwi+wsVBj61+y89+4wBUKvmSSl/dmMjMvTAXXxnW/ncLa+sbmVnG7tLO7t39QPjx60EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6nfmtJ1SaJ/LejFMMYjqQPOKMGis1L3rlilt15yCrxMtJBXI0euWvbj9hWYzSMEG17nhuaoIJVYYzgdNSN9OYUjaiA+xYKmmMOpjMD52SM6v0SZQoW9KQufp7YkJjrcdxaDtjaoZ62ZuJ/3mdzERXwYTLNDMo2WJRlAliEjL7mvS5QmbE2BLKFLe3EjakijJjsynZELzll1eJX6teV91mrVK/ydMowgmcwjl4cAl1uIMG+MAA4Rle4c15dF6cd+dj0Vpw8plj+APn8wfrT4yI</latexit>

7
<latexit sha1_base64="1Hwhep53I+BRB19lbR3AUWzH8O0=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxInc0aEe0sYTEExK4kL1lDlb29i67eyaE8AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLU8G1cd1vp7CxubW9U9wt7e0fHB6Vj08edJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5v5377CZXmibw3kxSDmA4ljzijxkqter9ccavuAmSdeDmpQI5mv/zVGyQsi1EaJqjWXc9NTTClynAmcFbqZRpTysZ0iF1LJY1RB9PFoTNyYZUBiRJlSxqyUH9PTGms9SQObWdMzUivenPxP6+bmegqmHKZZgYlWy6KMkFMQuZfkwFXyIyYWEKZ4vZWwkZUUWZsNiUbgrf68jrxa9XrqtuqVRo3eRpFOINzuAQP6tCAO2iCDwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDxW4yM</latexit><latexit sha1_base64="1Hwhep53I+BRB19lbR3AUWzH8O0=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxInc0aEe0sYTEExK4kL1lDlb29i67eyaE8AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLU8G1cd1vp7CxubW9U9wt7e0fHB6Vj08edJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5v5377CZXmibw3kxSDmA4ljzijxkqter9ccavuAmSdeDmpQI5mv/zVGyQsi1EaJqjWXc9NTTClynAmcFbqZRpTysZ0iF1LJY1RB9PFoTNyYZUBiRJlSxqyUH9PTGms9SQObWdMzUivenPxP6+bmegqmHKZZgYlWy6KMkFMQuZfkwFXyIyYWEKZ4vZWwkZUUWZsNiUbgrf68jrxa9XrqtuqVRo3eRpFOINzuAQP6tCAO2iCDwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDxW4yM</latexit><latexit sha1_base64="1Hwhep53I+BRB19lbR3AUWzH8O0=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxInc0aEe0sYTEExK4kL1lDlb29i67eyaE8AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLU8G1cd1vp7CxubW9U9wt7e0fHB6Vj08edJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5v5377CZXmibw3kxSDmA4ljzijxkqter9ccavuAmSdeDmpQI5mv/zVGyQsi1EaJqjWXc9NTTClynAmcFbqZRpTysZ0iF1LJY1RB9PFoTNyYZUBiRJlSxqyUH9PTGms9SQObWdMzUivenPxP6+bmegqmHKZZgYlWy6KMkFMQuZfkwFXyIyYWEKZ4vZWwkZUUWZsNiUbgrf68jrxa9XrqtuqVRo3eRpFOINzuAQP6tCAO2iCDwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDxW4yM</latexit> 11<latexit sha1_base64="NQCP9J6Jae+C4HQwtQLO+YOyf3Y=">AAAB6HicbVBNT8JAEJ3iF+IX6tHLRmLiibRc1BvRi0c0VkigIdtlCxu222Z3akIa/oEXD2q8+pO8+W9coAcFXzLJy3szmZkXplIYdN1vp7S2vrG5Vd6u7Ozu7R9UD48eTZJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4Zua3n7g2IlEPOEl5ENOhEpFgFK1073n9as2tu3OQVeIVpAYFWv3qV2+QsCzmCpmkxnQ9N8UgpxoFk3xa6WWGp5SN6ZB3LVU05ibI55dOyZlVBiRKtC2FZK7+nshpbMwkDm1nTHFklr2Z+J/XzTC6DHKh0gy5YotFUSYJJmT2NhkIzRnKiSWUaWFvJWxENWVow6nYELzll1eJ36hf1d27Rq15XaRRhhM4hXPw4AKacAst8IFBBM/wCm/O2Hlx3p2PRWvJKWaO4Q+czx9Xf4zB</latexit><latexit sha1_base64="NQCP9J6Jae+C4HQwtQLO+YOyf3Y=">AAAB6HicbVBNT8JAEJ3iF+IX6tHLRmLiibRc1BvRi0c0VkigIdtlCxu222Z3akIa/oEXD2q8+pO8+W9coAcFXzLJy3szmZkXplIYdN1vp7S2vrG5Vd6u7Ozu7R9UD48eTZJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4Zua3n7g2IlEPOEl5ENOhEpFgFK1073n9as2tu3OQVeIVpAYFWv3qV2+QsCzmCpmkxnQ9N8UgpxoFk3xa6WWGp5SN6ZB3LVU05ibI55dOyZlVBiRKtC2FZK7+nshpbMwkDm1nTHFklr2Z+J/XzTC6DHKh0gy5YotFUSYJJmT2NhkIzRnKiSWUaWFvJWxENWVow6nYELzll1eJ36hf1d27Rq15XaRRhhM4hXPw4AKacAst8IFBBM/wCm/O2Hlx3p2PRWvJKWaO4Q+czx9Xf4zB</latexit><latexit sha1_base64="NQCP9J6Jae+C4HQwtQLO+YOyf3Y=">AAAB6HicbVBNT8JAEJ3iF+IX6tHLRmLiibRc1BvRi0c0VkigIdtlCxu222Z3akIa/oEXD2q8+pO8+W9coAcFXzLJy3szmZkXplIYdN1vp7S2vrG5Vd6u7Ozu7R9UD48eTZJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4Zua3n7g2IlEPOEl5ENOhEpFgFK1073n9as2tu3OQVeIVpAYFWv3qV2+QsCzmCpmkxnQ9N8UgpxoFk3xa6WWGp5SN6ZB3LVU05ibI55dOyZlVBiRKtC2FZK7+nshpbMwkDm1nTHFklr2Z+J/XzTC6DHKh0gy5YotFUSYJJmT2NhkIzRnKiSWUaWFvJWxENWVow6nYELzll1eJ36hf1d27Rq15XaRRhhM4hXPw4AKacAst8IFBBM/wCm/O2Hlx3p2PRWvJKWaO4Q+czx9Xf4zB</latexit>

19
<latexit sha1_base64="7QBROOc3s3JaYXciltoOhBgZ3/E=">AAAB6HicbVBNT8JAEJ36ifiFevSykZh4Ii0X5Ub04hGNFRJoyHaZwobtttndmpCGf+DFgxqv/iRv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdZIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZn77CZXmiXwwkxSDmA4ljzijxkr3XqNfqbo1dw6ySryCVKFAq1/56g0SlsUoDRNU667npibIqTKcCZyWe5nGlLIxHWLXUklj1EE+v3RKzq0yIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmugpzLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjwynbELzll1eJX681au5dvdq8LtIowSmcwQV4cAlNuIUW+MAggmd4hTdn7Lw4787HonXNKWZO4A+czx9jl4zJ</latexit><latexit sha1_base64="7QBROOc3s3JaYXciltoOhBgZ3/E=">AAAB6HicbVBNT8JAEJ36ifiFevSykZh4Ii0X5Ub04hGNFRJoyHaZwobtttndmpCGf+DFgxqv/iRv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdZIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZn77CZXmiXwwkxSDmA4ljzijxkr3XqNfqbo1dw6ySryCVKFAq1/56g0SlsUoDRNU667npibIqTKcCZyWe5nGlLIxHWLXUklj1EE+v3RKzq0yIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmugpzLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjwynbELzll1eJX681au5dvdq8LtIowSmcwQV4cAlNuIUW+MAggmd4hTdn7Lw4787HonXNKWZO4A+czx9jl4zJ</latexit><latexit sha1_base64="7QBROOc3s3JaYXciltoOhBgZ3/E=">AAAB6HicbVBNT8JAEJ36ifiFevSykZh4Ii0X5Ub04hGNFRJoyHaZwobtttndmpCGf+DFgxqv/iRv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdZIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZn77CZXmiXwwkxSDmA4ljzijxkr3XqNfqbo1dw6ySryCVKFAq1/56g0SlsUoDRNU667npibIqTKcCZyWe5nGlLIxHWLXUklj1EE+v3RKzq0yIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmugpzLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjwynbELzll1eJX681au5dvdq8LtIowSmcwQV4cAlNuIUW+MAggmd4hTdn7Lw4787HonXNKWZO4A+czx9jl4zJ</latexit>

I
<latexit sha1_base64="4n98qf+lpcmyo3CE0LctotO/EpI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FL3prwdhCG8pmO2nXbjZhdyOU0F/gxYOKV/+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bg45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLRzdRvPaHSPJb3ZpygH9GB5CFn1FipedcrV9yqOwNZJrWcVCBHo1f+6vZjlkYoDRNU607NTYyfUWU4EzgpdVONCWUjOsCOpZJGqP1sduiEnFilT8JY2ZKGzNTfExmNtB5Hge2MqBnqRW8q/ud1UhNe+hmXSWpQsvmiMBXExGT6NelzhcyIsSWUKW5vJWxIFWXGZlOyIdQWX14m3ln1quo2zyv16zyNIhzBMZxCDS6gDrfQAA8YIDzDK7w5j86L8+58zFsLTj5zCH/gfP4ADUCMoA==</latexit><latexit sha1_base64="4n98qf+lpcmyo3CE0LctotO/EpI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FL3prwdhCG8pmO2nXbjZhdyOU0F/gxYOKV/+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bg45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLRzdRvPaHSPJb3ZpygH9GB5CFn1FipedcrV9yqOwNZJrWcVCBHo1f+6vZjlkYoDRNU607NTYyfUWU4EzgpdVONCWUjOsCOpZJGqP1sduiEnFilT8JY2ZKGzNTfExmNtB5Hge2MqBnqRW8q/ud1UhNe+hmXSWpQsvmiMBXExGT6NelzhcyIsSWUKW5vJWxIFWXGZlOyIdQWX14m3ln1quo2zyv16zyNIhzBMZxCDS6gDrfQAA8YIDzDK7w5j86L8+58zFsLTj5zCH/gfP4ADUCMoA==</latexit><latexit sha1_base64="4n98qf+lpcmyo3CE0LctotO/EpI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FL3prwdhCG8pmO2nXbjZhdyOU0F/gxYOKV/+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bg45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLRzdRvPaHSPJb3ZpygH9GB5CFn1FipedcrV9yqOwNZJrWcVCBHo1f+6vZjlkYoDRNU607NTYyfUWU4EzgpdVONCWUjOsCOpZJGqP1sduiEnFilT8JY2ZKGzNTfExmNtB5Hge2MqBnqRW8q/ud1UhNe+hmXSWpQsvmiMBXExGT6NelzhcyIsSWUKW5vJWxIFWXGZlOyIdQWX14m3ln1quo2zyv16zyNIhzBMZxCDS6gDrfQAA8YIDzDK7w5j86L8+58zFsLTj5zCH/gfP4ADUCMoA==</latexit>

2N<latexit sha1_base64="2VNa0cgR/AjUXv7ci89/Du3S9gU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mLoN6KXjxJFWMLbSib7aZdutmE3YlQQv+BFw8qXv1J3vw3btsctPXBwOO9GWbmBYkUBl332ymsrK6tbxQ3S1vbO7t75f2DRxOnmnGPxTLW7YAaLoXiHgqUvJ1oTqNA8lYwup76rSeujYjVA44T7kd0oEQoGEUr3ddve+WKW3VnIMuklpMK5Gj2yl/dfszSiCtkkhrTqbkJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fja7dEJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4YWfCZWkyBWbLwpTSTAm07dJX2jOUI4toUwLeythQ6opQxtOyYZQW3x5mXj16mXVvTurNK7yNIpwBMdwCjU4hwbcQBM8YBDCM7zCmzNyXpx352PeWnDymUP4A+fzB4V6jOE=</latexit><latexit sha1_base64="2VNa0cgR/AjUXv7ci89/Du3S9gU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mLoN6KXjxJFWMLbSib7aZdutmE3YlQQv+BFw8qXv1J3vw3btsctPXBwOO9GWbmBYkUBl332ymsrK6tbxQ3S1vbO7t75f2DRxOnmnGPxTLW7YAaLoXiHgqUvJ1oTqNA8lYwup76rSeujYjVA44T7kd0oEQoGEUr3ddve+WKW3VnIMuklpMK5Gj2yl/dfszSiCtkkhrTqbkJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fja7dEJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4YWfCZWkyBWbLwpTSTAm07dJX2jOUI4toUwLeythQ6opQxtOyYZQW3x5mXj16mXVvTurNK7yNIpwBMdwCjU4hwbcQBM8YBDCM7zCmzNyXpx352PeWnDymUP4A+fzB4V6jOE=</latexit><latexit sha1_base64="2VNa0cgR/AjUXv7ci89/Du3S9gU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mLoN6KXjxJFWMLbSib7aZdutmE3YlQQv+BFw8qXv1J3vw3btsctPXBwOO9GWbmBYkUBl332ymsrK6tbxQ3S1vbO7t75f2DRxOnmnGPxTLW7YAaLoXiHgqUvJ1oTqNA8lYwup76rSeujYjVA44T7kd0oEQoGEUr3ddve+WKW3VnIMuklpMK5Gj2yl/dfszSiCtkkhrTqbkJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fja7dEJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4YWfCZWkyBWbLwpTSTAm07dJX2jOUI4toUwLeythQ6opQxtOyYZQW3x5mXj16mXVvTurNK7yNIpwBMdwCjU4hwbcQBM8YBDCM7zCmzNyXpx352PeWnDymUP4A+fzB4V6jOE=</latexit>
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⌘<latexit sha1_base64="MovFeT8JHV0FBVe650YTrSvqtt4=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMF0xbaUDbbSbt2k427m0Ip/Q9ePKh49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfzsrq2vrGZmGruL2zu7dfOjisa5kphj6TQqpmSDUKnqBvuBHYTBXSOBTYCAe3U78xRKW5TB7MKMUgpr2ER5xRY6V6G58yPuyUym7FnYEsEy8nZchR65S+2l3JshgTwwTVuuW5qQnGVBnOBE6K7UxjStmA9rBlaUJj1MF4du2EnFqlSyKpbCWGzNTfE2Maaz2KQ9sZU9PXi95U/M9rZSa6CsY8STODCZsvijJBjCTT10mXK2RGjCyhTHF7K2F9qigzNqCiDcFbfHmZ+OeV64p7f1Gu3uRpFOAYTuAMPLiEKtxBDXxg8AjP8ApvjnRenHfnY9664uQzR/AHzucPLjyPDw==</latexit><latexit sha1_base64="MovFeT8JHV0FBVe650YTrSvqtt4=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMF0xbaUDbbSbt2k427m0Ip/Q9ePKh49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfzsrq2vrGZmGruL2zu7dfOjisa5kphj6TQqpmSDUKnqBvuBHYTBXSOBTYCAe3U78xRKW5TB7MKMUgpr2ER5xRY6V6G58yPuyUym7FnYEsEy8nZchR65S+2l3JshgTwwTVuuW5qQnGVBnOBE6K7UxjStmA9rBlaUJj1MF4du2EnFqlSyKpbCWGzNTfE2Maaz2KQ9sZU9PXi95U/M9rZSa6CsY8STODCZsvijJBjCTT10mXK2RGjCyhTHF7K2F9qigzNqCiDcFbfHmZ+OeV64p7f1Gu3uRpFOAYTuAMPLiEKtxBDXxg8AjP8ApvjnRenHfnY9664uQzR/AHzucPLjyPDw==</latexit><latexit sha1_base64="MovFeT8JHV0FBVe650YTrSvqtt4=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMF0xbaUDbbSbt2k427m0Ip/Q9ePKh49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfzsrq2vrGZmGruL2zu7dfOjisa5kphj6TQqpmSDUKnqBvuBHYTBXSOBTYCAe3U78xRKW5TB7MKMUgpr2ER5xRY6V6G58yPuyUym7FnYEsEy8nZchR65S+2l3JshgTwwTVuuW5qQnGVBnOBE6K7UxjStmA9rBlaUJj1MF4du2EnFqlSyKpbCWGzNTfE2Maaz2KQ9sZU9PXi95U/M9rZSa6CsY8STODCZsvijJBjCTT10mXK2RGjCyhTHF7K2F9qigzNqCiDcFbfHmZ+OeV64p7f1Gu3uRpFOAYTuAMPLiEKtxBDXxg8AjP8ApvjnRenHfnY9664uQzR/AHzucPLjyPDw==</latexit>

N<latexit sha1_base64="D7mancucQcCJ5r9nhaEAxO5UVIU=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FL56kBWMLbSib7aRdu9mE3Y1QQn+BFw8qXv1L3vw3btsctPXBwOO9GWbmBYng2rjut1NYWV1b3yhulra2d3b3yvsHDzpOFUOPxSJW7YBqFFyiZ7gR2E4U0igQ2ApGN1O/9YRK81jem3GCfkQHkoecUWOl5l2vXHGr7gxkmdRyUoEcjV75q9uPWRqhNExQrTs1NzF+RpXhTOCk1E01JpSN6AA7lkoaofaz2aETcmKVPgljZUsaMlN/T2Q00nocBbYzomaoF72p+J/XSU146WdcJqlByeaLwlQQE5Pp16TPFTIjxpZQpri9lbAhVZQZm03JhlBbfHmZeGfVq6rbPK/Ur/M0inAEx3AKNbiAOtxCAzxggPAMr/DmPDovzrvzMW8tOPnMIfyB8/kDFM+MpQ==</latexit><latexit sha1_base64="D7mancucQcCJ5r9nhaEAxO5UVIU=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FL56kBWMLbSib7aRdu9mE3Y1QQn+BFw8qXv1L3vw3btsctPXBwOO9GWbmBYng2rjut1NYWV1b3yhulra2d3b3yvsHDzpOFUOPxSJW7YBqFFyiZ7gR2E4U0igQ2ApGN1O/9YRK81jem3GCfkQHkoecUWOl5l2vXHGr7gxkmdRyUoEcjV75q9uPWRqhNExQrTs1NzF+RpXhTOCk1E01JpSN6AA7lkoaofaz2aETcmKVPgljZUsaMlN/T2Q00nocBbYzomaoF72p+J/XSU146WdcJqlByeaLwlQQE5Pp16TPFTIjxpZQpri9lbAhVZQZm03JhlBbfHmZeGfVq6rbPK/Ur/M0inAEx3AKNbiAOtxCAzxggPAMr/DmPDovzrvzMW8tOPnMIfyB8/kDFM+MpQ==</latexit><latexit sha1_base64="D7mancucQcCJ5r9nhaEAxO5UVIU=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FL56kBWMLbSib7aRdu9mE3Y1QQn+BFw8qXv1L3vw3btsctPXBwOO9GWbmBYng2rjut1NYWV1b3yhulra2d3b3yvsHDzpOFUOPxSJW7YBqFFyiZ7gR2E4U0igQ2ApGN1O/9YRK81jem3GCfkQHkoecUWOl5l2vXHGr7gxkmdRyUoEcjV75q9uPWRqhNExQrTs1NzF+RpXhTOCk1E01JpSN6AA7lkoaofaz2aETcmKVPgljZUsaMlN/T2Q00nocBbYzomaoF72p+J/XSU146WdcJqlByeaLwlQQE5Pp16TPFTIjxpZQpri9lbAhVZQZm03JhlBbfHmZeGfVq6rbPK/Ur/M0inAEx3AKNbiAOtxCAzxggPAMr/DmPDovzrvzMW8tOPnMIfyB8/kDFM+MpQ==</latexit> M<latexit sha1_base64="W/iSpqylAWJ4thXpo3iQxTS+DEw=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FL16EFowttKFstpN27WYTdjdCCf0FXjyoePUvefPfuG1z0NYHA4/3ZpiZFySCa+O6305hZXVtfaO4Wdra3tndK+8fPOg4VQw9FotYtQOqUXCJnuFGYDtRSKNAYCsY3Uz91hMqzWN5b8YJ+hEdSB5yRo2Vmne9csWtujOQZVLLSQVyNHrlr24/ZmmE0jBBte7U3MT4GVWGM4GTUjfVmFA2ogPsWCpphNrPZodOyIlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhpZ9xmaQGJZsvClNBTEymX5M+V8iMGFtCmeL2VsKGVFFmbDYlG0Jt8eVl4p1Vr6pu87xSv87TKMIRHMMp1OAC6nALDfCAAcIzvMKb8+i8OO/Ox7y14OQzh/AHzucPE0yMpA==</latexit><latexit sha1_base64="W/iSpqylAWJ4thXpo3iQxTS+DEw=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FL16EFowttKFstpN27WYTdjdCCf0FXjyoePUvefPfuG1z0NYHA4/3ZpiZFySCa+O6305hZXVtfaO4Wdra3tndK+8fPOg4VQw9FotYtQOqUXCJnuFGYDtRSKNAYCsY3Uz91hMqzWN5b8YJ+hEdSB5yRo2Vmne9csWtujOQZVLLSQVyNHrlr24/ZmmE0jBBte7U3MT4GVWGM4GTUjfVmFA2ogPsWCpphNrPZodOyIlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhpZ9xmaQGJZsvClNBTEymX5M+V8iMGFtCmeL2VsKGVFFmbDYlG0Jt8eVl4p1Vr6pu87xSv87TKMIRHMMp1OAC6nALDfCAAcIzvMKb8+i8OO/Ox7y14OQzh/AHzucPE0yMpA==</latexit><latexit sha1_base64="W/iSpqylAWJ4thXpo3iQxTS+DEw=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FL16EFowttKFstpN27WYTdjdCCf0FXjyoePUvefPfuG1z0NYHA4/3ZpiZFySCa+O6305hZXVtfaO4Wdra3tndK+8fPOg4VQw9FotYtQOqUXCJnuFGYDtRSKNAYCsY3Uz91hMqzWN5b8YJ+hEdSB5yRo2Vmne9csWtujOQZVLLSQVyNHrlr24/ZmmE0jBBte7U3MT4GVWGM4GTUjfVmFA2ogPsWCpphNrPZodOyIlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhpZ9xmaQGJZsvClNBTEymX5M+V8iMGFtCmeL2VsKGVFFmbDYlG0Jt8eVl4p1Vr6pu87xSv87TKMIRHMMp1OAC6nALDfCAAcIzvMKb8+i8OO/Ox7y14OQzh/AHzucPE0yMpA==</latexit>

Figure 7.1: A typical u-net module with outer residual connection. M is the number of
input features. Across the u-net module, each layer has the same number of output feature
maps (except for the final 1× 1 filter), which we denote N . For better understanding the
figure also includes the field of view (FoV) of each convolutional kernel (top) and the
feature map size at the output of each filter (bottom), assuming a 64 × 64 input I . Best
viewed in color.

7.3.1 U-Net Module Implementation

Figure 7.1 illustrates the design of the u-net module employed in our stacked archi-

tecture. Each module is composed of 10 pre-activated convolutional blocks each preceded

by a batch-normalization and a ReLU non-linearity. The pooling/unpooling operation,

handled by the strided convolutional/deconvolutional layers, facilitates information ex-

change between the lower and the higher resolution features. A skip connection branches

off at the output of the first encoder block, E1. Following this, the E2 and D2 blocks

capture long distance context information using lower resolution feature maps and merge

the information back with the high resolution features from E1 at the output of D2. Every
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layer (except for the bottleneck layers) uses 3 × 3 kernels, and outputs a fixed number

of feature maps, N . To mitigate high frequency noise from the sampling operation, each

strided conv/de-conv layer is followed by a convolution. Unlike traditional u-nets, the

design of convolutional layers in our u-net module helps in retaining the original size of

the feature maps at its output (no crop operation takes place). Consequently, multiple u-net

modules can be stacked without loosing resolution.

In the following, we briefly highlight some of the design choices of the architecture.

In comparison to traditional u-nets, the max-pooling operation is replaced with strided

convolution for SUNets. The use of strided convolutions enables different filters in

each u-net module to operate at different resolutions (see the discussion in Section 7.5).

Moreover, the repeated use of max-pooling operations can cause gridding artifacts in

dilated networks [242].

Unlike the u-nets of [219, 241], our u-net module is comprised of only two levels of

depth. We considered two major factors in choosing the depth: field of view (FoV) of the

innermost conv filter and the total number of parameters in a single u-net module. The

number of parameters influences the total number of stacks in SUNets. While keeping

the total parameters of SUNet approximately constant, we experimented with a higher

depth of three and four. We found that the increase in depth indeed led to a decline in

performance for the image classification task. This may not be surprising, given that a

SUNet with depth of two is able to stack more u-net modules. Moreover, deeper u-net

modules make it harder to train the inner-most convolutional layers due to the vanishing

gradients problem [243]. For instance, in our current design, the maximum length of the

gradient path is six. The popular classification networks [228, 230] are known to operate
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primarily on features with 282 and 142 resolution. At this scale, the effective FoV of 19

is more than sufficient to capture long-distance contextual information. Moreover, the

stacking of multiple u-net modules will also serve to increase the effective FoV of higher

layers.

SUNets train best when there is sufficient gradient flow to the bottom-most u-net

layers. To avoid vanishing gradients, we include a skip connection [228, 230] around each

u-net module. Also, inspired by the design of bottleneck blocks [228], we also include

1× 1 convolutional layers. Bottleneck layers restricts the number of input features to a

small number (N ), avoiding parameter inflation.

When stacking multiple u-nets it makes sense for each u-net module to reuse the raw

feature maps from all the preceding u-net modules. Thus we also explored replacing the

identity connection with dense connectivity [230]. This new network is memory intensive1

which in turn prevented proper learning of the batch-norm parameters. Instead, we chose

to utilize dense connectivity only within each u-net, i.e., while reusing feature maps from

E1 at D1. Thus the proposed u-net module leverages skip connectivity without getting

burdened.

