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In this thesis, I discuss my use of a millikelvin scanning tunneling microscope

(STM) to investigate tunneling phenomena in superconductors. As part of an ef-

fort to construct an STM to measure the superconducting phase difference, I first

describe how I modified a dual-tip scanning tunneling microscope by electrically con-

necting the two tips together with a short (3 mm) strip of flexible 25 µm thick Nb

foil. I also discuss the technique I developed for keeping each tip in feedback when

only the total tunnel current through both tips can be measured. I then describe

simultaneous room-temperature imaging with both tips on samples of Au/mica and

highly oriented pyrolytic graphite (HOPG).

Next, I report single-tip results from scanning tunneling microscopy of 25 nm

and 50 nm thick films of superconducting TiN at 0.5 K. I found large variations



in the tip-sample conductance-voltage characteristics in these samples. At some

locations the characteristics showed a clear superconducting gap, as expected for

superconductor-normal (S-I-N) tunneling through a high barrier height. At other

locations there was a distinct zero-voltage conductance peak, as expected for S-N

Andreev tunneling through a low barrier height. I compare the data to the Blonder-

Tinkham-Klapwijk (BTK) theory and the Dynes model of tunneling into a super-

conductor with broadened density of states. I find that the BTK model provides

better fits and reveals a remarkable correlation between the superconducting gap

∆, the temperature T and the barrier height Z. Possible causes for this correlation,

including local heating and surface contamination, are discussed.

Finally, I describe measurements of I(V) characteristics of a Josephson junction

formed by a scanning tunneling microscope with a Nb sample and a Nb tip at 50 mK

and 1.5 K. To better understand the physics of this system, I generalized the multiple

Andreev reflection (MAR) theory of Averin and Bardas to describe junctions having

electrodes with different superconducting gaps. For tunneling resistance Rn between

10 MΩ and 100 kΩ, there was no observable supercurrent at 50 mK or 1.5 K. For Rn

between 100 kΩ and about 10 kΩ, the junctions showed hysteretic behavior, with the

forward-sweep switching current Is larger than the reverse-sweep retrapping current

Ir. In this regime, the critical current I0 was suppressed and the current-voltage

characteristics showed a relatively small non-zero resistance R0 at V = 0 that scaled

with R2
n. For Rn less than the quantum resistance (∼ 12 kΩ), the I-V characteristics

deviate from single channel MAR theory. In this limit, the tip makes contact with

the sample, as revealed by the dependence of the junction conductance curves on



the tip-sample separation. By fitting my two-gap MAR theory to the I(V) data,

I obtain superconducting gaps of the tip and sample as a function of the tunnel

resistance Rn. I find the sample has nearly the full gap of bulk Nb (∆ ∼ 1.5 meV),

but the tip gap is only about 0.67 meV, and decreases for Rn ≤ 10 kΩ.
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CHAPTER 1

Introduction

High transition temperature superconductors [1–7] were discovered more than

30 years ago. Despite theoretical advances and experimental discoveries, many basic

questions remain unresolved; the most important being what is the mechanism

causing pairing [8–10]. Many interesting phenomena have been observed in high Tc

materials, including the existence of competing charge ordering phenomena [11, 12],

the possible existence of different superconducting order parameters [13–17] and the

occurrence of rapid variations in superconducting properties at atomic length scales

[18, 19]. Such phenomena have naturally been examined at the atomic scale using

low-temperature scanning tunneling microscopes (STM) [20]. Using normal metal

tips, STMs allow sensitive measurements of the superconducting gap and energy

level spectrum via quasiparticle tunneling [21–29], as I discuss in Chapter 2.

An STM with a superconducting tip and a superconducting sample can form

a Josephson junction. Josephson junctions allow current to flow from one electrode

to the other electrode with no voltage drop [30, 31]. Interestingly, STMs with

superconducting tips are not very common. Hamidian et al. [32] reported the use
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of an STM with a superconducting tip to investigate variations in the Cooper pair

density around zinc impurities in Bi2Sr2CaCu2O8+x. Although in this case both

the tip and sample were superconducting, the relatively large tunneling resistance

(>1 MΩ) and the small tip-sample capacitance made it impossible to obtain a true

Josephson supercurrent due to phase diffusion [33]. Instead one finds a dissipative

current flow that peaks at a non-zero voltage [32–38] due to incoherent tunneling of

Cooper pairs [39].

Previously in our lab at LPS, Anita Roychowdhury et al. [39–41] built a dual-

tip mK STM as part of a project to operate an STM that showed a real Josephson

supercurrent [42]. They demonstrated that each Nb-STM tip could independently

scan the surface of a sample [40, 41] and observed photon-assisted tunneling of

incoherent Cooper pairs in a single Josephson junction [39].

In this thesis, I first report further progress on the developement of a mK

Josephson STM with two independent tips [43]. I describe the technique I used to

simultaneously scan two connected STM tips when only the total current through

both tips can be measured. To do this I had to connect the two tips together and

develop a novel feedback system.

The second project I discuss involved using our STM system to measure 50 nm

thick and 25 nm thick superconducting TiN films. I was surprised to observe features

in the superconductor-insulator-normal (S-I-N) tunneling characteristics that were

clearly due to Andreev reflection effects. This required me to analyze the data

by fitting it to the Blonder-Tinkham-Klapwijk (BTK) theory of Andreev tunneling

[44, 45].
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TiN has been the subject of much research in recent years due to its po-

tential applications in superconducting quantum computation [46–50] and its high

kinetic inductance, which is potentially interesting for constructing superconducting

microwave kinetic inductance detectors for x-ray spectroscopy and sub-millimeter-

wave astronomy telescopes [51–55]. The final project I discuss involves observation

of multiple Andreev reflection effects in Nb-Nb S-I-S tunneling.

In Chapter 2, I discuss two fundamental elements which form the basis for the

rest of the thesis. I first discuss scanning tunneling microscopy (STM) and describe

the two imaging methods I used, constant current and constant height. I then discuss

scanning tunneling spectroscopy (STS), which I used for investigating the electronic

density of states of samples. In particular, I describe the two operating modes I

used, voltage biased mode and current biased mode, and why I needed to use the

current-biased mode for Josephson tunneling experiments. In addition I describe

the three basic tunneling situations I encountered: tunneling from a normal tip to

a normal sample (N-I-N), tunneling from a normal tip to a superconducting sample

(N-I-S), and tunneling from a superconducting tip to a superconducting sample

(S-I-S). Finally, I briefly discuss STM measurements at millikelvin temperatures.

In Chapter 3, I describe the mK STM setup that I used. I begin with a

discussion of the principles of operation of a dilution refrigerator and the operating

procedure. I move on to describe the dual-tip mK STM apparatus and the wiring

of the STM at each stage of the dilution refrigerator. I also discuss a difficulty I

encountered, when the heat exchanger exploded during mixture removal, and the

subsequent repairs to bring the system partially back into service. Finally, I discuss
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the UHV chamber used for sample preparation, the control electronics for operating

the STM, and the superconducting STM tips that I used.

In Chapter 4, I describe an important step towards constructing a true Joseph-

son STM based on forming an asymmetric SQUID [42]. In particular, I first describe

how I connected the two STM tips in our dual-tip system with a short flexible link

made from thin Nb foil. I then discuss another challenge of this approach, which is

how to implement feedback to control both tips when they share the same current

lead. I present a new feedback technique that separates the current signal for each

tip and then show results from simultaneously scanning two connected tips at room

temperature. I finish by examining the electrical performance of the system and the

mechanical compliance of the link.

Chapters 5 and 6 cover the second main topic I worked on. In Chapter 5,

I discuss the Bardeen-Tinkham-Klapwijk (BTK) theory of Andreev reflection and

their expression for the I(V) characteristics of S-N junctions with different trans-

parencies. In Chapter 6, I discuss my STM measurements of 50 nm and 25 nm

thick superconducting TiN samples in the mK-STM. While at first sight most of

the I(V) characteristics appeared to show standard N-I-S tunneling, we eventually

realized we were seeing obvious Andreev reflection effects, including zero bias con-

ductance peaks at some locations. This is expected from Andreev reflection effects

for a highly transparent barrier. Using BTK theory, as opposed to a standard tun-

neling approach to fit the data, I extracted spatial maps of the superconducting

gap ∆, temperature T and barrier height Z which showed large spatial variations.

I found striking spatially-dependent correlations between these parameters, as well
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as differences between the two films, and I conclude with a discussion of a simple

model which may explain this surprising aspect of the data.

Chapter 7 and Chapter 8 describe the final major topic that I worked on.

In Chapter 7, I extend Averin and Bardas’s theory of Multiple Andreev Reflection

(MAR) in S-I-S junctions to the case where the electrodes can have different gaps. I

use this theory to obtain current-voltage characteristics for a single superconducting

channel with arbitrary transparency at temperature T . Using this theory I also

work out the critical current of a Josephson junction for arbitrary transparency.

Although this chapter includes a lot of mathematical detail, it is based on the

simple and physically appealing scattering matrix approach of Averin and Bardas.

In Chapter 8 I present measurements at 50 mK and 1.5 K of the current-voltage

characteristics of S-I-S junctions formed by a Nb STM tip and a Nb(100) sample.

The characteristics show clear features due to MAR and I apply my two-gap MAR

theory from Chapter 7 to extract key parameters such as the superconducting gaps

of the sample and tip.

In Chapter 9, I conclude with a summary of my main findings and discuss

some possible future work to complete a dual-tip Josephson STM.
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CHAPTER 2

Scanning Tunneling Microscopy

2.1 Introduction

The first scanning tunneling microscope was described by G. Binning and H.

Rohrer [56–58] in 1981. The ability to resolve individual atoms stimulated consid-

erable research world-wide and they were awarded the Nobel Prize in Physics in

1986. The invention of the STM opened up atomic scale imaging in real space and

allowed researchers to manipulate single atoms and molecules. Moreover, spectro-

scopic techniques were developed to reveal the electronic properties of samples, such

as the local density of states (LDOS). Unlike classical transport mechanisms such as

diffusion and drift, the underlying principle of operation of an STM is quantum me-

chanical tunneling of electrons through a vacuum barrier, which cannot be explained

using a classical picture.

In Section 2.2 I first discuss quantum mechanical tunneling in one dimension

and give a brief overview of scanning tunneling microscopy. Next, in Section 2.3 I

discuss two modes that are often used in imaging the surface of samples for STM,
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2.2. THEORY OF 1-D TUNNELING AND PRINCIPLE OF STM

constant current mode and constant height mode. I then discuss a powerful spec-

troscopy tool for investigating the electronic states of the samples in Section 2.4. I

discuss voltage-biased spectroscopy in normal-insulator-normal (N-I-N) tunneling,

normal-insulator-superconductor (N-I-S) tunneling and superconductor-insulator-

superconductor (S-I-S) tunneling. I go on to describe current-biased spectroscopy

for use in Josephson STM tunneling. Finally, in Section 2.5 I briefly discuss a mK

cryogenic system is needed for conducting my STM experiments.

2.2 Theory of 1-D tunneling and principle of STM

Tunneling phenomena can be treated using a time-independent approach,

which involves finding the wavefunctions inside and outside of a barrier and match-

ing them at the boundaries, or using Fermi’s golden rule, which arises from first order

time-dependent perturbation theory [59–61]. Typical introductory discussions con-

sider simple one-dimensional barriers and this is a good approximation for planar

metal-oxide-metal junctions. On the other hand an STM tip and planer sample have

a 3D geometry and a more complicated analysis is required to accurately describe

the behavior.

Nevertheless, let me first review simple 1-D tunneling. To proceed, I consider

an electron with energy E and mass m that is in region A and is incident from

the left onto barrier B (see Fig. 2.1). The barrier in region B has a uniform height

u. Classically, the particle can only get over the barrier if its energy E is greater
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than the barrier height (E > u). In quantum mechanics, due to the wave nature of

matter, there is some probability to penetrate through the barrier even if E < u.

I can write Schrödinger’s equation and find the wave function in each of the three

regions (Fig. 2.1). In region A, Schrödinger’s equation is

− h̄2

2m

d2Ψ1

dx2
= EΨ1 (2.1)

and the wavefunction is,

Ψ1 = eikx + Ae−ikx (2.2)

where

k2 =
2mE

h̄2 . (2.3)

For region B, Schrödinger’s equation is

− h̄2

2m

d2Ψ2

dx2
+ uΨ2 = EΨ2 (2.4)

and we can write

Ψ2 = Beχx + Ce−χx (2.5)
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x
0 s

E

u

Energy

A B C

Figure 2.1: A particle with energy E is incident from the left in region
A. In region B, the potential barrier u is larger than the energy E, but
there is some probability for the particle to penetrate through the barrier
into C.
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where

χ2 =
2m(u− E)

h̄2 . (2.6)

For region C, Schrödinger’s equation is

− h̄2

2m

d2Ψ3

dx2
= EΨ3 (2.7)

and

Ψ3 = Deikx (2.8)

where

k2 =
2mE

h̄2 . (2.9)

The rate at which electrons go through the barrier determines the tunnel cur-

rent. This is calculated from the ratio of the transmitted current density jt to the in-

cident current density ji; i.e. the transmission coefficient is T=jt/ji=(h̄k/m)|D|2/(h̄k/m)=|D|2.

By matching the wave function and the first derivative of the wave function at the

boundary x = 0 and x = s, one finds [62]

T =
1

1 + (k2 + χ2)/(4k2χ2) sinh2(χs)
= |D|2. (2.10)
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Assuming a relatively high and wide barrier, so that the wave function in the barrier

is strongly attenuated,

T ≈ 16k2χ2

(k2 + χ2)2
e−2χs (2.11)

where from Eq. (2.6) χ is given by

χ =

√
2m(u− E)

h̄
. (2.12)

The factor e−2χs in Eq. (2.11) is crucial for STM tunneling because it indicates

that the current depends exponentially on the barrier width s. Assuming a barrier

width of s = 5 Å and effective vacuum barrier height of u − E = 4 eV gives

T ∼ 10−5. For these parameters, changing the barrier width by 1 Å will change the

barrier transmission by an order of magnitude.

Figure 2.2 shows a schematic of the setup of an STM, including an atomically

sharp conducting tip, a vacuum tunnel barrier and the surface of a conducting

sample. To control the x, y and z motion of the tip, the tip is attached to a

piezoelectric scanner that has five electrode plates (x+, x−, y+, y−, z) insulated from

each other. Applying voltage to specific electrodes causes the tip to move in x, y or

z due to the piezo shrinking or expanding, depending on the voltage applied. When

the tip is brought very close to the sample and a voltage is applied between the

sample and the tip (typically mV to a few volts), a small current (typically in nA

range) tunnels through the vacuum gap between the tip and sample. The tunneling
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2.2. THEORY OF 1-D TUNNELING AND PRINCIPLE OF STM

Figure 2.2: Schematic diagram of STM setup. The tip position is con-
trolled by applying voltages to the x+, x−, y+, y−, z electrodes on the
scan piezo. The tunneling current from the tip is detected when the
sample is voltage biased and the tip is close to the sample. For topo-
graphic imaging, the voltage applied to the z electrode is adjusted to
keep the tunneling current constant.
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2.2. THEORY OF 1-D TUNNELING AND PRINCIPLE OF STM

current is amplified and converted to a voltage which is fed to the control electronics.

This voltage is compared to a set point and the difference is used to generate an error

signal that is fed back to the z-piezo to keep the tip–sample separation constant.

Because the tunnel current is extremely sensitive to the distance between the tip

and the sample, the feedback forces the vertical motion of the tip to precisely follow

the surface topography if the tip is moved laterally.

For a measureable tunneling current to be present, the tip has to be brought

very close to the sample. This is done using a coarse approach mechanism, in our

case a Pan-Style walker [63]. During the coarse approach, a dc bias voltage is applied

to the sample and the tip is effectively grounded. For each step of the walker the

tip typically moves forward a few 10s of nm. The z-piezo is then extended up to full

range to see if the tunneling current increases. If no current signal is found, the z

piezo is retracted, the walker moves one step closer toward the sample. This process

is repeated until the tip is close enough to the sample that a tunneling current is

detected.

Once the tip is in tunnel range, it is moved to an (x, y, z) position defined by

the user. To raster scan an area, the lateral (x, y) motion is controlled by applying

voltages to the x+, x−, y+ and y− electrodes. The vertical z-motion is controlled

by the z-piezo feedback control electronics. Recording the voltage applied to the

z-piezo as a function of the position (x, y) gives us the surface topography of the

scan area.
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2.3. TOPOGRAPHIC IMAGING

2.3 Topographic imaging

As mentioned earlier, an STM tip has a 3D geometry and the 1D time-

independent Schrödinger equation does not accurately model the situation. Ter-

soff and Hamann [60, 61] used time-dependent perturbation theory to model the

3-dimensional tip structure and calculate the corresponding current and conduc-

tance. Their theory also produced an exponential dependence of the current on the

tip-sample separation, which is used in constant current mode of imaging. More-

over, they showed that the conductance is proportional to the density of states of

the sample. This is particularly useful for spectroscopy and understanding images

taken in the constant current mode. The other imaging mode I discuss in this sec-

tion is the constant height mode. This mode is not used as much as the constant

current mode, but it has some advantages in certain situations.

2.3.1 Constant current mode

In Section 2.2, I examined tunneling in one dimension and found the trans-

mission through the barrier depended exponentially on the barrier thickness. Thus

we expect that the tunneling current will obey

I ∝ e−2χs. (2.13)
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2.3. TOPOGRAPHIC IMAGING

where χ is given roughly by Eq. (2.12) and s denotes the distance between the

sample surface and the front of the tip. The useful feature for imaging is that the

current is exponentially sensitive to the separation s.

