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Conventional particle accelerators use linear focusing forces for transverse con-

finement. As a consequence of linearity, accelerating rings are sensitive to myriad

resonances and instabilities. At high beam intensity, uncontrolled resonance-driven

losses can deteriorate beam quality and cause damage or radio-activation in beam

line components and surrounding areas. This is currently a major limitation of

achievable current densities in state-of-the-art accelerators. Incorporating nonlinear

focusing forces into machine design should provide immunity to resonances through

nonlinear detuning of particle orbits from driving terms. A theory of nonlinear inte-

grable beam optics is currently being investigated for use in accelerator rings. Such

a system has potential to overcome the limits on achievable beam intensity.

This dissertation presents a plan for implementing a proof-of-principle quasi-

integrable octupole lattice at the University of Maryland Electron Ring (UMER).

UMER is an accelerator platform that supports the study of high-intensity beam

dynamics. In this dissertation, two designs are presented that differ in both com-



plexity and strength of predicted effects. A configuration with a single, relatively

long octupole magnet is expected to be more stabilizing than an arrangement of

many short, distributed octupoles.

Preparation for this experiment required the development and characterization

of a low-intensity regime previously not operated at UMER. Additionally, required

tolerances for the control of first and second order beam moments in the proposed

experiments have been determined on the basis of simulated beam dynamics. In

order to achieve these tolerances, a new method for improved orbit correction is

developed. Finally, a study of resonance-driven losses in the linear UMER lattice is

discussed.
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Chapter 1: Introduction

1.1 Motivation

Modern day accelerators have far exceeded expectations of the early acceler-

ator pioneers. Since Rutherford first used naturally accelerated alpha particles to

probe atomic structure, advancements in accelerator capabilities continue to access

previously incomprehensible regimes in both beam energy and intensity. On the

energy frontier, research in super-conducting magnet and radio-frequency (RF) cav-

ities as well as plasma-based acceleration reach towards higher total energy. The

current state of the art is the Large Hadron Collider, at 14 TeV collision energy,

with future plans aimed at a 100 TeV “Future Circular Collider.”

An increasing number of applications require comparable advances in beam

intensity. Intensity scales with the density of particles in a beam and can be mea-

sured in terms of beam power, luminosity or brightness depending on the application.

Some high-intensity applications include high-luminosity colliders, high-brightness

light sources and medical radioisotope production. Many research fields rely on

secondary beams generated by energetic hadrons colliding with targets. Examples

include spallation neutron sources for neutron spectroscopy, accelerator-driven sys-

tems for nuclear waste treatment and neutrino factories for high-energy physics
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research. As beam energy is set by desired target interaction, increased power for

next-generation machines requires increased beam current on target.

At high beam current, Coulomb interactions between charged particles become

significant and induce a space charge force on the beam that complicates dynamics.

This force is highly dependent on the evolving beam distribution and is typically

nonlinear. The dynamics of high-intensity accelerators extend beyond the scope of

conventional accelerator theory, which assumes linearity and negligible space charge.

Space charge induced nonlinearities may drive beam loss but also decrease the loss

threshold. To avoid excessive radio-activation of the surrounding environment, loss

rates must be less than one Watt per meter, effectively capping the maximum beam

intensity that can be safely transported in a beam line. On-going research seeks

to raise the intensity ceiling by better understanding of intensity-driven losses and

development of mitigation strategies. This dissertation describes implementation

of a novel theory of nonlinear focusing proposed to mitigate space-charge driven

resonant losses in future high-intensity rings.

1.2 Historical perspective

Modern accelerator design is based on Courant and Snyder‘s theory of the

alternating-gradient (AG) synchrotron, developed in 1952. [1] In an alternating-

gradient accelerator, quadrupole magnets with linear restoring forces provide trans-

verse confinement of the beam. The breakthrough of alternating gradients (where

the beam is alternatively focused and defocused as it propagates) allowed a higher
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net focusing effect compared to the conventional approach using only continuously-

focusing gradients. With smaller beam sizes, the magnets (the main cost of any

accelerator) could be made smaller and larger radius rings became feasible. As

Courant reminisced in 1980 [2],

We have succeeded in building the Cosmotron, the world’s first accelera-

tor above one billion volts. ... Stan [Livingston] suggested one particular

improvement: In the Cosmotron, the magnets all faced outward. ... Why

not have some magnets face inward so that the positive secondaries have

a clear path to experimental apparatus inside the ring? ...

I did the calculation and found to my surprise that the focusing would

be strengthened simultaneously for both vertical and horizontal motion.

... Thus it seemed that aperture could be made as small as one or two

inches ...

With these slimmer magnets, it seemed one could now afford to string

them out over a much bigger circle and thus go to 30 or even 100 billion

volts.

In the linear focusing of an AG accelerator, particle orbits are regular and

bounded. All particles oscillate transversely with a characteristic frequency called

the beam tune. Such a system is sensitive to resonances and instabilities, as small

magnetic field errors can resonantly couple to the beam. The need to avoid reso-

nances imposes strict limitations on magnetic field precision and machine design.

Ring tunes are chosen as far as possible from known resonance conditions. So-
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phisticated feedback systems are built to control instabilities and damp resonances

and state-of-the-art accelerator modeling codes compute millions of turns to predict

which small nonlinearities lead to beam loss. At the scale of long confinement times,

even perturbative nonlinearities can introduce and drive resonant losses.

From the great lengths taken to maximize linearity, and the accompanying loss

in performance when any nonlinearity is introduced, it is not surprising that even

weak space charge forces can drive losses. In general, space charge acts to compli-

cate the resonance landscape, shifting both the beam tune and resonant conditions.

The nonlinearities that arise due to space charge are at odds with the underlying

assumptions of a linear AG accelerator. For a leap in the intensity frontier compa-

rable to beam energy after the invention of AG focusing, a new approach must be

considered.

1.3 Nonlinear transverse focusing for accelerators

There is no fundamental reason why accelerator focusing must be linear, other

than the linear system has well-understood equations of motion that are known to

be bounded. Boundedness is related to the concept of integrability in dynamics.

An integrable trajectory has conserved invariants that are a function of the phase

space coordinates. With invariants of motion, there is certainty that an orbit which

appears to be bounded over short time scales will continue to bounded for all times.

This is a necessary condition for accelerator focusing, as the beam may be confined

for many millions of turns.
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An integrable system that includes nonlinear fields will be relatively insensitive

to the resonant phenomena that drives losses in AG systems. In the presence of

strong (as opposed to perturbative) nonlinearities, regular driving forces cannot

resonantly couple energy into a single trajectory. If a particle gains energy from

an external force or field error, its oscillation frequency will shift away from the

resonant condition.

Theoretical research into nonlinear focusing seeks to identify integrable (or

near-integrable) systems that include nonlinear focusing forces. Early work found

integrable solutions for round colliding beams with nonlinear beam-beam interac-

tions. [3] A numerical approach using Lie algebra methods showed a system with

arbitrarily strong sextupole and octupole magnets can be optimized for “near-

integrability.” [4] More recently, Danilov and Nagaitsev propose an accelerator de-

sign for which two invariants of transverse motion exist for an arbitrarily strong

nonlinear potential of a particular form. [5] Assuming linear focusing such that the

transported beam is round, there is a family of nonlinear potentials for which trans-

verse particle motion is fully integrable.

1.4 Experimental tests of nonlinear integrable systems

The Integrable Optics Test Accelerator (IOTA) is currently under construc-

tion at Fermilab to test the implementation of the Danilov-Nagaitsev theory. [6]

This includes design of a custom nonlinear magnet that satisfies the condition for

integrability. The University of Maryland Electron Ring (UMER) is identified as
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another testbed for the integrable optics concept. UMER is a 10 keV, 11.52 me-

ter diameter ring that serves as a scaled, low-cost experiment with space charge

physics relevant to higher-energy hadron machines. As UMER can access variable

space charge regimes, it is attractive for an initial demonstration of integrable optics

under different space charge conditions.

While IOTA will test the fully integrable system, design of the custom non-

linear element to high tolerance is a relatively complex task that exceeds the scale

of the UMER experiment. In [5], Danilov and Nagaitsev also discuss the case in

which the nonlinear potential is purely octupolar. While motion in this case is only

quasi-integrable (having only one invariant of motion), orbits are predicted to remain

bounded. The quasi-integrable lattice is identical to the fully integrable case except

for the form of the nonlinear potential. Experimentally, the observed effects should

be similar. The goal of this dissertation is to re-design UMER to include nonlinear

quasi-integrable optics and outline a program to experimentally demonstrate stable

transport and resonance suppression in this novel type of lattice.

1.5 Key terms and definitions

At this stage it seems necessary to introduce and clarify a few key terms.

In the context of transverse accelerator focusing, linear and nonlinear refer to the

dependence of the transverse restoring forces on beam distance from magnetic cen-

ter. Restoring force goes as xn−1 for multipole component n (Dipole has order 1,

quadrupole 2, and so on). Integrability, as mentioned above, is the property of dy-
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namical systems which possess sufficient invariants of motion. For a fully integrable

system, there must be as many invariants as degrees of freedom. For transverse

focusing, we restrict discussion to two-dimensional motion and require two invari-

ants. Lattice is used to describe the arrangement of magnetic focusing elements in

an accelerator. Optics is used synonymously with lattice due to the similarity be-

tween linear transverse focusing and conventional ray optics. The nonlinear magnet

in the integrable and quasi-integrable lattices is referred to as an insert, as it is a

specialized element that is incorporated into the accelerator lattice.

1.6 Organization of the dissertation

Chapter 2 covers relevant background theory for the linear-focusing AG ac-

celerator, while Ch. 3 describes the Hamiltonian approach to finding nonlinear

integrable lattice with analytic invariants. Chapter 4 briefly describes the acceler-

ator modeling codes used in this dissertation, as well as analysis technique applied

to the nonlinear lattice. In Ch. 5 a simplified model of the nonlinear system is

used to study dynamics, quantifying “best case” performance and examining the

dependence of nonlinear damping on space charge intensity. This study motivates

the need for a mode of UMER operation at low space charge density for initial

nonlinear optics experiments.

Chapter 6 describes the UMER apparatus, including available diagnostics and

techniques for data collection developed in this dissertation. Chapter 7 describes

the changes needed to transform UMER from a linear-focusing to quasi-integrable
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octupole lattice, including octupole magnet design and generation and detection of

an ultra-low-current “DC beam.” Also in Ch. 7, the simplified model is used to

study dynamics in the presence of lattice errors and set error tolerances.

Chapter 8 describes the design of the linear ring optics to accommodate the

octupole experiments and meet requirements for quasi-integrability. Chapter 8 also

includes initial results from full ring simulations of the proposed experiments. Fi-

nally, a variation of the quasi-integrable lattice proposed by [5] is modeled and

preliminary measurements made. The key results are summarized in Chapter 9.

Chapter 10 shows the development and application of an orbit-correction al-

gorithm to improve beam steering. This is crucial for the nonlinear experiments, as

lattice performance suffers when the beam centroid is allowed to deviate from the

octupole magnetic center. Experimental measurements of resonant structure and

beam transmission in linear UMER are discussed in Ch. 11, including results for

the low-current test beam. Characterizing the linear lattice resonance landscape is

preparation for the nonlinear experiments, as the most irrefutable positive result is

demonstrating resonance suppression that depends on octupole strength.
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Chapter 2: Theory of Transverse Focusing in Accelerators

This chapter provides a brief introduction to transverse particle dynamics in

a linear focusing accelerator. Section 2.1 introduces the Hamiltonian approach for

single particle equations of motion. This includes identification of the normalized

frame in which the particle motion is reduced to simple harmonic motion. Sec-

tion 2.2 discusses integrability in dynamical systems and identifies the invariants of

motion in the linear focusing accelerator. Section 2.3 describes the condition for res-

onant particle orbits and qualitatively describes particle motion near resonances for

perturbative nonlinearities. Finally, Section 2.4 covers the formalism for describing

collective motion in a distribution of particles. This includes the equations of mo-

tion for the beam edge as well as treatment of space charge effects in high-intensity

beams.

2.1 Particle dynamics in a linear accelerator

Most modern accelerating rings use quadrupole magnets to provide transverse

confinement. This approach is based on the theory of alternating gradient focusing,

first introduced by Courant and Snyder [1], in which linear restoring forces of al-
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Figure 2.1: Frenet Serret coordinate system for accelerator rings. The coordinates

(x, y, s) follow the beam frame along a reference orbit ~r0. The position of a particle

(red) is xx̂+ yŷ in the beam frame and ~r = ~r0 + xx̂+ yŷ in the lab frame.

ternating polarity (focus-defocus-focus) provide net focusing.1 Vertical dipole fields

provide steering, keeping the beam inside the vacuum pipe. This section describes

single particle dynamics in an alternating gradient accelerator containing only linear

(dipole and quadrupole) fields. Further notes on the derivations can be found in

Appendix A, while a much more thorough treatment can be found in [8] and [9].

2.1.1 Single particle equations of motion

The natural frame for describing particle dynamics in an accelerator is the

curvilinear Frenet-Serret coordinate system. [10, 11] In this frame, the coordinate

axes (x, y, s) follow the beam along a reference orbit as shown in Fig. 2.1. Coor-

dinate s is the propagation distance along this reference orbit. In the Hamiltonian

approach, we choose to use s as the independent variable, where s = v0t for beam

velocity v0.

1Also independently discovered by Nicholas Christofilos. [7]
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The conventional accelerator contains only dipole and quadrupole fields, for

bending and focusing respectively. In the beam frame, all restoring forces are linear

in transverse displacement and the Hamiltonian describing single particle motion is

H =
1

2

(
p2
x + p2

y

)
+

1

2

(
Kx(s)x

2 +Ky(s)y
2
)
. (2.1)

Canonical momenta px and py are dimensionless variables. They are related to

physical momenta as px = Px/P0 and py = Py/P0 where P0 is the nominal or “de-

sign” momentum of the beam.2 In the derivation of H, a small angle approximation

is applied, assuming transverse momenta Px and Py are much smaller than total

momentum P .

External focusing is expressed in the terms Kx(s) and Ky(s). The focusing

functions are related to quadrupole strength as Kx(s) = eG1(s)/P0 and Ky(s) =

−eG1(s)/P0 where G1 = dBx/dy = dBy/dx is the quadrupole gradient.3 The sign

difference in G1 indicates the alternating gradient nature of quadrupole focusing:

when G1 > 0, the horizontal force is focusing while the vertical force is defocusing,

and vice versa. From Eq. 2.1 we see that x and y motion are decoupled, such

that H = Hx +Hy. For this reason, transverse dynamics are often studied as a 1D

Hamiltonian system.

Applying Hamilton’s equations of motion,

2x′ is often used in place of px, as x′ = dx/ds = Px/Ps ≈ Px/P0 = px.
3If dipole fields are included, Kx(s) = ρ(s)−2 + eG1(s)/P0 for bending radius ρ(s).
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ż =
∂H

∂pz
(2.2)

ṗz = −∂H
∂z

, (2.3)

we arrive at Hill’s equation:

z′′(s) +K(s)z = 0. (2.4)

Here z indicates either transverse plane, z ∈ {x, y}. In general, K(s) is a piecewise

constant function that has value zero between focusing elements. In an accelerator

ring, K(s) is periodic in s, K(s + C) = K(s) for ring circumference C. With this

periodicity, the solution to Hill’s equation has the form of a Floquet transformation,

z(s) =
√
εβ(s)e±iψ(s), (2.5)

for amplitude constant
√
ε, amplitude function

√
β(s) and phase function ψ(s).

The oscillatory motion of z(s) is referred to as betatron motion. The amplitude ε is

known as the single-particle emittance.

β(s) is also called the betatron or envelope function, as the beam edge follows

the trajectory σ(s) =
√
εβ(s) when ε is the emittance of the highest amplitude

particle in the distribution. β(s) is only dependent on the linear focusing function

K(s).
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2.1.2 Phase advance and tune

At this point it becomes useful to define two quantities used to characterize

particle motion in a ring. The phase advance is found by integrating over the inverse

of the betatron function:4

∆ψs1→s2 ≡
∫ s2

s1

ds

β(s)
. (2.6)

Phase advance per cell (the minimum length over which K(s) and β(s) are

periodic) is a useful quantity for quantifying lattice focusing strength. Another com-

mon metric is tune ν, defined as the number of betatron oscillations per revolution.

In terms of ring phase advance,

ν =
∆ψ0→C

2π
=

1

2π

∫ C

0

ds

β(s)
. (2.7)

2.1.3 FODO lattice

In a ring, focusing function K(s) is chosen such that there exists a peri-

odic solution for β(s). The most ubiquitous choice is the FODO lattice, consisting

of quadrupoles of alternating polarity (F-D-F-D-F-D) separated by field-free drift

spaces. A plot of K(s), x(s) and σ(s) is shown for an example lattice in Fig. 2.2.

UMER is designed and operated as a FODO lattice, although the focusing K(s) can

easily be adjusted.

The periodic solution β(s) is a property of the linear focusing lattice. For the

4Origin of this relationship is shown in Appendix A.
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Figure 2.2: Beam evolution in FODO lattice, including single particle trajectory

(light blue) and beam edge σx (solid red). An injection error in the initial beam

distribution creates envelope mismatch oscillations (dotted light red).

most efficient transport of beam, the size and divergence of an injected beam should

be matched to the envelope function at the injection point. An initially mismatched

beam will oscillate about the equilibrium solution
√
εβ(s), as illustrated by the

dotted curve in Fig. 2.2.

2.1.4 Smooth-focusing lattice

A common theoretical approach is to simplify dynamics by considering a con-

tinuous or smooth-focusing lattice with constant focusing coefficient k = 〈K(s)〉. [12]

In this lattice, β(s) = k−1 constant and the beam edge is constant during transport.

Motion is purely sinusoidal, with z(s) =
√

ε
k
e±iψ(s). The smooth focusing model

is generally not a good approximation except in the case of low phase advance per

cell. In this thesis, a smooth focusing approximation of the UMER FODO lattice is

used to estimate tune in Chapter 11.
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2.2 Integrability in accelerators

Integrability is a crucial concept for ring design, as the beam may be stored

or accelerated over millions of turns. A Hamiltonian system H with N degrees of

freedom is integrable if there exist N invariant quantities Ji of the motion which are

in involution (Poisson bracket [Ji, Jj] = 0). Ji are known as the isolating integrals

or constants of motion. [13], [14]

A time-independent system with one degree of freedom is always integrable.

For N degrees of freedom, existence of N isolating integrals is not guaranteed (there

may be any number from zero to N). There is no universal procedure to find all

integrals for a general system or even to identify the number of independent integrals

that exist. Even if N integrals exist, they may not be easily recognizable. For a

given Hamiltonian, the system can be shown to be integrable (by identifying closed

form expressions for the conserved invariants), but cannot conclusively be shown to

be non-integrable.

Accelerator systems should be both bounded and (ideally) integrable. How-

ever, integrability is violated once we consider realistic perturbations (including

magnetic field errors and space charge forces, not to mention higher order terms

that were neglected in the derivation of Eq. 2.1). Thankfully, according to the

KAM theorem, for small perturbations invariant surfaces continue to exist for most

initial conditions. [15] Therefore, in a real system it is only necessary to operate

near integrability for long term stability.
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2.2.1 Action-angle variables

For any integrable system, there exists a canonical transformation into action-

angle variables, where Hamiltonian depends only on the “action” (or integrals of

motion) Ji. [14] For each degree of freedom in the transverse accelerator Hamiltonian

Eq. 2.1,

Hz =
1

2
p2
z +

1

2
Kz(s)z

2, (2.8)

transformation from phase space coordinates (z, pz) to action-angle coordinates

(Jz, ψz) is made with the generating function

F1(z, ψz) = − z2

2βz

(
tanψz −

β′z
2

)
(2.9)

for z ∈ x, y. The resulting Hamiltonian is

H̃z = Hz +
∂F1

∂s
=
Jz
βz
. (2.10)

As H̃z is independent of angle ψz (betatron phase), the action Jz is constant;

Jz is the invariant of motion in the linear focusing accelerator. As xy motion is

uncoupled, H = Hx + Hy, there are two invariants of 2D motion, Jx and Jy, and

the system is fully integrable. The action Jz is a measure of single-particle orbit

amplitude. It is equivalent to the volume of phase space enclosed by the particle

orbit:
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Jz =
1

2π

∮
z′dz. (2.11)

This invariant quantity is essentially a special case of Liouville’s theorem,

which states that phase space volume occupied by a distribution of non-interacting

particles in a Hamiltonian system is conserved. In the case of the time-independent

linear-focusing Hamiltonian, the phase space volume is a conserved quantity of single

particle orbits.

2.2.2 Courant-Snyder parameters

The accelerator literature typically describes the orbit amplitude in terms of

the Courant-Snyder invariant and parameterizes the phase space volume in terms of

Courant-Snyder parameters. The Courant-Snyder invariant is the same emittance ε

introduced earlier. Orbits are confined to invariant surfaces in phase space defined

by the ellipse

εz = γz2 + 2αzz′ + βz′2 (2.12)

where β is the betatron function previously introduced and α and γ are lattice

functions defined in terms of β as:

α = −1

2

dβ

ds
(2.13)

γ =
1 + α2

β
. (2.14)
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πεz is the phase space area of the ellipse, therefore the Courant-Snyder invariant εz

is related to the action Jz as εz = 2Jz. The total phase space area inhabited by a

distribution of particles is defined by the maximum single-particle emittance. Beam

spot size and divergence are related to the Courant-Snyder parameters as

X(s) =
√
εβ(s) (2.15a)

X ′(s) =
dX(s)

ds
=
√
εγ(s) (2.15b)

2.2.3 Hamiltonian in normalized coordinates

As mentioned above, in the appropriate frame the single-particle motion re-

duces to simple harmonic oscillation. This is done through canonical transformation

to the normalized coordinates:

zN ≡
z√
β(s)

, (2.16)

pz,N ≡ pz
√
β(s) +

αz√
β(s)

. (2.17)

In this frame, the normalized Hamiltonian is

HN =
1

2

(
p2
x,N + p2

y,N + x2
N + y2

N

)
(2.18)

which is instantly recognizable as a simple harmonic oscillator. The particle

orbits x(s) and y(s) trace a circle in phase space coordinates of radius equal to

particle amplitude
√
εβ.
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Figure 2.3: Tune resonance diagram with all relationships mνx + nνy = p up to

order eight. Orders 1-3 are shown with blue, red and green highlights respectively.

2.3 Transverse resonances

In the single particle equations of motion, resonant orbits occur for all rational

tune relationships mνx+nνy = p where m,n, p are integers. [12] Due to the fact that

tranverse focusing in a ring is periodic, resonant orbits can be excited by field errors

in the magnetic lattice. These field errors act as a driving term in the equations

of motion. A particle on a periodic orbit will experience resonant growth if the

appropriate driving term is present. When designing an accelerator we assume all

resonances are driven and choose a off-resonant operating point. Figure 2.3 shows

the resonant relationships up to order eight. When considering very high order
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Figure 2.4: Surface of section for a 1D linear accelerator with nonlinear perturbation.

Noticeable periodic orbits are indicated by arrows.

resonances, the “safe” regions shrink dramatically.

Not all resonances are equally damaging. Generally speaking, resonant growth

is slower the higher the resonance order, defined as m + n. Difference resonances,

where sign(m) = sign(n), are generally stable as energy is transferred between planes

but does not grow without bound. Sum resonances, sign(m) 6= sign(n), allow energy

to couple into the particle oscillation. [16]

In the perfectly linear case, non-interacting particles all occupy an infinitesimal

point in tune space. In reality, many effects act to increase the range of tunes occu-

pied by the beam (the “tune footprint”). Space charge forces (discussed below, Sec-

tion 2.4) and chromatic effects (see Appendix A) both introduce tune spreads that

depend on beam distribution in configuration and momentum space, respectively.
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An additional source of tune spread is nonlinearities in the lattice elements. While

nonlinear components are minimized in accelerator magnet design, some amount of

unwanted harmonic content is unavoidable. In this way, magnetic field errors act

two-fold: they are both the driving term and the source of tune spread that overlaps

resonant conditions.

As nonlinear field errors grow with distance from magnet center, the induced

tune shift increases with particle amplitude. The bare tune ν0 (without errors and

higher order effects) is chosen to be irrational, but the tune footprint encompasses

infinitely many rational relationships. For 1D motion, periodic orbits appear as “dot

chains” in phase space, between layers of irrational orbits that trace a circle. This

effect is demonstrated in Fig. 2.4 for a surface-of-section in a 1D accelerator map.

Despite the perturbation, these orbits still follow invariant surfaces as predicted

by the KAM theorem. There are finite “islands” around the periodic orbits where

nearby orbits are distorted but motion is still regular. Stochastic motion emerges

in regions where islands overlap. At higher amplitude and stronger nonlinearity,

the island overlap leads to a stochastic continuum beyond which particle motion is

unstable. In Fig. 2.4, stochastic orbits surround the 11th order islands. The largest

phase space amplitude with stable motion is the dynamic aperture. [17] The balance

between driving terms (reduced as much as possible through careful magnet design)

and resonance order (higher orders have slower growth rates) ultimately determines

the dynamic aperture of a ring.
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2.4 Collective motion and space charge effects

The prior discussion on linear lattices was mostly limited to single particle

dynamics. This section describes the treatment for an interacting distribution of

particles. Intra-beam space charge forces are considered as a collective self-force due

to the Coulomb mean-field, neglecting particle-particle interactions and collisions.

2.4.1 Collective emittance

Just as emittance ε is a single particle invariant in the linear focusing lattice,

the RMS emittance of a distribution is also a conserved quantity. The beam mo-

ments are calculated as integrals over the normalized beam distribution ρ(z, z′). For

example, the RMS width σz is calculated as

σ2
z =

∫
(z − 〈z〉)2 ρ(z, z′)dzdz′ (2.19)

The RMS emittance is defined in terms of the second order beam moments as

εz,RMS ≡
√
σ2
zσ

2
z′ − σ2

zz′ (2.20)

2.4.2 Space charge effects

The self-force of a beam on itself introduces additional terms in the equations

of motion that are dependent on the beam intensity. In general, the effect of space

charge is to introduce a defocusing force. This reduces the frequency of particle
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oscillation, an effect called “tune depression.” Tune depression is often expressed in

terms ν/ν0 where ν0 is the “bare tune” in the zero-charge limit.

Betatron motion is divisible into coherent and incoherent motion. Coherent

motion occurs in the beam distribution as a whole. If the beam is displaced from

quadrupole centers, it will oscillate coherently at the betatron frequency. Incoher-

ent motion describes the motions of individual particles under the combined effect

of space charge and external forces. Space charge causes both a coherent and in-

coherent tune shift. The incoherent shift is the amplitude-dependent shift in tune

δν = ν−ν0 for each particle. A coherent shift manifests as a decrease in the centroid

oscillation frequency due to image charge forces from the pipe wall. Typically the

coherent shift is much smaller than the incoherent shift. The space charge force

generated by an arbitrary beam distribution is generally nonlinear. As any non-

linearity creates amplitude-dependent tune spreads, the effect of space charge is to

increase the range of the tune distribution (the tune footprint) through incoherent

tune spread.

2.4.2.1 Kapchinskij-Vladimirskij distribution

The Kapchinskij-Vladimirskij (KV) distribution is a special case for which

the space charge force is linear. [18] While this distribution is not physical, it is a

useful tool for the theoretical treatment of beams, as analytic solutions are possible.

Particles are distributed on a constant emittance surface in phase space:
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ρ(x, px, y, py) =
λe

π2εxβxεyβy
δ

(
1

εxβx
(x2 + p2

x) +
1

εyβy
(y2 + p2

y)− 1

)
(2.21)

for line density λ and edge emittances εx, εy. Every phase space projection of the KV

distribution has a uniform distribution out to the beam edge. The RMS emittance

is related to edge emittance (the emittance which contains 100% of the beam) as

εRMS =
εedge

4
. (2.22)

Similarly, the RMS size is related to beam edge as

σRMS =
σedge

2
. (2.23)

A unique (and unphysical) property of the KV distribution is that the inco-

herent tune shift is the same for every particle (therefore, there is no incoherent

tune spread). For a long bunch with a round KV distribution, [19]

∆ν = ν − ν0 = − reCI

2πεceβ3γ3
(2.24)

for beam current I, transverse edge emittance ε (containing 100% of particles)

and velocity βc in a ring of circumference C. re is the classical electron radius and γ

is the relativistic factor. This tune shift is proportional to I/ε and scales with beam

energy as (βγ)−3. For this reason, space charge is typically a concern near injectors

during low energy transport as well as in high intensity rings.
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2.4.3 RMS beam evolution

The evolution of the RMS beam edge can also be described as a Hamiltonian

system. Here the resulting equations of motion are defined. These equations are

valid for any system subject to linear focusing forces. [20,21] Full detail can be found

in many references, including [22] and [12]. The equations of motion for RMS beam

sizes X ≡ σx,RMS and Y ≡ σy,RMS are:

X” +Kx(s)X −
2K

X + Y
− ε2x
X3

= 0 (2.25a)

Y ” +Ky(s)Y −
2K

X + Y
−

ε2y
Y 3

= 0. (2.25b)

The space charge force is included as the beam perveance K, defined as

K =
qλ

2πε0mγ3
bβ

2
b c

2
(2.26)

for line charge density λ. An alternative expression is

K =
I

I0

· 2

γ3
bβ

3
b

. (2.27)

Here I is the beam current and I0 is the Alfven current, I0 = 4πε0
mc3

e
≈ 17 kA for

electrons.
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2.5 Chapter summary

This chapter reviewed the basic principles of particle dynamics in a linear

focusing lattice. Linear orbits conserve the invariant of motion ε, which corresponds

to orbit phase space area. Variations of linear focusing form the backbone of modern

accelerator design. While the linear motion is well understood, these systems are

not robust to perturbations which tend to couple energy into resonant orbits. One of

the main challenges when designing an accelerator is ensuring there will be sufficient

dynamic aperture to transport the injected beam for the desired number of turns

with minimal losses. Many complex feedback systems are implemented to damp

destructive resonances. Transportable beam intensity is limited due to the need

to limit losses for machine protection, while space charge tune spreads also excite

further resonances.
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Chapter 3: Theory of Nonlinear Integrable Optics

Nonlinear integrable optics is currently being investigated as a strategy for

mitigating resonance-driven beam loss. [5, 6] Identification of nonlinear integrable

systems reconciles two sometimes contradictory goals: long term stability of dy-

namics and strongly nonlinear forces for resonance suppression. As reviewed in the

previous chapter, integrability (the existence of conserved invariants in particle mo-

tion) guarantees that the system is dynamically stable and confined for arbitrary

time scales. All accelerating rings are designed to operate near integrability with

minimal perturbation.

Linear lattice focusing as presented above in Chapter 2 is attractive due to

the existence of the Courant-Snyder invariant for any linear focusing function K(s).

The FODO arrangement was provided as an example, but many other options are

implemented according to the optics requirements of the ring. In all cases, particle

orbits follow invariant surfaces defined by εx and εy. The weakness of the linear

lattice is the sensitivity to resonant excitation, as discussed in Section 2.3. For

perturbative nonlinearities and small tune spreads, field errors drive resonant losses

that limit the dynamic aperture.

While small nonlinearities limit dynamic aperture via resonant losses, exter-
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nal nonlinear tune spreads can also damp resonances. Two effects work to suppress

resonant growth and instability. Landau damping with octupole fields is a collec-

tive effect in which coherent instabilities are damped through the introduction of

incoherent motion. [23] For sufficiently strong nonlinear fields with large amplitude-

dependent tune spreads, single-particle detuning is also possible. A resonantly ex-

cited particle that gains transverse energy will decohere from the driving term, which

will limit particle amplitude growth. [24]

The difficulty with designing intentionally nonlinear lattices is maintaining

integrability. As mentioned above, there is no general test for integrability, and

the form of the invariant may not be easily recognizable. This chapter follows the

approach in [5] to find integrable solutions with arbitrarily strong nonlinear elements.

Their approach uses a Hamiltonian formalism to identify a system that (a) includes

arbitrarily strong nonlinear potentials, (b) has conserved invariants of motion and

(c) is realizable in an accelerator lattice.

3.1 Approach to identifying a nonlinear integrable system

A generic nonlinear potential V (x, y, s) is added to the single-particle linear-

focusing Hamiltonian in Eq. 2.1. The new Hamiltonian is:

H =
1

2

(
p2
x + p2

y

)
+

1

2
K(s)

(
x2 + y2

)
+ V (x, y, s). (3.1)

There are no requirements for the transverse fields V (x, y) except that it has non-

linear components xn+1 for n > 1.
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The first assumption in the search for integrable solutions is that the horizontal

and vertical linear focusing is equal. This sets the condition βx(s) = βy(s) =

β(s). Through canonical transformation into normalized coordinates (Eq. 2.17),

the Hamiltonian becomes

HN =
1

2

(
p2
x,N + p2

y,N + x2
N + y2

N

)
+ β(s)V (xN

√
β(s), yN

√
β(s), s) (3.2)

HN is an invariant of motion if the V term is s-independent. This can be done for

any multipole component n of the potential V by choosing longitudinal profile Kn(s)

such that the s-dependence is canceled. For ease of notation, and also following with

the convention in [5], I define U as the potential in the normalized frame,

U(xN , yN , s) ≡ β(s)V (xN
√
β(s), yN

√
β(s), s). (3.3)

For U(xN , yN , s) to be independent of s, the s-dependence in β(s) and V (x, y, s)

must cancel. Arbitrary field V (x, y) can be constructed as a multipole expansion,

where the fields of order n depend on position as V ∝ zn+1. From here it is clear

that for each order n, the s-dependence can be removed by appropriate scaling of

Vs(s) ∝ β−
n+1
2 (s).

In the case of a pure octupole field, where V ∝ z4, if

Vxy(x, y, s) =
κ

β3(s)

1

4

(
x4 + y4 − 6y2x2

)
(3.4)

then
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U(xN , yN , s) =
κ

4

(
x4
N + y4

N − 6y2
Nx

2
N

)
(3.5)

and the normalized Hamiltonian is,

HN =
1

2

(
p2
x,N + p2

y,N + x2
N + y2

N

)
+
κ

4

(
x4
N + y4

N − 6y2
Nx

2
N

)
. (3.6)

Note the addition of the scaling factor κ to parametrize the strength of the potential

U . The invariant is conserved for arbitrary κ, therefore this type of lattice should

remain invariant for arbitrarily strong nonlinearities.

3.1.1 Quasi-integrable lattice

As shown above, the Hamiltonian HN can be made time-independent for ap-

propriate scaling of V in s. The case of invariant HN is referred to the “quasi-

integrable” case, as there is a single integral of 2D transverse motion. As the

invariant is the orbit “energy,” particle motion is bounded (but chaotic). The

quasi-integrable case with octupole potential is the focus of this dissertation, as

the magnet configuration is significantly simpler than in the fully integrable case

while still providing nonlinear detuning.

3.1.2 Fully integrable solution

A fully integrable solution is beyond the scope of this thesis, which covers

design of a quasi-integrable lattice. However, the integrable solution found in [5] is

summarized for the purpose of completeness. The existence of nonlinear integrable
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systems with physically realizable potentials (obeying Laplace’s equation) have huge

implications for accelerator design, as most modern accelerators are a variation

on the linear system described by Eq. 2.1. If this concept is successful, future

accelerators may have very different dynamics and lead to a different formalism

than has been developed for the existing type.

Danilov and Nagaitsev [5] identified a family of physically-realizable poten-

tials U(x, y) such that the motion described by HN has two known invariants. As

discussed, the longitudinal scaling of Vs(s) to remove s-dependence guarantees that

HN is the first invariant. The search for a second invariant quadratic in posi-

tion/momenta assumes a form

I = (ay2 + c2)p2
x − 2axypxpy + ax2p2

y +D (3.7)

for constants a, c and D. For a = 1, c 6= 0, the potential U(x, y) with invariant I is

given by the solution to the Bertrand-Darboux equation [25]:

xy(
d2U

dx2
− d2U

dy2
) + (y2 − x2 + c2)

d

dy

dU

dx
+ 2y

dU

dx
− 3x

dU

dy
= 0 (3.8)

The general solution to this partial differential equation has the form

U(x, y) =
f(ξ) + g(η)

ξ2 − η2
(3.9)

for arbitrary functions f and g and elliptic coordinates
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ξ =

√
(x+ c)2 + y2 +

√
(x− c)2 + y2

2c
(3.10)

η =

√
(x+ c)2 + y2 −

√
(x− c)2 + y2

2c
. (3.11)

The fully integrable Hamiltonian is therefore

H =
1

2

(
p2
x,N + p2

y,N + x2
N + y2

N

)
+
f(ξ) + g(η)

ξ2 − η2
. (3.12)

The condition that a potential be physically realizable in an accelerator requires

that the fields be generated by magnets external to the beam pipe, therefore U must

satisfy Laplace’s equation, ∆U = 0. The freedom allowed through the definition of

functions f and g allows for this. For Laplacian fields, f and g must have the form

f(ξ) = ξ
√
ξ2 − 1 (d+ ta cosh ξ) (3.13)

g(η) = η
√

1− η2 (b+ ta cosh η) (3.14)

for arbitrary constants a, b, d and t. The case of a = 1, b = π
2
t, c = 1 and d = 0

(with t left as a strength scaling factor) is being tested in the IOTA lattice. [26]

Additional IOTA experiments include the exploration of integrable systems with

electron lenses as focusing elements, which avoids the requirement that U satisfy

Laplace’s equation.
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3.2 Implementation of a nonlinear integrable lattice

Implicit in the Hamiltonian Eq. 3.6 is the necessity of external linear focus-

ing K(s). This term is present in the definition of β(s), which is used to define

the normalized coordinates Eq. 2.17. Linear focusing must be present in order for

β(s) to have a solution. The implemented integrable or quasi-integrable nonlinear

lattice therefore consists of two sections: a nonlinear insertion element with po-

tential V (x, y, s) paired with a region of linear (quadrupole) fields for transverse

confinement.

The requirement that βx = βy in the nonlinear insertion demands that the

insertion region be free of quadrupole fields. Inside a quadrupole element, Kx =

−Ky, and a horizontally focusing quadrupole is vertically defocusing. The effect of

quadrupole gradients is to cause ellipticity, but the insertion region must contain a

round beam to meet the integrable condition.

As the envelope function β(s) depends only on linear forces and the planned

octupole insertion contains only third order focusing terms, it is natural to consider

the insertion as a field-free drift space when solving for second order beam moments.

The most natural design, when considering a relatively long insertion element, is to

allow the beam to come to a symmetric waist inside the element as pictured in Fig.

5.1. This design is reminiscent of the low beta insertions in a collider ring, where

the transverse spot size must be reduced as much as possible for highest luminosity

at the collision point. However, in the collider ring, βx(s) and βy(s) are in general

not required to be equal.
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The discussion of integrable lattice design is continued in Chapter 5. A simple

(but not physically realizable) representation of an integrable lattice uses FOFO

transverse focusing between beam waists/insertion regions. A description of the

FOFO lattice is given in Appendix C.

3.3 Chapter summary

Nonlinear detuning is proposed as a method to decrease sensitivity to reso-

nances and, in doing so, radically increase dynamic aperture in circular accelerators.

This chapter followed the derivation of nonlinear integrable lattices proposed by

Danilov and Nagaitsev. The quasi-integrable lattice is identified as the focus of the

UMER nonlinear optics program.
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Chapter 4: Numerical Tools

An important part of the apparatus are the simulation codes used for numerical

studies of the proposed lattice. This chapter covers the four accelerator codes used

to model beam dynamics in the nonlinear lattices. The technique of frequency map

analysis for identifying regions of chaotic orbits and diffusion in accelerator lattices

is also discussed.

4.1 Accelerator modeling codes

A large portion of the experimental planning has employed simulation studies

to examine dynamics and predict lattice behavior both with and without the non-

linear octupole elements. This section reviews the simulation codes used to study

features of the quasi-integrable experiments.

4.1.1 VRUMER

VRUMER (Virtual UMER) is a simple orbit integrator written in Matlab. [27]

VRUMER integrates the linearized single-particle equations of motion subject to

hard-edged magnetic field elements, including ring quadrupoles and dipoles as well

as all steering corrector magnets. The model also includes the background Earth
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field, applied as a continuously acting, position-dependent force based on linear

interpolation between measurement points at the 36 dipoles.

In this thesis, VRUMER is applied to test the performance of orbit correction

algorithms, described in Chapter 10. VRUMER is also used to calibrate beam

position in the quad-as-BPM method (Section 6.4.1). As a result of this work,

VRUMER has been integrated into the Matlab-based UMER interface, and can be

implemented as a ”virtual machine” with the same routines used for machine control

and data collection. Additional information on the VRUMER model can be found

in Appendix G.

4.1.2 MENV

MENV (Matlab ENVelope Integrator) is an in-house tool for integrating RMS

envelope equations. [28] The envelope equations (Eq. 2.25) consider only linear terms

in external and internal forces. Therefore, MENV (and any envelope integrator)

includes only the linear portion of the space charge force on the beam envelope,

2K
X+Y

for perveance K. Although fully customizable, at this point MENV only

includes hard-edged representation of the magnetic elements. In this thesis, MENV

is used for optimization of ring lattice solutions for quasi-integrable experiments, as

described in Chapter 8.
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4.1.3 WARP

WARP is an open source, particle-in-cell (PIC) code used to model self-

consistent beam evolution in accelerator lattices. [29] In PIC simulation, the beam

distribution is approximated by a distribution of charge-weighted macro particles.

The self-force of the beam is calculated by interpolating the macro-particle distribu-

tion onto a uniform grid and solving the field equations on that grid. The gridded

beam self-force is applied while integrating particle equations of motion over each

time step. The name WARP refers to the use of warped coordinate system, where

geometric BEND transformations are used to follow the co-moving beam frame. The

WARP PIC mode has three geometries: 3D, transverse slice, and cylindrically sym-

metric RZ. All PIC simulations in this thesis are run with the WARP 2D transverse

slice package, which has minimal transverse-longitudinal coupling. This is a suit-

able approximation for UMER, which transports a long coasting bunch without

synchrotron motion.

WARP is written in Fortran and C with a Python wrapper. The Python

user interface means WARP is easily customizable and is compatible with many

existing Python modules for data analysis and visualization. WARP includes many

analytic element definitions but also easily allows the inclusion of arbitrary magnetic

fields through an interpolated, gridded BGRD field element. The WARP model of

the UMER lattice includes gridded field elements for ring quadrupoles and dipoles,

calculated using the in-house Biot-Savart integrator MAGLI.

In this thesis, WARP is used for simulations where accurate resolution of the
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space charge forces is necessary. In addition, the MAGLI-generated gridded field

elements are more representative of the UMER magnets than the hard-edged field

models used in other codes. When benchmarking different codes, WARP results

with gridded fields are assumed to be the most accurate.

4.1.4 Elegant

Elegant (ELEctron Generation ANd Tracking) is a 6D accelerator tracking

code. [30] Elegant also supports many different analytic field elements, including

matrix-based tracking and canonical kick (symplectic) elements. Elegant includes

space charge effects, with transverse space charge implemented as kick elements

based on a frozen-in model of beam charge distribution.