7.4 SUNets: Stacked U-Nets for Classification

Before addressing segmentation, we describe a stacked u-net (SUNet) architecture

that is appropriate for image classification. Because the amount of labeled data available

for classification is much larger than for segmentation, classification tasks are often used

1Restricted by the current implementation of deep learning packages
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Layers Output Size SUNet-64 SUNet-128 SUNet-7-128

Convolution 112× 112 7× 7 conv, 64, stride 2

Residual
Block

56× 56

[
3× 3 conv, 128, stride 2
3× 3 conv, 128, stride 1

]
× 1

UNets Block
(1)

56× 56




1× 1 conv, 64
U-Net, N=64

1× 1 conv, 256


× 2




1× 1 conv, 128
U-Net, N=128
1× 1 conv, 512


× 2




1× 1 conv, 128
U-Net, N=128
1× 1 conv, 512


× 2

Transition Layer 28× 28 2× 2 average pool, stride 2

UNets Block
(2)

28× 28




1× 1 conv, 64
U-Net, N=64

1× 1 conv, 512


× 4




1× 1 conv, 128
U-Net, N=128

1× 1 conv, 1024


× 4




1× 1 conv, 128
U-Net, N=128

1× 1 conv, 1280


× 7

Transition Layer 14× 14 2× 2 average pool, stride 2

UNets Block
(3)

14× 14




1× 1 conv, 64
U-Net, N=64

1× 1 conv, 768


× 4




1× 1 conv, 128
U-Net, N=128

1× 1 conv, 1536


× 4




1× 1 conv, 128
U-Net, N=128

1× 1 conv, 2048


× 7

Transition Layer 7× 7 2× 2 average pool, stride 2

UNets Block
(4)

7× 7




1× 1 conv, 64
U-Net+, N=64

1× 1 conv, 1024


× 1




1× 1 conv, 128
U-Net+, N=128
1× 1 conv, 2048


× 1




1× 1 conv, 128
U-Net+, N=128
1× 1 conv, 2304


× 1

Classification
Layer

1× 1 7× 7 global average pool
1000D fully-connected, softmax

Total Layers 110 110 170

Params 6.9M 24.6M 37.7M

Table 7.1: SUNet architectures for ImageNet. N denotes the number of filters per convolu-
tional layer. Note that the building block in bracket refers to the integrated u-net module
shown in Figure 7.1.

to pre-train feature extraction networks, which are then adapted to perform segmentation.

The network design of SUNets for ImageNet classification is summarized in Table

7.1. Note that each “conv” layer shown in the table corresponds to a sequence of “BN-

ReLU-Conv” layers. The three listed configurations mainly differ in the number of output

feature maps N of each convolutional layer and the total number of stacks in blocks 2

and 3. Input images are processed using a 7× 7 conv filter followed by a residual block.

Inspired by the work on dilated resnet [242], the conventional max-pooling layer at this

stage is replaced by a strided convolutional layer inside the residual block. Subsequently,
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the feature maps are processed bottom-up as well as top-down by multiple stacks of u-nets

at different scales and with regularly decreasing resolutions. The feature map input size

to block 4 is 7 × 7 and is further reduced to 2 × 2 at the input to the encoder E2 of the

u-net module. At this resolution, it is not possible to have E2 and D2 layers, and hence a

trimmed version of u-nets (u-net+) are employed in block 4. The u-net+ includes a single

level of encoder and decoder (E1, D1) processing. Towards the end of block 4, a batch

normalization is performed and a ReLU non-linearity is applied. Following this, a global

average pooling is performed on features and transferred to a softmax classifier.

The residual connection in all but the first u-net in each block is implemented as

an identity mapping. In the first u-nets the skip connection is implemented using an

expansion layer i.e., a 1 × 1 conv filter. The number of feature map outputs from each

block approximately equates to the total number of feature maps generated by all the

preceding u-net modules. This arrangement allows flexibility for the network to retain all

the raw feature maps of the preceding modules. Moreover among all other possibilities,

the above architectures were picked because their performance on the image classification

task is roughly equivalent to the ResNet-18, 50 and 101 network architectures (discussed

in Section 7.5.3), albeit with fewer parameters. However, in contrast to the work on

residual net [244], our experimentation with wider nets (i.e., N > 128) did not yield any

performance improvements on ImageNet.

As in ResNet [228] and DenseNet [230], most of the processing in SUNet is per-

formed at the feature scale of 14×14 (46 conv layers) and 7×7 (44 conv layers). However,

the order at which the local information is processed can lead to a substantial gap in

performance between ResNet and SUNet when extending these popular architectures to
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object localization, detection, and image segmentation tasks. All these task demands

pixel-level localization and hence require a deep architecture that can efficiently integrate

local and global cues. The development of SUNet is a first step towards achieving this

objective. Intuitively, multiple stacks of u-nets can be seen as multiple iterations of the

message passing operation in a CRF [214].

7.5 Dilated SUNets for Segmentation

Conv 
7x7 

stride 2

Residual 
Block

U
-N
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<latexit sha1_base64="pmw+8NBAYOWi/NC1jWKit6hf8JQ=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4sSS9qLeiF09SwdhCG8pmO2mXbjZhdyOU0N/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbJa2yts7u3v7lYPDR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLGS75/foelVqm7NnYEsE68gVSjQ7FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPjp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEw/J32ukBkxtoQyxe2thA2poszYfMo2BG/x5WXi12tXNfe+Xm1cF2mU4BhO4Aw8uIAG3EITfGDA4Rle4c2Rzovz7nzMW1ecYuYI/sD5/AG3Uo4m</latexit><latexit sha1_base64="pmw+8NBAYOWi/NC1jWKit6hf8JQ=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4sSS9qLeiF09SwdhCG8pmO2mXbjZhdyOU0N/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbJa2yts7u3v7lYPDR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLGS75/foelVqm7NnYEsE68gVSjQ7FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPjp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEw/J32ukBkxtoQyxe2thA2poszYfMo2BG/x5WXi12tXNfe+Xm1cF2mU4BhO4Aw8uIAG3EITfGDA4Rle4c2Rzovz7nzMW1ecYuYI/sD5/AG3Uo4m</latexit><latexit sha1_base64="pmw+8NBAYOWi/NC1jWKit6hf8JQ=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4sSS9qLeiF09SwdhCG8pmO2mXbjZhdyOU0N/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbJa2yts7u3v7lYPDR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLGS75/foelVqm7NnYEsE68gVSjQ7FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPjp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEw/J32ukBkxtoQyxe2thA2poszYfMo2BG/x5WXi12tXNfe+Xm1cF2mU4BhO4Aw8uIAG3EITfGDA4Rle4c2Rzovz7nzMW1ecYuYI/sD5/AG3Uo4m</latexit>

U
-N

et
<latexit sha1_base64="pmw+8NBAYOWi/NC1jWKit6hf8JQ=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4sSS9qLeiF09SwdhCG8pmO2mXbjZhdyOU0N/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbJa2yts7u3v7lYPDR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLGS75/foelVqm7NnYEsE68gVSjQ7FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPjp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEw/J32ukBkxtoQyxe2thA2poszYfMo2BG/x5WXi12tXNfe+Xm1cF2mU4BhO4Aw8uIAG3EITfGDA4Rle4c2Rzovz7nzMW1ecYuYI/sD5/AG3Uo4m</latexit><latexit sha1_base64="pmw+8NBAYOWi/NC1jWKit6hf8JQ=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4sSS9qLeiF09SwdhCG8pmO2mXbjZhdyOU0N/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbJa2yts7u3v7lYPDR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLGS75/foelVqm7NnYEsE68gVSjQ7FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPjp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEw/J32ukBkxtoQyxe2thA2poszYfMo2BG/x5WXi12tXNfe+Xm1cF2mU4BhO4Aw8uIAG3EITfGDA4Rle4c2Rzovz7nzMW1ecYuYI/sD5/AG3Uo4m</latexit><latexit sha1_base64="pmw+8NBAYOWi/NC1jWKit6hf8JQ=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4sSS9qLeiF09SwdhCG8pmO2mXbjZhdyOU0N/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbJa2yts7u3v7lYPDR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLGS75/foelVqm7NnYEsE68gVSjQ7FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPjp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEw/J32ukBkxtoQyxe2thA2poszYfMo2BG/x5WXi12tXNfe+Xm1cF2mU4BhO4Aw8uIAG3EITfGDA4Rle4c2Rzovz7nzMW1ecYuYI/sD5/AG3Uo4m</latexit>

U
-N

et
<latexit sha1_base64="pmw+8NBAYOWi/NC1jWKit6hf8JQ=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4sSS9qLeiF09SwdhCG8pmO2mXbjZhdyOU0N/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbJa2yts7u3v7lYPDR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLGS75/foelVqm7NnYEsE68gVSjQ7FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPjp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEw/J32ukBkxtoQyxe2thA2poszYfMo2BG/x5WXi12tXNfe+Xm1cF2mU4BhO4Aw8uIAG3EITfGDA4Rle4c2Rzovz7nzMW1ecYuYI/sD5/AG3Uo4m</latexit><latexit sha1_base64="pmw+8NBAYOWi/NC1jWKit6hf8JQ=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4sSS9qLeiF09SwdhCG8pmO2mXbjZhdyOU0N/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbJa2yts7u3v7lYPDR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLGS75/foelVqm7NnYEsE68gVSjQ7FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPjp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEw/J32ukBkxtoQyxe2thA2poszYfMo2BG/x5WXi12tXNfe+Xm1cF2mU4BhO4Aw8uIAG3EITfGDA4Rle4c2Rzovz7nzMW1ecYuYI/sD5/AG3Uo4m</latexit><latexit sha1_base64="pmw+8NBAYOWi/NC1jWKit6hf8JQ=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4sSS9qLeiF09SwdhCG8pmO2mXbjZhdyOU0N/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbJa2yts7u3v7lYPDR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLGS75/foelVqm7NnYEsE68gVSjQ7FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPjp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEw/J32ukBkxtoQyxe2thA2poszYfMo2BG/x5WXi12tXNfe+Xm1cF2mU4BhO4Aw8uIAG3EITfGDA4Rle4c2Rzovz7nzMW1ecYuYI/sD5/AG3Uo4m</latexit>

C
o
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3⇥
3

<latexit sha1_base64="mFVNfS4yvKeKZqyUMz9ydbQHUGI=">AAAB+HicbVA9TwJBEJ3DL8SvU0ubjWBiRe6gUDsijSUmoiRwIXvLHmzY273s7pGQC//ExkKNrT/Fzn/jAlco+JJJXt6bycy8MOFMG8/7dgobm1vbO8Xd0t7+weGRe3zyqGWqCG0TyaXqhFhTzgRtG2Y47SSK4jjk9CkcN+f+04QqzaR4MNOEBjEeChYxgo2V+q7blGKCKvWeYTHVqF7pu2Wv6i2A1omfkzLkaPXdr95AkjSmwhCOte76XmKCDCvDCKezUi/VNMFkjIe0a6nAdk+QLS6foQurDFAklS1h0EL9PZHhWOtpHNrOGJuRXvXm4n9eNzXRdZAxkaSGCrJcFKUcGYnmMaABU5QYPrUEE8XsrYiMsMLE2LBKNgR/9eV10q5Vb6refa3cuM3TKMIZnMMl+HAFDbiDFrSBwASe4RXenMx5cd6dj2VrwclnTuEPnM8f+lmSHg==</latexit><latexit sha1_base64="mFVNfS4yvKeKZqyUMz9ydbQHUGI=">AAAB+HicbVA9TwJBEJ3DL8SvU0ubjWBiRe6gUDsijSUmoiRwIXvLHmzY273s7pGQC//ExkKNrT/Fzn/jAlco+JJJXt6bycy8MOFMG8/7dgobm1vbO8Xd0t7+weGRe3zyqGWqCG0TyaXqhFhTzgRtG2Y47SSK4jjk9CkcN+f+04QqzaR4MNOEBjEeChYxgo2V+q7blGKCKvWeYTHVqF7pu2Wv6i2A1omfkzLkaPXdr95AkjSmwhCOte76XmKCDCvDCKezUi/VNMFkjIe0a6nAdk+QLS6foQurDFAklS1h0EL9PZHhWOtpHNrOGJuRXvXm4n9eNzXRdZAxkaSGCrJcFKUcGYnmMaABU5QYPrUEE8XsrYiMsMLE2LBKNgR/9eV10q5Vb6refa3cuM3TKMIZnMMl+HAFDbiDFrSBwASe4RXenMx5cd6dj2VrwclnTuEPnM8f+lmSHg==</latexit><latexit sha1_base64="mFVNfS4yvKeKZqyUMz9ydbQHUGI=">AAAB+HicbVA9TwJBEJ3DL8SvU0ubjWBiRe6gUDsijSUmoiRwIXvLHmzY273s7pGQC//ExkKNrT/Fzn/jAlco+JJJXt6bycy8MOFMG8/7dgobm1vbO8Xd0t7+weGRe3zyqGWqCG0TyaXqhFhTzgRtG2Y47SSK4jjk9CkcN+f+04QqzaR4MNOEBjEeChYxgo2V+q7blGKCKvWeYTHVqF7pu2Wv6i2A1omfkzLkaPXdr95AkjSmwhCOte76XmKCDCvDCKezUi/VNMFkjIe0a6nAdk+QLS6foQurDFAklS1h0EL9PZHhWOtpHNrOGJuRXvXm4n9eNzXRdZAxkaSGCrJcFKUcGYnmMaABU5QYPrUEE8XsrYiMsMLE2LBKNgR/9eV10q5Vb6refa3cuM3TKMIZnMMl+HAFDbiDFrSBwASe4RXenMx5cd6dj2VrwclnTuEPnM8f+lmSHg==</latexit>

C
o
n
v

3⇥
3

<latexit sha1_base64="mFVNfS4yvKeKZqyUMz9ydbQHUGI=">AAAB+HicbVA9TwJBEJ3DL8SvU0ubjWBiRe6gUDsijSUmoiRwIXvLHmzY273s7pGQC//ExkKNrT/Fzn/jAlco+JJJXt6bycy8MOFMG8/7dgobm1vbO8Xd0t7+weGRe3zyqGWqCG0TyaXqhFhTzgRtG2Y47SSK4jjk9CkcN+f+04QqzaR4MNOEBjEeChYxgo2V+q7blGKCKvWeYTHVqF7pu2Wv6i2A1omfkzLkaPXdr95AkjSmwhCOte76XmKCDCvDCKezUi/VNMFkjIe0a6nAdk+QLS6foQurDFAklS1h0EL9PZHhWOtpHNrOGJuRXvXm4n9eNzXRdZAxkaSGCrJcFKUcGYnmMaABU5QYPrUEE8XsrYiMsMLE2LBKNgR/9eV10q5Vb6refa3cuM3TKMIZnMMl+HAFDbiDFrSBwASe4RXenMx5cd6dj2VrwclnTuEPnM8f+lmSHg==</latexit><latexit sha1_base64="mFVNfS4yvKeKZqyUMz9ydbQHUGI=">AAAB+HicbVA9TwJBEJ3DL8SvU0ubjWBiRe6gUDsijSUmoiRwIXvLHmzY273s7pGQC//ExkKNrT/Fzn/jAlco+JJJXt6bycy8MOFMG8/7dgobm1vbO8Xd0t7+weGRe3zyqGWqCG0TyaXqhFhTzgRtG2Y47SSK4jjk9CkcN+f+04QqzaR4MNOEBjEeChYxgo2V+q7blGKCKvWeYTHVqF7pu2Wv6i2A1omfkzLkaPXdr95AkjSmwhCOte76XmKCDCvDCKezUi/VNMFkjIe0a6nAdk+QLS6foQurDFAklS1h0EL9PZHhWOtpHNrOGJuRXvXm4n9eNzXRdZAxkaSGCrJcFKUcGYnmMaABU5QYPrUEE8XsrYiMsMLE2LBKNgR/9eV10q5Vb6refa3cuM3TKMIZnMMl+HAFDbiDFrSBwASe4RXenMx5cd6dj2VrwclnTuEPnM8f+lmSHg==</latexit><latexit sha1_base64="mFVNfS4yvKeKZqyUMz9ydbQHUGI=">AAAB+HicbVA9TwJBEJ3DL8SvU0ubjWBiRe6gUDsijSUmoiRwIXvLHmzY273s7pGQC//ExkKNrT/Fzn/jAlco+JJJXt6bycy8MOFMG8/7dgobm1vbO8Xd0t7+weGRe3zyqGWqCG0TyaXqhFhTzgRtG2Y47SSK4jjk9CkcN+f+04QqzaR4MNOEBjEeChYxgo2V+q7blGKCKvWeYTHVqF7pu2Wv6i2A1omfkzLkaPXdr95AkjSmwhCOte76XmKCDCvDCKezUi/VNMFkjIe0a6nAdk+QLS6foQurDFAklS1h0EL9PZHhWOtpHNrOGJuRXvXm4n9eNzXRdZAxkaSGCrJcFKUcGYnmMaABU5QYPrUEE8XsrYiMsMLE2LBKNgR/9eV10q5Vb6refa3cuM3TKMIZnMMl+HAFDbiDFrSBwASe4RXenMx5cd6dj2VrwclnTuEPnM8f+lmSHg==</latexit>

Output stride 2<latexit sha1_base64="yv89rdpDQj0UtZCfxKMiOIFTPug=">AAAB53icbVBNT8JAEJ36ifiFevSykZh4Ii0X9Ub04hESKyTQkO0yhZXtttndmpCGX+DFgxqv/iVv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZ377CZXmibw3kxSDmA4ljzijxkqter9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTZBTZTgTOC33Mo0pZWM6xK6lksaog3x+6JScW2VAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE10FOZdpZlCyxaIoE8QkZPY1GXCFzIiJJZQpbm8lbEQVZcZmU7YheMsvrxK/Xruuua16tXFTpFGCUziDC/DgEhpwB03wgQHCM7zCm/PovDjvzseidc0pZk7gD5zPH+nMjIc=</latexit><latexit sha1_base64="GaSTc9KlZhpQd4P6fB6lM+WV8wg=">AAAB43icbVBNT8JAEJ3iF9Yv9OplIzHxRFou6o3oxSMmVkigIdtlCivbbbO7NSENv8CLB/Xqf/Lmv3GBHhR8ySQv781kZl6UCa6N5307lY3Nre2d6q67t39weFRzjx91miuGAUtFqroR1Si4xMBwI7CbKaRJJLATTW7nfucZleapfDDTDMOEjiSPOaPGSvfNQa3uNbwFyDrxS1KHEu1B7as/TFmeoDRMUK17vpeZsKDKcCZw5vZzjRllEzrCnqWSJqjDYnHojJxbZUjiVNmShizU3xMFTbSeJpHtTKgZ61VvLv7n9XITX4UFl1luULLlojgXxKRk/jUZcoXMiKkllClubyVsTBVlxmbj2hD81ZfXSdBsXDe8euumzKIKp3AGF+DDJbTgDtoQAAOEF3iDd+fJeXU+lo0Vp5w4gT9wPn8AgPGLYA==</latexit><latexit sha1_base64="GaSTc9KlZhpQd4P6fB6lM+WV8wg=">AAAB43icbVBNT8JAEJ3iF9Yv9OplIzHxRFou6o3oxSMmVkigIdtlCivbbbO7NSENv8CLB/Xqf/Lmv3GBHhR8ySQv781kZl6UCa6N5307lY3Nre2d6q67t39weFRzjx91miuGAUtFqroR1Si4xMBwI7CbKaRJJLATTW7nfucZleapfDDTDMOEjiSPOaPGSvfNQa3uNbwFyDrxS1KHEu1B7as/TFmeoDRMUK17vpeZsKDKcCZw5vZzjRllEzrCnqWSJqjDYnHojJxbZUjiVNmShizU3xMFTbSeJpHtTKgZ61VvLv7n9XITX4UFl1luULLlojgXxKRk/jUZcoXMiKkllClubyVsTBVlxmbj2hD81ZfXSdBsXDe8euumzKIKp3AGF+DDJbTgDtoQAAOEF3iDd+fJeXU+lo0Vp5w4gT9wPn8AgPGLYA==</latexit> 4<latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit><latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit><latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit>

8
<latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit><latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit><latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit>

8
<latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit><latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit><latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit>

8
<latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit><latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit><latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit>

8
<latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit><latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit><latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit>

Dilation factor 2<latexit sha1_base64="yv89rdpDQj0UtZCfxKMiOIFTPug=">AAAB53icbVBNT8JAEJ36ifiFevSykZh4Ii0X9Ub04hESKyTQkO0yhZXtttndmpCGX+DFgxqv/iVv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZ377CZXmibw3kxSDmA4ljzijxkqter9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTZBTZTgTOC33Mo0pZWM6xK6lksaog3x+6JScW2VAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE10FOZdpZlCyxaIoE8QkZPY1GXCFzIiJJZQpbm8lbEQVZcZmU7YheMsvrxK/Xruuua16tXFTpFGCUziDC/DgEhpwB03wgQHCM7zCm/PovDjvzseidc0pZk7gD5zPH+nMjIc=</latexit><latexit sha1_base64="GaSTc9KlZhpQd4P6fB6lM+WV8wg=">AAAB43icbVBNT8JAEJ3iF9Yv9OplIzHxRFou6o3oxSMmVkigIdtlCivbbbO7NSENv8CLB/Xqf/Lmv3GBHhR8ySQv781kZl6UCa6N5307lY3Nre2d6q67t39weFRzjx91miuGAUtFqroR1Si4xMBwI7CbKaRJJLATTW7nfucZleapfDDTDMOEjiSPOaPGSvfNQa3uNbwFyDrxS1KHEu1B7as/TFmeoDRMUK17vpeZsKDKcCZw5vZzjRllEzrCnqWSJqjDYnHojJxbZUjiVNmShizU3xMFTbSeJpHtTKgZ61VvLv7n9XITX4UFl1luULLlojgXxKRk/jUZcoXMiKkllClubyVsTBVlxmbj2hD81ZfXSdBsXDe8euumzKIKp3AGF+DDJbTgDtoQAAOEF3iDd+fJeXU+lo0Vp5w4gT9wPn8AgPGLYA==</latexit><latexit sha1_base64="GaSTc9KlZhpQd4P6fB6lM+WV8wg=">AAAB43icbVBNT8JAEJ3iF9Yv9OplIzHxRFou6o3oxSMmVkigIdtlCivbbbO7NSENv8CLB/Xqf/Lmv3GBHhR8ySQv781kZl6UCa6N5307lY3Nre2d6q67t39weFRzjx91miuGAUtFqroR1Si4xMBwI7CbKaRJJLATTW7nfucZleapfDDTDMOEjiSPOaPGSvfNQa3uNbwFyDrxS1KHEu1B7as/TFmeoDRMUK17vpeZsKDKcCZw5vZzjRllEzrCnqWSJqjDYnHojJxbZUjiVNmShizU3xMFTbSeJpHtTKgZ61VvLv7n9XITX4UFl1luULLlojgXxKRk/jUZcoXMiKkllClubyVsTBVlxmbj2hD81ZfXSdBsXDe8euumzKIKp3AGF+DDJbTgDtoQAAOEF3iDd+fJeXU+lo0Vp5w4gT9wPn8AgPGLYA==</latexit> 4<latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit><latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit><latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit>

8
<latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit><latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit><latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit>
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2<latexit sha1_base64="yv89rdpDQj0UtZCfxKMiOIFTPug=">AAAB53icbVBNT8JAEJ36ifiFevSykZh4Ii0X9Ub04hESKyTQkO0yhZXtttndmpCGX+DFgxqv/iVv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZ377CZXmibw3kxSDmA4ljzijxkqter9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTZBTZTgTOC33Mo0pZWM6xK6lksaog3x+6JScW2VAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE10FOZdpZlCyxaIoE8QkZPY1GXCFzIiJJZQpbm8lbEQVZcZmU7YheMsvrxK/Xruuua16tXFTpFGCUziDC/DgEhpwB03wgQHCM7zCm/PovDjvzseidc0pZk7gD5zPH+nMjIc=</latexit><latexit sha1_base64="GaSTc9KlZhpQd4P6fB6lM+WV8wg=">AAAB43icbVBNT8JAEJ3iF9Yv9OplIzHxRFou6o3oxSMmVkigIdtlCivbbbO7NSENv8CLB/Xqf/Lmv3GBHhR8ySQv781kZl6UCa6N5307lY3Nre2d6q67t39weFRzjx91miuGAUtFqroR1Si4xMBwI7CbKaRJJLATTW7nfucZleapfDDTDMOEjiSPOaPGSvfNQa3uNbwFyDrxS1KHEu1B7as/TFmeoDRMUK17vpeZsKDKcCZw5vZzjRllEzrCnqWSJqjDYnHojJxbZUjiVNmShizU3xMFTbSeJpHtTKgZ61VvLv7n9XITX4UFl1luULLlojgXxKRk/jUZcoXMiKkllClubyVsTBVlxmbj2hD81ZfXSdBsXDe8euumzKIKp3AGF+DDJbTgDtoQAAOEF3iDd+fJeXU+lo0Vp5w4gT9wPn8AgPGLYA==</latexit><latexit sha1_base64="GaSTc9KlZhpQd4P6fB6lM+WV8wg=">AAAB43icbVBNT8JAEJ3iF9Yv9OplIzHxRFou6o3oxSMmVkigIdtlCivbbbO7NSENv8CLB/Xqf/Lmv3GBHhR8ySQv781kZl6UCa6N5307lY3Nre2d6q67t39weFRzjx91miuGAUtFqroR1Si4xMBwI7CbKaRJJLATTW7nfucZleapfDDTDMOEjiSPOaPGSvfNQa3uNbwFyDrxS1KHEu1B7as/TFmeoDRMUK17vpeZsKDKcCZw5vZzjRllEzrCnqWSJqjDYnHojJxbZUjiVNmShizU3xMFTbSeJpHtTKgZ61VvLv7n9XITX4UFl1luULLlojgXxKRk/jUZcoXMiKkllClubyVsTBVlxmbj2hD81ZfXSdBsXDe8euumzKIKp3AGF+DDJbTgDtoQAAOEF3iDd+fJeXU+lo0Vp5w4gT9wPn8AgPGLYA==</latexit> 4<latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit><latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit><latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit> 4<latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit><latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit><latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit>

8
<latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit><latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit><latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit>