A feedback loop is used to control the tip-sample separation so that the tunnel-

ing current between the tip and the sample remains constant. As such, the recorded

z signal can be interpreted as the topography as a function of the position (x, y) of

the sample.

2.3.2 Constant height mode

The main disadvantage of the constant current mode is the finite response time

of the feedback loop, which limits the maximum scanning speed. This drawback

also makes it harder to capture atomic scale features because the feedback responds

less to high-frequency components of the tunneling current due to small surface

features. An alternative is to use constant height mode, which involves turning off

the feedback and recording the tunneling current while scanning in x and y. A

significant drawback of constant height mode is that without feedback the tip is

prone to crashing into the sample if it is not atomically flat.

In practice, samples can be scanned using a mixture of constant height and

constant current modes. For this mixed mode, the system is set up for constant

current mode, and as usual when the tip scans over a sharp feature, the feedback

does not respond immediately and the current will not be constant. A map of the

tunnel current versus position will thus show some contrast from sharp topographic
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features. Thus by recording both the z-piezo voltage and the tunnel current, we can

obtain mixed-mode images.

2.4 Spectroscopy

Besides being able to generate topographic images, STMs can also perform

tunneling spectroscopy to measure electronic properties of a sample at the atomic

scale such as the local density of states (LDOS). Tunneling spectroscopy typically

involves moving to a fixed location, turning off the feedback, and then sweeping

the bias voltage V while recording the tunneling current I. The feedback is then

switched back on to prevent the tip from drifting into the sample.

In standard voltage-biased spectroscopy, voltage V is applied to the sam-

ple while the current I and the conductance dI/dV are acquired. The resulting

I − V or dI/dV − V characteristics depend on the materials used in the junction.

Next, I examine the standard cases of normal-insulator-normal (N-I-N) tunneling,

normal-insulator-superconductor (N-I-S) tunneling and superconductor-insulator-

superconductor (S-I-S) tunneling. In the standard approach [64] the tunnel barrier is

assumed to be relatively high so that Andreev reflection effects [44] can be neglected.

In Chapters 5 and 7 I present a more general discussion of I −V characteristics, in-

cluding effects from the Andreev processes in N-I-S and S-I-S junctions. In addition

to voltage-bias spectroscopy, I also briefly discuss current-bias spectroscopy, which

I used for investigating S-I-S junctions as described in Chapter 8.
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As Tersoff and Hamann [60, 61] emphasized, it is important to understand

that the conductance dI/dV can produce direct information about the local density

of states (LDOS) of a sample. In principle, one could measure the current at finely

spaced voltages V and then numerically take a derivative of the current with respect

to the voltage. However the result tends to be extremely noisy. Instead we add a

sinusoidal modulation to the DC bias voltage so that V (t) = V0 +A sinωt, and use

a lock-in amplifier to measure the resulting current Iac at the frequency ω. Using a

Taylor expansion of the current

I(V ) ≈ I(V0) +
dI

dV

∣∣∣∣
V=V0

A cosωt+O
(
A2
)

(2.14)

we see that the zeroth-order term is the non-modulated current I(V0). The ampli-

tude of the first-order term is proportional to the derivative of the current, i.e. the

conductance Gn = dI/dV . With a suitable choice of the drive frequency and lock-in

time constant, the I(V0) and dI/dV vs. V0 data can be obtained simultaneously.

Another useful technique is the current-bias mode. The I − V characteristics

of an S-I-S Josephson tunnel junction is often acquired by sweeping the current

while measuring the voltage across the junction. This is done because the voltage

will remain zero until the bias current exceeds the critical current, at which point

a voltage appears across the junction. Depending on the junction parameters, the

voltage may jump discontinuously from zero to a substantial value, typically on

the order of the gap. In this case one also typically sees hysteretic behavior when

the current sweeping direction is reversed, this hysteretic behavior is obscured by
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voltage-biased technique.

Naaman et al. [33], for example, used the voltage-biased method to measure the

I−V characteristics of a superconducting tip and a Pb film junction. Unfortunately,

the voltage-biased technique cannot tell the true behavior of the I(V) because of the

discontinuity of the voltage jump when the critical current is exceeded. In my work,

I modified the existing STM electronics to take both voltage-biased and current-

biased I-V characteristics for a given junction resistance.

Figure 2.3 shows schematics for the voltage-bias mode and the current-bias

mode. Figure 2.3 (a) shows a conventional setup for tunneling spectroscopy in

which voltage Vb is applied to the sample and the tunneling current I is recorded

as a function of Vb. Figure 2.3 (b) shows the current-bias mode which has a resistor

with a large resistance R connected in series with the STM junction to fix the

current I passing through the junction. A differential amplifier is used to measure

the voltage V across the junction as a function of the current I. If the resistance R

is much larger than the junction resistance, i.e. R � RJ , the current can be found

from the applied voltage Vb divided by R. Otherwise, I = Vb/(R + RJ) and the

junction resistance needs to also be taken into account to find the current flowing

through the junction.

2.4.1 N-I-N tunneling

Figure 2.4 shows a schematic diagram of electron energy levels for N-I-N tun-

neling. Figure 2.4 (a) shows the situation in thermal equilibrium with no applied
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Figure 2.3: (a) Schematic diagram of spectroscopy mode using voltage
bias Vb in which a voltage is applied to the sample and the current I
flowing through the junction is measured with a current preamplifier.
(b) In current-bias mode, a large resistor R is connected in series with
the junction to set the current I through the junction and the voltage
V across the junction is measured using a differential amplifier.
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voltage so that both Fermi levels are aligned (the shaded light blue areas indicate

filled states). Figure 2.4 (b) shows the situation when the right normal metal has

a voltage +V applied while the left electrode is grounded (0 V). As shown, this

effectively raises the Fermi level of the left electrode with respect to the Fermi level

of the right electrode and causes a net flow of electrons from the left to the right.

To calculate the net tunneling current, we need to find the difference between the

rightward and leftward currents. Following Tinkham [64] we can write the current

flowing from the left electrode to the right electrode as

IL→R =
4πe

h̄

∫ ∞
−∞
|M |2N1(ε− eV )f(ε− eV )N2(ε)(1− f(ε))dε (2.15)

where N1(E) is the density of states on the left, f(ε) = 1/(e(E−µ)/kBT + 1) is the

Fermi distribution and M is the tunneling matrix element. Here N1(ε − eV )f(ε)

represents the filled states in the left electrode and N2(ε)(1 − f(ε)) represents the

empty states in the right electrode. Similarly, the current flowing from the right

electrode to the left electrode is

IR→L =
4πe

h̄

∫ ∞
−∞
|M |2N2(ε)f(ε)N1(ε− eV )(1− f(ε− eV ))dε. (2.16)

20



2.4. SPECTROSCOPY

The total current flowing from left to right is then

I = IL→R − IR→L

=
4πe

h̄

∫ ∞
−∞
|M |2N1(ε− eV )N2(ε)[f(ε− eV )(1− f(ε))− (1− f(ε− eV ))f(ε)]dε

=
4πe

h̄

∫ ∞
−∞
|M |2N1(ε− eV )N2(ε)[f(ε− eV )− f(ε)]dε (2.17)

Let’s look at how Eq. (2.17) behaves at T = 0. Notice on the left side that

for ε > eV , we have f(ε − eV ) = 0 (see region A in Fig. 2.4 (b)) while for ε > eV

we have f(ε) = 0 on the right. Therefore region A contributes no current. For

0 < ε < eV (region B in Fig. 2.4 (b)), we have f(ε− eV ) = 1 for the left electrode

and f(ε) = 0 for the right. Therefore [f(ε− eV )− f(ε)] = 1 and Eq. (2.17) gives a

net current in this region. Finally for ε < 0, we have f(ε− eV ) = f(ε) = 1 in both

the left and right electrode (see region C in Fig. 2.4 (b)) and therefore this region

contributes no current.

Given the behavior of the Fermi function at T = 0, the integration range in

Eq. (2.17) can be cut off at zero and eV , and Eq. (2.17) becomes

I =
4πe

h̄

∫ eV

0

|M |2N1(ε− eV )N2(ε)dε (2.18)

For typical metals of interest, we can take N1(ε− eV ) and N2(ε) as constants N1(0)

and N2(0), the density of states at the Fermi level. Similarly, we will assume that
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Figure 2.4: (a) Schematic of the density of states in N-I-N tunneling at
T = 0 for ideal normal metals when no voltage is applied. (b) The right
electrode is biased at voltage V above the left electrode, which effectively
raises the Fermi level of the left electrode, causing a net flow of electrons
from the left to the right electrode.
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|M |2 is independent of energy and this then gives

I =
4πe2

h̄
|M |2N1(0)N2(0)V

= GNNV (2.19)

where the conductance of the N-I-N junction is

GNN =
4πe2

h̄
|M2|N1(0)N2(0) (2.20)

For the same assumptions except that T > 0, one finds the same result [64].

Therefore we see that an N-I-N junction acts like an ideal, temperature-independent

ohmic resistor.

2.4.2 N-I-S tunneling

The situation becomes more interesting if one electrode is superconducting.

Tunneling experiments conducted by Giaever and Megerle [65] between a supercon-

ductor and a normal metal demonstrated that the superconducting gap could be

measured electrically and this helped to further establish the validity of the BCS

theory.

We can apply Eq. (2.17) to the N-I-S situation by writing [64]

INS =
4πe

h̄

∫ ∞
−∞
|M |2Nn1(ε− eV )Ns2(ε)[f(ε− eV )− f(ε)]dε, (2.21)

23



2.4. SPECTROSCOPY

where Nn1 = Nn1(0) is the density of states of the normal metal on the left and

Ns2 =


|E|√
E2−∆2Nn2(0) for |E| > ∆

0 for |E| < ∆

(2.22)

is the density of states of the superconductor on the right where Nn2(0) is the density

of states of the normal state of electrode 2. Figure 2.5 illustrates the situation for

T = 0. Note that if the voltage V applied to the superconducting electrode is

smaller than ∆/e, where ∆ is the superconducting gap, there are no states for

the electrons from the normal side to tunnel into the superconducting electrode.

Therefore there is no tunneling current unless eV > ∆. For T = 0, the Fermi

function and superconducting density of states cut off the integration to the range

∆ < ε < eV . For T = 0 and V > ∆/e, Eq. (2.21) becomes

INS =
4πe

h̄

∫ eV

∆

|M |2Nn1(ε− eV )Ns2(ε)dε

=
4πe

h̄

∫ eV

∆

|M |2Nn1(0)Ns2(ε)dε

=
4πe

h̄

∫ eV

∆

|M |2Nn1(0)Nn2(0)
Ns2(ε)

Nn2(0)
dε

=
4πe

h̄
|M |2Nn1(0)Nn2(0)

∫ eV

∆

ε√
ε2 −∆2

dε

=
Gnn

e

∫ eV

∆

ε√
ε2 −∆2

dε

=
Gnn

√
(eV )2 −∆2

e
. (2.23)

For eV < ∆, one finds I = 0, while Eq. (2.23) gives the current I as function of
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Figure 2.5: (a) Schematic drawing of energy diagram for N-I-S tunneling
with no applied voltage. The left electrode (N1) is normal while the right
electrode (S2) is superconducting. (b) The superconducting side (S2) is
voltage biased by V , causing the electrons to flow from the left to the
right.
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voltage V for V > ∆/e. At T = 0, If we take the derivative of the current with

respect to the voltage we can show that

Gns(V ) =
dIns
dV

=


GnneV√
eV 2−∆2 for |eV | > ∆

0 for |eV | < ∆

(2.24)

Comparing Eq. (2.22) to Eq. (2.24) we see that the differential conductance

Gns(V ) has the same functional form as the superconducting density of state. This

is an example of how dI/dV can reveal the local density of states (LDOS), as Tersoff

argued.

For T > 0, thermal broadening becomes important and we write

Gns =
dIns
dV

=
Gnn

e

∫ ∞
−∞

ε√
ε2 −∆2

∂f(ε− eV )

∂V
dε. (2.25)

The function ∂f/∂V in Eq. (2.25) is a peak of width kBT and effectively rounds off

the divergence in the density of states at the gap.

Figure 2.6 shows a plot of conductance vs. voltage for temperatures T= 50

mK (red), 300 mK (blue) and 1K (green) for ∆ = 0.5 meV. From the plot we can see

there is a sudden rise of conductance around the value of superconducting gap; these

are called coherence peaks. As Fig. 2.6 also shows, non-zero temperature smears

out the coherence peaks.

This is a good place to briefly discuss the Dynes formula [66]. This formula

has frequently been used to extract the superconducting gap from STM conductance

measurements. Dynes et al. [66] argued that the finite lifetime of quasiparticles
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Figure 2.6: Plot of normalized conductance 1
Gnn

dIns
dV

vs. voltage V at
different temperatures. The red curve is at 50 mK, the blue curve is at
300 mK, the green curve is at 1 K. In all three cases the superconducting
gap ∆ = 0.5 meV. The temperature mainly broadens the coherence
peaks, which occur at V = ±∆/e.
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would cause broadening of the coherence peaks. To account for the lifetime they

modified the BCS density of states to :

Ns(ε)

Nn(0)
= Re

[ ε− iΓ√
(ε− iΓ)2 −∆2

]
(2.26)

where Γ/h̄ is the quasiparticle scattering rate. The main effect of non-zero Γ is to

cause broadening of the coherence peaks. The advantage of using this form is that

it is simple to fit to conductance data because it is a simple analytical function. In

contrast, application of Eq. (2.25) requires a careful numerical integration. Although

the physical basis for Eq. (2.26) has been disputed, it captures the qualitative be-

havior and has found widespread application for extracting the superconducting gap

value.

2.4.3 S-I-S tunneling

For S-I-S tunneling, Eq. (2.17) becomes [64]:

ISS =
4πe

h̄

∫ ∞
−∞
|M |2Ns1(ε− eV )Ns2(ε)[f(ε− eV )− f(ε)]dε

=
Gnn

e

∫ ∞
−∞

Ns1(ε− eV )

Nn1(0)

Ns2(ε)

Nn2(0)
[f(ε− eV )− f(ε)]dε

=
Gnn

e

∫ ∞
−∞

|ε− eV |√
(ε− eV )2 −∆2

1

|ε|√
ε2 −∆2

2

[f(ε− eV )− f(ε)]dε (2.27)

where Ns1(ε− eV ) is the density of states in the left electrode, Ns2(ε) is the density

of states in the right electrode, and Gnn is the conductance of the junction when
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both electrodes are in the normal state.

Figure 2.7 shows the energy level diagram for S-I-S tunneling at T = 0. Notice

that when eV > ∆1 + ∆2, quasiparticles will flow from one electrode to the other

electrode, while for eV < ∆1 + ∆2, no current will flow. In general for T 6= 0

numerical integration is required to compute the I − V curves. Figure 2.8 shows

examples of I − V characteristics obtained by numerical integration of Eq. (2.27)

at temperatures of 300 mK (red), 3 K (blue) and 5 K (green). For these examples,

I used ∆1 = 1 meV and ∆2 = 0.5 meV. All three curves show a sharp rise at

V = (∆1 + ∆2)/e = 1.5 mV. When the temperature is large enough, one also

sees a sharp peak at |∆1 −∆2|/e = 0.5 mV and a region with negative differential

resistance. Although the numerical integration is relatively straightforward, I did

not see such peaks in my S-I-S tunneling data. Instead I saw step-like structures

inside for V < (∆1 + ∆2)/e. As I discuss in Chapter 7, this turned out to be due to

multiple Andreev reflection (MAR) in junctions with relatively high transparency.

2.5 Cryogenic STM’s

The superconductors that I investigated were TiN thin films, which had su-

perconducting transition temperatures of Tc ≈ 4 K, and a single niobium crystal

with Tc ' 9.2 K. Clearly I needed to cool below Tc to see superconducting behav-

ior. Furthermore, by using a much lower temperature, I could obtain less thermal

broadening, and get much better resolution spectroscopic data.
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Figure 2.7: (a) Schematic drawing of electron energy levels in the left
and right electrode for S-I-S tunneling at T = 0 for V = 0. (b) Energy
levels for V = (∆1 + ∆2)/e and (c) V > (∆1 + ∆2)/e. When the bias
voltage V is greater than (∆1 + ∆2)/e, a current will flow.
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Figure 2.8: I−V characteristics from numerical evaluation of Eq. (2.27)
for S-I-S tunneling with ∆1 = 1 meV, and ∆2 = 0.5 meV. The red curve
is for temperature T = 300 mK, the blue curve is for T =3 K, and the
green curve is for T = 5 K. The current rises at V = (∆1 + ∆2)/e '1.5
mV. At the higher temperatures, we see a current peak at the difference
of the superconducting gaps V = (∆1 −∆2)/e = 0.5 mV.
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Finally I note that a Josephson Scanning Tunneling Microscope (JSTM) must

be operated at mK temperatures in order to see a measureable critical current

[42, 67–70]. In a JSTM there are three important energy scales: the Josephson

energy EJ = h̄I0/2e, the charging energy EC = e2/2C and the thermal energy kBT .