Elegant includes many powerful built-in modules for accelerator modeling, in-

cluding frequency map analysis (below, Section 4.2) and lattice matching/optimization

routines, and is widely used to model a variety of rings. However, the space charge

model is not self-consistent. Additionally, the limited element models available in

Elegant are not the most accurate representations of the fringe-dominated UMER

magnets. For work in this thesis, Elegant is only used for calculations in a zero-

charge limit. Elegant optimization routines are applied to lattice matching problems

using the built-in envelope integrator (Chapter 8), and a reduced model of the quasi-

integrable system is examined in Elegant to study the effects of errors in external

focusing (Chapter 5).
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4.2 Frequency Map Analysis

A standard approach to understanding long path length particle dynamics in

an accelerator, particularly the effects of nonlinearities and resonances on dynamic

aperture, is frequency map analysis (FMA). Originally applied to the study of ce-

lestial mechanics, this technique has been applied to accelerator dynamics [31] and

is incorporated into the general cookbook of accelerator tools. This is a powerful

technique for simulation studies, but has also been applied to experimental data as

well.

A frequency map is a plot of particle initial position in frequency (tune) and

configuration space. The color axis dν corresponds with the nonlinearity of a particle

orbit. In this application of FMA, the orbit is divided in time (so → smid and

smid → sfinal) to calculate two frequency values, ν1 and ν2 and dν ≡ ν1 − ν2. High

dν indicates an orbit with shifting frequency (due to diffusion) or chaotic behavior

(due to orbit irregularity), while dν → 0 for regular orbits. Lines of high dν indicate

resonance structures, which may contribute to aperture limitation through particle

diffusion.

FMA is a built-in feature of the Elegant code. While not included in standard

WARP packages, I wrote an FMA module accessed at the user-interface (Python)

level. The general approach is to define an initial particle distribution on a transverse

(xy) grid. These are zero-current simulations: particles are not weighted macro-

particles, but non-interacting test particles that sample the lattice dynamics. In

this way, we isolate nonlinearities in the lattice from nonlinear behavior driven by
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space charge. The distribution is initiated at a chosen s-location, and propagated

for a number of turns. The tune and dν are calculated as described above, using

Numerical Analysis of Fundamental Frequency (NAFF) to determine the lowest

frequency component of transverse motion.

4.2.1 Numerical Analysis of Fundamental Frequency

In accelerators, position data used for frequency calculation is often limited in

number of turns. Frequency resolution using Fourier transformation scales as 1
N

for

number of sample points N . The NAFF algorithm allows frequency calculation to a

higher resolution ∼ N−4. The trade-off is the increase in computational time. The

fundamental frequency ω1 of the signal f(t) is the maximum of the overlap integral

φ(ω) =
1

2T

∫ T

−T
e−iωtf(t)dt. (4.1)

ω1 is found by applying a minimum-seeking routine to −φ(ω). Pseudo-code for

the implementation of NAFF for particle data in this thesis is shown in Appendix

D.

4.2.2 Calculating dynamic aperture and tune spread from FMA

FMA is applied to predict dynamic aperture and tune spread for a given

nonlinear lattice configuration. Fig. 4.1 shows typical results for a simple model

of a single-channel quasi-integrable octupole lattice, discussed in further detail in

Chapter 5. Fig. 4.1(a) shows particle dν (color-axis) versus initial particle position
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(a) Test particles plotted in configuration space (corresponding with

particle initial positions)

(b) Tune footprint of test particles.

Figure 4.1: Example of frequency map analysis for a simple model of quasi-integrable

octupole lattice. A radial cut is made as indicated in (a), this corresponds with

colored region in (b) tune footprint.
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in X and Y. Particles that are lost during the simulation are outside the dynamic

aperture and are not plotted. As the shape of the dynamic aperture is not round but

the matched beam is initially round through the octupole channel, effective dynamic

aperture is defined to be the maximum radius circle that contains only stable initial

conditions. Particles outside this boundary in Fig. 4.1(a) are masked in gray.

Octupole-induced tune spread is calculated based only on the particle distri-

bution within this radial cut-off. This is important, as considering the tune spread

across all stable particles will result in over-estimation since the largest tune shifts

occur near the edge of the dynamic aperture. To distinguish tune spread from the

“chaos metric” dν, notation δν is used to indicate the half-width of the tune foot-

print (equivalently shift from the bare linear lattice tune ν0). The spread of tunes

around the linear lattice tune can be thought of as the tune spread that is imprinted

on the particle distribution due to external nonlinearity. Two figures of merit are

used for this tune spread: the maximum tune spread, max |ν − ν0|, and the RMS

tune spread, RMS(ν − ν0). As seen in Fig. 4.1(b), for the error-free, simple model

of the single-channel lattice the tune footprint is symmetric around the bare linear

lattice tune, νx = νy = ν0. The RMS and maximum spreads are calculated relative

to this bare tune.

4.3 Chapter summary

The numerical tools applied to the design of the quasi-integrable lattices are

discussed. WARP and Elegant are the main tools for exploring nonlinear particle
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dynamics, while VRUMER and MENV are primarily used to explore tuning and

optimization of the UMER lattice for the proposed experiments. As the WARP

model includes gridded field elements that are a more faithful representation of

UMER magnetic fields than the hard-edged approximation in other codes, this is

used as the baseline for accuracy when benchmarking between codes.
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Chapter 5: Particle Dynamics in a Quasi-Integrable Octupole Lat-

tice

As introduced in Chapter 1, a quasi-integrable octupole (QIO) lattice is pro-

posed as a way to mitigate resonant beam loss in accelerating rings. Large amplitude-

dependent tune spreads, driven by external nonlinear potentials, detune incoherent

single-particle resonances and damp collective oscillations that otherwise lead to

instability, deteriorate beam quality and limit dynamic aperture. While strong

nonlinearity can reduce intensity-driven beam loss, quasi-integrability ensures that

stable trajectories exist. In this chapter I use simulation to study properties of the

QIO octupole lattice as described in [5] using a simple reduced model.

The basic recipe for nonlinear integrable optics presented in [5] consists of

non-interacting particles propagating through a constant nonlinear potential in the

normalized frame (Eq. 2.17). For the case of an octupole potential, transverse par-

ticle motion has one conserved invariant (originally shown in Eq. 3.6 and rewritten

here):

HN =
1

2

(
p2
x,N + p2

y,N + x2
N + y2

N

)
+
κ

4

(
x4
N + y4

N − 6y2
Nx

2
N

)
. (5.1)

This simple model assumes external linear focusing, which is implicitly included
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Figure 5.1: Simple quasi-integrable system consisting of focusing lens and octupole

insert.

through the x2
N +y2

N term. The nonlinear potential is contained in the second term.

Eq. 5.1 places constraints on both the external focusing and nonlinear potential. For

the case of a “round” (or XY symmetric) beam, βx = βy, we preserve this invariant

if the lab-frame nonlinear potential scales properly with the betatron function (this

maintains the constant potential in the normalized frame). Linear focusing elements

external to the nonlinear element must provide a round beam through the nonlinear

insert.

To achieve this in a ring, we design a linear lattice in which the beam comes

to a symmetric waist over a long drift (field-free) section. A nonlinear element

with appropriate longitudinal field profile is then inserted in this drift space. The

simplest model contains two alternating elements: the nonlinear insertion device,

and the linear focusing lattice between insertions. Particle evolution through linear

focusing elements is reduced to a transfer function applied as a matrix operation

(see Appendix B). The transfer function must be equivalent to an XY symmetric

focusing lens for the desired beta function. This is shown schematically in Fig. 5.1,

where the linear lattice transfer function is labeled “T-insert.”
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Figure 5.2: Diagram of reduced model for QIO lattice, including octupole potential

(gray), betatron lattice function (red) and thin-lens kicks (black).

Without the nonlinear insert, a periodic arrangement of focusing elements

and drift spaces is referred to as FOFO lattice. The periodic, matched solution for

β(s) comes to a waist between focusing elements. Appendix C contains analytic

expressions for β(s). In the following discussion, β∗ is used to indicate the beam

size at the waist.

The reduced model consists of only the nonlinear insert and a thin lens “T-

insert.” This model is visualized in Fig. 5.2. Particle propagate while immersed

in the nonlinear fields and experience periodic focusing impulses. With this simple

model, I investigate the fundamental properties of a quasi-integrable octupole lattice

of this type, including dynamic aperture, tune spread and invariant conservation.

I study the effect of errors in the nonlinear insertion, but assume that the linear

lattice sections external to the insertion are error-free.
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5.1 Parametrization of the octupole lattice

There are only three lattice parameters that define the simple model of a

quasi-integrable lattice: insertion length, amplitude of nonlinear field and strength

of external focusing. Space charge density could be considered a fourth, but initially

dynamics are considered in the zero-current limit. The insertion length is set as L =

64 cm, which is the length of a UMER 20o section. The remaining two parameters

are tuned for maximum dynamic aperture and largest possible tune spread. In this

case, dynamic aperture is determined by the stability of particles after 1024 “turns”

(passes through one period of simple model) and defined in terms of particle initial

position in configuration space.

Octupole strength is defined in terms of the peak octupole gradient in the

insertion element. Geometric strength K3 is defined in terms of gradient G3,

K3 ≡
G3

Bρ
(5.2)

for beam rigidity Bρ.1 and octupole gradient

G3(s) ≡ 1

6

∂3Bx

∂y3
. (5.3)

To meet the integrable condition (that the octupole potential is constant in the

normalized frame), the longitudinal octupole gradient profile should be equal to

K3(s) = κβ(s)−3. Here κ is a free scaling parameter for octupole strength that

appears in the normalized Hamiltonian, Eq. 5.1. While κ is like a natural choice

1Bρ = p/q for momentum p and charge q
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to parameterize octupole strength from a dynamics perspective, I choose to use the

gradient G3,max instead for easier conversion to required octupole excitation. With

this choice, the ideal longitudinal profile of the octupole fields is

G3(s) = G3,max

(
β∗
β(s)

)3

(5.4)

For 1 A peak current in the octupoles, G3,max ∼ 50T/m3. For a waist size of β∗ = 0.3

m and 10 keV electrons, this corresponds to a strength factor of κ = 3980 m−1.

There are several convenient parameters that may be used to define external

focusing strength. A natural choice is k, which appears in linear lattice transfer

function for a thin focusing impulse,2

T =
[

1 0
−k 1

]
. (5.5)

k has units m−1 and is related to the thin-lens focal length as k = f−1 (also k = K1l

for geometric quadrupole strength K1). However, this is not the most ideal choice

to define external focusing strength, as it has no intuitive relation to observable

quantities (such as beam size or lattice tune). The periodic envelope solution β(s)

depends only on k and L (see Eq. C.11). In this dissertation, focusing strength is

parameterized in terms of beam waist size β∗. An expression for β∗ in terms of k

and L is given in Eq. C.9.

Phase advance of a particle orbit through the insertion is another useful quan-

tity, as it directly correlates with maximum possible octupole-induced tune spread.

2See Appendix B for matrix representation of focusing optics.
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An expression for ψdr in terms of k and L is given in Eq. C.12. To better connect

focusing strength with maximum tune spread, it is easier to define a “tune advance”

for particle motion in the octupole insert, where νdr ≡ ψdr/2π. As the desired phase

advance in the linear lattice is nπ, νdr is the fractional lattice tune. In the following

sections, focusing strength is defined in terms of both tune advance νdr and β∗.

5.2 Simulations with reduced model for QIO octupole lattice

Simulations were run in both Elegant [30] and WARP [29]. In general, both

codes gave nearly identical results. Choice of code was dictated by the physics being

addressed. As described in Section 4.1.3, WARP is a very customizable code that

is capable of accurately resolving space charge effects. Existing WARP models of

UMER include realistic gridded field measurements based on PCB configuration.

Elegant, while less customizable, includes a suite of powerful, built-in tools and is

more widely used in the accelerator community. Further details on the simulation

models used here are discussed in Appendix E.

5.2.1 Invariant tracking in the simple octupole lattice.

The appeal of the quasi-integrable lattice is that the nonlinear particle motion

has a conserved invariant. For a well-behaved (non-diverging) invariant, this guar-

antees that orbits are bounded for arbitrarily long times. In the lab, particle orbits

are subject to non-ideal forces, including magnetic field errors and nonlinear space

charge forces. Thankfully, invariant surfaces are theorized to still exist for pertur-
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Figure 5.3: Conserved invariant HN for simple quasi-integrable octupole lattice,

calculated in WARP simulation with no space charge.

bations from integrability. [15] For real systems, minimizing perturbations has been

sufficient for million-turn storage of beam in rings. This should also be sufficient

for the nonlinear lattice - if we are “close-enough” to the quasi-integrable solution

particle orbits will be stable.

I use the simple octupole model in WARP to track the invariant quantity HN

(Eq. 5.1) for lattice parameters L = 64 cm and k = 3.3264m−1 (β∗ = 0.3 m and

νdrift = 0.2603). For 1024 passes through this octupole channel, a particle of 〈HN〉 =

1.02×10−5 m experiences RMS variation of 2.8×10−10 m (0.003%) without octupoles

and variations of 1.9×10−8 (0.19%) for maximum octupole current of 1 A (G3,max =

50T/m3). Despite the small-amplitude oscillation, the particle energy appears to be

well-bounded as expected. Invariant evolution for a selection of particles at various

amplitudes is shown in Fig. 5.3. Different orbits are distinguished by color. The

right plot is a close-up of the left.

An identical test was run with the Elegant model. A particle of amplitude

〈HN〉 = 1.03 ·10−5 has an RMS variation of 1.3 ·10−8 (0.13%) for maximum octupole
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Figure 5.4: Conserved invariant HN for simple quasi-integrable octupole lattice,

calculated with Elegant.

current 1 A (G3,max = 50T/m3). Accompanying plots are in Fig. 5.4.

Discrepancy between true HN conservation and the observed low-level varia-

tion is likely due to numerical noise and/or higher-order terms in the Hamiltonian

that are truncated by small angle approximations. As Elegant uses matrix-based

tracking, the variation is likely due to truncation errors. Additionally, the octupole

profile G3(s) is approximated by flat-topped octupole elements, which may con-

tribute to the variation. The smoothly-varying octupole element in WARP is closer

to the target function. However, the percent variation is comparable to the Elegant

results, suggesting that interpolation across finite step size may contribute as well.

Poincaré plots typical of a single stable particle from the WARP simple model

simulation are shown in Fig. 5.5. In a perfectly linear system, we expect motion in

the normalized frame to be simple harmonic motion, tracing out a spherical surface

in [xN , yN , x
′
N , y

′
N ] space with amplitudes Jx = 1

2

(
x2
N + p2

x,N

)
, Jy = 1

2

(
y2
N + p2

y,N

)
.

Instead, the particle lives on a surface defined by Eq. 5.1, which is highly x-y coupled

and therefore has no simple projection in any plane.
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Figure 5.5: Particle motion in normalized coordinates in a WARP simulation with

κ = 3940 (β∗ = 0.3 m and G3,max = 50 T/m3). Launch position is indicated with

red circle.
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5.2.2 Frequency Map Analysis of simple model

Frequency map analysis (FMA) [31] is applied to the simple model of the

nonlinear channel, as described in Section 4.2. This a method to simultaneously

sample dynamic aperture and quantify spatially-varying nonlinearities in the lattice.

Here it is applied to the simple model to estimate the “best-case” aperture and tune

spread for the quasi-integrable octupole lattice.

FMA results from both WARP and Elegant models are shown in Fig. 5.6 and

Fig. 5.7 respectively. For both these simulations, a zero-current particle distribution

is initiated over a square grid between x, y = [0, 2] cm and tracked for 1024 passes.

Particles are launched at the center of the octupole channel, at the matched solution

waist βx = βy = β∗. Therefore, aperture size should be interpreted relative to

the expected beam size at this location in the lattice, xRMS =
√
εRMSβ∗. The

simulation parameters are identical to the previous section. Here the “thin-lens”

external focusing has a strength of k = 3.3264 m−1, for β∗ = 0.3 m and νdr = 0.2603,

and peak octupole gradient is G3,max = 50 T/m3.

Figures of merit are dynamic aperture and tune spread, quantified as both

max |δν| and RMS tune spread RMS(δν) for δν = ν − νdr. For the given oc-

tupole channel parameters, Elegant predicts DA = 0.62 ± 0.01 cm. The error-bar

is taken to the the resolution of the simulated gridded distribution. In Elegant,

the maximum tune spread imprinted on all stable particles within the 1024 pass

aperture is max δν = 0.256, close to the predicted maximum max δν = νdr. How-

ever, max δν = 0.113 and RMSδν = 0.034 for particles within the largest circular
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(a) Configuration space.

(b) Tune space with up to 3rd order resonance lines.

Figure 5.6: Frequency map analysis of simple octupole lattice from WARP model,

for operating point β∗ = 0.3 m, νdr = 0.2603.
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(a) Configuration space.

(b) Tune space with up to 3rd order resonance lines.

Figure 5.7: Frequency map analysis of simple octupole lattice from Elegant model

for operating point β∗ = 0.3 m, νdr = 0.2603.
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Figure 5.8: Particle tune distribution versus amplitude from Elegant calculation.

Particles outside the round dynamic aperture limit are shown in light gray.

dynamic aperture. The distribution of tune versus initial radial position is shown

in Fig. 5.8 for operating point β∗ = 0.3 m, νdr = 0.2603.

In WARP, the maximum radial aperture is DA = 0.62 ± 0.005 cm. The

maximum tune spread imprinted on all stable particles within the 1024 pass aperture

is max δν = 0.250, while max δν = 0.108 and RMSδν = 0.032 for particles within a

circular dynamic aperture. These numbers are very similar to the Elegant prediction

and demonstrate good agreement for the particle dynamics between the two codes.

Dynamic aperture is related to a maximum accepted emittance as:

ε =
DA2

β∗
. (5.6)

In this case, maximum emittance for the edge of the beam to be within the stable

aperture is εedge ≈ 130 µ m. The proposed low-current beam for UMER experiments

has measured edge emittance εedge ∼ 100µm.3 At the waist the matched beam edge

3Discussed in Chapter 7.
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is r(s∗) =
√
εedgeβ∗ ≈ 0.55 cm, comparable to the aperture limit DA = 0.62 cm.

Another proposed low-current beam has calculated emittance ε = 0.13 µm. [32] The

octupole strength required for DA = redge would be G3,max ∼ 47000 T/m3, outside

the capabilities of the UMER octupole magnets.

5.3 Choosing an operating point for the octupole lattice

When choosing an octupole strength for the quasi-integrable lattice, we want

to maximize amplitude-dependent tune spread for the strongest possible damping of

resonances. At the same time, as a general rule of lattice design we should maximize

dynamic aperture to avoid particle losses. In the quasi-integrable lattice, the tune

shift is largest for particles near the aperture limit. The aperture limit is inversely

proportional to octupole strength due to unstable fixed points in the quasi-integrable

potential.

Examination of the Hamiltonian in 5.1 reveals one stable fixed point at (xN , yN) =

(0, 0) and four unstable fixed points at (xN , yN) =
(
±
√

1
2κ
,±
√

1
2κ

)
. [24] This should

result in unstable orbits beyond a radius rmax =
√

β∗
2κ

. Meanwhile, the tune spread

is bounded by δν ≤ νdr, as the integer resonance for fractional tunes ν = 0 is very

strong. This relationship between aperture and κ, tune spread and νdrift is shown

in Fig. 5.9. In Fig. 5.9(a) the shaded surface is the estimated aperture limit based

on fixed point location, rmax =
√

β∗
κ

. In Fig. 5.9(b) the shaded surface is the bare

lattice tune. Red bars indicate nominal operating point chosen for the channel oc-

tupole lattice at UMER. Elegant predictions agree well with the analytic results,
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(a) Dynamic aperture (b) maximum tune spread

Figure 5.9: Parameter space landscape of simple octupole lattice, generated with

Elegant FMA for 1024 turns. Figures of merit are plotted vs. peak octupole strength

and waist size.

with tune spreads and radial aperture only slightly less than the predicted values.

Choosing a design point for nonlinear experiments requires balancing octupole

strength with external focusing to maximize observable tune spread without exceed-

ing the aperture and driving transverse beam loss. Fig. 5.10 shows maximum beam

radii and tune spreads for two different emittance values: ε = 100µm and ε = 7.6µm,

corresponding with values for two UMER beams (low-current DC beam described

in in Chapter 7 and the 0.6 mA pencil beam in Chapter 6). Here maximum beam

radius is calculated to be rmax = 2
√
εRMSβ∗ when the beam is within the stable

aperture and rmax =DA when it is not. As expected, tune spread is maximized

for operating points where the beam size is limited by the dynamic aperture. The

red line in Fig. 5.10 indicates nominal operating point used in most calculations.

58



The goal of initial experiments is to operate near the aperture limit for maximum

observable spread.

The parameters G3,max = 50 T/m3 and β∗ = 0.3 m as identified as a promising

operating point for planned experiments with low-current, high-emittance beams.

This point is marked in the plots as a red line. Less octupole current is required for

lattices with smaller β∗ and reliance on existing UMER optics makes it challenging

to achieve a very small β∗. However, predicted tune spreads increase with smaller

β∗. β∗ = 0.3 m is chosen as a reasonable compromise, and most calculations in

this chapter are computed near this operating point. Experiments with smaller

emittance beams (with small redge) require either larger β∗ or stronger octupole

fields. Fields with G3,max > 150 T/m3 may require more than passive cooling to

avoid magnet damage, as Ioct exceeds the usual threshold of 3 A for UMER PCBs.
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(a) RMS beam radius, ε = 100µm. (b) Tune spread, ε = 100µm.

(c) RMS beam radius, ε = 7.6µm. (d) Tune spread, ε = 7.6µm.

Figure 5.10: Parameter space landscape of simple octupole lattice, generated with

Elegant FMA for 1024 turns.
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5.4 Damping of mismatch oscillations and halo suppression

An important limitation of high-intensity beam transport is the phenomenon

of beam halo. A demonstrated mechanism for halo generation is resonant interac-

tion between individual particles and the beam core. A beam that is mismatched

oscillates about the optimum transverse size. This coherent oscillation can drive

particles to the halo region through parametric particle-core resonance. [33], [34]

Although halo is low-density, generally containing < 0.01% of the total current, in-

terception on internal boundaries is sufficient for radio-activation of the surrounding

environment in a high intensity machine.

NLIO is predicted to suppress halo formation by quickly damping coherent core

oscillations. This effect was thoroughly investigated in simulation studies supporting

the IOTA ring. [24], [35]. For a strong nonlinear lattice in both the integrable and

quasi-integrable (octupole lattice) cases with weak space charge, the previous study

showed no visible halo after 500 passes through a similar reduced model. This

work was repeated for parameters appropriate to UMER in order to understand

the interplay of space charge tune shift with external octupole-induced tune spread.

This is important for UMER experiments, as even the lowest charge (0.6 mA) beam

used in normal operation has a significant space charge tune shift of ν − ν0 = 0.94.

Simulations were done in the WARP model, with parameters L = 0.774 m

and external focusing strength k = 4.200 m−1, which gives β∗ = 0.185 m and

νdrift = 0.358. Octupole strengths of G3,max = 53.8 T/m3 (κ = 1020) were compared

to the linear (G3,max = 0) case. The initial distribution is KV-like: particles are
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(a) Initial particle distribution (b) Final distribution, G3,max = 0

(c) Final distribution, G3,max = 53.8T/m3

Figure 5.11: (a) Initial and (b,c) final distributions after 500 “turns” for core/halo

particles with and without octupole fields.

seeded on a surface in [xN , yN , x
′
N , y

′
N ] space with value HN = H0. In this case, the

effective emittance value was set to Hedge = 5× 10−6m, which gives a beam size in

the FOFO lattice equivalent to edge emittance ε = 10 × 10−6m. This is similar to

the UMER 0.6 mA (pencil) beam, which has initial RMS emittance ε ∼ 7.6× 10−6

m. This type of distribution is used to stay consistent with the work in [24].
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(a) Linear lattice

(b) Octupole lattice, G3,max = 53.8T/m3

Figure 5.12: Evolution of halo (blue, upper) and core (red, lower) populations for

60µA beam current without (a) and with (b) octupole fields.

(a) Linear lattice

(b) Octupole lattice, G3,max = 53.8T/m3

Figure 5.13: Evolution of halo (blue, upper) and core (red, lower) populations for

0.6 mA beam current without (a) and with (b) octupole fields.
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The particle distribution is seeded at the start of the channel (downstream

of the thin lens kick) with an initial mismatch (the beam core is 30% smaller than

the matched solution in both planes). In addition to the mismatched distribution,

which I refer to as the “core”, I seeded a witness distribution of particles with zero

current weight to map out the halo dynamics. This “halo” distribution is initiated

with the same “emittance” Hedge as the core but without mismatch. This is similar

to the core/pre-halo approach used in [24]. The initial distributions are plotted in

Fig. 5.11(a). For this case, “edge emittance” Hedge = 5 × 10−6. Core particles are

plotted in red, overlaid on the halo distribution in blue.

The other two plots in Fig. 5.11 show the final distribution of a low-charge

(0.03 mA) beam core and halo after propagating 500 turns through the octupole

channel. In a linear FOFO lattice with G3,max = 0, halo particles are driven to

higher amplitudes and the beam core oscillates about the matched beam size. Note

that the core appears to have relaxed to the matched condition but this is an artifact

of examining a single snapshot. In fact, the core oscillations continue out to 500

turns in this case. In comparison, for the case G3,max = 53.8 T/m3, the core and

halo populations quickly filament and equilibrate to a steady-state. There is small

emittance growth of the core when compared to the linear case, but there are no

high-amplitude halo particles.

Simulations were run for a variety of current densities for fixed effective emit-

tance. Beam currents from 0.6 mA to 0.01 mA were tested. Fig. 5.12 compares

the time-evolution of the core and halo populations for the 0.06 mA beam with

and without an octupole insertion. In the linear FOFO lattice the maximum halo
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extent grows linearly until saturating at about twice the RMS core size, at which

the halo particle frequency is no longer resonance with the core mismatch oscillation

frequency. The amplitude of the core mismatch oscillations remains constant out to

500 turns. When octupole fields are added, the halo population does not grow at

all and the core oscillations are quickly damped within the first 100 turns.

Fig. 5.13 shows the same plot in the 0.6 mA case. At higher current density,

the efficacy of the octupole insert is reduced. In the linear lattice, the halo still

saturates at approximately twice RMS beam radius, but the growth is more rapid

(within 50 turns). Additionally, the space charge force also acts to decohere the

mismatch oscillation, and by turn 500 the oscillation has been mostly damped out

(although the damage has already been done in terms of halo growth). With the

octupole insert turned on, halo is partially damped, although the population still

grows to ∼ 1.5x the core radius. Core mismatch oscillations are also completely

damped, but this takes longer (∼ 200 turns) than in the low-charge case.

Fig. 5.14 plots the percent growth of the RMS halo size with and without the

octupole insert after 500 turns. In all cases the octupole insert reduced halo growth.

However, the relative effect when compared to the linear cases was diminished in

the presence of space charge. Even the 0.6 mA beam, which has the lowest current

of all “standard” UMER beams, suffers from significant space charge tune spread

(0.85 depression in the standard FODO lattice).

Extrapolating the curve in Fig. 5.14, at sufficiently high space charge density

we expect the insertion will have no observable effect on halo growth. Naively,

one might assume that dialing up the octupole strength will improve damping for
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Figure 5.14: Percent halo growth between initial and final halo distribution after

500 turns in simple octupole lattice, with and without octupole fields.

higher charge beams. However, as discussed in Section 5.3, the maximum available

octupole tune spread is frozen-in. If the beam size is much smaller than the available

stable aperture, increasing octupole strength will increase the damping rate up to a

certain point. Once beam size starts to exceed the area of stable aperture, dialing

up the octupole strength will not increase the imprinted tune spread but, instead,

high amplitude particles will become unstable and be lost.

As we intend to study mismatch-driven halo evolution and suppression in the

octupole lattice, there is compelling reason to extend UMER operation to lower

space charge density than the standard low-charge beam at 0.6 mA. For nonlinear

optics experiments, this will be accomplished through the double-apertured and

DC-mode beams, which both have beam currents in the µA range.
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5.5 Chapter summary

In this chapter I used a reduced model of a quasi-integrable octupole lattice to

investigate particle dynamics and set tolerances for planned single-channel nonlinear

experiments. In the zero-charge, single particle limit, the octupole-induced tune shift

has a characteristic “arrow” shape in tune space. The dynamic aperture is sharply

defined by fixed points in the transverse potential. I choose a nominal operating

point at β∗ = 0.3 m and G3,max = 50 T/m3 that should allow for operation near

maximum tune spread with a low-current, high-emittance beam.

The effect of octupole potentials on halo formation due to collective mismatch

oscillation is studied. For low beam currents, octupole potentials quickly damp the

mismatch oscillation and no halo is observed. Two effects are observed when space

charge is included. The space charge force acts to decohere the core oscillations but

also increases the rate of halo growth. The effect of the octupole-induced damping

is reduced in the presence of space charge. For initial testing we will operate at low

space charge density, where the octupole nonlinearity will have a stronger effect.

Space charge tune shift complicates the dynamics. Due to the space charge

tune spread, only an infinitely small sample of the particle distribution will meet the

integer phase advance condition exactly. It is assumed that tune-depressed particles

will need to be sufficiently close to the quasi-integrable condition to have stable

motion. This further motivates the use of the low-current, high-emittance beam,

which is predicted to have very small space-charge tune shift ν − ν0 = 0.005 (to be

discussed in Chapter 7).

67



Chapter 6: UMER Experimental Apparatus and Diagnostics

The University of Maryland Electron Ring (UMER) is a 10 keV electron stor-

age ring used to study the dynamics of intense electron beams over long time scales.

This section describes the layout of UMER, as well as primary diagnostics and gen-

eral measurement techniques. UMER is a flexible machine supporting a range of

optics and beam intensity. The design supports FODO transport at different space

charge densities for the purpose of studying intensity-dependent beam physics.

Section 6.1 describes the overall layout of UMER. Section 6.2 describes the

electron gun and properties of the apertured beams. Section 6.3 covers available

diagnostics and Section 6.4 covers two methods for measuring orbit distortion and

resonant structure that are used in later chapters.1

6.1 UMER hardware

A diagram of the ring is shown in Figure 6.1. The nominal UMER operating

parameters are listed in Table 6.1. Most parameters can easily be varied, including

bunch length, energy, and lattice tune. UMER is laid out as a 36-sided polygon,

comprised of 18 modular 20o sections. A single 20◦ section is shown in Fig. 6.2.

1Chapter 10 and Chapter 11, respectively
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Table 6.1: Nominal parameters for the UMER lattice.

Beam energy 10 keV

Beam current 0.6 - 100 mA

Circumference 11.52 m

Pipe diameter 5.08 cm

Bunch length 100 ns

Revolution period 197.2 ns

Repetition rate 60 Hz

FODO cell length 32 cm

Bare tune 6.7

Each ring section contains two dipole magnets placed over 10◦ pipe bends and four

quadrupole magnets spaced at 16 cm intervals. Additionally, each section contains

room for diagnostics directly between dipoles. Fourteen of the eighteen ring sections

contain ring chambers, which house beam position monitors and transverse-imaging

phosphor screens. Three have glass breaks in the pipe, to allow for coupling of

electromagnetic fields to/from the beam. The last ring section is the “Y section,”

which connects the source/injection line to the ring.

6.1.1 Injection line and Y section

The injection line transports the 10 keV beam from the source to the injection

at the “Y section.” The injection line contains a solenoid and six quadrupoles for

control of injection match as well as six horizontal and vertical steering dipoles

(SDs). Injection is achieved through a pulsed magnetic dipole (PD in Fig. 6.1).
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Figure 6.1: UMER ring, with all magnets labeled.

PD is switched between the injection polarity needed to deflect beam into the ring

and the recirculating polarity which acts to keep beam in the ring. Prior to bunch

arrival from the source, PD is switched to the injection polarity then switched back

before the head of the injected beam has completed one turn (approximately 197.2

ns).
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Figure 6.2: Two standard UMER FODO cells (blue quadrupoles and green dipoles).

6.1.2 Focusing optics

The UMER ring quadrupoles are arranged the primarily be used in a FODO

configuration, with each of the 72 quadrupoles alternating in polarity for a total

of 36 FODO cells. The default configuration is the most efficient orientation for

quadrupole focusing, with lowest average beam size for a given emittance, and is

ubiquitous in accelerator experiment and theory.

Although nominally a FODO lattice, UMER optics have significant built-in

flexibility, as each quadrupole magnet is powered by an independent power supply.

Previous work has described alternative arrangements of the UMER quadrupoles.

[36] An alternative arrangement with a longer FODO cell (64 cm instead of 32 cm)

is considered as the basis for a strongly nonlinear lattice as described in Chapter 9.
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Figure 6.3: Quadrupole PCB and bottom half of an assembled quadrupole element.

6.1.3 Printed circuit magnets

All UMER dipole and quadrupole magnets are flexible printed circuit boards

(PCBs). A PCB quadrupole circuit and mount are pictured in Fig. 6.3. Due to low

beam energy, pole field strengths on the order of 10-20 G are sufficient to confine

the beam. Required magnet currents are typically 0.5 - 3 A, with higher currents

possible if the heat load is compensated by active cooling or pulsed operation. The

magnets are designed to maximize the purity of the axially-integrated transverse

field, with undesired harmonic content ≤ 1%. [37]
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Figure 6.4: Schematic of the UMER gridded gun showing cathode K, cathode grid

G, cathode-grid gap d, focusing Pierce electrode PE, gridded anode A and rotating

aperture plate AP.

6.2 Beam generation

6.2.1 Electron source

The UMER electron source is a 10 keV gridded triode with a hot dispenser

cathode. A schematic is shown in Fig. 6.4. The anode (A) is held at ground and

the cathode assembly, including cathode (K), cathode grid (G) and focusing (Pierce)

electrodes, is floated at -10 keV.

A bias voltage is applied across K-G gap d to suppress/draw current. Typically

UMER operates with a Vb = −30 → −20 V bias applied to the cathode when the
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beam is on. Vb = +30→ +40 V suppresses dark current emission when the cathode

is off. The longitudinal bunch shape is formed by a square wave pulse on the bias

voltage. The nominal pulse length is 100 ns, for an initial bunch length equal to

half the ring circumference. A single bunch is produced at a repetition rate of 60

Hz. UMER is a storage ring, meaning coasting beam is stored at a fixed energy in

the ring.

The gun is operated in saturation mode, meaning the current drawn between

the cathode and the grid is the maximum transportable current across the A-K

gap. This limit is defined by the Child-Langmuir relation for A-K separation g and

potential different V ∼ 10 keV,

Ibeam = Fε0
2q

m

1/2V 3/2

g2
(6.1)

where F is a geometry factor. In saturation, current “piles up” in the A-K

gap. At equilibrium, a virtual cathode emitting surface is formed downstream of

the grid. Because of the virtual cathode, running in saturation mode reduces beam

distribution dependence on spatial variation in the cathode surface work function.

6.2.2 Selection of space charge density

The full current produced by the gun is nominally 100 mA. Different currents

(and therefore different space charge regimes) are selected by collimating the beam

with a circular aperture. A rotatable aperture plate, located directly downstream

from the anode (see Fig. 6.4), allows selection from a variety of aperture radii. The
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Table 6.2: Parameters for all apertured UMER beams. Reproduced from [38] and

[39]. Emittance ε is unnormalized RMS emittance. Values in three right columns

are estimated for FODO lattice with operating point ν ∼ 6.6.

Current [mA] r0 [mm] ε [mm-mrad] Avg. radius [mm] ν/ν0 Incoh. shift

0.6 0.25 7.6 1.6 0.85 0.94

6.0 0.875 25.5 3.4 0.62 2.4

21 1.5 30.0 5.2 0.31 4.5

80 2.85 86.6 9.6 0.17 5.5

100 3.2 97.3 11.1 0.14 5.7

beam emittance has a linear relationship with the transverse size (defined by the

aperture radius r0), while the apertured beam current Ib goes as r2
0. As described

by Eq. 2.24, the space charge tune shift ν − ν0 has dependence I/ε. This gives

the space charge tune shift a linear dependence on aperture radius. Table 6.2 gives

parameters for the five available beam apertures.

6.3 Diagnostics

6.3.1 Beam Position Monitors

Multi-turn beam position is measured on capacitive beam position monitors

(BPMs), located at the 14 ring chambers in Fig. 6.1. The BPM is a non-interceptive

diagnostic consisting of four curved-plate pick-up electrodes, one for each of the

transverse directions: top, bottom, left and right. The BPM plates subtend a
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circular aperture with the same radius as the nominal pipe radius (2.54 cm). As

the beam passes, image current runs along each BPM plate and inducing a voltage

drop across a resistor proportional to the relative distance of the beam. Comparing

differences (top− bottom and left− right) gives a measurement of the beam centroid

position with respect to the BPM center. The BPMs have a spatial resolution of

0.1 mm with 100 mA beam (0.4 mm for 20 mA). [40] The repeatability of BPM

measurements is measured to be 1 micron for the 6 mA beam with 16 averages on

the scope. [41]

6.3.2 Wall Current Monitor

A resistive wall current monitor (WCM) is used to measure the temporal

beam current profile non-interceptively. It is located at RC10 (labeled in Fig. 6.1).

The WCM consists of a glass gap in the metal pipe boundary and a resistor that

electrically connects the two sides of the gap. Voltage drop across the resistor is

proportional to the beam’s image current, with conversion Ibeam = Vscope/4.545 Ω.

A ferrite core around the beam pipe adjacent to the glass gap forces the image

current to run through the resistor rather than the surrounding environment. The

equivalent circuit for the WCM has parallel inductive originating primarily from the

ferrite core. The inductive term causes an apparent drifting baseline in the WCM

signal and effectively makes the WCM “DC blind,” as it cannot be relied upon to

measure absolute current. If this inductance is known, it can be integrated out of

the measured voltage,
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Ibeam =
Vscope

4.545 Ω
+

1

L

∫ t

0

Vscopedt (6.2)

as described in [42].

6.3.3 Transverse imaging

The transverse beam profile is imaged with beam-intercepting phosphor screens,

which produce photon intensity proportional to the number of incident electrons.

These screens measure the XY projection of the transverse beam distribution. They

can also be used measure beam emittance using the quad scan technique. In this

method, the Courant-Snyder parameters are reconstructed by measuring the depen-

dence of beam size on the strength of an upstream quadrupole.2

The phosphor screens are housed in each of the fourteen ring chambers. A

screen consists of 31.75 mm diameter glass coated with P43 phosphor (Gd2O2S:Tb),

which has a 1 ms decay time. At some ring locations, fast-phosphor ZnO:Ga is

used with decay times < 3 ns. The fast-phosphor screen locations are indicated in

Fig. 6.1. Both types of phosphor screens are patterned with fiducial marks for the

calibration of beam size.

Image capture is done with GigE Vision Flea3 cameras. These cameras have

12-bit ADC, with max. rate 120 FPS and resolution 648 × 488. While shutter

speed is fast enough to capture a single bunch at 60 Hz repetition rate, there is not

enough time resolution to examine slices within the bunch. Each image represents

an integration along the bunch length.

2this method is only valid for low-current beams with weak space charge
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6.4 Measurement techniques

This section describes specific measurement techniques utilizing the above di-

agnostics. These methods are applied for work described in Chapters 11 and 10.

Section 6.4.1 describes the quad-as-BPM method. This is a tool for measuring trans-

verse orbit distortion at a higher longitudinal resolution than the BPM spacing. The

method has been refined and incorporated in the UMER control system as a result of

this work. Section 6.4.2 described a beam knock-out method for multi-turn imaging

and reconstruction of DC current components. Section 6.4.3 discusses tune scans,

which measure of beam transmission as a function of transverse focusing strength.

This method is applied to identify good operating points and observe transverse

frequency-dependent resonant phenomena.

6.4.1 Quadrupole as BPM technique

Measuring transverse beam offset at the BPM locations is not sufficient to

fully resolve the beam trajectory. At the nominal operating point the wavelength of

transverse beam oscillations is λ ∼ 170 cm. With 14 BPMs spaced at 64 cm intervals,

the beam can only be sampled every third of a wavelength. Higher resolution for

trajectory data is achieved by measuring beam centroid offset in the quadrupoles

(which have a spacing of 16 cm), using a technique called “quad as BPM” or “virtual

BPM.” On the first turn only, beam centroid position can be reconstructed from

quadrupole response data. This technique is applied in an orbit correction algorithm

described in Chapter 10.
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Figure 6.5: Diagram of UMER beam line, with quadrupoles (blue),
dipoles (green) and BPMs (circles). Black curve is possible centroid
trajectory, dashed-red curve is perturbed centroid due to change in
quadrupole strength at 40 cm. Phase advance per cell (32 cm) is 66.4o.
Beam trajectory is shown in a smooth focusing limit.

A beam passing through a quadrupole off-axis experiences a dipole force act-

ing on the centroid (in addition to the quadrupole force on the beam envelope).

The strength of the dipole kick will depend on the position of the centroid in the

quadrupole as well as strength of the quadrupole. Variation of the quadrupole

strength will cause variation of the centroid proportional to the position in the

quadrupole as detected on a downstream BPM. This concept is illustrated in Fig.

6.5. As the beam centroid evolves according to single particle equations of motion,

knowledge of the single particle transformation between the quadrupole and BPM

allows reconstruction of the beam position.

The centroid position in a downstream BPM has a linear dependence on the

position in the quadrupole, xQ:

dx̃(sBPM)

dIQ
= xQ

L

σ

G

Bρ
sin

σ

L
sBPM . (6.3)

Here, IQ is the quad current, L is the cell length, σ is the phase advance per
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cell and G is the linear quad gradient. The full derivation for Equation J.4 is covered

in Appendix J.

In the approach implemented in this thesis, we first measure the quad response

slope dx̃(sBPM )
dIQ

. The Matlab-based in-house tracking code VRUMER [27] is used to

calculate the constant L
σ
G
Bρ

sin σ
L
sBPM . The result is a measurement of xQ. This

approach is similar to a previous implementation in UMER [43]. The main difference

is that the approach described here uses a tracking code to calibrate position, rather

than a transfer matrix calculation.

As a result of this work, the quad-as-BPM method has been integrated into

the UMER controls interface. VRUMER orbit tracking is calculated responsively

during the data collection process. This not only streamlines the quad-as-BPM

method, but also dramatically increases the flexibility of this method to accommo-

date different ring optics without increasing the complexity for the user. Details of

the implementation, including error analysis, are discussed in Appendix J.

6.4.2 Knock-out method

Beam knock-out is a method devised to allow multi-turn imaging of the trans-

verse beam profile. A BPM is converted from a set of four independent pickup

electrodes into a pulsed electrostatic kicker with a vertically positive kick. A fast

pulse is synchronized to perturb the desired turn. A pulse voltage V = 1→ 3 kV is

sufficient to deflect the beam such that it is intercepted on a downstream, off-axis

phosphor screen. The downstream screen is positioned below the closed orbit such
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Figure 6.6: Schematic of knock-out method. An electrostatic kick is applied on

BPM electrodes at RC6 location. The blue dashed line indicates the previous turn

and the red solid is the kicked turn. This drawing assumes beam motion in a smooth

focusing limit, and magnets are not shown.

that it only intercepts the perturbed turn. The screen is longitudinally separated

from the kick location by approximately 2/3 of a betatron oscillation, where the

perturbed centroid oscillation is at a maximum. This is illustrated in Fig. 6.63.