8
<latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit><latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit><latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit> 4<latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit><latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit><latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit> 4<latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit><latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit><latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit> 2<latexit sha1_base64="yv89rdpDQj0UtZCfxKMiOIFTPug=">AAAB53icbVBNT8JAEJ36ifiFevSykZh4Ii0X9Ub04hESKyTQkO0yhZXtttndmpCGX+DFgxqv/iVv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZ377CZXmibw3kxSDmA4ljzijxkqter9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTZBTZTgTOC33Mo0pZWM6xK6lksaog3x+6JScW2VAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE10FOZdpZlCyxaIoE8QkZPY1GXCFzIiJJZQpbm8lbEQVZcZmU7YheMsvrxK/Xruuua16tXFTpFGCUziDC/DgEhpwB03wgQHCM7zCm/PovDjvzseidc0pZk7gD5zPH+nMjIc=</latexit><latexit sha1_base64="GaSTc9KlZhpQd4P6fB6lM+WV8wg=">AAAB43icbVBNT8JAEJ3iF9Yv9OplIzHxRFou6o3oxSMmVkigIdtlCivbbbO7NSENv8CLB/Xqf/Lmv3GBHhR8ySQv781kZl6UCa6N5307lY3Nre2d6q67t39weFRzjx91miuGAUtFqroR1Si4xMBwI7CbKaRJJLATTW7nfucZleapfDDTDMOEjiSPOaPGSvfNQa3uNbwFyDrxS1KHEu1B7as/TFmeoDRMUK17vpeZsKDKcCZw5vZzjRllEzrCnqWSJqjDYnHojJxbZUjiVNmShizU3xMFTbSeJpHtTKgZ61VvLv7n9XITX4UFl1luULLlojgXxKRk/jUZcoXMiKkllClubyVsTBVlxmbj2hD81ZfXSdBsXDe8euumzKIKp3AGF+DDJbTgDtoQAAOEF3iDd+fJeXU+lo0Vp5w4gT9wPn8AgPGLYA==</latexit><latexit sha1_base64="GaSTc9KlZhpQd4P6fB6lM+WV8wg=">AAAB43icbVBNT8JAEJ3iF9Yv9OplIzHxRFou6o3oxSMmVkigIdtlCivbbbO7NSENv8CLB/Xqf/Lmv3GBHhR8ySQv781kZl6UCa6N5307lY3Nre2d6q67t39weFRzjx91miuGAUtFqroR1Si4xMBwI7CbKaRJJLATTW7nfucZleapfDDTDMOEjiSPOaPGSvfNQa3uNbwFyDrxS1KHEu1B7as/TFmeoDRMUK17vpeZsKDKcCZw5vZzjRllEzrCnqWSJqjDYnHojJxbZUjiVNmShizU3xMFTbSeJpHtTKgZ61VvLv7n9XITX4UFl1luULLlojgXxKRk/jUZcoXMiKkllClubyVsTBVlxmbj2hD81ZfXSdBsXDe8euumzKIKp3AGF+DDJbTgDtoQAAOEF3iDd+fJeXU+lo0Vp5w4gT9wPn8AgPGLYA==</latexit>

Dilation

De-gridding 
Filters C

on
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S
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<latexit sha1_base64="uFnu0W2rH6XT285//BFnvu7y1QQ=">AAACAXicbVA9TwJBEN3DL8Qv1MrYbAQTC0PuaNSOSGOJUYQELmRv2YMNe7uX3TkiIcTGv2JjocbWf2Hnv3GBKxR9ySQv781kZl4QC27Adb+czNLyyupadj23sbm1vZPf3bszKtGU1akSSjcDYpjgktWBg2DNWDMSBYI1gkF16jeGTBuu5C2MYuZHpCd5yCkBK3XyB1Ulh7jotYFHzGCveIpvVAgRue/kC27JnQH/JV5KCihFrZP/bHcVTSImgQpiTMtzY/DHRAOngk1y7cSwmNAB6bGWpZLYhf549sIEH1uli0OlbUnAM/XnxJhExoyiwHZGBPpm0ZuK/3mtBMJzf8xlnACTdL4oTAQGhad54C7XjIIYWUKo5vZWTPtEEwo2tZwNwVt8+S+pl0sXJfe6XKhcpmlk0SE6QifIQ2eogq5QDdURRQ/oCb2gV+fReXbenPd5a8ZJZ/bRLzgf30kOlaI=</latexit><latexit sha1_base64="uFnu0W2rH6XT285//BFnvu7y1QQ=">AAACAXicbVA9TwJBEN3DL8Qv1MrYbAQTC0PuaNSOSGOJUYQELmRv2YMNe7uX3TkiIcTGv2JjocbWf2Hnv3GBKxR9ySQv781kZl4QC27Adb+czNLyyupadj23sbm1vZPf3bszKtGU1akSSjcDYpjgktWBg2DNWDMSBYI1gkF16jeGTBuu5C2MYuZHpCd5yCkBK3XyB1Ulh7jotYFHzGCveIpvVAgRue/kC27JnQH/JV5KCihFrZP/bHcVTSImgQpiTMtzY/DHRAOngk1y7cSwmNAB6bGWpZLYhf549sIEH1uli0OlbUnAM/XnxJhExoyiwHZGBPpm0ZuK/3mtBMJzf8xlnACTdL4oTAQGhad54C7XjIIYWUKo5vZWTPtEEwo2tZwNwVt8+S+pl0sXJfe6XKhcpmlk0SE6QifIQ2eogq5QDdURRQ/oCb2gV+fReXbenPd5a8ZJZ/bRLzgf30kOlaI=</latexit><latexit sha1_base64="uFnu0W2rH6XT285//BFnvu7y1QQ=">AAACAXicbVA9TwJBEN3DL8Qv1MrYbAQTC0PuaNSOSGOJUYQELmRv2YMNe7uX3TkiIcTGv2JjocbWf2Hnv3GBKxR9ySQv781kZl4QC27Adb+czNLyyupadj23sbm1vZPf3bszKtGU1akSSjcDYpjgktWBg2DNWDMSBYI1gkF16jeGTBuu5C2MYuZHpCd5yCkBK3XyB1Ulh7jotYFHzGCveIpvVAgRue/kC27JnQH/JV5KCihFrZP/bHcVTSImgQpiTMtzY/DHRAOngk1y7cSwmNAB6bGWpZLYhf549sIEH1uli0OlbUnAM/XnxJhExoyiwHZGBPpm0ZuK/3mtBMJzf8xlnACTdL4oTAQGhad54C7XjIIYWUKo5vZWTPtEEwo2tZwNwVt8+S+pl0sXJfe6XKhcpmlk0SE6QifIQ2eogq5QDdURRQ/oCb2gV+fReXbenPd5a8ZJZ/bRLzgf30kOlaI=</latexit>

U
-N

et
<latexit sha1_base64="pmw+8NBAYOWi/NC1jWKit6hf8JQ=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4sSS9qLeiF09SwdhCG8pmO2mXbjZhdyOU0N/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbJa2yts7u3v7lYPDR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLGS75/foelVqm7NnYEsE68gVSjQ7FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPjp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEw/J32ukBkxtoQyxe2thA2poszYfMo2BG/x5WXi12tXNfe+Xm1cF2mU4BhO4Aw8uIAG3EITfGDA4Rle4c2Rzovz7nzMW1ecYuYI/sD5/AG3Uo4m</latexit><latexit sha1_base64="pmw+8NBAYOWi/NC1jWKit6hf8JQ=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4sSS9qLeiF09SwdhCG8pmO2mXbjZhdyOU0N/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbJa2yts7u3v7lYPDR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLGS75/foelVqm7NnYEsE68gVSjQ7FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPjp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEw/J32ukBkxtoQyxe2thA2poszYfMo2BG/x5WXi12tXNfe+Xm1cF2mU4BhO4Aw8uIAG3EITfGDA4Rle4c2Rzovz7nzMW1ecYuYI/sD5/AG3Uo4m</latexit><latexit sha1_base64="pmw+8NBAYOWi/NC1jWKit6hf8JQ=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4sSS9qLeiF09SwdhCG8pmO2mXbjZhdyOU0N/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbJa2yts7u3v7lYPDR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLGS75/foelVqm7NnYEsE68gVSjQ7FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPjp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEw/J32ukBkxtoQyxe2thA2poszYfMo2BG/x5WXi12tXNfe+Xm1cF2mU4BhO4Aw8uIAG3EITfGDA4Rle4c2Rzovz7nzMW1ecYuYI/sD5/AG3Uo4m</latexit>

U
-N

et
<latexit sha1_base64="pmw+8NBAYOWi/NC1jWKit6hf8JQ=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4sSS9qLeiF09SwdhCG8pmO2mXbjZhdyOU0N/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbJa2yts7u3v7lYPDR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLGS75/foelVqm7NnYEsE68gVSjQ7FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPjp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEw/J32ukBkxtoQyxe2thA2poszYfMo2BG/x5WXi12tXNfe+Xm1cF2mU4BhO4Aw8uIAG3EITfGDA4Rle4c2Rzovz7nzMW1ecYuYI/sD5/AG3Uo4m</latexit><latexit sha1_base64="pmw+8NBAYOWi/NC1jWKit6hf8JQ=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4sSS9qLeiF09SwdhCG8pmO2mXbjZhdyOU0N/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbJa2yts7u3v7lYPDR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLGS75/foelVqm7NnYEsE68gVSjQ7FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPjp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEw/J32ukBkxtoQyxe2thA2poszYfMo2BG/x5WXi12tXNfe+Xm1cF2mU4BhO4Aw8uIAG3EITfGDA4Rle4c2Rzovz7nzMW1ecYuYI/sD5/AG3Uo4m</latexit><latexit sha1_base64="pmw+8NBAYOWi/NC1jWKit6hf8JQ=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4sSS9qLeiF09SwdhCG8pmO2mXbjZhdyOU0N/gxYOKV/+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbJa2yts7u3v7lYPDR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLGS75/foelVqm7NnYEsE68gVSjQ7FW+uv2EZTFKwwTVuuO5qQlyqgxnAiflbqYxpWxEB9ixVNIYdZDPjp2QU6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEw/J32ukBkxtoQyxe2thA2poszYfMo2BG/x5WXi12tXNfe+Xm1cF2mU4BhO4Aw8uIAG3EITfGDA4Rle4c2Rzovz7nzMW1ecYuYI/sD5/AG3Uo4m</latexit>

P
o
olin

g
<latexit sha1_base64="oHq5k8nnxCAY8DMjW45agAzHYps=">AAAB7XicbVBNTwIxFHzrJ+IX6tFLIzHxRBYu6o3oxSMmrpDAhnTLW2jotpu2a0I2/AgvHtR49f94899YYA8KTtJkMvMmfW+iVHBjff/bW1vf2NzaLu2Ud/f2Dw4rR8ePRmWaYcCUULoTUYOCSwwstwI7qUaaRALb0fh25refUBuu5IOdpBgmdCh5zBm1Tmq3lHLJYb9S9Wv+HGSV1AtShQKtfuWrN1AsS1BaJqgx3bqf2jCn2nImcFruZQZTysZ0iF1HJU3QhPl83Sk5d8qAxEq7Jy2Zq78TOU2MmSSRm0yoHZllbyb+53UzG1+FOZdpZlGyxUdxJohVZHY7GXCNzIqJI5Rp7nYlbEQ1ZdY1VHYl1JdPXiVBo3Zd8+8b1eZN0UYJTuEMLqAOl9CEO2hBAAzG8Ayv8Oal3ov37n0sRte8InMCf+B9/gDQxI9p</latexit><latexit sha1_base64="oHq5k8nnxCAY8DMjW45agAzHYps=">AAAB7XicbVBNTwIxFHzrJ+IX6tFLIzHxRBYu6o3oxSMmrpDAhnTLW2jotpu2a0I2/AgvHtR49f94899YYA8KTtJkMvMmfW+iVHBjff/bW1vf2NzaLu2Ud/f2Dw4rR8ePRmWaYcCUULoTUYOCSwwstwI7qUaaRALb0fh25refUBuu5IOdpBgmdCh5zBm1Tmq3lHLJYb9S9Wv+HGSV1AtShQKtfuWrN1AsS1BaJqgx3bqf2jCn2nImcFruZQZTysZ0iF1HJU3QhPl83Sk5d8qAxEq7Jy2Zq78TOU2MmSSRm0yoHZllbyb+53UzG1+FOZdpZlGyxUdxJohVZHY7GXCNzIqJI5Rp7nYlbEQ1ZdY1VHYl1JdPXiVBo3Zd8+8b1eZN0UYJTuEMLqAOl9CEO2hBAAzG8Ayv8Oal3ov37n0sRte8InMCf+B9/gDQxI9p</latexit><latexit sha1_base64="oHq5k8nnxCAY8DMjW45agAzHYps=">AAAB7XicbVBNTwIxFHzrJ+IX6tFLIzHxRBYu6o3oxSMmrpDAhnTLW2jotpu2a0I2/AgvHtR49f94899YYA8KTtJkMvMmfW+iVHBjff/bW1vf2NzaLu2Ud/f2Dw4rR8ePRmWaYcCUULoTUYOCSwwstwI7qUaaRALb0fh25refUBuu5IOdpBgmdCh5zBm1Tmq3lHLJYb9S9Wv+HGSV1AtShQKtfuWrN1AsS1BaJqgx3bqf2jCn2nImcFruZQZTysZ0iF1HJU3QhPl83Sk5d8qAxEq7Jy2Zq78TOU2MmSSRm0yoHZllbyb+53UzG1+FOZdpZlGyxUdxJohVZHY7GXCNzIqJI5Rp7nYlbEQ1ZdY1VHYl1JdPXiVBo3Zd8+8b1eZN0UYJTuEMLqAOl9CEO2hBAAzG8Ayv8Oal3ov37n0sRte8InMCf+B9/gDQxI9p</latexit>

8
<latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit><latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit><latexit sha1_base64="3ZYpuMaHocy2UImapsblr2mF/zQ=">AAAB53icbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2BFtLCHxhAQuZG+Zg5W9vcvungm58AtsLNTY+pfs/DcucIWCL5nk5b2ZzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj08edJwqhh6LRay6AdUouETPcCOwmyikUSCwE0xu537nCZXmsbw30wT9iI4kDzmjxkrtxqBccavuAmSd1HJSgRytQfmrP4xZGqE0TFCtezU3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTdjwMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRDqK2+vE68evW66rbrleZNnkYRzuAcLqEGV9CEO2iBBwwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDy3oyN</latexit>

1<latexit sha1_base64="xtYtqk/NAQjj/df88nu05b7+fg0=">AAAB53icbVBNT8JAEJ36ifiFevSykZh4Ii0X9Ub04hESKyTQkO0yhZXtttndmpCGX+DFgxqv/iVv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZ377CZXmibw3kxSDmA4ljzijxkotr1+pujV3DrJKvIJUoUCzX/nqDRKWxSgNE1TrruemJsipMpwJnJZ7mcaUsjEdYtdSSWPUQT4/dErOrTIgUaJsSUPm6u+JnMZaT+LQdsbUjPSyNxP/87qZia6CnMs0MyjZYlGUCWISMvuaDLhCZsTEEsoUt7cSNqKKMmOzKdsQvOWXV4lfr13X3Fa92rgp0ijBKZzBBXhwCQ24gyb4wADhGV7hzXl0Xpx352PRuuYUMyfwB87nD+hJjIY=</latexit><latexit sha1_base64="xtYtqk/NAQjj/df88nu05b7+fg0=">AAAB53icbVBNT8JAEJ36ifiFevSykZh4Ii0X9Ub04hESKyTQkO0yhZXtttndmpCGX+DFgxqv/iVv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZ377CZXmibw3kxSDmA4ljzijxkotr1+pujV3DrJKvIJUoUCzX/nqDRKWxSgNE1TrruemJsipMpwJnJZ7mcaUsjEdYtdSSWPUQT4/dErOrTIgUaJsSUPm6u+JnMZaT+LQdsbUjPSyNxP/87qZia6CnMs0MyjZYlGUCWISMvuaDLhCZsTEEsoUt7cSNqKKMmOzKdsQvOWXV4lfr13X3Fa92rgp0ijBKZzBBXhwCQ24gyb4wADhGV7hzXl0Xpx352PRuuYUMyfwB87nD+hJjIY=</latexit><latexit sha1_base64="xtYtqk/NAQjj/df88nu05b7+fg0=">AAAB53icbVBNT8JAEJ36ifiFevSykZh4Ii0X9Ub04hESKyTQkO0yhZXtttndmpCGX+DFgxqv/iVv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZ377CZXmibw3kxSDmA4ljzijxkotr1+pujV3DrJKvIJUoUCzX/nqDRKWxSgNE1TrruemJsipMpwJnJZ7mcaUsjEdYtdSSWPUQT4/dErOrTIgUaJsSUPm6u+JnMZaT+LQdsbUjPSyNxP/87qZia6CnMs0MyjZYlGUCWISMvuaDLhCZsTEEsoUt7cSNqKKMmOzKdsQvOWXV4lfr13X3Fa92rgp0ijBKZzBBXhwCQ24gyb4wADhGV7hzXl0Xpx352PRuuYUMyfwB87nD+hJjIY=</latexit> 1<latexit sha1_base64="xtYtqk/NAQjj/df88nu05b7+fg0=">AAAB53icbVBNT8JAEJ36ifiFevSykZh4Ii0X9Ub04hESKyTQkO0yhZXtttndmpCGX+DFgxqv/iVv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZ377CZXmibw3kxSDmA4ljzijxkotr1+pujV3DrJKvIJUoUCzX/nqDRKWxSgNE1TrruemJsipMpwJnJZ7mcaUsjEdYtdSSWPUQT4/dErOrTIgUaJsSUPm6u+JnMZaT+LQdsbUjPSyNxP/87qZia6CnMs0MyjZYlGUCWISMvuaDLhCZsTEEsoUt7cSNqKKMmOzKdsQvOWXV4lfr13X3Fa92rgp0ijBKZzBBXhwCQ24gyb4wADhGV7hzXl0Xpx352PRuuYUMyfwB87nD+hJjIY=</latexit><latexit sha1_base64="xtYtqk/NAQjj/df88nu05b7+fg0=">AAAB53icbVBNT8JAEJ36ifiFevSykZh4Ii0X9Ub04hESKyTQkO0yhZXtttndmpCGX+DFgxqv/iVv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZ377CZXmibw3kxSDmA4ljzijxkotr1+pujV3DrJKvIJUoUCzX/nqDRKWxSgNE1TrruemJsipMpwJnJZ7mcaUsjEdYtdSSWPUQT4/dErOrTIgUaJsSUPm6u+JnMZaT+LQdsbUjPSyNxP/87qZia6CnMs0MyjZYlGUCWISMvuaDLhCZsTEEsoUt7cSNqKKMmOzKdsQvOWXV4lfr13X3Fa92rgp0ijBKZzBBXhwCQ24gyb4wADhGV7hzXl0Xpx352PRuuYUMyfwB87nD+hJjIY=</latexit><latexit sha1_base64="xtYtqk/NAQjj/df88nu05b7+fg0=">AAAB53icbVBNT8JAEJ36ifiFevSykZh4Ii0X9Ub04hESKyTQkO0yhZXtttndmpCGX+DFgxqv/iVv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZ377CZXmibw3kxSDmA4ljzijxkotr1+pujV3DrJKvIJUoUCzX/nqDRKWxSgNE1TrruemJsipMpwJnJZ7mcaUsjEdYtdSSWPUQT4/dErOrTIgUaJsSUPm6u+JnMZaT+LQdsbUjPSyNxP/87qZia6CnMs0MyjZYlGUCWISMvuaDLhCZsTEEsoUt7cSNqKKMmOzKdsQvOWXV4lfr13X3Fa92rgp0ijBKZzBBXhwCQ24gyb4wADhGV7hzXl0Xpx352PRuuYUMyfwB87nD+hJjIY=</latexit>

Level 1<latexit sha1_base64="xtYtqk/NAQjj/df88nu05b7+fg0=">AAAB53icbVBNT8JAEJ36ifiFevSykZh4Ii0X9Ub04hESKyTQkO0yhZXtttndmpCGX+DFgxqv/iVv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZ377CZXmibw3kxSDmA4ljzijxkotr1+pujV3DrJKvIJUoUCzX/nqDRKWxSgNE1TrruemJsipMpwJnJZ7mcaUsjEdYtdSSWPUQT4/dErOrTIgUaJsSUPm6u+JnMZaT+LQdsbUjPSyNxP/87qZia6CnMs0MyjZYlGUCWISMvuaDLhCZsTEEsoUt7cSNqKKMmOzKdsQvOWXV4lfr13X3Fa92rgp0ijBKZzBBXhwCQ24gyb4wADhGV7hzXl0Xpx352PRuuYUMyfwB87nD+hJjIY=</latexit><latexit sha1_base64="xtYtqk/NAQjj/df88nu05b7+fg0=">AAAB53icbVBNT8JAEJ36ifiFevSykZh4Ii0X9Ub04hESKyTQkO0yhZXtttndmpCGX+DFgxqv/iVv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZ377CZXmibw3kxSDmA4ljzijxkotr1+pujV3DrJKvIJUoUCzX/nqDRKWxSgNE1TrruemJsipMpwJnJZ7mcaUsjEdYtdSSWPUQT4/dErOrTIgUaJsSUPm6u+JnMZaT+LQdsbUjPSyNxP/87qZia6CnMs0MyjZYlGUCWISMvuaDLhCZsTEEsoUt7cSNqKKMmOzKdsQvOWXV4lfr13X3Fa92rgp0ijBKZzBBXhwCQ24gyb4wADhGV7hzXl0Xpx352PRuuYUMyfwB87nD+hJjIY=</latexit><latexit sha1_base64="xtYtqk/NAQjj/df88nu05b7+fg0=">AAAB53icbVBNT8JAEJ36ifiFevSykZh4Ii0X9Ub04hESKyTQkO0yhZXtttndmpCGX+DFgxqv/iVv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZ377CZXmibw3kxSDmA4ljzijxkotr1+pujV3DrJKvIJUoUCzX/nqDRKWxSgNE1TrruemJsipMpwJnJZ7mcaUsjEdYtdSSWPUQT4/dErOrTIgUaJsSUPm6u+JnMZaT+LQdsbUjPSyNxP/87qZia6CnMs0MyjZYlGUCWISMvuaDLhCZsTEEsoUt7cSNqKKMmOzKdsQvOWXV4lfr13X3Fa92rgp0ijBKZzBBXhwCQ24gyb4wADhGV7hzXl0Xpx352PRuuYUMyfwB87nD+hJjIY=</latexit>

2<latexit sha1_base64="yv89rdpDQj0UtZCfxKMiOIFTPug=">AAAB53icbVBNT8JAEJ36ifiFevSykZh4Ii0X9Ub04hESKyTQkO0yhZXtttndmpCGX+DFgxqv/iVv/hsX6EHBl0zy8t5MZuaFqeDauO63s7a+sbm1Xdop7+7tHxxWjo4fdJIphj5LRKI6IdUouETfcCOwkyqkcSiwHY5vZ377CZXmibw3kxSDmA4ljzijxkqter9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTZBTZTgTOC33Mo0pZWM6xK6lksaog3x+6JScW2VAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE10FOZdpZlCyxaIoE8QkZPY1GXCFzIiJJZQpbm8lbEQVZcZmU7YheMsvrxK/Xruuua16tXFTpFGCUziDC/DgEhpwB03wgQHCM7zCm/PovDjvzseidc0pZk7gD5zPH+nMjIc=</latexit><latexit sha1_base64="GaSTc9KlZhpQd4P6fB6lM+WV8wg=">AAAB43icbVBNT8JAEJ3iF9Yv9OplIzHxRFou6o3oxSMmVkigIdtlCivbbbO7NSENv8CLB/Xqf/Lmv3GBHhR8ySQv781kZl6UCa6N5307lY3Nre2d6q67t39weFRzjx91miuGAUtFqroR1Si4xMBwI7CbKaRJJLATTW7nfucZleapfDDTDMOEjiSPOaPGSvfNQa3uNbwFyDrxS1KHEu1B7as/TFmeoDRMUK17vpeZsKDKcCZw5vZzjRllEzrCnqWSJqjDYnHojJxbZUjiVNmShizU3xMFTbSeJpHtTKgZ61VvLv7n9XITX4UFl1luULLlojgXxKRk/jUZcoXMiKkllClubyVsTBVlxmbj2hD81ZfXSdBsXDe8euumzKIKp3AGF+DDJbTgDtoQAAOEF3iDd+fJeXU+lo0Vp5w4gT9wPn8AgPGLYA==</latexit><latexit sha1_base64="GaSTc9KlZhpQd4P6fB6lM+WV8wg=">AAAB43icbVBNT8JAEJ3iF9Yv9OplIzHxRFou6o3oxSMmVkigIdtlCivbbbO7NSENv8CLB/Xqf/Lmv3GBHhR8ySQv781kZl6UCa6N5307lY3Nre2d6q67t39weFRzjx91miuGAUtFqroR1Si4xMBwI7CbKaRJJLATTW7nfucZleapfDDTDMOEjiSPOaPGSvfNQa3uNbwFyDrxS1KHEu1B7as/TFmeoDRMUK17vpeZsKDKcCZw5vZzjRllEzrCnqWSJqjDYnHojJxbZUjiVNmShizU3xMFTbSeJpHtTKgZ61VvLv7n9XITX4UFl1luULLlojgXxKRk/jUZcoXMiKkllClubyVsTBVlxmbj2hD81ZfXSdBsXDe8euumzKIKp3AGF+DDJbTgDtoQAAOEF3iDd+fJeXU+lo0Vp5w4gT9wPn8AgPGLYA==</latexit> 4<latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit><latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit><latexit sha1_base64="46SWzbUbqiG4Kt0cvm0m1bEHeeI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUvOiVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBRMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CWX14lfq16XXWbtUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/s0oyJ</latexit>

3
<latexit sha1_base64="ZgOBONPC9+QqObn0T7gaBB49z3Q=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lVUG9FLx5bMLbQhrLZTtq1m03Y3Qgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/woONUMfRYLGLVDqhGwSV6hhuB7UQhjQKBrWB0O/VbT6g0j+W9GSfoR3QgecgZNVZqnvfKFbfqzkCWSS0nFcjR6JW/uv2YpRFKwwTVulNzE+NnVBnOBE5K3VRjQtmIDrBjqaQRaj+bHTohJ1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3md1IRXfsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2ZRsCLXFl5eJd1a9rrrNi0r9Jk+jCEdwDKdQg0uowx00wAMGCM/wCm/Oo/PivDsf89aCk88cwh84nz/r74yK</latexit><latexit sha1_base64="ZgOBONPC9+QqObn0T7gaBB49z3Q=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lVUG9FLx5bMLbQhrLZTtq1m03Y3Qgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/woONUMfRYLGLVDqhGwSV6hhuB7UQhjQKBrWB0O/VbT6g0j+W9GSfoR3QgecgZNVZqnvfKFbfqzkCWSS0nFcjR6JW/uv2YpRFKwwTVulNzE+NnVBnOBE5K3VRjQtmIDrBjqaQRaj+bHTohJ1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3md1IRXfsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2ZRsCLXFl5eJd1a9rrrNi0r9Jk+jCEdwDKdQg0uowx00wAMGCM/wCm/Oo/PivDsf89aCk88cwh84nz/r74yK</latexit><latexit sha1_base64="ZgOBONPC9+QqObn0T7gaBB49z3Q=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lVUG9FLx5bMLbQhrLZTtq1m03Y3Qgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/woONUMfRYLGLVDqhGwSV6hhuB7UQhjQKBrWB0O/VbT6g0j+W9GSfoR3QgecgZNVZqnvfKFbfqzkCWSS0nFcjR6JW/uv2YpRFKwwTVulNzE+NnVBnOBE5K3VRjQtmIDrBjqaQRaj+bHTohJ1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3md1IRXfsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2ZRsCLXFl5eJd1a9rrrNi0r9Jk+jCEdwDKdQg0uowx00wAMGCM/wCm/Oo/PivDsf89aCk88cwh84nz/r74yK</latexit> 5