I0 is the critical current of the Josephson junction. In a standard STM setup, the

capacitance of the tip-sample junction is on the order of fF and in my setup the

critical current can be typically of order 1 nA. This leads to EJ/kB = 0.1 K and

EC/kB = 1 K. Therefore we need to cool our STM to T � EJ/kB or millikelvin

temperatures using a dilution refrigerator to prevent phase diffusion from thermal

excitation of the junction [34–36, 38, 71]. In addition, with EJ << EC charging

effects become important and this leads to suppression of the critical current [64, 72–

74] and even greater sensitivity to phase slips, as discussed in Chapter 7.
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CHAPTER 3

Experimental Setup of the Millikelvin STM

In this chapter, I discuss details of the setup, construction and operation of our

millikelvin scanning tunneling microscope and associated systems. In Section 3.1 I

describe the working principle of a 3He/4He dilution refrigerator. Next in Sections

3.2, 3.3 and 3.4, I describe the design and operation of our dual-tip STM, including

the wiring and filtering used from room temperature to the mK temperature stage.

In Section 3.5 I discuss the accident in June 2016 which resulted in damage to the

dilution refrigerator and the subsequent partial repairs which allowed compromised

operation to about 0.5 K. I next describe the ultra high vacuum (UHV) sample

preparation system (Section 3.6), which allowed me to prepare and transfer samples

to the cold-stage while maintaining UHV conditions. Finally, I describe the opera-

tion and components of the control electronics (Section 3.7) and the preparation of

Nb and vanadium STM tips (Section 3.8).
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3.1. DILUTION REFRIGERATOR

3.1 Dilution refrigerator

The working principle of a dilution refrigerator [75] is based on the behavior

of liquid mixtures of 3He and 4He (see Figure 3.1). Liquid 4He becomes superfluid

[76] at 2.177 K (zero viscosity) and can flow without loss of kinetic energy. 3He,

which is a fermion, does not become superfluid until 2.491 mK [76]. By diluting the

4He liquid with 3He, the temperature of the superfluid transition is lowered. The

boundary line is called the λ-line.

Above 67.5% atomic concentration of 3He in 4He , superfluidity does not exist.

Interestingly, below 0.867 K, 3He/4He mixtures separate into two phases. One phase

is rich in 3He (the concentrated phase), and the other phase is rich in 4He (the dilute

phase). In the limit where the temperature of the mixture is zero, the concentrated

phase becomes pure 3He. However, the concentration of 3He in the dilute phase

does not approach zero as T goes to zero, rather it reaches a limiting concentration

of 6.6% 3He [75]. This phase separation and finite solubility of 3He in 4He is crucial

to the operation of a 3He-4He dilution refrigerator.

Figure 3.2 shows a schematic diagram of a dilution refrigerator. For proper

operation, the dilute/concentrated phase boundary should be in the mixing chamber,

and the liquid level of the dilute phase should be in the still. Since 4He is denser

than 3He, the concentrated phase floats on top of the dilute phase. The cooling

power of the dilution refrigerator comes from the latent heat absorbed when 3He

atoms are transferred from the 3He rich side to the 3He poor side.

Examining Fig. 3.2, we see that the dilute phase extends from the still to the
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3.1. DILUTION REFRIGERATOR

Figure 3.1: Phase diagram for 3He/4He mixtures from Ref. [75]. 4He
becomes superfluid at 2.177 K. Mixing 3He with 4He lowers the temper-
ature of superfluidity boundary. At 0.87 K, liquid helium separates into
two phases: a dilute phase with mostly 4He and a concentrated phase
with mostly 3He. Note that the dilute phase has 6.6 % 3He at 0 K.
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mixing chamber. A pumping line is attached to the top of the still. The still operates

at about 0.7 K, at which temperature the vapor pressure of 3He is much larger than

the vapor pressure of 4He, ensuring that mostly 3He evaporates. The difference

in 3He concentration between the still and the mixing chamber creates an osmotic

pressure gradient in the 3He, which acts to reduce the 3He concentration in the

dilute phase in the mixing chamber. In the mixing chamber 3He in the concentrated

phase then crosses the phase boundary to the dilute phase in order to maintain the

6.6 % 3He concentration of the dilute phase. This process is effectively 3He liquid

evaporating into a 4He vacuum and this absorbs latent heat. The latent heat is

provided from the mixing chamber and results in cooling of the mixing chamber.

In principle, there is no lower limit to the temperature that can be reached, but

in practice heat leaks, heating of the flowing liquids and inefficiency of the heat

exchangers limits the minimum temperature.

Most commercial refrigerators are now “dry” in that a separate 4K cryo-cooler

is used for the initial cool-down and for cooling the returning 3He gas. The additional

cryogenic systems create some vibrations and noise, which are serious problems for

the operation of a cryogenic STM. As a result, we use a “wet” refrigerator to cool

our millikelvin STM system. This involves maintaining 4 K liquid 4He around the

vacuum space (see Fig. 3.2). This bath needs to be refilled with liquid helium as

the liquid evaporates, but otherwise it is relatively free from vibration.

To cool the system from room temperature, I start by closing up the inner

vacuum can (IVC)(see Fig. 3.2) and raising the custom made super-insulated liquid-

helium cryostat [77]. I then fill this dewar with liquid nitrogen at 77 K and introduce
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Figure 3.2: Schematic diagram of our dilution refrigerator.
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a small amount of 3He exchange gas into the inner vacuum can to thermally couple

the dilution refrigerator unit to the 77 K bath (see Fig. 3.2). After about 1 day, the

system has settled to 77 K and the liquid nitrogen is then removed. The dewar is

then slowly filled with liquid helium to allow the refrigerator to cool to 4 K. Once

the refrigerator is at 4 K, the exchange gas is pumped out so that the refrigerator

stages are no longer thermally coupled to the bath.

With the system at 4 K and the exchange gas removed, we can begin to

circulate the 3He/4He mixture. A small amount of mixture is released from the

dump (a container that stores the mixture in gas form at room temperature) and

passed through a nitrogen trap kept at 77 K. This removes impurities such as N2

and O2, as well as oil from the pumps. The mixture next flows through a liquid He

cold trap which is inserted into the helium bath. This captures remaining impurities

that were not captured from the nitrogen trap, such as H2.

The mixture then flows into the condenser line and condenses at the 1 K pot

which is actually at about 1.5 K. The 1 K pot is a small copper chamber which

is connected to the 4He bath through a capillary tube. Pumping on the pot sucks

liquid helium from the bath and evaporation of the liquid in the pot causes cooling

to about 1.5 K, which is not cold enough for the mixture to reach phase separation,

but allows liquid to condense, cool and fill the heat exchangers, mixing chamber and

still. To achieve phase separation, we pump on the still, which cools below 1.2 K due

to evaporate of 3He. The condensed mixture from the 1 K pot passes through the

still heat exchanger and, as 3He is preferentially pumped from the still, the still cools

to the phase separation point. Additional pumping moves the phase boundary until
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eventually it reaches the mixing chamber, which then cools to a base temperature

of about 200 mK after several hours. With additional root pump running, it cools

down to 20 mK.

3.2 Overall experimental setup of the millikelvin STM

Figure 3.3 shows the overall experimental setup of the millikelvin STM system

[41]. A UHV sample preparation chamber and a UHV transfer chamber sit on top

of an optical table in an rf-shielded room. The 3He-4He dilution refrigerator is

mounted below the transfer chamber and the STM is bolted to the bottom of the

mixing chamber. This design allows us to clean the sample under UHV conditions

and transfer it into and out of the mK-STM without breaking vacuum, therefore

preserving the quality of the sample surface. We use a horizontal magnetic transfer

rod to bring samples from the preparation chamber to the transfer chamber. We

then use a vertical magnetic transfer rod [41], which runs through the center axis

of the dilution refrigerator to take the sample from the transfer chamber to the mK

stage of the STM.

Our dilution refrigerator is a customized Oxford Instruments Kelvinox with a

cooing power of 400 µW at 100 mK. The dilution refrigerator has an inner vacuum

can (IVC) which is pumped to high vacuum using a scroll pump and a turbo pump

prior to cooling down. The IVC and rest of the refrigerator insert sit in a custom

made super-insulated liquid-helium cryostat [77]. It serves as a liquid helium bath
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Figure 3.3: Illustration of mK-STM setup with UHV sample preparation
chamber and transfer rods.
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and enables our STM to thermally couple to the helium bath and cool to 4 K. The

base temperature of the refrigerator was 6-7 mK, but due to the heat load from

the large amount of wiring for the dual-tip STM [41], the actual operating base

temperature was around 30-35 mK.

3.3 Dual-tip STM

Our STM is a highly modified co-axial Pan-style design [63] which has two

independently controllable tips. The tips can be connected to operate in a SQUID

configuration [42] with a superconducting sample. A detailed description of the dual-

tip STM, including connection and characterization of the two electrically connected

STM tips, can be found in Chapter 4.

Figure 3.4 shows the overall layout of the STM. The main body is made out

of Macor. The sample is mounted on a sample stud (1) that is loaded from the

top and the two STM tips (2) approach from below. The two STM tips are spaced

about 1 mm apart with each tip attached to its own set of piezoelectric actuators

[41]. Each tip is controlled by a piezoelectric walker (5,6) and scanner (3,4) which

allow for coarse motion in z (vertical) and fine 3-D motion, respectively. The outer

tip assembly is moved vertically (z) by the large outer walker, which also carries the

smaller inner walker and inner tip assembly, thus moving the two tips together. The

inner walker moves the inner tip vertically (z) relative to the outer walker [40, 41].

To monitor the movement of the walkers and tips, a capacitance bridge [78]
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Figure 3.4: (a) Cross sectional view and (b) photograph of the dual-tip
STM. Labels are (1) the sample stud, (2) two STM tips, (3) outer tip
scanner, (4) inner tip scanner, (5) outer tip walker, (6) inner tip walker
and (7) the capacitance sensor for the outer tip and the inner tip. Figure
from [40].
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was used to measure the capacitance (see Fig. 3.4) during the coarse approach of

each tip to the sample. The capacitance sensor reading for the outer walker varied

from 11 pF to 19 pF over the 24 mm z-range. For the inner walker, the capacitance

sensor reading varied from 1.8 pF to 6 pF over the 8 mm range. At cryogenic

temperatures, the maximum lateral scan range of the inner-tip piezo-tube scanner

was about 2 µm while the lateral scan range of the outer-tip piezo-tube scanner was

about 1 µm.

3.4 Wiring

We used two kinds of wires in our STM system to connect the room tempera-

ture electronics to the STM [41]. “Signal wires” were used for connecting to the two

STM tips, for applying sample bias and for reading out the two capacitance/monitor

sensors. “Drive wires” were used for supplying control/drive signals to move the two

walkers (6+6 lines), to drive the x-y-z motion of the tip piezos (5+5 lines) and for

the thermometry lines.

In order to transmit the very small voltages or currents carried by the signal

wires, the wired need to be well-shielded against rf pickup and microphonic noise.

We also need to minimize heat flow between different refrigerator stages. This was

done by using semi-rigid CuNi microcoax lines from 300 K to the mixing chamber

stage. Figs. 3.5-3.10 show detailed views of the signal lines at each stage. To heat

sink the wires as they went from 300 K to 30 mK, the coax was clamped to Cu
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1

8

3 cm

Figure 3.5: The 1 K pot (1) was custom built to 1.5 times the normal
size. (8) NbTi microcoax signal wires are bolted to the Copper heat
sinks.
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2

9

2 cm

Figure 3.6: Label (2) indicates the still. NbTi microcoax signal wires
are bolted to the Copper heat sinks (9).
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3
10

2 cm

Figure 3.7: Label (3) indicates the 3He/4He heat exchanger. NbTi mi-
crocoax signal wires are bolted to the Copper heat sinks (10).
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4
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2 cm

Figure 3.8: Label (4) indicates a sintered silver heat exchanger and (5)
is the mixing chamber. (11) are NbTi microcoax signal wires, which are
bolted to the Copper heat sinks.
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6
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2 cm

Figure 3.9: Label (6) is the bronze powder filter. The NbTi microcoax
wires (12) entered the bronze powder filter with output on Cu coaxial
wires (13) at the mixing chamber stage.
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7

14

6 cm

Figure 3.10: Label (7) is the can inside of which the STM is mounted.
All of the Cu coaxial wires are heat sunk by clamps (14) that press the
wires onto the Au-plated Cu extension.
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posts at the 1K pot stage (see Fig. 3.5), the 600 mK still stage (Fig. 3.6), and

7.5 cm long posts at the 150 mK stage (Fig. 3.7). At the mixing chamber stage

(Fig. 3.8), these microcoaxe lines were fed into bronze powder filters (Fig. 3.9) [79]

with SSMC connectors. From the mK bronze powder filters to the STM (Fig. 3.10),

the signal lines were made of semi-rigid coax with Cu shielding and an Ag-plated

Cu inner conductor. The Cu coax lines helped to carry away heat from the STM

tip and the sample. This was critical to cool the STM, since the main body of the

STM were made from macor, which is very thermally insulating.

The drive wires were made from four Oxford Instruments wiring looms [80],

each with 12 twisted pairs of 100 µm diameter wire. From 300 K to 1.4 K, two

Constantan wiring looms were used as they provided a low heat load and resistances

that varied only slightly with temperature. From 1.4 K to the mixing chamber, we

used two CuNi-clad NbTi looms that were superconducting below 9 K. To ensure

adequate thermal anchoring, the looms are wrapped around Cu heat sinks at each

stage on the refrigerator. For the last section from the mixing chamber to the STM,

semi-rigid Cu coax wires which are the same type used for the signal wires are used.

Figure 3.11 shows detailed views of the looms and copper heat sinks at each stage.

Figure 3.11 (a) shows the 1K pot. Figure 3.11 (b) shows the still and the heat

exchanger at the still and the cold plate stage. Fig. 3.11 (c) shows the filters and

wiring at the mixing chamber stage, while Fig. 3.11 (d) shows the filter and wiring

section from the mixing chamber to the STM stage.
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Figure 3.11: (a) Cylindrical heat sinks for the loom wires ((4),(5),(7)
and (9)) are tightly bolted onto the 1K stage, (b) the still, and (c) the
mixing chamber plate. (d) At the mixing chamber stage, the loom wires
are soldered into a plug and connected to Cu coax lines using thin Cu
wires. The signal wires and all Cu coaxial wires are heat sunk by clamps
(10) that press the wires onto the Au-plated Cu extension. (11) is the
STM.
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3.5 Damage to the heat exchanger and partial repair

While the mixture was being removed early on June 29, 2016, a diaphragm

valve between the still and the 3He circulation pump broke. Air entered the system

and created a complete blockage in the 3He/4He line. Since the 1K pot was not

running at that time, the mixture slowly warmed up and eventually the remaining

liquid in the refrigerator turned into gas. This caused one of the sintered silver

heat exchangers to fail due to severe over-pressure and we ended up losing all the

mixture. Figure 3.12 (a) shows a photograph of the broken sintered silver heat

exchanger. The white objects are sintered silver plates from the inside of the heat

exchanger, which increase the contact surface area with the mixture.

Due to limited funding we were not able to immediately replace the unit and

instead, we applied a temporary fix to get the system back in operation. Figure 3.12

(b) shows the mixing chamber stage, detached from the rest of system. Figure 3.12

(c) shows the brass flange for the input line at the cold plate stage (2) and the bigger

brass flange (3) for the still line.

To reseal the heat exchanger, I tested two solders. I first tried EutecRod 157

[81], which is a lead-free soft solder that can be used for joining capillary tubes. The

second solder I tried was Wood’s metal. The Wood’s metal did not stick well to the

surface of the heat exchanger, so I used the EuteRod 157 for the repair.

Figure 3.13 (a) shows the mixing chamber stage detached from the rest of the

system and clamped onto a work table, ready for soldering. The soldering process

was done at 450 ◦C using EutecRod 157 [81]. Once the soldering was done, a 4He

52



3.5. DAMAGE TO THE HEAT EXCHANGER AND PARTIAL REPAIR

(a) (b)

(c)

1

2 3

Figure 3.12: (a) and (b) show photos of the damaged second sintered
silver heat exchanger. Label (1) indicates the second plate of the heat
exchanger. (c) Photos of the brass flange connector (2) for the incoming
line for the mixture, and the larger brass flange (3) for the return line
that goes to the still.
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(a) (b)

Figure 3.13: Photos of the re-sealed sintered silver heat exchanger. (a)
The system is clamped onto a work table for soldering. (b) The repaired
heat exchanger has been reattached to the dilution refrigerator. The
color of the brass flange changed due to the soldering.
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leak test was performed to verify the seal was leak tight at room temperature. After

reassembling the dilution refrigerator system, we performed a leak test again with

the system at 4 K. Figure 3.13 (b) shows the final result after the dilution refrigerator

was reassembled.

After we replenished the mixture, the refrigerator was able to cool to a min-

imum temperature of only about 300 mK. However the operation was not stable

and the phase boundary did not seem to be in the mixing chamber. We also found

out that there was a cross leak between the input and output lines between the 1K

pot and the still plate; presumably this leak was created during the accident. This

was likely the main reason the system would not cool below 0.3 K. Nevertheless,

the system was able to maintain a stable temperature at 500 mK and this was the

temperature of the titanium nitride (TiN) data presented in Chapter 6.

3.6 Ultra high vacuum (UHV) system

Our STM system has a UHV preparation chamber and a transfer chamber

that are separated by a gate valve (see Fig. 3.14). Each chamber has its own ion

getter pump [82], titanium sublimation pump [83], and ion gauge [84]. To prepare

the UHV environment for both chambers, we first pump it out using a turbo pump

[85] backed by an oil-free scroll pump [86]. The chambers are then baked at 150 ◦C

for 24 hours to remove water and allow outgassing.