The knock-out technique is also used to restore AC signal when space charge

forces act to elongate the bunch, which fills the ring and gains a DC current com-

ponent. The full bunch is knocked out and the resulting AC structure measured

with the WCM. This is used for current loss rate measurements, which are shown

in Chapter 11.

6.4.3 Tune scans

Tune scans (also called quad scans) are used to measure beam transmission

as a function of lattice tune in a FODO lattice. In this method, ring quadrupoles

3Figure is taken from [44].

81



Figure 6.7: Schematic of area in tune space covered in typical UMER tune scan,

varying IF , ID = 1.6→ 2.1 A. Resonance lines up to third order are included.

are divided into two families, identified by their horizontal polarity as focusing (F)

or defocusing (D). The currents in the two families, IF and ID, are varied in a 2D

raster scan. The WCM is used to measure beam transmission at each operating

point. From this a survival plot can be generated, which shows the surviving beam

current after a given number of turns as a function of operating point. This can

be used to characterize the resonant response of the beam over a wide range of

frequencies.

All survival plots are shown in tune space. The transformation from quad cur-

rents (IF , ID) to tune (νx, νy) is analytically calculated based on a smooth-focusing

approximation of the UMER FODO lattice. [45] The typical range covered in a tune
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scan is IF , ID = 1.6 → 2.1 A with step size 0.01 A. In tune space this resolution is

roughly 0.07. The maximum possible resolution (based on power supply resolution)

is 0.001 A, increasing tune space resolution to ∼ 0.007. A diagram showing the tune

space region covered in a typical scan is shown in Fig. 6.7.

6.4.4 Measuring tune in UMER

The smooth focusing model used to convert ring operating point from quad

currents to bare tune is known to be an over-simplification. For example, it does

not include geometric and edge-focusing in the dipoles, which is known to split the

horizontal and vertical tunes in a FODO lattice. By the smooth model prediction,

νx = νy when IF = ID.

A set of ring tune measurements using the 6 mA beam is plotted in Fig. 6.8.

Fig. 6.8(a) shows a typical beam trajectory as sampled at a single BPM location.

The decay of the oscillation is due to peak signal loss as the beam debunches under

space charge driven expansion. Fig. 6.8(b) compares tune measurements at four

different operating points with the smooth model prediction. Two methods for

calculating tune from position data are shown: Numerical analysis of fundamental

frequency (NAFF) [47] and a four-turn formula.

The four-turn formula uses a geometric argument to return fractional tune

from four subsequent turns of BPM data [46]:

cos ν =
xn − xn+1 + xn+2 − xn+3

2(xn+1 − xn+2)
(6.4)
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(a) Typical BPM signal used for tune calculation with 6 mA beam.

(b) Smooth model prediction compared to measured tunes.

Figure 6.8: Comparison of tune measurement with smooth model analytic predic-

tions. Color indicates operating point. Dots mark the smooth model prediction,

heavy hashes indicate predictions from the four-turn formula [46] and light hashes

are NAFF calculations [47]. Multiple measurements were taken for different centroid

injection errors.
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At the IF = ID = 1.826 A operating point, measurements indicate a tune

splitting of νy − νx ≈ 0.2, with predicted tunes (averaged over measurements from

all 14 BPMs) νx = 6.647 and νy = 6.768. The smooth focusing model predicts

νx = νy = 6.786. In general, the measured fractional tune agrees with the smooth

model tune to within 0.2 (with four-turn) or 0.1 (with NAFF) for the four operating

points considered.

A caveat is that any method which reconstructs tune based on a single BPM

can only return the fractional tune. The measured fractional tune is related to

the full tune as ν = n ± νf for some unknown integer n. There is a degeneracy

in the “direction” of the fractional tune, whether it is a fraction above or below

the integer part. A large model-measurement discrepancy might appear smaller

when comparing only fractional tunes. For the predicted tunes, the integer part was

assumed based on the model prediction.

Understanding the source of discrepancy between measured and predicted

tunes will allow more accurate modeling of the quasi-integrable experiment, which

requires accurate control of the lattice tune. Moving to tracking codes rather than

analytic predictions will make it easier to include edge effects. Additionally, a well-

benchmarked numerical method will allow flexibility for different UMER configu-

rations, including the 64 cm FODO “alternative lattice” and non-FODO optics for

the octupole lattice.
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6.5 Chapter summary

This chapter reviewed the operational parameters and principle diagnostics

available at UMER. In additional to the primary diagnostics of beam position mon-

itors (BPMs) and wall current monitor (WCM), the quad-as-BPM, knock-out and

tune scan methods are described. Although the methods were refined in the context

of nonlinear optics experiments, they are generally useful for day-to-day operations

in UMER.
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Chapter 7: Design and Apparatus for Nonlinear Optics Experiments

at UMER

This chapter extends the previous description of the UMER apparatus to

include the planned nonlinear optics experiments. This includes a re-design of the

UMER ring to incorporate octupole fields, as well as design of octupole magnets

and production of a low-current beam for nonlinear optics experiments.

Section 7.1 reviews two different options for experiment design: many short

octupole inserts or a single long octupole channel. Section 7.2 covers design of the

octupole printed circuit board (PCB) windings and a multi-PCB octupole channel.

Finally, Section 7.4 details a voltage-amplification mode for electron source opera-

tion that produces a low-current, high-emittance beam with very low space charge.

In Section 7.5, the simple model of Chapter 5 is applied to study octupole lattice

performance as a function of various errors. Errors in the form of orbit distor-

tion, linear lattice tune advance and realistic octupole fields (based on Biot-Savart

solution of the PCB windings) are considered.
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Figure 7.1: Proposed layout for single-channel octupole lattice.

7.1 Layout for nonlinear optics experiments

For the proposed experiments in nonlinear optics, the existing UMER con-

figuration (described in Chapter 6) will be modified to include octupole elements.

This requires modifying the linear focusing optics to accommodate the octupole in-

serts and meet the conditions for quasi-integrability. As presented in Chapter 2, for

particle motion with one conserved invariant the conditions on the linear focusing

are: (1) the beam envelope solution must be XY symmetric inside octupole inserts,

βx(s) = βy(s), and (2) the phase advance between inserts must be equal to nπ for

integer n. Two different philosophies for lattice design are identified.
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Figure 7.2: Proposed layout for distributed octupole lattice with 4 octupole inserts.

The first design, referred to as the single channel octupole lattice, is a non-

FODO lattice solution that accommodates a single long octupole insertion (relative

to other beam elements). This approach is similar to the IOTA ring design [6], which

includes a long nonlinear insert element. In UMER, the long channel will occupy a

custom-designed mount in a single 20◦ ring section, while the rest of the mechanical

ring structure will be undisturbed. A diagram of the mechanical configuration is

shown in Fig. 7.1. To maintain the beam profile βx = βy through the octupole

channel, the linear ring optics will be modified to create a symmetric beam waist

at the center of the channel. The basic behavior of this long octupole channel were
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explored in a reduced model in Chapter 5, and tune spreads up to ∼ 0.25 are

expected. The required linear focusing optics to support quasi-integrable motion is

much different from the standard UMER FODO lattice and designing the optics is

a complex task. Linear lattice solutions are discussed in Chapter 8.

The second approach, the distributed octupole lattice, takes advantage of the

UMER “alternative lattice,” which utilizes half of the available quadrupoles in a

FODO arrangement with periodicity 18 (FODO cell length 64 cm). [36] In this

arrangement, short octupole insertions are placed at the mid-point of the FODO

cell, over symmetry points in the periodic envelope solution where βx ≈ βy. The

hardware layout is shown in Fig. 7.2. As the tune of the alternative lattice is

adjustable in the approximate range 2-4, a design with four short octupole elements

(the “N4 lattice”) was identified as a candidate for testing the quasi-integrable

theory. For this lattice, focusing and defocusing quad strengths can be adjusted

so that the phase advance between elements is 2π. Simulations and experimental

measurements on the distributed octupole lattice are presented in Chapter 9. The

predicted tune spreads are ∼ 0.07. Although easier to implement in terms of lattice

design, the outlook for observable effects is not as promising when compared to the

single-channel design.

7.2 Printed circuit board octupoles

Printed circuit board (PCB) octupole magnets were designed for use in the

UMER nonlinear optics experiments. The approach to octupole PCB design follows
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(a) Half of a UMER printed circuit octupole magnet

(b) FFT of octupole fields from rotating coil measurement.

Figure 7.3: 1st generation octupole PCB designed for nonlinear optics experiments

and measured field harmonics.

the same philosophy used in the design of the UMER quads and dipoles. [48], [37]

The guiding design principle was that the axially integrated longitudinal compo-

nent of the current density ~K on the cylindrical surface should have an azimuthal
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dependence
∫
Kzdz = cosnθ for desired multipole order n. For a discrete number

of conductors with longitudinal length zi, the conductor length must be related to

azimuthal position according to the relationship

| sinnθ| = 1−
(

2zi
al

)2

(7.1)

where l is the longitudinal magnet length and a is an adjustable parameter near

one.

A set of printed circuit octupoles has been manufactured and characterized.

[49] The PC circuits, pictured in Fig 7.3(a), are made in two double-layered halves,

which fit inside the standard UMER quadrupole mount. Based on the similarity

to existing UMER PC quadrupoles and dipoles, each magnet should easily be able

to sustain 3 A DC with the existing mounts and up to 10 A with the addition

of water cooling. Solutions generated with commercial code Maxwell 3D predict

peak field gradient per amp as G3/I = 66.5 T/m3/A with the 16-pole as the next

significant, unwanted multipole. [49] Biot-Savart integration done with the in-house

code MAGLI [50] predicts 49 T/m3/A.

Gauss probe measurements of the assembled octupole magnet confirm G3/I =

51.6 ± 1.5 T/m3/A. [51] The magnet was also characterized using an integrated-

field rotating coil measurement. A radial coil, with longitudinal length exceeding

the magnet length, rotates at 6 Hz, generating an induced current in the coil. The

method is described in [37]. The FFT of the rotation coil measurement is shown in

Fig. 7.3(b). The primary peak is the octupole component. The next largest contri-

bution is the dipole. Despite µ-metal shielding of the measurement, some component
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of the background Earth field is included in the measurement and contributes to the

dipole component. The next largest harmonic impurity is the 16-pole, as predicted

in simulation. The harmonic purity of the octupole element is within the < 1%

tolerance met by the quadrupole and dipole elements.

7.3 Design of octupole channel

This section describes the design of a composite element for the single-channel

experiments. A requirement for quasi-integrability is that the octupole potential is

constant in the normalized frame.1 In the lab frame, the strength of the octupole

fields must scale as G3(s) ∝ β(s)−3. For all UMER PCB magnets, which have

a short aspect ratio and are fringe-field dominated, the effective magnet length is

shorter than the physical length. To obtain a smoothly-varying octupole profile

G3(s), short octupole circuits are placed to overlap significantly, as illustrated in

Fig. 7.4. This is mechanically feasible up to two layers, as the printed circuits are

very thin. For two layers of PCBs of length 4.65 cm, the minimum spacing between

magnet centers is 2.33 cm.

Using field solutions from MAGLI, the profile G3(s) was examined for a 32

cm channel with evenly spaced octupole elements. Residuals were calculated with

respect to the desired profile, as plotted in Fig. 7.4. Only odd numbers were

considered to maximize smoothness at the channel center. While seven elements

(center-to-center spacing 4.56 cm) was an improvement over five, nine elements

1See Section 2.2.3
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Figure 7.4: Composite octupole channel made of over-lapping, evenly-spaced dis-

crete short PCB octupoles.

(spacing 3.42) did not improve the amplitude of residuals. Seven elements in a 32

cm channel is determined to be the optimal spacing for a composite channel insert.

7.4 Generation and detection of a low-current beam

For experiments with quasi-integrable optics, it is desirable to start near the

zero-current limit where space charge effects are minimal. This will allow observation

of the effects of octupole-induced tune spreads without complication by space charge

spreads. The least intense apertured UMER beam, 0.6 mA, still has a very large tune

shift, δν = 0.94. Predicted octupole-induced spreads will be, at most, 0.25 (this will

be discussed in Chapter 5). Generating and detecting a “low space charge” beam is

not straightforward, as UMER is designed as a high-intensity machine. Operating
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Figure 7.5: Generation of variable current DC beam in UMER gun.
Cathode-grid bias is lowered until DC current leaks through and pulse
formation is done with injection dipole.

with minimal space charge requires low beam current, but not so low that beam

current is undetectable. Space charge tune shift is also inversely proportional to

beam emittance, so increasing emittance further reduces the space charge effect.

A low current, high emittance beam can be produced by running the triode

electron gun in voltage amplification mode (rather than power amplification). This

has been demonstrated by turning off the cathode grid pulse and reducing the posi-

tive bias to ∼ 4 V, which allows µA-level leakage current. This mode of operation is

referred to as the “DC beam” due to the method of operation. The positively-biased

gun could be operated in pulsed mode, but any ripple on the cathode pulse will be

amplified in the longitudinal bunch structure. For now, longitudinal structure is

created through the pulsed magnetic injection. The time dependence of the injector
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Figure 7.6: Measured output of electron gun in DC mode as a function of cathode-

grid bias voltage. Current is measured at the WCM.

dipole PD only allows a ∼ 150 ns slice of the DC current into the ring at a 60 Hz

rate. The injection schematic is illustrated in Fig. 7.5.

The current density depends very sensitively on the bias voltage. A 3.70 V

bias produces a 40 µA beam. The measured current-voltage relationship is plotted

in Fig. 7.6. The transverse edge emittance (4 RMS, unnormalized) was measured

with the quadrupole-scan technique for an output current of 40 µA. Measured values

are εx = 100 ± 20 µm, εy = 300 ± 20 µm. [52] The reason for the large asymmetry

is unknown, although the large transverse beam size complicated the measurement.

From Equation 2.24, for I = 60 µA and ε = 100 µm, the predicted space charge

tune shift (for the equivalent KV distributions) is δν = 0.005.

The time-resolved beam current signal, picked up by the wall current monitor

(described below in Section 6.3), is plotted in Fig. 7.7. This signal is shown for an

initially ∼ 40 µA beam. As the DC beam current is an order of magnitude below
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Figure 7.7: First 10 turns of DC beam signal on WCM. (a) Raw WCM signal, (b)

background signal and (c) background-subtracted signal for DC beam.

the lowest current apertured beam (which already has poor signal to noise ratio), a

+20 dB amplifier was used to boost the low-level signal.

The background subtracted trace (bottom plot) clearly shows the effect of the

injection-gated pulse formation. Approximately 1µs after the injection dipole is

switched to allow beam into the ring, the pulsed dipole switches polarity and only a

single ∼ 150 ns temporal slice of the DC current is recirculated. An artifact of this
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Figure 7.8: Error in beam current measurement as a function of number of shots

averaged. Standard deviation is calculated for 20 measurements and averaged over

500 turns.

switching is an increase in current from bunch head to bunch tail that reflects the

PD pulse shape.

The UMER environment is noisy, particularly near injection. The magnitude

of the pulsed circuit noise picked up on the wall current monitor is comparable to

the beam signal. In addition to this “frozen-in” noise at 60 Hz repetition, which is

background subtracted, there are also statistical fluctuations due to noise at other

frequencies. The signal to noise ratio can be improved by taking longer averages

on the scope. Fig. 7.8 shows the uncertainty in beam current measurement due to

statistical fluctuations as a function of the number of averaged waveforms. While

low errors (< 1%) can be achieved by averaging over at least 256 bunches, this

becomes time consuming when collecting many data points. Characterizing mea-

surements discussed in Chapter 11 were averaged over 16 waveforms, which results

in a statistical error of σI/I ∼ 7%.
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One concern while operating with the DC beam is increased average beam

current drawn from the cathode and additional heat/current load due to current

intercepted by the cathode grid. In typical UMER operation, 100 mA is drawn

from the cathode when the bias voltage is negative. For a 100 ns pulse length that

fires at 60 Hz, the duty factor is 6× 10−6. Therefore the average power drawn from

the gun is 6 mW. However, in DC mode, for a 40 µA beam, the average power is

400 mW, nearly 70× above the design value.

The UMER gun has been operated very sparingly in the DC mode except for

two lengthy data collection cycles (≥ 12 hours) run one month apart. The data was

collected to characterize DC beam transmission and resonant behavior over a range

of tunes, shown in Chapter 11. Shortly afterwards, the cathode was observed to fail

and was replaced. The cathode was near the end of its ten year life span and it is

not clear to what extent the extended DC operation of the gun may have hastened

its demise. During the experimental run, a slow decrease in gun output current was

observed (also described in Chapter 11). This may be related to increased power

load across the 10 kV stand-off or warping of the cathode geometry under heat.

Pulsing of the bias voltage is recommended to reduce average power for cathode

safety, possible using a long pulse (> 150 ns) to reduce ripple being amplified on

the bunch structure.
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7.5 Error analysis using simple model of octupole lattice

In this section the reduced model of the quasi-integrable octupole lattice, in-

troduced in Chapter 5, is used to study the effect of lattice errors. Performance

is quantified in terms of dynamic aperture and tune spread. The simple model is

comprised of two elements: a thin lens FOFO lattice of cell length L = 64 cm and

a long octupole insertion with longitudinal strength profile G3(s) ∝ β(s)−3. More

description of this model is given in Chapter 5 and Appendix E. Properties of the

FOFO lattice, including matched solution β(s), are described in Appendix C.

7.5.1 Sensitivity to closed orbit distortion

The effect of background fields on the low-rigidity UMER beam is significant.

The vertical field is roughly constant along the ring with an average strength of 400

mG. This gives approximately 2.2o of bend per horizontal dipole. The radial field has

a sinusoidal dependence on s with amplitude ∼ 200 mG, for maximum bend angle of

2.2o per vertical corrector. Due to these background fields, the beam orbit trajectory

traces arcs between corrector magnets. For a long element like the octupole insert,

the orbit will not be well-centered. Correction is possible through shielding or field-

canceling Helmholtz coils. It is therefore necessary to define alignment tolerances for

acceptable closed orbit distortions from magnetic centers. This effect is discussed

in more detail in Chapter 10.

To quantify lattice performance, frequency map analysis (FMA) is applied to

measure dynamic aperture and octupole-induced tune spread. All simulations are
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(a) Case 1

(b) Case 2

Figure 7.9: Single particle trajectories in the two orbit distortion cases considered.

Red line is centroid motion of a particle with applied thin lens centroid transforma-

tion (red arrows). Black line is centroid motion without appropriate transformation.

performed in a zero-current limit. This study considered distortions of the closed

orbit but neglects oscillations about the closed orbit. This discussion also does

not extend to consider misalignment of octupole elements in the channel. A gross

mis-alignment of the octupole element can be considered equivalent to an orbit

distortion, while misalignments between individual circuits in the long octupole

channel requires a separate treatment.

Tolerance simulations use the WARP PIC model of an L = 64 cm octupole

channel in an ideal linear FOFO thin-lens transformation of k = 2.92 m−1 with

β∗ = 0.3417 m. Octupole fields are set at G3,max = 50 T/m3. Dynamic aperture is

calculated over 1024 turns. In these simulation, a constant closed orbit distortion

term is included in the thin lens transformation for each particle. Two cases are

examined:

1. Orbit distortion in otherwise shielded 64 cm section (centroid has straight
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Figure 7.10: Dependence of dynamic aperture and tune spread on orbit distortion.

On dynamic aperture (DA) plot, horizontal dashed line indicates 90% of ideal aper-

ture.

trajectory between steering elements), depicted in 7.9(a).

2. Curved orbit distortion due to constant background field, depicted in Fig.

7.9(b).

7.5.1.1 Case 1: Straight/shielded closed orbit errors

Fig. 7.9(a) shows the distorted closed orbit in the case where particle trajec-

tories are straight between magnetic elements. The distortion is defined by initial

conditions x0 and x′0, which represent the initial offset in beam centroid. At the

same location as the FOFO thin lens transformation (that represents focusing in
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the linear part of the ring), a centroid transformation is also made. Details on

centroid transformation are covered in Appendix F.

Fig. 7.10 shows the dynamic aperture and tune spread dependence on orbit

distortion x0. Here x′0 = L/2x0. There is quite a stringent requirement on distortion,

compared to usual UMER operations, with x0 < 0.2 mm desired for less than 10%

loss of dynamic aperture. At x0 = 0.2 mm, decrease of RMS tune spread from ideal

case of 0.025 is ∼ 6%.

7.5.1.2 Case 2: Orbit distortion due to background field

To model the effect of orbit distortion caused by immersion in ambient back-

ground fields, a uniform background field is added to the model. Fig. 7.9(b) depicts

the path of single particles in the immersed field, with appropriate thin-lens centroid

transformation (see Appendix F).

As seen in Fig. 7.11 and Fig. 7.12(a), the presence of a vertical background

field at 400 mG incurs a 20% loss of radial dynamic aperture when compared to the

0 mG case. The addition of horizontal/radial field, shown in Fig. 7.12(b), causes

severe loss of stability. No particles are stable when By = 400 mG, Bx = 200 mG.

For reasonable dynamic aperture, the single-channel experiment requires con-

trol of orbit distortions inside the octupole insert to within 0.2 mm. The ∼ 400

mG vertical background field should be shielded or compensated to < 100 mG.

Compensation for the horizontal background field, with peak ∼ 200 mG should also

be made. Measurement of the orbit control in the UMER lattice is discussed in
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Figure 7.11: Dependence of dynamic aperture and tune spread on vertical back-

ground field. On dynamic aperture (DA) plot, horizontal dashed line indicates 90%

of ideal aperture.

Chapter 10. The octupole insert in the single-channel experiment can be placed in

a region of low measured distortion, such as RC9.
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(a) Dynamic aperture contours for beam immersed in vertical

field

(b) Dynamic aperture contours for beam immersed in vertical

and horizontal fields.

Figure 7.12: Shape of dynamic aperture for steering errors introduced by ambient

fields. In all cases, G3,max = 50 T/m3.
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7.5.2 Sensitivity to phase errors in external focusing

A quasi-integrable solution for the single-channel octupole lattice has been

shown to exist when the phase advance in the linear portion of the lattice (between

octupole inserts) is an integer multiple of π. In reality, the phase advance of any

given particle will be nπ+ δ, with δ representing errors in external focusing. δ could

also be the result of tune depression (due to space charge) or chromatic tune shift

(due to energy spread). The simple model is used to examine dynamic aperture

and tune spread dependence on phase error. The phase error is introduced in the

thin lens focusing transformation through use of a more general expression for the

“T-insert” matrix. For tune error ∆νz,

Tz =

[
cos 2π∆νz − αz sin 2π∆νz βz sin 2π∆νz

−1−α2
z

βz
sin 2π∆νz − 2αz

βz
cos 2π∆νz cos 2π∆νz − αz sin 2π∆νz

]
(7.2)

Origin of Eq. 7.2 is shown in Appendix B. Simulations with phase error were

carried out in Elegant, for an octupole lattice of length L = 64 cm. Tracking was

done for 1024 passes, set up as described above with peak octupole gradient G3,max =

50 T/m3. For these simulations, external focusing strength is k = 3.3264 m−1 for

lattice tune advance 0.260 and waist size β∗ = 0.3 m.

Two cases are examined: ∆νx = ∆νy (equal tune errors) and ∆νx 6= 0,∆νy = 0

(unequal tune errors). From Fig. 7.13, it is apparent that the dynamic aperture is

reduced in the presence of phase errors. In the case of equal tune errors, however,

the lattice was relatively forgiving for tune errors ∆ν < 0.03. The dependence
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Figure 7.13: Dependence of dynamic aperture on tune error, for equal (dashed line)

and unequal (solid line) errors. Value for ideal case (∆νx = ∆νy = 0) is indicated

by red line.

for ∆ν > 0.03 is very irregular, with alternating bands of near-ideal and reduced

aperture. The outlook is slightly worse in the case of unequal errors. A large loss of

aperture is seen around ∆ν ∼ 0.01, and likewise beyond ∆ν = 0.03 the dependence

is irregular, but in general much lower than the “best-case” aperture size.

The dependence of RMS and maximum tune spread on errors in the bare

lattice tune are shown in Fig. 7.14. Similar behavior is seen when compared to

the dynamic aperture measurement. For unequal tune errors there is a sharp loss in

tune spread around ∆ν ∼ 0.01. The dependence on equal tune errors is comparable,

with less of a margin for acceptable small tune errors.

Finally, the invariant HN (Eq. 5.1) is shown as a function of tune error in Fig.

7.15. As HN is a single particle property (rather than aperture and tune spread,

which are sampled in the whole transverse space), HN conservation is calculated by

averaging over a subset of particles indicated in Fig. 7.15(a). Averaging is meant
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(a) Max. tune spread for unequal phase er-

ror.

(b) Max. tune spread for equal phase error.

(c) RMS tune spread for unequal phase error. (d) RMS tune spread for equal phase error.

Figure 7.14: Dependence of tune spread on phase error, for both equal (top row)

and unequal (bottom row) tune errors. Value for ideal case (∆νx = ∆νy = 0) is

indicated by red line.

to reduce the chance of interpreting a single resonantly excited particle to mean

lack of HN conservation over the entire space. In general, HN conservation is very

sensitive, with fractional variation up to 0.6 in the case of equal tune errors.

A common feature in all metrics is the sharp dip at small tune error ∆ν =

0.002. This appears to be related to resonant structure; Fig. 7.16 shows that the

tune footprint for the ∆ν = 0.002 case is cut-off near the 3rd order resonance line
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(a) Subset of particles at r=0.18 cm (b) σH/ < H > versus tune error

Figure 7.15: Standard deviation of invariant H over 1024 passes in simple octupole

lattice. σH/ < H > in 7.15(b) is averaged over subset of particles in 7.15(a).

νx − 2νy = 0. However, the neighboring cases ∆ν = 0 and ∆ν = 0.004 are not

similarly affected. On closer inspection, there is a crossing of higher order resonance

lines 8νy − 14νx = −3 and 16νy − 5νx = 1 that may be allowing particles to escape

the stable region. These resonances are very high order, and in general tune spreads

in the distribution (due to space charge and chromaticity) tend to damp out the

effects of very high order resonances. However, if the cause is more closely related

to the third-order resonance, we would expect to observe this effect in experiment.

The shape of the dynamic aperture and tune footprints for a range of tune

errors can be seen in Fig. 7.17 and 7.18 respectively. These cane be compared to the

case of no errors (∆νx = ∆νy = 0) in Fig. 5.7. For the dynamic aperture plots, the

largest round stable region is shown in the lightly shaded region. For tune footprints,

the entire tune shift imprinted for all configuration space is shown (no cut is made

based on the assumption of a round beam). In the case of equal tune errors, the

characteristic octupolar shape of the dynamic aperture is preserved although the
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Figure 7.16: Tune footprint from Elegant calculation with tune errors ∆νx =

0, 0.002, 0.004.

size of the stable region shrinks. With it, regions of high nonlinear tune spread are

also lost. In the case of unequal tune errors, the shape of the aperture skews to one

side or the other. It appears that the νx = νy coupling resonance is destructive in

this case, allowing particles to wander from the stable region and be lost.

In general the octupole lattice is fairly robust to small (< 0.1) tune errors.

Errors above this value were not considered, as matched lattice solutions have been

found in this range. However, in the experiment, the beam optics may be sufficiently

different from the model that larger tune errors are possible. This analysis could be

extended to see if any structure exists beyond ∆ν = 0.1. For now, while tune errors

should be as low as possible, ∆ν < 0.1 should result in reasonable aperture and tune

spread for experimental purposes. Avoiding differences in tune error ∆νx − ∆νy,

appears to be more important.
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(a) ∆νx = 0.001,∆νy = 0 (b) ∆νx = ∆νy = 0.001

(c) ∆νx = 0.01,∆νy = 0 (d) ∆νx = ∆νy = 0.01

(e) ∆νx = 0.1,∆νy = 0 (f) ∆νx = ∆νy = 0.1

Figure 7.17: Elegant frequency maps (in configuration space) for 1024 turns for

different ∆νx and ∆νy.
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(a) ∆νx = 0.001,∆νy = 0 (b) ∆νx = ∆νy = 0.001

(c) ∆νx = 0.01,∆νy = 0 (d) ∆νx = ∆νy = 0.01

(e) ∆νx = 0.1,∆νy = 0 (f) ∆νx = ∆νy = 0.1

Figure 7.18: Elegant frequency maps (in tune space) for 1024 turns for different ∆νx

and ∆νy. Color axis is identical to Fig. 7.17.
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7.5.3 Effect of octupole profile and fringe fields

Up to this point a simplified model of the longitudinally varying octupole

potential has been assumed. Details of the WARP and Elegant implementation can

be found in Appendix E, but both cases assume near-ideal profile G3(s) and pure

octupole fields. In reality, for the UMER experiments the octupole channel will

have to work around the restrictions of space and flexibility of existing optics. A

64 cm, 20o ring section will be replaced, but this ring section must preserve two

10o bending dipoles (BD’s) at locations s = 16, 48 cm. This means there must be

breaks in the octupole channel to accommodate the BD mounts. As discussed above

in Section 7.3, the smoothness of the G3(s) profile from overlapping short PCBs is

limited. Additionally, the UMER octupoles contain additional, unwanted multipole

terms, due to fringe fields as well as additional harmonics in the PCB surface current

distribution.

This section examines the effect of realistic magnetic fields for three three

configurations shown in Fig. 7.19. The WARP simple model is used with gridded

field elements (BGRD) generated from Biot-Savart solutions of the PCB windings

in MAGLI [50]. Simulation parameters were k = 3.3264 m−1 and β∗ = 0.3 m. Peak

octupole strength is fixed at G3,max = 50 T/m3.
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(a) 19 octupoles spaced at 3.2 cm center-to-center.

(b) 9 octupoles spaced at 3.2 cm center-to-center, occupying only 32

cm between dipole locations.

(c) Same as (b), with additional (single) octupoles in existing dipole

and quad mounts.

Figure 7.19: Various arrangements of over-lapping short octupole circuits in 64 cm

channel. Only cases (b) and (c) are compatible with UMER’s configuration.
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(a) BGRD octupoles, case(a) (b) BGRD octupoles, case(b)

(c) BGRD octupoles, case(c) (d) BGRD octupoles, case(b)†

Figure 7.20: Evolution of HN for a subset of particles in a WARP simulation of the

octupole channel. Colors indicate unique orbits.

Case (a) has 19 octupoles evenly spaced at intervals of 3.2 cm center-to-center.

This is unrealistic for the experiment, as there is no accommodation for the dipoles,

but serves as an intermediate step between ideal “flat-top” elements and a more

realistic G3(s) with unwanted multipole components. Case (b) has 9 octupoles

evenly spaced at 3.2 cm center-to-center, occupying only the center of the channel.

Case (c) is identical to case (b), with octupole circuits added in existing mounts at

the dipole locations s = 16, 48 cm and vacated quad locations s = 8, 56 cm. As this

analysis is done with the simple model, dipole fields are not included and therefore
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Table 7.1: Figures of merit for different octupole configuration in simple model of

quasi-integrable lattice. Metrics are taken for particle distribution inside the largest

circular dynamic aperture.

Case DA [cm] RMS ∆ν max ∆ν σH
〈HN 〉

MMLT 0.62 0.033 0.108 0.005

BGRD (a) 0.62 0.033 0.108 0.005

BGRD (b) 0.55 0.024 0.077 0.015

BGRD (b) † 0.62 0.020 0.067 0.001

BGRD (c) 0.44 0.008 0.025 0.045

† Results for short 32 cm channel.

neither is the fact that the beam takes a curved path through that elements at

s = 16, 48 cm even in the case of perfect steering without background fields.

Results for HN invariance are plotted in Fig. 7.20. Results from FMA are

compared in Fig. 7.21. Values for HN variation, dynamic aperture limit and tune

spreads are given in Table 7.1. In general, there is little difference by any metric

when comparing the idealized 64 cm channel with MMLT elements (interpolated

between 100 discrete points) and 19 overlapping BGRD octupoles. In the more

realistic case of 9 overlapping BGRD octupoles between dipole locations, there is a

significant reduction of aperture (11%) and tune spread (28%), although the level

of HN variation only increases by a small fraction. Finally, the third case, which

is maximally-populated given space constraints for the magnet mounts, is clearly
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(a) Dynamic aperture contours

(b) Tune footprints

Figure 7.21: Dynamic aperture and tune footprints for different octupole field models

and configurations.† Results for short 32 cm channel.
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unsuitable for experiment, due to dramatic loss of aperture and the associated tune

spread.

The most promising configuration for experiment is therefore case (b). We

can possibly improve on the aperture and tune spread limitations by considering a

mechanically-identical setup where the linear lattice is tailored to provide an integer

phase advance transformation across a 32-cm channel (rather than a 64-cm channel).

Holding the beam size and octupole strength constant (β∗ = 0.3 cm, G3,max =

50 T/m3), the simulation parameters become L = 0.32 cm and k = 2.7682 m−2, for

a channel tune of νdrift = 0.1560. While dynamic aperture is slightly improved in

this configuration, tune spread is slightly lower, since shortening the channel length

reduces the maximum possible tune spread. I expect that the two configurations

may yield indistinguishable experimental results. If it is feasible to test both, this

should be done.

The physical length of the “32-cm” multi-PCB element in Figs. 7.19(b) and

7.19(c) is actually 30.25 cm, considering spacing and physical circuit length 4.65 cm.

As the BD mount is centered over each 10o pipe bend (meaning the longitudinal

axis of the magnet is tilted ±5o in horizontal plane with respect to the upstream and

downstream beam pipe) and the physical BD length is 4.44 cm, the actual clearance

for the channel mount is at most 26.6 cm. Therefore, the multi-PCB element will

be a bit shorter than the case studied here. For seven individual PCBs, the center-

to-center spacing would be shortened from 3.20 to 2.74 cm. This is not expected to

change the results significantly.
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7.6 Chapter summary

This chapter reviewed the basic design of a quasi-integrable octupole lattice

utilizing the UMER framework. Octupole magnets are designed using the same

approach as the UMER quad/dipole magnets, and are measured to be within the

same tolerances. Arrangement of several octupole PCBs in a long composite element

is near optimal for a center-to-center spacing of 4.56 cm.

Generation and detection of a high-emittance, low-current “DC beam” is also

discussed. This is a large deviation away from the nominal UMER design, in which

the gun is run in saturation and the beam apertured downstream to access different

intensity regimes. The estimated incoherent space-charge tune spread for the DC

beam, δν ∼ 0.005, is much lower than the least space-charge-dominated apertured

beam (0.6 mA, δν ∼ 0.94). This will be essential for testing operation of the octupole

lattice, which can provide a maximum octupole-induced tune spread of δν ∼ 0.25.

Precise orbit control and mechanical alignment in the octupole insert is critical,

as the dynamic aperture is very sensitive to orbit distortions from magnetic center.

Shielding or compensating the ambient fields in the ring is necessary to run the

proposed experiments. Requirements for external focusing are less stringent, but

tune spread and dynamic aperture suffer for unequal phase advance errors in the

linear lattice section. These observables appear fairly robust to equal tune errors,

but in this case HN is “less-conserved.” For experimental design ∆ν < 0.1 and

|∆νx−∆νy| < 0.01 should be sufficient for stable beam transport with optimal tune

spreads.

119



The use of realistic, fringe-dominated octupole fields over ideal, hard-edged

elements does not significantly affect dynamics, but mechanical restrictions on oc-

tupole placement have a large effect. Shortening the octupole channel to 32 cm

seems more promising than trying to maximize octupole density within available

space. This may be due to cancellation of fringe fields in overlapping elements,

while large spaces between elements results in some resonances being more strongly

driven.
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Chapter 8: Design of the Single-Channel Octupole Experiment

UMER has been proposed as a test-bed for demonstrating the concept of

nonlinear integrable optics (NLIO), particularly in the regime where space charge

is significant. With minimal modification to the ring hardware, UMER will be

modified to operate as quasi-integrable octupole (QIO) lattice with a single long

octupole insert. This scheme is similar to the design of the IOTA ring, which

will test the fully integrable solution. [6] Modifying UMER for QIO involves both

creating the octupole insert element as discussed in Section 7.3 and designing a linear

focusing profile utilizing existing ring quadrupoles that meets the conditions required

for quasi-integrability. While Chapter 5 explored particle dynamics in a reduced

model of the system consisting only of the octupole element, this chapter focuses

on descriptions of the full ring, including optimization of quadrupole strengths in

the linear focusing section (the “T-insert” of Chapter 5) and simulations of particle

transport in the full ring.

Section 8.1 describes the approach to modifying the UMER linear optics to

meet the quasi-integrable condition. The linear lattice section should have a transfer

function with phase advance equal to nπ for integer n with equal focusing strength

in both planes. As UMER optics are very flexible (all 72 quadrupoles are powered
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independently), it was assumed that identifying a solution would be straightfor-

ward. However, there is enough complexity that finding a workable approach to the

optimization problem was not trivial. This section describes both an approach to

optimization, including reduction of the problem dimension, as well as identifying a

promising lattice solution.

Section 8.2 describes how solenoid focusing elements can be incorporated into

the single-channel lattice. The use of solenoid lenses provides straightforward control

of the lattice tune without disruption to the optimized quadrupole focusing profile.

In Section 8.3, particle-in-cell (PIC) WARP simulations are used with a model of

UMER in the QIO configuration with linear focusing as proposed in Section 8.1.

Results both with and without the octupole insert and space charge forces are

discussed. Finally, Section 8.4 describes another approach for linear focusing design

and shows some results from beam transport in the modified lattice.

8.1 Modification of existing UMER optics for single-channel experi-

ment

Initial experiments include plans for a single nonlinear insertion element. A

single 20o ring section will be modified to house a long octupole element composed

of many short octupole PCB magnets. The bends will be preserved in this section,

but there will be no quadrupole fields. As UMER is equipped with 72 quadrupoles

at 5◦ azimuthal spacing, the remaining 68 can be adjusted to provide the desired

transverse focusing.
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Recall that the transfer function of the linear portion of the quasi-integrable

lattice (referred to as the “T-insert”) should be equivalent to a symmetric, thin

focusing lens:

T =

 1 0 0 0
−k 1 0 0
0 0 1 0
0 0 −k 1

 (8.1)

As described in Eq. C.10, k is constrained by the choice of octupole channel

length L and beam waist size β∗. In the previous chapter, β∗ = 0.3 m was identified

as a suitable operating point for a channel of length L = 64 cm. This requires

the linear lattice to provide the transport function T with focusing strength k =

3.3264 m−1. Another constraint placed on the “T-insert” is that the phase advance

be nπ for any integer n (this is equivalent to an integer or half-integer tune advance).

This requirement ensures that particles experience quasi-continuous motion through

the octupole potential, allowing the invariant HN to be conserved over the particle

lifetime.

The 68 “free” quadrupoles are independently powered, with focusing strengths

that may be varied between ±K1,max = 10.8 G/cm (determined by the maximum

safe excitation of 3 A). The simplest posing of the problem has 6 target quantities:

[X ′, X, Y, Y ′] to ensure the beam is matched through the octupole insert and [νx, νy]

to meet the phase advance requirement. The equations to be solved (in each plane)

are the RMS envelope equation (Eq. 2.25) with the boundary condition X(s+C) =

X(s) and X ′(s + C) = X ′(s) for ring circumference C. Given there are 68 free

parameters, it should be trivial to meet the targets exactly, but there are additional
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constraints on the beam that limit the possible solution space.

A note on notation: Typically νx and νy denote full ring tune. Here, νx,T and

νy,T are defined as tune advances in the linear, “T-insert” portion of the ring. The

linear lattice tune advance depends on ring tune as νx,T = νx − νdr (and similar for

y), where νdr is the tune advance through the insertion region when the octupole

fields are off.

8.1.1 Additional constraints for lattice solution

To create a transfer function equivalent to Eq. 8.1, we only need to consider

the six-parameter target [X ′, X, Y, Y ′, νx, νy] where X and Y are the RMS beam

edge. However, meeting just these constraints does not result in a good solution.

We require further constraints to find a well-behaved lattice function.

First, the beam edge must not exceed the pipe radius at 2.5 cm. Second,

large values of X ′ should be avoided. Steep gradients in the envelope function cause

sensitivity to quad errors. In the extreme case, a quadrupole error in a sensitive,

high-gradient location could cause the envelope to become unstable and particle

motion unbounded. Third, large asymmetry in the beam XY aspect ratio can

disrupt the particle distribution through asymmetric space charge forces and can

lead to unpredictable, nonlinear behaviors. Therefore we desire to maximize beam

roundness (while maintaining sufficiently strong alternating-gradient focusing).

Energy spread in the particle distribution is another consideration. As UMER

is a coasting beam (without synchrotron focusing), at the center of the bunch the
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energy spread can be assumed to be low. However, the lattice design should still

consider energy-dependent effects to ensure off-momentum orbits are still near the

quasi-integrable condition.1 The octupole insert should occupy a zero-dispersion

region, as dispersion distorts particle orbits. Ideally the single-channel lattice is

achromatic, with chromaticity Cx = 02, so that off-momentum particles do not

experience a tune shift from the design value. As the UMER dipole locations and

strengths are fixed, it is impossible to exactly match this criterion. At present

UMER is not equipped with chromaticity-correcting sextupoles, therefore we aim

for a lattice design with low natural chromaticity. It is possible to implement this

correction in the future with PCB sextupoles.

8.1.2 Reducing dimensionality of the optimization problem

Feeding all 68 free parameters into an optimization routine with 5+ targets

is inefficient and generally ineffective at finding a well-behaved solution. The di-

mensionality of the problem is reduced by assuming periodicity N of the lattice

solution and optimizing for one period. In the typical FODO configuration, the

lattice solution therefore has a periodicity of 36.3

Choice of N reflects a balance between lattice complexity (high N is more

repetitive and therefore easier to tune) and flexibility in focusing optics (high N has

fewer free quads). The periodicity must be evenly divisible into 72. In the single-

1Off-momentum effects are discussed in Appendix A.
2Equation A.15
3In reality, the optics in the injection section are distinct from the other 35 cells, and the ring

has a super-periodicity of one.
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channel lattice, the length of a cell will be longer than 32 cm. Considering there

will be a drift space of length 64 cm (requiring the omission of 4 quadrupoles), the

number of free quads per cell is 72/N − 4. At N = 18, there are no quadrupoles

between drift/insertion regions and therefore no external focusing. This limits the

possible periodicities to the set N ∈ [12, 9, 6, 4, 3, 2, 1].

Existing UMER routines for matching injected beam shape into the lattice

assumes symmetry at the diagnostic locations (for a well-tuned match the beam

spot has an identical aspect ratio at all imaging screens). [39] The periodicity of

RCs in UMER is 18. Therefore, for the most straightforward diagnostics of the

beam match, N should also be divisible into 18. This further limits N to the set

[9, 6, 3, 2, 1].