<latexit sha1_base64="Cq7a9GxUBIxAJxnxbQ8E5/eAYCM=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUW9FLx5bMLbQhrLZTtq1m03Y3Qgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/woONUMfRYLGLVDqhGwSV6hhuB7UQhjQKBrWB0O/VbT6g0j+W9GSfoR3QgecgZNVZqXvTKFbfqzkCWSS0nFcjR6JW/uv2YpRFKwwTVulNzE+NnVBnOBE5K3VRjQtmIDrBjqaQRaj+bHTohJ1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3md1IRXfsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2ZRsCLXFl5eJd1a9rrrN80r9Jk+jCEdwDKdQg0uowx00wAMGCM/wCm/Oo/PivDsf89aCk88cwh84nz/u9YyM</latexit><latexit sha1_base64="Cq7a9GxUBIxAJxnxbQ8E5/eAYCM=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUW9FLx5bMLbQhrLZTtq1m03Y3Qgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/woONUMfRYLGLVDqhGwSV6hhuB7UQhjQKBrWB0O/VbT6g0j+W9GSfoR3QgecgZNVZqXvTKFbfqzkCWSS0nFcjR6JW/uv2YpRFKwwTVulNzE+NnVBnOBE5K3VRjQtmIDrBjqaQRaj+bHTohJ1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3md1IRXfsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2ZRsCLXFl5eJd1a9rrrN80r9Jk+jCEdwDKdQg0uowx00wAMGCM/wCm/Oo/PivDsf89aCk88cwh84nz/u9YyM</latexit><latexit sha1_base64="Cq7a9GxUBIxAJxnxbQ8E5/eAYCM=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUW9FLx5bMLbQhrLZTtq1m03Y3Qgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/woONUMfRYLGLVDqhGwSV6hhuB7UQhjQKBrWB0O/VbT6g0j+W9GSfoR3QgecgZNVZqXvTKFbfqzkCWSS0nFcjR6JW/uv2YpRFKwwTVulNzE+NnVBnOBE5K3VRjQtmIDrBjqaQRaj+bHTohJ1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3md1IRXfsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2ZRsCLXFl5eJd1a9rrrN80r9Jk+jCEdwDKdQg0uowx00wAMGCM/wCm/Oo/PivDsf89aCk88cwh84nz/u9YyM</latexit> 6
<latexit sha1_base64="Ey1zm3hx+2YzcVUO977joFYJtEM=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lF/LgVvXhswdhCG8pmO2nXbjZhdyOU0F/gxYOKV/+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bg45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLR7dRvPaHSPJb3ZpygH9GB5CFn1FipedErV9yqOwNZJrWcVCBHo1f+6vZjlkYoDRNU607NTYyfUWU4EzgpdVONCWUjOsCOpZJGqP1sduiEnFilT8JY2ZKGzNTfExmNtB5Hge2MqBnqRW8q/ud1UhNe+RmXSWpQsvmiMBXExGT6NelzhcyIsSWUKW5vJWxIFWXGZlOyIdQWX14m3ln1uuo2zyv1mzyNIhzBMZxCDS6hDnfQAA8YIDzDK7w5j86L8+58zFsLTj5zCH/gfP4A8HiMjQ==</latexit><latexit sha1_base64="Ey1zm3hx+2YzcVUO977joFYJtEM=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lF/LgVvXhswdhCG8pmO2nXbjZhdyOU0F/gxYOKV/+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bg45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLR7dRvPaHSPJb3ZpygH9GB5CFn1FipedErV9yqOwNZJrWcVCBHo1f+6vZjlkYoDRNU607NTYyfUWU4EzgpdVONCWUjOsCOpZJGqP1sduiEnFilT8JY2ZKGzNTfExmNtB5Hge2MqBnqRW8q/ud1UhNe+RmXSWpQsvmiMBXExGT6NelzhcyIsSWUKW5vJWxIFWXGZlOyIdQWX14m3ln1uuo2zyv1mzyNIhzBMZxCDS6hDnfQAA8YIDzDK7w5j86L8+58zFsLTj5zCH/gfP4A8HiMjQ==</latexit><latexit sha1_base64="Ey1zm3hx+2YzcVUO977joFYJtEM=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lF/LgVvXhswdhCG8pmO2nXbjZhdyOU0F/gxYOKV/+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bg45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLR7dRvPaHSPJb3ZpygH9GB5CFn1FipedErV9yqOwNZJrWcVCBHo1f+6vZjlkYoDRNU607NTYyfUWU4EzgpdVONCWUjOsCOpZJGqP1sduiEnFilT8JY2ZKGzNTfExmNtB5Hge2MqBnqRW8q/ud1UhNe+RmXSWpQsvmiMBXExGT6NelzhcyIsSWUKW5vJWxIFWXGZlOyIdQWX14m3ln1uuo2zyv1mzyNIhzBMZxCDS6hDnfQAA8YIDzDK7w5j86L8+58zFsLTj5zCH/gfP4A8HiMjQ==</latexit>

Figure 7.2: Dilated SUNet-7-128 network for segmentation at output stride = 8. For
dilation > 1, the feature maps are processed with a varying range of dilation factors inside
each u-net module (for example, see inset). The de-gridding filters smooth out aliasing
artifacts that occur during deconvolution.

We now explain how pre-trained SUNet models can be adapted to perform semantic

segmentation (see Section 7.5.3). One can directly extend SUNet to segmentation by

removing a global average pooling layer (to increase output resolution) and operating the

network in fully convolutional mode. Akin to other works on semantic segmentation [205,

217, 218], the output feature maps are rescaled using bilinear interpolation to the input

image size before passing into the softmax layer with multi-class cross-entropy loss.
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7.5.1 Dilation

For an input image of 512× 512, the output map size at the softmax is 16× 16 i.e.,

subsampled by a factor of 32. This is insufficient to preserve precise pixel-level localization

information at its output. The precision can be improved by increasing the output map

size of the network. This is realized by dropping the pooling stride at the transition layer.

Merely eliminating stride leads to the reduction in the receptive field of the subsequent

layers by a factor of two. Consequently, this reduces the influence of long-distance context

information on the output prediction. Nevertheless, the receptive field is restored to that of

the original network by operating each convolutional filter in the subsequent layers at a

dilation factor of 2 [210, 216].

7.5.2 Multigrid

Figure 7.2 shows a sample dilated SUNet architecture used for the semantic segmen-

tation task. Similar to [218], we define output stride to be the ratio of resolution of an

input image to that of its output feature map.

To sample at an output stride of 8 the pooling layers preceding blocks (3) and

(4) are discarded. Following this, the dilation factor for each u-net module in blocks 3

and 4 is fixed at 2 and 4, respectively. In each subsequent u-net module the 3 × 3 conv

layers are operated with stride = 1. To keep the receptive field of the low-resolution

layers in these modules constant, a dilation is applied. This arrangement facilitates the

network to preserve spatial information learned from the prior modules (because there is

no downsampling in the final u-net block) while preserving the distance scale of features
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within each block. As an example, the inset in Figure 7.2 displays the effective dilation

rate for each layer in the u-net module at block 3. Similarly, the dilation rate of each layer

(except for bottleneck layers) in the u-net+ module will be twice that of the corresponding

layers in block 3. The steady increase and decrease of dilation factors inside each u-net

module is analogous to multigrid solvers for linear systems [245, 246], which use grids

at different scales to move information globally. Many recent works [218, 221, 226] on

deep networks advocate the use of special structures for information globalization. In

SUNet, the multigrid structure is baked into the model, and no further “frills” are needed

to globalize information.

7.5.3 De-gridding Filters

By adopting dilated SUNets, we observe a vast improvement in segmentation per-

formance. However, for output stride = 8 the segmentation map displays gridding

artifacts [221, 242]. This aliasing artifact is introduced when the sampling rate of the

dilated layer is lower than the high-frequency content of input feature maps. The final

3× 3 conv filter of u-net+ operates at the dilation factor of 4. Directly transferring u-net+’s

feature map output to a classification layer can cause gridding artifacts. Following [242],

the u-net+ module is followed by two layers of de-gridding filters with progressively

decreasing dilation factor. Each filter is a 3× 3 conv layer and outputs 512 feature maps.

SUNet does not require any additional post-hoc structural changes popularized

by recent works such as decoding layers [205, 207], appending context aggregation

blocks [210, 216–218] and learning conditional random fields [213, 214]. Hence we

147



regard SUNet as a “no-frills” network.

7.6 Experiments

7.6.1 ImageNet Classification

In this section, we evaluate three SUNet architectures on the ILSVRC-2012 classifi-

cation dataset, which contains 1.28M training images and 50, 000 images for validation,

with labels distributed over 1000 classes. Training utilized the same data augmentation

scheme used for ResNet [228] and DenseNet [230]. Following common practice [228,236],

we apply a 224× 224 center crop on test images and report Top-1 and Top-5 error on the

validation set.

Implementation Details: All the models were implemented using the PyTorch deep

learning framework and trained using four P6000 GPUs on a single node. We use SGD

with a batch size of 256. For our largest model, 7-128, we were limited to a batch size of

212, due to the GPUs memory constraints. The initial learning rate was set to 0.01 and

decreased by a factor of 10 every 30 epochs. We use a weight decay of 5e−4 and Nesterov

momentum of 0.9 without dampening. The weights were initialized as in [247] and all the

models were trained from scratch for a total of 100 epochs.

Table 7.2 compares the performance of SUNet against other classification networks.

The comparison is restricted to only ResNet and DenseNet models as most recent work

on segmentation builds on top of them. The notable point about the result is that the

repeated top-down and the bottom-up processing of features performs equivalently to

state-of-the-art classification networks.
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We emphasize that our objective is not to surpass classification accuracy but instead

to build a better architecture for segmentation by pre-training on a classification task.

Indeed, each SUNet model was selected such that it is the counterpart for the corresponding

ResNet model.

Model Top-1 Top-5 Depth Params

ResNet-18† 30.24 10.92 18 11.7M

ResNet-50† 23.85 7.13 50 25.6M

ResNet-101† 22.63 6.44 101 44.5M

DenseNet-201† 22.80 6.43 201 20M

DenseNet-161† 22.35 6.20 161 28.5M

SUNet-64 29.28 10.21 111 6.9M

SUNet-128 23.64 7.56 111 24.6M

SUNet-7-128 22.47 6.85 171 37.7M

Table 7.2: Error rates for classification networks on
the ImageNet 2012 validation set. ′†′ denotes error
rates from the official PyTorch implementation.

Model mIoU

ResNet-101 [218] 68.39

SUNet-64 72.85
SUNet-128 77.16

SUNet-7-128 78.95

Table 7.3: The semantic seg-
mentation performance of di-
lated SUNet and ResNet-101
networks on PASCAL VOC
2012 validation set trained with
output stride = 16. Relative
to the ResNet-101 network, all
SUNets perform very well.

7.6.2 Semantic Segmentation

Semantic segmentation networks were built using the dilated version of the ImageNet

pre-trained SUNet models (Section 7.5). We evaluate on the PASCAL VOC 2012 semantic

segmentation benchmark [248] and urban scene understanding Cityscape [249] datasets.

The performance on each of these datasets is reported using intersection-over-union (IoU)

averaged over all classes.
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7.6.3 Datasets

PASCAL VOC 2012: This dataset contains 1,464 train, 1,449 validation and 1,456

test images. The pixel-level annotation for 20 objects and one background class is made

available for the train and validation set. Following common practice, the train set is

augmented with additional annotated data from [250] which finally provides a total of

10,582 (trainaug) training images.

Cityscape: This dataset consists of finely annotated images of urban scenes covering

multiple instances of cars, roads, pedestrians, buildings, etc. In total, it contains 19 classes

on 2, 975 finely annotated training and 500 validation images.

7.6.4 Implementation Details

We use the SGD optimizer with a momentum of 0.95 and weight decay of 10−4.

Each model is fine-tuned starting with an initial learning rate of 0.0002 which is decreased

every iteration by a factor of 0.5×
(
1 + cos

(
π iter

max iters

))
[251]. The batch-norm parameters

are learned with a decay rate of 0.99 and the input crop size for each training image is

set to 512× 512. We train each model using two P6000 GPUs and the batch size 22. On

PASCAL VOC, each model is trained for 45K iterations while for Cityscapes we use 90K

iterations.

Unless mentioned, for all our experiments we set output stride = 16. This

means only the u-net modules in the final block (4) operate at dilation factor of two;

all other modules use the same stride as in the original classification model. Furthermore,

output stride = 16 enables larger batch sizes than smaller stride choices, and hence leads
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to efficient learning of batch norm parameters. Also, training and inference are 2× faster

with output stride = 16 rather than 8.

Data Augmentation: To prevent overfitting during the training process, each training

image is resized with a random scale from 0.5 to 2 following which the input image

is randomly cropped. Additionally, the input is randomly flipped horizontally and also

randomly rotated between −10◦ to 10◦.

7.6.5 Ablation Study

We experiment with different SUNet variants on the PASCAL VOC 2012 dataset.

SUNets vs ResNet-101: We compare the performance of the dilated SUNet architecture

on semantic segmentation against the popular dilated ResNet-101 model. Models were fine-

tuned on the “trainaug” set without the degridding layers and evaluated on the validation

set.

The performance of the plain dilated SUNets surpasses that of ResNet-101 by a

wide margin when trained with output stride = 16 (Table 7.3). In fact, the smallest

SUNet model, SUNet-64 with 6.7M parameters, beats ResNet-101 (with 44.5M ) by an

absolute margin of 4.5% IoU while SUNet-7-128, the counterpart network to ResNet-

101, improves by over 10.5% IoU. This is substantial, given that the gap between the

ResNet-101 and VGG-16 models is ∼ 3% [210] (at output stride = 8). This contrasts

with the negligible performance differences observed on classification, and suggests that

specialized segmentation network architectures can surpass architectures adapted from

classification.
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Finally, we note that, although SUNets were designed for pixel-level localization

tasks, the selected models were chosen only based on their classification performance. By

linking the model selection process to the primary task (segmentation and object detection)

there is a possibility of improving performance.

OS Strided conv Multigrid

8 65.99 78.64
16 78.25 78.95

Table 7.4: Performance com-
parison of multigrid dilation
against strided convolution in-
side each u-net module, using the
SUNet-7-128 model and evalu-
ated using mean IoU. OS denotes
output stride during training.

train OS eval OS DL MS Flip mIoU

32 32 76.03
32 32 X 77.58
32 32 X X 77.57

16 16 78.95
16 16 X 78.10
16 16 X 80.22
16 16 X X 80.40

8 8 78.64
8 8 X 78.88
8 8 X 80.37
8 8 X X 80.50

Table 7.5: Performance comparison at various
output stride and inference strategies. MS: Multi-
scale, DL: with Degridding Layers

Multigrid vs Downsampling: We compare the performance of multigrid dilation (as

shown in Figure 7.2) inside each u-net against the usual downsampling (Figure 7.1). We

consider a dilated SUNet-7-128 network and report performance at different training

output stride. For output stride = 8, the network was trained with a batch size of

12. The result is summarized in Table 7.4. For a dilated network, replacing strided

convolutional layers with the corresponding dilated layers is more logical as well as

beneficial. This is because, when operating dilated convolutional layers with stride > 1,

alternate feature points are dropped without being processed by any of the filters, leading

152



to high frequency noise at the decoder output. Furthermore, due to a skip connection, the

features from the lower layers are also corrupted. Due to error propagation, this effect is

more prominent in a network with many dilated modules (for eg., output stride = 8).

Output Stride and Inference Strategy: Finally, we experiment with three different

training output strides (8,16,32) and multi-scale inference at test time. For output stride =

32, none of the layers are dilated and hence de-gridding layers were not used. Training with

an output stride = 32 is equivalent to fine-tuning a classification network with a global

pooling layer removed. For multi-scale inference, each input image is scaled and tested

using multiple scales {0.5, 0.75, 1.0, 1.25} and its left-right flipped image. The average

over all output maps is used in the final prediction. See results in Table 7.5. We note that:

1. The network trained with OS = 32 performs 0.7 IoU better (with single scale)

than the Resnet-101 and Resnet-152 models [252] each trained at OS = 8. This

is significant, since the SUNet output contains 16× fewer pixels. This leads to 4×

faster training/inference without a performance drop.

2. The degridding layers do not improve performance at OS = 16. In this case, there

is only a small change in dilation factor between the final layer of SUNet and the

classification layer, so aliasing is not problematic.

3. The margin of performance improvement decreases with increase in training OS.

Given this and the above fact, subsequently we only report performance for models

trained at OS = 16 without any degridding layers.

Pretraining with MS-COCO: Following common practice [217, 218, 232], we pretrain

SUNet-7-128 with the MS-COCO dataset [253]. The MS-COCO dataset contains pixel-

level annotation for 80 object classes. Except for the PASCAL VOC classes, the pixel
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annotation for all other classes is set to the background class. Following this, we use all

the images from the MS-COCO “trainval” set except for those having < 1000 annotated

pixel labels. This yields 90, 000 training images. After pretraining, the model is fine-tuned

on “trainaug” for 5K iterations with 10× smaller initial learning rate. In the end, our

model achieves 83.27% mIoU on the validation set. This performance is slightly better

than the ResNet+ASPP model [218] (82.70%) and equivalent to Xception+ASPP+Decoder

model [232] (83.34%).

Methods Validation mIoU

Resnet+ASPP 82.70
Xception+ASPP+Decoder 83.34

SUNet-7128 83.27

Table 7.6: Performance comparison on PASCAL VOC 2012 validation set. All networks
were pretrained with MS-COCO.

7.6.6 Results on Test set

PASCAL VOC 2012: Before submitting test set output to an evaluation server, the above

model was further fine-tuned on the “trainval” set with batch-norm parameters frozen and

at 10× smaller initial learning rate. Table 7.7 compares the test set results2 against other

state-of-the-art methods. PSPNet performs slightly better than SUNet, but at the cost of

30M more parameters while training at an output stride = 8. Figure 7.3, 7.4 displays

some qualitative results on validation and test sets.

Cityscapes: A similar training strategy as in PASCAL is adopted except that the multi-

scale inference is performed on additional scales {1.5, 1.75, 2.0, 2.25, 2.5}. Only the finer
2http://host.robots.ox.ac.uk:8080/anonymous/KT7JGJ.html

https://www.cityscapes-dataset.com/method-details/?submissionID=1151
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input target output input target output

Figure 7.3: Visualization of the segmentation output on PASCAL VOC 2012 val set when
trained at an output stride = 16 using SUNet-7-128 network + MS-COCO. Final row
shows couple of failure case which happens due to, ambiguous annotation and inability in
detecting low resolution objects.

Figure 7.4: Visualization of the segmentation output on PASCAL VOC 2012 test set.
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Methods mIoU

Piecewise (VGG16) [224] 78.0
LRR+CRF [209] 77.3

DeepLabv2+CRF [210] 79.7
Large-Kernel+CRF [220] 82.2

Deep Layer Cascade∗ [254] 82.7
Understanding Conv [221] 83.1

RefineNet [205] 82.4
RefineNet-ResNet152 [205] 83.4

PSPNet [217] 85.4
SUNet-7-128 84.3

Table 7.7: Performance comparison on
PASCAL VOC 2012 test set. For fair com-
parison, only the methods pre-trained using
MS-COCO are displayed.

Methods mIoU

LRR (VGG16) [209] 69.7
DeepLabv2+CRF [210] 70.4

Deep Layer Cascade∗ [254] 71.1
Piecewise (VGG16) [224] 71.6

RefineNet [205] 73.6

Understanding Conv [221] 77.6
PSPNet [217] 78.4
SUNet-7-128 75.3

Table 7.8: Performance comparison on
Cityscapes test set. All methods were
trained only using the “fine” set. All nets
utilize ResNet-101 as a base network, ex-
cept if specified or marked with ∗.

annotation set was used for training. The comparison on the Cityscapes test set results are

displayed in Table 7.8.

7.6.7 Activation Maps

Figure 7.5 shows the activation map recorded at the end of each level (as indicated in

figure 7.2) for an example input image of an “Aeroplane.” As noted earlier, the inclusion

of strided convolutions instead of multigrid dilations leads to noisy feature maps (see col

3; rows 4-6). The addition of de-gridding layers serves to produce a coherent prediction

map at the output (see col 2; row 6).

7.7 Conclusion

The fundamental structure of conventional bottom-up classification networks limits

their efficacy on secondary tasks involving pixel-level localization or classification. To
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OS = 8 OS = 8 + DL OS = 8+Strided OS = 16 SUNet-64

Figure 7.5: Activation map recorded at the end of each level of the dilated SUNet for an
example input image of an ‘Aeroplane’. The activation map with total highest magnitude
were selected from among all feature map outputs at the corresponding layer. Top to
Bottom: output at end of level 1− 6 followed by classification output. The level 6 output
is simply a prediction map before bilinear interpolation.

overcome this drawback, a new network architecture, stacked u-nets (SUNets), is discussed

in this chapter. SUNets leverage the information globalization power of u-nets in a

deeper network architecture that is capable of handling the complexity of natural images.

SUNets perform exceptionally well on semantic segmentation tasks while achieving fair
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performance on ImageNet classification.

There are several directions for future research that may improve upon the per-

formance achievable using a simple SUNet. It may be advantageous to replace each

convolution block by their corresponding depthwise separable convolution [233], as done

in [232, 255–257]. The inclusion of post-hoc context [217, 218] or decoder networks [232]

on top of SUNets may also help. Given the huge margin of improvement over ResNet

models for semantic segmentation tasks, it is obvious to extend SUNets to object detection

tasks. Finally, as suggested, rigorous hyper-parameter search and numerical analysis [258]

on SUNets may yield better generic as well as task-specific models.

158



Part III

Label Prior
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Chapter 8: Weakly-Supervised Co-Clustering

8.1 Introduction

Watching and sharing videos on social media has become an integral part of everyday

life. We are often intrigued by the textual description of the videos and attempt to fast-

forward to the segments of interest without watching the entire video. However, these

textual descriptors usually do not specify the exact segment of the video associated with

a particular description. For example, someone describing a movie clip as “head-on

collision between cars while Chris Cooper is driving” neither provide the time-stamps

for the collision or driving events nor the spatial locations of the cars or Chris Cooper.

Such descriptions are referred to as ‘weak labels’. For efficient video navigation and

consumption, it is important to automatically determine the spatio-temporal locations of

these concepts (such as ‘collision’ or ‘cars’). However, it is prohibitively expensive to

train concept-specific models for all concepts of interest in advance and use them for

localization. This shortcoming has triggered a great amount of interest in jointly learning

concept-specific classification models as well as localizing concepts from multiple weakly

labeled images [259–261] or videos [262, 263].

Video descriptions include concepts which may refer to persons, objects, scenes

and/or actions and thus a typical description is a combination of heterogeneous concepts.
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In the running example, extracted heterogeneous concepts are ‘car’ (object), ‘head-on

collision’ (action), ‘Chris Cooper’ (person) and ‘driving’ (action). Learning classifiers

for these heterogeneous concepts along with localization is an extremely challenging

task because: (a) the classifiers for different kinds of concepts are required to be learned

simultaneously, e.g., a face classifier, an object classifier, an action classifier etc., and (b)

the learning model must take into account the spatio-temporal location constraints imposed

by the descriptions while learning these classifiers. For example, the concepts ‘head-on

collision’ and ‘cars’ should spatio-temporally co-occur at least once and there should be at

least one car in the video.

Recently there has been growing interest to jointly learn concept classifiers from

weak labels [259, 263]. Bojanowski et al [263] proposed a discriminative clustering

framework to jointly learn person and action models from movies using weak supervision

provided by the movie scripts. Since weak labels are extracted from scripts, each label

can be associated with a particular shot in the movie, which may last only for a few

seconds, i.e., the labels are well localized and that makes the overall learning easier.

However, in real world videos, one does not have access to such shot-level labels but

only to video-level labels. Therefore in our work, we do not assume availability of such

well localized labels, and tackle the more general problem of learning concepts from

weaker video-level labels. The framework in [263], when extended to long videos, does

not give satisfactory results (see section 8.4). Such techniques, which are based on a linear

mapping from features to labels and model background using only a single latent factor, are

usually inadequate to capture all the inter-class and intra-class variations. Shi et al [259]

jointly learn object and attribute classifiers from images using weakly supervised Indian
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Buffet Process (IBP). Note that IBP [264, 265] allows observed features to be explained

by a countably infinite number of latent factors. However, the framework in [259] is

not designed to handle heterogeneous concepts and location constraints, which leads to

a significant degradation in performance (section 8.4.3). [266] and [267] propose IBP

based cross-modal categorization/query image retrieval models which learn semantically

meaningful abstract features from multimodal (image, speech and text) data. However,

these unsupervised approaches do not incorporate any location constraints which naturally

arise in the weakly supervised setting with heterogeneous labels.

In this chapter, we propose a novel Bayesian Non-parametric (BNP) approach called

WSC-SIIBP (Weakly Supervised, Constrained & Stacked Integrative IBP) to jointly learn

heterogeneous concept classifiers and localize these concepts in videos. BNP models

are a class of Bayesian models where the hidden structure that may have generated the

observed data is not assumed to be fixed. Instead, a framework is provided that allows

the complexity of the model to increase as more data is observed [268]. Specifically, we

propose a IBP model to jointly learn heterogeneous concepts which incorporates weakly

supervised spatio-temporal location constraints in the learning procedure. The posterior

inference is derived using mean-field approximation.

We assume that the weak video labels come in the form of tuples: in the running

example, the extracted heterogeneous concept tuples are ({car, head-on collision}, {Chris

Cooper, driving}). The experiments on two video datasets (a) the Casablanca movie

dataset [263] and (b) the A2D dataset [269] show that the proposed approach WSC-SIIBP

outperforms several state-of-the-art methods for heterogeneous concept classification and

localization in a weakly supervised setting. For example, WSC-SIIBP leads to a relative
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Figure 8.1: Pipeline of WSC-SIIBP. Multiple videos with heterogeneous weak labels are
provided as input and localization and classification of the concepts are performed in these
videos.

improvement of 7%, 5% and 24% on person, action and pairwise classification accuracies,

respectively, over the most competitive baselines on the Casablanca dataset. Similarly,

the relative improvement on localization accuracy is 9% over the next best approach

on the A2D dataset. The code is available at https://github.com/shahsohil/

WSC-SIIBP.