The sample preparation chamber has a residual gas analyzer [87], two electron
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beam evaporators [88], and an argon ion sputter gun [89] (see Fig. 3.15). The sample

stage is attached to an XYZ manipulator [90]. Samples can be heated to 600 ◦C by

a resistive heater or by a direct current heater.

Samples are mounted on copper, stainless steel, or molybdenum sample studs

that fit into the STM. To start, we epoxy a sample to a sample stud, put it into

the load lock, evacuate the load-lock, and transfer the sample into the preparation

chamber. After the sample is treated (cleaned, milled, annealed, etc.) in the cham-

ber, it is moved to the transfer chamber. To move samples, the sample stud sits

inside a sample transfer plate and we use a magnetic transfer rod to transfer the

sample plate [40]. To move a sample from the transfer chamber to the cold STM,

we use a top loading system with a 3 cm diameter access shaft in the dilution re-

frigerator. A detailed description of the transfer mechanism can be found in Ref.

[40].

3.7 Control electronics and measurement circuit

To control the two tips, each tip has its own electronics to allow it to approach

and scan a sample. One of the tips is controlled by an RHK Technology STM control

system [91]. It has a maximum piezo voltage of 220 V and uses analog feedback.

This system uses an IVP-300 RHK trans-impedance amplifier with a conversion

factor of 1 nA/V to maintain the tunnel current. The other tip is controlled by an

RHK-R9 system [92]. It has a maximum piezo voltage of 220 V and uses digital
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Figure 3.14: The UHV preparation chamber sits on top of an optical
bench. The transfer chamber sits on top of the optical table on the left
side. The dilution refrigerator is underneath the transfer chamber and
the STM unit is bolted to the mixing chamber plate from below. Label
(1) indicate magnetic transfer rods, (2) are the XYZ manipulators, (3)
is the argon ion sputter gun, (4) are the electron beam evaporators, (5)
is the gate valve, (6) is the dilution refrigerator and (7) is the STM.
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feedback. The current amplifier [93] for this tip can run from 10−5 to 10−11 A/V.

In standard STM operation, the STM is run in a voltage-biased mode: a

voltage bias V is applied to the sample and the tunneling current I is detected

from the tip. The feedback mechanism adjusts the z-piezo to maintain a constant

tunneling current as the tip scans in x-y across the sample, allowing us to image the

surface topography. I−V spectroscopy can be obtained by turning off the feedback

and then sweeping the voltage bias V while recording the tunnel current I. A circuit

diagram of the voltage-biased mode is shown in Figure 3.15 (red). In our two-tip

system, the other tip can be kept away from the sample so that no current flows

through that branch or it can be brought close to the sample to allow simultaneous

tunneling.

To facilitate measurement of hysteretic I − V characteristics we also used a

relay box that let us switch from the voltage-biased mode to the current-biased

mode. In current-biased mode, we sweep the current I applied to the junction and

measure the voltage V across the junction. To measure I − V curves in current-

biased mode during a scan of a sample, we first set the junction resistance Rn while

biased at a certain voltage (Rn defined as the voltage across the junction divided

by the tunneling current), turn off the feedback, switch the system to the current-

biased mode using the relay box, take I − V curves, switch back to voltage-biased

mode, and then turn the feedback loop back on, and move to the next location.
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Figure 3.15: Schematic diagram of setup for interchangeable voltage-
biasing mode (red) and current-biasing mode (green) using a home built
relay box. We utilized the two measurement configurations in measure-
ments of hysteretic Nb-Nb S-I-S tunneling characteristics (see Chap-
ter 8).
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3.8 STM niobium and vanadium tip preparation

Much of my research was aimed at realizing a true Josephson STM. For it to

work, it is necessary to have an S-I-S junction with a non-negligible super current

between a superconducting STM tip and a superconducting sample. As discussed

in Chapter 8, I used a Nb crystal and a Nb superconducting tip for these tests.

The process I used for making a Nb STM tip is briefly described below. The

recipe was developed by Anita Roychowdhury and additional details may be found

in her thesis [40] and Ref. [94]. To make tips, I first cut 50 mm-long sections of

250 µm diameter Nb wire and place them, sticking up, in a 12 cm × 12 cm × 2 cm

aluminum block. I then used a drop of Fujifilm 906-10 photoresist around each tip

to glue them in place and then baked the aluminum block at 150 ◦C for 10 minutes.

I next placed the block with its Nb tips in a plasma reactive ion etcher (RIE) [95]

and etched the tips for 85 minutes. The recipe used an SF6 gas with flow rate of 10

SCCM, a pressure of 100 mTorr, and an applied rf power of 150 W. No O2 was used

Once the tips were etched, I chose the tip that looked sharpest and placed

it into the STM. Newly made Nb tips usually lasted for about 12 hours in air at

300 K before they became too oxidized to use. This allowed enough time for us to

mount the STM back onto the system, test it at room temperature, make sure it

was working and then close the system and cool it to cryogenic temperatures. Once

the STM reached base temperature, we usually kept it cold for a few months.

Finally, I also found out that I could use a vanadium tip as a replacement

for the Nb tip. The main advantage was that it could be easily made at room
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temperature and put into the tip holder right away. This process involves using

pliers to rip off the end of the vanadium wire. This not only saved me time, but

also meant I did not need access to the clean room equipment. This was important

because there were a few months when the clean room was not running. Although

vanadium tips seemed to work pretty well, as I discuss in Chapter 6 I did not observe

a superconducting gap for the vanadium tips when the tip was scanning my TiN

samples. This may have been due to contamination on the tip or some other issue

with V. Another drawback of using the vanadium tip is that the critical temperature

of vanadium is only 5.6 K. I also found that it was harder to prepare vanadium so

that it had a nice sharp tip, in contrast to Pt-Ir, which are very easy to prepare so

that the tip is sharp.

3.9 Conclusion

In this chapter, I described the overall layout of our millikelvin STM sys-

tem including the dilution refrigerator, dual-tip STM, wiring and the UHV sample

preparation system. Additional details about the construction and operation of the

dual-tip STM can be found in Chapter 4.
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CHAPTER 4

Simultaneously Scanning Two Connected Tips in

a Dual-tip STM

4.1 Introduction

Josephson STMs that are sensitive to coherent tunneling of Cooper pairs have

recently been proposed [42, 67–70]. Unlike existing STMs, in principle such systems

could be used to measure variations in both the magnitude and phase of the order

parameter of the superconducting state on the atomic scale.

The approach I describe here involves obtaining a phase coherent signal from

an atomic size junction (J1) by connecting it to a larger superconducting junction

(J2) using an inductive shunt L to form an asymmetric SQUID [96]. The total

switching current Is of the SQUID will be dominated by J2 and can be deter-

mined accurately using current switching measurements [42, 97]. For I01 � I02,

the SQUID’s switching current Is achieves a maximum value of I02 + I01, when

the current through J1 and J2 are in phase. A minimum switching current of I02

- I01 results when the junctions are 180◦ out of phase. I01 and I02 are the critical
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currents of the small and large junctions, respectively and I have assumed I01 � I02

� Φ0/2L.

By coupling J1 to the larger junction J2 we can lock the phase difference across

J1 with respect to J2 and reduce its uncertainty. The relative phase difference across

the two junctions is determined by the effective flux, which is the flux applied to

the SQUID loop plus contributions due to the pairing symmetry of the sample at

the location of the tips. By measuring the SQUID’s switching current Is versus

applied flux Φa, one can extract the critical current I01 of the small junction and

the effective flux for a given tip location. For example, if one junction moves from

a location where it is tunneling into a positive phase in a d-wave superconductor to

a location where it is tunneling into a negative phase, we would see an equivalent

shift of Φ0/2 in the Is(Φa) characteristic [98].

For this approach to work the tips must be independently controllable, and

the connection between the tips must be superconducting and have a sufficiently

low inductance. The connection must be mechanically flexible enough that the tips

can be moved independently. The total loop inductance L of the SQUID should be

small because the minimum uncertainty σγ1 in the phase difference across the small

junction is [97]

σγ1 '
√

2e2

h̄

(
C1

LJ1

+
C1

L

)−1/4

, (4.1)

where LJ1 = Φ0/2πI01 is the Josephson inductance and C1 the capacitance of the

small junction. For L � LJ1 the minimum phase uncertainty will be small if Zs

=
√
L/C1 � h̄/2e2 = Rq = 2.035 kΩ. For a 1 nA STM junction, a 1 µA fixed
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junction, a loop inductance of 1 nH, and an STM junction with total capacitance

6 fF, one finds Zs = 234 Ω and σγ ≈ 0.44 radians, which is small enough to obtain

a measurable critical current [42], provided thermal fluctuations and external noise

are sufficiently small.

Sullivan et al. [42] completed a proof-of-principle experiment that demon-

strates the phase across a small junction can be significantly stabilized by coupling

to a large junction via an inductance. A small Al/Al2O3/Al junction was first pre-

pared (C ∼ 6 fF), that exhibited a highly suppressed switching current at 50 mK

due to phase diffusion. An identically prepared small junction was then fabricated

as part of a highly asymmetric, hysteretic SQUID with the junctions having capac-

itance of 100 fF and 6 fF. The switching current of the SQUID was measured, and

the I − Φ curve displayed a periodic modulation of ∼ 1 nA on top of the ∼ 800

nA total switching current. This result strongly suggests that a superconducting

dual-tip STM with comparable parameters will be capable of imaging the gauge

invariant phase of superconductors on the atomic scale.

To construct an STM with two connected tips, we started from an existing

dual-tip STM [41] that can operate at room temperature or in a dilution refrigera-

tor with a base temperature of 30 mK. Previously, the feasibility of scanning both

tips independently at mK temperatures was demonstrated using plasma-etched su-

perconducting Nb tips [94]. In Section 4.2, I describe how I modified this system

to enable operation with two tips that are electrically connected via a flexible link

made from thin Nb foil. In Section 4.3, I next discuss one of the main challenges of

operating two connected tips independently: only the total tunnel current through
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both tips can be measured, so that a new technique for controlling both tips us-

ing one current needed to be devised. I describe a technique for keeping each tip

in feedback and then demonstrate simultaneous imaging with both tips. Finally, in

Section 4.4, I describe images obtained by simultaneously scanning two tips at room

temperature and examine the electrical performance and mechanical characteristics

of the system.

4.2 Room temperature system setup

To form a SQUID, the two tips, connecting link and sample must be super-

conducting. We chose to use niobium for the tips, tip holders and connecting link

due to its toughness, high critical temperature, ability to make sharp tips and slow

oxidation rate [94]. (Alternatively, vanadium could also be used. Vanadium wire

is not as brittle as un-annealed niobium wire and it can be cut using wire cutters

to produce sharp points.) By attaching the connecting link to tip holders, instead

of directly to the tips, we get a stronger connection and can exchange tips without

having to remake the connection. Each tip slides into a small hole in its holder and

is held by friction. A disadvantage of connecting the holders is that this makes the

connector longer, which increases the SQUID loop inductance L and pickup area,

which would increase the phase diffusion in J1 and make the device more sensitive

to magnetic noise.

To make the link I used bow-tie shaped connectors that were cut from 25 µm
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Figure 4.1: Two laser-cut Nb foil connectors shown on a ruler with 1 mm marks.
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thick Nb foil (see Fig. 4.1). The cutting was done using an 800 nm wavelength laser

with a 100 fs pulse length, an average power of 1 W and spindle speed of 100 rpm.

The pads of the bow-tie allow a larger contact welding area to the tip holders and

the neck in the bow-tie gives flexibility so that each tip does not pull too strongly

on the other. The Nb connector was spot welded [99] to each tip holder (see Fig.

4.2) using a hand-held Cu spot-welding clamp.

4.3 Scanning two tips independently

With the tips electrically connected together by the Nb bowtie, the controller

can only measure the sum of the tunneling current from both tips. Since an inde-

pendent current signal from each tip is not available, a conventional STM constant-

current feedback mode (Chapter 2) cannot be used to control the tip-sample sep-

aration of both tips simultaneously. Instead, we devised a technique that involves

modulating each tip’s z-piezo voltage at a different frequency and then extracting

from the total current a separate feedback signal for each tip.

To understand this feedback technique, note that for a single STM tip at

a distance z above a surface, the tunneling current can be written as [61] (see
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1mm

Figure 4.2: Nb tip holders connected by spot welded Nb foil.
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Chapter 2)

I ∝
∞∫

−∞

|M |2Ntip(ε− eV ) ·Nsample(ε)[f(ε− eV, T )− f(ε, T )]dε

∝ e−κz (4.2)

where T is the temperature, 1/κ is the effective tunneling length scale, ε is the

electron energy (with respect to the Fermi level of the sample), Ntip is the density

of states of the tip, Nsample is the density of states of the sample, V is the voltage

applied to the sample with respect to the tip and |M |2 is the tunneling matrix

element, which decreases exponentially with distance from the sample.

From Eq. (4.2), the derivative of the tunneling current with respect to distance

z gives

dI

dz
= −κI. (4.3)

Thus the dI/dz signal from a tip is proportional to the current I through the tip,

with a constant factor of simply -κ.

Figure 4.3 shows our dual-tip electronics setup. One of the tips is controlled

by an RHK Technology SPM 1000 Scanning Probe Microscope Control System [91].

It has a maximum output piezo voltage of 220 V and uses analog feedback. The

other tip uses a Topometrix SPM control system [100] [obsolete] with a maximum

output piezo voltage of 220 V and digital feedback.

Figure 4.4 shows an STM measurement of I versus z and Fig. 4.5 shows a

measurement of dI(z)/dz versus z, where I used a Pt-Ir tip and a Au/mica sample
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Figure 4.3: Experimental configuration for using dI/dz signals to gener-
ate feedback for two electrically connected STM tips with two indepen-
dent position controllers. The RHK electronic controller has a built-in
modulation mode for the z–piezo, whereas the Topometrix system re-
quires an external modulation box. The safety box checks the total
output current and retracts both tips if the total current exceeds a set
value, preventing the tips from crashing into the sample.
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at room temperature. For this data, I parked the tip close enough to the sample

that there was an appreciable tunneling current (nA), and turned off the feedback.

I then retracted the tip a few Å from the surface while recording the tunnel current

and the dI/dz signal while the tip z position was modulated at an amplitude of 12

pm. As expected, dI/dz and I both decreased exponentially with the tip-sample

distance z. Thus the plots of I vs. z and dI/dz vs. z are approximately straight lines

on a semilog plot. Fitting Eq. (4.2) to the I(z) data, we find 1/κ ' 0.30 nm. Since

dI/dz is proportional to I (see Fig. 4.5), we can use the dI/dz from a z-modulated

tip as a feedback error signal when operating the STM.

To distinguish the currents from each tip, we add a small modulation of a

few mV at different frequencies (between 1 and 10 kHz) to the z-piezo of each

tip. I then used two lock-in amplifiers to monitor the total current and detect

dI/dz at each driving frequency. In practice we found that the total current has

an in-phase (resistive) component and a 90◦ out of phase (capacitive) component

at each frequency. The amplitude of the capacitive contribution to the current is

Ic ∼= 2πfV Cd/z, where z is the distance between the sample and the tip, C is the

effective tip-sample capacitance, d is the amplitude of the tip z-modulation, and the

sample is held at voltage V . For example, for C = 10 fF, frequency f = 5 kHz, bias

voltage V = 1 V, z = 0.5 nm and d = 6 pm, the capacitive current amplitude is Ic

= 10 pA which is not small given a typical tunneling current range of pA to nA.

Fortunately, since the two components are out of phase by 90◦, we can easily

measure and separate out the unwanted capacitive part; only the in-phase resistive

component will obey Eq. (4.3) and be useful for generating the feedback signal. To

71



4.3. SCANNING TWO TIPS INDEPENDENTLY

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1

5

10

50

100

z (nm)

I(
pA

)

Figure 4.4: Semi-log plot of measured tunneling current I (blue points)
versus distance z between a Pt-Ir tip and a Au/mica surface. The red
line is a fit to an exponential decay with 1/κ = 0.30 nm for z < 0.3 nm.
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Figure 4.5: Semi-log plot of measured |dI/dz| (blue points) versus dis-
tance z acquired simultaneously with Fig. 4.4. The red line is a fit to
data for z < 0.3 nm.
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find the phase ϕc of the capacitive current, we measure the current while the tip is

somewhat beyond the z-range where there is a detectable tunneling current. Apply-

ing an ac voltage to the scanner, we find a capacitive signal and determine the phase

ϕc at which the output from the lock-in is a maximum at the applied frequency;

this is the phase ϕc of the capacitive component. With the tip in tunneling range,

we then extract the component at ϕc ± 90◦ using the lock-in amplifier and use this

signal to generate the z-feedback signal for the tip, note this also gives a way to

measure C, which is an important parameter for the STM SQUID.

There are several factors to consider when choosing the z-modulation frequency

for our dI/dz feedback technique. A high frequency is desirable because this allows

a large feedback bandwidth and thus a high scan rate. If, however, the modulation

frequency is much higher than the piezotube’s resonant frequency, the tip will stop

responding to the applied modulation voltage. Our outer scanner has a resonance

at a few kHz and cuts off at 4.6 kHz, whereas for the inner scanner, the cut off is

around 11 kHz. The large difference in the scanner resonance frequencies allows us

to drive the two piezos with little crosstalk or interference using two well-separated

frequencies.

Our use of two modulation frequencies requires some additional modifications

to the standard feedback control. In standard constant current imaging mode (see

Chapter 2), the feedback control system naturally prevents the tip from crashing

into the sample. The tunnel current is compared to a set point and the feedback

system tries to maintain this value by moving the tip toward or away from the

sample. Even if the current amplifier saturates when the tip gets too close to the
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sample, the error signal will be large and the feedback control will pull back the tip.