N = 9 contains only 4 quads per cell. This is less than the minimum number

of target parameters. Cases N = 2 and N = 1 do not significantly simplify the

problem. Therefore the two most promising symmetries are N = 6 and N = 3, with

eight and twenty free quads per cell, respectively.

The following discussion assumes a lattice with periodicity N = 3. A single

cell with available quadrupoles is shown in Fig. 8.1(a). In the full ring solution the

matched beam comes to a waist at three azimuthal locations. For empirical tuning

of beam match, it will be possible to image the beam spot at three symmetric

locations per turn. The octupole insert will be placed over one of the quad-free

waist regions and the bare tune advance between exit and entrance of the octupole

element will be an integer or half-integer. In the N = 3 lattice, dimensionality is

further reduced by assuming forward-backward symmetry in each cell, as drawn in
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Fig. 8.1(b). In other words, only lattice solutions for which the periodic solution is

mirror-image symmetric about the middle of the cell are considered. This reduces

the free parameters to ten.

The optimization procedure described below was applied to the N = 6 case for

a beam waist β∗ = 0.3 m. No good solutions were found at the desired tune value,

suggesting that there was not enough flexibility with only four free parameters.

The N = 6 lattice may be more tractable for a larger waist size beta∗ and may be

revisited in this case.

8.1.3 Approach for finding QIO lattice solutions

In order to reduced the computational time when examining many solutions,

the envelope equations are only solved over a half-cell, as drawn in Fig. 8.1(b).

s = 0 is aligned with the center of the insertion/drift region. I set the initial

conditions based on the desired beam size at the waist, X(0) = Y (0) =
√
εβ∗ and

X ′(0) = Y ′(0) = 0. The free parameters are the currents in the ten free quads,

~I = [I1, I2, ...I9, I10]. Cell length is L = 3.84 meters.

To find the periodic matched solution for one cell, over the half-cell calculation

I minimize the target terms ~T = [X ′(L/2), Y ′(L/2),∆νx,∆νy,∆XY ]. For single-

objective optimizations, I define a minimization function f =
√
< T · w > for weight

vector w. X ′(L/2) = Y ′(L/2) = 0 for the matched, periodic solution. Meanwhile,

∆νx = νx−νdr− n
2

for any integer n, where ∆νx = 0 is the quasi-integrable condition

(and similar in y). The term ∆XY , defined ∆XY ≡ max |X − Y | is an approximate
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(a) Half a lattice cell, with quads numbered according to location in cell.

(b) One lattice cell, with quads numbered according to location within symmetric cell.

Figure 8.1: Arrangement of magnetic elements in N = 3 lattice. Quads are gray,

dipoles are green.
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measure of roundness.

Another method for limiting asymmetry is the use of a “reference trajectory,”

first described in the envelope code SPOT [53]. Prior to lattice function optimization,

the user defines a reference trajectory R(s), which is the desired average beam size

as a function of s. Two additional terms are added to the minimization function:

< |X(s) − R(s)| > and < |Y (s) − R(s)| >. This should guide the optimized

solution towards the desired average behavior with minimum asymmetry. Used in

this context, the reference trajectory approach was not more effective than simply

adding the roundness term ∆XY described above.

Finding the appropriate weight factor to balance tune advance and envelope

terms is difficult. Tune is generally more slowly-varying than α when adjusting

quadrupole strength, as it is a global rather than local property. Additionally, the

tune term contains the arbitrary integer n. My approach was to calculate the tune

for the non-optimized initial condition (a non-periodic solution) and choose a tune

target near the initial condition. In general the tune condition may not be met

exactly. Or, in switching between simulation models with different magnet models,

the tune may drift from the desired value. In these cases, I explore nearby solutions

and parametrize tune in terms of quadrupole strength in order to move towards

∆ν = 0.
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(a) Lattice solution for 1/6th of ring (half-cell in N = 3 lattice). Quads are numbered.

(b) Lattice solution over whole ring. Numbers indicate RC position.

Figure 8.2: MENV solution for 100 micron, 60µA beam. Dipoles are green, quads

are gray. Y-axis shows RMS beam size in x (blue) and y (red) and dispersion (black).

Numbers indicate RC position.

8.1.4 Lattice solution in MENV

Initial solutions are found by integrating the RMS envelope equation (Eq.

2.25) using the in-house, Matlab-based code MENV [28].4 Lattice optimization

was performed using the built-in Matlab method GlobalSearch, part of the Global

Optimization toolbox, which tests convergence over a range of initial conditions

4Described in Chapter 4 with model parameters in Table G.3.
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Table 8.1: Quadrupole currents (in Amps) for MENV N = 3 lattice solution shown

in Figure 8.2.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

-0.590 1.247 -0.972 0.616 -0.332 0.414 -0.510 0.738 -1.166 0.762

in order to locate a global minimum. [54] For this problem I applied the fmincon

minimization tool. I use the target function ~T = [αx,f , αy,f ,∆νx,∆νy,∆XY ]. All

terms are defined in the previous section, with equal weights except the ∆XY term

weighted at 1% of the other contributions.

Figure 8.2 shows a solution for a 60 µA, εx = εy = 100 µm beam computed

in MENV.5 Beam currents for this solution are listed in Table 8.1. Lattice tune

and chromaticity are given in Table 8.2. Note that dispersion is not optimized or

matched in Fig. 8.2. An alternate solution with non-dispersive drift sections is

shown in Appendix H, but the tune values are further from optimal.

5Comparable to the proposed “DC beam” of Section 7.4.
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Table 8.2: Parameters of matched lattice solution shown in Figure 8.2.

Parameter

Full ring tune νx = 3.270

νy = 3.267

Drift/insertion tune νx = 0.265

νy = 0.272

Linear lattice tune νx = 3.004

νy = 2.995

Half-cell tune νx = 0.545

νy = 0.544

Chromaticity Cx = −4.270

Cy = −3.277
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(a) % error in beam waist β∗ in insertion region as a function of injected

mismatch.

(b) RMS envelope evolution for 60µA, 100 µm beam over 10 turns with initial 10% mismatch.

Figure 8.3: Beam envelope evolution with injection mismatch error.

8.1.5 Lattice sensitivity

One of the concerns with designing a non-FODO lattice is finding a stable

solution. Small errors in injected beam or quadrupole strength should not result

in secular growth envelope. Instead the RMS beam extent should oscillate about

the matched solution, with a large tolerance for injection error. To test lattice

stability, MENV is used to study RMS envelope propagation with an “injected
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Figure 8.4: Maximum RMS size versus initial mismatch over 10 turns.

beam” mismatch. Initial conditions are defined as X(0) = (1 − f)XM and Y (0) =

(1− f)YM where f is the fractional mismatch.

Fig. 8.3 shows results up to f = 0.10 for the 60µA lattice solution.In general

the solution is well-bounded for even large (> 10%) injected mismatch. Fig. 8.4

shows the maximum RMS beam size for a 60µA, 100 µm beam as a function of initial

mismatch. The behavior is very predictable and bounded even up to very large

injection errors. The results predict good stability for the proposed experiments, as

the acceptance for injection errors will be limited by scraping on the pipe wall and

not lattice sensitivity.
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Figure 8.5: Operating points νx ≈ νy for nearby matched solutions.

8.1.6 Tuning and tune scans in the single-channel lattice

In the above lattice solution, we desire independent control of the lattice tune

without disrupting the beam match through the octupole insert. The tune depen-

dence on quadrupole strength is slowly varying compared to the dependence of the

envelope solutions X(s), Y (s). Therefore, it is possible to linearize the tune depen-

dence of nearby matched lattice solutions in terms of quadrupole strengths. This

technique is described in more detail in Appendix H.

Linearizing the local solutions allows tuning of a lattice towards the optimal

tunes. As long as the tune is known, a path can be drawn towards the desired tunes

and the required changes in quadrupole strengths predicted. In Appendix H, this

approach is applied both to correcting the MENV solution and tuning quadrupole

currents for implementation in a WARP model.

Another application is to perform tune scans in the single-channel experiment.
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(a) Linear fit to tune as a function of iQ1. (b) Linear fit to quad currents as a function

of iQ1.

Figure 8.6: Linear fits that parameterize quad current and tune with respect to iQ1

while maintaining a matched beam in the drift/insertion region.

In Chapter 6 the tune scan method is described and in Chapter 11 it is applied

to resonance studies in the FODO lattice. Tune scans can be used in the single-

channel experiment to examine performance as a function of distance from the quasi-

integrable condition as well as a way of inducing resonant losses to demonstrate

octupole-driven damping. Tune scans should be performed in such a way that the

tune is shifted without mis-matching the beam through the octupole insert. Fig. 8.5

shows the operating points of a handful of matched solutions near the line νx = νy.

Fig. 8.1.6 shows the dependence of lattice tune on the current in Q1, while Fig.

8.1.6 shows how Q2, Q7-10 must be varied to maintain a matched solution. Further

discussion of this technique, including linear fits for behavior along the νx = νy line,

is in Appendix H.
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Figure 8.7: Ring lattice solution with the addition of solenoids (in black). Dashed

line indicates solenoids with B|| = 100 G, solid line has B|| = 70 G in opposite

polarity.

8.2 Solenoids for flexibility of optics

A lattice solution of the type suggested in Chapter 8 is based on the assumption

of fixed beam profile in the octupole insertion. The design values assumed for the

above solutions are β0 = 0.3 m, νdr = 0.27. Flexibility in the size of the beam

waist would be useful for experiments, as this has direct correlation with dynamic

aperture. This can be achieved using solenoid focusing elements on either side of

the channel. With the same focusing strength in each solenoid, the size of the beam

waist can be adjusted without creating mismatch, as illustrated in Fig. 8.7.

MENV calculations show beam waist can be adjusted in the range β0 =

0.236 → 0.442 m, which corresponds to fractional lattice tunes ν = 0.40 → 0.10.

This assumes a four cm-long element with on-axis field Bz = 26 Gauss. This requires

approximately 84 Amp-turns, which is feasible for a UMER magnet. Independent
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control of the beam waist with solenoids as described allows a “single knob” to

adjust lattice tune, without relying on an optics model of the ring as described in

Chapter 8. This capability would be very useful for examining beam transport near

different resonant conditions, as is done for the FODO lattice in Chapter 11.

8.3 WARP simulations of single-channel experiment

This section uses a WARP model of the lattice solution found above to predict

single-channel experiment performance. Initial lattice solutions were found in both

Elegant and MENV, using envelope integrators in a linear lattice. However, the

dynamics that can be probed in these codes are limited. MENV is strictly an

envelope integrator, allowing only linear fields (quadrupole magnets and linear (KV)

space charge). Elegant is more powerful, with a variety of magnet models including

symplectic models of nonlinear fields. However, Elegant is most trustworthy in the

low-charge regime as it does not include a fully self-consistent space charge model.

As the goal is to perform low-charge experiments before moving into a high-charge

regime, building a lattice model in WARP will allow for self-consistent simulations.

Additionally, the WARP deck for UMER includes gridded field elements based on

MAGLI calculations of the PCB circuits, while all other models use hard-edged

approximations.6
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Table 8.3: Quadrupole currents for WARP implementation of N = 3 lattice.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

-0.538 1.161 -0.973 0.616 -0.434 0.410 -0.458 0.925 -1.109 0.650

Figure 8.8: Transverse beam evolution in WARP model. First turn is shown with

bold lines; subsequent turns 2-10 are shown in gray to show magnitude of mis-

match/envelope oscillation.

8.3.1 Implementing MENV lattice solution in WARP

The MENV-optimized solution is implemented in the WARP model using

gridded field elements. As the transfer function of the hard-edged model is not in

perfect agreement with the gridded elements, additional optimization and tuning of

the lattice in WARP is required. This includes applying the tune parameterization

method described above to shift the WARP lattice towards the desired operating

point. A more thorough discussion is given in Appendix Section H.3.

Lattice tune is measured using frequency analysis of low-amplitude probe par-

ticle orbits. Full ring tunes are measured to be νx = 0.240 and νy = 0.259. From this

6See Appendix G for hard-edged model parameters.
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measurement, tune errors are ∆νx = −0.023, ∆νy = −0.013 and ∆νx−νy = −0.019.

Figure 8.8 shows RMS beam size evolution over 10 turns in the optimized WARP

linear lattice. The average twice-RMS beam size in the drift/insertion regions is

βx = 0.36± 0.03 m, βy = 0.34± 0.03 m measured over 10 turns from an initial con-

dition of βx = βy = 0.3. Equivalently, 2xRMS = 6± 0.3 mm and 2yRMS = 5.8± 0.2

mm compared to the desired matched condition of 2xRMS = 2yRMS = 5.5 mm.

8.3.2 Frequency map analysis of octupole lattice in WARP

In this section frequency map analysis7 is applied to the full ring WARP model.

To map the space, probe particles (with zero-current) are launched on an N × N

grid in x ∈ [0, 0.8] cm and y ∈ [0, 0.8] cm. To stay consistent with reduced model

simulations, the distribution is launched at the s∗ waist location, so the configuration

space plot Fig. 8.9(a) corresponds with the drift/insertion center. At this location,

for a 60µA, 100µm beam, the beam edge is expected to be ∼ 0.55 cm, so the gridded

distribution over-fills the space. The pure-multipole MMLT element is used to model

an octupole insert of length 32 cm (dipole-center to dipole-center) and gridded field

BGRD elements as described above. Unless otherwise stated, frequency maps are

calculated for 512 turns.

Simulations are run both with and without space charge. In the latter, it is

only necessary to initialize probe particles. For the former, I also initiate a KV dis-

tributed beam with 60µA current and ε = 100µm emittance that is matched to the

linear lattice. While the KV distribution is high-correlated and thermally unfavor-

7Described in Chapter 4.
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able state, it is a commonly used test case for lattice dynamics with space charge.

Additionally, in a self-consistent PIC model the particle distribution decorrelates

very quickly.

Simulations are presented for the lattice solution in Table 8.3, which has frac-

tional tunes νx = 0.240,νy = 0.259 near the desired operating point νx = 0.265,

νy = 0.272. An analysis of dynamics in a less-optimal operating point νx = 0.426,

νy = 0.185 is presented in Appendix I. Dynamics are similar in both cases.

8.3.2.1 Linear WARP lattice

In the linear case, the octupole insert is not powered. As the maximum trans-

verse beam edge is quite large (∼ 1.5 cm), the beam samples non-linear regions of

the UMER PCB magnets. This nonlinearity causes tune spread even in the “linear”

lattice. A zero-current distribution of probe particles was used to sample the pro-

posed lattice in the WARP model, the resulting frequency map analysis is shown

in Fig. 8.9. The ideal quasi-integrable operating point is indicated by a red dot.

The full interrogated space is shown, but a cut at r = 0.55 cm is indicated by pixel

saturation (this corresponds with the expected beam edge). The dynamic aperture

for a round beam is 0.56 cm, and the aperture appears to be limited by the 2νy−3νx

resonance.

As seen, there is significant tune spread even in the absence of octupole fields

and space charge. As the the nonlinearity in the quadrupoles is supralinear, we

expect high-amplitude particles to occupy a higher tune. This is true for the vertical
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spread, but not the horizontal. For particles within r = 0.55 cm, max δνx = 0.044

and max δνy = 0.039 with RMS δνx = 0.029 and RMS δνy = 0.019. These values

are comparable to the “best-case” values in the reduced model (max δν = 0.113 and

RMS δν = 0.034), while the amplitude-dependence of the tune shift resembles that

of the octupole lattice (high amplitude particles at larger tune shifts). This may act

to obscure the effect of the octupoles in the proposed experiments.

Fig. 8.10 shows the same case with 60 µA current. Again, a radial cut is made

at r = 0.55 cm. The footprint for the zero-charge case (Fig. 8.9(b)) is shown in

black. The tune footprint of the particle distribution is shifted from the zero-current

bare tune ν0. We expect that the tune is depressed with space charge. As seen in

Fig. 8.10, the vertical tune is depressed but the horizontal tune experiences a small

positive shift. The partial tunes for a low-amplitude particle are νx,ring = 0.263 and

νy,ring = 0.242 (compare to νx,ring = 0.243 and νy,ring = 0.257 for the zero-charge

case). A negative tune depression is unexpected, so it is possible the method of tune

reconstruction is not correct.

Comparing the configuration space to the no-charge case (Fig. 8.10 with Fig.

8.9), we see stronger nonlinear behavior with the inclusion of space charge, with

higher dν on average. Interestingly, the dynamic aperture is increased in the presence

of space charge, to r = 0.79 cm. This seems to be because the space charge tune

shift moves the distribution away from the 2νy−3νx resonance. For particles within

r = 0.55 cm, max δνx = 0.017 and max δνy = 0.020 with RMS δνx = 0.008 and RMS

δνy = 0.010. This is a smaller spread than in the zero-charge limit, suggesting that

even small amounts of space charge act to shield particles from external nonlinearity.
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Projections of the beam distribution in planes [X, Y,X ′, Y ′] are shown in Fig.

8.11. There is some distortion in the X − Y beam projection (which should be

round, as this image is taken at the waist). The initial, seeded distribution is

uniform in all projections. After 128 turns there is some charge redistribution, with

tails developing and the profile tending towards a more Gaussian-type distribution.
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(a) Dynamic aperture over 512 turns.

(b) Tune footprint, with up to 3rd order resonance lines.

Figure 8.9: Frequency map analysis of full ring linear lattice in WARP for lattice

solution in Table 8.3.
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(a) Dynamic aperture for 128 turns.

(b) Tune footprint, with up to 3rd order resonance lines.

Figure 8.10: Frequency map analysis of full ring linear lattice in WARP with 60µA

beam.
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Figure 8.11: Projections of particle distribution after 128 turns in the linear WARP

lattice (G3,max = 0) for 60µA beam.
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8.3.2.2 Nonlinear WARP lattice

Simulations were also run including the octupole element. Figure 8.12 shows

the frequency map when the octupole insertion is powered at G3,max = 50 T/m3

(∼ 1 A peak). The unsaturated pixels are the configuration space and tune foot-

print from the linear case, Fig. 8.9. Compared to the linear case, the dynamic

aperture is decreased to r = 0.22 cm. As the aperture is much smaller, it is hard

to directly compare tune spreads, since both the octupole-induced spreads and the

dipole/quadrupole nonlinearities are greater at high amplitudes. However, for the

distribution of stable particles in Fig. 8.12, max δνx = 0.038 and max δνy = 0.050

while RMS δνx = 0.008 and RMS δνy = 0.014. The tune spreads are almost identical

to the linear case, although the total area of the tune footprint is smaller.

With space charge introduced as described above, the tune spreads increase.

The frequency map is shown in Fig. 8.13 for G3,max = 50 T/m3. The tune footprint

at zero charge is also plotted (in black) for comparison. For particles stable particles,

max δνx = 0.051 and max δνy = 0.077 while RMS δνx = 0.022 and RMS δνy = 0.016.

Both the tune spread increases and the central tune shifts, as seen in Fig. 8.13(b).

However, there is essentially no dynamic aperture, due to particle losses that appear

to primarily be along the fourth order resonance 4νx = 1. The beam distribution

after 128 turns is shown in Fig. 8.14. Compared to the linear case, the loss of

dynamic aperture is apparent. The transverse beam shape starts to reflect the

shape of the octupole fields: the XY projection gains “wings.” Horizontally, the

bunch appears to hollow due to the loss of unstable particles near the core.
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(a) Dynamic aperture for 512 turns.

(b) Tune footprint with up to 3rd order resonance lines

shown. G3,max = 0 case is shown in gray.

Figure 8.12: Frequency map analysis of full ring octupole lattice at G3,max =

50 T/m3 in WARP with zero current.
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(a) Dynamic aperture for 128 turns. Note the color axis is

shifted when compared to most other plots.

(b) Tune footprint, with up to 3rd order resonance lines.

Black points represent the same case without space charge.

Figure 8.13: Frequency map analysis of full ring octupole lattice at G3,max =

50 T/m3 in WARP with 60µA, 100µm beam.
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Figure 8.14: Projections of particle distribution after 128 turns in the WARP oc-

tupole lattice at G3,max = 50 T/m3 for 60µA beam.

The WARP results predict poor performance when implementing the proposed

lattice experimentally. The maximum octupole-induced tune spread in a 60 µA

beam is only approximately twice that of the linear focusing lattice, which is still

a relatively weak effect For the chosen operating point νx = 0.240 and νy = 0.259,

space charge appears to strongly drive particle losses along a fourth order resonance

when octupole fields are included. Tuning to an operating point above the νx = 0.25

resonance might yield better results.
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Figure 8.15: Another possible ring solution, with custom solution over 1/3 of ring

and standard FODO lattice for remaining 2/3 of lattice.

8.4 Another strategy for finding lattice solutions

Another approach to matching, which also yielded promising results, follows

a completely different philosophy of ring structure. In this approach, the super-

periodicity of the ring is assumed to be one. The ring is divided into 4 regions.

the quad-free drift region is one, while the “T-insert” is composed of three distinct

regions: two “matching sections” on either side of the drift region, and a region with

a FODO solution.

Fig. 8.15 shows an example lattice solution (with current values in Table 8.4),

in the zero-current limit. In this case, the drift length is 64 cm with tune advance

νdr ∼ 0.28. The matching sections each contain 13 free quadrupoles over 2.5 20◦

ring sections. The quads in the matching section are optimized in order to match

the initial condition at the beam waist to the matched condition for a FODO cell.

After an initial matched solution is found, the FODO cell is adjusted to move the
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Table 8.4: Quadrupole currents for Elegant solution shown in Figure 8.15.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Q10 Q11 Q12 Q13

FODO -1.418 1.418

MS1 -1.370 1.581 -0.997 0.701 -0.504 0.648 -0.587 0.606 -0.623

0.741 -0.751 -0.751 0.376

MS2 -0.376 0.751 0.751 -0.741 0.623 -0.606 0.587 -0.688 0.701

-0.821 1.036 -1.558 1.556

tune advance closer to the desired value, and the matching section quads re-tuned

to maintain a match between the drift region and the FODO region. This solution is

matched for beam envelope but no effort is made to match or minimize dispersion.

For the solution in Fig. 8.15, the tune in the FODO region is νx = 3.890,

νy = 3.926. In the matching sections, νx,1 = 0.640, νy,1 = 0.441 and νx,2 = 0.501,

νy,2 = 0.642. The tune advance through the drift/insertion regions is νx,drift =

0.283, νy,drift = 0.288. This gives a linear lattice tune advance of νx,T = 5.031 and

νy,T = 5.000. Tune errors in this lattice are ∆νx = 0.031 and ∆νy = 0.000.

The appeal of this approach is that the beam is well-contained during transport

in the FODO section, with stronger focusing reflected in the higher tune, and the

average beam size is well within the physical pipe aperture and linear quadrupole

region. The beam is only large near the insertion region. This relaxes steering

requirements for 2/3 of the ring, as compared to the previously discussed solution

where the beam is large in many sections. The downside is the super-period of one,
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(a) (b)

Figure 8.16: Frequency map analysis of full ring octupole lattice from Elegant model

for lattice solution similar to Fig. 8.15. Octupole lattice is at operating point β∗ =

0.45 m, νdr = 0.03. (a) Dynamic aperture (survival vs. particle initial position). (b)

Tune footprint, with up to 3rd order resonance lines.

which may make it difficult to characterize the beam match. This also complicates

optimization of the lattice solution, as there are three distinct regions that must be

optimized instead of one. The exact solution shown in Fig. 8.15 will not translate

well to WARP or lab implementation, as the built-in Elegant edge-focusing model,

using sector-dipoles with ζ = 5◦ edge angles, is known to over-estimate vertical edge

focusing when comparing FODO lattice tunes to experimental measurements.

Results from frequency map analysis on a similar solution is shown in Fig.

8.16. This simulation uses 8 discrete hard-edged octupole MULT elements as the

insertion. The octupole channel is 28.24 cm long, situated in the straight section

between dipoles. G3,max = 84.7 T/m3 for normalized strength κ = 4394 m−1. This

lattice has phase errors of ∆νx = 0.002 and ∆νy = 0.007. The shape of the dynamic

aperture reflects the distortion we expect in the case of unequal phase advances in
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the linear lattice, as described in Section 7.5.2.

8.5 Chapter summary

This chapter discussed development of a workable approach for finding a lat-

tice solution to meet the requirements of a single-channel quasi-integrable lattice

using the existing UMER framework. I justified the choice of a lattice with N = 3

symmetry, which has ten free quad strengths for lattice optimization. Using the

envelope integrator MENV, I demonstrate an effective approach for optimization

and show three possible lattice solutions. Nearby matched solutions are explored to

find a working point closer to the quasi-integrable condition. With knowledge of the

surrounding tune landscape, I show a parameterization of lattice solutions around

the νx = νy line. This will be useful for tuning of the simulated and experimental

lattices to operate at the desired tune, as well as provide a framework for performing

tune scans in the octupole lattice. The use of solenoid elements is considered for

additional control of the second order moments near the insertion region. Required

solenoid strength is relatively weak (< 30 Gauss on-axis field) and the implementa-

tion would be a powerful tool for examining resonant losses in the quasi-integrable

lattice. Finally, in the same vein of lattice optimization, Section 8.4 described a

completely different approach for matching using a “half-FODO” lattice. Solutions

of this have a smaller average beam size, but many more free quadrupole strengths

and in general are less approachable than the N = 3 type.

This Chapter also reviewed efforts to implement the proposed lattice in the

154



WARP PIC code. This will be a powerful tool for both numerical experiments and

comparison with measurements, as WARP allows for self-consistent treatment of

space charge effects. A WARP model has been assembled for the single-channel

octupole experiment using realistic gridded field elements. This model uses the

lattice solution found in MENV for a N = 3 periodic lattice, with small adjustment

to maintain a matched beam profile in the drift/insertion regions. The tune of this

lattice is outside the bounds of the desired tolerance ∆νx,∆νy < 0.1 and ∆νx−∆νy <

0.01 found with the reduced model. While this may be comparable to what we expect

in a first experimental pass, further optimization of the WARP lattice function

should be done for a more robust model nearer the integrable condition.

Moving beyond the reduced model into full ring simulation of the quasi-

integrable octupole lattice with the proposed lattice function, poor behavior is ob-

served when all nonlinearities (quad/dipole fields, octupole insert and space charge)

are included. However, the tested working point is far from the quasi-integrable con-

dition, with tune errors ∆νx = 0.163, ∆νy = −0.085 and ∆νx − νy = 0.240 beyond

the range that was tested in the reduced model. The tune footprint of this working

point spans a third order resonance, which appears to be driven by space charge

and not strongly mitigated by the octupole-induced tune spread. The WARP PIC

calculations should be repeated at a more favorable working point.

155





Chapter 9: Distributed Octupole Lattice

This chapter discusses design of and preliminary measurements on a dis-

tributed octupole lattice. As discussed in Chapter 7, the distributed octupole lattice

is an alternative design for the QIO experiment which is simpler to implement in

UMER. This design requires less custom hardware and uses a FODO arrangement

for linear focusing, in comparison to the single-channel experiment which requires a

custom 20◦ ring section and a non-FODO lattice solution. However, the predicted

nonlinear detuning effect is predicted to be much weaker and the quasi-integrable

condition identified by Danilov and Nagaitsev [5] cannot be met exactly. This work

was originally presented as a conference proceedings. [55]

9.1 Motivation

The Danilov-Nagaitsev condition for quasi-integrability is that nonlinear insert

is placed where the beam is round (βx = βy) and the nonlinear potential scales

longitudinally as V (s) ∝ β(s)−3. Additionally, the phase advance between nonlinear

inserts (determined by the linear focusing function) should be φT = nπ for integer

n. The distributed octupole lattice proposes using FODO-like linear focusing and

placing short octupole inserts at the locations where βx ∼ βy.
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Figure 9.1: Diagram of alternative lattice FODO cell, including possible locations

for distributed octupole elements (blue).

The linear focusing function in the distributed octupole lattice takes the form

of the alternative configuration of the UMER FODO lattice. Here the other length

of the FODO cell is extended from 32 to 64 cm and 36 of the 72 available ring

quadrupoles are left un-powered. A diagram of a single FODO cell is shown in

Fig. 9.1 with lattice elements indicated in green (dipoles) and gray (quads). The

envelope solution assumes the I = 0.6 mA pencil beam with emittance ε = 7.6 µm.

In the alternative lattice, the mid-cell location where βx = βy corresponds

roughly with the location of un-used quadrupole elements. These locations are

indicated in Fig. 9.1 in lightly shaded blue. As the octupole PCBs were designed

with the same aspect ratio as the UMER ring quadrupoles (Section 7.2), they can

be installed at this location using existing magnet mounts.

A key liberty taken with the quasi-integrable theory is the requirement that

βx = βy throughout the nonlinear element. In this case, βx ≈ βy. The error

βx, y − 〈βx, βy〉 is approximately 15%. Even assuming βx = βy = constant, the

PCB octupole field is fringe-dominated. The longitudinal profile is not flat-top and
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therefore the magnet does not meet the requirement that Voct = 1/β3 = constant.

Theoretical calculations of the UMER magnets predict that fringe fields cancel due

to the relatively short magnet length. [56] It is unclear if this cancellation will help

preserve the nonlinear invariant. Simulations presented here utilize a hard-edged

approximation.

The alternative FODO lattice is designed for a bare tune of ν0 = 3.36. [36] The

tune operating point can be adjusted in a wide range by varying currents IF and

ID in the focusing and defocusing quad families. To meet the n− π phase advance

requirement, the linear focusing ring must have a tune of n
2

+ δ where δ indicates

the tune advance through the octupoles. δ is approximated as

δ = 2πψoct =

∫
oct

ds

β(s)
≈ NLeff

〈β(s)〉
(9.1)

for effective octupole length Leff and number of octupole inserts N . With four

octupole inserts length Leff = 5 cm and average beta function 〈β(s)〉 ∼ 0.5 m, the

tune advance through the octupole is δ ≈ 0.06.

As discussed in Chapter 5, the maximum octupole induced tune spread δν is

roughly equal to the tune advance through the octupoles. Therefore, the distributed

lattice tune spread scales with the number of octupole inserts N . N = 18 and

N = 36 lattices have tune spreads comparable to the single-channel design, with

maximum δν = 0.25. However, as the linear lattice is only tunable in the range

ν ≈ 3.36 ± 1, the number of inserts should be restricted to N ≤ 9. Therefore, the

resonance suppression effect in the distributed lattice is expected to be weaker than
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(a) N36 octupole lattice (b) N9 octupole lattice (c) N4 octupole lattice

Figure 9.2: A selection of distributed octupole lattices tested for dynamic aperture

and tune spread.

Table 9.1: Parameters and results for three configurations of distributed octupole

lattice. νT is tune advance between octupole inserts.

# octupoles Separation [m] νx,T νy,T DA [mm] tune spread δν

36 0.32 0.11 0.11 7.0 0.1

9 1.28 0.48 0.49 1.5 0.05

4 2.88 1.10 1.12 2.5 0.1

in the single-channel experiment.

9.2 Simulations of distributed octupole lattice

9.2.1 Frequency map analysis

There are several configurations of distributed octupoles that result in a peri-

odic lattice. Three cases are shown in Fig. 9.2. Here N# is used to identify lattices

by the number of octupole inserts. For the three cases shown, frequency map anal-
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(a) Configuration space, in units of RMS beam

size σ

(b) Tune footprint in fractional tune space

Figure 9.3: Frequency map analysis of N4 lattice in configuration and tune space.

ysis was used to predict maximum dynamic aperture and tune spread for each case.

Integrated octupole gradient and lattice tune was held fixed between cases. These

simulations uses the Elegant [30] model of the ring (see Section 4.1.4 and Appendix

G for more details).

The operating point for Elegant calculations was at ring tunes νx = 4.45,

νy = 4.54. The resulting tune advance between centers is given in Table 9.1. The

N4 lattice possessed a larger dynamic aperture than the N9 case. The N36 case gave

large tune spread and large dynamic aperture, but was not investigated further for

the reason stated above. In all cases, tune spreads were comparable to the expected

∼ 0.06.

The results for the N4 are plotted in Fig. 9.3. Here, results are plotted in

terms of RMS beam size σ for the 0.6 mA pencil beam. The region of stability is

limited by the half-integer band νy = 4.5 (seen in Fig. 9.3 in lower left corner of
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stable region). The ideal operating point at νx = νy = 4.06 is farther away from

this resonance.

9.2.2 Tracking HN invariant

Studies of the N4 lattice were followed up with quantification of the invari-

ant HN conservation (Eq. 3.6) using a WARP model of the ring. Two operating

points both nearby and far from quasi-integrable conditions were compared. The

WARP model uses a hard-edged approximation for ring elements, described in Ap-

pendix G. Hard-edged octupoles of length 5.2 cm and peak strength 75T/m3/A are

placed at 2.88 m intervals. Fig. 9.4 shows a survival plot for a simulated tune scan

in the WARP model. As the smooth-focusing approximation (used to transform

quadrupole current to tune for the 32 cm FODO lattice, Section 6.4.3) is less valid

for a less-dense FODO cell, the tune map is generated using probe particles in the

WARP model.

Two cases are considered: The historically utilized alternative lattice operating

point IF = ID = 0.87 A, which has a tune (as calculated in WARP) of νx = 3.88,

νy = 3.83 and IF = 0.938A, ID = 0.944A, with tunes νx = 4.13, νy = 4.11. The two

operating points are marked in Fig. 9.4. HN is tracked over 50 turns.

The variation in HN is reported in Table 9.2 for both operating points. In-

variant tracking for two sample particles, launched at fixed initial phase space co-

ordinates, are plotted in Fig. 9.5 and Fig. 9.6. One expects the invariant to be

perfectly conserved in the linear case (Ioct = 0). Low-level variation on the order
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Figure 9.4: Beam survival plot simulated in WARP, using hard-edged elements and

thin multipole kicks as driving terms.

of 2% is seen at both operating points. As the octupole strengths are increased,

HN becomes “less-conserved” and larger oscillations are observed. However, HN

variation is lower for the case nearer the νx = νy = 4.06 quasi-integrable condition.

This suggests that improved stability is gained from operating near integrability in

the distributed lattice. Simulation studies at the νx = νy = 4.06 were not fruitful,

as the proximity to integer resonances led to instability.

A natural extension of this work is to extend consideration to a wider range

of operating points. Fig. 9.4 indicates all the quasi-integrable operating points with

white dots. Unfortunately, due to the small δ, all ideal operating points are very

near integer and half-integer resonance bands.
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(a) Ioct = 0 A

(b) Ioct = 2 A

(c) Ioct = 4 A

Figure 9.5: Invariant HN for N4 distributed octupole lattice at νx = 3.88, νy = 3.83.
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(a) Ioct = 0 A

(b) Ioct = 2 A

(c) Ioct = 4 A

Figure 9.6: Invariant HN for N4 distributed octupole lattice at νx = 4.13, νy = 4.11.
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Table 9.2: Invariant HN conservation in N4 distributed octupole lattice.

νx = 4.13 νy = 4.11

Ioct [A] 〈HN〉 RMS variation % peak-to-peak variation

0 3.22E-6 2.3E-8 2.4

0.5 3.17E-6 4.2E-8 6.2

2.0 3.05E-6 1.1E-7 17.6

4.0 2.91E-6 2.1E-7 33.5

νx = 3.88 νy = 3.83

Ioct [A] 〈HN〉 RMS variation % peak-to-peak variation

0 2.92E-6 1.5E-8 2.3

0.5 2.90E-6 3.5E-8 6.8

2.0 2.82E-6 1.0E-7 20.8

4.0 2.93E-6 1.4E-7 59.9
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9.3 Preliminary measurements

To create the N4 lattice, octupole PCBs were installed at the locations of QR4,

QR22, QR40 and QR58. Only odd-numbered quads were used in the alternative

FODO lattice configuration. The injection quadrupole currents were set according

to a matched solution found via envelope integration in [36]. Prior to data collection,

orbit corrections were made using the algorithm described in Chapter 10. The 0.6

mA pencil beam was used for the initial measurements. This beam is predicted to

have tune spread δν = 0.87 in the alternative FODO lattice. [36]

Transmission in an N4 distributed octupole lattice was characterized. As there

are many quasi-integrable conditions in the available tune range, a tune scan was

performed using the method described in Section 6.4.3. A tune scan measures beam

loss/survival as a function of ring tune. Tune is varied by adjusting currents in two

families of quadrupoles (horizontally focusing and defocusing, notated as IF and

ID). For this experiment, ring quadrupoles were varied in the range I = 0.7 → 1.0

A, which covers a tune range ν = 2.5 → 4.5. Measurements were repeated for a

variety of octupole strengths Ioct = 0→ 1.5 A.

9.3.1 Tune scan results

Results from the linear lattice (Ioct = 0 A) are compared with an octupole

lattice (Ioct = 0.5 A) in Fig. 9.7. The lattice tune is different from the model

prediction, so the integer resonance bands are used to orient the measurement in

tune-space. A correction of νx → νx − 0.45 and νy → νy − 0.35 from the WARP

166



(a) Alternative lattice tune scan

(b) N4 lattice tune scan with octupoles powered at 0.5 A

Figure 9.7: Beam survival plot for 0.6 mA “pencil” beam at turn 25. Color axis is

current normalized to 10th turn.
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prediction is applied.

The tune scan of the linear lattice (Fig. 9.7(a)) shows broad stop-bands around

the horizontal integer and vertical integer and half-integer resonances. As the N4

lattice is intended to be run at νx = νy = n/2 + δ, most ideal operating points

are blocked by stop-band losses. With octupoles on (Figs. 9.7(b)), no increase in

beam survival is seen at any operating point. Quasi-integrable operating points are

indicated with white asterisks.

9.3.2 Errors in beam matching and steering

The beam matching quadrupoles and steering correctors were optimized to a

single operating point, at IF = ID = 0.87 A. It is expected that the accrued errors

in the match and the steering grow with greater distance from the orbit-corrected

operating point. First-turn horizontal orbit distortions at the “tuned-up” operating

point were measure to be RMSx = 0.5 mm and max |x| = 1.3 mm. In the vertical

plane, RMSx = 3.2 mm and max |y| = 8.5 mm. The contribution of these steering

errors can be seen in the width of the integer resonance bands. More accurate

steering corrections will likely reduce the size of the integer bands. Section 10.6.1

discusses orbit correction in the alternative lattice.

The beam match was also not very accurate. The first-turn beam profile

measurements are shown in Fig. 9.8. The RMS beam size varies 33% in the hori-

zontal and 28% in the vertical plane. More accurate matching solutions have been

demonstrated in UMER, up to standard deviations of 0.17 mm horizontally and 014
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(a) Transverse beam distribution from phosphor screens

(b) Measured RMS beam sizes

Figure 9.8: Mismatch oscillations observed for measured beam profile on first turn

in alternative FODO lattice.

mm vertically for the 6 mA beam. [39] Large mismatch oscillations increase beam

scraping and generally increase beam loss.

9.4 Chapter summary

The distributed octupole lattice is natively suited to the UMER structure,

allowing the installation of octupoles with minimal disruptions to the ring (utilizing

existing mounts and power supplies). However, it only approximately satisfies the

quasi-integrable condition. It is expected that these approximations will limit the

extent to which the Hamiltonian HN is conserved and the lattice is stable even for

strong octupole potentials. Tracking of HN in an N4 lattice shows that the invari-

ant is less conserved (experiences large and irregular oscillations) when octupole

fields are included. However, this diffusion of the invariant is less strong when the

operating point is near the quasi-integrable condition.
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Characterization of the 0.6 mA pencil beam in the N4 distributed octupole

lattice via tune scan shows that, for all operating points, current loss is increased

when octupole fields are included. However, initial measurements were limited in

scope. Better results may be obtained through more careful tuning of the beam

match and orbit correction to reduce scraping losses and shrink the width of integer

resonance bands.

The 0.6 mA beam tune spread (δν = 0.87) is large compared to the predicted

octupole-induced spread in the N4 lattice (δν = 0.06). The 40 µA DC beam is a

better candidate for experiments, although orbit tolerances will be tighter due to

the large average beam size.Additionally, the experiment was limited to 25 turns due

to space-charge driven bunch erosion and inter-penetration. Losses over short path

lengths are dominated by scraping and low-order centroid resonances. Increasing

path length by operating with longitudinal confinement or at lower current will allow

for observation of slower-acting resonances. Finally, lattices with a higher density of

octupoles should be considered, as they will have a stronger and more measurable

effect.
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Chapter 10: Steering and Orbit Correction

Precise control of the beam centroid is necessary for good recirculation with

low scraping losses and small integer stop-bands. In general we desire the beam

to be centered with respect to the quadrupole magnets. This results in the least

amount of coupling between focusing strength and orbit distortion. This is essential

for measurements like tune scans, in which beam transmission is measured over a

wide range of tune operating points.

In the context of nonlinear lattice experiments, the beam must be well-centered

through the octupole insert. As discussed in Section 7.5.1 the dynamic aperture of

the quasi-integrable octupole lattice is greatly reduced when the orbit distortion

from magnetic center exceeds 0.1 mm. Additionally, the QIO experiments will use

a low-current, high-emittance beam with relatively weak focusing (tune ν ∼ 3.3

compared to the nominal UMER operation at ν ∼ 6.7). A weakly-focused, large

emittance beam corresponds to a large beam cross-section in configuration space

and therefore tighter orbit tolerances are required to minimize scraping.

Conventionally in accelerator design, a reference trajectory is defined as the

ideal path of an on-energy design particle. This trajectory is typically centered

within the focusing (quadrupole) elements. The closed or equilibrium orbit is a
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continuous, closed path around the ring that is defined by the strength of the steering

dipoles. Ideally, the closed orbit is close to the reference trajectory and centered in

the quadrupoles. The closed orbit only exists for “good” choice of steerer strengths

and in general may have large excursions from the reference trajectory. A beam

that is not injected on the closed orbit will oscillate about it with an amplitude that

depends on the injection error. First-turn orbit is defined as the path of the centroid

on the first turn only, which is only identical to the closed orbit in the case of perfect

injection. In general we desire lowest-possible deviation of the first-turn orbit from

the quadrupole centers and low oscillation amplitude in subsequent turns.

This chapter describes an approach to steering that minimizes centroid posi-

tion in the quads (referred to as quad-centering) and presents results using the 6

mA beam as the test case. Section 10.1 discusses the effect of ambient fields on

the UMER beam. Section 10.2 describes the magnets used for steering and orbit

correction. Section 10.3 describes the general approach to quad-centering in the first

turn and uses particle-tracking code VRUMER1 to test the algorithm and predict

“best case” results in the limit of no mechanical mis-alignments. The approach to

minimizing closed orbit oscillations is relegated to Appendix K. Section 10.4 shows

measured results from lab implementation and Section 10.5 shows improvement in

the vertical plane after additional correctors are installed. Section 10.6 discusses

orbit control in the context of QIO experiments, including both the single-channel

and distributed octupole designs. Finally, Section 10.7 presents an application of a

global stochastic optimization method to orbit correction.

1See Section 4.1.1
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Figure 10.1: Ambient fields measured at UMER dipoles, from Dave Sutter measure-
ments 6/1/2010 and 7/22/2016.