8.2 Related Work

Weakly Supervised Learning: Localizing concepts and learning classifiers from weakly

annotated data is an active research topic. Researchers have learned models for various

concepts from weakly labeled videos using Multi-Instance Learning (MIL) [270, 271]

for human action recognition [272], visual tracking [273] etc. Cour et al [274] uses

a novel convex formulation to learn face classifiers from movies and TV series using
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multimodal features which are obtained from finely aligned screenplay, speech and video

data. In [262, 275], the authors propose discriminative clustering approaches for aligning

videos with temporally ordered text descriptions or predefined tags and in the process

also learn action classifiers. In our approach, we consider weak labels which are neither

ordered nor aligned to any specific video segment. [276] proposes a method for learning

object class detectors from real world web videos known to contain only the target class

by formulating the problem as a domain adaptation task. [277] learns weakly supervised

object/action classifiers using a latent-SVM formulation where the objects or actions are

localized in training images/videos using latent variables. We note that - both [276, 277]

consider only a single weak label per video and, unlike our approach, do not jointly learn

the heterogeneous concepts. The authors in [278, 279] use dialogues, scene and character

identification to find an optimal mapping between a book and movie shots using shortest

path or CRF approach. However, these approaches neither jointly model heterogeneous

concepts nor spatio-temporally localized them. Although [280] proposes a discriminative

clustering model for coreference resolution in videos, only faces are considered in their

experiments.

Heterogeneous concept learning: There are prior works on automatic image [281–284]

and video [285–287] caption generation, where models are trained on pairs of image/video

and text that contain heterogeneous concept descriptions to predict captions for novel

images/videos. While most of these approaches rely on deep learning methods to learn

a mapping between an image/video and the corresponding text description, [283] uses

MIL to learn visual concept detectors (spatial localization in images) for nouns, verbs

and adjectives. However, none of these approaches spatio-temporally localize points of
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interests in videos. Perhaps the available video datasets are not large enough to train such

a weakly supervised deep learning model.

To the best of our knowledge there is no prior work that jointly classifies and localizes

heterogeneous concepts in weakly supervised videos.

8.3 WSC-SIIBP: Model and Algorithm

In this section, we describe the details of WSC-SIIBP (see figure 8.1 for the pipeline).

We first introduce notations and motivate our approach in sections 8.3.1 and 8.3.2 respec-

tively. This is followed by section 8.3.3 where we introduce stacked non-parametric

graphical model - IBP and its corresponding posterior computation. In sections 8.3.4

and 8.3.5, we formulate an extension of the stacked IBP model which can generalize to

heterogeneous concepts as well as incorporate the constraints obtained from weak labels.

In section 8.3.6, we briefly describe the inference procedure using truncated mean-field

variational approximation and summarize our entire algorithm. Finally, we discuss how

one can classify and localize concepts in new test videos using WSC-SIIBP.

8.3.1 Notation

Assume we are given a set of weakly labeled videos denoted by Λ =
{

(i,Γ(i))
}

,

where i indicates a video and Γ(i) denotes the heterogeneous weak labels corresponding

to the i-th video. Although the proposed approach can be used for any number of het-

erogeneous concepts, for readability, we restrict ourselves to two concepts and call them

subjects and actions. We also have a closed set of class labels for these heterogeneous con-
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cepts: for subjects S = (s1, . . . , sKs) and for actions A = (a1, . . . , aKa). Let Ks = |S|,

Ka = |A|, Γ(i) = {(sl, al) : sl ∈ S ∪ ∅, al ∈ A ∪ ∅, 1 ≤ l ≤ |Γ(i)|
}

, ∅ indicate that the

corresponding subject or action class label is not present and M = |Λ| represents the

number of videos. The video-level annotation simply indicates that the paired concepts

Γ(i) can occur anywhere in the video and at multiple locations.

Assume that Ni spatio-temporal tracks are extracted from each video i where each

track j is represented as an aggregation of multiple local features, x
(i)
j . The spatio-temporal

tracks could be face tracks, 3-D object proposals or action proposals (see section 8.4.1 for

more details). We associate the jth track in video i to an infinite binary latent coefficient

vector z
(i)
j [259, 264]. Each video i is represented by a bag of spatio-temporal tracks

X(i) = {x(i)
j , j = 1, . . . , Ni}. Similarly, Z(i) = {z(i)

j , j = 1, . . . , Ni}.

8.3.2 Motivation

Our objective is to learn (a) a mapping between each of the Ni tracks in video i

and the labels in Γ(i) and (b) the appearance model for each label identity such that the

tracks from new test videos can be classified. To achieve these objectives, it is important

for any model to discover the latent factors that can explain similar tracks across a set of

videos with a particular label. In general, the number of latent factors are not known apriori

and must be inferred from the data. In Bayesian framework, IBP treats this number as a

random variable that can grow with new observations, thus letting the model to effectively

explain the unbounded complexity in the data. Specifically, IBP defines a prior distribution

over an equivalence class of binary matrices of bounded rows (indicating spatio-temporal
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tracks) and infinite columns (indicating latent coefficients). To achieve our goals, we

build on IBP and introduce the WSC-SIIBP model which can effectively learn the latent

factors corresponding to each heterogeneous concept and utilize prior location constraints

to reduce the ambiguity in learning through the knowledge of other latent coefficients.

8.3.3 Indian Buffet Process (IBP)

The spatio-temporal tracks in the videos Λ are obtained from an underlying genera-

tive process. Specifically, we consider a stacked IBP model [259] as described below.

• For each latent factor k ∈ 1 . . .∞,

1. Draw an appearance distribution with mean ak ∼ N (0, σ2
AI)

• For each video i ∈ 1 . . .M ,

1. Draw a sequence of i.i.d. random variables, v(i)
1 , v

(i)
2 · · · ∼ Beta(α, 1)

2. Construct the prior on the latent factors, π(i)
k =

∏k
t=1 v

(i)
t , ∀k ∈ 1 . . .∞,

3. For jth subject track in ith video, where j ∈ 1 . . . Ni,

(a) Sample state of each latent factor, z(i)
jk ∼ Bern(π

(i)
k ),

(b) Sample track appearance, x
(i)
j ∼ N

(
z

(i)
j A, σ2

nI
)

where α is the prior controlling the sparsity of latent factors, σ2
A and σ2

n are the prior

appearance and noise variance shared across all factors, respectively. Each ak forms kth

row of A and the value of the latent coefficient z(i)
jk indicates whether data x

(i)
j contains the

kth latent factor or not. In the above model, we have used stick-breaking construction [288]

to generate the π(i)
k s.

Posterior: Now, we describe how the posterior is obtained for the above graphical
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model. Let Y =
{
π(1) . . . π(M),Z(1) . . .Z(M),A

}
and Θ = {α, σ2

A, σ
2
n} denote hidden

variables and prior parameters, respectively. X denotes the concatenation of all the spatio-

temporal tracks in all M videos,
{
X(1) . . .X(M)

}
. Given prior distribution Ψ(Y|Θ) and

likelihood function p(x(i)
j |Y,Θ), the posterior probability is given by,

p(Y|X,Θ) =
Ψ(Y|Θ)

∏M
i=1

∏Ni
j=1 p(X

(i)
j |Y,Θ)

p(X|Θ)

Ψ(Y|Θ) =
∞∏

k=1

(
M∏

i=1

p(π
(i)
k |α)

Ni∏

j=1

p(z
(i)
jk |π

(i)
k )

)
p(ak.|σ2

A).

(8.1)

where p(X|Θ) is the marginal likelihood. For simplicity, we denote p(Y|X,Θ) as q(Y).

Apart from the significance of inferring Z(i) for identifying track-level labels, inferring prior

π
(i)
k for each video helps to identify video-level labels, while the inference of appearance

model A will be used to classify new test samples (see section 8.3.6). Thus, learning in

our model requires computing the full posterior distribution over Y.

Regularized posterior: We note that it is difficult to infer the regularized posterior

distributions using (8.1). However, it is known [289, 290] that the posterior distribution in

(8.1) can also be obtained as the solution q(Y) of the following optimization problem,

minimize
q(Y)

KL (q(Y)||Ψ(Y|Θ))−
M∑

i=1

Ni∑

j=1

∫
log p(x

(i)
j |Y,Θ)q(Y)dY

subject to q(Y) ∈ Pprob

(8.2)

where KL(.) denotes the Kullback-Liebler divergence and Pprob is the probability simplex.

As we will see later, this procedure enables us to learn the posterior distribution using a

constrained optimization framework.
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8.3.4 Integrative IBP

Our objective is to model heterogeneous concepts (such as subjects and actions)

using a graphical model. However, the IBP model described above can not handle multiple

concepts because it is highly unlikely that the subject and the action features can be

explained by the same statistical model. Hence, we propose an extension of stacked IBP

for heterogeneous concepts, where different concept types are modeled using different

appearance models.

Let the subject and action types corresponding to the spatio-temporal track j in video

i be denoted by xs(i)
j and xa(i)

j , respectively, with each having different dimensions De

(e ∈ {s, a})1. Unlike the IBP model, Xs(i)
j and Xa(i)

j are now represented using two

different gaussian noise models N (z
(i)
j As, σ2

nsI) and N (z
(i)
j Aa, σ2

naI) respectively where

σ2
ne denotes prior noise variance and Ae are K ×De matrices (K→∞). The mean of the

subject and action appearance models for each latent factor are also sampled independently

from gaussian distributions of different variances σ2
Ae. The new posterior probability is

given by,

q̃(Y) =
Ψ(Y|Θ)

∏M
i=1

∏Ni
j=1

∏
e∈{s,a} p(x

e(i)
j |Z,Ae,Θ)

p(X|Θ)

Ψ(Y|Θ) =
∞∏

k=1




M∏

i=1

p(π
(i)
k |α)

Ni∏

j=1

p(z
(i)
jk |π

(i)
k )


∏

e∈{s,a}

p(aek|σ2
AeI).

(8.3)

1We often use e as a replacement for s and a
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8.3.5 Integrative IBP with Constraints

Although the graphical model described above is capable of handling heterogeneous

features, the location constraints inferred from the weak labels still need to be incorporated

into the graphical model. As motivated in section 8.1, the concepts ‘head-on collision’ and

‘cars’ should spatio-temporally co-occur at least once and there should be at least one car

in the full video. Imposing these location constraints in the inference algorithm can lead to

more accurate parameter estimation of the graphical model and faster convergence of the

inference procedure. These constraints can be generalized as follows,

1. Every label tuple in Γ(i), is associated with at least one spatio-temporal track (i.e.,

the event occurs in the video).

2. Spatio-temporal tracks should be assigned a label only from the list of weak labels

assigned to the video. Concepts present in the video but not in the label will be

subsumed in the background models.

Ideally, in the case of noiseless labels, these constraints should be strictly followed.

However, we assume that real-world labels could be noisy and noise is independent of

the videos. Hence, we allow constraints to be violated but penalize the violations using

additional slack variables.

We associate the first Ks and the following Ka latent factors (the rows of A) to

the subject and action classes in S and A respectively. The inferred values of their

corresponding latent coefficients in z
(i)
j are used to determine the presence/absence of the

associated concept in a particular spatio-temporal track. The remaining unbounded number

of latent factors are used to explain away the background tracks from unknown action and
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subject classes in a video. With these assignments, we enforce the following constraints

on latent factors which are sufficient to satisfy the conditions mentioned earlier.

To satisfy 1, we introduce the following constraints, ∀i ∈ 1 . . .M, and ∀j ∈ 1 . . . Ni,

Ni∑

j=1

z
(i)
js z

(i)
ja ≥ 1− ξ(i)

(s,a), ∀(s, a) ∈ Γ(i), (8.4)

Ni∑

j=1

z
(i)
js ≥ 1− ξ(i)

(s,∅), ∀(s, ∅) ∈ Γ(i), (8.5)

Ni∑

j=1

z
(i)
ja ≥ 1− ξ(i)

(∅,a), ∀(∅, a) ∈ Γ(i), (8.6)

where ξ is the slack variable, zjs and zja are the latent factor coefficients corresponding to

subject class s and action class a respectively.

To satisfy 2, we use the following constraints, ∀i ∈ 1 . . .M and ∀j ∈ 1 . . . Ni,

z
(i)
js = 0, if @(s, ∅) ∈ Γ(i) and @(s, a) ∈ Γ(i), ∀a ∈ A, (8.7)

z
(i)
ja = 0, if @(∅, a) ∈ Γ(i) and @(s, a) ∈ Γ(i),∀s ∈ S. (8.8)

The constraints defined in (8.4)-(8.8) have been used in the context of discriminative

clustering [263,280]. However, our model is the first to use these constraints in a Bayesian

setup. In their simplest form, they can be enforced using the point estimate of z e.g.,

MAP estimation. However, Z(i) is defined over the entire probability space. To enforce

the above constraints in a Bayesian framework, we need to account for the uncertainty

in Z(i). Following [291, 292], we define effective constraints as an expectation of the

original constraints in (8.4)-(8.8), where the expectation is computed w.r.t. the posterior
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distribution in (8.3)

∀i ∈ 1 . . .M,

Ni∑

j=1

Eq̃
[
z

(i)
js z

(i)
ja

]
≥ 1− ξ(i)

(s,a), ∀(s, a) ∈ Γ(i) (8.9)

Ni∑

j=1

Eq̃
[
z

(i)
js

]
≥ 1− ξ(i)

(s,∅), ∀(s, ∅) ∈ Γ(i) (8.10)

Ni∑

j=1

Eq̃
[
z

(i)
ja

]
≥ 1− ξ(i)

(∅,a), ∀(∅, a) ∈ Γ(i) (8.11)

∀i ∈ 1 . . .M and ∀j ∈ 1 . . . Ni,

Eq̃
[
z

(i)
js

]
= 0, if @(s, ∅) ∈ Γ(i) and @(s, a) ∈ Γ(i),∀a ∈ A (8.12)

Eq̃
[
z

(i)
ja

]
= 0, if @(∅, a) ∈ Γ(i) and @(s, a) ∈ Γ(i),∀s ∈ S (8.13)

The proposed graphical model, incorporating heterogeneous concepts as well as the

location constraints provided by the weak labels, is shown in Figure 8.2.

We restrict the search space for the posterior distribution in Equation (8.3) by using

the expectation constraints in (8.9)-(8.13). In order to obtain the regularized posterior

distribution of the proposed model, we solve the following optimization problem under

these expectation constraints,

minimize
q̃(Y),ξ(i)

KL
(
q̃(Y)||Ψ̃(Y|Θ)

)
−

M∑

i=1

Ni∑

j=1

∫ 
 ∑

e∈{s,a}

log p
(
Xe(i)

j |Y,Θ
)

 q̃(Y)dY + C

M∑

i=1

∑

J∈Γ(i)

ξ
(i)
J

subject to q̃(Y) ∈ Pprob

8.3.6 Learning and Inference

Note that the variational inference for true posterior q̃(Y) (in Equation (8.3)) is

intractable over the general space of probability functions. To make our problem easier to

172



C

As Aa

�a�s

z

Xs Xa
�na

L
⇡

11 1

↵

Ni

M

M: Total number of videos                           
                                  : Hyperparameters 
                                  : Appearance model 

For each video                    , 
                  : Video prior 
                   : Weak input labels for kth concept 

For each track                    , 
                                   : Latent coefficient 
                              : Feature vector

↵,�a,�s,�na,�ns

Aa,As ⇠ N(0,�2
⇤I)

i 2 1, . . . , M

⇡(i) ⇠ Stick(↵)

L
(i)
k 2 {0, 1}

j 2 1, . . . , Ni

x
(i)
j⇤ ⇠ N

⇣
z
(i)
j⇤A⇤,�

2
n⇤I
⌘zjk ⇠ Bern

⇣
⇡

(i)
k L

(i)
k |z(i)

j , c
⌘

�ns

Figure 8.2: WSC-SIIBP: Graphical model using two heterogeneous concepts, subjects and
actions. Each video (described by video-level labels L) is independently modeled using
latent factor prior π and contains Ni tracks. Each track is represented using subject and
action features Xs and Xa respectively, which are modeled using Gaussian appearance
models As and Aa. z are the binary latent variables indicating the presence or absence of
the latent factors in each track. c denotes the set of location constraints extracted from the
video labels.

solve, we establish truncated mean-field variational approximation [288] to the desired

posterior q̃(Y), such that the search space Pprob is constrained by the following tractable

parametrised family of distributions,

w̃(Y) =
M∏

i=1

(
Kmax∏

k=1

p(v
(i)
k |τ

(i)
k1 , τ

(i)
k2 )

Ni∏

j=1

p(z
(i)
jk |ν

(i)
jk )

)
Kmax∏

k=1

∏

e∈{s,a}

p(aek|Φe
k, σ

2
keI). (8.14)

where p(v(i)
k |τ

(i)
k1 , τ

(i)
k2 ) = Beta(v

(i)
k ; τ

(i)
k1 , τ

(i)
k2 ), p(z(i)

jk |ν
(i)
jk ) = Bern(z

(i)
jk ; ν

(i)
jk ) and p(aek|Φe

k, σ
2
keI) =

N (aek; Φ
e
k, σ

2
keI). In Equation (8.14), we note that all the latent variables are modeled

independently of all other variables, hence simplifying the inference procedure. The

173



constraint in equation (8.9)-(8.13) simplifies to,

∀i ∈ 1 . . .M,

Ni∑

j=1

ν
(i)
js ν

(i)
ja ≥ 1− ξ(i)

(s,a), ∀(s, a) ∈ Γ(i) (8.15)

Ni∑

j=1

ν
(i)
js ≥ 1− ξ(i)

(s,∅), ∀(s, ∅) ∈ Γ(i) (8.16)

Ni∑

j=1

ν
(i)
ja ≥ 1− ξ(i)

(∅,a), ∀(∅, a) ∈ Γ(i) (8.17)

∀i ∈ 1 . . .M and ∀j ∈ 1 . . . Ni,

ν
(i)
js = 0, if @(s, ∅) ∈ Γ(i) and (s, a) ∈ Γ(i),∀a ∈ A (8.18)

ν
(i)
ja = 0, if @(∅, a) ∈ Γ(i) and (s, a) ∈ Γ(i),∀s ∈ S (8.19)

The truncated stick breaking process of π(i)
k ’s is bounded at Kmax, wherein πk = 0 for

k > KmaxgKs +Ka +Kbg. Kbg indicates the number of latent factors chosen to explain

background tracks.

The optimization problem in Equation (8.14) is solved using the posterior distribution

from Equation (8.14). We obtain the parameters (see appendix for details) σ2
ke,Φ

e
k,

τ
(i)
ke and ν(i)

jk for the optimal posterior distribution q̃(Y) using iterative update rules as

summarized in Algorithm 7. We note that this algorithm is similar to other IBP learning

algorithms [259,288]. The complexity of Algorithm 7 isO(MNmaxDmaxKmax), the same

as [259]. The mean of binary latent coefficients zjk, denoted by νjk, has an update rule

which will lead to several interesting observations.

ν
(i)
jk =

L
(i)
k

1 + e−ζ
(i)
jk

. (8.20)
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ζ
(i)
jk =

k∑

j=1

(
Ψ(τ

(i)
j1 )−Ψ(τ

(i)
j1 + τ

(i)
j2 )
)
− Lk −

∑

e∈{s,a}

1

2σ2
ne

(
Deσ2

ke + Φe
kΦ

eT
k

)

+
∑

e∈{s,a}

1

σ2
ne

Φe
k


x

(i)
j −

∑

l 6=k
ν

(i)
jl Φe

l



T

+ C
∑

J∈Γ(i)

J=(k,a)

I{∑Ni
l=1 ν

(i)
lk ν

(i)
la <1

}ν(i)
ja

︸ ︷︷ ︸
(i)

+ C

(ii)︷ ︸︸ ︷∑

J∈Γ(i)

J=(s,k)

I{∑Ni
l=1 ν

(i)
ls ν

(i)
lk <1

}ν(i)
js +C

(iii)︷ ︸︸ ︷
I{∑Ni

l=1 ν
(i)
lk <1,k≤Ka+Ks

} .

(8.21)

where Ψ(.) is the digamma function, I is an indicator function, L(i)
k is an indicator variable

and Lk is a lower bound for Ew̃[log(1−∏k
j=1 v

(i))]. The L(i)
k indicates whether a concept

(action/subject) k is part of the ith video label set Γ(i) or not. If L(i)
k = 0, all the correspond-

ing binary latent coefficients z(i)
jk , j = {1, . . . , Ni}, are forced to 0, which is equivalent to

enforcing the constraints in Equation (8.7) and (8.8). Note that the value of ν(i)
jk increases

with ζ(i)
jk . The terms (i)-(iii) in the update rule for ζ(i)

jk (Equation (8.36)), which are obtained

due to the location constraints in Equation (8.4)-(8.6), act as the coupling terms between

ν
(i)
je ’s. For example, for any action concept, term (ii) suggests that if the location constraints

are not satisfied, better localization of all the coupled subject concepts (high value of ν(i)
js )

will drive up the value of ζ(i)
ja . This implies that the strong localization of one concept can

lead to better localization of other concepts.

The hyperparameter σ2
ne and σ2

Ae can be set apriori or estimated from data. Similar to

the maximization step of EM algorithm, their empirical estimation can easily be obtained

by maximizing the expected log-likelihood.

Given the input features Xs and Xa, the inferred latent coefficients ν(i)
je estimate

presence/absence of associated classes in a video. One can classify each spatio-temporal
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Algorithm 7 Learning Algorithm of WSC-SIIBP
1: Input: data Λ = {(i,Γ(i))}i∈1...M , constant α,Kmax, C

2: Output: distribution p(v), p(Z), p(As), p(Aa) and hyper-parameters σ2
ns, σ

2
na, σ

2
As and σ2

Aa

3: Initialize: τ (i)
k1 = α, τ

(i)
k2 = 1, ν

(i)
jk = 0.5,Φs

k = Φa
k = 0, σ2

ks = σ2
ka = σ2

ns = σ2
na = σ2

As =

σ2
Aa = 1

4: repeat
5: repeat
6: update σ2

ke and Φe
k. , ∀1 ≤ k ≤ Kmax, e ∈ {s, a};

7: update τ (i)
k1 and τ (i)

k2 , ∀1 ≤ k ≤ Kmax and i ∈ 1 to M;
8: update ν(i)

jk using Equation (8.35) and (8.36), ∀1 ≤ k ≤ Kmax, 1 ≤ j ≤ Ni

and i ∈ 1 to M;
9: until T iterations or ‖L(t−1)−L(t)‖

L(t)
≤ 1e−3

10: update the hyperparameters σ2
As, σ

2
Aa, σ

2
ns, σ

2
na

11: until T’ iterations or ‖L(t′−1)−L(t′)‖
L(t′)

≤ 1e−4

track by estimating the track-level labels using L∗j = arg maxk νjk. Here the maximiza-

tion is over the latent coefficients corresponding to either the subject or action concepts

depending upon the label which we are interested in extracting. For the concept local-

ization task in a video with label pair (s, a), the best track in the video is selected using

j∗ = arg maxj νjs × νja.

Test Inference: Although the above formulation is proposed for concept classifica-

tion and localization in a given set of videos (transductive setting), the same algorithm

can also be applied to unseen test videos. The latent coefficients for the tracks of test

videos can be learned alongside the training data except that the parameters σ2
ke, Φe

k., σ2
Ae

and σ2
ne are updated only using training data. In the case of free annotation, i.e., absence

of labels for test video i, we run the proposed approach by setting L(i)
k = 1 in eq (8.35),

indicating that the tracks in a video i can belong to any of the classes in S or A (i.e., no

constraints as defined by (8.4)-(8.8) are enforced).
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8.4 Experiments

In this section, we present an evaluation of WSC-SIIBP on two real-world databases:

Casablanca movie and A2D dataset, which represent typical ‘in-the-wild’ videos with

weak labels on heterogeneous concepts.

8.4.1 Datasets

Casablanca dataset: This dataset, introduced in [263], has 19 persons (movie

actors) and three action classes (sitdown, walking, background). The heterogeneous

concepts used in this dataset are persons and actions. The Casablanca movie is divided into

shorter segments of duration either 60 or 120 seconds. We manually annotate all the tracks

in each video segment which may contain multiple persons and actions. Given a video

segment and the corresponding video-level labels (extracted from all ground truth track

labels), our algorithm maps each of these labels to one or more tracks in that segment, i.e.,

converts the weak labels to strong labels. Our main objective of evaluation on this dataset

is to compare the performance of various algorithms in classifying tracks from videos of

varying length.

For our setting, we consider face and action as the two heterogeneous concepts and

thus it is required to extract the face and the corresponding action track features. We

extract 1094 facial tracks from the full 102 minute Casablanca video. The face tracks

are extracted by running the multi-view face detector from [293] in every frame and

associating detections across frames using point tracks [294]. We follow [295] to generate

the face track feature representations: Dense rootSIFT features are extracted for each face
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in the track followed by PCA and video-level Fisher vector encoding. The action tracks

corresponding to 1094 facial tracks are obtained by extrapolating the face bounding-boxes

using linear transformation [263]. For action features, we compute Fisher vector encoding

on dense trajectories [296] extracted from each action track.

On an average, each 60 sec. segment contains 11 face-action tracks and 4 face-action

annotations while each 120 sec. video contains 21 tracks and 6 annotations. Note that,

our experimental setup is more difficult compared to the experimental setting considered

in [263]. In [263], the Casablanca movie is divided into numerous bags based on the

movie script, where on average each segment is of duration 31 sec. containing only 6.27

face-action tracks.

A2D dataset: This dataset [269] contains 3782 YouTube videos (on average 7-10

sec. long) covering seven objects (bird, car etc.) performing one of nine actions (fly,

jump etc.). The heterogeneous concepts considered are objects and actions. This dataset

provides the bounding box annotations for every video label pair of object and action.

Using the A2D dataset, we aim to analyze the track localization performance on weakly

labeled videos as well as the track classification accuracy on a held-out test dataset.

We use the method proposed in [297] to generate spatio-temporal object track

proposals. For computational purpose, we consider only 10 tracks per video and use the

Imagenet pretrained VGG CNN-M network [298] to generate object feature representation.

We extract convolutional layer conv-4 and conv-5 features for each track image followed

by PCA and video-level Fisher vector encoding. In this dataset, the corresponding action

tracks are kept similar to the object tracks (proposals) and the action features are extracted

using the same approach as used for the Casablanca dataset.
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8.4.2 Baselines

We compare WSC-SIIBP to several state-of-the-art approaches using the same

features.