However, for our dI/dz technique we are only monitoring dI/dz. Saturating the

current amplifier will cause the dI/dz feedback signal to drop to zero, which is less

than the set point, and the feedback control will push the tip forward, causing the

tip to crash into the sample.

To prevent this, I incorporated a safety box into the control system (see

Fig. 4.3). The inputs to the safety box (see Fig. 4.6) are the two dI/dz signals

from both lock-in amplifiers and the total tunnel current. If the total current is

larger than a threshold value (typically 7 nA), the safety box outputs 10 V to the

tip feedback system to force both tips to be pulled back. Otherwise the safety box

just outputs the detected dI/dz signal for each tip. A downside of this method is

that both tips are pulled back, since I do not determine which tip caused the safety

box to trigger. In principle, this could be determined by examining the dI/dz

signals. In practice, I set the threshold current close to the maximum output of

the current amplifier and adjust the scan parameter so that the safety box is not

triggered too often during a scan.

4.4 Simultaneously scanning two STM tips on test samples

To test the two-tip feedback system with both tips connected together, I used

the STM to image HOPG and Au/mica samples with Pt-Ir tips at room temperature

in air. In the first set of tests I brought one tip into tunnel range and scanned the
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dI/dz

dI/dz

I

Figure 4.6: Simplified circuit for the safety box. If the combined tunnel-
ing current signal sent to Input I is higher than the set point, the output
of the comparator switches from 0 V to -10 V, which makes outputs 1
and 2 switch to 10 V, causing both tips to retract. Otherwise the output
of the comparator is 0 V and feedback outputs 1 and 2 are determined
by the corresponding dI/dz signal.

sample while the other tip was out of tunnel range and vice versa. I used the RHK

controller as the feedback system and set the lock-in phase so that the capacitive

contribution to the lock-in output was minimized.

Figure 4.7 shows a topographic image of the Au/mica surface that was scanned

with the inner tip using its tunneling current as the feedback signal in the standard

way. Single atomic layer steps are clearly seen. After the image was taken, I added

a small modulation of ∼6 pm at a frequency of 9.103 kHz to the inner tip z–

piezo and recorded the modulation of the current signal at that frequency using a

lock-in amplifier with an averaging time constant of 0.3 ms. Figure 4.8 shows the

corresponding image of the same region taken using the inner tip in dI/dz mode.

Before switching to the dI/dz mode, I moved the tip back ∼ 20 nm out of tunnel
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range. I then switched the feedback input to dI/dz, brought the tip back into tunnel

range, and resumed taking images. Comparing the images, the steps in Fig. 4.7 are

not as sharp as in Fig. 4.8, but overall the two images are remarkably similar, as

expected.

Figure 4.9 shows an image with atomic resolution on an HOPG sample taken

with the outer tip using current feedback. The corresponding image in dI/dz mode

is shown in Fig. 4.10 and it is quite similar, although some distortion is visible in

Fig. 4.10 due to the feedback reacting slower during the scan. With the inner tip, we

were not able to achieve atomically resolved images on HOPG. Typically, the inner

tip was less stable than the outer tip because the inner scanner is located above

the inner walker [41], so the overall lever arm is longer, making the inner tip more

susceptible to vibration.

After demonstrating the feasibility of using the dI/dz mode for imaging, I

scanned both tips simultaneously. To do this, I used the Topometrix SPM control

system for the inner tip and the RHK SPM100 for the outer tip (see Fig. 4.3).

The modulation frequency was 4.517 kHz for the outer tip and 10.007 kHz for the

inner tip. The threshold of the safety box was set to 6 nA and the tips were raster

scanned at different rates. Figure 4.11 (a) and (b) were taken with the outer tip

while Fig. 4.11 (c) and (d) were taken with the inner tip. Figure 4.11 (a) and (c)

were taken with one tip scanning using dI/dz as the feedback signal while the other

tip was retracted. Figure 4.11 (b) and (d) were taken with both tips scanning at

the same time and the resulting images can be compared directly to Fig. 4.11 (a)

and (c). The two images taken with the outer tip are very similar. White spots in
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50 nm

Figure 4.7: Topographic STM image of Au/mica taken with the inner
Pt-Ir tip using current for generating the feedback signal for the z-piezo.
The sample bias is 1 V and the tunneling current is 80 pA. The z color
scale range represents the height difference of 8 nm.
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50 nm

Figure 4.8: Topographic STM image of Au/mica taken with the inner
Pt-Ir tip using dI/dz for generating the feedback signal for the z-piezo.
The same region as in Fig. 4.7 has been imaged.
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Figure 4.9: (a) Topographic STM image of HOPG showing atomic reso-
lution taken with the outer Pt-Ir tip using current as the feedback signal.
(b) Line section of the topographic signal z vs. x along the blue line in
(a).
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Figure 4.10: (a) Topographic STM image of HOPG showing atomic
resolution taken with the outer Pt-Ir tip using dI/dz as the feedback
signal. (b) Line section of the topography z vs. x along the blue line in
(a).
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Fig. 4.11 (d) are pixels at which the outer tip scanned across a step edge and caused

the safety box to trigger and retract both tips. Other than that, the tips seem not

to affect each other significantly.

Although the images in Fig. 4.11 do not show obvious effects from mechanical

coupling between the tips which were connected together with the Nb bow-tie, note

that the inner tip assembly, due to its long lever arm, will be pulled by the outer

tip if the outer tip moves a significant distance. Figure 4.12 shows an image of the

HOPG sample taken with the inner tip while the outer tip was scanning at the same

time with a scan range of 16 nm × 16 nm. The appearance of the steps was not

affected significantly while the outer tip was scanning over this small range. For

comparison, Fig. 4.13 shows an image of the same region taken using the inner tip,

but this time while the outer tip was moved around a 2 µm× 2 µm region. Initially

the outer tip was at the bottom right corner of the total scan area. After scanning a

few lines with the inner tip, we moved the outer tip to the bottom left corner of its

scan area and waited for a few lines while the inner tip kept scanning. We repeated

the same procedure, moving the outer tip to the other corners before returning the

outer tip back to the starting corner and repeating the entire cycle.

Comparison of Fig. 4.12 and Fig. 4.13 shows that while Fig. 4.13 was being

acquired the inner tip moved significantly each time the position of the outer tip

changed. The white arrows and labels 1 to 4 indicate the image sections for which

the outer tip was at the extreme corner of its scan range (see inset). Analysis of

the images shows that the inner tip moved by about 40 nm in Fig. 4.13 when the

outer tip changed from position 1 to position 2 (indicated by a green line at 45◦ with
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(a)
10 nm 10 nm

10 nm 10 nm

(b)

(c) (d)

Figure 4.11: Topographic STM images of Au on mica. The top row
images (a) and (b) were taken using the outer tip with a z-modulation
frequency of 4.517 kHz. Bottom row images (c) and (d) were taken using
the inner tip and a z-modulation frequency of 10.007 kHz. (a) and (c)
used dI/dz as feedback input while the other tip was out of tunneling
range. Images (b) and (d) were taken simultaneously, i.e. with both
tips scanning at the same time. White spots in (d) are pixels where the
safety box retracted both tips when the outer tip scanned over a large
step edge.
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50 nm

Figure 4.12: Topographic images taken with the inner STM tip on the
surface of HOPG while at the same time, the outer tip was scanning a
16 nm × 16 nm area.
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1
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3
2

1

1
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3
2
1

3 4

2 1

50 nm

Figure 4.13: Topographic images taken with the inner STM tip on the
surface of HOPG while, at the same time, the outer tip was moved
around its maximum 2 µm × 2 µm scan area. Step edges are shifted
due to the outer tip pulling the inner tip as the outer tip is moved to
a new location. Labels 1, 2, 3, 4 indicate the corner at which the outer
tip was located when the inner tip was scanning the corresponding lines.
The green line shows the inner tip displacement vector change when the
outer tip moved from corner 1 to corner 2.
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respect to the horizontal axis). This corresponds to a reduction by about a factor

of 50 in the relative motion of the inner tip due to the outer tip, indicating a very

flexible connection. We note that motion of the inner tip has a much smaller effect

on the outer tip due to the greater rigidity of the outer tip walker. This behavior

suggests it would be best to use the outer tip as a large fixed junction (reference

junction) and use the inner tip as the small junction for scanning across the sample

to image changes in superconducting phase.

4.5 Conclusions

In this chapter I described how I electrically connected two tips together in a

dual-tip STM using a bowtie shaped Nb foil connector. I also described images of

HOPG and Au/mica samples obtained with the system at room temperature. Both

tips showed good images, with the outer tip obtaining atomically resolved images on

HOPG. Using dI/dz feedback, I obtained topographic images, successfully scanned

both tips at the same time and measured the mechanical coupling between the tips.

These results are a significant step towards using our dual-tip STM to measure the

gauge-invariant phase on a superconducting sample.
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CHAPTER 5

Superconductivity and BTK Theory

In Section 5.1 I start by describing the basic principles of superconductivity

and the Bardeen-Cooper-Schrieffer (BCS) theory. I introduce a few important con-

cepts which will be used throughout the thesis, namely the superconducting gap ∆,

critical temperature Tc, and density of states D(E). In Section 5.2 I then discuss the

theory of Andreev reflection and subgap structure observed in the I − V character-

istics of N-I-S junctions. When an electron-like quasiparticle is incident on an S-N

interface from the normal side, a hole-like quasiparticle is reflected at the interface

due to the Andreev reflection, thus creating a Cooper pair on the superconducting

side. In the discussion for the BTK theory, I show that the theory describes an S-N

junction for arbitrary transparency. This is different from the behavior of a standard

N-I-S junction in the low transparency limit (tunneling limit) that I described in

the Chapter 2.
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5.1 Introduction to superconductivity

The Bardeen, Cooper, Schrieffer (BCS) theory [101, 102] provides a micro-

scopic quantum description of superconducting phenomena. A key feature of the

theory is that two electrons with opposite momenta can bind together to form a

Cooper pair [103]. The attractive force is due to the first electron polarizing the

medium (lattice) by attracting positive ions. The ions in turn attract the second

electron. The effective attractive interaction between the electrons can overcome

the Coulomb repulsion between electrons, which is reduced by screening.

At sufficiently low temperature, the formation of Cooper pairs creates an in-

stability in the Fermi sea of electrons, and the Cooper pairs condense into a single

ground state. The BCS ground state wavefunction of the electrons can be written

as [101, 102]

|ΨBCS〉 =
∏

k=k1,k2....kn

(uk + νkc
†
k,↑c
†
−k,↓) |Φ0〉 (5.1)

where c†k,↑c
†
−k,↓ is the pair creation operator with zero total momentum, |νk|2 is the

probability of the pair being occupied, |uk|2=1 − |vk|2 is the probability that the

pair is unoccupied and |Φ0〉 is the vacuum sate with no particles present.

The BCS Hamiltonian of a superconducting system can be written as [101,

102]:

Ĥ =
∑
k,σ

(εk − µ)c†k,σck,σ +
∑
k,l

Vklc
†
k,↑c
†
−k,↓c−l,↓cl,↑ (5.2)

The first term is the kinetic energy of all the free electrons with respect to the

chemical potential µ of the system. The second term is the attractive interaction
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between electrons with interaction coupling strength Vkl.

Given Eq. (5.1) and Eq. (5.2) the goal is to find the parameters uk and νk for the

ground state such that the energy E=〈ΨBCS| Ĥ |ΨBCS〉 is minimized. The easiest

way to do this is to use a variational method [101, 102]. However the technique is

somewhat clumsy when dealing with excited states that occur for T > 0. Instead,

I will use mean-field theory [104, 105] to handle both the ground state and excited

states. I note that this approach only works well in standard BCS theory in the

weak-coupling limit [106, 107].

The ground state of a BCS superconductor is a many-body state composed of

a phase-coherent superposition of pairs of electrons occupying states (k ↑, −k ↓).

Due to the coherence, operators c−k↓ck↑ can have non zero expectation values and

we can write c−k↓ck↑ = 〈c−k↓ck↑〉 + (c−k↓ck↑−〈c−k↓ck↑〉), where the second term can

be small. Substituting this expression into the interaction term in the Hamiltonian

Eq. (5.2), one finds:

Ĥ =
∑
k,σ

(εk − µ)c†k,σck,σ +
∑
k,l

Vkl(〈c†k↑c
†
−k↓〉 〈c−l↓cl↑〉+ 〈c†k↑c

†
−k↓〉(c−l↓cl↑

− 〈c−l↓cl↑〉) + (c†k↑c
†
−k↓ − 〈c

†
k↑c
†
−k↓〉) 〈c−l↓cl↑〉)

=
∑
k,σ

(εk − µ)c†k,σck,σ +
∑
k,l

Vkl(〈c†k↑c
†
−k↓〉c−l↓cl↑ + c†k↑c

†
−k↓ 〈c−l↓cl↑〉

− 〈c†k↑c
†
−k↓〉 〈c−l↓cl↑〉) (5.3)
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Defining the order parameter ∆k = −
∑
l

Vkl〈c−l↓cl↑〉, the Hamiltonian then becomes

Ĥ =
∑
k,σ

(εk − µ)c†k,σck,σ −
∑
k

(∆†kc−k↓ck↑ + ∆kc
†
k↑c
†
−k↓ −∆k〈c†k↑c

†
−k↓〉) (5.4)

The last sum in Eq. (5.4) is just a constant term, which we will retain because of

the condensation energy of the superconducting state.

To diagonize the Hamiltonian, we introduce the quasiparticle operators γk0, γ
†
k1

via the Bogoliubov-Valatin transformation [105]

ck↑ = u∗kγk0 + νkγ
†
k1

c†−k↓ = −ν∗kγk0 + ukγ
†
k1 (5.5)

I now rewrite Eq. (5.4) in the matrix form

Ĥ =
∑
k

[(
c†k↑ c−k↓

) ξk −∆k

−∆†k −ξk


 ck↑

c†−k↓

+ ξk + ∆kb
†
k

]
(5.6)

where ξk = εk − µ and bk = 〈c−k↓ck↑〉. Using Eq. (5.5), we can now write

Ĥ =
∑
k

[(
γ†k0 γk1

)uk −νk
ν∗k u∗k


 ξk −∆k

−∆+
k −ξk


 u∗k νk

−ν∗k uk


γk0

γ†k1


+ξk + ∆kb

†
k

] (5.7)

To diagonize the Hamiltonian Eq. (5.7) in the γ basis, we expand the middle
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5.1. INTRODUCTION TO SUPERCONDUCTIVITY

three matrices and choose the uk and νk so that the coefficients of the off-diagonal

terms γ†k0γ
†
k1 and γk1γk0 vanish. Multiplying out the three middle matrices from

Eq. (5.7) gives:

(|uk|2 − |νk|2)ξk + ∆kukν
∗
k + ∆∗ku

∗
kνk 2ukνkξk − u2

k∆k + ν2
k∆∗k

2u∗kν
∗
kξk − u∗2k ∆∗k + ν∗2k ∆k −((|uk|2 − |νk|2)ξk + ∆kukν

∗
k + ∆∗ku

∗
kνk)


(5.8)

The coefficients of the unwanted (off-diagonal) terms will vanish if

2ξkukνk + ∆∗kν
2
k −∆ku

2
k = 0 (5.9)

Multiplying Eq. (5.9) by ∆∗k/u
2
k gives:

2
ξkukνk∆

∗
k

u2
k

+
∆∗kν

2
k∆∗k
u2
k

−∆k∆∗k = 0 (5.10)

Rearranging gives:

(
∆∗kνk
uk

)2 + 2ξk(
∆∗kνk
uk

)− |∆k|2 = 0 (5.11)

and solving the resulting quadratic equation gives:

∆∗kνk
uk

=
√
ξ2
k + |∆k|2 − ξk = Ek − ξk (5.12)
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where

Ek =
√
ξ2
k + |∆k|2 (5.13)

and Ek is the quasiparticle energy. From Eq. (5.13) the minimum energy to excite

a single quasiparticle is the energy gap |∆k|. The quantity ∆k is also the order

parameter [64, 108, 109] for the superconducting state and vanishes for T > Tc.

Given the normalization requirement |uk|2 + |vk|2 = 1 and Eq. (5.12), we can

write:

|νk|2 = 1− |uk|2 =
1

2
(1− ξk

Ek
) (5.14)

The remaining diagonal terms in Hamiltonian Eq. (5.7) can be evaluated and the

Hamiltonian becomes

Ĥ =
∑
k

Ek(γ
†
k0γk0 + γ†k1γk1) +

∑
k

(ξk + ∆kb
†
k − Ek) (5.15)

The last term is the energy difference between the superconducting state and normal

state at T = 0, and is called the condensation energy. Equation (5.15) gives the

excitation energy from the ground state in terms of the number operators γ†kγk.

Therefore the γk describe the excitations of the systems. They are called ’Bogoliubov

qausiparticles’ or ’Bogoliubovons’.

To see what the γk0 and γk1 mean physically, I invert the transformation
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Eq. (5.5), and get

γ†k0 = u∗kc
†
k↑ − ν∗kc−k↓

γ†k1 = u∗kc
†
−k↓ + ν∗kck↑

(5.16)

γ†k0 effectively creates Bogoliubovon of momentum k and spin ↑, since c−k↓ subtracts

a particle with (−k ↓) from the system, which is the same as adding a particle (k ↑).

Similarly, γ†k1 creates a Bogoliubovon with wave vector −k and spin ↓.