All centroid data is shown in the co-moving beam frame coordinates (x, y, s).2

In all plots, +x is radially outwards and +y is (naturally) in the upwards direction.

10.1 Considerations for low-rigidity electron beam

In typical high-energy rings the beam travels in straight lines between steering

elements, tracing an N-sided polygon. At low energies, the beam is significantly

affected by ambient background fields and there are no straight lines. At UMER,

the background field that complicates steering solutions mainly originates from the

Earth’s magnetic field. Measurements of the ambient field at the location of ring

dipoles is plotted in Fig. 10.1.3 A simplified diagram of the Earth field orientation

with respect to the UMER lattice is shown in Fig. 10.2. The strongest component is

the vertical field. The beam is immersed in a near-constant vertical field of average

2Frenet-Serret coordinate system, as discussed in Section 2.1.
3Note that the convention for radial fields is opposite that of centroid position. Here negative

is radially-outwards, positive is radially-inwards.
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Figure 10.2: Earth field vectors, including xy projection. x,y units are meters.

strength−372 mG. The radial component of the field is low, with an average strength

< 1 mG, but has a sine-like dependence in s with a peak amplitude of ≈ 210 mG.

A 10 keV electron beam has magnetic rigidity Bρ = 338.859 G-cm. The

required integrated field to bend the beam 10o is 59.154 G-cm. Given an average

ambient vertical field of ≈ 372 mG per cell, the integrated field is 32 ∗ 0.400 = 11.9

G-cm. Therefore, ∼ 20% of the total horizontal bending in the ring is provided by

the ambient vertical fields. The ambient horizontal field is weaker and gives only a

small average orbit distortion over each turn that can be compensated for with a

weak corrector. However, local closed orbit distortions due to the horizontal fields

can be large and, as a result, relatively strong vertical corrections are necessary to

maintain a vertically “flat” orbit.

Because the beam is immersed in a bending field, in the perfectly aligned case

a beam orbit that is centered in the quadrupoles is required to be displaced in the
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Figure 10.3: Diagram of beam trajectory in BPM diagnostic (circle) for an orbit
that is horizontally centered in the quadrupoles. Dipole elements are green, quads
are blue.

BPMs, demonstrated for the horizontal trajectory in Fig. 10.3. Simple calculations

with a constant background field show that we expect the ideal orbit in the BPMs

to be radially displaced by +0.93 mm.

10.2 UMER steering magnets

Horizontal steering in UMER is controlled by 36 bending dipoles (BD) which

can be independently adjusted for optimization. There is 1 independent horizontal

dipole for every 2 quads. Vertical correction is made with 18 vertical ring steerers

(RSV) located at the flanges between 20o sections. There is 1 RSV corrector for

every 4 quads. Additional short vertical correctors (SSV) have been installed, as

described in Section 10.5. Location of all steerer magnets in the ring (not including

injection line steerers) is shown in Fig. 10.4. To avoid heat-damage, steerer set-

points are limited to < 2 A. For bending dipoles, in which the aluminum mount

acts as a heat-sink, this limit is extended to < 3 A.
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Figure 10.4: UMER Diagram with all steerers labeled. Quads are indi-
cated in dark blue. SSV family is discussed in Section 10.5.
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10.3 Orbit correction algorithm

Historically, on-line orbit optimization in UMER has been made on the basis of

minimizing centroid offset from the centers of the beam position monitors (BPMs).

A global correction can be made using a response matrix technique, in which the

effect of each corrector is measured at each BPM and the resulting matrix inverted to

find an optimized steering solution. [57] However, orbit corrections based exclusively

on BPM data utilize 14 data points per turn. With the quad-as-BPM method, 4

much more information is available. In addition to the 14 BPM locations, position

can be measured at 71 quadrupole locations. I have developed an approach to

steering that uses this additional information to ensure that a closed orbit is found

with minimal excursion in the quadrupoles.

The general approach for setting all steerers is to start with the first steerer

after injection and minimize a target function that depends only on the local orbit

distortion. After the first is set, the algorithm proceeds one-by-one until all ring

steerers have been optimized. Here the definition of “local” is limited to quad

locations between the current steerer and the next downstream steerer. As an

example, QR3 and QR4 are between D1 and D2, so the target function for D1 has

the form

f(ID1) = F (zQR3(ID1), zQR4(ID1)) (10.1)

where z ∈ (x, y). The set-point for D1 is decided according to

4Described in Section 6.4.1.
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Table 10.1: Different horizontal steering targets and their simulated performance for

initial condition x = 1 mm, x′ = 0. All position measurements are in millimeters.

target min. function RMS(xQ) Max(xQ) RMS(xQ)

σ = 0 σ = 0 σ = 5mm

xF ‖xF‖ 5.27 15.36 >25

xD ‖xD‖ 0.26 0.52 7.60

xF , xD
√
x2
F + x2

D 2.01 6.55 10.71

xF , x′F
√
x2
F + (xD − xF )2 0.26 0.52 7.76

xD, x′F
√
x2
D + (xD − xF )2 0.28 0.64 7.38

ID1 = min f(ID1). (10.2)

A simple model of the UMER ring in VRUMER was used to evaluate suitabil-

ity of different target functions F for both the horizontal and vertical planes. The

VRUMER model includes background field measurements from 2016 (Fig. 10.1) and

hard-edged models of the steering magnets and ring quadrupoles. Parameters are

given in Section G.2. Simulations and measurements were compared for quadrupole

set-point IQ = 1.826 A.

10.3.1 Horizontal steering target

The bending dipoles provide sufficient correction for local variation of the

Earth field. At 3 A the dipoles can provide 10.1o of bend, but typical operating

points are closer to I = 2.4 A for 8o of bend. The ambient fields bend the beam
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(a) No misalignments

(b) Random quad misalignments from Gaussian distribution, σ = 5mm

Figure 10.5: First-turn VRUMER orbits with applied quad-centering correction for

initial condition x = 1mm, x′ = 0.

1.3o → 2.5o per 20o section. The needed corrections are well within the safe range

of dipole current.

Simulations were run for the test case of the standard UMER FODO lattice at

operating point IQ = 1.826 A. The target function F only depends on the two quads

immediately downstream of a given dipole and upstream of the next dipole. The 2
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downstream quadrupoles are indicated as focusing “F” or defocusing “D” based on

polarity in the horizontal plane (QR1 is a focusing quad). In the standard UMER

FODO configuration the nearest downstream quadrupole is focusing, as sketched in

Fig. 10.3.

The target function can depend on position x and angle x′. The set of targets

considered are listed in Table 10.1. In the thin lens approximation for two quads

separated by a drift of distance L, x′F ≡ xD−xF
L

. The term x′F ∝ xD − xF is to

include x′F in the RMS minimization term.

To evaluate target performance, two cases are tested: a lattice with perfect

horizontal alignment of the quads, and a lattice with random quad misalignments

sampled from a Gaussian distribution with standard deviation σ = 5 mm (well

above the estimated misalignments). The results of multiple steering targets are

shown in Table 10.1. Simulated orbits with and without misalignment errors are

shown in Fig. 10.5.

Qualitatively, the best performers were (xD), (xF , x
′
F ), (xD, x

′
F ), resulting in

almost identical orbits (sub-millimeter differences) that converge very quickly to-

wards the center of the quads given an injection error or quad misalignment. In

general, algorithms that give higher weight to xD perform better. There appears

to be a “lever arm” effect, where choosing a farther-away target like xD converges

toward a flatter trajectory, while choosing a too-near target like xF leads to over-

correction and large orbit offsets. Before performing these tests it was assumed that

equal weighting of all the available information (i.e., taking the RMS of (xD, xF ))

would lead to a good orbit, but better results are found by simply aiming for the
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center of the downstream defocusing quad.

A single variable target function like (xD) is attractive as the data collection

time is much faster. Fitting is also simpler as the measured response is linear.

However, early measurements indicate the (xF , x
′
F ) target may yield better results.

This may be because of its ability to handle relative misalignments between the

focusing and defocusing quadrupoles, as well as reduced sensitivity to nonlinearities

in the quad fields and BPM response for large centroid positions. This effect was

observed prior to ring re-alignment, which reduced the magnitude of alignment

errors. A follow-up using the (xF , x
′
F ) target was not done. For implementation in

the lab (described in Appendix K) and all results shown here, I chose to use (xD)

as the target function due to the shorter time needed per iteration.

Based on VRUMER predictions, the “best-case” orbit tolerances for a perfectly

aligned ring are max (x) ∼ 0.5 mm, rms(x) ∼ 0.3 mm. Reducing these tolerances

requires shielding the ambient fields or trying a different target function other than

the options listed here.

10.3.2 Vertical steering target

Vertical steering in UMER is accomplished by 18 vertical correctors (RSVs)

located at the pipe flanges every 20o. All of these magnets are fairly weak (see

Table G.1) and there are half the number as horizontal dipoles (for a density of 1

corrector for every 4 quadrupoles). The largest source of vertical alignment errors

is the radial component of the Earth’s field, plotted in Fig. 10.1. At most, the
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Table 10.2: Performance of vertical steering targets.

target min. function RMS(yQ) max yQ RMS(yQ) max yQ

I ≤ 2.5 A I ≤ 2 A

none RSV current=0 6.54 19.95 – –

y1 ‖y1‖ 9.47 > 25 7.74 24.00

y2 ‖y2‖ 6.03 18.00 5.06 15.14

y3 ‖y3‖ 2.51 8.44 2.46 8.23

y4 ‖y4‖ 1.82 4.81 2.02 6.44

y1,y2

√
1
2

(y2
1 + y2

2) 8.93 > 25 7.24 23.88

y2,y3

√
1
2

(y2
1 + y2

3) 2.84 10.16 2.68 9.55

y3,y4

√
1
2

(y2
3 + y2

4) 2.07 6.22 2.16 6.30

y1,y3

√
1
2

(y2
1 + y2

3) 3.05 11.28 2.81 10.28

y2,y4

√
1
2

(y2
2 + y2

4) 1.88 5.02 2.07 6.20

y1,y′1

√
1
2

(y2
1 + (y2 − y1)2) 6.10 18.63 5.09 14.71

y2,y′2

√
1
2

(y2
2 + (y3 − y2)2) 2.25 6.87 2.28 6.99

y3,y′3

√
1
2

(y2
2 + (y4 − y3)2) 3.28 11.78 3.03 11.08

y1,y2,y3,y4

√
1
4

(y2
1 + y2

2 + y2
3 + y2

4) 2.50 8.83 2.44 8.22

radial field bends ∼ 2.5o over 20o of the ring, while the corrector at 2 A excitation

supplies 1.2o of correction. It is already apparent that it is not possible with the

existing RSV correctors to fully compensate for the ambient radial field at certain
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Figure 10.6: Simulated first-turn vertical orbits, using ‖y3‖ and ‖y4‖ as the targets

for setting RSV magnets. Uncorrected orbit is shown with red-dashed line and Earth

field with gray.

ring locations.

In an approach similar to the horizontal plane, VRUMER is used to test

various vertical steering algorithms and place a lower bound on the best-possible

first-turn orbit using existing vertical steerers. Two cases with perfect alignment

are considered for steerer currents limited to < 2.0 A and < 2.5 A. The results are

summarized in Table 10.2.5 All units are in millimeters and subscript indicates quad

# counting downstream from vertical steerer (y1 is position in first quad downstream

from each RSV).

The most successful targets for steering when the RSVs are current-limited to

5Note that these results are valid for the stated test case only. Changes in the focusing lattice

and background field can significantly change the statistics, although the better-performing targets

tend to do well in all cases.
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≤ 2.5 A are (y4), and (y2, y4). One observes the same “lever arm” effect as in the

horizontal plane - a greater distance between the steerer and the target results in a

flatter orbit. Choosing a target too close to the steerer leads to over-correction, and

the steered solution might be worse than the uncorrected solution!

Simulated results, applying steering with the targets (y3) and (y4), are plotted

in Fig. 10.6. With perfect alignment and corrector currents up to 2 A, we can obtain

vertical steering with max (y) ∼ 6.4 mm, rms(y) ∼ 2.0 mm. Increasing the current

limit slightly to 2.5 A reduces these values to max (y) ∼ 4.8 mm, rms(y) ∼ 1.8 mm.

Interestingly, for all algorithms tested, allowing the current limit to increase to 10

A did not reduce the orbit statistics. For the well-performing targets, currents up

to 4 A were found to be optimal, but the RMS and maximum orbit excursions also

increased (slightly).

Steering was also tested in the presence of vertical misalignments, in the cases

σ = 0.1 mm and σ = 1 mm. The performance of the quad-centering algorithm was

almost identical to the aligned case for σ = 0.1 mm (which is close to the expected

mechanical tolerance). Large excursions were seen in the σ = 1 mm case (RMS

∼ 10 mm, max∼ 20 mm).

As predicted, the “best-case” for vertical orbit control has larger offsets, with

max (y) ∼ 4.8 mm, rms(y) ∼ 1.8 mm, than in the horizontal plane, with max (x) ∼

0.5 mm, rms(x) ∼ 0.3 mm. Existing vertical correcters are too weak and spread

out to provide orbit control equivalent to the horizontal plane, despite the average

radial field being much smaller than the vertical field. VRUMER results suggest

that increasing the strength of the RSV’s (up to 4 A) will not result in better control.
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Instead, more correctors are required. An upgrade in the form of additional weak

vertical correctors is described in Section 10.5.

10.4 Corrected beam orbit

Results of applying the horizontal and vertical quad-centering algorithm are

shown in Figures 10.7 and 10.86. The target used for the horizontal plane was

‖xD‖. Both ‖y3‖ and ‖y4‖ were tested for vertical steering. Both performed well,

but ‖y3‖ seemed to yield more dependable results. Multi-turn orbit solutions are

obtained by applying the quad-centering algorithm for the first turn, then the last

two steerer magnets before the Y-section (D34/D35 for horizontal, RSV17/RSV18

for vertical) are used to minimize turn-to-turn deviation from the first-turn injected

orbit. Statistics for the plotted data sets are given in Table 10.3.

In general, control over the amplitude of oscillations about the closed orbit

to ∼ 0.5 mm is possible. Closed orbit oscillations are quantified by calculating the

turn-to-turn deviation in the BPM data. This is defined here as

∆n = ‖xn − x1‖ (10.3)

for n > 1. In the horizontal solution in Fig. 10.7 the maximum turn-to-turn

deviation in the first four turns is max ∆ = 0.67. The RMS value for turns 2→ 4 is

RMS∆ = 0.36 mm. The turn-to-turn control shown in Fig. 10.8(b) is less impressive

(max ∆ = 2.00 mm, RMS ∆ = 0.93 mm), but improved control is possible. The

6Minimization of turn-to-turn oscillation amplitude is achieved with 2D raster scan.
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Table 10.3: Orbit statistics for quad-centering steering method, using 6 mA beam

as test case.

Statistics Horz. [mm] Vert. [mm]

First turn RMS in quads 1.24∗ 1.32†

First turn Max in quads 3.64 4.05

Four turn RMS in BPMs 1.17 2.81‡

Four turn Max in BPMs 2.85 6.32

RMS ∆ (Eq. 10.3) 0.36 0.93

Max. ∆ 0.67 2.00

∗ Horizontal data is from 10/23/17 steering solution, with recirculation tuned by RCDS

method.

† Vertical quad-as-BPM data is from 9/1/17 steering solution for first turn orbit.

‡ Vertical BPM data is from 12/16/16 steering solution, with recirculation tuned by 2D raster

scan method.

technique applied in Fig. 10.8(b) uses a brute-force raster-scan search for minimum

RMS∆ as a function of the two corrector strength. The resolution is limited by the

step size for the raster scan, and the data collection time is lengthy. In comparison,

the Robust Conjugate Direction Search (RCDS) algorithm, used for minimization

of RMS∆ in Figs. 10.7(b), has proven to be both more effective and time-efficient.

[41,58] Results with RCDS were max ∆ = 0.53 mm, RMS ∆ = 0.22 mm.
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(a) Horizontal position in quads for 1st turn. Data is from 10/23/17 steering solution.

(b) Horizontal position in BPMs for first 4 turns. Data is from 10/23/17 steering solution.

Figure 10.7: Example of good horizontal orbit obtained for 6 mA beam with quad-

centering method.
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(a) Vertical position in quads for 1st turn. Data is from 9/1/17 steering solution.

(b) Vertical position in BPMs for first 4 turns. Turn-to-turn amplitude minimized with a raster

scan approach. Data is from 12/16/16 steering solution.

Figure 10.8: Example of good vertical orbit for 6 mA beam obtained with quad-

centering method.

188



(a)

(b)

Figure 10.9: Simulation/measurement comparison for best-case orbit obtained via

quad-centering. Simulated orbit is shown in quads (black) and (in 10.9(a)) at higher

resolution along s (light gray). Spikes indicate dipole locations, where a coordinate

transformation is applied to unwind ring.
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While we can control oscillations about the closed orbit relatively well, the

present limiting factor for orbit tolerances is the closed orbit offset caused by back-

ground fields and mechanical misalignments. The data in Fig. 10.7(a) shows a

near-best-case solution for the first turn horizontal closed orbit. Fig. 10.9(a) com-

pared the simulated “best-case” results against this solution. In the lab, we mea-

sured RMSxQ ∼ 1.2 mm and max xQ ∼ 3.6 mm, while the simulation predicts

RMSxQ ∼ 0.3 mm and maxxQ ∼ 0.5 mm.

However, the large excursions in Fig. 10.9(a) are localized. Between these

locations, the horizontal distortions are close to smallest-possible. The maximum

horizontal mis-alignment of the quadrupoles, based on survey data from 2016, is

< 0.1mm. As this is much smaller than the observed orbit distortion, the dominant

“misaligning” must be due to the background fields. This is apparent by comparing

the orbit statistics for the simulation results when considering orbit as measured in

the quads (RMSxQ ∼ 0.3 mm and max xQ ∼ 0.5 mm) and as measured at all points

in s (RMSx(s) ∼ 0.6 mm and maxx(s) ∼ 2.1 mm). The quad-centered orbit has

minimal position at the quad locations and largest offset right between quads.

Vertical orbit statistics are close to VRUMER predictions. Fig. 10.9(b) shows

excellent agreement for the first half of the ring (up to QR28) before the trajectories

start to diverge. In fact, the lab implementation appears to perform slightly better

than predicted in simulation. In the lab, we measured RMSyQ ∼ 2.8 mm and

max yQ ∼ 6.3 mm while the simulation predicts RMSyQ ∼ 2.5 mm and max yQ ∼

8.4 mm. The vertical orbit is also limited by the effect of background fields. In

Fig. 10.8(a), characteristic arcs are visible with a periodicity of four quads (for
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Figure 10.10: Locations of SSV’s on UMER 20o plate indicated with arrows. RSV’s

are located at vacuum flanges at ends of 20o section.

example, between QR18 and QR22). This is due to the constant beam bending

in the background field. Additionally, one observes that the regions with largest

deviation from quad centers corresponds roughly with the peak radial field.

10.5 Decreasing vertical orbit distortion

As discussed in the previous section, vertical orbit correction is inherently

limited by the strength and number of the RSV correctors. Previous assumption

was that sparsely populated, low-field vertical correctors were sufficient to correct

for the low average radial field, but the above results show that large local offsets

will be present when the correctors are too weak to fully compensate for the effects

of local fields.

I tested the effectiveness of increasing steerer density by adding short vertical

steerers (SSVs) to the ring. These are short PCBs of physical length 1.54 cm iden-

tical to magnets already in use in the injection line. There is space in the dense

UMER lattice for two additional thin SSVs per 20o plate, as shown in Fig. 10.10.
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Figure 10.11: Steering statistics for varying steerer-target distance. Quad center

locations are indicated by dashed lines. Red dashes indicate distance from 1st SSV

on 20o plate, blue from 2nd SSV on 20o plate.

From Table G.1, the available correction of each SSV is ∼ 1.2o per amp, comparable

to RSV strength. With twice the density of the RSV and a similar limitation of ≤ 2

A, there should be enough strength to compensate for the maximum ambient field

bend of ∼ 2.4o over 20o.

There are two quads between each SSV, similar to the BDs in the horizontal

plane. Applying the same approach as in the horizontal plan, the steering algorithm
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Figure 10.12: VRUMER simulated orbits for quad-centered steering with 18 RSVs

(black), hybrid (red, 28 SSVs and 4 RSVs), and 36 SSVs (blue).

aims for the center of the second downstream quad, ‖y2‖. Because of the uneven

spacing of the SSV magnets in the 20o plate, the SSV-target spacing varies from

cell to cell. Fig. 10.11 shows the dependence of SSV strength and correction on

SSV-target separation when applying the quad-centering algorithm. A choice of

target that is too close (such as the first downstream quad) leads to over-correction

and large SSV currents. Longer distances between steerer and target are necessary

for corrections within the available strength, and there is a sharp transition from

“good steering” to over-correction for separations < 12 cm. The target quadrupoles

for the two SSV locations are at 20 cm and 28 cm respectively, within the range of

good correction.

The resulting first turn orbit with SSV correction from VRUMER calculations

is plotted in Fig. 10.12. There are three results shown: orbit correction using only

18 RSVs (black dot), orbit correction using only 36 SSVs (blue dash), and orbit
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Figure 10.13: Measured first turn orbit for vertical steering with SSV’s on 30% of

the ring (locations indicated by gray shading). Data taken on 8/31/17.

correction using 8 RSVs and 28 SSVs. In the ring, there are four 20o sections

with welded glass gap breaks in the pipe (including the injection Y-section). Extra

supports needed to protect the glass occupy the space needed for SSV placement.

In these sections, the two RSV’s bookending the 20o plate are also utilized. As seen

in 10.12, there are relatively large local deviations at the four glass gap sections.

Simulation results were very promising when SSVs were added to the UMER

model. To test their effectiveness in the lab, 11 SSVs were installed on ring sections 5

- 11 (skipping section 10 due to the wall current monitor diagnostic).7 The resulting

first-turn orbit is plotted in Fig. 10.13. Orbit statistics are in Table 10.4. These can

be directly compared to the orbit results without SSVs in Table 10.3. The addition

of SSVs reduces the vertical orbit deviation by a factor of ∼ 2, almost to a tolerance

7The SSV numbering system corresponds with the nearest horizontal dipole (SSV9 is immedi-

ately downstream of dipole D9, SSV10 upstream of D10, etc).
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Table 10.4: First-turn measured orbit statistics with SSV correction.

First turn RMS 0.98 mm

First turn Max. 3.25 mm

Shaded RMS 0.45 mm

Shaded Max. 1.11 mm

of ±1 mm.

10.6 Steering for QIO UMER experiments

Improved orbit control is essential for nonlinear experiments. Nonlinear inserts

will imprint an amplitude-dependent tune spread on the beam, where amplitude is

measured from the magnetic center of the octupole element. Ideally, the magnet

center is identical to the beam center. For offset orbits, the nonlinear kick will not be

symmetric about the beam center and the tune footprint will likewise be asymmetric.

Generally, we expect smaller induced tune spreads and smaller acceptance in the case

of an un-centered centroid orbit, resulting in a smaller beneficial effect and larger

beam loss. This section describes the measured orbit distortion during distributed

octupole tests and possible means for improvement. In light of the best-possible

results shown here, the single-channel experiment can be oriented to coincide with

a low-distortion region.
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Table 10.5: Orbit statistics for alternative lattice steering with 6 mA beam.

Statistic X [mm] Y [mm]

First turn RMS in quads ∗ 2.04 6.31

First turn Max in quads 5.02 18.13

Four turn RMS in BPMs † 2.55 4.40

Four turn Max in BPMs 7.52 8.09

RMS ∆ (Eq. 10.3) 3.29 1.31

Max. ∆ 6.50 2.89

∗ Quad-as-BPM data taken 1/21/17 after orbit tuning.

† BPM data taken 2/9/16 prior to distributed octupole lattice tune scans.

10.6.1 Steering for alternative FODO lattice

The distributed octupole lattice uses the alternative lattice configuration of

UMER, in which half the quadrupoles are removed and the length of the FODO cell

is doubled.8 This lattice has a tune of roughly half the nominal UMER operating

point, ν ∼ 3.3. The quad-centering technique was applied to find a steering solu-

tion for the alternative lattice prior to characterizing beam transmission in the N4

distributed lattice. The orbit statistics are given in Table 10.5.

Quad-as-BPM data for the alternative lattice is plotted in Fig. 10.14. The

quad-centering technique was less successful in this case, most noticeably in the

vertical plane. There are several reasons for this. The large vertical excursions can

8Described in detail in Chapter 9.
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Figure 10.14: First-turn orbit for alternative lattice measured on 1/21/16.

be attributed to the fact that RSV currents were held to < 2.0, rather than < 2.5 A

allowed in later tests. Also, RC9 did not house a BPM at this time and RC11 had

a short on the lower BPM plate. Quad-centering between RC8 and RC12 (QR32 to

QR47) was not very effective in both planes due to the high likelihood of scraping

at or before RC11.

The horizontal orbit control for the alternative lattice is also worse than in the

standard lattice. While the first turn orbit statistics are only about twice as large,

the control over turn-to-turn orbit oscillations, as seen in Fig. 10.15, is much worse.
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Figure 10.15: Four-turn BPM data for the alternative lattice measured on 2/9/16.

The extent to which the oscillation amplitude measured by RMS∆ (Eq. 10.3) can

be minimized is limited by the pulsed dipole (PD) waveform.

For every beam injection, the injection dipole PD is powered on with enough

time to settle before the beam arrival. Prior to injection, PD is fast pulsed to

the opposite polarity in order to kick the beam into the ring. After injection it is

switched to the original polarity in order to keep the recirculating beam in the ring.

This is shown in Fig. 10.16(a). In standard UMER operation, the pulsed injection

quad YQ is set to the appropriate polarity (horizontally defocusing) so that the

dipole kick imparted by YQ is the proper polarity for injected and recirculating

beams. This reduces the required strength in both PD injection and recirculating
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(a) PD waveform before, during and after sinple pulse lifetime.

(b) Close-up of PD waveform at injection. Shaded regions indicate when beam is passing through

PD.

Figure 10.16: Pulsed dipole (PD) waveform is shown for both standard and alter-

native lattice operation.

kicks. However, in the alternative lattice YQ is turned off and the strength of PD

must be increased. The fast PD polarity switch is not quite settled within the 100

ns “no beam” window between injection and recirculation. This results in a weaker
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kick on the beam between turns 1 and 2 when compared to steady state.

In standard operation, the injection pulse height, PD-Inj, is set to 31 A and the

steady-state recirculating current, PD-rec, is set to 9.8 A. Using the parameters in

Table G.1, this imparts a kick of θ = −6.8o on injection and θ = 3.2o on recirculation.

However, as illustrated in Fig. 10.16(b), the difference in kick strength between turn

1→ 2 and the steady state is 13% (considering the average applied kick about the

center of the bunch, ±20 ns). The kick from PD between turn 1→ 2 is ∆θ = −0.4o

weaker than the steady state. In the alternative lattice, due to the absence of YQ,

PD-Inj is set to 64 A and PD-rec, is set to 22 A. The strength of the PD kicks are

θ = −13.6o on injection and θ = 7.1o on recirculation. The difference between turn

1 → 2 and the steady state is 16%, which translates to ∆θ = −1.1o, almost three

times the discrepancy seen in the standard lattice. This effect is clearly seen in both

the large ∆ values in Table 10.5 and the four-turn data in Fig. 10.15. While the

second through fourth turns appear to oscillate about a shared closed orbit, the first

turn clearly follows a different trajectory.

Control over horizontal orbit distortions is limited to the values given here

unless there are upgrades to either hardware or tuning algorithms. As there is not

much room near PD for additional correctors, a faster-switching pulser is needed.

Adjusting the multi-turn tuning algorithm to optimize over turns 2 → 5 instead

of 1 → 4 may be successful, as long as large distortions in the first turn orbit are

acceptable. This approach may work well for smaller-emittance beams, but lead to

scraping at high emittance.
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10.6.2 Steering for single-channel octupole lattice

Section 7.5.1 sets the threshold for the orbit deviation within the long octupole

element should be < 0.2 mm. At first glance, the horizontal and vertical orbit

statistics are well outside this range. However, as this tolerance is for the insertion

region only and looser tolerances may be tolerated for the rest of the ring, it will be

sufficient to demonstrate precision control over a single 20o section.

Orbit correction results suggest RC9 (location of quadrupole magnets QR34-

37) as a likely candidate for the octupole channel. The radial field is locally low in

this section. The vertical orbit control is already demonstrated to be within ±0.1

mm measured in the quadrupoles on the first turn with addition of SSV corrector

magnets (Table 10.6). However, leaving room for SSV correctors in the octupole

section limits the length of the octupole channel, which should be as long as possible

to maximize tune spread. Without the SSV correctors, local orbit deviations will

likely be larger. Field-canceling radial Helmholtz coils at this ring section could

provide this additional correction.

The horizontal orbit deviation in RC9 is measured to be larger than 0.2 mm.

However, µ-metal shielding or field-canceling vertical Helmholtz coils will be nec-

essary for the beam to remain straight through the octupole insert. This should

reduce distortion of the local horizontal orbit significantly, although the horizontal

dipoles in this section will have to be run at a higher current (∼ 3 A) to account for

the lower vertical background field.
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Table 10.6: Measured centroid position (in millimeters) in RC9 quads on first turn.

Vertical data is from 8/31/17, horizontal data is from 10/23/17.

Axis QR34 QR35 QR36 QR37

Horizontal −0.18± 0.16 0.69± 1.11 −0.14± 0.49 −0.56± 0.41

Vertical 0.10± 0.03 0.05± 0.99 −0.08± 0.54 −0.06± 0.88

10.7 Global optimization of closed orbit

While the algorithm described above relies on local orbit corrections, this sec-

tion describes a global approach based on BPM data. A global approach in general

is faster and can be more robust to nonlinearities, although, as discussed below,

we find that corrections based on BPM data only allow for large local distortions

between BPMs.

While quad-centering method outlined above is successful and reproducible,

there are some drawbacks. It is time consuming, taking more than one day of oper-

ator time to improve both vertical and horizontal orbits. Depending on the distance

of the initial configuration to the corrected state, multiple iterations between hor-

izontal and vertical passes may be necessary. The method is also very sensitive to

and behaves poorly in the presence of nonlinearities. While the equations of motion

for centroid trajectory in a lattice of quadrupoles and dipoles are linear, nonlinear-

ities arise due to scraping of the beam, higher order magnet terms and geometric

effects in the BPM. A highly nonlinear response curve results in poor choice of

steerer strength and a local orbit bump. This issue also effects the response matrix
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method of tuning, which assumes linearity. An optimization algorithm that is rela-

tively fast and requires little operator intervention to converge, while being robust

to nonlinearities, would be a very powerful tool for regular use in ring tuning.

Search for a global orbit solution is equivalent to solving an unknown nonlinear

function with a large number (N = 18−36) of independent variables. There may be

a unique “best” solution, but within the limits of measurement noise and machine

imperfections there are many “good-enough” solutions existing in the N-dimensional

parameter space. This problem appears suited for global stochastic optimization

methods. Stochastic methods seek to balance sampling of a wide parameter space

with efficient convergence on an optimized solution. The stochastic search reduces

the probability of mistakenly converging on a local, rather than global minimum,

due to the non-zero probability at each iteration that a solution will randomly jump

between valleys in parameter space.

Global optimization using stochastic search methods is already applied to a va-

riety of accelerator tuning problems. Genetic algorithms have been used to optimize

parameters for individual beam-line elements, as well as tuning accelerator working

points, such as skew corrections and maximum dynamic aperture at CEBAF [59]

using simulation models. The application to chromaticity correction for light sources

has been demonstrated experimentally at SPEAR3. [60] Multi-objective genetic

algorithm and particle swarm optimization were also tested for setting matching

quadrupoles and RF bunching cavity operating points at the LANSCE linear accel-

erator. [61]

This section applying the principle of simulated annealing to tune the UMER
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(a) Temperature schedule. (b) Probability of jumping to new state.

Figure 10.17: Temperature and probability functions used in simulated annealing

of UMER orbit.

orbit. Simulated annealing is a stochastic optimization technique, based on the

principles of statistical mechanics. [62] It is an analog to the physical process of an-

nealing, in which the degrees of freedom of a system are “heated” and slowly cooled,

allowing for self-organization to the lowest energy state. At high temperatures, the

system has a high probability of jumping to a very different state (that is, one that

is far away in parameter space). As the temperature cools, the distance between

one state and a possible new state decreases, as does the probability that the system

will move to that new state.

10.7.1 Procedure for simulated annealing of closed orbit

In this application, there are N degrees of freedom for each of the N steerer

magnets in use. The “state” of the system is simply the N-length vector of steerer

currents. A time-dependent temperature schedule is defined. In this case, time is

the number of iterations and temperature determines the maximum step size that
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the system can take when moving to another state. Energy is equivalent to a fitness

(or minimization) function used to define the “goodness” of a state.

The state is defined as the current values for a subset of the available steerers.

An initial state was chosen with good transmission in the first four turns and a cen-

tered orbit on the first turn, but otherwise not well-tuned for minimum turn-to-turn

amplitude. Horizontal and vertical corrections were optimized separately. Multi-

ple passes of the simulated annealing algorithm were run, each with 300 iterations.

Before the first step, the steerer currents of the initial state were each randomly

perturbed by δI chosen from a uniform distribution δI ∈ [−0.1, 0.1] A.

The temperature schedule was set to

T = 0.990i (10.4)

where i is the iteration number. The temperature versus iteration number is plotted

in Fig. 10.17(a). There is no established method for choosing an appropriate tem-

perature schedule. Rather, this must be considered a tunable variable that affects

algorithm performance. In this case, the temperature was tuned for convergence

within 300 iterations. A more gradual schedule could be used, which would explore

a larger range of possible states.

For each iteration a neighboring state is randomly generated, with perturba-

tions δIN selected from a Gaussian distribution with σ = 0.1 · T . The “energy”

of the new neighbor state is evaluated. The fitness function used here is the RMS

position of the beam in the BPMs over the first four turns:
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E = RMS (xBPM,n) (10.5)

This is a very simple fitness function that overlooks some of the more subtle

points of steering. More sophisticated functions are possible. Trivially, as described

above in Section 10.1, the center of the BPMs is not an accurate target if one is

aiming for the center of the quads. An additional term could quantify scraping as

measured on BPM sum signals or at the wall current monitor. A multi-objective

optimization with loss as well as beam position may be more appropriate, as the

lowest loss orbit may have local orbit bumps (particularly near injection). It would

be ideal to include first-turn quad-as-BPM data in the fitness, as the BPM locations

are sparse compared to quadrupole density and betatron frequency. However, this

would make each iteration impossibly lengthy.

After the energy of both states is known, the algorithm chooses whether the

system stays in the current state or jumps to the neighboring state. The probability

that the system jumps to the new state is

P (T,E,Enew) =


1 if Enew < E(

1 + e
50(Enew−E)

T

)−1

if Enew ≥ E

 (10.6)

If the neighboring state has a lower energy, the system always transitions to this

state. If the neighboring state has a higher energy, there is still a probability that

the system transitions. This is more likely at high temperatures or for small ∆E.

With the BPM scope averaging over eight waveforms, the evaluation of the fit-

ness function (reading all 14 scope channels) takes ∼ 16 seconds. 300 iterations takes
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(a) Fitness as a function of iteration. (b) Best states found on each pass.

Figure 10.18: Results of 5 unique passes of simulated annealing algorithm on vertical

orbit in ring.

75 minutes to complete. The current bottleneck is switching multiplexer channels

to read each BPM signal.

10.7.2 Orbit correction results for simulated annealing

Simulated annealing was applied to find a steering solution in the ring. The

data shown here was collected on 8/15/17 and 8/17/17. Vertical optimization was

done prior to horizontal, as there is significant vertical-horizontal coupling due to

skew rotation in the RSV steerers.

For vertical correction, five independent trial runs were started from the same

initial condition with a small random perturbation. Each pass ran for 300 iterations.

The state contained N = 16 steerers. Other vertical steerers were held at fixed

values. The relaxation of the fitness function is shown in Fig. 10.18(a), while the

alignment of the degrees of freedom (RSV settings) is shown in Fig. 10.18(b). The
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Figure 10.19: Four turn BPM data for vertical orbit after a simulated annealing

pass, in comparison to orbit in initial state. Top plot is vertical position, bottom

plot is signal sum (top+bottom+left+right plates).

four-turn orbit data for the best state found during the five passes (green curve

in Fig. 10.18) is plotted in Fig. 10.19. The fitness function (Eq. 10.5) relaxed

from a value of E = 2.969 to E = 1.096 mm. This value is much lower than the

RMS value found in the previous sections, RMS yBPM = 2.81 mm. For the initial

state, the difference between the first and subsequent 3 turns has an RMS value of

RMS∆ = 3.61 mm, with a maximum of max ∆n = 7.39 mm. After annealing, these

values are reduced to RMS∆ = 0.49 mm and max ∆n = 1.03 mm. This is about

comparable to ∆ values achieved in the previous sections.
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(a) Fitness as a function of iteration. (b) Best states found on each pass.

Figure 10.20: Results of 10 unique passes of simulated annealing algorithm on hor-

izontal orbit in ring.

Parameters for the horizontal run were the same as in the vertical, except

the algorithm was allowed to run for ten independent passes. Only 11 horizontal

steering magnets are used to define the state, concentrated around the Y-section.

The relaxation of the fitness function is shown in Fig. 10.20(a), while the

variation in final states (current settings) is shown in Fig. 10.20(b). The four-turn

orbit data for the best state found in all ten passes is plotted in Fig. 10.21. The

fitness function relaxed from a value of E = 3.203 to E = 0.698 mm in the best case.

This is significantly smaller than the RMS value achieved through quad-centering,

RMSxBPM = 1.17 mm. For the initial state, the difference between the first and

subsequent 3 turns has an RMS value of RMS∆ = 1.77 mm, with a maximum of

max ∆n = 3.94 mm. After annealing, these values are reduced to RMS∆ = 0.37

mm and max ∆n = 1.24 mm. Again, this is comparable to values achieved with the

quad-centering approach.
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Figure 10.21: Four turn BPM data for horizontal orbit after a simulated annealing

pass, in comparison to orbit in initial state. Top plot is horizontal position, bottom

plot is signal sum (top+bottom+left+right plates).

The annealing algorithm initially appears to be very successful, converging to

very low orbit distortions in the BPMs when compared to the quad-centering method

of Section 10.4. This success, however, is only an apparent improvement. As the

fitness function depends only on the position of centroid at the BPM locations,

orbit excursions between BPMs is not constrained. Fig. 10.22 shows the quad-as-

BPM measurement for the best vertical and horizontal orbits found during annealing

passes. Table 10.7 shows the orbit statistics, that can be compared directly to values

in Table 10.3 for the quad-centering method.
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Figure 10.22: Measured first turn orbit for horizontal (upper) and vertical (lower)

orbits after simulated annealing on both planes. Data taken on 8/17/17.

The usefulness of this approach for ring tuning is questionable. For the tem-

perature schedule and probability function used here, a single pass of the algorithm

appears to converge on local minima and multiple passes are needed to effectively

search the space of solutions. Lower values of the RMS four-turn position have been

found using other methods such as RCDS. [41]

More fundamentally, any algorithm that aims to reduce orbit excursions only

at the BPMs will be under-constrained and allow large excursions between the BPMs
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Table 10.7: Orbit statistics for simulated annealing steering method, using 6 mA

beam as test case. Can be directly compared to values in Table 10.3 for quad-

centering method.

Statistic Horz. [mm] Vert. [mm]

First turn RMS in quads 1.70 2.49

First turn Max in quads 6.68 7.34

Four turn RMS in BPMs 0.70 1.10

Four turn Max in BPMs 1.16 2.07

RMS ∆ (Eq. 10.3) 0.37 0.49

Max. ∆ 1.24 1.03

(particular for large phase advance). The BPM spacing of 0.64 cm is close to half

the betatron wavelength, ∼ 0.85 m for the IQ = 1.826 A operating point, and

steering can be found so that the zero-crossings of the transverse motion occur near

the BPMs. This is clearly seen in Fig. 10.22, where largest orbit offsets appear

in-between BPM locations. This effect is alleviated for lattice with much longer

betatron wavelengths (weaker focusing) and therefore may still be useful for steering

corrections in the single-channel octupole lattice.

10.8 Chapter summary

Precise control over the horizontal and vertical orbits is necessary for the

nonlinear optics experiments. A systematic approach for setting ring steerers to
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center the beam in the quadrupoles has been developed and demonstrated in the

lab. Different targets for finding the centered orbit have been tested via simulation

and the most effective were implemented in the lab. This quad-centering approach

will be essential for tuning nonlinear UMER, as global optimization techniques that

rely only on BPM data are not well-constrained. The quad-centering approach

will also reduce beam loss due to scraping for all UMER experiments. Based on

VRUMER predictions at the I = 1.826 A operating point, the “best-case” orbit

distortion in a perfectly aligned ring are max (x) ∼ 0.5 mm, rms(x) ∼ 0.3 mm

and max (y) ∼ 4.8 mm, rms(y) ∼ 1.8 mm. The best demonstrated orbit control is

max (x) ∼ 3.6 mm, rms(x) ∼ 1.3 mm and max (y) ∼ 1.1 mm, rms(y) ∼ 0.5 mm.

Presently, orbit control limited by the effect of the ambient fields. For nonlinear

experiments, additional correction of the vertical orbits is essential (with either

additional SSV steerers or field-canceling Helmholtz coils). To achieve horizontal

tolerances, shielding or cancellation of the vertical background field will be necessary.

However, once these are in place, this approach should bring the orbit tolerances to

an acceptable level both in and outside the octupole insert.
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Chapter 11: Experimental Characterization of Beam Transmission

and Transverse Resonances in the UMER FODO Lat-

tice

This chapter discusses characterizing measurements of beam transmission in

the UMER FODO lattice over a range of tune operating points. This is done to

establish a baseline for resonance sensitivity and beam transmission prior to non-

linear optics experiments. Loss current loss rates are important for the proposed

experiments which aim to test that the QIO lattice is stable over many turns. Ad-

ditionally, as the octupole fields are predicted to damp resonant particle growth

and mitigate losses, establishing sensitivity to resonant losses of different orders will

guide experiment plans.

Single particles with tunes that meet the condition mνx + nνy = p for integer

n, m, p will experience resonant excitation if the driving term exp i (n+m) Ωt is

present for revolution frequency Ω. In practice, linear and nonlinear field errors

can be minimized but not eliminated, and it can be assumed all order resonances

are driven and can lead to losses. The observability of these losses depends on the

strength of the driving term, the growth rate of the resonance (higher for lower
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orders) and whether any nonlinearities act to mitigate the resonance.1

This chapter explores dynamics in a conventional FODO lattice, the UMER

configuration that is simplest to operate, best-characterized and for which well-

tuned solutions exist. The FODO lattice is not only a commonly used design, it is

also a common test case for theory and numerical calculations. Measurements are

done using the tune scan technique, where transmission is measured using the wall

current monitor (WCM) over a range of tune operating points.2 Measurements are

taken at the three lowest space charge density UMER beams: the 6 mA beam, the

0.6 mA “pencil” beam and the ∼ 40 µA “DC-beam.” Specifics of beam generation

were covered in Section 6.2 and Section 7.4.