1. WS-DC [263]: This approach uses similar weak constraints as in (8.4)-(8.6), but in

a discriminative setup where the constraints are incorporated in a biconvex optimiza-

tion framework.

2. WS-SIBP [259]: This is a weakly supervised stacked IBP model which does not

consider integrative framework for heterogeneous data and only enforces constraints

equivalent to (8.7)-(8.8). For each spatio-temporal track, the features extracted for

heterogeneous concepts are concatenated while using this approach.

3. WS-S / WS-A: This is similar to WS-SIBP except that instead of concatenating

features from multiple concepts they are treated independently in two different IBP.

WS-S(WS-A) is used to model only the person/object(action) features.

4. WS-SIIBP: This model integrates WS-SIBP with heterogeneous concepts.

5. WSC-SIBP: This model is similar to WS-SIBP, but unlike WS-SIBP, it additionally

enforces the location constraints obtained from weak labels.

Implementation details: For each dataset, the Fisher encoded features are PCA

reduced to an appropriate dimension, De. We select the best feature length and other

algorithm specific hyper-parameters for each algorithm using cross-validation on a small

set of input videos. For the IBP based models, the cross-validation range for hyper-

parameters are Kmax := Ka + Ks : 10 : Ka + Ks + 100, α := 3Kmax : 10 : 4Kmax and

C := 0 : 0.5 : 5. For all IBP based models, the parameters De, α, Kmax and C are set
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as 32, 100, 30 and 0.5 respectively for the Casablanca dataset and as 128, 160, 50 and 5

respectively for the A2D dataset. For WS-DC, De is set as 1024.

8.4.3 Results on Casablanca

The track-level classification performance is compared in Figure 8.3. From Figures

8.3(c) and 8.3(d), it can be seen that WSC-SIIBP significantly outperforms other methods

for person and action classification in almost all of the scenarios. For instance, in the 120

second video segments, person classification improves by 4% (relative improvement is 7%)

compared to the most competitive approach WS-SIIBP. We also compare pairwise label

accuracy to gain insight into the importance of the constraints in eq (8.4)-(8.6). For any

given track with non-background person and action label, the classification is assumed to

be correct only if both person and action labels are correctly assigned. Even in this scenario

WSC-SIIBP performs 8.1% better (24% relative improvement) than the most competitive

baseline. Since we combine the heterogeneous concepts along with location constraints in

an integrated framework, WSC-SIIBP outperforms all other baselines. The weak results

of WS-DC in pairwise classification, though surprising, can be attributed to their action

classification results which are significantly biased towards one particular action ‘sitdown’

(figure 8.3(d), note that WS-DC performs very poorly in ‘walking’ classification). Indeed,

it should be noted that nearly 40% and 89% of person and action labels respectively

belong to the background class. Thus, for fair evaluation of both background and non-

background classes, we also plot the recall of background class against the recall of

nonbackground classes for person and action classification in Figure 8.3(a), 8.3(b), 8.3(e),
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8.3(f). These curves were obtained by simultaneously computing recall for background and

non-background classes over a range of threshold values on score, ν. The mean average

precision (mAP) of WSC-SIIBP along with all other baselines are plotted in Figure 8.3(g)

and 8.3(h). The mAP values also clearly demonstrate the effectiveness of the proposed

approach. From the performance of WS-SIIBP (integrative concepts, no constraints) and

WSC-SIBP (no integrative concepts, constraints) (Figure 8.3(c) and 8.3(d)), it is clear that

the improvement in performance in the WSC-SIIBP can be attributed to both addition of

integrative concepts and the location constraints. Finally, the person class confusion matrix

is shown in Figure 8.4. It exhibits that our approach learns each person appearance model

with high accuracy and it can learn from as less as 15 weakly annotated samples.

Effect of constraints (8.7), (8.8): We note that, regardless of other differences,

every weakly supervised IBP model considered here enforces constraints (8.7), (8.8).

However, these constraints are not part of the original WS-DC. To make a fair comparison

between WS-DC and WSC-SIIBP, we analyze the effect of these constraints in Figure

8.3(i). Although, these additional constraints improve WS-DC performance, they do not

supersede the performance of WSC-SIIBP. Further we observe that these constraints have

improved the performance of all the weakly supervised IBP models.

8.4.4 Results on A2D

First, we evaluate localization performance on the full A2D dataset. We experiment

with 37,820 tracks extracted from 3,782 videos with around 5000 weak labels. For every

given object-action label pair our algorithm selects the best track from the corresponding
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Figure 8.3: Comparison of results for the Casablanca movie dataset. (a) Classification
accuracy for 60 sec. segments. (b) Recall for background vs non-background class (60 sec.,
person). (c) Recall for background vs non-background (60 sec., action). (d) Classification
accuracy for 120 sec. segments. (e) Recall for background vs non-background class (120
sec., person). (f) Recall for background vs non-background (120 sec., action). (g),(h)
Mean Average Precision for 60, 120 sec. segments. (i) Classification accuracy obtained
with and without constraints (8.7) and (8.8)
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Figure 8.4: Person class confusion matrix. BG denotes the background class which can
represent any unknown face.

video using the approach outlined in section 8.3.6. The localization accuracy is measured by

calculating the average IoU (Intersection over Union) of the selected track (3-D bounding

box) with the ground truth bounding box. The class-wise IoU accuracy and the mean

IoU accuracy for all classes are tabulated in Table 8.1 and 8.2 respectively. In this task

WSC-SIIBP also leads to a relative improvement of 9% above the next best baseline. We

also evaluate how accurately the extracted object proposals match with the ground truth

bounding boxes to estimate an upper bound on the localization accuracy (referred as Upper

Bound in Table 8.1, 8.2). In this case, the track maximizing the average IoU with the

ground truth annotation is selected and the corresponding IoU is reported. We plot the

correct localization accuracy with varying IoU thresholds in Figure 8.5(a), which also

shows the effectiveness of the proposed approach. Figure 8.5(b), 8.5(c), 8.6 shows some

qualitative track localization results using the proposed approach on the selected frame.

Test Inference: We evaluate the classification performance on held-out test samples

using the same train/test partition as in [269]. We consider two setups for the evaluation,
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(a) using video-level labels for the test samples and (b) free annotation where no test

video labels are provided. The proposed approach is compared with GT-SVM, which is a

fully supervised linear SVM that uses ground truth bounding boxes and their correspond-

ing strong labels during training. The results are tabulated in Table 8.3. Note that the

performance of WSC-SIIBP is close to that of the fully supervised setup.

IoU Threshold
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o
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Lazlo
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Baby walking Human

(c)

Figure 8.5: (a) Correct localization accuracy at various IOU thresholds. (b) and (c)
Qualitative results: green boxes show the concept localization using our proposed approach.
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adult baby ball bird car cat dog
WSC-SIIBP 28.4 43.6 9.8 37.8 37.4 40.8 42.0
Upper Bound 39.9 53.9 16.4 48.2 48.7 52.8 51.4

climb crawl eat fly jump roll run walk
WSC-SIIBP 37.5 47.6 46.1 24.5 29.4 50.9 25.6 37.2
Upper Bound 50.0 59.2 57.2 33.9 41.0 59.1 38.1 47.9

Table 8.1: Per class mean IoU on A2D dataset.
Random WS-P WS-A WS-SIBP WS-SIIBP WSC-SIBP WSC-SIIBP Upper Bound

IoU 25.5 29.7 30.43 31.1 31.55 31.69 34.38 45.05

Table 8.2: Average IoU comparison with other approaches on A2D dataset.

WSC-SIIBP GT-SVM
Setup Obj Act Obj Act
Using video Labels 94.77 90.68 98.20 94.92
Free Annotation 76.62 64.77 85.18 73.26

Table 8.3: mAP classification test accuracy on A2D dataset.

8.5 Conclusion

We developed a Bayesian non-parametric approach that integrates the Indian Buffet

Process with heterogeneous concepts and spatio-temporal location constraints arising

from weak labels. We report experimental results on two recent datasets containing

heterogeneous concepts such as persons, objects and actions and show that our approach

outperforms the best state of the art method.
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Appendix 8.A Derivation of Posterior Update Equations

Now, note that the constraints in (8.15)-(8.17) can be rewritten as hinge loss function

and added as part of the objective function in equation (8.14). Hence the final formulation

is given by,

min
ν(i),τ (i),
Φ∗k,σ

2
k∗

KL
(
w̃(Y)||Ψ̃(Y|Θ)

)
−

M∑

i=1
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∫ 
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log p
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s.t. ∀i ∈ 1 . . .M, and ∀j ∈ 1 . . . Ni, (8.18), (8.19)

(8.22)

The objective function in eq. (8.22) can be rewritten as,

L(ν(i), τ (i),Φ∗k, σ
2
k∗) = L −

M∑

i=1

Ni∑

j=1

(
Lij − C

Ka+Ks∑

k=1

H
(i)
jk

)
(8.23)

where L represent KL-divergence term, Lij denote the likelihood term and Hjk is the term

corresponding to hinge loss function for ν(i)
jk . Expanding Lij , we get,

Lij , Ew̃
[
log p(Xs(i)

j |Y,Θ) + log p(Xa(i)
j |Y,Θ)

]
(8.24)

= −
xs(i)

j

T
xs(i)

j − 2Ew̃[z
(i)
j. As]xs(i)

j + Ew̃[z
(i)
j. Usz

(i)
j.

T
]

2σ2
ns

− Ds log(2πσ2
ns)

2

−
xa(i)

j

T
xa(i)

j − 2Ew̃[z
(i)
j. Aa]xa(i)

j + Ew̃[z
(i)
j. Uaz

(i)
j.

T
]

2σ2
na

− Da log(2πσ2
na)

2
(8.25)
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where U∗ = Ew̃[A∗A∗T ] is Kmax × Kmax matrix, U∗jk = Φ∗j.Φ
∗T
k.; Ew̃[z

(i)
j. A∗]x∗

(i)
j =

(∑
k ν

(i)
jk Φ∗k.

)
x∗

(i)
j ; and

Ew̃[z(i)
n. U

∗z(i)
n.

T
] = 2

∑

j<k

ν
(i)
nj ν

(i)
nkU

∗
jk +

∑

k

ν
(i)
nk

(
D∗σ2

k∗ + Φ∗k.Φ
∗T
k.

)
(8.26)

For KL-divergence term, we get KL
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 (8.29)

where Ψ(.) is the digamma function. As shown for original IBP in [288], the term

Ew̃[log(1−∏k
j=1 v

(i))] is approximated by its lower bound,

Ew̃[log(1−
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= Lk
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where the variational parameter qk. = (qk1 . . . qkk) is k-point probability mass function and

H(qk.) denotes entropy of qk.. The tightest upper bound is obtained by setting,

qkm =
1

Zk
exp

(
Ψ(τ

(i)
m2) +

m−1∑

n=1

Ψ(τ
(i)
n1 )−
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n2 )

)

where Zk is the normalization factor to enable qk. to be a distribution. On replacing

the term Ew̃[log(1 −∏k
j=1 v

(i)
j )] with its lower bound Lk, we have an upper bound for

KL
(
w̃(Y)||Ψ̃(Y|Θ)

)
.

On substituting equation (8.24)-(8.30) in (8.23), the optimum value for parameters

of mean-field variational approximate posterior distribution (8.14) are obtained by setting

the derivative of (8.23) w.r.t. those parameters to zero and simultaneously solving for

all parameters (using KKT conditions). We derive the following equations which are

iteratively solved,
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Above equations are somewhat similar to those given by variational approximation on

IBP [288]. The update equation for ν differs completely and it is given by,

ν
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L
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1 + e−ζ
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(8.35)
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where L(i)
k and I is an indicator variable. L(i)

k indicates whether an entity (action / subject)

k is part of ith video label set Γ(i) or not. This inturn enforces ν = 0 for all ν satisfying eq.

(8.18) and eq. (8.19).

The hyperparameter σ2
n∗ and σ2

A∗ can be set apriori or estimated from the data. The

empirical estimation can be easily derived by maximizing the expected log-likelihood,

which is similar to maximization step of EM algorithm. The closed form solution is given

by,
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{ball, rolling},{dog, running} {human}, {bird, climbing}

{baby, walking}, {human} {dog, walking}, {human, walking}, {car}

{bird, eating},{cat}

Figure 8.6: Qualitative results of weakly supervised concept localization on A2D dataset
using WSC-SIIBP algorithm. Tags are weak paired label input for the video. The red
boxes represents generated proposals, green boxes represents the selected proposals using
WSC-SIIBP algorithm and magenta boxes represents the groundtruth annotation. In case
of overlapping boxes (proposals), only the last plotted rectangular box is visible. Boxes
were plotted in the following order: red (first), magenta, green (last).
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Part IV

Inverse Approach: Learning Priors
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Chapter 9: Density Estimation using GAN

9.1 Introduction

In this chapter, we consider completely reverse approach of learning data prior from

a given trained model. Generative adversarial networks are trained to generate data which

is indistinguishable from the input training samples. Such adversarially trained networks

are known to generate high quality samples without the need for explicitly specifying the

likelihood function. Among the generative models, GANs are widely popular due to it

simpler training and sampling procedure.

On the other hand, models such as RBMs [19] and DBMs [20], which are trained

by explicitly maximizing the data likelihood, suffers from complex training and sampling

procedure due to the use of mean field inference and MCMC. The variational autoencoder,

which simultaneously learns a generative model and approximate inference, produces

blurry samples and it is limited in its application to low-dimensional deep representation.

Ideally, a good generative model is one which generates perceptually high quality samples

while employing simpler training, exact and efficient sampling, exact and efficient inference

of latent variables and exact log-likelihood computation.

Recently, there has been a renewed interest in developing highly efficient generative

models. [299] proposed a new model using a set of real-valued non-volume preserving (real
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NVP) transformations which are easily invertible as well as learnable. Subsequently, [300]

and [301] independently developed adversarial training procedure for real NVPs in which

the generator of GAN is replaced by real NVP transformations. [301] further demonstrated

hybrid training procedure of real NVPs using GAN and MLE objective. The overall

performance is shown to be better than the stand-alone training procedure. In summary,

these new models closes high-quality sample generation gap with GANs while at the same

time it can exactly evaluate the log-likelihood scores.

In this chapter, we develop a fast and efficient procedure to evaluate the log-likelihood

of the generated and test data samples using GAN. We investigate this by constructing the

jacobian of the generator transformation function. We demonstrate that this approximate

density function can be employed for outlier detection and data augmentation for training

a classifier.

9.2 Log-Likelihood Evaluation in Generative Models

GANs are a class of generative models consisting of a generator and discriminator

network. The generator network Gθ : Rd → RD samples low-dimensional z ∈ Rd from a

fixed tractable distribution pz(z) and transforms deterministically into higher dimensional

image sample x̂ = Gθ(z). The generated X̂ and the true X data samples are passed on to

a discriminator which learns to distinguish fake samples from the true data by minimizing

the negative cross-entropy loss. At the same time, the generator is trained to produce

realistically looking fake samples. The overall objective function optimizes a minmax

formulation.
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Now, let us consider the following setting: Given an i.i.d data X = {xi ∈ RD}Mi=1

sampled from a training (approximately) distribution pdata, we are interested in computing

the parametric density pθ(x), where θ denotes the parameters of the GAN model. Evaluat-

ing the likelihood of a sample using GAN is challenging because the density pθ is only

defined implicitly using the prior density pz(z) and generator transformation function.

However, if Gθ was an invertible transformation i.e., z = Fθ(x) where Fθ = G−1
θ then,

using change-of-variables, the parametric density can be given by,

pθ(x) = pz(z)

∣∣∣∣det
∂z

∂x

∣∣∣∣ (9.1)

= pz(Fθ(x))

∣∣∣∣det
∂Fθ(x)

∂x

∣∣∣∣ (9.2)

log pθ(x) = log pz(Fθ(x)) + log

∣∣∣∣det
∂Fθ(x)

∂x

∣∣∣∣ (9.3)

where pz(.) is typically chosen to be isotropic Gaussian and ∂Fθ(x)
∂x
∈ RD×d is the jacobian

J of function Fθ at x. We note that requiring generator function Gθ to be reversible

imposes a constraint on the dimensionality of latent variable z i.e., it requires d = D.

Furthermore, the determinant in (9.2) is non-zero only if J is a square matrix. However, in

state-of-the-art GAN models, the generator functions are not invertible and d << D. In

the following section we list simple mechanism to overcome above mentioned limitation

such that the log-likelihood (9.2) can be evaluated using GANs.
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9.3 Tractable Log-Likelihood in GAN

9.3.1 Computing determinant of non-square Jacobian matrix

The determinant of non-square matrix J cannot be computed directly. One way to

actually compute this is by replacing det|J | with
√

det(JTJ). Thus log-likelihood is now

given by,

log pθ(x) = log pz(Fθ(x)) + log
∣∣∣
√

det(JTJ)
∣∣∣ (9.4)

= log pz(Fθ(x)) + log

∣∣∣∣∣∣

√√√√
d∏

j=1

σ2
j

∣∣∣∣∣∣
(9.5)

= log pz(Fθ(x)) +
d∑

j=1

log |σj| (9.6)

where σj’s are the singular values of jacobian matrix J . The singular value decomposition

of J involving Gθ with high-dimensional latent variables z is computationally expensive

to compute. Instead QR decomposition can be used efficiently to calculate the product of

the singular value of matrix. This gives,

log pθ(x) = log pz(Fθ(x)) +
d∑

j=1

log |rii| (9.7)

where rii’s are the diagonal entries of R matrix.

9.3.2 Inferring Latent Variable z

In order to compute log-likelihood of external data sample x using (9.7), one need to

also infer the latent variable z = Fθ(x). However, in the absence of inverse transformable

generator function there are three possible ways to compute them approximately either

explicitly/implicitly.
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1. Using encoder network: Similar to variational autoencoder (VAE), we propose

including an additional encoder network Fω : RD → Rd which can be trained

alongside the generator and the discriminator networks. Such bi-directional training

mechanism was recently proposed in ALI [302] and Bi-GAN [303] work. The main

difference between the two is that Bi-GAN uses deterministic Fω network whereas

ALI uses stochastic network. [303] further proves that under certain assumption

the training procedure learns an encoder networks which is an exact inverse of the

generator network. We propose to utilize a modified Bi-GAN model wherein the

generator, encoder and discriminator networks are adversarially trained using the

following objective,

max
Θ

Ex∼pdata

[
F (DΘ(x, Fω(x))) +

1

2
F (−DΘ(Gθ(Fω(x)), Fω(x)))

]

+
1

2
Ez∼pzF (−DΘ(Gθ(z), z)) (9.8)

min
ω,θ

1

k

k∑

j=1

∣∣E
[
D̄Θ(x, Fω(x))j

]
− E

[
D̄Θ(Gθ(z), z)j

]∣∣ (9.9)

whereF denotes softplus activation function andD represents discriminator network.

The notation D̄ represent the features extracted from the penultimate layer of the

discriminator network. The discriminator network is trained using (9.8) whereas

the generator and the encoder networks are updated using (9.9). The network is

trained using similar training procedure as described in [303]. Once trained, the

log-likelihood of any new data samples is easily computed by evaluating 9.7 using

the encoder network.

2. Optimizing for z: Similar to Flow-GAN [301] approach, the above methodology

can be only applied to restricted class of GAN models. Since many state-of-the-

196



art GAN models do not utilize an encoder network, we propose another simpler

strategy to infer z. Given a trained generator network Gθ and data sample x, the

corresponding latent variable z can be inferred by optimizing a following objective,

min
z
‖Gθ(z)− x‖2

F (9.10)

(9.10) is easily solved using standard gradient descent solvers by back propagating

through the fixed generator network and updating the input z. Once z is estimated,

the log-likelihood is easily evaluated using jacobian of generator transformation and

applying,

log pθ(x) = log pz(z)−
d∑

j=1

log |rii| (9.11)

The disadvantage of this approach is that it violates prior density model pz(.) and

hence it is not clear how far (9.7) is applicable. Moreover, it seems computation-

ally expensive because for every input data sample it requires number of back-

propagation steps to infer z.

3. Using regression network: This is a simplest approach in which a new regression

network is trained independently to learn log-likelihood function using large number

of samples and their corresponding log-likelihood. The training data is sampled

from the generator network (of GAN in question) and their log-likelihood value is

computed using (9.11) and input latent noise z. Once trained, the log-likelihood eval-

uation for any new input data sample x is executed by a single forward pass through

the regression network. Given that an objective is only to compute log-likelihood,

this method do away with an exact inference of latent variables. In comparison to

previous approaches, this methodology is strikingly fast and generalizes to any GAN

197



model. The architecture of regression network is detailed in section 9.4. Figure 9.1

summarizes our methodology.
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<latexit sha1_base64="qikVV0H67KEQ3/ld1vXk/Wi2zJU=">AAAB8XicbVA9SwNBEJ2LX/H8ilraLAbBKuzZaCMGbSwjmA9MjrC32UuW7O0du3tCPAL+CBsLRWz9IfZ2/hv3khSa+GDg8d4M82aCRHBtMP52CkvLK6trxXV3Y3Nre6e0u9fQcaooq9NYxKoVEM0El6xuuBGslShGokCwZjC8yv3mPVOax/LWjBLmR6QvecgpMVa660TEDIIwexh3S2VcwROgReLNSPni0z1/BIBat/TV6cU0jZg0VBCt2x5OjJ8RZTgVbOx2Us0SQoekz9qWShIx7WeTxGN0ZJUeCmNlSxo0UX9PZCTSehQFtjNPqOe9XPzPa6cmPPMzLpPUMEmni8JUIBOj/HzU44pRI0aWEKq4zYrogChCjX2Sa5/gzZ+8SBonFQ9XvBtcrl7CFEU4gEM4Bg9OoQrXUIM6UJDwBC/w6mjn2Xlz3qetBWc2sw9/4Hz8AG5Kkuc=</latexit><latexit sha1_base64="aOYJhooU69hK+Wm9/vZ7Vsq1px0=">AAAB8XicbVA9SwNBEJ3zM55fUUubxSBYhT0bbcSgjWUE84HJEfY2e8mSvb1jd0+IR/6FjYUiWvpD7G3Ef+NekkITHww83pth3kyQCK4Nxt/OwuLS8spqYc1d39jc2i7u7NZ1nCrKajQWsWoGRDPBJasZbgRrJoqRKBCsEQwuc79xx5Tmsbwxw4T5EelJHnJKjJVu2xEx/SDM7kedYgmX8RhonnhTUjr/cM+Sty+32il+trsxTSMmDRVE65aHE+NnRBlOBRu57VSzhNAB6bGWpZJETPvZOPEIHVqli8JY2ZIGjdXfExmJtB5Gge3ME+pZLxf/81qpCU/9jMskNUzSyaIwFcjEKD8fdbli1IihJYQqbrMi2ieKUGOf5NoneLMnz5P6cdnDZe8alyoXMEEB9uEAjsCDE6jAFVShBhQkPMATPDvaeXRenNdJ64IzndmDP3DefwBf2ZRb</latexit><latexit sha1_base64="aOYJhooU69hK+Wm9/vZ7Vsq1px0=">AAAB8XicbVA9SwNBEJ3zM55fUUubxSBYhT0bbcSgjWUE84HJEfY2e8mSvb1jd0+IR/6FjYUiWvpD7G3Ef+NekkITHww83pth3kyQCK4Nxt/OwuLS8spqYc1d39jc2i7u7NZ1nCrKajQWsWoGRDPBJasZbgRrJoqRKBCsEQwuc79xx5Tmsbwxw4T5EelJHnJKjJVu2xEx/SDM7kedYgmX8RhonnhTUjr/cM+Sty+32il+trsxTSMmDRVE65aHE+NnRBlOBRu57VSzhNAB6bGWpZJETPvZOPEIHVqli8JY2ZIGjdXfExmJtB5Gge3ME+pZLxf/81qpCU/9jMskNUzSyaIwFcjEKD8fdbli1IihJYQqbrMi2ieKUGOf5NoneLMnz5P6cdnDZe8alyoXMEEB9uEAjsCDE6jAFVShBhQkPMATPDvaeXRenNdJ64IzndmDP3DefwBf2ZRb</latexit><latexit sha1_base64="+wFlmyt0GBI0p8naO5iG7Lv3YSE=">AAAB8XicbVC7TsMwFL0pr1JeBUYWiwqJqUpYYKxgYSwSfYg2qhz3prXqOJHtIJWof8HCAEKs/A0bf4PTZoCWI1k6Oude+dwTJIJr47rfTmltfWNzq7xd2dnd2z+oHh61dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5yf3OIyrNY3lvpgn6ER1JHnJGjZUe+hE14yDMnmaDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofazeeIZObPKkISxsk8aMld/b2Q00noaBXYyT6iXvVz8z+ulJrzyMy6T1KBki4/CVBATk/x8MuQKmRFTSyhT3GYlbEwVZcaWVLEleMsnr5L2Rd1z696dW2tcF3WU4QRO4Rw8uIQG3EITWsBAwjO8wpujnRfn3flYjJacYucY/sD5/AH/A5Ea</latexit>

x̂
<latexit sha1_base64="zeSaoIHHVVAk/oMC/NWuRMcnimY=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRudCMW3bisYB/QhDKZTtqhk0mYmRRLCPghblwo4taPcO/Ov3HSdqGtBwYO59zLPXOChDOlHefbKq2srq1vlDcrW9s7u3v2/kFLxakktEliHstOgBXlTNCmZprTTiIpjgJO28HopvDbYyoVi8W9niTUj/BAsJARrI3Us20vwnoYhJk3xDp7yPOeXXVqzhRombhzUr36rFw+AkCjZ395/ZikERWacKxU13US7WdYakY4zSteqmiCyQgPaNdQgSOq/GyaPEcnRumjMJbmCY2m6u+NDEdKTaLATBY51aJXiP953VSHF37GRJJqKsjsUJhypGNU1ID6TFKi+cQQTCQzWREZYomJNmVVTAnu4peXSeus5jo1986p1q9hhjIcwTGcggvnUIdbaEATCIzhCV7g1cqsZ+vNep+Nlqz5ziH8gfXxA8PKleM=</latexit><latexit sha1_base64="GpDUihjp2hcfQqJnLloL1rJObME=">AAAB+XicbVDLSsNAFL3xWeMr6tLNYBFclcSNbsSiG5cV7APaUCbTSTt0Mgkzk2IJ+RM3Ioq49SPcuxH/xknbhbYeGDiccy/3zAkSzpR23W9raXlldW29tGFvbm3v7Dp7+w0Vp5LQOol5LFsBVpQzQeuaaU5biaQ4CjhtBsPrwm+OqFQsFnd6nFA/wn3BQkawNlLXcToR1oMgzDoDrLP7PO86ZbfiToAWiTcj5csP+yJ5+rJrXeez04tJGlGhCcdKtT030X6GpWaE09zupIommAxxn7YNFTiiys8myXN0bJQeCmNpntBoov7eyHCk1DgKzGSRU817hfif1051eO5nTCSppoJMD4UpRzpGRQ2oxyQlmo8NwUQykxWRAZaYaFOWbUrw5r+8SBqnFc+teLduuXoFU5TgEI7gBDw4gyrcQA3qQGAED/AML1ZmPVqv1tt0dMma7RzAH1jvP7VZl1c=</latexit><latexit sha1_base64="GpDUihjp2hcfQqJnLloL1rJObME=">AAAB+XicbVDLSsNAFL3xWeMr6tLNYBFclcSNbsSiG5cV7APaUCbTSTt0Mgkzk2IJ+RM3Ioq49SPcuxH/xknbhbYeGDiccy/3zAkSzpR23W9raXlldW29tGFvbm3v7Dp7+w0Vp5LQOol5LFsBVpQzQeuaaU5biaQ4CjhtBsPrwm+OqFQsFnd6nFA/wn3BQkawNlLXcToR1oMgzDoDrLP7PO86ZbfiToAWiTcj5csP+yJ5+rJrXeez04tJGlGhCcdKtT030X6GpWaE09zupIommAxxn7YNFTiiys8myXN0bJQeCmNpntBoov7eyHCk1DgKzGSRU817hfif1051eO5nTCSppoJMD4UpRzpGRQ2oxyQlmo8NwUQykxWRAZaYaFOWbUrw5r+8SBqnFc+teLduuXoFU5TgEI7gBDw4gyrcQA3qQGAED/AML1ZmPVqv1tt0dMma7RzAH1jvP7VZl1c=</latexit><latexit sha1_base64="XdRqdaHPEN1perOdkTFPSWHBuDw=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRI3uiy6cVnBPqANZTKdtEMnkzBzUywhf+LGhSJu/RN3/o2TNgttPTBwOOde7pkTJIJrdN1vq7KxubW9U92t7e0fHB7ZxycdHaeKsjaNRax6AdFMcMnayFGwXqIYiQLBusH0rvC7M6Y0j+UjzhPmR2QsecgpQSMNbXsQEZwEYTaYEMye8nxo192Gu4CzTryS1KFEa2h/DUYxTSMmkQqidd9zE/QzopBTwfLaINUsIXRKxqxvqCQR0362SJ47F0YZOWGszJPoLNTfGxmJtJ5HgZkscupVrxD/8/ophjd+xmWSIpN0eShMhYOxU9TgjLhiFMXcEEIVN1kdOiGKUDRl1UwJ3uqX10nnquG5De/BrTdvyzqqcAbncAkeXEMT7qEFbaAwg2d4hTcrs16sd+tjOVqxyp1T+APr8wdUkpQW</latexit>