Inserting Eq. (5.5) into the equation for the order parameter ∆k = −
∑
l

Vkl〈cl↓cl↑〉,

one finds:

∆k = −
∑
l

Vklu
∗
l νl(1− 〈γ

†
l0γl0〉 − 〈γ

†
l1γl1〉). (5.17)

At T = 0, no quasiparticles are excited and Eq. (5.17) becomes

∆k = −
∑
l

Vklu
∗
l νl = −1

2

∑
l

Vkl
|∆l|
El

(5.18)

where the BCS interaction is,

Vkl =


−V if |ξk| < h̄ω

0 otherwise.

(5.19)

Here ω is the Debye cutoff frequency of the ions in the lattice. This means that

the electron-phonon interaction happens within a thin shell near the Fermi surface.

In the BCS model of the elctron-phonon interaction [101, 102], the gap is constant

and does not vary with the direction of k, i.e. it is isotropic or s-wave symmetric.

This model can be extended to describe unconventional superconductivity where
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the order parameter (energy gap ∆) has other symmetries. For example, p-wave

superconductors [110] or d-wave superconductors [111].

Inserting Vkl from Eq. (5.19) into Eq. (5.18) one obtains a self-consistency

equation

∆ =


V
2

∑
k

∆

Ek
if |ξk| < h̄ω

0 otherwise.

(5.20)

Note in Eq. (5.20) that the sum is over a thin shell around the Fermi energy with

|ξk| = |εk − µ| < h̄ω. The sum over k can be replaced by an integration over energy

ξ from −h̄ω to h̄ω. Canceling the gap ∆ from both sides, Eq. (5.20) becomes

1 = V

∫ h̄ω

0

1√
ξ2 + ∆2

D(ξ)dξ (5.21)

The factor of 2 in Eq. (5.20) disappears due to the symmetry of the integration

over ξ. To proceed, I substitute ξ = x∆ and note that the normal metal density of

states D(ξ) can be taken as constant D0 over the small integration range provided

h̄ω � EF . Equation (5.21) becomes

1 = V D0

∫ h̄ω/∆

0

∆dx

∆
√

1 + x2
= V D0

∫ h̄ω/∆

0

dx√
1 + x2

= V D0

∫ tanh−1(h̄ω/∆)

0

sec2 θdθ

sec θ
= V D0

∫ tanh−1(h̄ω/∆)

0

sec θdθ

= V D0 ln | sec θ + tan θ||tanh−1(h̄ω/∆)
0 = V D0 ln |

√
1 + x2 + x||h̄ω/∆0

= V D0 sinh−1 x|h̄ω/∆0 = V D0 sinh−1(
h̄ω

∆
) (5.22)
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The gap equation then becomes

∆ =
h̄ω

sinh(1/V D0)
≈ 2h̄ωe−1/D0V (5.23)

The last approximation is valid in the limit V D0 � 1.

For finite temperatures, the presence of quasiparticles needs to be taken into

account. The probability of having a quasiparticle excitation with energy Ek is given

by the Fermi function

f(Ek) =
1

eEk/kBT + 1
(5.24)

Equation (5.17) then becomes [64, 101, 102]:

∆k = −
∑
l

Vklu
∗
l νl[1− 2(f(El))] = −

∑
l

Vkl
∆

2El
tanh

(
El

2kBT

)
(5.25)

Again using Eq. (5.19) and assuming that ∆ is independent of the k direction, I

obtain an implicit equation for the gap as a function of temperature:

1

V
=

1

2

∑
k

tanh(Ek/2kBT )

Ek
(5.26)

Similar to the T = 0 case, I get

1

V
=

∫ h̄ω

0

tanh
(√

ξ2 + ∆2/2kBT
)

√
ξ2 + ∆2

D(ξ)dξ (5.27)

Using equation Eq. (5.27), one can find the superconducting gap as a function
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of temperature T and the critical temperature where the gap disappears and the

material becomes a normal metal. Substituting ∆ = 0 at T = Tc, we get:

1 = V D0

∫ h̄ω

0

tanh(ξ/2kBTc)

ξ
dξ. (5.28)

With ξ/2kBTc = x, Eq. (5.28) becomes

1 = V D0

∫ h̄ω/2kBT

0

tanh(x)dx

x
= V D0(lnx tanhx|h̄ω/2kBT0 −

∫ h̄ω/2kBT

0

lnx sec2 xdx)

(5.29)

Assuming h̄ω � 2kBT , one finds:

1

V D
= (ln (h̄ω/2kBT )− ln 0.44) (5.30)

and thus

kBTc = 1.136h̄ωe−1/V D0 (5.31)

If we compare Eq. (5.23) and Eq. (5.31), we obtain a relationship between the

superconducting gap ∆(0) at zero temperature T = 0 and the critical temperature

Tc,

∆(0)

kBTc
=

2

1.13
= 1.764 (5.32)

Thus there is a direct relationship between the critical temperature Tc and the

superconducting gap ∆(0) at T = 0 in conventional BCS theory.
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Finally to calculate the superconducting gap as a function of temperature

[64], we have to use numerical integration, as there is no direct way of simplifying

Eq. (5.27). In Fig. 5.1, I plot the superconducting gap ∆ versus the temperature T

from the BCS theory. The temperature T is normalized to the critical temperature

Tc and the superconducting gap ∆ is normalized to the superconducting gap ∆(0) at

zero temperature. From the plot, we can see that the superconducting gap does not

vary much until T ≥ 0.4Tc of the critical temperature of the material. Other than

Tc and ∆(0), this behavior does not depend on the material, provided the material

has s-wave pairing and a weak electron-phonon coupling constant.

5.1.1 Density of states

Here I derive the density of the excited states in a superconducting material.

In a normal metal, states above the Fermi energy can be occupied by exciting

an electron, while an empty electron state below the Fermi level can be treated as

a hole excitation. The density N(E) of excited states in a superconductor obeys:

N(E)dE = N(ξ)dξ (5.33)

For a metal made which contains a non-interacting Fermi gas, dξ/dE = 1, and

Nn(E) = Nn(ξ).

In the superconducting case, there are no excited states with |E| < ∆, but we
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Figure 5.1: Normalized BCS superconducting gap ∆/∆0 as a function
of normalized temperature T/Tc.
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still have

Ns(E)dE = Nn(ξ)dξ (5.34)

since we are only interested in energies that are within a few meV from the Fermi

energy (the typical energy scale of ∆), we can take Nn(ξ) = Nn(0) as constant.

From Eq. (5.34) and Eq. (5.13), we then find

Ns(E)

Nn(0)
=

dξ

dE
=


E√

E2−∆2
(|E| > ∆)

0 (|E| < ∆)
(5.35)

Figure 5.2 shows a plot of Ns(E)/Nn(0) as a function of E. Note in particular

that the density of states diverges as E approaches ∆ from above, while for |E| < ∆,

there is zero density of states.

5.2 Andreev reflection

In Chapter 2, I discussed the current-voltage characteristics of tunnel junctions

made with a normal metal electrode and a superconducting electrode. For S-I-N

tunneling the main takeaway was that since there are no states in the superconductor

with energy |E| < ∆, there was no tunneling current for |eV | < ∆ at T = 0. However

experimentally when the tunnel barrier is low enough, step-like increments of the

current occurs for |E| < ∆. This phenomenon is explained by Andreev reflection

[44]. Andreev first considered the situation where there is no tunnel barrier. For a
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Figure 5.2: Normalized plot of density of states of a superconductor as
a function of energy.
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quasiparticle with momentum h̄kF and a plane wave as a trial function, he solved the

superconducting Bogoliubov-de-Gennes equation [64, 104, 105, 112]. After ignoring

higher order terms in the Hamiltonian, he found a wavefunction with one component

representing an electron traveling to the right in the normal metal and another

component representing a hole traveling to the left in the normal metal. When the

electrons are incident on the S-N interface from the normal metal at energies E < ∆,

they cannot enter the superconductor because there are no available quasiparticle

states with E < ∆. Instead, Andreev’s solution reveals that a hole is reflected back

and a Cooper pair with charge 2e is added to the superconductor. This process is

called Andreev reflection.

Blonder, Tinkham, and Klapwijk (BTK) [45] generalized Andreev’s picture to

obtain the I−V curve of S-N interfaces with different transparency [44]. To do this

they introduced a δ-function potential barrier of strength Z at the S-N interface

and solved the Bogoliubov equations [45] to find the probability of tunneling as a

function of Z. When the barrier is high, Z � 1, one recovers the tunnel limit

results described in Chapter 2. This is the high-Z limit where Andreev effects are

suppressed. In contrast, when Z � 1, the barrier height is low, the interface is

very transparent, most of the electrons are Andreev reflected, and Andreev effects

dominate the conductance.
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5.2.1 BTK theory

To find the I − V characteristics of a normal–superconductor junction, the

key idea of the BTK theory is to use the Bogoliubov Hamiltonian Eq. (5.6) to

find the wavefunctions of electrons and quasiparticles in the normal electrode and

superconducting electrode. To deal with the interface, they included a δ-function

potential. Matching the wavefunctions at the interface yields the transmission and

reflection coefficients.

For the superconductor, one can start from Eq. (5.6) and write the one-

dimensional Bogoliubov equation [45, 64]:

− h̄2

2m
∂2

∂x2 − µ+H0δ(x) ∆(x)

∆∗(x) h̄2

2m
∂2

∂x2 + µ−H0δ(x)


u(x)

ν(x)

 = E

u(x)

ν(x)

 (5.36)

On the normal side there is no superconducting gap and Eq. (5.36) reduces to

− h̄2

2m
∂2

∂x2 − µ 0

0 h̄2

2m
∂2

∂x2 + µ


u(x)

ν(x)

 = E

u(x)

ν(x)

 (5.37)

Solving this equation for the eigenvalues E, we obtain E = +
√

( h̄
2k2

2m
− µ)2 where

µ =
h̄2k2

F

2m
. One solution corresponds to an electron with wavevector ke such that

ke > kF and energy E = h̄2k2
e

2m
− µ, the other solution corresponds to a hole with

wavevector kh such that |kh| < kF and energy E = − h̄2k2
h

2m
+µ. The solutions for the
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wave function can then be written as

Ψe(x) =

1

0

 e±ikex, where ke =

√
2m

h̄2 (E + µ) (5.38a)

Ψh(x) =

0

1

 e±ikhx, where kh =

√
2m

h̄2 (µ− E) (5.38b)

On the superconducting side, we obtain E = +
√

( h̄
2q2

2m
− µ)2 + ∆2 where µ =

h̄2k2
F

2m
.

Again there are two solution for the energy,
√
E2 −∆2 = h̄2q2

e

2m
− µ for the electron

case with qe > kF , and
√
E2 −∆2 = − h̄2q2

h

2m
+ µ for the hole case with qh < kF . The

wavefunction on the superconducting side can be written as

Ψe(x) =

u0

ν0

 e±iqex, where qe =

√
2m

h̄2 (
√
E2 −∆2 + µ) (5.39a)

Ψh(x) =

ν0

u0

 e±iqhx, where qh =

√
2m

h̄2 (µ−
√
E2 −∆2) (5.39b)

If we plug in the energy E and wavefunction defined in Eq. (5.39) into Eq. (5.36),

we get u0 =
√

1
2
(1 +

√
E2−∆2

E
) and ν0 =

√
1
2
(1−

√
E2−∆2

E
). The form for u0 and ν0

are the same as in Eq. (5.14).

Given Eq. (5.38) for the wavefunction in the normal (left) electrode and

Eq. (5.39) for the wavefunction for the superconductor (right) side, we now as-

sume that the wavefunction for the left side has incident and reflected waves. The

incident electron wave function, incoming from the normal left electrode towards
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the interface S-N, is

Ψin(x) =
1
√
ve

1

0

 eikex (5.40)

This wave is reflected back into the normal left region and consists of a left-moving

electron and a a left-moving hole. Note that the momentum k of a left moving hole

will be negative [113] and thus

Ψreflect(x) =
ree√
ve

1

0

 e−ikex +
rhe√
vh

0

1

 e+ikhx. (5.41)

Here ree represents the amplitude of the reflection coefficient of the electron,

rhe represents the amplitude of the Andreev reflection coefficient of the holes from

incident electrons and ve ' vh ' vF is the Fermi velocity on the left side.

On the right side (superconductor), the transmitted wave contains right-moving

electron-like particles and right-moving hole-like particles

Ψtrans(x) =
tee√
we

u0

ν0

 e+iqex +
the√
wh

ν0

u0

 e−iqhx (5.42)

where tee is the amplitude of the transmission coefficient of the electron and the is the

amplitude of the transmission coefficient of the holes. I note that the wavefunctions

are normalized by the different velocities w and v, on the respective sides of the

barrier, due to conservation of probability. To determine the velocity of the electrons
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and holes in the normal electrode and superconductor electrode, we can use the

relation v = 1
h̄

∣∣dE
dk

∣∣ to obtain:

ve =
h̄ke
m
' vF vh =

h̄kh
m
' vF

we =

√
E2 −∆2

E

h̄qe
m

wh =

√
E2 −∆2

E

h̄qh
m

(5.43)

Finally, we need to match the two wavefunctions at the S-N interface. From

Eq. (5.36), we have

(− h̄2

2m

∂2

∂x2
− µ)u(x) +H0δ(x)u(x) + ∆(x)ν(x) = Eu(x) (5.44)

Integrating the equation over an infinitesimal section spanning the boundary at

x = 0, we obtain

− h̄2

2m

∂u

∂x

∣∣∣∣0+

0−
+H0u(0) = 0 (5.45a)

∂u(0+)

∂x
− ∂u(0−)

∂x
=

2mH0

h̄2 u(0) (5.45b)

This is also true for the ν(x) case. Thus we obtain four equations that need to be
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satisfied at the boundary:

u(0+) = u(0−) (5.46a)

ν(0+) = ν(0−) (5.46b)

∂u(0+)

∂x
− ∂u(0−)

∂x
=

2mH0

h̄2 u(0) (5.46c)

∂ν(0+)

∂x
− ∂ν(0−)

∂x
=

2mH0

h̄2 ν(0) (5.46d)

We now plug Eq. (5.40), Eq. (5.41) and Eq. (5.42), into Eq. (5.46) and arrive at

four equations for the parameters tee, the, ree, rhe:

1
√
ve

+
ree√
ve

=
tee√
we
u0 +

the√
wh
ν0 (5.47a)

rhe√
vh

=
tee√
we
ν0 +

the√
wh
u0 (5.47b)

iqe
tee√
we
u0 − iqh

the√
wh
ν0 − ike

1
√
ve

+ ike
ree√
ve

=
2mH0

h̄2 (
1
√
ve

+
ree√
ve

) (5.47c)

iqe
tee√
we
ν0 − iqh

the√
wh
u0 − ikh

rhe√
ve

=
2mH0

h̄2

rhe√
ve

(5.47d)

Blonder et al. [45] solved these four equations Eq. (5.47) by using a semi-

classical approximation. This approximation is based on the fact that E and ∆

are relatively small compared to the Fermi energy µ. To proceed, in Eq. (5.38) and

Eq. (5.39), we retain just the lowest order in k, with ke = kh = qe = qh = kf =
√

2mµ
h̄2
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so that Eq. (5.43) then becomes

ve = vh =
h̄kf
m

(5.48a)

we = wh =

√
E2 −∆2

E

h̄kf
m

(5.48b)

Plugging Eq. (5.48) into Eq. (5.47) and solving the four equations for the four

parameters, we obtain:

rhe =
u0ν0

u2
0 + Z2(u2

0 − ν2
0)

(5.49a)

ree =
(Z2 + iZ)(ν2

0 − u2
0)

u2
0 + Z2(u2

0 − ν2
0)

(5.49b)

tee =
(1− iZ)u0

√
u2

0 − ν2
0

u2
0 + Z2(u2

0 − ν2
0)

(5.49c)

the =
iZν0

√
u2

0 − ν2
0

u2
0 + Z2(u2

0 − ν2
0)

(5.49d)

where the barrier height parameter is Z = H0m/h̄
2kf = H0/h̄vf .

The transmission and reflection coefficients can be obtained from Eq. (5.49).

Here we preserve the convention in Ref. [45]. A = |rhe|2 gives the probability

of Andreev reflection. B = |ree|2 gives the ordinary reflection probability of elec-

trons, C = |tee|2 is the transmission amplitude of electrons without branch cross-

ing while D = |the|2 is the transmission of the holes with branch crossing. Ta-

ble 5.1 gives A,B,C,D for both E > ∆ and E < ∆, where u0 =
√

1
2
(1 +

√
E2−∆2

E
),

ν0 =
√

1
2
(1−

√
E2−∆2

E
), for the E > ∆ case. For E < ∆, we have to use the defi-
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Table 5.1: Transmission and reflection coefficients in the BTK theory. A is the
probability of Andreev reflection. B is the probability of ordinary reflection of
electrons. C is the probability of transmission of the electrons. D is the probability
of transmission of the holes.

A B C D

E > ∆ u2
0ν

2
0

[u2
0+Z2(u2

0−ν2
0 )]2

(u2
0−ν2

0 )Z2(1+Z2)

[u2
0+Z2(u2

0−ν2
0 )]2

u2
0(u2

0−ν2
0 )(1+Z2)

[u2
0+Z2(u2

0−ν2
0 )]2

ν2
0 (u2

0−ν2
0 )

[u2
0+Z2(u2

0−ν2
0 )]2

E < ∆ ∆2

E2+(∆2−E2)(1+2Z2)2
1− A 0 0

nition u0 =
√

1
2
(1 + i

√
∆2−E2

E
), ν0 =

√
1
2
(1− i

√
∆2−E2

E
) and plug into Eq. (5.49). I

note that in this case C = D = 0.