The 6 mA and 0.6 mA apertured beams have previously been well-characterized

as a function of tune [38], [63]. Although these are the lowest current beams de-

signed for UMER, and the 0.6 mA beam is considered “emittance dominated,” space

charge is still a significant driver of dynamics. Section 11.1 shows latest transmis-

sion measurements (with updated orbit correction, as discussed in Chapter 10) for

comparison with the DC beam results.

This chapter includes the first systematic study of transmission and resonant

structure of the low-current DC beam. The DC beam, with µA-level currents and

space charge tune spreads ∼ 0.005, is intended for use in initial tests of the quasi-

integrable octupole lattice. Section 11.2.3 presents tune scan results for a nominally

1More careful discussion of resonance dynamics can be found in Section 2.3 and many resources

including [12,16].
2See Section 6.4.3.
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40 µA beam in the FODO lattice. This work is the first attempt at examining the

multi-turn behavior of the DC beam. Measurements of the transmission and reso-

nant sensitivity of this beam will serve as the baseline for planning quasi-integrable

experiments.

Finally, Section 11.3 shows beam response to systematically increased nonlin-

earity. A single octupole element is added to the FODO lattice to act as a nonlinear

driving term. With this method additional structure up to third order resonance is

observed at low currents, although the higher space charge beams are less affected.

11.1 Beam transmission measurements in the linear lattice

The section reviews beam transmission and loss rates over a range of tunes for

the 6 mA and 0.6 mA beams in the linear FODO lattice. As the charge distribution

is not KV (and the space charge force not linear), one might expect the space

charge force to increase the width of observed resonance stop-bands as a result of

the space-charge induced tune spread. However, the tune spread may also provide

some amount of resonance detuning. In this section comparison is made of the

resonant structure between all three beams.

11.1.1 Experimental procedure

The beam survival measurement uses the wall current monitor (WCM) to

measure beam current per turn. This set-up is explained in more detail in Section

6.4.3. Current per turn is calculated by averaging over a 20 ns window about the
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Figure 11.1: Typical WCM signal, shown for first 10 turns of 6 mA beam. ±10 ns

of beam are averaged around bunch center, indicated by gray boxes. The baseline

level is averaged over 50 ns between turns, the average for each turn is indicated by

the red hash lines.

bunch center. The beam center is identified in the first turn and subsequent turns

are counted by assuming a fixed revolution frequency. For a beam at 9.97 keV (10

kV - 30 V bias voltage) on a closed path of L = 11.52 m, one revolution period is

T = 197.2 ns. This value agrees well with observations. An example WCM signal is

shown in Fig 11.1. As the baseline is not constant, the “beam-off” level is calculated

for each turn in a 50 ns window centered directly between the current turn and the

preceding turn.3 Measured current per turn is normalized to the peak current in

the first turn at each operating point. This should account for any drift in output

current over the multi-hour long data collection routines.

For all the measurements below, injection quadrupole values are set near the

3The drifting baseline is discussed in Section 6.3. No inductive correction is made for the data

in this chapter.
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matched condition for the 6 mA beam (identified in [39]). No additional tuning

is made for the 0.6 mA beam, so the results include losses due to injection mis-

match. Additionally, no match compensation is made for different lattice settings

in the scan. The injection quadrupoles are held at the known matched condition for

quadrupole currents IF = ID = 1.826 A. Therefore, there is an injection mismatch

error that increases with departure from the 1.826 A operating point.

All survival plots are shown in tune space. The conversion from quad excita-

tions (IF , ID) to tune (νx, νy) is analytically calculated based on a smooth-focusing

approximation of the UMER FODO lattice. This model does not include dipole

edge-focusing terms, therefore νx = νy when IF = ID.4 This is known to be an over-

simplification, as measurements at the 1.826 A operating point show a tune splitting

of νx = 6.636, νy = 6.752, while the smooth-focusing model predicts νx = νy = 6.787.

The typical range covered in a tune scan is IF , ID = 1.65→ 2.1 A with stepsize 0.01

A. In tune space this resolution is roughly 0.07. The maximum possible resolution

(based on power supply resolution) is 0.001 A, increasing tune space resolution to

∼ 0.007.

11.1.2 6 mA beam

Results from the 6 mA beam are shown in Fig. 11.3, and a sample WCM

signal from this run is shown in Fig. 11.2. The distinct shape of the WCM signal

is due to two phenomena. First, the WCM diagnostic has an inductive reactance

that causes a drifting baseline, as discussed in Section 6.3. Second, the initially

4See discussion of edge-focusing in Appendix G.
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Figure 11.2: Typical WCM signal for 6 mA beam, measured at operating point

IF = 1.830 A, ID = 1.930 A (predicted bare tunes νx = 6.599, νy = 7.413).

100 ns-long beam pulse elongates due to longitudinal space charge forces. Without

longitudinal confinement, the bunch eventually interpenetrates and uniformly fills

the ring. Peak current is reduced as charge redistributes and eventually the beam

seems to disappear (at ∼ 7 µs in Fig. 11.2). The end erosion effect is discussed

in more detail in [64]. For the purposes of this study, the bunch erosion limits the

“flat current” region of the beam (before erosion waves meet) to ∼ 9 turns, and the

region of usable WCM signal to ∼ 25 turns.

Examining the tune scan results in Fig. 11.3, integer resonance bands for

νx = p and νy = p are clearly visible. Half-integer resonances 2νx = p are present in

the horizontal plane, but barely visible in the vertical. In some regions the second

order sum resonance νx + νy = p is visible. There is no visible resonances above

order two. In regions of good transmission (say around νx = 6.7, νy = 6.5), there is

∼ 30% peak current loss from the first to 25th turn.
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Figure 11.3: Beam transmission for 6 mA beam on turn 20 (∼ 4 µs), plotted as

fractional survival (color axis) as a function of predicted tune.
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Figure 11.4: Typical WCM signal for 0.6 mA pencil beam, measured at operating

point IF = 1.830 A, ID = 1.830 A (predicted bare tune of νx = νy = 6.803).

11.1.3 0.6 mA “pencil” beam

The results from the 0.6 mA beam, which has a predicted space charge tune

spread less than half that of the 6 mA beam, are shown in Fig. 11.5. In the WCM

signal (Fig. 11.4), the same characteristic shape is observed, although the DC point

appears much later. The “flat current” region extends to turn ∼ 25, with usable

signal out to ∼ 90 turns.

Beam survival rates at turn 50 are plotted in 11.5. Compared to the 6 mA

results, second order resonant structure appears more clearly, with the half-integer

bands more prominently visible. The second order sum resonance νx + νy = p are

also more apparent. Their increased prominence could either be due to the increased

turn number (as the second order resonance is slower growing) or the decreased space

charge concentration (as higher charge may act to detune resonances). Comparing

transmission at turn 20 for all three beams, plotted in Fig. 11.6, reveals greater

relative loss in the half-integer resonance band when there is less space charge. This

221



Figure 11.5: Beam transmission for 0.6 mA pencil beam on turn 50 (∼ 10 µs),

plotted as fractional survival (color axis) as a function of predicted tune.

suggests that the space charge detuning acts to mitigate the half-integer losses.

Finally, in the regions of good transmission, the 0.6 mA beam experiences ∼ 30%

loss when from the first to 50th turn.

11.2 Measurements of low-current DC beam

While integrable optics have been proposed as a method for mitigating reso-

nant instability, the theory is based on single particle dynamics and may not extend
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Figure 11.6: Beam transmission along the lineIF = 1.8 A (νy = −2.88νx + 25.9) for

different space charge densities. Curves are normalized to the maximum current in

this turn along this line. The apparent νy = 6.5 stop-band is indicated.

well to beams with significant collective effects. Initial exploration of nonlinear lat-

tices of this type should be done as close to the zero-charge limit as possible. For

this reason, the low current, high emittance “DC beam” is proposed as a candi-

date for initial operation of the quasi-integrable lattice. This section explores beam

transmission in this new regime in the linear UMER FODO lattice.

11.2.1 Experimental procedure

The DC beam is produced by operating the UMER electron gun in voltage

amplification mode. DC refers to the fact that the bias voltage pulse is turned off and

the source emits continuous current. This was done to avoid amplification of pulsed

circuit ripple on the longitudinal bunch profile, and is not a fundamental quality of
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(a) 125 turns at operating point IF = 1.800 A, ID = 1.900 A.

(b) 500 turns at operating point IF = 1.826 A, ID = 1.826 A.

Figure 11.7: Typical WCM signal traces for DC beam. Longitudinal bunch shape

remains fairly constant, although current is steadily lost during 100’s of turns. Bias

voltage is constant between figures (3.70 V) and decreased output in (a) compared

to (b) is due to drift in gun output over experimental run.

this beam. Longitudinal structure is formed through the pulsed magnet injection.

DC beam generation and detection of the very low-level signal were discussed in

Section 7.4.

The procedure for constructing the “DC beam” survival plot is generally iden-
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tical to the 6 mA and 0.6 mA scans described above. For the DC beam, additional

care is taken to boost the signal to noise ratio, including amplifying the WCM signal

and averaging over more waveforms. 16 cycles are averaged for each measurement,

with statistical errors around 7% as characterized in Section 7.4.

The gun bias voltage is set to 3.70 V to produce an initially 40 µA beam.

For the DC beam, which has energy 10 keV + 3.70 eV, revolution period should

be T = 196.9 ns. However, the T = 197.2 ns used above for the 6 mA and 0.6

mA beams (with energy 10 keV -30 eV) agreed better with observed revolution

frequency.

Typical DC beam signals picked up by the wall current monitor (with ampli-

fication) are shown in Fig. 11.7. There are some immediately noticeable differences

when compared to the 6 mA (Fig. 11.2) and 0.6 mA (Fig. 11.4) beams. First,

the AC beam signal is preserved out to 500 turns. There is no visible end erosion

in Fig. 11.7(a). In Fig. 11.7(b) there appears to be some erosion at 40 µs (turn

200). However, by 100 µs (turn 500), the accelerated/decelerated head/tail appear

to have exceeded the machine acceptance, and the pulse structure once again has a

flat top.

Although longitudinal structure is preserved, there is steady current loss per

turn. This loss is plotted below in Fig. 11.10. A likely source of loss is that the

injection match is far from optimal. Additionally, the beam current is below the

threshold for BPM detection, so the steering has not been optimized in this case.

There are likely scraping errors due to the large transverse beam size, which is

predicted to be ∼ 0.7 cm on average in the matched case.
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11.2.2 Current drift over time

During the DC beam measurements, the output current from the gun de-

creased significantly. Data collection took place over a period of 13 hours of contin-

uous operation. During this time, the mid-pulse current, which was initially set to

be 40 µA, decreased to 15− 20 µA. The measured signal in the beam at the second

turn is plotted with respect to tune in Fig. 11.8(a). The first measured point is in

the bottom left “corner,” with subsequent points collected in row major order, left

to right and bottom to top. Figure 11.8(b) shows the current in the second turn as a

function of scan duration. There is a clear exponential decrease in measured current

from the initial 40 µA to ∼ 20 µA by the end of data collection. Due to the decrease

in beam current the collection was prematurely interrupted, so the collected data

only spans the range ID = 1.65 → 1.95 A. Unmeasured points appear as the dark

blue band in Fig. 11.8(a).

The cause of the “drooping” current is not clear at this point. One possible

explanation is that the increased load on the DC circuit is draining the capacitors

that hold off the 10 keV gap voltage. However, one would expect to see this reflected

in the final beam energy. No accompanying drift in the revolution frequency is

observed, to a resolution of ∼ 10 eV in beam energy. The other possibility is

temperature dependence in the current output. This intuitively makes sense with

the hours-long decay time in Fig. 11.8(b), as well as the equilibrium reached after

many hours.

In either case, current drift will likely be reduced by modifying the pulse-
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(a) Tune scan for current in second turn. Color axis units are µA.

(b) Normalized current in second turn as a function of number of data

points collected during 13 hour scan.

Figure 11.8: Current drift over duration of “DC-beam” tune scan measurements.

forming circuit for operation of DC beam in a “long-pulse” mode (this will also

reduce the heat load on the cathode grid and reduce the risk of heat damage). For

now, the drift is assumed to not greatly effect the dynamics. For a variation of
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40 µA → 20 µA, by the simple approximation for tune shift (Equation 2.24), we

expect δν = 0.008→ 0.003. This is a small enough change that we don’t expect the

dynamics are significantly affected.

11.2.3 40 µA DC beam tune scan results

The resulting tune scan is shown in Fig. 11.9. Because the pulsed injection

is used for bunch formation, on the first turn the longitudinal profile is not fully

formed.5 Because of this, beam current is normalized with respect to the second

turn. This also normalizes out the current drift.

In tune space, all integer and half-integer stop-bands are very well-defined.

Additionally, there appears to be a third order stop-band at νx = 19/3 ≈ 6.3

that did not appear at higher currents. Compared to the 0.6 mA results, the sum

resonances νx + νy = p are less apparent. The last noticeable difference is the

appearance of “hot-spots,” regions of good beam transmission. While the 6 mA and

0.6 mA results suggest the operating point simply has to avoid low-order resonance

conditions for good beam transmission, the DC beam has an ’optimal’ operating

point (near νx = 6.8, νy = 6 or νx = 7.8, νy = 5.5 for near 100% transmission

over 100 turns). Poor transmission in other regions may be due to the unmatched

injection, which drives large envelope oscillations. With more careful tuning, I

expect more uniformity of transmission across the scanned range.

5Refer to Fig. 7.7.
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Figure 11.9: Beam transmission for 20 - 60 µA DC-beam on turn 100 (∼ 10 µs),

plotted as fractional survival (color axis) as a function of predicted tune.

11.2.4 Rate of beam current loss

One of the proposed experiments for the quasi-integrable lattice is to mea-

sure the dependence of dynamic aperture on octupole strength. Additionally, as

quasi-integrability is meant guarantee long-term stability, the octupole lattice should

demonstrate stable beam transport over as long a path length as possible. For this

reason, it is important to be able to accurately measure loss rates and demonstrate

low-loss transport over many turns.
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(a) Beam loss for 6 mA and 0.6 mA beams,

normalized to 1st turn.

(b) Beam loss for DC beam, normalized to

10th turn.

Figure 11.10: Average current per turn for three UMER beams.

Figure 11.10 shows measured loss rates for the three UMER beams described

here. Fig. 11.10(a) shows measured loss rates for the 6 mA and 0.6 mA beams

(black and red dots, respectively). As the AC signal is lost, current per turn is

measured by restoring AC signal using the knock-out technique (described in [65]

and [66]). Here a BPM pick-up electrode is converted to a fast-pulsed kicker, which

knocks out the bunch and creates an AC time signature that can be detected on

the WCM.6 As the beam ends erode until the ring is uniformly filled, the average

current per turn is measured (so that no loss would result in a constant value). Here

the current is normalized to the first turn average (3 mA and 0.3 mA, respectively,

for the 100 ns bunch which has 50% fill-factor). This measurement is done at the

standard operating point IF = ID = 1.826 A.

6See Section 6.4.2.
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The third (blue) curve in Fig. 11.10(a) shows the current per turn in the 0.6

mA beam when end erosion is prevented using longitudinal confining fields from

an induction cell at the RC4 location. Here pulsed longitudinal electric fields are

synchronized with the passing of the bunch head/tail to create a barrier against

beam expansion. This technique is described in more detail in [64, 67]. The use

of barrier fields launches density waves across the bunch and creates addition RF

ripple on the beam signal. This results in the oscillatory artifact in Fig. 11.10(a);

the beam is not actually gaining current at any point.

From Fig. 11.10(a) it is apparent for both beams that there is rapid beam loss

within the first 100 turns, with a steady but decreased loss rate afterwards. There

is some improvement with longitudinal confinement, which presumably removes

beam loss due to the accelerated/decelerated beam head/tail exceeding the ring

acceptance. However, most of the loss appears to be transverse (ie, due to scraping

and envelope oscillations). Of most interest is the observed loss rate for the DC

beam, plotted in Fig. 11.10(b). There is an initial rapid loss, which slows at

∼ 70% loss, but strangely increases again around turn 200. This behavior appears

consistent between operating points. Some loss may be mitigated, as mentioned

above, by improving the injection match and reducing orbit distortion. Improving

DC beam transmission beyond the initial characterization made here will be vital

for the success of the quasi-integrable experiments. This requires further studies to

identify the loss mechanism and, if possible, apply correction.
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Figure 11.11: 6 mA beam profile measured downstream of octupole, imaged using

phosphor screen. From left to right: Ioct > 0, Ioct = 0, Ioct < 0.

11.3 Excitation of resonances with an octupole element

The true success for octupole lattice experiments will be a demonstration of

resonance suppression and reduced losses compared to the linear case. One approach

is to move the lattice tune towards a resonant condition, as is done in the above

tune scans. Another method is to intentionally drive nearby resonances. This section

describes a test of the driven case, where a single octupole element is used to increase

nonlinearity in the FODO lattice.

Incoherent tune resonances are excited by driving forces of the appropriate

order, typically in the form of magnetic field errors. All orders are driven in the

FODO lattice, due to dipole and quad errors as well as unwanted harmonics in the

PCB magnet fields. These are generally fixed, a property of the accuracy of magnet

design and machine control. In order to probe beam response to the magnitude of

driving term, a single octupole magnet is installed at the location of ring quadrupole

QR26 (they are co-housed in a single mount). I repeat the tune scan measurement

232



with the added octupole fields. As described in Section 7.2, the octupole contains

quadrupole as well as higher order terms.

Results for the 6 mA tune scan with octupole excitation are shown in Fig.

11.12. While the beam survival plot (Fig. 11.12(a)) appears identical to the “linear”

case shown in Fig. 11.3, comparing the transmission rate along the line IF = 1.800

A (Fig. 11.12(b)) highlights the differences. The only significant difference is in

the depth of the resonant structures. With the octupole excitation, the half-integer

stop-band νx = 6.5 actually suffers less loss, while the integer band at νy = 8

gains some unexpected structure. Overall, the effect of the octupole fields is almost

unnoticeable, which is not surprising given the short path length over which beam

transmission can reasonably be measured (20 turns) and the magnitude of the space

charge force (which causes tune shift ∼ 2.4 for the 6 mA beam).

Results with the 0.6 mA beam are shown in Fig. 11.13. In this case, oc-

tupole excitation was increased to 3 A. Additional resonant features appear here in

comparison to the un-driven case, Fig. 11.5. In Fig. 11.13(a) additional resonance

lines appear above and below the νy = 6.5 band, which are likely driven third order

resonances νy = 22/3 ≈ 7.3 and νy = 23/3 ≈ 7.7. These features are also visible in

Fig. 11.13(b). The other significant difference, in comparison to the driven 6 mA

results, is that first and second order stop-bands get wider and deeper. The effect

of the added driving term is to increase loss near these resonances.

Finally, DC beam results are plotted in Fig. 11.13. While the results are less

clear due to the non-uniformity of transmission across the scanned range, in general

the same observations hold true: integer and half-integer stop-bands increase in
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(a) Beam survival plot at turn 20 with octupole current 1

A. The white line indicates the location of the slice plotted

below.

(b) Line-out from beam survival plot comparing transmission with/without octupole fields. Vertical

lines indicate resonant tune values. Solid black is first order, dashed red is second order and dotted

blue is third order.

Figure 11.12: Results of tune scan with octupoles for 6 mA beam.
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(a) Beam survival plot at turn 50 with octupole current 3

A. The white line indicates the location of the slice plotted

below.

(b) Line-out from beam survival plot comparing transmission with/without octupole fields. Vertical

lines indicate resonant tune values. Solid black is first order, dashed red is second order and dotted

blue is third order.

Figure 11.13: Results of tune scan with octupoles for 0.6 mA pencil beam.
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(a) Beam survival plot at turn 100 with octupole current 3

A. The white line indicates the location of the slice plotted

below.

(b) Line-out from beam survival plot comparing transmission with/without octupole fields. Vertical

lines indicate resonant tune values. Solid black is first order, dashed red is second order and dotted

blue is third order.

Figure 11.14: Results of tune scan with octupoles for µA level DC beam.
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Figure 11.15: Results from high-resolution 1D tune scan with varying octupole ex-

citation, measuring beam transmission at turn 200. Vertical lines indicate resonant

tune relationships. Solid black is first order, dashed red is second order and dotted

blue is third order.

both depth and width. Compared to the un-driven case (Fig. 11.9) there appears

to be much more feature in the “good transmission” regions that may be due to

tune resonances, but much of the fine structure is indiscernible at this resolution.

Results from a higher resolution follow-up study are plotted in Fig. 11.15.

The resolution is magnified by 10, with stepsize ∆I = 0.001 A in quad current.

A correction factor of +0.2 from the smooth-focusing estimate is applied to the

vertical tune.7 The smooth-focusing prediction for vertical tune is known to be

inaccurate as dipole edge-focusing effects are not included. Here the νy = νy,smooth+

0.2 transformation is chosen to line up the resonance lines beam loss at νy = 6.5

7See Section 2.1.4 for description of the smooth-focusing approximation.
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and νy = 6.

Beam transmission curves in this figure show the emergence of resonant struc-

ture not present in the linear FODO lattice. A candidate for this resonance is the

nearby line νy+2νy = 20. The identification could be verified by measuring machine

tune at this operating point (IF = 1.800 A, ID = 1.706 A) with one of the higher

current beams.

11.4 Chapter summary

This chapter covered a characterization of the resonance landscape of three

UMER beams of varying space charge density. This includes measurement of DC

beam transmission, which is a new mode of gun operation that will be used in

experiments in the quasi-integrable octupole lattice. As expected, operating in the

DC mode allows for many turns (> 500) with minimal space-charge driven end

erosion and mostly “frozen-in” bunch structure. There appears to be no need for

longitudinal confinement for the number of turns observed. At certain operating

points there is very little beam loss over the first 100 turns. However, after 200

turns there appears to be rapid beam loss at all operating points. Transmission

may be improved through tuning the injection match and steering solution.

The FODO lattice provides a baseline for expected loss rates in the proposed

experiment. However, the linear optics discussed in Chapter 8 differ greatly in

focusing strength and lattice periodicity. In general, since the FODO lattice is the

most efficient transport line (in terms of minimizing transverse beam size), we expect
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loss rates in the single-channel octupole experiment to be equal to or greater than

the observations above. At this time, no effort is made to match the 40 µ A beam

at injection and there are very large mismatch oscillations. It is likely that the loss

rate will decrease after matching is optimized.

The other aim of this work was to investigate space-charge dependent resonant

structure. Observed loss patterns are sensitive to the strength of the space charge

force, as predicted. At high space charge density (as in the 6 mA beam), fewer

resonance lines are seen (only 1st order and little 2nd order structure). While this

could be attributed to the fast loss of AC signal in the 6 mA beam, comparison

to the same turn for lower current beams shows more pronounced first and second

order resonant structures. This suggests the space charge tune spread itself may act

to decohere resonant particle motion and mitigate resonant losses.

The ability to selectively drive resonant losses has potential for the quasi-

integrable experiments. Introduction of additional driving terms in the form of a

single octupole PCB magnet in the UMER lattice is observed to drive otherwise

absent third order resonant structure in the 0.6 mA pencil and 40 µA DC beams. In

the DC beam in particular, there is evidence for a νx+2νy sum resonance that grad-

ually emerges when the octupole current increases. Follow-up tune measurements

can verify the identification of this resonance and observe other resonant effects,

such as increase in beam size. The true proof of principle demonstration for the

QIO experiments will be to show that resonant losses in the linear case are miti-

gated when octupole fields are included. Here we have shown with an added driving

term, a third order resonance has detectable levels of beam current loss.
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Chapter 12: Summary and Future Work

12.1 Summary of dissertation

This dissertation describes design of a quasi-integrable octupole (QIO) lattice

that follows from the theory of nonlinear integrable optics (NLIO) proposed by

Danilov and Nagaitsev. [5] The goal of the UMER nonlinear optics program is

to experimentally demonstrate a strong nonlinear lattice for stable beam transport

with resonance suppression using octupole elements. In this dissertation, a design for

experiments at low space charge concentration was proposed and numerical studies

for error tolerances and lattice performance were completed (Chapters 5, 7 and 8).

This dissertation also discussed steering and resonance studies utilizing the linear

UMER lattice (Chapters 10 and 11, respectively).

12.1.1 Design of quasi-integrable experiments

Chapter 5 examined particle dynamics in a reduced model of the quasi-integrable

octupole lattice, assuming a long octupole channel embedded in a thin-lens FOFO

lattice. I verified invariant conservation and applied the technique of frequency map

analysis to predict dynamic aperture and octupole-induced tune spread. The single
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particle Hamiltonian for the octupole lattices possesses unstable fixed points with

coordinates that depend on octupole field strength. This should be straightforward

to verify experimentally. Assuming a channel length L = 64 cm and transverse

envelope β∗ = 0.3 m at the center of the octupole insert, a peak octupole gradient

G3 = 50/T/m3 should limit dynamic aperture near the edge of a 100µ m, 40µA

beam and support octupole-induced tune spreads up to δν = 0.25 (RMS spread

∼ 0.03). Chapter 5 also demonstrates octupole-driven decoherence of mismatch os-

cillations and beam halo suppression. Results show that space charge acts against

octupole-driven damping. For this reason, in initial octupole lattice experiments we

plan to operate UMER at a current density lower than the machine design. Gener-

ation of a low-current “DC-beam” (ε ∼ 100µ m, I ∼ 40µA) is discussed in Chapter

6.

Chapter 6 introduces UMER capabilities and available diagnostics, including

design of PCB octupole magnets. The unwanted integrated multipole content is

below the < 1% threshold assumed for the UMER quadrupole and dipole designs.

The octupole circuits are in-hand and a long octupole channel is currently being as-

sembled. Chapter 7 presents two possibilities for the nonlinear UMER experiments:

a distributed and a single-channel design. Using the reduced model from Chapter 5,

we examine lattice performance (quantified by dynamic aperture and tune spread)

on linear focusing errors, orbit distortions and octupole field. Based on this work, we

require tolerances in the octupole element of orbit distortion < 0.2 mm and average

background field < 100 mG. Errors in linear focusing were considered as deviations

of the ring tune advance from the quasi-integrable condition. The octupole lattice is
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more sensitive to tune splitting νx−νy than tune errors of the form ∆νx = ∆νy, but

in general there is not a strong dependence and tune errors ∆νx,∆νy < 0.1 should

be sufficient for experiment. Including realistic octupole fields based on the PCB

design does not significantly affect dynamics and a configuration for the multi-PCB

long channel is proposed.

Lattice design for the single-channel octupole experiment is discussed in Chap-

ter 8. Here I describe a method for finding a linear lattice solution that provides

transverse focusing equivalent to the thin-lens FOFO lattice and propose a lattice

solution for the low-current “DC-beam” experiments. Initial results from full ring

simulations with the WARP code are shown. Due to the high-emittance beam,

particle orbits sample large amplitudes where quadrupole and dipole magnets have

significant nonlinearity. This shows up as externally-induced tune spreads in the

linear lattice (δν ∼ 0.05) that are comparable to the octupole-induced spread ob-

served in WARP and the best-case estimate from the reduced model (δν ∼ 0.04

and δν ∼ 0.25 respectively). This is a complication specific to transport of a high-

emittance beam. The lattice as implemented in WARP has large tune errors and

does not perform well when both space charge and octupole fields are included.

Better performance is expected for a further optimization of the solution.

12.1.2 Tuning and characterization of UMER lattice

Chapter 10 discusses improved algorithms for orbit control to meet the tol-

erances required by the octupole experiment. Control of orbit distortion to within
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|x| < 3.7 mm and |y| < 4.1 mm has been demonstrated experimentally. For experi-

ments with the high-emittance DC beam additional vertical correction is necessary

to avoid large local excursion. In the ring section identified for the long octupole

channel, |x| < 0.7 mm and |y| < 0.1 mm. The large horizontal distortion is limited

by the background Earth field. µ-metal shielding of the ambient fields around the

octupole element is recommended and water cooling of the dipole steering magnets

will be necessary.

Finally, Chapter 11 investigates resonant structure in the UMER FODO lat-

tice, as a function of current density both with and without an octupole driving

element. It is observed that the space charge force acts to decohere higher order res-

onances, even when the octupole driving term is included. An octupole-driven third

order sum resonance is identified in the 40 µA DC beam measurements. The ability

to drive and observe third and higher order resonances is crucial for the nonlinear

lattice experiments, as demonstrating octupole-induced resonance suppression is a

strong demonstration of the feasibility of nonlinear integrable optics.

The 40 µA resonance studies are the first experiments conducted with the

DC beam. 1000 turns are observed, with longitudinal bunch profile preserved over

transport (compared to the high-current UMER beams, where space charge drives

bunch expansion and inter-penetration). Despite the lack of end erosion, the DC

beam still experiences large losses (30% at turn 200 and > 90% loss after 1000 turns).

As long confinement times are desired for the nonlinear experiments, more work

needs to be done to understand and mitigate current loss. Over the course of the 12-

hour experimental run, the gun output current slowly decreased (40→ 15 µA). This
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is likely due to increased power load during DC operation and should be mitigated

before nonlinear experiments begin.

12.2 Future work

Much work remains to be done preparing UMER for octupole lattice exper-

iments. In this section I make recommendations for “next step” preparations and

propose experiments. Here I focus on preparations for the single-channel experi-

ment. The distributed octupole lattice has already been implemented experimen-

tally (Chapter 9), although should be revisited with better tuning and at lower beam

current. The experiments suggested here could also be used with the distributed

octupole configuration.

12.2.1 Preparation for experiments

The design of the single-channel experiment includes a custom 20◦ ring section

for the octupole insert. A long mount has been designed for the multi-PCB octupole

channel that uses existing screw holes and can be mounted without adjustment to

the 20◦ plate. The recommended location for the octupole section is at RC9, as this

is where the the most precise control of the local orbit distortion has been demon-

strated (see Chapter 10). Additionally, with this orientation the two unoccupied

drift regions will be aligned with the imaging screens at RC3 and RC15. Imag-

ing the beam at the XY-symmetric waist (rather than at more asymmetric points)

will simplify tuning of the injection match and observations during octupole lattice
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experiments.

The first step before implementing the single-channel octupole experiment is

tuning up the linear lattice solution proposed in Chapter 8. It would be best to

do this before installing the custom 20◦ octupole ring section, as the proposed RC9

location will replace the RC9 diagnostic chamber (which includes phosphor imaging

screen). Orbit tolerances for the ε = 100 µm DC beam will need to be tighter than

the steering solutions demonstrated in Chapter 10. The matched beam edge extends

to ∼ 1.6 cm radially, while the pipe aperture is rwall = 2.5 cm. Ideally, first turn

orbit excursions should be kept within 1 mm. Tuning for turn-to-turn oscillation

amplitude of < 1 mm has been demonstrated using the RCDS optimization method.

[58] This accommodates a ∼ 40% mismatch without scraping.

While enhanced vertical orbit control |y| < 1.2 mm has been demonstrated

with the addition of SSV correctors (Section 10.5), this not the most ideal approach

as there is not space to include them in all ring sections (including the octupole

section). Currently a set of radial field-canceling Helmholtz coils is being installed

at each ring section, which should reduce the average background field. There are

no plans to improve horizontal orbit control except in the octupole section. Due

to the sensitivity of particle dynamics to orbit distortion in the octupole channel,

I recommend either vertical-field-canceling Helmholtz coils or µ-metal shielding to

reduce the average vertical field from ∼ 400 mG to < 100 mG.

The response of beam orbit to the steering algorithm will likely differ greatly

in the proposed non-FODO lattice. All orbit characterization assumes the standard

UMER FODO lattice with quadrupole currents IF = ID = 1.826 A. The betatron
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wavelength is much longer in the proposed octupole lattice, which operates at ν ∼

3.27 compared to the standard ν ∼ 6.7. Prior to implementation, the steering

algorithm should be tested in VRUMER with the quadrupole values proposed in

Chapter 8. A different approach may yield better results.

After steering is optimized in the non-FODO lattice we can consider second

order beam moments. Using an envelope solver such as MENV, the injection line

focusing elements can be optimized for the high-emittance DC beam. This will

need to be empirically adjusted following the procedure developed in [39]. Finally,

measured properties of the linear lattice should be compared to predictions. This

includes beam size at the phosphor screen locations and fractional tune measure-

ments. Tuning of the lattice and refinement of the models may be necessary to find

good agreement.

There are many open questions that can be addressed via simulation while

hardware is being prepared. First, the operating point investigated with WARP

PIC simulations in Section 8.3 is very near the fourth order resonance νy = 1/4,

which causes de-stabilization of particles near the beam core and hollowing of the

beam distribution when octupole fields are included. Reducing the fractional tune

of the lattice (by choosing a slightly larger β∗ may avoid these losses, but simulations

at the new operating point should be done to investigate if similar losses are seen

for higher order resonances (νy = 1/5 or νy = 1/6 and so on). Second, for now

chromatic tune spreads are assumed to be low, ∼ 0.004, for energy spreads ∼ 10 eV.

Energy measurements of the “DC beam” can establish if this is a fair assumption.

In the case of large energy spread, chromaticity-correcting sextupole magnets may
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be required. Simulations with energy spread can determine if this is necessary by

predicting the effect of chromatic spreads on dynamic aperture. Finally, it should

be a matter of priority to benchmark simulation models against ring measurements

for the proposed lattice solution, as previous efforts have concentrated on finding

agreement near the nominal FODO lattice with If = ID = 1.826 A.

12.2.2 Proposed experiments

A variety of experiments are possible once the octupole element is in place

and the solution is well-tuned. The simplest proof-of-principle experiment is demon-

strating stable beam transport with the addition of octupole fields. Turn-by-turn

loss curves will be measured as a function of octupole strength and compared to

predicted aperture dependence.

A low-emittance probe beam can be used to measure tune, following the ap-

proach in Section 6.4.4. The amplitude-dependent tune of the octupole lattice can

be sampled by varying the initial injection amplitude of the probe beam. If good

agreement is found between the envelope model and the measured lattice it will be

possible to measure the invariant HN and place bounds on invariant conservation.

Damping of mismatch oscillations (predicted in Section 5.4) can be observed

by injecting an initially mismatched beam and using multi-turn phosphor screen

imaging to measure the beam profile. The knock-out method will need to be adjusted

for the longer betatron wavelength. If halo is observed to form in the linear case,

high dynamic range imaging can be used to quantify halo dependence on injection

247



mismatch and octupole strength. [39]

Another set of experiments involve purposefully violating the quasi-integrable

condition to understand the robustness/limitations of the octupole lattice. As the

octupole channel is composed of multiple PCB circuits, each independently powered,

the longitudinal octupole profile can be changed arbitrarily and resulting loss curve

measured. In addition, Chapter 8 proposed a method for shifting the lattice tune

while maintaining a matched beam. Using this method we can conduct a small-

footprint “tune scan” around the quasi-integrable condition. Another method is to

vary the beam energy to scan across a range of tunes. For all beams, fine adjustment

of the 10 keV nominal energy is possible.

Finally, the tune scan method introduces the possibility of operating near res-

onances and observing octupole-induced resonance suppression. This is the true

“proof-of-principle” experiment for the nonlinear integrable optics theory, proving

that losses due to incoherent tune resonances can be suppressed with strong nonlin-

ear fields and without loss of dynamic aperture.

12.2.3 Extensions of the planned experiments

Observing resonant suppression as mentioned above may be difficult. The lin-

ear lattice needs to be tuned up on a non-resonant condition, but changing linear

focusing to move towards a resonant operating point will violate the quasi-integrable

condition on lattice tune. Chapter 8, Section 8.2 describes the use of symmetric

solenoid lenses to control the beam waist in the octupole channel without changing
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the lattice function in the surrounding linear lattice. Incorporation of solenoids into

the proposed experiment will be a powerful tool for shifting lattice tune onto reso-

nant frequencies. The solenoids as proposed require relatively weak field strengths

and should be straightforward to design.

Future plans include extending the octupole lattice experiments to non-negligible

space charge densities. This takes advantage of UMER’s variable beam current

and investigates the applicability of nonlinear integrable optics in a space-charge-

dominated regime. However, the incoherent tune shift of the 0.6 mA beam, δν =

0.94, is a large increase from the 40 µA DC beam, δν = 0.005. Currently, a method

for mid-range space charge is being developed for use in UMER. [32] Total beam

current will be reduced by double-aperturing the beam, using an second aperture

plate installed downstream of the aperture wheel. Nominal operating parameters for

the double-apertured beam are I = 60 µA and ε = 0.13 µm. This corresponds with

tune depression ν/ν0 = 0.95 and incoherent tune spread δν = 0.3 (in the nominal

UMER FODO lattice with ν = 6.7). The 60 µA double-apertured beam will be

used for tests of the octupole lattice in a regime relevant to existing high-intensity

machines.
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Appendix A: Additional notes on linear-focusing single particle dy-

namics

This appendix follows the derivation for single particle dynamics in a linear

focusing accelerator with greater detail than in Chapter 2, including discussion

of momentum-dependent effects. Linear focusing assumes that only dipole and

quadrupole fields are present. This approach is presented more thoroughly in [8]

and [9] but summarized here.

A.1 Derivation of single particle Hamiltonian

The Hamiltonian for the general case of a charged particle moving through

electromagnetic fields is

H =

√
m2c4 + c2

(
~Π− e ~A

)2

+ eΦ. (A.1)

for electron charge e, vector potential ~A and scalar potential Φ. The canonical

momentum is ~Π = ~P + e ~A where ~P is the relativistic momentum ~P = γm~v. The
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equations of motion are

ẋ =
∂H

∂Px
(A.2)

Ṗx = −∂H

∂x
(A.3)

and similar for y, z.

Several approximations and canonical transformations are applied to tailor the

general electromagnetic case to an accelerator system. First, Eq. A.1 is transformed

into the beam-frame, curvilinear Frenet-Serret coordinate system (see Fig. 2.1).

Coordinate s is the propagation distance along a reference orbit and variable ρ is

defined as the local radius of curvature along this orbit, 1
ρ
≡ dx̂

ds
.

We choose appropriate canonical transformation to use s as the independent

variable, rather than time t. A small angle approximation is applied, assuming

transverse momenta Px and Py are much smaller than total momentum P :

H̃ ≈ −P
(

1 +
x

P

)
+

1 + x/P

2P

[
(Px − eAx)2 + (Py − eAy)2]− eAs. (A.4)

In the ideal accelerator, the electric potential is zero and the magnetic fields have

only transverse components (therefore we safely set Ax = Ay = 0 and Φ = 0). With

some algebra, the Hamiltonian can be expressed as

H̃ = −P
(

1 +
x

ρ

)(
1− P 2

x

2P 2
−

P 2
y

2P 2

)
− eAs

(
1 +

x

ρ

)
. (A.5)

The last transformation made is into dimensionless momentum variables px = Px/p0

and py = Py/p0, where p0 is the nominal or “design” momentum of the beam. The

resulting Hamiltonian is
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H = −P
p0

(
1 +

x

ρ

)(
1− 1

2
p2
x −

1

2
p2
y

)
− e

p0

As

(
1 +

x

ρ

)
. (A.6)

Now we assume a form for As corresponding to a linear focusing accelerator lat-

tice. While the preceding was applicable for any applied fields that can be expressed

as ~A = (0, 0, As), the following only applies to lattices with linear (quadrupole) fo-

cusing. Inside an ideal quadrupole, the magnetic potential is

As =
G1(s)

2

(
x2 + y2

)
(A.7)

where G1 = dBx/dy = dBy/dx is the quadrupole gradient. Ignoring terms higher

than second order and assuming design energy (P = p0) the Hamiltonian becomes:

H =
1

2

(
p2
x + p2

y

)
+

1

2

(
Kx(s)x

2 +Ky(s)y
2
)
. (A.8)

Here, focusing strength is Kx(s) = eG1(s)/p0 and Ky(s) = −eG1(s)/p0.1 In a

transport line containing only quadrupoles, Kx(s) = −Ky(s). Additionally, if

Kx(s) = Kx = constant, Eq. A.8 is equivalent to two uncoupled harmonic os-

cillators.

A.2 Single particle equations of motion

Applying Hamilton’s equations of motion (Eq. A.3 for appropriate coordi-

nates), we arrive at Hill’s equation:

z′′(s) +K(s)z = 0. (A.9)

1If dipole fields are included, Kx(s) = ρ(s)−2 + eG1(s)/p0. The following analysis is still valid.
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Here z is used as a general variable, z ∈ {x, y}. In an accelerator ring, K(s) is a

periodic function in s. The solution to Hill’s equation has the form of a Floquet

transformation

z(s) = Aw(s)e±iψ(s) (A.10)

for amplitude constant A, amplitude function w(s) and phase function ψ(s). Substi-

tution of Eq. A.10 into Eq. A.9 and definition of the betatron amplitude function.

β(s) ≡ w(s)2 leads to the following constraints on orbit amplitude
√
β(s) and phase

φ(s):

ψ′ =
1

β(s)
(A.11)

1 =
1

2
ββ′′ − 1

4
β′2 +K(s)β2 (A.12)

As ω(s) is the envelope function for single particle oscillations, for a particle with

amplitude A, Aω(s) defines the maximum extent of its orbit. An ensemble of par-

ticles with emittance ε will have maximum extent
√
εβ.

A.3 Off-momentum particles

The RMS envelope equations describe the propagation of a particle distribu-

tion at the design energy (in the case of UMER, 10 keV). However, in reality the

beam distribution includes particles at a range of longitudinal momenta. Energy

spread is quantified as fractional momentum deviation δp0 from the design momen-

tum p0. In a synchrotron, the energy spread is set by the fill factor of the RF cycle.
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An initially mono-energetic beam of length ∆t will oscillate in ∆t−∆E space, and

therefore have an energy spread δ = ∆E. The picture is not quite as straightforward

when considering a coasting beam, as is typical for UMER, where δ is expected to

be much smaller than in a synchrotron.

A particle with momentum deviation δ > 0 has a magnetic rigidity Bρ = p
q

greater than the on-momentum particle, and therefore experiences a smaller bend-

ing angle through the dipoles and a weaker focusing gradient Kx = ∂By/∂x

Bρ
in the

quadrupoles. The converse is true for δ < 0.

Off-momentum particles follow an orbit x(s) = x0(s) +D(s)δ where x0 is the

trajectory at the design energy (the solution to Eq. A.9). The correction term

depends on momentum deviation and the dispersion function D(s). D(s) satisfies

the equation:

D′′ +Kx(s)D =
1

ρ
(A.13)

The effect of dispersion on an ensemble of particles is to increase the beam size in

dispersive regions.