G✓
<latexit sha1_base64="o817bbJ/DJHlARFTbWbI3FVPTIo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoQY8VbC20oWy2k3bpZhN3J0Ip/RNePCji1b/jzX/jts1BWx8MPN6bYWZemEphyPO+ncLK6tr6RnGztLW9s7tX3j9omiTTHBs8kYluhcygFAobJEhiK9XI4lDiQzi8nvoPT6iNSNQ9jVIMYtZXIhKckZVaN90ODZBYt1zxqt4M7jLxc1KBHPVu+avTS3gWoyIumTFt30spGDNNgkuclDqZwZTxIetj21LFYjTBeHbvxD2xSs+NEm1LkTtTf0+MWWzMKA5tZ8xoYBa9qfif184ougzGQqUZoeLzRVEmXUrc6fNuT2jkJEeWMK6FvdXlA6YZJxtRyYbgL768TJpnVd+r+nfnldpVHkcRjuAYTsGHC6jBLdShARwkPMMrvDmPzovz7nzMWwtOPnMIf+B8/gDtp4/i</latexit><latexit sha1_base64="o817bbJ/DJHlARFTbWbI3FVPTIo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoQY8VbC20oWy2k3bpZhN3J0Ip/RNePCji1b/jzX/jts1BWx8MPN6bYWZemEphyPO+ncLK6tr6RnGztLW9s7tX3j9omiTTHBs8kYluhcygFAobJEhiK9XI4lDiQzi8nvoPT6iNSNQ9jVIMYtZXIhKckZVaN90ODZBYt1zxqt4M7jLxc1KBHPVu+avTS3gWoyIumTFt30spGDNNgkuclDqZwZTxIetj21LFYjTBeHbvxD2xSs+NEm1LkTtTf0+MWWzMKA5tZ8xoYBa9qfif184ougzGQqUZoeLzRVEmXUrc6fNuT2jkJEeWMK6FvdXlA6YZJxtRyYbgL768TJpnVd+r+nfnldpVHkcRjuAYTsGHC6jBLdShARwkPMMrvDmPzovz7nzMWwtOPnMIf+B8/gDtp4/i</latexit><latexit sha1_base64="o817bbJ/DJHlARFTbWbI3FVPTIo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoQY8VbC20oWy2k3bpZhN3J0Ip/RNePCji1b/jzX/jts1BWx8MPN6bYWZemEphyPO+ncLK6tr6RnGztLW9s7tX3j9omiTTHBs8kYluhcygFAobJEhiK9XI4lDiQzi8nvoPT6iNSNQ9jVIMYtZXIhKckZVaN90ODZBYt1zxqt4M7jLxc1KBHPVu+avTS3gWoyIumTFt30spGDNNgkuclDqZwZTxIetj21LFYjTBeHbvxD2xSs+NEm1LkTtTf0+MWWzMKA5tZ8xoYBa9qfif184ougzGQqUZoeLzRVEmXUrc6fNuT2jkJEeWMK6FvdXlA6YZJxtRyYbgL768TJpnVd+r+nfnldpVHkcRjuAYTsGHC6jBLdShARwkPMMrvDmPzovz7nzMWwtOPnMIf+B8/gDtp4/i</latexit><latexit sha1_base64="o817bbJ/DJHlARFTbWbI3FVPTIo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoQY8VbC20oWy2k3bpZhN3J0Ip/RNePCji1b/jzX/jts1BWx8MPN6bYWZemEphyPO+ncLK6tr6RnGztLW9s7tX3j9omiTTHBs8kYluhcygFAobJEhiK9XI4lDiQzi8nvoPT6iNSNQ9jVIMYtZXIhKckZVaN90ODZBYt1zxqt4M7jLxc1KBHPVu+avTS3gWoyIumTFt30spGDNNgkuclDqZwZTxIetj21LFYjTBeHbvxD2xSs+NEm1LkTtTf0+MWWzMKA5tZ8xoYBa9qfif184ougzGQqUZoeLzRVEmXUrc6fNuT2jkJEeWMK6FvdXlA6YZJxtRyYbgL768TJpnVd+r+nfnldpVHkcRjuAYTsGHC6jBLdShARwkPMMrvDmPzovz7nzMWwtOPnMIf+B8/gDtp4/i</latexit>

J =
@xi

@z
<latexit sha1_base64="6FRyVEmmc7+tg+5QACDRxKKOHTE=">AAACFXicbVDLSgMxFL3js9bXqEs3wSK4kDIjgm6EohtxVcE+oDOUTJppQzMPkoxYh/kJN/6KGxeKuBXc+Tdm2gG19UDg5Jx7k3uPF3MmlWV9GXPzC4tLy6WV8ura+samubXdlFEiCG2QiEei7WFJOQtpQzHFaTsWFAcepy1veJH7rVsqJIvCGzWKqRvgfsh8RrDSUtc8vEJnyPEFJqkTY6EY5uiuy7KfmxNgNfD89D7LumbFqlpjoFliF6QCBepd89PpRSQJaKgIx1J2bCtWbpq/TDjNyk4iaYzJEPdpR9MQB1S66XirDO1rpYf8SOgTKjRWf3ekOJByFHi6Mh9RTnu5+J/XSZR/6qYsjBNFQzL5yE84UhHKI0I9JihRfKQJJoLpWREZYB2R0kGWdQj29MqzpHlUta2qfX1cqZ0XcZRgF/bgAGw4gRpcQh0aQOABnuAFXo1H49l4M94npXNG0bMDf2B8fAMFPJ9k</latexit><latexit sha1_base64="6FRyVEmmc7+tg+5QACDRxKKOHTE=">AAACFXicbVDLSgMxFL3js9bXqEs3wSK4kDIjgm6EohtxVcE+oDOUTJppQzMPkoxYh/kJN/6KGxeKuBXc+Tdm2gG19UDg5Jx7k3uPF3MmlWV9GXPzC4tLy6WV8ura+samubXdlFEiCG2QiEei7WFJOQtpQzHFaTsWFAcepy1veJH7rVsqJIvCGzWKqRvgfsh8RrDSUtc8vEJnyPEFJqkTY6EY5uiuy7KfmxNgNfD89D7LumbFqlpjoFliF6QCBepd89PpRSQJaKgIx1J2bCtWbpq/TDjNyk4iaYzJEPdpR9MQB1S66XirDO1rpYf8SOgTKjRWf3ekOJByFHi6Mh9RTnu5+J/XSZR/6qYsjBNFQzL5yE84UhHKI0I9JihRfKQJJoLpWREZYB2R0kGWdQj29MqzpHlUta2qfX1cqZ0XcZRgF/bgAGw4gRpcQh0aQOABnuAFXo1H49l4M94npXNG0bMDf2B8fAMFPJ9k</latexit><latexit sha1_base64="6FRyVEmmc7+tg+5QACDRxKKOHTE=">AAACFXicbVDLSgMxFL3js9bXqEs3wSK4kDIjgm6EohtxVcE+oDOUTJppQzMPkoxYh/kJN/6KGxeKuBXc+Tdm2gG19UDg5Jx7k3uPF3MmlWV9GXPzC4tLy6WV8ura+samubXdlFEiCG2QiEei7WFJOQtpQzHFaTsWFAcepy1veJH7rVsqJIvCGzWKqRvgfsh8RrDSUtc8vEJnyPEFJqkTY6EY5uiuy7KfmxNgNfD89D7LumbFqlpjoFliF6QCBepd89PpRSQJaKgIx1J2bCtWbpq/TDjNyk4iaYzJEPdpR9MQB1S66XirDO1rpYf8SOgTKjRWf3ekOJByFHi6Mh9RTnu5+J/XSZR/6qYsjBNFQzL5yE84UhHKI0I9JihRfKQJJoLpWREZYB2R0kGWdQj29MqzpHlUta2qfX1cqZ0XcZRgF/bgAGw4gRpcQh0aQOABnuAFXo1H49l4M94npXNG0bMDf2B8fAMFPJ9k</latexit><latexit sha1_base64="6FRyVEmmc7+tg+5QACDRxKKOHTE=">AAACFXicbVDLSgMxFL3js9bXqEs3wSK4kDIjgm6EohtxVcE+oDOUTJppQzMPkoxYh/kJN/6KGxeKuBXc+Tdm2gG19UDg5Jx7k3uPF3MmlWV9GXPzC4tLy6WV8ura+samubXdlFEiCG2QiEei7WFJOQtpQzHFaTsWFAcepy1veJH7rVsqJIvCGzWKqRvgfsh8RrDSUtc8vEJnyPEFJqkTY6EY5uiuy7KfmxNgNfD89D7LumbFqlpjoFliF6QCBepd89PpRSQJaKgIx1J2bCtWbpq/TDjNyk4iaYzJEPdpR9MQB1S66XirDO1rpYf8SOgTKjRWf3ekOJByFHi6Mh9RTnu5+J/XSZR/6qYsjBNFQzL5yE84UhHKI0I9JihRfKQJJoLpWREZYB2R0kGWdQj29MqzpHlUta2qfX1cqZ0XcZRgF/bgAGw4gRpcQh0aQOABnuAFXo1H49l4M94npXNG0bMDf2B8fAMFPJ9k</latexit>

log p✓(x̂) = log p(z)� log |det(J)|
<latexit sha1_base64="GvvpkPQGnRiy+8ShtbOKECXfnYo="></latexit><latexit sha1_base64="GvvpkPQGnRiy+8ShtbOKECXfnYo="></latexit><latexit sha1_base64="GvvpkPQGnRiy+8ShtbOKECXfnYo="></latexit><latexit sha1_base64="GvvpkPQGnRiy+8ShtbOKECXfnYo="></latexit>

Pretraining
<latexit sha1_base64="QXUjKoXQoYnsQCatQ2T8EG2yrRQ=">AAAB8nicbVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lhHMB1yOsLfZS5bs7R67c0II+Rk2ForY+mvs/Ddukis08cHA470ZZubFmRQWff/b29jc2t7ZLe2V9w8Oj44rJ6dtq3PDeItpqU03ppZLoXgLBUrezQynaSx5Jx7fzf3OEzdWaPWIk4xHKR0qkQhG0Ulh03A0VCihhv1K1a/5C5B1EhSkCgWa/cpXb6BZnnKFTFJrw8DPMJpSg4JJPiv3csszysZ0yENHFU25jaaLk2fk0ikDkmjjSiFZqL8npjS1dpLGrjOlOLKr3lz8zwtzTG6iqVBZjlyx5aIklwQ1mf9PBsJwhnLiCGVGuFsJG1FDGbqUyi6EYPXlddKu1wK/FjzUq43bIo4SnMMFXEEA19CAe2hCCxhoeIZXePPQe/HevY9l64ZXzJzBH3ifP440kWk=</latexit><latexit sha1_base64="QXUjKoXQoYnsQCatQ2T8EG2yrRQ=">AAAB8nicbVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lhHMB1yOsLfZS5bs7R67c0II+Rk2ForY+mvs/Ddukis08cHA470ZZubFmRQWff/b29jc2t7ZLe2V9w8Oj44rJ6dtq3PDeItpqU03ppZLoXgLBUrezQynaSx5Jx7fzf3OEzdWaPWIk4xHKR0qkQhG0Ulh03A0VCihhv1K1a/5C5B1EhSkCgWa/cpXb6BZnnKFTFJrw8DPMJpSg4JJPiv3csszysZ0yENHFU25jaaLk2fk0ikDkmjjSiFZqL8npjS1dpLGrjOlOLKr3lz8zwtzTG6iqVBZjlyx5aIklwQ1mf9PBsJwhnLiCGVGuFsJG1FDGbqUyi6EYPXlddKu1wK/FjzUq43bIo4SnMMFXEEA19CAe2hCCxhoeIZXePPQe/HevY9l64ZXzJzBH3ifP440kWk=</latexit><latexit sha1_base64="QXUjKoXQoYnsQCatQ2T8EG2yrRQ=">AAAB8nicbVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lhHMB1yOsLfZS5bs7R67c0II+Rk2ForY+mvs/Ddukis08cHA470ZZubFmRQWff/b29jc2t7ZLe2V9w8Oj44rJ6dtq3PDeItpqU03ppZLoXgLBUrezQynaSx5Jx7fzf3OEzdWaPWIk4xHKR0qkQhG0Ulh03A0VCihhv1K1a/5C5B1EhSkCgWa/cpXb6BZnnKFTFJrw8DPMJpSg4JJPiv3csszysZ0yENHFU25jaaLk2fk0ikDkmjjSiFZqL8npjS1dpLGrjOlOLKr3lz8zwtzTG6iqVBZjlyx5aIklwQ1mf9PBsJwhnLiCGVGuFsJG1FDGbqUyi6EYPXlddKu1wK/FjzUq43bIo4SnMMFXEEA19CAe2hCCxhoeIZXePPQe/HevY9l64ZXzJzBH3ifP440kWk=</latexit><latexit sha1_base64="QXUjKoXQoYnsQCatQ2T8EG2yrRQ=">AAAB8nicbVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lhHMB1yOsLfZS5bs7R67c0II+Rk2ForY+mvs/Ddukis08cHA470ZZubFmRQWff/b29jc2t7ZLe2V9w8Oj44rJ6dtq3PDeItpqU03ppZLoXgLBUrezQynaSx5Jx7fzf3OEzdWaPWIk4xHKR0qkQhG0Ulh03A0VCihhv1K1a/5C5B1EhSkCgWa/cpXb6BZnnKFTFJrw8DPMJpSg4JJPiv3csszysZ0yENHFU25jaaLk2fk0ikDkmjjSiFZqL8npjS1dpLGrjOlOLKr3lz8zwtzTG6iqVBZjlyx5aIklwQ1mf9PBsJwhnLiCGVGuFsJG1FDGbqUyi6EYPXlddKu1wK/FjzUq43bIo4SnMMFXEEA19CAe2hCCxhoeIZXePPQe/HevY9l64ZXzJzBH3ifP440kWk=</latexit>

Sampling
<latexit sha1_base64="njAQj444Og2vP6pxJWF5hHmGmMk=">AAAB73icbVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lhHNByRH2NvsJUt2987dOSGE/AkbC0Vs/Tt2/hs3yRWa+GDg8d4MM/OiVAqLvv/tra1vbG5tF3aKu3v7B4elo+OmTTLDeIMlMjHtiFouheYNFCh5OzWcqkjyVjS6mfmtJ26sSPQDjlMeKjrQIhaMopPa91S5LXrQK5X9ij8HWSVBTsqQo94rfXX7CcsU18gktbYT+CmGE2pQMMmnxW5meUrZiA54x1FNFbfhZH7vlJw7pU/ixLjSSObq74kJVdaOVeQ6FcWhXfZm4n9eJ8P4KpwInWbINVssijNJMCGz50lfGM5Qjh2hzAh3K2FDaihDF1HRhRAsv7xKmtVK4FeCu2q5dp3HUYBTOIMLCOASanALdWgAAwnP8Apv3qP34r17H4vWNS+fOYE/8D5/ACLVkAM=</latexit><latexit sha1_base64="njAQj444Og2vP6pxJWF5hHmGmMk=">AAAB73icbVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lhHNByRH2NvsJUt2987dOSGE/AkbC0Vs/Tt2/hs3yRWa+GDg8d4MM/OiVAqLvv/tra1vbG5tF3aKu3v7B4elo+OmTTLDeIMlMjHtiFouheYNFCh5OzWcqkjyVjS6mfmtJ26sSPQDjlMeKjrQIhaMopPa91S5LXrQK5X9ij8HWSVBTsqQo94rfXX7CcsU18gktbYT+CmGE2pQMMmnxW5meUrZiA54x1FNFbfhZH7vlJw7pU/ixLjSSObq74kJVdaOVeQ6FcWhXfZm4n9eJ8P4KpwInWbINVssijNJMCGz50lfGM5Qjh2hzAh3K2FDaihDF1HRhRAsv7xKmtVK4FeCu2q5dp3HUYBTOIMLCOASanALdWgAAwnP8Apv3qP34r17H4vWNS+fOYE/8D5/ACLVkAM=</latexit><latexit sha1_base64="njAQj444Og2vP6pxJWF5hHmGmMk=">AAAB73icbVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lhHNByRH2NvsJUt2987dOSGE/AkbC0Vs/Tt2/hs3yRWa+GDg8d4MM/OiVAqLvv/tra1vbG5tF3aKu3v7B4elo+OmTTLDeIMlMjHtiFouheYNFCh5OzWcqkjyVjS6mfmtJ26sSPQDjlMeKjrQIhaMopPa91S5LXrQK5X9ij8HWSVBTsqQo94rfXX7CcsU18gktbYT+CmGE2pQMMmnxW5meUrZiA54x1FNFbfhZH7vlJw7pU/ixLjSSObq74kJVdaOVeQ6FcWhXfZm4n9eJ8P4KpwInWbINVssijNJMCGz50lfGM5Qjh2hzAh3K2FDaihDF1HRhRAsv7xKmtVK4FeCu2q5dp3HUYBTOIMLCOASanALdWgAAwnP8Apv3qP34r17H4vWNS+fOYE/8D5/ACLVkAM=</latexit><latexit sha1_base64="njAQj444Og2vP6pxJWF5hHmGmMk=">AAAB73icbVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lhHNByRH2NvsJUt2987dOSGE/AkbC0Vs/Tt2/hs3yRWa+GDg8d4MM/OiVAqLvv/tra1vbG5tF3aKu3v7B4elo+OmTTLDeIMlMjHtiFouheYNFCh5OzWcqkjyVjS6mfmtJ26sSPQDjlMeKjrQIhaMopPa91S5LXrQK5X9ij8HWSVBTsqQo94rfXX7CcsU18gktbYT+CmGE2pQMMmnxW5meUrZiA54x1FNFbfhZH7vlJw7pU/ixLjSSObq74kJVdaOVeQ6FcWhXfZm4n9eJ8P4KpwInWbINVssijNJMCGz50lfGM5Qjh2hzAh3K2FDaihDF1HRhRAsv7xKmtVK4FeCu2q5dp3HUYBTOIMLCOASanALdWgAAwnP8Apv3qP34r17H4vWNS+fOYE/8D5/ACLVkAM=</latexit>

Regressor Training
<latexit sha1_base64="Lm+j1WtVLbVaBy5eFNSbw5Aq90k=">AAAB+3icbVC7TsMwFHV4lvIKZWSxqJCYqqQLjBUsjAX1JbVR5bg3qVXHjmwHUUX9FRYGEGLlR9j4G9w2A7Sc6eice3XPPWHKmTae9+1sbG5t7+yW9sr7B4dHx+5JpaNlpii0qeRS9UKigTMBbcMMh16qgCQhh244uZ373UdQmknRMtMUgoTEgkWMEmOloVt5gFiB1lLhliJMMBEP3apX8xbA68QvSBUVaA7dr8FI0iwBYSgnWvd9LzVBTpRhlMOsPMg0pIROSAx9SwVJQAf5IvsMX1hlhCN7P5LC4IX6eyMnidbTJLSTCTFjverNxf+8fmai6yBnIs0MCLo8FGUcG4nnReARU0ANn1pCqGI2K6Zjogg1tq6yLcFffXmddOo136v59/Vq46aoo4TO0Dm6RD66Qg10h5qojSh6Qs/oFb05M+fFeXc+lqMbTrFziv7A+fwBGRGUdQ==</latexit><latexit sha1_base64="Lm+j1WtVLbVaBy5eFNSbw5Aq90k=">AAAB+3icbVC7TsMwFHV4lvIKZWSxqJCYqqQLjBUsjAX1JbVR5bg3qVXHjmwHUUX9FRYGEGLlR9j4G9w2A7Sc6eice3XPPWHKmTae9+1sbG5t7+yW9sr7B4dHx+5JpaNlpii0qeRS9UKigTMBbcMMh16qgCQhh244uZ373UdQmknRMtMUgoTEgkWMEmOloVt5gFiB1lLhliJMMBEP3apX8xbA68QvSBUVaA7dr8FI0iwBYSgnWvd9LzVBTpRhlMOsPMg0pIROSAx9SwVJQAf5IvsMX1hlhCN7P5LC4IX6eyMnidbTJLSTCTFjverNxf+8fmai6yBnIs0MCLo8FGUcG4nnReARU0ANn1pCqGI2K6Zjogg1tq6yLcFffXmddOo136v59/Vq46aoo4TO0Dm6RD66Qg10h5qojSh6Qs/oFb05M+fFeXc+lqMbTrFziv7A+fwBGRGUdQ==</latexit><latexit sha1_base64="Lm+j1WtVLbVaBy5eFNSbw5Aq90k=">AAAB+3icbVC7TsMwFHV4lvIKZWSxqJCYqqQLjBUsjAX1JbVR5bg3qVXHjmwHUUX9FRYGEGLlR9j4G9w2A7Sc6eice3XPPWHKmTae9+1sbG5t7+yW9sr7B4dHx+5JpaNlpii0qeRS9UKigTMBbcMMh16qgCQhh244uZ373UdQmknRMtMUgoTEgkWMEmOloVt5gFiB1lLhliJMMBEP3apX8xbA68QvSBUVaA7dr8FI0iwBYSgnWvd9LzVBTpRhlMOsPMg0pIROSAx9SwVJQAf5IvsMX1hlhCN7P5LC4IX6eyMnidbTJLSTCTFjverNxf+8fmai6yBnIs0MCLo8FGUcG4nnReARU0ANn1pCqGI2K6Zjogg1tq6yLcFffXmddOo136v59/Vq46aoo4TO0Dm6RD66Qg10h5qojSh6Qs/oFb05M+fFeXc+lqMbTrFziv7A+fwBGRGUdQ==</latexit><latexit sha1_base64="Lm+j1WtVLbVaBy5eFNSbw5Aq90k=">AAAB+3icbVC7TsMwFHV4lvIKZWSxqJCYqqQLjBUsjAX1JbVR5bg3qVXHjmwHUUX9FRYGEGLlR9j4G9w2A7Sc6eice3XPPWHKmTae9+1sbG5t7+yW9sr7B4dHx+5JpaNlpii0qeRS9UKigTMBbcMMh16qgCQhh244uZ373UdQmknRMtMUgoTEgkWMEmOloVt5gFiB1lLhliJMMBEP3apX8xbA68QvSBUVaA7dr8FI0iwBYSgnWvd9LzVBTpRhlMOsPMg0pIROSAx9SwVJQAf5IvsMX1hlhCN7P5LC4IX6eyMnidbTJLSTCTFjverNxf+8fmai6yBnIs0MCLo8FGUcG4nnReARU0ANn1pCqGI2K6Zjogg1tq6yLcFffXmddOo136v59/Vq46aoo4TO0Dm6RD66Qg10h5qojSh6Qs/oFb05M+fFeXc+lqMbTrFziv7A+fwBGRGUdQ==</latexit>

x̂
<latexit sha1_base64="zeSaoIHHVVAk/oMC/NWuRMcnimY=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRudCMW3bisYB/QhDKZTtqhk0mYmRRLCPghblwo4taPcO/Ov3HSdqGtBwYO59zLPXOChDOlHefbKq2srq1vlDcrW9s7u3v2/kFLxakktEliHstOgBXlTNCmZprTTiIpjgJO28HopvDbYyoVi8W9niTUj/BAsJARrI3Us20vwnoYhJk3xDp7yPOeXXVqzhRombhzUr36rFw+AkCjZ395/ZikERWacKxU13US7WdYakY4zSteqmiCyQgPaNdQgSOq/GyaPEcnRumjMJbmCY2m6u+NDEdKTaLATBY51aJXiP953VSHF37GRJJqKsjsUJhypGNU1ID6TFKi+cQQTCQzWREZYomJNmVVTAnu4peXSeus5jo1986p1q9hhjIcwTGcggvnUIdbaEATCIzhCV7g1cqsZ+vNep+Nlqz5ziH8gfXxA8PKleM=</latexit><latexit sha1_base64="GpDUihjp2hcfQqJnLloL1rJObME=">AAAB+XicbVDLSsNAFL3xWeMr6tLNYBFclcSNbsSiG5cV7APaUCbTSTt0Mgkzk2IJ+RM3Ioq49SPcuxH/xknbhbYeGDiccy/3zAkSzpR23W9raXlldW29tGFvbm3v7Dp7+w0Vp5LQOol5LFsBVpQzQeuaaU5biaQ4CjhtBsPrwm+OqFQsFnd6nFA/wn3BQkawNlLXcToR1oMgzDoDrLP7PO86ZbfiToAWiTcj5csP+yJ5+rJrXeez04tJGlGhCcdKtT030X6GpWaE09zupIommAxxn7YNFTiiys8myXN0bJQeCmNpntBoov7eyHCk1DgKzGSRU817hfif1051eO5nTCSppoJMD4UpRzpGRQ2oxyQlmo8NwUQykxWRAZaYaFOWbUrw5r+8SBqnFc+teLduuXoFU5TgEI7gBDw4gyrcQA3qQGAED/AML1ZmPVqv1tt0dMma7RzAH1jvP7VZl1c=</latexit><latexit sha1_base64="GpDUihjp2hcfQqJnLloL1rJObME=">AAAB+XicbVDLSsNAFL3xWeMr6tLNYBFclcSNbsSiG5cV7APaUCbTSTt0Mgkzk2IJ+RM3Ioq49SPcuxH/xknbhbYeGDiccy/3zAkSzpR23W9raXlldW29tGFvbm3v7Dp7+w0Vp5LQOol5LFsBVpQzQeuaaU5biaQ4CjhtBsPrwm+OqFQsFnd6nFA/wn3BQkawNlLXcToR1oMgzDoDrLP7PO86ZbfiToAWiTcj5csP+yJ5+rJrXeez04tJGlGhCcdKtT030X6GpWaE09zupIommAxxn7YNFTiiys8myXN0bJQeCmNpntBoov7eyHCk1DgKzGSRU817hfif1051eO5nTCSppoJMD4UpRzpGRQ2oxyQlmo8NwUQykxWRAZaYaFOWbUrw5r+8SBqnFc+teLduuXoFU5TgEI7gBDw4gyrcQA3qQGAED/AML1ZmPVqv1tt0dMma7RzAH1jvP7VZl1c=</latexit><latexit sha1_base64="XdRqdaHPEN1perOdkTFPSWHBuDw=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRI3uiy6cVnBPqANZTKdtEMnkzBzUywhf+LGhSJu/RN3/o2TNgttPTBwOOde7pkTJIJrdN1vq7KxubW9U92t7e0fHB7ZxycdHaeKsjaNRax6AdFMcMnayFGwXqIYiQLBusH0rvC7M6Y0j+UjzhPmR2QsecgpQSMNbXsQEZwEYTaYEMye8nxo192Gu4CzTryS1KFEa2h/DUYxTSMmkQqidd9zE/QzopBTwfLaINUsIXRKxqxvqCQR0362SJ47F0YZOWGszJPoLNTfGxmJtJ5HgZkscupVrxD/8/ophjd+xmWSIpN0eShMhYOxU9TgjLhiFMXcEEIVN1kdOiGKUDRl1UwJ3uqX10nnquG5De/BrTdvyzqqcAbncAkeXEMT7qEFbaAwg2d4hTcrs16sd+tjOVqxyp1T+APr8wdUkpQW</latexit>