In Fig. 5.3, I plot the coefficients A (blue) and B (red) as a function of energy

for different values of Z. As we can see in Fig. 5.3(a), Z = 0 is the ideal transparent

limit. In this case A = 1 inside the gap, meaning all incident electrons in the N-

region are Andreev reflected as holes. For energies above the gap, we see that an

electron has a finite probability to be transmitted as an electron. On the other

hand, for E < ∆ and Z � 1 (see Fig. 5.3(d)), the electrons are almost completely

reflected as electrons, and there is barely any Andreev reflection. This is also the

reason why in the tunnel limit, no current flows across the junction for V < ∆/e.

Note also that for E < ∆: A = 1 − B, i.e. the probability of transmission plus

reflection must be equal to 1. So an increased probability of electron reflection will

lead to a decrease of Andreev reflection.
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Figure 5.3: (a)-(d) plot of Andreev reflection probability A (blue) and
normal electron reflection amplitude B (red) as a function of normalized
energy E/∆ at different values of the barrier height Z. For Z = 0 and
E < ∆, all electrons are Andreev reflected at the interface. For E > ∆
electrons are partially reflected. For Z � 1, the electrons are completely
reflected for E < ∆ and partially transmitted for E > ∆.
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5.2.2 Calculation of I-V Characteristics for S-I-N junction from the

BTK model

In this section I discuss the BTK model for how the current-voltage charac-

teriscis behave as a function of the barrier height Z. The derivation is somewhat

complicated and a very nice and detailed derivation can be found in lecture notes

from Kopnin [114].

Essentially there are four processes that contribute to current flowing across

an S-I-N interface. The first process is due to electrons that are incident on the

S/N interface from the normal side. Such electrons have a probability to be An-

dreev reflected as holes and normally reflected as electrons, while the rest will be

transmitted as quasiparticles into the superconducting side. The second process is

due to holes incident on the S/N interface from the normal side. The third process

involves electron-like quasiparticles starting out on the superconducting side and

transferring electrons or holes to the normal side. The last process involves hole-like

quasiparticles incident on the S/N interface from the superconductor. We need to

sum up the current from these processes to get the total current. One finds a fairly

simple expression by considering the resulting net current on the normal side [45]:

I = 2N(0)evfσ

∫ ∞
−∞

[f0(E − eV )− f0(E)](1 + A(E)−B(E))dE. (5.50)

Here N(0) is the density of states of single spins at the Fermi energy µ, σ is the

effective cross sectional area of the junction, and vf is the Fermi velocity of the
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electrons in the normal metal. The normal junction resistance Rn = 1/2N(0)e2vfσ.

Another way of looking at this expression is that incoming electrons with unity

probability are Andreev reflected as holes with probability A(E), which increases

the electron flow. The probability B(E) describes normally reflected electrons which

decrease the net flow of electrons through the interface. Taking the derivative of I

with respect to the voltage V , we get the conductance:

Gns(V ) =
dI

dV
=

1

eRn

∫ ∞
−∞

∂f0(E − eV )

∂V
(1 + A(E)−B(E))dE (5.51)

Scanning tunneling microscopy (STM) enables us to measure the conductance G

versus V , which can be compared directly to Eq. (5.51). The resulting dI/dV curves

depend strongly on the transparency parameter Z, provided Z is not too large

compared to unity.

Figure 5.4 shows an example of plots of the conductance versus energy for

Z = 0 (red), 0.5 (blue), 1.5 (green), and 5 (purple) at 75 mK. As we can see, when

the junction is very transparent (Z = 0) and eV < ∆, the conductance is doubled

in value compared to the conductance at eV � ∆. Conversely, in the tunnel limit

Z � 1, there is zero conductance for eV < ∆, recovering the traditional S-I-N

tunnel junction behavior discussed in Fig. 2.6.

For comparison, Fig. 5.5 shows an example of plots of the conductance versus

energy for Z = 0 (orange), 0.5 (cyan), 1.5 (yellow), and Z = 5 (magenta) at

T = 500 mK. As we can see, thermal broadening rounds off conductance peaks,

and the effect shows up more in the tunnel limit (Z � 0) than in the low Z limit.
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Figure 5.4: Normalized BTK S-I-N conductance RndI/dV as a function
of normalized voltage eV/∆ at a temperature of T=75 mK for supercon-
ducting gap ∆ =0.5 meV. Red curve is for Z = 0, blue for Z = 0.5, green
for Z = 1.5 and purple for Z = 5. Notice that in the very transparent
limit (Z ≈ 0), the conductance becomes twice that of the normal state.
In the tunnel limit Z � 0, the curve recovers the classic tunneling limit.
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When the junction is very transparent (Z = 0) the conductance at edge eV ∼ ∆ is

rounded but this is less obvious than rounding of the coherence peak in the high Z

limit.

Figure 5.6 shows all the curves from Fig. 5.4 and Fig. 5.5. From the plot we

see that the coherence peaks in the limit Z → ∞ is effected strongly due to the

thermal broadening. In contrast, for the low-barrier case Z ≈ 0, the curves appear

to be only slightly rounded around eV ∼ ∆.
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Figure 5.5: Normalized BTK S-I-N conductance RndI/dV as a function
of normalized voltage eV/∆ at a temperature of T=500 mK for super-
conducting gap ∆ =0.5 meV. Orange curve is for Z = 0, cyan is for
Z = 0.5, yellow is for Z = 1.5 and magenta is for Z = 5. Comparing
Fig. 5.4 to Fig. 5.5, we see that thermal broadening affects the curves
more for Z � 0 than for (Z � 1).
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Figure 5.6: Overlapping of all curves shown in Fig. 5.4 and Fig. 5.5 to
get a better comparison of the thermal broadening effect for different
barrier height Z.
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CHAPTER 6

Scanning Andreev Tunneling Microscopy of

Titanium Nitride Thin Films

6.1 Introduction

Thin-film superconducting titanium nitride (TiN) has attracted recent interest

because it can have very low loss and this makes it attractive for building microwave

resonators and possibly other devices for applications in quantum computation [46–

50]. TiN can also have a high kinetic inductance and this also makes it potentially

interesting for constructing superconducting microwave kinetic inductance detec-

tors for x-ray spectroscopy and sub-millimeter-wave astronomy telescopes [51–55].

In practice, good superconducting films of TiN are not so easy to grow repro-

ducibly. In particular the loss, the superconducting critical temperature Tc, the

micro-structure, grain size and stress all depend on the growth conditions. Al-

though kinetic inductance measurements suggest a well-defined gap [53], atomic

scale scanning tunneling microscopy (STM) [20] of typical films show very rough

surfaces and small grains. Furthermore measurements of thin TiN films have re-
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vealed a superconductor-insulator transition and inhomogeneous superconducting

gap [115–117].

In this chapter, I describe my results on scanning tunneling microscopy [41] of

superconducting 50 nm and 25 nm thick TiN films taken at 500 mK. In Section 6.2,

I discuss some basic properties of the films. In Section 6.3, I show fine scale maps

of the 50 nm film which show significant spatial variations in the superconducting

gap that are correlated with the topography. In addition I observed a distinct zero-

bias conductance peak at some locations. Such peaks are characteristic of Andreev

S/N tunneling [44] through a high transparency barrier, as opposed to conventional

superconductor-normal quasiparticle tunneling [66, 118] through a low transparency

barrier. Using an analysis based on the Blonder-Tinkham-Klapwijk (BTK) model of

Andreev tunneling [45] (see Chapter 5), I extract maps of the superconducting gap

∆, temperature T and barrier height Z and examine some interesting features in

the maps. In Section 6.4, I then show the topography and maps of ∆, Z and T on a

larger scale. I find that both the 50 nm thick and 25 nm thick films show significant

variations in ∆. Much of the variation in ∆ in the thicker film (50 nm) appears to be

due to variations in the local temperature, while in the thinner film (25 nm) the ∆

variations are correlated with variations in the barrier height. Finally, in Section 6.5,

I discuss some possible explanations of the T variations and the correlations between

∆, Z and T .
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6.2 TiN film growth and basic characteristics

Our TiN films were deposited by Kevin Osborn’s group [119] on a high re-

sistivity (100) silicon wafer (ρ > 20000 µΩ · cm, float-zone). The substrate was

pretreated in an O2 plasma for 30 s before being put into the sputtering system.

After evacuating the sputter chamber, the substrate was heated to 350◦C. During

DC magnetron sputtering 400 W of rf power was applied to a 7.6 cm diameter Ti

target while maintaining a pressure of 3.5 mTorr with Ar and N2 gas flowing at 15

SCCM and 10 SCCM, respectively.

The Tc of the 50 nm thick film was found to be 4.7 K using an inductive

measurement while the 25 nm TiN film had Tc=3.6 K. From Tc, the BCS coherence

length was estimated to be ξ = 18 nm for the 50 nm thick film and ξ = 15 nm for

the 25 nm thick film. (Measurements were done by Serena Merteen from Leonardo

Civale’s group at Los Alamos National Laboratory.) Resonators made from the 50

nm film showed an internal quality factor of Qi = 2×105, whether or not an O2

pretreatment was used, while the 25 nm thick film had Qi= 1.5×104 with an O2

pretreatment, compared to Qi= 2×105 without O2 pretreatmeant. (Quality factor

measurements were done from Kevin Osborn’s group at Laboratory for Physical

Sciences.) For the 50 nm film kFl=h̄(3π2n)2/3/e2ρn1/3 ≈ 24, while kFl ≈ 16 for the

25 nm film, where n is the carrier density obtained from Hall measurements and ρ

is the resistivity. Based on these values neither films violates the Ioffe-Regel limit

[120] and both films are weakly disordered.

Prior to imaging with the STM, each film was mounted on an STM sample
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stud [41], and then sonicated in isopropanol for five minutes to remove dust particles.

The sample was then transferred to the custom UHV setup [41] and the surface was

cleaned by sputtering using 750 eV Ar ions while gently heating the sample at

T ∼ 300 ◦C for 60 minutes. We note that heating the TiN samples above 400

◦C caused Tc to decrease substantially. The sample was then transferred without

breaking vacuum to the cold-stage of a mK-STM [41] for imaging with a vanadium

tip or a Nb tip. The vanadium tip was used to image the 50 nm thick TiN film

while the Nb tip was used to image the 25 nm thick TiN film.

Since niobium has a critical temperature Tc of 9.2 K and vanadium has a

critical temperature Tc of 5.03 K, one may ask why we see an S-I-N junction. The

possible reason is that since the TiN film is very granular and the surface is not

flat, the tip easily picks up debris from the surface which makes it an effectively

normal tip. Another possible reason is that for spectroscopy measurements, I needed

to set the sample bias as low as 5 meV. This leads to a junction resistance of

over 50 MΩ and places the tip close to the sample. Normally in an STM, the

sample bias is around 1 V when STM performs surface imaging, and the junction

resistance is around 1 GΩ. Due to how close the tip is to the sample when performing

spectroscopy measurements, the tip can easily pick up debris and become normal.

I note that I did find some data sets that showed S-I-S behavior, however the tip

changed after acquiring just part of the spectroscopic map (see Appendix B).
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6.3 STM measurements and Andreev effects

Figure 6.1 (a) shows an STM topographic map of a 42 nm × 42 nm region on

the 50 nm thick TiN film. This image was acquired at 0.5 K using a vanadium tip

and there are 256 × 256 pixels. I used a voltage bias V = 4 mV and a tunneling

current I = 100 pA. In this false color topographic image, blue and purple are higher

grains while red and yellow are lower. The surface is very granular.

As the topography was being measured for Fig. 6.1 (a), I-V curves were also

acquired at 128 × 128 pixels by sweeping the bias voltage V from 4 mV to -4 mV

while recording the tunnel current I. Conductance dI/dV versus V curves were also

obtained simultaneously by adding a small ac modulation voltage (140 µV) to the

voltage bias and using a lock-in amplifier to extract the ac signal from the tunnel

current.

Figure 6.1 (b)-(f) show dI/dV vs. V curves at five selected locations in Fig. 6.1

(a) taken at 0.5 K using a vanadium tip. The range of behavior is striking. Quali-

tatively Figs. 6.1 (b) and (c) show a clearly recognizable superconducitng gap, as ex-

pected for superconducting-normal tunneling through a convenional low-trasnparency

barrier [64], although there appears to be much more leakage current at low voltages

than expected. On the other hand, Fig. 6.1 (d) seems to show a gap and coherence

peaks, but the conductance at zero volts is almost the same as at high voltage, which

is not what is expected for a conventional S/N tunnel barrier. Finally, Figs. 6.1 (e)

and (f) show a distinct peak in the conductance at zero bias, reaching about two or

three times the conductance at high voltage, respectively. This is what is expected
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Figure 6.1: (a) Fine scale (42 nm × 42 nm) topographic map of 50
nm thick TiN film at a temperature of 0.5 K using a vanadium tip.
(b) Measured conductance dI/dV versus voltage V (black points) at
(x,y)=(36.42 nm, 9.19 nm) as well as fit to BTK model (blue) for Z =
3.15 and ∆ = 0.35 meV and Dynes model (red) for ∆ = 0.395 and Γ =
0.235 meV. (c) Measured dI/dV vs. V (black points) at (x,y)=(26.91
nm, 13.78 nm) as well as fit to BTK model (blue) for Z = 1.44 and
∆ = 1.39 meV and Dynes model (red) for ∆ = 1.274 and Γ = 0.34 meV.
(d)-(f) dI/dV vs. V at (2.63 nm, 5.25 nm), (8.20 nm, 36.09 nm) and
(34.78 nm, 13.45 nm), respectively. Blue curves are fit to BTK model
for Z =0.56, 0.00294 and 0.00217, respectively, and ∆ =0.66, 0.44, 0.25,
respectively.

121



6.3. STM MEASUREMENTS AND ANDREEV EFFECTS

from S/N tunneling through a highly transparent barrier when Andreev reflection

[44, 45] is taken into account. Reexamining the curve in Fig. 6.1 (d), it appears

consistent with Andreev tunneling through a barrier that is of intermediate barrier

height.

To analyze the conductance vs. V data, I fit it to the conductance from the

BTK [45] model of Andreev reflection at a superconductor/normal interface. The

key model parameter is the barrier height parameter Z of the interface. For Z much

less than 1, the interface is very transparent, i.e. D = 1/(1 + Z2) ≈ 1 while for Z

much greater than 1, the barrier has a low transparency, i.e. D = 1/(1+Z2) ≈ 1 and

one recovers the conventional S/N tunneling limit [118]. As discussed in Chapter 5,

the BTK model conductance can be expressed as [45]:

G(V ) = A0 ×
∫ ∞
−∞

∂f0(E − eV )

∂V
(1 + A(E)−B(E))dE. (6.1)

Here f0(E) is the Fermi function, which is dependent on the temperature T , A(E) is

the amplitude of the Andreev reflection at the S/N interface, B(E) is the amplitude

for the reflection of normal electrons of energy E and A0 = (1 + Z2)/(eRN). A(E)

and B(E) depend on the barrier height Z of the barrier and the superconducting

gap ∆ [45]:

A(E) =


∆2

[E2+(∆2−E2)(1+2Z2)2]
, for E < ∆

∆2

[E+
√
E2−∆2(1+2Z2)]2

, for E > ∆
(6.2)
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B(E) =

 1− ∆2

[E2+(∆2−E2)(1+2Z2)2]
, for E < ∆

4Z2(1+Z2)(E2−∆2)

[E+
√
E2−∆2(1+2Z2)]2

, for E > ∆.
(6.3)

I evaluated Eqs.(6.1) to (6.3) numerically and varied ∆, T and Z to obtain the

best fit to the measured dI/dV vs. V curve at each location. As the blue curves in

Figs. 6.1 (b)-(f) show, we find good qualitative agreement except for the curve in

Fig. 6.1 (f).

For comparison, the red curves in Figs. 6.1 (b)-(f) show fits to the conductance

in a junction with a conventional tunnel junction characteristic, i.e. through a low

transparency barrier, with a Dynes gap function [66]. In this case we can write:

G(V =
1

eRn

∫ ∞
−∞

∂f0(E − eV )

∂V

E − iΓ√
(E − iΓ )2 −∆2

dE (6.4)

here Γ is the broadening parameter, f0(E) is the Fermi function and ∆ is the gap.

Comparing the measurements (blue) to the Dynes fits (red) in Figs. 6.1 (b)-(f), we

see reasonable fits for Figs. 6.1 (b) and (c), but quantitatively and qualitatively poor

fits in Figs. 6.1 (d)-(f) where the best fits yield ∆ ' 0.

Table 6.1 summarizes the fit parameters (∆, Z, T ) obtained from the BTK fits

shown in Fig. 6.1 (blue). The curves have significantly different gaps, temperatures,

and Z values. For example, for Fig. 6.1 (b) I found Z = 3.15, which is somewhat

large compared to 1, indicating the junction is not far from being in the conventional

S/N tunneling limit [64]. For comparison, fitting to the curve in Fig. 6.1 (d) yield

Z = 0.56, which indicates a fairly transparent barrier. BTK fits to Figs. 6.1 (e)
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and (f) yielded Z ∼= 0.003 and Z ∼= 0.002, respectively, which indicates a highly

transparent barrier. I note in particular the BTK fit in Figs. 6.1 (e) is reasonable and

the behavior is just what one expects for Andreev tunneling in a highly transparent

S/N junction.