Momentum deviation also leads to a shift in particle tune due to the energy-

dependence of the focusing gradient Kx. This is described by the chromaticity,

defined as the derivative of tune with fractional momentum deviation,

Cx,y ≡
dνx,y
dδ

. (A.14)

To first (linear) order, the natural (uncorrected) chromaticity is given by the integral:
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Cx,y ≈ −
1

4π

∮
βx,yKx,yds (A.15)

and the resulting chromatic tune spread for an ensemble of particles with momentum

spread δ is

∆νx,y ≈ Cx,yδ (A.16)

This formulation, following that given in [8], ignores nonlinear chromaticity. Higher

order corrections to the chromatic tune spread arise due to non-linearities in the

lattice. For example, high dispersion may lead to off-momentum particles sampling

nonlinear regions at large transverse amplitude in the focusing and bending magnets.
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Appendix B: Matrix representation of linear focusing elements

Particle evolution in a linear focusing system can be expressed in terms of a

matrix formulation. To first order, an orbit with initial condition (x, x′)1 at location

s1 can be mapped as:

[
x
x′
]

2
= Ms1→s2

[
x
x′
]

1
(B.1)

where Ms1→s2 is the transfer function between s1 and s2.

B.1 Matrix representation of ring

The following can be found in many accelerator texts, but here is referenced

from [8]. For a transport with transfer function

Ms2|s1 =
[
C S
C ′ S ′

]
(B.2)

the Courant-Snyder parameters transform as

[
β
α
γ

]
s2

=

[
C2 −2SC S2

−CC ′ SC ′ + S ′C −SS ′
C ′2 −S ′C ′ S ′2

] [
β
α
γ

]
s1

. (B.3)

Conversely, if the Courant Snyder parameters are known for two locations in a beam

line, the transfer matrix M is
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M(s2|s1) =

 √
β2
β1

(cosψ + α1 sinψ)
√
β1β2 sinψ

−1+α1α2√
β1β2

sinψ + α1−α2√
β1β2

cosψ
√

β2
β1

(cosψ − α2 sinψ)

 (B.4)

B.2 Introducing phase errors in the FOFO lattice

This section shows the source of Eq. 7.2, which is used to simulate the effect

for external focusing errors in the quasi-integrable octupole lattice. This is done for

the simple model of the octupole lattice, consisting of octupole channel and linear-

focusing, thin-lens “T-insert.” In the ideal case, the T-insert transformation applied

at s0 is

T (s0|s0) =

 1 0 0 0
−k 1 0 0
0 0 1 0
0 0 −k 1

 . (B.5)

This transfer matrix can be derived from the general expression in Eq. B.4. For

a thin focusing impulse in a periodic FOFO lattice, β1 = β2 and α1 = −α2. The

above matrix is the special case where ψ = 2nπ. Without assuming an integer phase

advance in the linear lattice, T becomes

Tz =

[
cosψz − αz sinψz βz sinψz

−1−α2
z

βz
sinψz − 2αz

βz
cosψz cosψz − αz sinψz

]
(B.6)

where the full matrix is simply

T (s0|s0) =

[
[Tx]

0 0
0 0

0 0
0 0 [Ty]

]
. (B.7)

The linear lattice phase advance is ψx,y = 2πνx,y + 2π∆νx,y for lattice design tune
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νx,y and tune error ∆νx,y. As the lattice design tune is constrained to be an integer

value, mod ψx,y = 2π∆νx,y, and the applied focusing is:

Tz =

[
cos 2π∆νz − αz sin 2π∆νz βz sin 2π∆νz

−1−α2
z

βz
sin 2π∆νz − 2αz

βz
cos 2π∆νz cos 2π∆νz − αz sin 2π∆νz

]
(B.8)
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Appendix C: Analytic description of a symmetric focusing (FOFO)

lattice

The implementation of the quasi-integrable lattice requires the beam to come

to a “round” (XY symmetric) waist in the octupole element. This appendix shows an

derivation for envelope evolution in a drift space and the matched envelope solution

in a FOFO lattice with symmetry X(s) = Y (s). The FOFO lattice consists of a

drift (field-free) region and periodic XY-symmetric thin lens focusing elements.

C.1 Symmetric beam waist and free expansion in a drift

The evolution of the betatron function in the drift space can be reconstructed

from the transfer matrices. Here I follow the approach laid out in [68]. The transfer

matrix in a drift space is simply

Ms0→s =
[
1 s− s0
0 1

]
(C.1)

Applying the transformation on the Courant-Snyder parameters (shown in Eq. B.3)

β(s) = β0 − 2α(s) · (s− s0) + γ(s) · (s− s0)2 (C.2a)
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α(s) = α0 − γ(s) · (s− s0) (C.2b)

γ(s) = γ0 (C.2c)

for α0 = α(s0) and γ0 = γ(s0). As α(s) = −1
2
dβ(s)
ds

, the beam waist occurs where

α = 0, at a longitudinal location

s∗ ≡ s− s0 =
α0

γ0

(C.3)

and the beta-function amplitude at the waist is

β∗ ≡ β(s∗) = β0 −
α2

0

γ0

. (C.4)

Through the identity between β, α and γ in Eq. 2.14, we see that

β∗ =
β0

1 + α2
0

=
1

γ0

. (C.5)

Eq. C.5 is an important scaling law for low-beta insertions. Requiring β∗ to be very

small requires large α0. As α is the gradient of the β-function, this corresponds to

large β excursions outside the insertion region.

The beam expansion about the waist is described by

β(s) = β∗ + γ∗(s− s∗)2. (C.6)

Substituting from Eq. C.5, and keeping in mind that γ(s) = γ0 = constant in a

drift, the expression for the betatron function near a waist is

β(s) = β∗ +
(s− s∗)2

β∗
. (C.7)

260



Figure C.1: Matched envelope solution for FOFO lattice. A single cell is shown.

As this expression is derived from the single-particle transfer matrix M in Eq. C.1,

this formalism does not include space charge effects.

C.2 Matched envelope in FOFO lattice

The framework for an integrable lattice requires symmetric beam waist, over

which a nonlinear insertion will be placed. External focusing is provided by the

“T-matrix” insert, visualized in Fig. 5.1. A periodic lattice consisting of alternating

drift spaces and T-inserts can be considered a symmetric FOFO lattice. This section

derives properties of a matched beam in a FOFO lattice with length L and focusing

strength k/

One period of a FOFO lattice with cell length L can be constructed as a drift

of length L/2, a thin lens with focusing strength −k, followed by a second drift of

length L/2. For a thin lens transformation, focsing strength k is inversely related

to the focal length, k = 1
f
. An example of the matched beta function is shown in
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Figure C.1 for a single FOFO cell.

As the FOFO lattice is XY symmetric, the subscripts x and y will be dropped

and the following analysis is valid for both planes. The transfer matrix for one cell

is

Ms∗→s∗+L =
[
1 L/2
0 1

]
·
[

1 0
−k 1

]
·
[
1 L/2
0 1

]
=

[
1− kL

2
L
(
1− kL

4

)
−k 1− kL

2

]
. (C.8)

Applying the transfer matrix to the evolution of [β, α, γ]s∗ according to Eq. B.3 and

enforcing the matching condition β(s∗) = β(s∗ + L) leads to the definition of β∗ in

terms of lattice parameters k and L:

β∗ =
L
(
1− kL

4

)√
1−

(
1− kL

2

)2
(C.9)

As it is more natural to use β∗ as the free parameter when designing an inser-

tion region, the inverted form is more useful. Here, k represents a constraint on the

T-insert to give a desired waist size in the nonlinear insertion:

k =
L

L2/4 + β2
∗
. (C.10)

Eq. C.9 can be substituted into the expression for β-function in a drift, Eq. C.7, to

find an expression for β(s) in terms of the FOFO lattice parameters. For a matched

beam in a FOFO lattice cell of length L, s∗ = L/2 and β(s) is
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β(s) =
L− sk(L− s)√

1−
(
1− Lk

2

)2
. (C.11)

In the context of nonlinear quasi-integrable optics, the achievable tune spread

scales with the phase advance through the nonlinear insertion. A large phase ad-

vance in the insertion is desired, with phase advance defined as above, Eq. . The

phase advance can be calculated by integrating the inverse of Eq. C.11. This has

the analytic solution:

ψdrift =

√
1−

(
1− Lk

2

)2

·
∫ L

0

ds

L− sk(L− s)

=

√
1−

(
1− Lk

2

)2

·
2 tanh−1

√
k
L

L−2s√
kL−4√

kL(kL− 4)
. (C.12)
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Appendix D: Numerical Analysis of Fundamental Frequency

This appendix presents the framework for NAFF implementation in Python

that was used for simulated frequency map analysis in this dissertation.

def naff(signal,sampr):

import numpy as np

# -- FFT parameters

dens = 10**6; # Density of pts for FFT

freq = np.fft.fftfreq(dens,sampr)

# -- apply hanning window

hwin = hanning(signal.size)

windowed_signal = signal*hwin

# -- take FFT and extract strongest frequency

ampl = abs(np.fft.fft(signal,dens))

f0 = freq[where(ampl==max(ampl))[0][0]]
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# -- initial guess for amplitude is rms of signal

a0 = sqrt(2)*rms(signal)

# -- NAFF step

# -- (minimize convolution of sine wave with signal)

result = opt.minimize(overlap_integral,f0,args = \\

(a0,signal,weight))

ffund = result.x[0]

return [ffund]

def overlap_integral(f,a,signal,weight):

x = arange(0,size(signal)) # time-like variable (step number)

z = a*exp(-1j*2*pi*f*x) # signal with frequency f

overlap = -abs(sum(z*signal*weight)) # score is convolution \\

of signal, weight and pure wave of freq. f

return overlap
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Appendix E: Simulation parameters for simple model of quasi-integrable

octupole lattice

This appendix describes the elements used for octupole channel and thin-lens

“T-insert” transformation in the simple model simulation used in Chapter 5 and

Chapter 7.

E.1 Elegant model

In Elegant, the focusing impulse is applied as a 6D matrix element (MATR),

defined as

MATR =


1 0 0 0 0 0
−k 1 0 0 0 0
0 0 1 0 0 0
0 0 −k 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (E.1)

for specified focusing strength k. The octupole fields are generated with the multi-

pole element MULT of order 3. The MULT element delivers canonical kicks based on

fourth-order symplectic integration. This was chosen over the alternative option in

Elegant, OCT, which uses a third-order matrix transformation and is not symplec-

tic. [69] As MULT amplitude is defined as an integrated strength, the “smoothness” of

the longitudinal profile depends on the number of discrete, flat-top elements used.
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Results in this thesis use 16 adjacent MULT elements, each of length 4 cm, with

integrated strength set according to the target strength (Eq. 5.4) at the element

center.

E.2 Warp model

In the WARP PIC code, I use the 2D transverse slice package, which assumes

zero coupling between transverse and longitudinal motion. The focusing kick is

implemented at the python level as a velocity impulse every N steps, where N = 64

cm / stepsize. This simple transformation is shown below, where i is iteration

number, v_s is total forward beam velocity and gamma is the relativistic factor.

def thinlens():

if mod(i,int(L/stepsize))==0:

v_x += -k* v_s * gamma * x

v_y += -k* v_s * gamma * y

In WARP, the octupole fields are generated using the magnetic multipole element

mmlt, which is a pure-harmonic multipole field with arbitrary longitudinal profile.

The longitudinal profile is defined with 100 discrete steps in s. Therefore the oc-

tupole profile used in WARP is a closer approximation of the desired 1/β3(s) scaling

than the profile defined in the Elegant model.
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Appendix F: Method for testing closed orbit distortion tolerance in

reduced model

This appendix reviews how centroid orbit corrections are made for orbit distor-

tion tolerance calculations described in Section 7.5.1. These simulations use WARP

to model a 64 cm octupole channel with an ideal linear FOFO thin-lens transforma-

tion. To simulate the effect of a closed orbit distortion, a coherent orbit correction

is made for each particle at the location of the thin lens focusing transformation.

The two cases examined in Section 7.5.1 are:

1. Orbit distortion in otherwise shielded 64 cm section (centroid has straight

trajectory between steering elements.)

2. Curved orbit distortion due to constant background field

F.1 Case 1: Straight/shielded orbit distortion

Fig. F.1 shows distortion of the closed orbit in the case where particle trajec-

tories are straight between magnetic elements. The distortion is defined by initial

conditions x0 and x′0, which represent the initial offset in beam centroid. At the

same location as the FOFO thin lens transformation (that represents focusing in
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Figure F.1: Schematic of shielded closed orbit distortion through octupole channel

for error analysis calculations. Red line is centroid motion of beam with initial

offset x0, x′0. Thick red lines indicate thin lens centroid transformation. Black line

is centroid motion without centroid transformation.

the linear part of the ring), a centroid transformation is also made. For a single

plane, the following correction is made for each particle:

[
x
x′
]
f

=
[
x
x′
]
i
−
[

Lx0
−k(x0 + Lx′0)

]
. (F.1)

The derivation follows. Consider single particle matrix equations for propagation

through a focusing element (strength k) and a drift of length L.

[
x
x′
]
f

=
[

1 0
−k 1

]
i
∗
[
1 L
0 1

]
i
∗
[
x
x′
]
i

=
[

xi + Lx′i
−kxi + (1− kL)x′i

]
.

(F.2)

Now divide motion into single particle xp and centroid xc components, where xi =

xc,i + xp,i and x′i = x′c,i + x′p,i. The matrix equation for a single pass becomes:

[
x
x′
]
f

=

[
xc,i + Lx′c,i

−kxc,i + (1− kL)x′c,i

]
+

[
xp,i + Lx′p,i

−kxp,i + (1− kL)x′p,i

]
=
[xp
x′p

]
f

+
[xc
x′c

]
i
+

[
Lxc,i

−k(xc,i + Lx′c,i)

]
.

(F.3)

Considering
[
x
x′
]
f

=
[xc
x′c

]
f
+
[xp
x′p

]
f
, one can examine just the centroid motion

[xc
x′c

]
f

=[xc
x′c

]
i
+

[
Lxc,i

k(xc,i + Lx′c,i)

]
. Let xc,i = x0 and x′c,i = x′0. The centroid will follow the
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Figure F.2: Schematic of unshielded closed orbit distortion through octupole channel

for error analysis calculations in vertical plane. Red line is centroid motion of beam

with thin lens centroid transformation at thick red arrows. Black line is centroid

motion without centroid transformation, just periodic thin lens focusing element.

same distorted path through the channel from turn to turn if
[

Lx0
−k(x0 + Lx′0)

]
is

subtracted at the end of each pass, as in Eq. F.1.

It should be noted that in Case 1, I ignore the effect of the bending dipoles

(there are two in a 64 cm channel at 32 cm intervals). This relies on two assumptions:

the bending dipole field is “flat” (bend angle does not depend on displacement in

dipole) and, in a shielded environment, there is a setting for the dipoles that allows

the beam to propagate centered through all elements.

While x0, x′0 is a two-dimensional space of possible orbit distortion, I simplified

the problem by requiring that the distortion be symmetric in a 64 cm drift, with

xf = −x0 and < xc(s) >= 0. In this case, x′0 ≈ sinx′0 = L/2x0 and the distortion is

parametrized in terms of x0 only. The maximum acceptable closed orbit distortion

stated in Chapter 7 refers to this value x0.
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F.2 Case 2: Curved orbit distortion due to background field

To model the effect of orbit due to immersion in ambient background fields, I

applied a similar thin-lens centroid transformation. Fig. F.2 shows the case where

steering corrections are made every 64 cm, which represents vertical steering with

RSV steerers. The orbit is assumed to be “as centered as possible.” For a given

background field, initial conditions y0 and y′0 are chosen so that yi = yf across a

64 cm drift, and max y = min y in the drift. In this case, the centroid correction is

simply:

[
y
y′
]
f

=
[
y
y′
]
i
+
[

0
ky0 + θ

]
(F.4)

where θ is the bending angle due to the background field. Assuming a constant

background field Bx, θ = LBx

Bρ
depends only on length of straight section L and

particle rigidity Bρ. To meet the condition yi = yf , y
′
0 = θ/2. To satisfy max y =

min y, y0 = ρ/2(1− cos (θ/2)).

As horizontal steerers are located every 32 cm and will be co-housed in the

long 64-cm octupole channel, the horizontal plane requires a different treatment.

The steering correction of Eq. F.4 is split and applied at different locations:

[
x
x′
]
f

=
[
x
x′
]
i
+
[

0
kx0

]
(F.5a)[

x
x′
]
f

=
[
x
x′
]
i
+
[
0
θ

]
. (F.5b)

Eq. F.5a is applied at the ends of the 64 cm channel, same location as the thin-
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Figure F.3: Schematic of unshielded closed orbit distortion through octupole channel

for error analysis calculations in horizontal plane. Red line is centroid motion of

beam with thin lens centroid transformation at thick red arrows. Thick black arrows

indicate thin-lens focusing element.

Figure F.4: Single particle orbits in case of unshielded orbit distortion. A particle

is launched on the closed orbit (black) and with initial offset (blue) for octupole

strength G3,max = 0.
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lens focusing kick, to cancel the kick from the thin focusing lens on the displaced

centroid. Eq. F.5b is applied every 32 cm at dipole locations (in 64 cm channel, at

s = 16, 48 cm). This is pictured in Fig. F.3. Fig. F.4 shows resulting orbits over

10 passes through a 64 cm drift. No additional steering correction is made when

octupole fields are included.
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Appendix G: Models of UMER magnets in hard-edged approxima-

tion

Accelerator magnets are often included in simulation models using a hard-

edged approximation. Under this approximation, the element is defined solely by

an effective length and effective field/gradient. A hard-edged approximation of

UMER elements is used in all models in this dissertation except in the WARP PIC

model, where gridded elements based on Biot-Savart solutions of the PCB magnets

are used instead. A description of the hard-edged model for UMER quadrupoles

can be found in [70,71]. The most recent calculations for the hard-edged quadrupole

model in [72] are used here.

G.1 Dipole edge-focusing

Edge focusing is the focusing impulse a particle experiences when moving

from a region of high to low vertical field (or vice versa). The magnitude of the

force is proportional to the edge angle ζ of the magnet-edge normal vector and

the beam velocity vector. For ζ = 0 there is no focusing or defocusing dipole

effect. In UMER, < ζ >∼ ±5o for leading/trailing edges. This results in a focusing

impulse at each edge in the vertical plane, and defocusing impulses in the horizontal
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Table G.1: UMER steering magnet strengths, from [76].

Name length leff radius Int. Field strength count

[cm] [cm] [cm] [G-cm/A] [o/A] [#]

BD 4.44 3.76 2.87 19.917 3.37 36

PD 4.40 5.18 4.40 1.913 0.32 1

RSV 3.80 5.67 5.75 3.886 0.66 18

SD ∗ 2.37 5.18 4.73 3.317 0.56 14

SSV 1.54 3.06 2.79 3.627 0.61 11

∗ Not all SD’s have these parameters. SD5 is identical to the BD circuit, SD4 is identical to

RSV circuit and SD6 is identical to SSV circuits.

plane. In the ring dipoles, there is also a horizontal geometric focusing due to

path length dependence on transverse position. For an arbitrary dipole field profile,

the geometric focusing and horizontal edge defocusing exactly cancel. [73] A more

detailed description of dipole edge effects can be found in [74] or chapter four of

[75]. Edge-focusing is included as a quadrupole gradient inside the dipole elements.

Specifics of the implementation in each code are discussed in the following sections.

G.2 VRUMER model

Table G.1 lists parameters of all the UMER steering/dipole magnets. Steerers

of length leff with appropriate strength were used in the VRUMER model. UMER

ring quads were also modeled as hard-edged, with a gradient of G = 3.609 G/cm/A,
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hard-edged factor f = 0.8354 and length 4.475 cm. For QR1, G = 1.010 G/cm/A,

f = 0.8964. For YQ, G = 1.110 G/cm/A and f = 0.8965. Although the effective

length of QR1 and YQ are much longer than the ring quads (5.999 cm), in VRUMER

they are modeled as length 4.475 cm elements. An additional scaling factor is applied

to account for this discrepancy. The YQ tilt and displacements were not included

in the VRUMER model used here.1

At this time, the VRUMER model does not include edge-focusing or higher

order terms such as magnetic nonlinearities. Additionally, it does not include the

steering kick from the off-centered YQ magnet, or coupling due to skew terms from

magnet rotations. These effects could be implemented if desired.

G.3 Elegant model

In Elegant, dipoles are modeled with the SBEND sector dipole element. Dipole

forces are applied as second-order transformation matrices. Edge focusing is calcu-

lated assuming 5◦ dipole edge angles and specified edge-field integral. The quadrupole

magnets use the QUAD implementation with third-order matrix transformations.

Both elements are not symplectic. Parameters used in the definition of Elegant

parameters are given in Table G.4.

1VRUMER has since been updated to include a transverse YQ displacement of +1.389 cm.
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Table G.2: Simulation parameters for Elegant model of single-channel lattice.

Parameter Value

Quadrupole gradient 3.608 G/cm/A

Quadrupole length 5.164 cm

Dipole bend angle 10◦

Dipole edge angle ±5◦

Dipole length 3.760 cm

Half-gap 2.87 cm

Fringe field integral [73] 1.02 G
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Table G.3: Simulation parameters for MENV integration of 60µA “DC-beam”.

Parameter Value

Perveance 4.49× 10−7

Quadrupole gradient 3.446 G/cm/A

Quadrupole length 3.7384 cm

Dipole bend angle 8◦

Dipole length 3.850 cm

Dipole integrated gradient X, 0.258 G

Y, 1.917 G

G.4 MENV model

In MENV, edge focusing is applied as an effective hard-edged quadrupole that

is the same length as the dipole (listed in Table G.3). I found that geometric

strengths Kx = 1.978 m−2 and Ky = −14.695 m−2 for the “edge-focusing” quads

gave good agreement with WARP results over a half-cell (1.92 meters). A compar-

ison is given in G.1.
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Table G.4: Simulation parameters for WARP envelope integrator.

Parameter Value

Quadrupole gradient 3.608 G/cm/A

Quadrupole length 3.740 cm

Dipole bend angle 10◦

Dipole length 3.757 cm

Dipole edge length 1.000 cm

Dipole int. grad. X, 0.240 G

Y, 1.928 G

G.5 WARP model

Parameters for the WARP hard-edged model are listed in Table G.4. The

WARP hard-edged dipole does not include a built-in edge focusing term. For this

work, edge-focusing was approximated by short, hard-edged quadrupole elements of

length 1 cm at the leading and trailing edge of the dipole.

Some parameters for the gridded-field models used in WARP are listed in

Table G.4. In the WARP ring model, the gridded fields length is much longer than

the magnet effective length. The dipole fields are solved in a bent coordinate frame

as described in [73] and are placed in a BEND element. [72] describes the quadrupole

element.
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Table G.5: Simulation parameters for WARP PIC model.

Parameter Value

Peak quadrupole gradient 3.608 G/cm/A

Quadrupole length (trunc.) 8.2 cm

Dipole bend angle 10◦

Dipole length (trunc.) 16.2 cm

Dipole bend length 4.4057 cm
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G.6 Benchmarking MENV against WARP

Figure G.1: Comparison of beam edge (2*RMS) evolution in half-cell between

MENV integrator, WARP envelope integrator and WARP PIC code.

Assuming the gridded field elements are the most accurate models of the

UMER magnets, I compared envelope integrator results (both MENV and WARP

solver) with WARP PIC predictions of envelope evolution for the quadrupole current

values specified in the proposed lattice solution for nonlinear experiments (described

in Ch. 8. I applied scalar corrections to the hard-edged field gradients to find agree-

ment with the gridded fields.

G.6.1 Hard-edged dipole model

I describe the ”edge-focusing” model used in MENV above in Section G.1. In

MENV, the integrated quadrupole gradient over the length of a dipole are
∫
kxds =

0.258 G and
∫
kyds = 1.92 G. Comparing the WARP envelope model to PIC predic-

tions, I found that quad gradients dBy/dx = −0.0012 T/m and dBx/dy = 0.00964
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T/m for the ”edge-focusing” quads gave good agreement with WARP results over a

half-cell (1.92 meters). The integrated quadrupole gradient for a single dipole (both

”edge-focusing” quads) is
∫
kxds = 0.24 G and

∫
kyds = 1.93 G, very close to the

integrated values used in the MENV calculation.

G.6.2 Hard-edged quadrupole model

I also applied correction factors to the quadrupole magnet gradients. In WARP

simulations, the hard-edged quad strengths were reduced to 97.5% in the vertical

plane (from the value in Table G.4) for best agreement between PIC and envelope

predictions. No additional correction was applied in the horizontal plane. In MENV,

quad excitation values were reduced 95.5% in both planes (this is reflected by the

gradient value in Table G.3). I further reduced the vertical focusing gradients by

97.9% to obtain good agreement.

Figure G.1 compares beam evolution over a half-cell between the WARP and

MENV envelope solvers. This is compared to the edge radius for a KV beam in

the WARP PIC code. There is excellent agreement between envelope solvers, while

the PIC solution only varies significantly in the horizontal plane. This may be due

to the geometric focusing effect in the dipole, which is not included in envelope

integration.
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Appendix H: Parameterizing tune in the single-channel linear focus-

ing lattice

This appendix reviews a technique mentioned in Chapter 8, in which matched

lattice solutions local to the solution identified in Section 8.1.4 are linearized in

terms of tune operating point. In this way the tune of the lattice can be shifted

while maintaining a matched, round beam through the octupole insert/drift regions.

H.1 Other MENV solutions

Two nearby MENV solutions are identified in addition to the Chapter 8 so-

lution shown in Fig. 8.2 and Table 8.1. Quad current values for all three solutions

are listed in Table H.1.

Solution A of Table H.1 is the result of lattice optimization without dispersion

matching, and is plotted in Fig. H.1. In Solution B (Fig. H.2) the minimization

function included a condition for matched dispersion D(s) with zero dispersion in the

drift/insert regions. However, by requiring matched dispersion the solution moves

farther away from the desired tune, as seen in Table H.2. Additionally, at this time

UMER does not include a dispersion matching section in the injection line. Finally,

Solution C is equivalent to the “best solution” shown in Chapter 8 and is the result
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Figure H.1: MENV “solution A” for 100 micron, 60µA beam. Numbers indicate

RC position. Dipoles are green, quads are gray.

of applying iterative tune corrections to Solution B. These corrections take the form

of parameterizing local matched solutions in terms of lattice tune.

H.2 Tuning of MENV solution through parameterization of lattice

tune

One concern for single channel experiments is that the lattice models do not

perfectly agree with the physical magnet transfer functions. The performance of the

quasi-integrable lattice depends strongly on controlling the lattice tunes νx,T , νy,T

to a desired tolerance of δν < 0.1. The lattice solutions found in MENV will not

be perfectly matched when implemented in WARP simulations (using gridded field

elements) or when implemented in the lab. This section discusses an approach to

parameterizing the tune as a function of quadrupole strength to be used for iterative

corrections of the matched solution.

Solution B in Table H.1 is used as a starting point. In MENV, two quad
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Table H.1: Quadrupole currents (in Amps) for MENV N = 3 lattice solution.

Solution A with unmatched dispersion is shown in Fig. H.1, B in Fig. H.2 has

matched dispersion. C (Fig. 8.2) is nearest quasi-integrable operating point and is

proposed for single-channel experiment.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

A -0.415 1.065 -0.972 0.616 -0.366 0.579 -0.533 0.902 -1.437 0.927

B -0.415 1.065 -0.972 0.616 -0.332 0.414 -0.428 0.782 -1.313 0.696

C -0.590 1.247 -0.972 0.616 -0.332 0.414 -0.510 0.738 -1.166 0.762

Table H.2: Quantities describing matched lattice solution shown in Figures H.1, H.2

and 8.2.

Parameter Solution A Solution B Solution C

Full ring tune νx = 3.271 νx = 2.860 νx = 3.270

νy = 3.283 νy = 3.298 νy = 3.267

Drift/insertion tune νx = 0.269 νx = 0.269 νx = 0.265

νy = 0.270 νy = 0.270 νy = 0.272

Linear lattice tune νx = 3.003 νx = 2.592 νx = 3.004

νy = 3.013 νy = 3.028 νy = 2.995

Half-cell tune νx = 0.545 νx = 0.477 νx = 0.545

νy = 0.547 νy = 0.550 νy = 0.544

Chromaticity Cx = −3.737 Cx = −3.331 Cx = −4.270

Cy = −4.028 Cy = −3.640 Cy = −3.277
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Figure H.2: MENV “solution B” for 100 micron, 60µA beam. Dipoles are green,

quads are gray. Y-axis shows RMS beam size in x (blue) and y (red) and dispersion

(black). Numbers indicate RC position. In this case, the solution is optimized for

matched dispersion as well.

strengths (selected from the 10 uniquely-valued quads that composed the N = 3

lattice) are raster-scanned. This example uses the two nearest the insert/drift region,

Q1 and Q2. Strengths are scanned in a range ± the nominal value listed in Table

H.1. For each point on the 2D grid, the remaining quad strengths are varied to

minimize the target ~T = [X ′(L/2), Y ′(L/2)] at the midpoint between drift/insertion

regions. While using two quads as free parameters should be sufficient to meet the

two-valued target, best results were found using at least four quads. This case uses

Q7-10 to optimize for a matched solution.

Fig. H.3 shows lattice tunes and “matching quad” currents for Q7-10 plotted

versus Q1 and Q2 currents. For the set of found solutions, the sub-set of solutions

nearest νx,T = νy,T are identified and indicated in Fig. H.3 as white points. These

points are plotted in tune space in Fig. H.4. As apparent in Fig. H.4, among the

found solutions there was one very near to the optimal working point at νx,T , νy,T =
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Table H.3: Linear fits to periodic solutions in the vicinity of Solution B for tune

correction of MENV model. (Table H.1 and Figure H.2). Best-fit line is expressed

at iQ# = p1 · iQ1 + p2.

Quad # p1 p2

Q2 -0.596 0.895

Q7 0.230 -0.374

Q8 0.063 0.775

Q9 -0.271 -1.326

Q10 -0.127 0.687

3.

As the raster scan is resolution limited, linear fits are used to interpolate

between grid points. For example, the dependence of Q1 current on lattice tune

νx,T is given by

iQ1 = (−1.650± 0.14)νx,T + (4.377± 0.405) (H.1)

with error-bars indicating 95% confidence. Additional linear fits for Q2, Q7-10

are given in Table H.3. The set of points found for νx,T ≈ νy,T have the best-fit

νx,T = (0.944± 0.079)νy,T + (0.157± 0.229). The desired relationship νx,T = νy,T is

within a 90% confidence.

The linearization approach was used to move the MENV solution closer to

the desired operating point. I am able to find a solution within ∆ν < 0.01 by
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interpolating between found solutions along the νx,T ≈ νy,T line. The solution

presented in Chapter 8 (Figure 8.2) shows the most optimal working point on the

line νx,T = 0.944 νy,T + 0.157. Quadrupole currents for this new solution, calculated

using the fits in Table H.3, is also listed in Table H.1, and tune values in Table H.2.

This technique can be applied to tune up a given lattice. If the tune is known,

the behavior can be parameterized around the measured/known working point and

the currents adjusted accordingly. Additionally, knowing the nearby tune landscape

allows one to perform a tune scan in experiment (measuring beam loss as a function

of tune). By knowing the tune landscape, we can sample a desired line in tune space

(such as νx = νy or varying νx independent of νy) while compensating to keep the

ring lattice solution matched.

H.3 Tuning of WARP model

Moving between simulation codes (MENV to WARP) provides an analogy to

implementing simulation-based solutions in the lab. The lattice solution based on

MENV calculations must be realizable in the WARP PIC model with gridded field

elements (BGRD) based on PCB circuit configuration. The hard-edged field models

were benchmarked against the WARP gridded field elements (discussed more in

Appendix G), but the agreement was not perfect.

I implemented solution B from Table H.1 in the WARP model. It was necessary

to re-optimize in WARP to find a matched, periodic solution. Starting with the

given solution, I optimized Q5-10 strengths to minimize the loss function RMS~T
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Table H.4: Quadrupole currents for WARP implementation of N = 3 lattice.

Solution Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

D -0.415 1.065 -0.973 0.616 -0.434 0.410 -0.370 1.055 -1.312 0.853

E -0.538 1.161 -0.973 0.616 -0.434 0.410 -0.458 0.925 -1.109 0.650

for ~T = ~w> · [X ′, Y ′,∆νx,∆νy] with weights ~w = [1, 1, 1.5, 1.5]. The optimization

was done in PIC mode, rather than the (faster) envelope solver, in order to use the

gridded field models for the UMER magnets. Matching was done assuming 60 µA

beam current in a 100 µm emittance KV distribution. The quadrupole values after

matching optimization are given in Table H.4 under Solution D.

The ring tunes, as measured by integrating over the 1st turn betatron function

in the linear lattice, are νx,ring = 3.166 and νy,ring = 3.150. As the 64 cm insertion re-

gion tune is νx,drift = 0.263 and νy,drift = 0.270, the effective T-insert tune advances

are νx,T = 2.903 and νy,T = 2.880 for tune errors of ∆νx = −0.097, ∆νy = −0.12

and ∆νx − νy = 0.023. Alternatively, by sampling lattice tune from individual

particle orbits, for low-amplitude particles I measure full ring tunes νx,ring = 3.426

and νy,ring = 3.185. From this measurement, our tune errors are ∆νx = 0.163,

∆νy = −0.085 and ∆νx − νy = 0.240. The tune errors, particularly the difference

between planes, is much larger than the desired tolerance and this lattice is not

expected to perform very well. This is outside of the acceptable tune error from the

quasi-integrable condition based on reduced model simulations of Chapter 5.

The WARP solution was tuned to be closer to fractional tunes νx = νy =

0.27 using the parameterization method described above. The same quads were
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Table H.5: Linear fits to periodic solutions in the vicinity of Solution B for tune

correction of WARP model. Best-fit line is expressed at iQ# = p1 · iQ1 + p2.

Quad # p1 p2

Q2 0.691 1.602

Q7 0.080 -0.462

Q8 0.035 0.718

Q9 -0.488 -1.455

Q10 -0.2453 0.618

used to explore the local matched solutions (Q1,Q2,Q7,Q8,Q9,Q10). The desired

change is ∆νx,T = −0.163 and ∆νy,T = 0.085. Therefore the local behavior was

parameterized along the line νy = −0.522νx + 4.564 as shown in Fig. H.6. The

dependence of tune on the current in Q1 along this line is νx,T = 2.107iQ1 + 4.243

and νy,T = −1.139iQ2 + 2.330 (plotted in Fig. H.7(a)). The remaining fits are given

in Table H.5 and plotted in Fig. H.7(b). The resulting solution (E in Table H.4)

has fractional tunes νx = 0.240 and νy = 0.259 and is used for simulations presented

in Section 8.3.

The operating point found near ideal tune is listed under solution E in Table

H.4. This lattice has measured tune νx = 0.240 and νy = 0.259. Better results are

possible through iteration of this method. This lattice is used in Chapter 8 for PIC

simulation of the proposed experiment.
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Figure H.3: Raster scan results starting from Solution B in Table H.1. Color axis

corresponds with quantity in figure title. All units are in Amps. Solutions with

νx ≈ νy are shown as white scatter points. Best fit for νx,T = νy,T is shown as white

line.
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Figure H.4: Operating points νx ≈ νy found in 2D raster scan.

(a) Linear fit to quad currents as a function of

iQ1.

(b) Linear fit to tune as a function of iQ1.

Figure H.5: Linear fits that parameterize quad current and tune with respect to iQ1

while maintaining a matched beam in the drift/insertion region.
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Figure H.6: Family of matched solutions connecting νx,T = 3.156, νy,T = 2.915 to

νx,T = 3.000, νy,T = 3.000.

(a) Linear fit to tune as a function of ∆iQ1. (b) Linear fit to quad currents vs. ∆iQ1.

Figure H.7: Linear fits for tune parameterization for WARP lattice correction.
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Appendix I: WARP simulations of single-channel lattice at a differ-

ent operating point

This appendix investigates lattice performance far from the quasi-integrable

condition on tune. These simulations use the operating point listed as solution D in

Table H.4, which has fractional bare tunes νx = 0.426 and νy = 0.185. These results

can be compared to those discussed in Chapter 7 at an operating point with much

lower tune error.

I.1 Linear WARP lattice

In the WARP model of the linear lattice (G3,max = 0) without space charge,

particles within r = 0.55 cm inhabit a spread of tunes max δνx = 0.052 and

max δνy = 0.054 (RMS δνx = 0.016 and RMS δνy = 0.026). These values are

comparable to the “best-case” values in the reduced model (max δν = 0.113 and

RMS δν = 0.034), while the amplitude-dependence of the tune shift resembles that

of the octupole lattice (high amplitude particles at larger tune shifts). This spread

is entirely due to the nonlinearity of the UMER magnets included in the gridded

field models.

When space charge is included, the tune footprint of the particle distribution is
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(a) Dynamic aperture over 512 turns.

(b) Tune footprint, with up to 3rd order resonance lines. The

ideal quasi-integrable operating point is indicated by black

dot.

Figure I.1: Frequency map analysis of full ring linear lattice in WARP for lattice

solution D in Table H.4. The full interrogated space is shown, but a cut at r = 0.55

cm is indicated by pixel saturation.
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(a) Dynamic aperture for 128 turns. Note the color axis is

shifted when compared to most other plots.

(b) Tune footprint, with up to 3rd order resonance lines.

Footprint for zero-charge case (Fig. I.1(b)) is shown in black.

Figure I.2: Frequency map analysis of full ring linear lattice in WARP with 60 µA

beam. A radial cut is made at r = 0.55 cm.
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shifted from the zero-current bare tune ν0. We expect that the tune is depressed with

space charge. As seen in Fig. I.2, the vertical tune is depressed but the horizontal

tune experiences a small positive shift. The partial tunes for a low-amplitude particle

are νx,ring = 0.451 and νy,ring = 0.158 (compare to νx,ring = 0.426 and νy,ring = 0.185

for the zero-charge case).

Comparing the configuration space to the no-charge case (Fig. I.2 with Fig.

I.1), we see stronger nonlinear behavior with the inclusion of space charge. The third

order resonance seems to be driven more strongly, as particles near this line have

a larger ∆ν. With stronger driving terms, we might expect to lose these particles

trapped near the third order resonance. Finally, due to the tune shift, the third

order resonance appears at a higher amplitude. There is no significant difference in

particle tune spreads beyond the spread already present from magnet nonlinearities.

I.2 Nonlinear WARP lattice

Figure I.3 shows the frequency map when the octupole insertion is powered

at G3,max = 50 T/m3 (∼ 1 A peak). The dynamic aperture is decreased from

the linear case to r = 0.32 cm. For the distribution of stable particles in Fig. I.3,

max δνx = 0.041 and max δνy = 0.096 while RMS δνx = 0.010 and RMS δνy = 0.016.

Excluding outliers, the tune spreads are actually smaller than in the “linear” lattice.

This can be attributed to a reduced dynamic aperture. The asymmetry in the XY

spreads seems to be a property of the quad/dipole nonlinearities. Additionally, as

seen in Chapter 7, asymmetric tune spreads are expected for operating points
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(a) Dynamic aperture for 512 turns.

(b) Tune footprint with up to 3rd order resonance lines

shown.

Figure I.3: Frequency map analysis of full ring octupole lattice at G3,max = 50 T/m3

in WARP with zero current.

298



where νx,T 6= νy,T . In the example shown here, the octupoles reduce both the

dynamic aperture and the tune spread in the stable particle distribution.

With space charge introduced as described above, the tune spreads increase.

The frequency map is shown in Fig. I.4 for G3,max = 50T/m3. For particles stable

particles, max δνx = 0.077 and max δνy = 0.084 while RMS δνx = 0.012 and RMS

δνy = 0.026. Both the tune spread increases and the central tune shifts, as seen

in Fig. I.4(b). However, the stable phase space area is very small due to particle

losses that appear to primarily be along the third order resonance. The beam

distribution after 128 turns is shown in Fig. I.5. Compared to the linear case,

the loss of dynamic aperture is apparent. The apparent bunch hollowing seems to

be due to low-amplitude losses driven by the third order resonance. Additionally,

the transverse beam shape starts to reflect the shape of the octupole fields: the

XY projection gains “wings,” most noticeably in the vertical plane. The X ′ Y ′

distribution also has this shape.

The WARP results predict poor performance when implementing this lattice

solution. For the chosen operating point, space charge appears to strongly drive

particle losses along the third order resonance when octupole fields are included.

Additionally, the octupole-induced tune spread is barely noticeable over the tune

spread in the “linear” lattice. However, the lattice solution is known to be far from

the optimal fractional tune νx = νy = 0.27.
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(a) Dynamic aperture for 128 turns. Note the color axis is

shifted when compared to most other plots.

(b) Tune footprint, with up to 3rd order resonance lines. Re-

sults at zero charge are also plotted (in black) for comparison.

Figure I.4: Frequency map analysis of full ring octupole lattice at G3,max = 50 T/m3

in WARP with 60 µA, 100 µm beam.
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Figure I.5: Projections of particle distribution after 128 turns in the WARP octupole

lattice at G3,max = 50 T/m3 for 60 µA beam.

301



Appendix J: Measuring beam position with the quad-as-BPM method

This appendix describes the approach used to convert quadrupole response

data into beam position data when using the UMER quadrupoles as “virtual BPMs.”

Section J.1 explains the background theory and approximations made. Section J.2

derives error propagation for the quad-as-BPM measurement. Section J.3 goes into

detail about implementation in the UMER control system.

J.1 Analytic description of quadrupole response

In a lattice with low phase advance per cell (such as UMER, with 66.4o and

67.5o in the x,y planes), the particle motion is approximately sinusoidal, described

by:

x(s) = A1 cos
σ

L
s+ A2 sin

σ

L
s+ xco(s). (J.1)

Here xco(s) is the equilibrium orbit. Generally, the equilibrium orbit is not equivalent

to the design/reference orbit (the orbit that goes through the center of every quad),

therefore xco(2) 6= 0. The oscillation with amplitudes A1 and A2 represent the

betatron oscillation component of the beam motion. The derivative of this motion

is
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x′(s) =
dX

ds
= −A1

σ

L
sin

σ

L
s+ A2

σ

L
cos

σ

L
s+ x′co(s). (J.2)

Consider an orbit that has been perturbed due to changing the strength of a single

quad. We treat the quadrupole as a thin lens, an appropriate simplification when

phase advance is low. The angular kick imparted by a quadrupole is ∆x′ ≈ tan∆x′ =

xQ
f

where xQ is the particle/centroid offset in the quad and f is the focal length.

For a thin quadrupole, 1
f

= G
Bρ

for integrated gradient G and magnetic rigidity Bρ.1

Consider an orbit perturbed by a quadrupole error ∆I at s = 0: x̃(s) =

x(s) + δx(s). The initial conditions are x̃(0) = x(0) and x̃′(0) = x′(0) + ∆x′Q

where ∆x′Q = xQ(G∆I
Bρ

) is the change in angle due to ∆I perturbation on the quad.