R!
<latexit sha1_base64="5HdS/MgZ4UjdABzVw576OHWzyxc=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnFxEByhL3NXLJkd+/c3RNCyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLK6tr6RnGztLW9s7tX3j9omiTTDBssEYluRdSg4AoblluBrVQjlZHAh2h4PfUfnlAbnqh7O0oxlLSveMwZtU5q3XU7icQ+7ZYrftWfgSyTICcVyFHvlr86vYRlEpVlghrTDvzUhmOqLWcCJ6VOZjClbEj72HZUUYkmHM/unZATp/RInGhXypKZ+ntiTKUxIxm5TkntwCx6U/E/r53Z+DIcc5VmFhWbL4ozQWxCps+THtfIrBg5Qpnm7lbCBlRTZl1EJRdCsPjyMmmeVQO/GtyeV2pXeRxFOIJjOIUALqAGN1CHBjAQ8Ayv8OY9ei/eu/cxby14+cwh/IH3+QPq2o/g</latexit><latexit sha1_base64="5HdS/MgZ4UjdABzVw576OHWzyxc=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnFxEByhL3NXLJkd+/c3RNCyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLK6tr6RnGztLW9s7tX3j9omiTTDBssEYluRdSg4AoblluBrVQjlZHAh2h4PfUfnlAbnqh7O0oxlLSveMwZtU5q3XU7icQ+7ZYrftWfgSyTICcVyFHvlr86vYRlEpVlghrTDvzUhmOqLWcCJ6VOZjClbEj72HZUUYkmHM/unZATp/RInGhXypKZ+ntiTKUxIxm5TkntwCx6U/E/r53Z+DIcc5VmFhWbL4ozQWxCps+THtfIrBg5Qpnm7lbCBlRTZl1EJRdCsPjyMmmeVQO/GtyeV2pXeRxFOIJjOIUALqAGN1CHBjAQ8Ayv8OY9ei/eu/cxby14+cwh/IH3+QPq2o/g</latexit><latexit sha1_base64="5HdS/MgZ4UjdABzVw576OHWzyxc=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnFxEByhL3NXLJkd+/c3RNCyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLK6tr6RnGztLW9s7tX3j9omiTTDBssEYluRdSg4AoblluBrVQjlZHAh2h4PfUfnlAbnqh7O0oxlLSveMwZtU5q3XU7icQ+7ZYrftWfgSyTICcVyFHvlr86vYRlEpVlghrTDvzUhmOqLWcCJ6VOZjClbEj72HZUUYkmHM/unZATp/RInGhXypKZ+ntiTKUxIxm5TkntwCx6U/E/r53Z+DIcc5VmFhWbL4ozQWxCps+THtfIrBg5Qpnm7lbCBlRTZl1EJRdCsPjyMmmeVQO/GtyeV2pXeRxFOIJjOIUALqAGN1CHBjAQ8Ayv8OY9ei/eu/cxby14+cwh/IH3+QPq2o/g</latexit><latexit sha1_base64="5HdS/MgZ4UjdABzVw576OHWzyxc=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnFxEByhL3NXLJkd+/c3RNCyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLK6tr6RnGztLW9s7tX3j9omiTTDBssEYluRdSg4AoblluBrVQjlZHAh2h4PfUfnlAbnqh7O0oxlLSveMwZtU5q3XU7icQ+7ZYrftWfgSyTICcVyFHvlr86vYRlEpVlghrTDvzUhmOqLWcCJ6VOZjClbEj72HZUUYkmHM/unZATp/RInGhXypKZ+ntiTKUxIxm5TkntwCx6U/E/r53Z+DIcc5VmFhWbL4ozQWxCps+THtfIrBg5Qpnm7lbCBlRTZl1EJRdCsPjyMmmeVQO/GtyeV2pXeRxFOIJjOIUALqAGN1CHBjAQ8Ayv8OY9ei/eu/cxby14+cwh/IH3+QPq2o/g</latexit>

log p✓(x̂)
<latexit sha1_base64="F2jQ4+7PtW0tYqUu+Vp6Bt2u+sM=">AAACCHicbVDLSsNAFJ34rPUVdenCwSLUTUlE0GXRjcsK9gFNCJPppBk6eTBzI5bQpRt/xY0LRdz6Ce78GydtFtp64MLhnHu59x4/FVyBZX0bS8srq2vrlY3q5tb2zq65t99RSSYpa9NEJLLnE8UEj1kbOAjWSyUjkS9Y1x9dF373nknFk/gOxilzIzKMecApAS155pEjkiFOPQdCBqTuRARCP8idkED+MJmcembNalhT4EVil6SGSrQ888sZJDSLWAxUEKX6tpWCmxMJnAo2qTqZYimhIzJkfU1jEjHl5tNHJvhEKwMcJFJXDHiq/p7ISaTUOPJ1Z3GomvcK8T+vn0Fw6eY8TjNgMZ0tCjKBIcFFKnjAJaMgxpoQKrm+FdOQSEJBZ1fVIdjzLy+SzlnDthr27XmteVXGUUGH6BjVkY0uUBPdoBZqI4oe0TN6RW/Gk/FivBsfs9Ylo5w5QH9gfP4AEiKaAA==</latexit><latexit sha1_base64="F2jQ4+7PtW0tYqUu+Vp6Bt2u+sM=">AAACCHicbVDLSsNAFJ34rPUVdenCwSLUTUlE0GXRjcsK9gFNCJPppBk6eTBzI5bQpRt/xY0LRdz6Ce78GydtFtp64MLhnHu59x4/FVyBZX0bS8srq2vrlY3q5tb2zq65t99RSSYpa9NEJLLnE8UEj1kbOAjWSyUjkS9Y1x9dF373nknFk/gOxilzIzKMecApAS155pEjkiFOPQdCBqTuRARCP8idkED+MJmcembNalhT4EVil6SGSrQ888sZJDSLWAxUEKX6tpWCmxMJnAo2qTqZYimhIzJkfU1jEjHl5tNHJvhEKwMcJFJXDHiq/p7ISaTUOPJ1Z3GomvcK8T+vn0Fw6eY8TjNgMZ0tCjKBIcFFKnjAJaMgxpoQKrm+FdOQSEJBZ1fVIdjzLy+SzlnDthr27XmteVXGUUGH6BjVkY0uUBPdoBZqI4oe0TN6RW/Gk/FivBsfs9Ylo5w5QH9gfP4AEiKaAA==</latexit><latexit sha1_base64="F2jQ4+7PtW0tYqUu+Vp6Bt2u+sM=">AAACCHicbVDLSsNAFJ34rPUVdenCwSLUTUlE0GXRjcsK9gFNCJPppBk6eTBzI5bQpRt/xY0LRdz6Ce78GydtFtp64MLhnHu59x4/FVyBZX0bS8srq2vrlY3q5tb2zq65t99RSSYpa9NEJLLnE8UEj1kbOAjWSyUjkS9Y1x9dF373nknFk/gOxilzIzKMecApAS155pEjkiFOPQdCBqTuRARCP8idkED+MJmcembNalhT4EVil6SGSrQ888sZJDSLWAxUEKX6tpWCmxMJnAo2qTqZYimhIzJkfU1jEjHl5tNHJvhEKwMcJFJXDHiq/p7ISaTUOPJ1Z3GomvcK8T+vn0Fw6eY8TjNgMZ0tCjKBIcFFKnjAJaMgxpoQKrm+FdOQSEJBZ1fVIdjzLy+SzlnDthr27XmteVXGUUGH6BjVkY0uUBPdoBZqI4oe0TN6RW/Gk/FivBsfs9Ylo5w5QH9gfP4AEiKaAA==</latexit><latexit sha1_base64="F2jQ4+7PtW0tYqUu+Vp6Bt2u+sM=">AAACCHicbVDLSsNAFJ34rPUVdenCwSLUTUlE0GXRjcsK9gFNCJPppBk6eTBzI5bQpRt/xY0LRdz6Ce78GydtFtp64MLhnHu59x4/FVyBZX0bS8srq2vrlY3q5tb2zq65t99RSSYpa9NEJLLnE8UEj1kbOAjWSyUjkS9Y1x9dF373nknFk/gOxilzIzKMecApAS155pEjkiFOPQdCBqTuRARCP8idkED+MJmcembNalhT4EVil6SGSrQ888sZJDSLWAxUEKX6tpWCmxMJnAo2qTqZYimhIzJkfU1jEjHl5tNHJvhEKwMcJFJXDHiq/p7ISaTUOPJ1Z3GomvcK8T+vn0Fw6eY8TjNgMZ0tCjKBIcFFKnjAJaMgxpoQKrm+FdOQSEJBZ1fVIdjzLy+SzlnDthr27XmteVXGUUGH6BjVkY0uUBPdoBZqI4oe0TN6RW/Gk/FivBsfs9Ylo5w5QH9gfP4AEiKaAA==</latexit>

R!
<latexit sha1_base64="5HdS/MgZ4UjdABzVw576OHWzyxc=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnFxEByhL3NXLJkd+/c3RNCyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLK6tr6RnGztLW9s7tX3j9omiTTDBssEYluRdSg4AoblluBrVQjlZHAh2h4PfUfnlAbnqh7O0oxlLSveMwZtU5q3XU7icQ+7ZYrftWfgSyTICcVyFHvlr86vYRlEpVlghrTDvzUhmOqLWcCJ6VOZjClbEj72HZUUYkmHM/unZATp/RInGhXypKZ+ntiTKUxIxm5TkntwCx6U/E/r53Z+DIcc5VmFhWbL4ozQWxCps+THtfIrBg5Qpnm7lbCBlRTZl1EJRdCsPjyMmmeVQO/GtyeV2pXeRxFOIJjOIUALqAGN1CHBjAQ8Ayv8OY9ei/eu/cxby14+cwh/IH3+QPq2o/g</latexit><latexit sha1_base64="5HdS/MgZ4UjdABzVw576OHWzyxc=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnFxEByhL3NXLJkd+/c3RNCyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLK6tr6RnGztLW9s7tX3j9omiTTDBssEYluRdSg4AoblluBrVQjlZHAh2h4PfUfnlAbnqh7O0oxlLSveMwZtU5q3XU7icQ+7ZYrftWfgSyTICcVyFHvlr86vYRlEpVlghrTDvzUhmOqLWcCJ6VOZjClbEj72HZUUYkmHM/unZATp/RInGhXypKZ+ntiTKUxIxm5TkntwCx6U/E/r53Z+DIcc5VmFhWbL4ozQWxCps+THtfIrBg5Qpnm7lbCBlRTZl1EJRdCsPjyMmmeVQO/GtyeV2pXeRxFOIJjOIUALqAGN1CHBjAQ8Ayv8OY9ei/eu/cxby14+cwh/IH3+QPq2o/g</latexit><latexit sha1_base64="5HdS/MgZ4UjdABzVw576OHWzyxc=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnFxEByhL3NXLJkd+/c3RNCyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLK6tr6RnGztLW9s7tX3j9omiTTDBssEYluRdSg4AoblluBrVQjlZHAh2h4PfUfnlAbnqh7O0oxlLSveMwZtU5q3XU7icQ+7ZYrftWfgSyTICcVyFHvlr86vYRlEpVlghrTDvzUhmOqLWcCJ6VOZjClbEj72HZUUYkmHM/unZATp/RInGhXypKZ+ntiTKUxIxm5TkntwCx6U/E/r53Z+DIcc5VmFhWbL4ozQWxCps+THtfIrBg5Qpnm7lbCBlRTZl1EJRdCsPjyMmmeVQO/GtyeV2pXeRxFOIJjOIUALqAGN1CHBjAQ8Ayv8OY9ei/eu/cxby14+cwh/IH3+QPq2o/g</latexit><latexit sha1_base64="5HdS/MgZ4UjdABzVw576OHWzyxc=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnFxEByhL3NXLJkd+/c3RNCyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLK6tr6RnGztLW9s7tX3j9omiTTDBssEYluRdSg4AoblluBrVQjlZHAh2h4PfUfnlAbnqh7O0oxlLSveMwZtU5q3XU7icQ+7ZYrftWfgSyTICcVyFHvlr86vYRlEpVlghrTDvzUhmOqLWcCJ6VOZjClbEj72HZUUYkmHM/unZATp/RInGhXypKZ+ntiTKUxIxm5TkntwCx6U/E/r53Z+DIcc5VmFhWbL4ozQWxCps+THtfIrBg5Qpnm7lbCBlRTZl1EJRdCsPjyMmmeVQO/GtyeV2pXeRxFOIJjOIUALqAGN1CHBjAQ8Ayv8OY9ei/eu/cxby14+cwh/IH3+QPq2o/g</latexit>
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Figure 9.1: Step-by-step procedure for learning and inferring log-likelihood function using
regression network

9.3.3 Computing Jacobian

Given a trained GAN model, we can choose to estimate jacobian of generator/encoder

transformation function either using finite difference or back-propagation.

Back-propagation: The jacobian matrix of a network can be computed iteratively

one row after another. During each iteration, the gradient of a fix scalar output fi w.r.t.
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each and every input is computed using the back-propagation algorithm. Subsequently, the

ith row of J is updated. The number of back-propagation step is equal to the total number

of scalar outputs. This suggest, for a generator network, the log-likelihood computation

time quadratically increases with an output image size. On the other hand, an encoder

network typically requires small computation time due to low dimensional latent variables.

Finite Difference Approximation: The gradients of a scalar function w.r.t. each

input can be approximately computed by two forward pass using second order central

finite difference scheme, four forward pass using fourth order scheme and so on [304].

The second order approximation scheme is given by,

∂Gθ(z)i
zj

≈ Gθ(z + εδj)i −Gθ(z− εδj)i
2ε

(9.12)

where ε is step-size and δi is an identity vector. Using finite differences, the jacobian of a

generator network is computed using 2d forward passes as against D(>> d) backward

step using back-propagation mechanism. Furthermore, unlike the backward step, forward

pass can be parallelized across input dimension and data samples thus providing enormous

speed-up. However, this speed-up is obtained at the cost of accuracy. As discussed in [305]

as well in section 9.4, the log-likelihood of data samples varies vastly with changing ε.

9.4 Experiments

We start with discussing experimental results on data sampled from mixture of eight

gaussian following which we present results on MNIST and Cifar-10 dataset.
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9.4.1 Mixture of Gaussians

To illustrate the advantage of our proposed methodology, we experiment on a simple

GAN architecture with fully connected layers using the toy dataset. The constructed toy

example is inspired by the one presented in [12]. The two dimensional data is sampled

from the mixture of eight Gaussians with their means equally spaced around the circle of

radius 2 centered at (0, 0). The standard deviation of each Gaussian is set at 0.01. The two

dimensional latent vector z is sampled from the multivariate Gaussian distribution.

We start with experimenting on bi-directional GAN which includes an encoder

network. The generator and discriminator networks consist of four fully connected hidden

layers, each with 200 and 400 hidden units respectively followed by tanh activation units.

Similarly, the encoder network consists of two FC layers each with 200 hidden units

with tanh activations. The final layer of each entity has linear activation. The network

is optimized using minmax objective of type (6.1). We use adam solver with its default

parameters (i.e., learning rate = 0.001, β1 = 0.9, β2 = 0.999) and with input batch size

of 512.

The generated two dimensional samples are plotted in Figure 9.2(a). Furthermore,

Figure 9.2(b) displays top 98% points of the same generated data which were picked based

on the computed log-likelihood scores while Figure 9.2(c) displays reconstructed samples

corresponding to input test samples (sampled from training distribution). These results

simply suggest that the generator and encoder network fits well onto the training data and

only generate samples which approximately belongs to modes of training data.

Although, the trained model works exceedingly well for in-sample, the above results
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do not provide any hint about its performance on out-of-sample data. In order to assess this,

we evaluate log-likelihood of million test samples uniformly sampled from [−3, 3] grid in

each dimension. Figure 9.2(d) and 9.2(e) plots the output when evaluated using encoder

and generator transformation function (using regressor) respectively. The result suggest

that an encoder transformation function assigns unusual high probability to samples closer

to center (0, 0). On the other hand, the results are relatively better when evaluated using

generator transformation function.

We also compare results obtained using Flow-GAN model which trains GAN using

invertible transformable generator networks. We consider two training objective - MLE

and hybrid of MLE and GAN and compare the log-likelihood scores in Figure 9.3. Unlike

the training with MLE objective, hybrid model outputs bizare results.

9.4.1.1 Outlier Detection

Here we demonstrate that our proposed log-likelihood evaluation approach assigns

high score only to relevant samples from training modes and low scores to samples from

missing mode. In order to experiment this, Bi-GAN model is trained only with samples

from seven modes. Figure 9.4 plots the generated samples and log-likelihood evaluation

on uniform grid.

9.4.1.2 Regressor model

Since the evaluation using regressor model is relatively better than using encoder

function, it is inessential to continue using Bi-GAN model. Instead, we experiment with
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generic GAN model, i.e., model without an encoder networks, by additionally training

a regressor network. The generator and discriminator networks consist of two fully

connected hidden layers, each with 128 hidden units followed by tanh activation units.

On the other hand, the regressor networks consist of five fully connected layers with the

following number of hidden units: 16, 32, 64, 128, 256 each followed by tanh activation

units. Since regressor network only sees (generated) samples which are spread around

the training modes, it is not clear how the network will learn to interpolate log-likelihood

output for out-of-sample data. Ideally, one would expect regressor network to learn to

assign very low scores to such samples. But there is no guarantee that neural network

would behave accordingly. In order to prevent interpolation towards the higher end for an

unseen data, we proposed a simple activation function for the final layer,

F(x) = x− αmax(x− β, 0) (9.13)

= x− αReLU(x− β) (9.14)

Figure 9.5 illustrate an example of F(x) for α = β = 2.

Similar to earlier experiment, we consider GAN trained with missing mode. Fig-

ure 9.6 plots log-likelihood evaluation on test data sampled from original MoG and uniform

grid respectively. These results are indeed superior to that in Figure 9.4 clearly indicating

that with well-designed regressor network, we can achieve fast and efficient inference.

9.4.2 MNIST

Next, we test our proposed approach on GANs trained with real datasets such as

MNIST and Cifar-10. The popular DC-GAN [172] architecture was considered and
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jacobian is computed on deep features. Deep features are extracted from any pretrained

classifier network. For our experiment, we consider a classifier network with three FC

layers respectively consisting of 625, 625, 10 hidden units and followed by ReLU activation.

Same regressor network as above is utilized for log-likelihood evaluation. Figure 9.7

displays top and lowest 100 test samples from each class based on the log-likelihood

scores.

9.4.2.1 Without Deep Features

In contrast to procedure followed for MoG experiments, we chose to compute

jacobian on deep feature for high-dimensional dataset. Our initial experiments using image

features produced mixed results in that the perceptually good test samples were scored

lowest. Figure 9.8 displays the 100 top and lowest scored test samples while Figure 9.9

displays the same for generated samples.

9.4.2.2 With Finite Difference

As we discussed earlier, finite difference is the most efficient and fastest approach

to compute the jacobian matrix. In this section, we demonstrate that the log-likelihood

computation is sensitive to the step-size ε. We use the same setting as in Figure 9.7 except

that the jacobian is now computed using finite differences. Figure 9.10 compares best

generated output sample at different step-size settings. It can be easily seen that with

decreasing step-size many bizarre samples are scored high. Furthermore, the disparity

in histogram plot of log-likelihood advocates that ε value should be carefully chosen for
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different dataset and deep features.

9.4.2.3 Outlier Detection

Similar to experimental setting for MoG, we consider evaluating log-likelihood score

on samples from class not seen during training (of both classifier and GANs). The highest

and the lowest scored samples for three different scenario for missing class is displayed in

Figure 9.11(a). Visual results exhibits successful isolation of test samples belonging to

missing class. The histogram plot in Figure 9.11(b) indicates the shift in distribution of

sample log-likelihood of missing class ‘9’. Finally, Figure 9.11(c) quantitatively compares

the performance of outlier detection using the computed log-likelihood scores as against

using logit output of classifier. Log-likelihood score leads to moderate increase in AUC

measure.

9.4.3 Cifar-10

Figure 9.12 displays the best and the lowest scored Cifar-10 test samples. We note

that images with high-frequency content are scored lowest. This might be due to the fact

that such images usually occupies isolated regions on the manifold. Furthermore, most

images with sky blue background were scored highest.
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Figure 9.12: Log-likehood evaluation on Cifar test data. Based on log-likelihood score
Left: Top 100 samples, Right: Lowest 100 samples.

9.5 Conclusion

In this chapter, we proposed simple and efficient approach for log-likelihood eval-

uation of external sample using GANs. The inference procedure easily scales to high-

dimension and large data samples. This mechanism can also be applied to other recently

developed implicit generative models such as adversarial autoencoder [177]. In the future,

we wish to investigate the stability/sensitivity issues of finite difference mechanism which

can lead to further speed-up in sampling procedure. We would also like to draw meaningful

quantitative comparison against MLE and Flow-GAN training models. Finally, based on

log-likelihood scores we wish to carefully explore new scheme for data augmentation in

order to boost conventional classifier performance.
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Figure 9.2: BiGAN model outputs. (a) Generated samples. (b) Top generated samples
based on log-likelihood score computed using (9.11). and (c) Reconstructed test samples.
Log-likelihood evaluation of test samples sampled from uniform grid using, (d) encoder
network and (e) generator network + regressor training.
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Figure 9.3: Flow-GAN model outputs. Log-likelihood output when evaluated on test
samples uniformly sampled from fixed grid. Trained using (a), (b) MLE objective and
(c),(d) Hybrid of MLE and GAN objective. For better understanding and visualization,
(b) and (d) displays the same log-likelihood plot which is thresholded from bottom at
particular value.
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Figure 9.4: BiGAN model trained without a gaussian mode. (a) Top 98% generated
samples based on log-likelihood score and (b) Log-likelihood evaluation on uniform grid
using regressor model.

Figure 9.5: Illustrative example of activation function used in the final layer of regressor
network.
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Figure 9.6: GAN model trained without a mode and evaluated using regressor model.
(a) Log-likelihood score of test data sampled from original GAN and (b) Log-likelihood
evaluation on uniform grid.
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Figure 9.7: Log-likehood evaluation on MNIST test data using deep features. Based on
log-likelihood score, for each class it displays Top: Top 100 samples, Bottom: Lowest
100 samples 209



Figure 9.8: Log-likehood evaluation on MNIST test data using image features. Based on
log-likelihood score Left: Top 100 samples, Right: Lowest 100 samples

Figure 9.9: Log-likehood evaluation on generated MNIST data. Based on log-likelihood
score Left: Top 100 samples, Right: Lowest 100 samples
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(a) ε = 10−3 (b) ε = 10−5

(c)

Figure 9.10: Log-likehood evaluation on generated MNIST data at different epsilon
settings. (a), (b) displays best samples and (c) histogram of log-likelihood outputs.
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Figure 9.11: Log-likehood evaluation on MNIST test data when trained without a missing
class. (a) Based on log-likelihood score Top: Highest scored samples, Bottom: Lowest
scored samples. (b) Histogram of log-likelihood score when trained with missing class
9. The score of test samples from class 9 is lowest. and (c) RoC plot compares outlier
detection based on estimated log-likelihood scores as against the logit scores of classifier.
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[103] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. Clustering high-dimensional
data: A survey on subspace clustering, pattern-based clustering, and correlation
clustering. ACM Transactions on Knowledge Discovery from Data, 3(1), 2009.
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