Letting δx(s) = B1 cosσs/L+B2 sinσs/L and applying these initial conditions, we

find B1 = 0, B2 = xQL/σ ×G∆I/Bρ and the perturbed orbit is:

x̃(s) = x(s) + xQ
L

σ

G∆I

Bρ
sin

σ

L
s. (J.3)

With variation of the quadrupole strength, we find the dependence of the centroid

position in a downstream BPM is linear in xQ:

dx̃(sBPM)

d∆I
= xQ

L

σ

G

Bρ
sin

σ

L
sBPM . (J.4)

In the quad-as-BPM approach described here, we recover the first-turn position

in the quadrupoles by measuring the slope dx̃(sBPM )
d∆I

. A model of the ring using the

1For UMER ring quadrupoles, G = 13.50 [Gauss/A] and for 10 keV electrons, Bρ = 338.85

G-cm.
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VRUMER [27] beam tracking code is used to calculate the constant L
σ
G
Bρ

sin σ
L
sBPM

and the result is a value for xQ based on the measured beam response. This is an

essentially identical method to that described by Kamal Poor Rezaei [43], with the

main difference being the use of the VRUMER tracking code to calibrate position,

rather than a transfer matrix calculation. This has the benefit of greater flexibility

and integration with the UMER controls and data collection software.

At an operating point of 1.826 A, the UMER 6 mA beam has a measured tune

νx = 6.636, νy = 6.752 [77]. This corresponds to betatron wavelengths λx = 1.736

m, λy = 1.706 m. For the VRUMER parameters used in this thesis (see Appendix

G), horizontal and vertical tunes are equal (no edge focusing), νx = νy = 6.293.

Equivalentl, Betatron wavelength λ = 1.83 m. In this case, quadrupole strength

parameters were set according to standard hard-edged approximation for the UMER

quadrupoles: length= 4.475 cm, peak strength G = 3.609 G/cm, hard-edge factor

f = 0.8354.

J.2 Error propagation for quad-as-BPM calibration

This section discusses the systematic error introduced by differences between

reality and the model used for calibration (in this case, VRUMER). Most notably,

model and measured tune differ by ∆νx = 0.340 horizontally, ∆νy = 0.459 vertically.

Additionally, there are measurement errors included in the measurement of position

with BPM that should be propagated through to the xQ measurement as well.

We restate the formula for xQ from Eq. J.4:
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xQ =
σ

L

dx̃BPM
d∆I

sin−1 σ

L
sBPM . (J.5)

Applying error analysis, we find the dependence of position uncertainty on errors in

the measured response slope m and model phase advance σ:

σxQ
xQ

=

[
1− sBPM

L
cot

σ

L
sBPM

]
σσ
σ

+
σm
m
. (J.6)

In this case, response error σm should include the contributions of statistical noise

and systematic errors in the collection and processing of BPM position data. For

all the data shown here, σm was taken to be the 95% confidence bounds of the

slope for the linear fit to the measured BPM position versus quadrupole strength

curve. This encompasses shot-to-shot jitter and nonlinearities introduced by beam

scraping. σσ is an error introduced by using the VRUMER model to calibrate

quadrupole response data, and can be reduced by conditioning the model for better

agreement with measured tune values.

Fig. J.1 shows the dependence of the fractional error of measured position in

the quadrupole,
σxQ
xQ

, as a function of separation between quadrupole and BPM used

to measure quadrupole response. Here, σσ is the different in phase advance between

the VRUMER model used here and UMER measured values, σσ =| σsim − σexp |=

0.06.

As seen from Eq. J.6, the error value is not defined at σ
L
sBPM = nπ. This

is the point where the betatron wavelength is equal to the quad-BPM separation,

a null point of the perturbed orbit δx(s) = xQ
L
σ
G∆I
Bρ

sin σ
L
s. Near this null, the
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Figure J.1: Fractional error in quad-as-BPM position due to phase error,
versus quad and BPM separation.

returned quad-as-BPM measurement will have large errors, and in general be very

sensitive to error in the BPM measurement as well as differences in the model and

experiment.

In standard UMER operation, the BPM spacing is 64 cm. For σσ = 0.06, we

expect errors < 10%. However, four BPM’s are omitted for injection, longitudinal

focusing and the wall current monitor, permitting larger errors. Table J.1 shows

quadrupole-BPM pairs with fractional error > 100%. The spacing for these four

pairs is 88 cm, close to half the betatron wavelength, λ
2
≈ 86 cm. In all data shown

in this thesis, the four quads identified in Table J.1 use the response measured in

the next downstream BPM in order to avoid artificial blow-up or suppression of

measured xQ and yQ.
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Table J.1: Quad-BPM pairs with separations near half of a betatron wavelength.

Using these pairings to measure quadrupole response curves results in large errors

in the quad-as-BPM method at the nominal 1.826 A operating point.

Quad # Nearest BPM

QR14 RC5

QR38 RC11

QR62 RC17

QR70 RC1 (turn 2)

J.3 Implementation in UMER controls

The process for collecting quadrupole response data and converting to quadrupole

position has been integrated into the UMER control system. For a given quadrupole,

the procedure is:

1. Retrieve a list of functioning BPM’s and choose a downstream BPM for mea-

surement of quad response (excluding pairs listed in Table J.1).

2. Vary quadrupole over a range of ±0.09 A around nominal set-point, using 5

data points total to measure response.

3. Calculate response slopes ∆XBPM

∆Iquad
and ∆YBPM

∆Iquad
by applying linear least squares

fit to response data.

4. Run VRUMER simulation to calculate simulated response slope for given

quad-BPM pair. Divide simulated position in quad xq, yq by response slope
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to determine slope-to-position calibration factors cx, cy.

5. Apply calibration factor to measured response slope to return measured posi-

tion in quad.

6. Calculate xQ position error, including 95% bounds on reponse slope as well as

phase advance error as a function of quad-BPM separation according to Eq.

J.6.

Arguably, the slope-to-position calibration factor could be generated using a

matrix-based tracking technique (as outlined in [43]) and saved as a look-up table.

For a given quad-BPM separation (for 72 quadrupoles there are only 8 possible

separations), this number is not expected to change much and this approach would

require fewer computations. However, this comes with an added loss of flexibility.

The look-up table would have to be recalculated for UMER operating points with

different quad focusing strengths or non-FODO orientations. For example, the ex-

periment described in Chapter 9 uses an alternative lattice configuration with half

the quads turned off. Additionally, the time savings for using a look-up table are

small. Running VRUMER takes ∼ 0.06 seconds, so even for the an entire quad scan

(9 points) VRUMER costs ∼ 0.5 second per quad. This is negligible compared to

the time required to measure BPM response for multiple quad settings.

There is a caveat to interpreting phase-advance contribution to error bar calcu-

lation, σσ ≡ |σexp−σsim|. Simulated phase advance σsim is estimated from VRUMER

results using the NAFF algorithm to extract fundamental frequency. Experimental

phase advance σexp is hard-coded to be measured values νx = 6.636, νy = 6.752 for
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the standard 1.826 A operating point. This will result in misleading error bars for

different operating points and should be modified in the future to be more general.

The function calibrate_quad_as_BPM_vrumer takes a quad-BPM pair and

uses VRUMER to calculate the response slope (with units of m/A, position in

BPM over current in quad). It also returns the error due to tune difference be-

tween the VRUMER model and the experiment. The code snippet below, from

calibrate_quad_as_BPM_vrumer.m (lines 56-78) , shows how error bars associated

with the model-experiment tune difference are calculated:

% -- measured tunes at 1.826 operating point (Kamal 2010)

nuxu = 6.636;

nuyu = 6.752;

sigxu = 2*pi*nuxu/36;

sigyu = 2*pi*nuyu/36;

% -- geometry factors

% Cell length [m]

L = 0.32;

% quad-BPM separation [m]

dels = mod(s(iB(BPMindex==BPM))-s(iQ(Qindex==Q)),11.52);

% -- estimate vrumer tune (note equal x,y tunes)

[freq,amp,Xr]=naff(x(iQ(1:36)));
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nuvr = freq*72; sigvr = 2*pi*nuvr/36;

% -- delta between vrumer and exp. tunes

deltasigmax = abs(sigxu-sigvr);

deltasigmay = abs(sigyu-sigvr);

% -- returned error values

errx=(1-dels/L.*cot(sigxu/L*dels))*deltasigmax/sigxu;

erry=(1-dels/L.*cot(sigyu/L*dels))*deltasigmay/sigyu;

Note that the experimental tune is hard-coded in the first two function lines, as men-

tioned above. The error bars due to phase difference will be calculated incorrectly

for different operating points or non-FODO lattices.

The tune error calculation can easily be generalized to any lattice function by

including a tune measurement during the quad-as-BPM data acquisition. This can

be added with only slight change to the structure of the quad-as-BPM code. An

automated, robust tune measurement is relatively straightforward for the FODO

lattice (for example, by applying the four-turn tune formula to BPM signals) but

may require a more careful approach for non-FODO lattices.

One level above calibrate_quad_as_BPM_vrumer, the function where_is_the_beam

calculates the total error-bars, combining the tune error from the VRUMER model

with uncertainty in measured slope. Below is a code snippet from where_is_the_beam.m

(lines 25-29) showing calculation of error-bars based on tune error (errx,erry) and
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(a) Response of QR1, measured at RC1. (b) Response of QR33, measured at RC9.

Figure J.2: Example quad response data with linear fits and 95% confidence inter-

vals.

uncertainty herr, verr in measured response slopes hslope, vslope:

[cx,cy,errx,erry] = calibrate_quad_as_BPM_vrumer(Q,BPM);

xsim = cx*hslope;

ysim = cy*vslope;

xerrsim = abs(xsim)*(abs(errx) + abs((herr-hslope)/hslope));

yerrsim = abs(ysim)*(abs(erry) + abs((verr-vslope)/vslope));

An example of measured, calibrated quad response curves are shown in Fig. J.2(a).
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Appendix K: Implementing the quad-centering method for multi-

turn orbit correction

This appendix describes now the quad-centering steering algorithm discussed

in Chapter 10 is implemented in the lab. Section K.1 provides an overview of

the method, including approach to optimizing injection and recirculation. Section

K.2 gives a more detailed description of the injection line algorithm. Section K.3

discusses implementation of the quad-centering algorithm to set ring steerers, in-

cluding a criterion for rejection of points while fitting the response curve. Section

K.4 describes the approach to “closing the orbit,” which is equivalent to finding an

equilibrium orbit close to the quad-centered first-turn orbit.

K.1 Overview of steering procedure

This steering procedure attempts to steer the beam as close as possible to the

center of the quads in the first turn as well as minimize turn-to-turn oscillations

about the closed orbit. The general philosophy is to first determine a good injection

condition by setting 2 injection line steerers to minimize position in first few ring

quads. Then, each ring steerer is set to center on a downstream quadrupole, using

the algorithms outlined in Chapter 10. Finally, two steerers at the end of the first
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turn are used to “close the orbit,” by minimizing turn-to-turn oscillation amplitude.

The procedure for horizontal steering is as follows:

1. Steer injection line by setting steerers SD1H, SD2H, SD3H, and SD4H to

minimize response in injection quadrupoles.

2. Set 2 injection dipoles (typically SD5H, SD6H) by scanning currents and iden-

tifying smallest RMS offset in first few RQ’s after injection.

3. Steer through RQ3 (first turn) by setting current in D1; Repeat injection scan

if change was significant.

4. Steer through quads in first turn according to centering algorithm described

in Chapter 10, setting dipoles D2-34 in order and using quad-as-BPM method

to measure position in quads.

5. Close orbit by scanning D34 and D35 currents.

6. Verify orbit quality by running quad scan for 1st turn quad-as-BPM data, and

look at multi-turn BPM data to estimate orbit excursions from closed orbit.

This procedure is nearly identical for vertical steering using RSV and SSV

correctors. In this case, RSV17 and RSV18 are used to ‘close the orbit.” In general,

best behavior is seen by correcting vertical orbit first, then horizontal second. This is

due to the fact that (a) the vertical orbit tends to have larger excursions, especially

when uncorrected, leading to scraping and nonlinear response curves, and (b) the

RSV magnets tend to have large rotational errors, leading to larger coupling between

vertical steerers and horizontal orbit than horizontal steerers and vertical orbit.
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K.2 Injection line

For injection line steering, each steerer is set to minimize centroid position in

the secound downstream quadrupole. Horizontal and vertical are done in tandem

(ie, SD1H is set, then SD1V, then proceed to SD2H, SD2V).

1. Set all injection steerers to 0.

2. Measure quadrupole response in Q2 for a range of SD1H settings, set SD1H

based on zero-crossing of linear fit.

3. Repeat for SD1V.

4. Continue to SD2H, and so on.

Table K.1 shows the SD-quad pairs used for injection line steering. SD5H,V and

SD6H,V are used for setting the injection condition. There is no clear procedure

for choosing the injection condition. In general, good results have been achieved by

setting SD5H,V and SD6H,V for minimum position in QR2 and QR3. Occasion-

ally this constraint has to be relaxed in order to achieve good recirculation (which

suggests the necessity of an orbit-bump to compensate for the tilted YQ kick).

K.3 Setting Ring Steerers

An example of a measured response curves for vertical steerers is shown in

Fig. K.1. In this case, RSV currents are set to minimize beam offset in the third

downstream quadrupole. Vertical response is plotted in the bottom axis. Black,
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Table K.1: Injection steerer - injection quad pairings.

Steerer name Quad target

SD1H,V Q2

SD2H,V Q3

SD3H,V Q4

SD4H,V Q6

SD5H,V –

SD6H,V –

filled-in points meet error-bar criterion (discussed below) and are used for fitting.

Red points have error-bars which exceed the tolerance and are rejected. In Fig.

K.1(a), the set-point is outside the scanned range in the opposite (negative) polarity.

In Fig. K.1(b), the optimal RSV12 set-point is approximately 0.8 A. Error-bars are

calculated as outlined in Appendix J. The top axis shows horizontal response to

vertical steerer. In this case, there is clear coupling (likely due to an XY rotation

of the RSV circuit). In principle, the rotation angle can be calculated from the

horizontal response slope.

K.3.1 Points Rejection

Occasionally the steerer response data will not fall on a straight line. This

is most likely due to scraping between the dipole and BPM, but could also be

due to magnet nonlinearities. In the ring steering scripts, I have implemented a

points rejection critera that throws away quad position data with error-bar > 1 mm.
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(a) Setting RSV8 using response at QR32.

(b) Setting RSV12 using response at QR48.

Figure K.1: Example of measured response curves for vertical RSV steerers. For the

vertical response, a linear fit is made to the black points, while red points exceed

the error-bar threshold. Both plots are courtesy of L. Dovlatyan.
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VRUMER is used to convert error-bar from response units [A−1] to meters. However,

the steering algorithm attempts to minimize response, not position calibrated with

VRUMER or other models (and therefore should be robust to model errors).

As the error is proportional to the uncertainty in the fitted slope of the quad

response, large non-linearities in the quad response will manifest as large error bars.

This is typical of large centroid excursion in either the quad or the BPM. Generally

poor algorithm performance (resulting in large local distortions) can be attributed

to nonlinearity in the quad-as-BPM method.

Good results from quad-centering applied as described is shown in Figures

10.7 and 10.8. The large excursion in the measurement around QR19 → QR26 is

driven by poor fitting to the target function caused by a large vertical excursion at

RC4. Vertical scraping skews the measurement of horizontal position versus dipole

setting, resulting in nonlinear response curves. In practice, measuring the response

curve for the horizontal dipoles in a range of 2.0 → 2.8 A results in well-behaved

steering, but nonlinearities appear when the orbit distortion is large in the BPM

or scraping occurs between the quad and a BPM. For a well-tuned solution the

range may be reduced, as the needed adjustments are usually small. Similarly, the

horizontal solution has large distortion near the back end of the ring (QR67-QR71).

The quad-as-BPM measurement is less reliable in this region, as the VRUMER

model of the Y-section is not very accurate and there appears to be a large orbit

bump in the vicinity of YQ (making scraping more likely).
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K.4 Closing the orbit

The final step is to set the current in the dipoles near the end of the ring

so that the closed orbit is close to the optimized first-turn orbit. Two dipoles are

required for control of x and x’, in this thesis I used D34 and D35. The currents

in D34 and D35 are raster scanned and position data recorded for the first four

turns in the first 3 BPMs. I try to minimize the RMS change in position between

turn 1 and turns 2-4 in the first three BPMs. For each BPM 2-4, I define an RMS

quantity
√

1
3

[
(x2 − x1)2 + (x3 − x1)2 + (x4 − x1)2]. In order to find a good closed

orbit, I ran 3 scans, increasing the resolution and/or shifting the scan range for

each successive scan. Each scan takes ∼ 13 minutes to read 3 BPMs for an 11× 11

current range. Figure K.3 shows the four-turn BPM measurements for the beam

after successive iterations of the D34/D35 raster scan. Figure K.2 shows dependence

of BPM position at RC1-3 and the RMS quantity described above on the rastered

dipole currents.

Since this approach was developed, faster convergence and better results for

for low turn-to-turn oscillation amplitude has been found through application of the

RCDS algorithm. [41,58] It is recommended that the raster scan approach described

here be replaced with the RCDS method.
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Figure K.2: Scan results for first 3 BPMs for iteration 3 in Figure K.3. Color scale

is RMS value of ∆x over first 4 turns [mm]. White asterisk indicates optimal setting

(D34=2.0129 A, D35=1.5802 A).
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Figure K.3: BPM response for first 4 turns during correction of D34, D35 currents.

1st turn: heavy blue trace. 2nd turn: solid blue. 3rd turn: long dash red. 4th turn:

short dash black.
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Appendix L: Design of an electrostatic extraction section for UMER 

This appendix summarizes progress on the design of the UMER extraction section, 

including initial conceptual design and some mechanical considerations. The extraction 

section will extend UMER’s diagnostic capabilities by allowing multi-turn interceptive 

measurements of transverse emittance and longitudinal energy. The extraction design 

reported here includes beam optics and rough mechanical structure. Design of an 

enlarged dipole magnet and multi-turn effect on the recirculating beam still need to be 

considered before this design is complete.  

The primary difficulty with a UMER extraction section is the lattice density, which 

leaves no room for an extraction insert between existing elements. As in the injection 

section, the solution is to use enlarged magnet elements around the diverging extraction 

Figure L.1 CAD assembly of proposed extraction design (V2) with specialized extraction 
elements identified. 

321



 

 

pipe. However, as the tilted quadrupole (YQ) in the injection section introduces 

problematic focusing-steering coupling, the proposed design avoids any off-axis elements 

in the extraction (all elements are centered on the recirculating beam pipe). Another 

concern with the extraction section is that, while the injected beam is a clean, well 

behaved beam that longitudinally fills approximately 50% of the ring, the extracted beam 

will be of a largely unpredictable distribution, suffering from beam halo, head-tail 

spreading and emittance growth. Our extraction design must have sufficient acceptance 

of off-axis beams consistent with observed equilibrium orbit distortions (discussed in 

Chapter 10). Finally, the injection kicker is a pulsed dipole, for which the rise time is 

severely limited by induced wall currents. To avoid the mechanical difficulties of 

including a glass gap in the extraction pipe, and for faster attainable rise times, we choose 

to employ an electrostatic “kicker” electrode (BKE).  

L.1. Conceptual design with linear optics  

The most fundamental question concerning extraction design is placement of the kicker. 

Due to the dense lattice structure, there is not sufficient space between elements for a 

moderately kicked beam to exceed the pipe radius before encountering the next 

downstream steering/focusing element. The kicked beam must pass through several 

magnetic elements in the ring before extraction. A basic conceptual design study was 

conducted to identify the most optimal location for the extraction kicker with respect to 

the quadrupole focusing elements (assuming the typical FODO arrangement at the 1.826 

Amp operating point). 

Simulations of the linear focusing optics were done using thin lens transfer 

matrices (implemented in Matlab). The UMER quadrupole and dipole elements were 
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each modelled as a series of distributed thin lenses, with the electrostatic kicker 

approximated as a discrete, instantaneous velocity kick (which correlates to integrated 

field for unspecified kicker length and voltage). Infinite aperture was assumed for all 

magnets, anticipating that the mechanical design will include an enlarged pipe/magnets.  

Initially on-axis single particles were propagated in the matrix model for a range 

of potential kick locations. “Ideal” is defined as maximum extraction angle versus 

applied kick voltage. Figure L.2 illustrates the ideal kick location identified with single-

particle tracking. The hardware is visualized in Figure L.3. 

Results were verified against beam tracking code PBOlab, in which all ring 

magnets were modelled as ideal, infinite aperture hard-edged fields. The conceptual study 

also considered dual-kicker configurations, but did not find any significant advantage in 

terms of beam angle per applied voltage that justified the additional complexity. Further 

details are given in [78],[79]. 

  

Figure L.2 Single particle trajectories (red traces) for various kick locations along s, 
corresponding to kick with integrated field 6.2 kV. The optimal trajectory is 
marked by a heavy dashed line. 
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L.2. Refined model with WARP simulations  

Higher order effects such as space charge and finite transverse beam size were examined 

with the WARP PIC code. The WARP transverse slice packaged is used, which probes 

2D transverse dynamics assuming negligible transverse-longitudinal coupling. Fringe 

fields are included.  

Quadrupole magnet fields were modelled using MAGLI [28]. The coil geometry is 

specified in an input file, and MAGLI uses a Biot-Savart solver to solve for the field 

contributions of each wire segment. The BKE electrostatic kicker was modeled using 

WARP’s built-in geometry definitions1 and field solver. The field profiles for the curved 

plate geometry are shown in the next section (Figure L.8). The Earth’s magnetic field was 

included in all simulations, approximated as a constant vertical field of 0.4 T, the average 

measured field along the ring circumference. The horizontal Earth field is not included.  

                                                 
1 Module defined in generateconductors.py 

Figure L.3  CAD of conceptual design based on linear optics model. 
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L.2.1 Implementation of the “warped” frame 

WARP allows bent coordinate systems, in order for fields to be specified in the 

(approximate) beam-frame rather than the lab-frame. WARP allows user-specified fields 

on a grid, but specifying field profiles that overlap with WARP “bend” elements is 

difficult due to the bent coordinate frame. To address this problem, Rami Kishek 

developed a method of field-solving on a bent coordinate system. First, the desired 

coordinate system is specified in Python, and a series of grid points are supplied to the 

MAGLI solver. The resulting field data file can be directly imported into WARP, as long 

as the coordinate systems are aligned and follow the same bending radius. This method 

was used for all fields in the WARP simulations described below. More description of 

this method can be found in [73]. 

L.2.2 WARP tracking of extracted beam 

Design orbit tracking was carried out in WARP with the 0 mA (single particle), 23 mA 

and 80 mA beams, using a beam matched to recirculating conditions.2 Kicker voltage was 

adjusting to find the optimal extraction trajectory. WARP simulations based on the 

single-particle linear optics model shown in Figure L.3 and Figure L.4 (which we will 

refer to from now on as V1) indicated the potential for scraping losses of the extracted 

beam path. When considering the finite transverse profile, the beam required additional 

clearance through the enlarged, horizontally focusing quadrupole (which would have 

required increasing the magnet bore significantly). A second model, V2, was developed, 

with the kicker and diverging pipe upstream by approximately 16 cm. This solution had 

been overlooked in the initial conceptual design but has a much better prognosis in terms 

                                                 
2  Using matched beam conditions defined in /humer/shared/Universal/Ubeams.py 
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of beam clearance. All subsequent explanations are relevant to the second model V2. 

Both configurations are shown in Figure L.4. The form of the extraction section vacuum 

pipe was re-engineered to accommodate the new extraction trajectory. More details are 

given in [80]. 

R RD E RQ 
R

R

R

SQ 

SD 

R
Trajectory for 23 mA beam, 5 kV 

differential on plates (1.7”) 

v1 

v2 

Figure L.4 Orbit tracking for 23 mA beam, for early design (v1) and refined design 
(v2), in which the kicker plates and Y-section have been relocated ~16 cm 
downstream. Both simulations show centroid (heavy line) and transverse rms 
beam edges (thin lines). 
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L.3. Hardware design 

The following section describes the mechanical design for the extraction section, 

including the vacuum pipe, enlarged-bore magnets and kicker electrodes. The bulk of the 

mechanical design work was done by Jacob Butcher and James Wissman. 

L.2.1 Vacuum pipe design 

The extraction section requires a custom vacuum pipe with a diverging extraction pipe 

and enlarged pipe radius to accommodate the extraction kicker. The pipe is designed as a 

monolithic structure, free of demountable joints so as to accommodate the ring’s dense 

lattice. The extraction Y-section was slightly modified from the injection Y-section, 

which contains a sharp edge that is troublesome due to suspected beam scraping. To 

avoid sharp edges and to simplify machining, we chose a 5-piece design for the custom 

Figure L.5 Centroid and envelope tracking for matched 80 mA beam in extraction. 
Misalignment of beam centroid with pipe axis in beginning 16 cm is because 
the simulation follows the beam frame, using WARP bend elements. 
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pipe section, which is connected through a series of welds. The entire section subtends 

20° of the ring and will be a modular replacement for a standard ring section. The 

enlarged section of pipe houses two sets of 4-electrode plates that serve as a Beam 

Position Monitor (BPM) and the Beam Kicker Electrodes (BKE). 

The BPM plates are coaxially located in thick-walled “collars” on which are 

directly welded commercially available SHV electrical feedthroughs.  The BPM plates 

are supported solely by the center conductor of the SHV connectors, which attaches .25” 

from the longitudinal end of the plate for an asymmetrical mount.  After assembling the 

BPM plates, the beam pipes are also then welded to the collar.  At this point, the 

BPM/BKE plates will no longer be accessible.  The outer (atmosphere) profile of the 

collars is octal.  An SHV feedthrough is mounted to every other flat of the octagon.  The 

remaining flats are blind-tapped to provide the mounting locations of the vacuum section 

to its support stand. 

Starting at the up-stream flange, the extraction section begins with a 4.5” CF 

flange, followed by a short length of standard two-inch beam pipe with 10° bend, allow 

the first quadrupole and dipole to remain at normal UMER dimensions. Coupled to a 

zero-length adapter, the pipe transitions to a 3” diameter pipe.  The enlarged beam pipe 

houses the two BPM/BKE assemblies before terminating at the Y-section.  The Y-section 

is a diverging vacuum box constructed of flat and rolled plates welded together.  The 

complication of rounded sides is necessary to minimize the bore of the SuperQuad SQ 

magnet.  The Y-section provides the transverse clearance for both the recirculating beam 

and growing horizontal displacement of the kicked beam.  At the longitudinal location 
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where the transverse displacement of the recirculating and extracted orbits differ by 

approximately a two-inch beam pipe diameter, the Y-section breaks into two discrete  

two-inch beam pipes: the recirculating beam pipe and the extraction line.  From that point 

forward, the recirculating line follows the standard UMER beam pipe run.  The extraction 

section nominally angle off at 12°, but a welded bellows (not shown in drawing) permits 

slight adjustment. Both down-stream beam pipes terminate in 4.5CF flanges. 

To reduce undesired longitudinal fields, the BPM plates are located in recessed 

pockets such that the beam-facing contour lies on the same surfaces as the up- and down-

stream grounded beam pipe walls.  In their section of beam line, the pipe diameter is 3”. 

Therefore, to create the effect of re-entrant pockets, rings with ID of 2.5 cm are machined 

and welded into the enlarged pipe. A simulation model showing the geometry and field-

guarding properties of the guard rings can be seen in Figure L.9. 

Due to concerns about the welds on the downstream wall of the box, a finite 

element analysis was performed to assure structural stability under UMER vacuum. We 

sought advice from the RU machine shop, who assured us that the welds should not 

present a structural problem. They suggested that the downstream face of the box should 

be a single piece of steel with two holes for the diverging pipes, rather than a 2-piece 

welded face as shown in the drawing. The Rutgers machine shop quoted $15k for the 

entire flange-to-flange pipe and BKE/BPM assembly. 

L.2.2 Support design 

Limited work was done on designing the support structure for the extraction section. The 

support plate must be heavily modified to accommodate the enlarged magnet elements, as 

well as the electrical feedthroughs for the BPM/BKE collars. Consideration must be  
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Figure L.7 Drawing of vacuum chamber, showing rough sketch of modified support 
plate. 

Figure L.6. BPM and BKE assemblies, from Vacuum Chamber drawings package. 
y 
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made for proper alignment of the BPM/BKE assemblies. The working idea for support 

structure is to incorporate a cradle to directly support the octagonal BPM/kicker collars. 

Preliminary drawings of this cradle were made. 

L.2.3 Magnet design 

The modified extraction pipe will replace the UMER lattice in a single 20° section. 

Enlarged magnets must be designed to accommodate the new pipe geometry. As shown 

in Figure 1, the extraction requires several enlarged magnet: two enlarged quadrupoles 

(“Extraction Quad,” EQ and “Super Quad,” SQ) and an enlarged dipole (“Super Dipole”, 

SD). Extensive work on the magnet designs was carried out by Santiago Bernal and his 

students Ellen Wetzel and Tim Petro. 

 

Table L.1 Magnet parameters for comparison between ring elements and custom, 
enlarged extraction elements 

Magnet Dimension 

Operating 

Current 

Effective 

Length 

Peak on-axis 

gradient/field 

Creator 

3rd Gen. Ring 

Quad (RQ) 
r=29.5 mm 1.8 A 5.164 cm 3.61 G/cm·A 

Rami/ 

Santiago 

Super Quad 
(SQ) 

r=71.06 mm* ~10 A 9.81 cm 0.3826 G/cm·A Ellen 

Enlarged Quad 
(EQ) 

r=42.2 mm 3.7 A  1.44 G/cm·A Tim Petro 

Ring Dipole 
(RD) 

r=29.5 mm 2.97 A 3.810 cm 5.216 G/A 
Rami/ 
Santiago 

Super Dipole 5 
(SD5) 

wx=279 mm 
wy=40 mm 
wz=58.93 mm 

136 A·turn N/A N/A 
Tim Petro/ 
Santiago 

* SQ radius has since been updated to 80.969 mm, but the SQ calculations all reflect the 
original radius and simulations use smaller radius (meaning, superquad.spc has smaller 
radius). Change was to allow pipe clearance of downstream magnet housings. 
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 The enlarged quadrupoles are printed circuit magnets, and their field profiles are 

modelled using the in-house Biot-Savart solver MAGLI [28] and included in the WARP 

simulations described in this appendix. 

The Super Dipole design is still incomplete (therefore realistic fields have not 

been included in the WARP solution). Unlike the quads, we are not limited to a 

symmetric aperture, and the most cost-effective design can have a rectangular aperture. 

We hope to hand-wind the dipole coils, rather than using printed circuits. This is due to 

the set-up cost required for PC manufacturing (it is only cost-effective to print a large 

number PC’s, as we lack in-house ability to DIY), the fact that we are not limited to a 

circular aperture, and increased flexibility (small adjustments can be made to the coils 

without purchasing a new set).  The only requirement on the super dipole is that the field 

profile on the recirculating beam path must be relatively flat. This requirement is relaxed 

for the extracted beam path, as the beam only makes one pass through the extraction line.  

The simplest SD design is a pair of rectangular coils, where the peak dipole field 

is centered on the recirculating beam pipe. This requires minimum horizontal aperture of 

~10.9” to accommodate the pipe. Santiago considered several SD coil configurations to 

try to minimize negative field “wings” along the longitudinal field profile.  

The reverse-field dipole (RFD), as suggested by Dave Sutter, was an attempt to 

provide flat field profiles in both the extraction and recirculating beamlines, inspired by 

wiggler geometries. The stacking of multiple coils is meant to sharpen the transition 

between dipole polarities. In this case, the dipole field centered over the extraction pipe 

will actually assist the kicker in bending the beam away from the ring (instead of 

counteracting the kicker). Implementation of this design would require restructuring of 
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the beam pipe at the dipole to take into account an increased extraction angle. 

Simulations by Tim Petro found that, for the proposed RFD design, the flatness of the 

dipole profile was much worse for recirculation. For now, it seems best to stick with a 

large rectangular, bore single dipole. 

L.2.4 Kicker design 

The electrostatic extraction kicker BKE is based on the success of the knock-out 

diagnostic.[65] This is a multi-turn transverse imaging diagnostic that uses a BPM as a 

pulsed kicker. The BPM is rewired such that 3 plates are grounded, and the top plate is 

pulsed with a peak voltage of 1 kV. The pulse perturbs the beam, which experiences 

centroid Betatron oscillations, and terminates downstream on an off-axis phosphor 

screen. The extraction kicker will be a similar arrangement of 4 curved plates, with a 

slightly modified geometry to fit inside the extraction section pipe. The kicker design 

with equipotential lines is pictured in Figure L.8. The extraction kicker will fit inside the 

Figure L.8 Equipotential lines for kicker electrodes (BKE), generated using the WARP 
geometry module and 3D field solver, setup in file kplates.py 
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3.5” radius can, immediately downstream of an identical electrode for BPM output. A 

“guard” ring will be included between the 2 sets of electrodes to minimize interference.  

The effect of the kicker electrodes on beam profile and kick angle was simulated to 

identify an optimal longitudinal length. A minimum exists around 5.5 cm, above which 

the beam starts to scrape on the kicker electrodes. Beyond this regime, emittance growth 

seems negligible. However, this study is flawed due to failure to transform the emittance 

measurement from the lab to the beam frame. Ultimately, kicker length was dictated by 

design to be 1.7” (4.318 cm), in order to allow room for the diverging pipe and 

neighboring BPM, which is identical to the kicker. 

L.3.4.1 Guard ring study with Poisson Superfish  

Guard rings were proposed to reduce pick-up between BKE and BPM electrodes. A 2D 

field solution was found used Poisson Superfish [81]. The resulting field profiles suggest 

that the installation of guard rings will decrease interference of the BKE pulse with the 

BPM signal, although this will still have a large effect due to the proximity of the plates. 

Inner diameter 2.5 cm was chosen to not limit pipe aperture beyond standard pipe 

diameter. Simulation results are plotted in Figure L.10 and Figure L.9 without and with 

rings. 
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Figure L.10 Poisson Superfish simulation of biased BKE (left) and neighboring BPM without 
guard ring. This is a horizontal slice view of the BPM/BKE in the enlarged pipe. Units 
are in cm. 

Figure L.9 Poisson Superfish simulation of biased BKE (left) and neighboring BPM with guard 
ring. Field lines are clearly more contained, and we can expect less interference on BPM 
due to pulsed BKE. 

 

335



 

 

 

L.4. Acceptance studies 

After the mechanical design was sufficiently evolved, acceptance studies of the extracted 

beam were performed. The focus was on acceptance of off-axis beams, given that in 

general the UMER beam is not well-aligned to the pipe axis. In this study, the extraction 

acceptance is compared to acceptance in recirculation, for the geometries shown in 

Figure L.11 and Figure L.12. The recirculation case uses a “standard” 20° ring section 

with the typical QR quadrupole magnet, while the extracted case uses the enlarged 

magnets described above.  

Figure L.12 Geometry of extraction simulation in WARP. Simulation runs “flange to 
flange” for 0.64 m. 

 

Figure L.11 Geometry of recirculation simulation (0 kV kick) in WARP.  Model bends and 
imported bgrd fields are indicated. Simulation runs “flange to flange” for 0.64 m, or 

2 periods. 
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L.4.1 Parallel-beam acceptance studies 

For each case, a matched particle distribution is initiated at the upstream flange of the 

extraction section. Initial centroid position, centroid angle and kicker voltage are varied 

and the percentage of current to make it to the first downstream flange is recorded. In Fig. 

L.13, the survival percentages are plotted as a color-map versus XY centroid position (for 

parallel beams). Several voltage values are compared (0 kV indicates a recirculation 

simulation). The ideal voltage is identified as having the largest accepted (loss-free) 

range of initial conditions. This analysis was carried out for the 23 mA and 80 mA 

beams, which appear to have optimal BKE voltages of 3.8 and 3.2 kV respectively.  

An interesting artifact was discovered in which, although the extraction line has 

smaller “parallel-beam” acceptance than the ring, the extracted parameter space has 

Figure L.13 Results of WARP parallel-beam acceptance studies for 23 mA beam. Each 
pixel is an initial beam centroid position. Color axis corresponds to percent loss of 

beam particles for an initially parallel (X’=Y’=0) beam at the initial XY position. 
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“wings” of acceptance that do not exist in the ring. Upon further investigation, this seems 

to arise from the fact that the SQ element has fields that extend further than the standard 

ring quadrupoles, which can prevent scraping in some circumstances. This design appears 

to be fairly tolerance to large vertical orbit errors.  

L.4.2 Single-particle acceptance 

An alternative approach was used, in which the acceptance is measured by flooding the 

simulation with a distribution of non-interacting particles. For the initial distribution, 

particles were uniformly distributed spatially, completely filling the ring pipe, with 

uniformly distributed angular offsets in the range ±0.3 radians based on estimates of 

Figure L.15 Geometry of WARP simulation for extraction acceptance. Model bends and 
imported bgrd fields are indicated. Simulation runs “quad to quad” for 0.81 m.  

Figure L.14 Geometry of WARP simulation for recirculation acceptance. Model bends 
and imported bgrd fields are indicated. Simulation runs “quad to quad” and is 
repeated 36 times for 1 turn of ring (11.52 m). 
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maximum angular acceptance. The isotropic initial distribution was allowed to propagate 

through 10 periods of recirculation (3.2 meters) and through the extraction section (0.64 

m), in both cases starting mid-quadrupole, as shown in Figure L.14 and Figure L.15. The 

preliminary results were used to estimate the maximum accepted emittance for both 

recirculation and extraction. The estimated acceptance value was verified by initializing 

an on-axis KV distribution of specified emittance and guaranteeing that there were no 

particle losses.  

An on-axis, non-tilted, 0-current beam has acceptance �� = 750	π mm-mrad and 

�
 = 700	π mm-mrad for recirculation and �� = 500	π mm-mrad and �
 = 450	π mm-

mrad through extraction. The results in the case of isotropic distribution are plotted in 

Figure L.16. These plots represent the uniform configuration and velocity distribution at 

the simulation start:  the mid-plane of a horizontally focusing quadrupole. Black particles 

are lost during the run, magenta particles survive until the end. Yellow ellipses are added 

to provide a reference for comparison, enclosing areas of �� = 750	π mm-mrad and 

�
 = 700	π mm-mrad. 

These numbers are very promising, as they are approximately one order of 

magnitude above typical beam emittances. However, the complication of space charge 

forces was not considering in this analysis, as beam current was set negligibly small 

(order	10��). Irv proposed an iterative approach to the isotropic “flooding” method, in 

which current is set to some non-negligible value for the initial isotropic distribution. 

Significant particle losses are expected after even a very small number of time steps, so 

every few steps the WARP beam current must be set to the desired current value.  This is 

expected to converge on a maximum acceptance emittance for non-negligible current, but 
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was never attempted in favor of an alternate method. As a reminder, these simulations 

were done with realistic magnet models except for the “Super Dipole” SD. An ideal, 

hard-edged super dipole was used. Simulations with the most recent super-dipole fields 

are shown below in Section L.7. 

L.5. Emittance growth caused by extraction section 

Early on, during consideration of horizontal extraction scheme V1, recirculation 

simulations were run that tracked beam emittance growth due to the enlarged quadrupole 

elements. With the 6.5” radius quadrupole from the original design, an initially matched 

beam was propagated 20 turns through the ring (assumed ideal ring, no injection Y-

section). The figure below shows a comparison of the beam emittance over total travel 

Figure L.16 0-current acceptance studies for recirculation (1 turn, 11.52 m) and 
extraction (.64 m, 10 kV kick voltage). 
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length for two cases. Initially, the integrated gradient was scaled to be the same as the 

normal-sized ring quadrupoles. This caused significant emittance growth over the control 

case, with no enlarged elements. However, scaling the EQ gradient by 7.5% gave a much 

closer match to the control case over the 20 turn lifetime. This simulation was never 

repeated for the updated extraction scheme V2, mainly due to the need for a finalized SD 

design.  

L.6. 3D model of extracted beam dynamics 

It was strongly suggested that I pursue 3D WARP simulations of the extraction section, 

as it would be a useful comparison to the 2D transverse-slice dynamics, and because the 

extraction section was an ideal candidate for implementing WARP 3D due to its short 

length. I wrote a complete 3D simulation, for a beam emitted continuously at z=0 (mid-

quadrupole upstream of extraction).  I included realistic pipe boundaries based on the 

vacuum chamber drawings. The model includes one WARP bend element used in 

combination with the ring dipole field (but no bend associated with the SD dipole). 

Quadrupoles and the SD were imported on a 3D grid, while the BKE geometry was 

Figure L.18 Simulation results from 3D 
WARP model, showing particle 

densities and pipe geometry. 

Figure L.17 To-scale 3D WARP 

geometry with extraction kicker. 
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specified along with the pipe geometry and held at a specified voltage in the WARP field 

solver. Even few-particle simulations (10 emitted per time step) took many hours to 

complete, and tuning the simulation for appropriate kicker strength was difficult. No 

enlightening results have been obtained using the 3D WARP model.  

L.7. Acceptance calculations with “Super Dipole” fields  

This section includes more acceptance diagrams. The 23 mA acceptance is decreased 

when SuperDipole SD5 fields are used (Figure L.19) compared to the case with ideal 

dipole fields shown in Figure L.15. Acceptable beam offsets are smaller in the case of the 

80 mA beam, shown in Figure L.20 and Figure L.21. 

Figure L.19 Results of WARP parallel-beam acceptance studies for 23 mA beam with 

SuperDipole fields. 
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Figure L.21 Results of WARP parallel-beam acceptance studies for 80 mA beam with 
ideal (flat) large-aperture SD field 

Figure L.20 Results of WARP parallel-beam acceptance studies for 80 mA beam with 

SuperDipole fields. 
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L.8. Vertical extraction scheme 

Vertical extraction was briefly discussed as an option, if horizontal schemes were 

untenable. Beam tracking simulations with WARP show that vertical extraction is much 

more straightforward from a linear optics perspective (repeating the conceptual study 

discussed in Section L.1. However, the difficulty of engineering and aligning such a set-

up discouraged us from pursuing it further. The horizontal extraction scheme V2, was 

concluded to be the most feasible from an engineering/alignment perspective. Further 

details are discussed in [78]. 

Figure L.22 Sketch of possible vertical extraction scheme. This is an identical 
vacuum chamber to extraction v1 that is rotated by 90°, with pipe 
levelling off at minimum height for clearance of magnet housings. 

Figure L.23 Single particle trajectory using linear optics model for vertical 
extraction. With vertical extraction, the EQ (enlarged quad) helps increase 
the extraction angle. Unnormalized units.  BKE plates are indicated in 
blue. 
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L.9. Future work 

Further refinement of the extraction model is needed in response to mechanical 

constraints. In particular, the initial angle of the diverging pipe is 20° in simulation but 

18.25° in mechanical drawings. The second bend in extraction (in the SD) is 8° in sim. 

but 6.25° in drawings (final extraction angle is 12° in both cases). (This was done to 

reduce the required aperture of the enlarged magnets SD and SQ ) In addition, the BKE 

kicker model differs from the most recent CAD design: the biased plates sweep a greater 

transverse angle than the grounded plates, as seen in Figure L.8, while all 4 should be 

equal according to drawings. These minor mechanical details should be updated in the 

simulation geometry before proceeding. 

A systematic study of the sensitivity of the extraction section performance to 

mechanical and beam errors (ie, misalignment, field errors, acceptance of mismatch) is 

desirable before cutting metal. This includes refining the SD model for better extraction 

acceptance than was calculated here. 
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