I note that this application of the BTK model only assumed a single channel

with well-defined Z, ∆ and T . Better fits could be obtained by allowing for two or

more channels with different Z. Also, the BTK fit in Fig. 6.1 (e) is not good around

the zero bias voltage and it might suggest that mid-gap states are present [26].

Although only a few sample curves are shown in Fig. 6.1, the range of behavior

is just what one expects from S/N Andreev tunneling through barriers that range

from highly transparent (Fig. 6.1 (e) and (f)) to low transparency (Fig. 6.1 (b)

and (c)). Although the fits to the BTK model are not perfect, they much more

faithfully represent the data than the fit to a Dynes model, Eq. (6.4). Thus I

conclude that Andreev effects are important in interpreting the STM data from

our TiN samples and that using a Dynes model here would potentially result in a

mistaken interpretation.

To better understand the sample, I took additional images of the region (see

Fig. 6.2). Figure 6.2 (a) shows the same topographic STM image as in Fig. 6.1 (a),

with a different color scale. Figure 6.2 (b) shows a topographic image of the same

region, scanned just before taking the spectroscopy. It shows the grains more clearly

and there is no apparent drift (white boxes in (a) and (b) represent the same area).

Figure 6.2 (c) shows a topographic image of a larger region on the same 50 nm film.

There seems to be some features on the grains that line up in different directions on
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(a) (b)

10 nm 10 nm
(c) (d)

5 nm20 nm

Figure 6.2: (a) Topographic image showing the same data as Fig. 6.1 (a)
but with a different color palette. (b) This image was taken before the
spectroscopy data and has better resolution and less drift. (c) Another
nice topographic image of the sample and (d) high resolution image
showing fine texture on top of individual grains.
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Table 6.1: Extracted parameters (∆, T, Z) from fitting the conductance curves in
Figs. 6.1 (b)-(f) to the BTK model Eq. (6.1).

No. ∆ (meV) T (K) Z

(b) 0.35 1.95 3.15

(c) 1.39 2.43 1.44

(d) 0.66 0.94 0.56

(e) 0.44 2.60 0.003

(f) 0.25 0.42 0.002

different grains, with no clear step structure. Figure 6.2 (d) shows a fine scale image

with many small grains decorated with particles that have different alignment on

each grain. The surface is clearly poly-crystalline, with a grain size of order 10 nm

in this small region.

Figure 6.3 (a) again shows the topography of the 50 nm TiN film, while

Figs. 6.3(b)-(d) show the corresponding maps of ∆, T and Z obtained from fit-

ting the conductance curves at each point to the BTK model. Again, all the data

was taken at 0.5 K. First, note that there are distinct, spatially correlated variations

in all four maps, but they are most obvious in the topography and gap, i.e. Figs. 6.3

(a) and (b). If we compare the topography in Fig. 6.3 (a) to the ∆ map in Fig. 6.3

(b) one sees a distinct correspondence between the colors. Thus for example, topo-

graphically high points (blue in Fig. 6.3 (a)) correspond to small values of ∆ (blue

in Fig. 6.3 (b)). Similar but less pronounced variations in T are evident in Fig. 6.3
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Figure 6.3: (a) Topographic and (b) false color map of superconducting
gap ∆ for 50 nm thick TiN film. (c) Maps of temperature T and (d)
barrier height Z, all from fitting the conductance curves to the BTK
model. The dark blue regions indicate locations with a zero bias con-
ductance peak and small Z. All of these data was taken at 0.5 K using
a vanadium tip.
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(c), with higher points tending to give higher temperature. Such topography corre-

lated variations are also present in Z, but they are much less obvious due to larger

point-to-point random variations.

To verify that the large spatially correlated variations in the gap are directly

visible in the raw data, Fig. 6.4 shows a false color plot of dI/dV vs. V along a

line cut (indicated by arrows in Fig. 6.3 (b)). Distinct regions are clearly visible

where the superconducting gap differs by a factor of 2. The transition appears to

be abrupt on the nm scale, perhaps suggesting grain-to-grain variations from one

disconnected grain to another. One also sees a section with a prominent zero-bias

conductance peak (red), consistent with Andreev effects in an S/N junction with a

high transparency. The fact that TiN shows large local variations in ∆ is perhaps not

surprising given the granular nature of the films. Also, variations in barrier height

Z are not surprising because they are likely due to surface contamination or local

damage created while preparing the film. What is surprising is to see correlations

between the topography and T or Z. To understand what is going on, I acquired

additional data, including on the 25 nm TiN film, as discussed in the next section.

6.4 ∆, Z, T , h correlations in the 50 nm and 25 nm films

Figure 6.5 shows larger scale topographic images of the 50 nm and 25 nm

TiN films. Both of the films were very granular. From analysis of the images, the

maximum grain size of the 50 nm thick film was 20 nm while for 25 nm thick film
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Figure 6.4: False color plot of conductance dI/dV versus position x and
voltage V along the line cut indicated by black arrows in Fig. 6.3 (a).
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Table 6.2: General properties of the 50 nm and 25 nm thick TiN film.

Film thickness Tc (K) ξ (K) Qi roughness (nm) grain sizes (nm)

50 nm 4.7 18 2×105 4 20

25 nm 3.6 15 1.5×104 2 10

the average grain size was about 10 nm. The surface roughness is 4 nm for the 50

nm thick film and 2 nm for the 25 nm thick film. Overall we see that the thicker

(50 nm) film had a rougher surface and a larger grain size. Table 6.2 summarizes a

few properties of the two films.

Figure 6.6 (a) shows a 350 × 160 nm2 topographic image of the 50 nm film

acquired at 500 mK taken with a vanadium tip. For this image, we used a voltage

bias V = 4 mV and a tunneling current I = 100 pA. The resulting topographic

map had 256 × 113 points, and I acquired spectra at each location. Figure 6.6

(b) shows the corresponding map of the superconducting gap ∆ obtained by fitting

the conductance dI/dV vs. V data at each location to the BTK model, Eq. (6.1).

Gray points in the map indicate curves where we did not obtain a good fit (see

Appendix A). Figure 6.6 (c) shows a line section through the topographic image

(gray) and the gap map (blue). Examining the plot, we see that the superconducting

gap is strongly anti-correlated with surface height (note the reversed scale for ∆).

To verify that this is not an artifact from fitting to the BTK model, I also show in

red the gap extracted from a fit to the Dynes model, Eq. (6.4). Although Eq. (6.4)

does not fit the conductance data as well as Eq. (6.1), the resulting line section
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Figure 6.5: (a) Topographic image of 50 nm thick TiN film and (b) the
25 nm TiN film. (c) Line section along white line in (a), and (d) along
white line in (b), showing surface height versus distance x along line.
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plot nevertheless shows the same qualitative anti-correlation between ∆ and the

topography.

Figure 6.7 (b) and (c) show the corresponding map of the temperature T

and the barrier height Z from fitting the conductance data to the BTK model.

Comparing the topography Fig. 6.7 (a) to the gap, temperature and barrier height

maps, we again see some remarkable correlations: the higher the grain, the smaller

the superconducting gap and the higher the temperature. The barrier height map

appears featureless.

Similar behavior shows up in the 25 nm thick TiN film. Figure 6.8 (a) shows a

280 nm× 112 nm topographic image of the 25 nm thick film taken at T = 0.5 K with

a Nb tip. The grains in the image are somewhat distorted by a tip artifact; the actual

grain size is somewhat smaller (Fig. 6.5 (b)). Spectroscopy data was taken at 256

× 101 = 25856 locations; I vs. V and dI/dV vs. V were recorded simultaneously.

Figure 6.8 (b) shows the corresponding map of ∆, extracted by fitting conductance

curves at each point to the BTK model. Examining the topographic image (Fig. 6.8

(a)) and the gap (Fig. 6.8 (b)), we again see a distinct anti-correlation, with higher

regions having smaller superconducting gap. To see more clearly the correlation

between the topography and the gap, Fig. 6.8 (c) shows a line cut through the

surface topography (gray) and the BTK gap map ∆ (blue). For comparison we also

show ∆ extracted from fitting to the Dynes gap model (red). Again note the reverse

scale for ∆. As with the 50 nm thick film, the 25 nm film shows a remarkable

anti-correlation between surface height and gap.

Figure 6.9 (b)-(c) show the corresponding maps of T and Z, extracted by
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Figure 6.6: (a) Topography of 50 nm thick TiN film taken at 100 pA
and 4 mV bias showing rough surface. (b) Corresponding maps of the
gap ∆. (c) Line section through (a) and (b) showing anti-correlation
between the gap and topography (gray). Note reversed scale for ∆, i.e.
large gaps correspond to small h. Red curve shows ∆ vs. x from fits to
the Dynes model. All data taken at T = 0.5 K using a vanadium tip.
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Figure 6.7: (a) Topography of 50 nm thick TiN film taken at 100 pA
and 4 mV bias showing rough surface. Corresponding maps of the (b)
temperature T and (c) barrier height parameter Z from fits to the BTK
model. All data taken at T = 0.5 K using a vanadium tip.
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Figure 6.8: (a) Topography of 25 nm thick TiN film taken at I=100 pA
and V=3 mV. There is some distortion from the rough surface imaging
the tip shape, instead of the tip imaging the surface. (b) Corresponding
map of gap ∆. (c) Line sections through (a) and (b) showing anti-
correlation between the gap ∆ (blue) and the topography h (gray). Note
reversed scale for ∆, i.e. large gaps correspond to small h. Red curve
shows ∆ vs. x from fits to the Dynes model. All data taken at T = 0.5
K using a Nb tip.
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Figure 6.9: (a) Topography of 25 nm thick TiN film taken at I=100 pA
and V=3 mV. There is some distortion from the rough surface imaging
the tip shape, instead of the tip imaging the surface. Corresponding
maps of (b) temperature T and (c) barrier parameter Z extracted from
fits to the BTK model. All data taken at T = 0.5 K using a Nb tip.
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fitting conductance curves at each point to the BTK model. Unlike what I found

in the 50 nm film, the temperature map for the 25 nm film (see Fig. 6.9 (b)) shows

little obvious correlation with the topography. On the other hand, the Z map (see

Fig. 6.9 (c)) reveals that high Z regions tend to have lower superconducting gap

(see Fig. 6.8 (b)), which was not obvious in the 50 nm thick film in Fig. 6.7 (c).

To better understand the range over which the gap is varying, the blue curve

in Fig. 6.10 (a) shows the histogram of gap values obtained from Fig. 6.6 (b) on the

50 nm thick film. The red curve shows the results from the Dynes fits. In general,

the gap distribution from the BTK fits is more symmetric than that of the Dynes fit,

which as we noted above does not do a good job of capturing the observed behavior.

In addition, the Dynes fit gives counts at ∆=0 meV, because of its inability to fit

data with a zero bias conductance peak, while no such points occur in the histogram

of ∆ from the BTK fits. Fig. 6.10 (b) shows the corresponding histograms for the

25 nm film for the data set shown in Fig. 6.8 (b). Note that the histogram for the 50

nm film has a peak at about 0.6 meV, while the histogram for the 25 nm has a peak

at about 0.4 meV. This is only qualitatively consistent with the Tc measurements,

which gave Tc = 4.7 K for the 50 nm thick film and Tc = 3.6 K for the 25 nm thick

film; for a BCS superconductor, these transition temperature would imply a gap of

about 0.72 meV for the 25 nm film and about 0.55 meV for the 50 nm thick film.
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Figure 6.10: The blue curves show histograms of the superconducting
gap from (a) the gap map in Fig. 6.6 (b) for the 50 nm thick film and
(b) the gap map in Fig. 6.8 (b) for the 25 nm thick film. Red curves
show histograms of the superconducting gap using the Dynes fit. Black
arrows indicate ∆ from measured Tc of the film.
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6.5 Physical mechanism causing correlations between ∆, T ,

Z and h

To check whether my local measurements of the gap were consistent with weak-

coupling BCS theory, I measured the temperature dependence of the gap at a fixed

location. Figure 6.11 shows selected, averaged conductance curves as a function of

temperature from the 25 nm TiN film. These were obtained by increasing T , and

using a vanadium tip at a fixed location. Above 2.65 K, there was no hint of the

superconducting gap and we see a featureless background curve from the normal

state. Below 2.5 K, we see a clear gap and coherence peaks that both increase as T

decreases.

To understand what might be producing the correlations between h vs. ∆, I

did some further analysis of the maps shown in Fig. 6.6 and Fig. 6.8. Figure 6.12

shows the correlation between ∆ and h from the smaller scale 50 nm TiN film (42

× 42 nm2), the large scale 50 nm TiN film (350 × 160 nm2) and the large scale 25

nm TiN film (280 × 112 nm2). Here the binned height is plotted (red, left axis) vs.

the binned superconducting gap. For reference, I also show the number of counts

within each superconducting gap bin size of 0.01 meV (black, right axis). In each

case, we clearly see that the height h of the surface and ∆ are anti-correlated.

For comparison, Fig. 6.13 shows the 3D relation between ∆, Z and T for the

small scale 50 nm, large scale 50 nm and 25 nm film. For the 50 nm thick TiN

film, the superconducting gap is strongly anti-correlated with T (see red projected
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Figure 6.11: Temperature dependence of the conductance dI/dV curves
vs. V at a fixed location on the 25 nm TiN film. For T > 2.5 K, no
superconducting gap was observed.
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Figure 6.12: (a) Black points show the histogram of the superconducting
gap ∆ with a bin size of 0.01 meV and red points show the corresponding
average height h versus the gap of points corresponding to this height
for the 42 × 42 nm2 image of the 50 nm TiN film. (b) Corresponding
plots for the 350 × 116 nm2 image of the 50 nm film and for the (c) 280
× 112 nm2 image of the 25 nm film.
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curve in Fig. 6.13 (a)); the higher the temperature T , the lower the gap ∆. This

behavior suggests that the gap is being reduced at some locations due to heating.

In contrast, for the 25 nm film, ∆ appears to be well correlated with Z, and less

well correlated with T , which varies over a small range. This behavior suggests that

there are thermally disconnected regions in the thick film, but not in the thin film.

Given that TiN films can have large stress [121], this suggests that the thicker films

are cracking and producing grains which may be poorly connected to the rest of the

film.

We know that surface roughness is higher in the 50 nm film, indicating that

the grains stick out further from the surface. During tunneling spectroscopy mea-

surements, heat is generated due to the tunneling current (Joule heating) and it will

have a harder time dissipating from disconnected higher grains. Therefore those

regions should show a higher temperature. This argument works for the 50 nm film

as a possible explanation for why there is a smaller gap on higher grains. However,

for the 25 nm film the temperature map does not show a similar correlation with h.

Instead we see a clear correlation between Z and h. Therefore the lower supercon-

ducting gap in parts of the 25 nm film does not appear to be due to an increase in

temperature, but something such as surface damage or contamination that causes

an increase in the barrier height Z while suppressing ∆.

Figure 6.14 illustrates a possible mechanism which would generate correlations

in ∆, T, Z and h. During Ar ion cleaning isolated grains will charge up, leaving

disconnected regions that stick up and are less clean. This leads to a higher barrier

height in regions with a smaller superconducting gap and these are also regions that
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Figure 6.13: Three-dimensional scatter plots show correlation between
the superconducting gap ∆, temperature T and barrier height Z for the
(a) 42 × 42 nm2 image of the 50 nm film, (b) 350 × 116 nm2 image of
the 50 nm film and (c) 280 × 112 nm2 image of the 25 nm film.
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tend to stick up. Since isolated grains may also be thermally disconnected, they will

also correspond to higher T .

6.6 Conclusions

In conclusion, I used an STM to image 50 nm and 25 nm thick TiN films

at 500 mK. The films show rough granular surfaces, and a large variations in the

superconducting gap that are anti-correlated with the topography. My BTK analysis

of conductance provided a better fit to the data than fitting to the Dynes model.

It also allowed me to extract temperature and transparency maps, and accounted

for distinct Andreev features in the spectroscopy that occur for highly transparent

tunnel barriers. I found a puzzling correlation between topography, ∆, T and Z,

with reduced gap and higher barriers and higher temperature on higher surfaces.

This may be due in part to increased heating from poor thermal conduction in

disconnected grains, which also leads to higher barriers on top of the grains because

the grains are not cleaned well during ion milling because they charge up.
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Figure 6.14: Illustration showing isolated grains will charge up during
the Ar ion cleaning, leaving disconnected regions that stick up and are
less clean, which gives a higher barrier height Z and reduced gap, and
will heat up more because they are disconnected.
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CHAPTER 7

Theory of the I-V characteristics in S-I-S

Junctions with Multiple Andreev Reflection

7.1 Introduction

In Chapter 5 and Chapter 6, I described the physics of S-I-N junctions, in-

cluding the phenomenon of Andreev reflection. In this chapter, I examine S-I-S

junctions. When two superconductors with gap ∆ are connected by a weak link, the

current rises when the voltage V = 2∆/e. In addition, Andreev effects give current

steps at subgap voltages V = ∆/en, where n is a positive integer. The theory used

to explain this phenomenon involves Multiple Andreev Reflections (MAR) and the

Josephson effect [30, 31]. In the Josephson effect two superconductors are coupled

by a weak link and current can flow through the junction without any voltage ap-

plied. This current is called supercurrent and the junction is called a Josephson

junction.

In Section 7.2 and Section 7.3, I discuss the approach developed by Averin and

Bardas [122] to describe MAR behavior in symmetrical S-I-S junctions with trans-
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parency D = 1 and D 6= 1. This theory describes the current-voltage charasteristics

of a single S-I-S superconducting channel with arbitrary transmission [122–125].

While there have been many theoretical descriptions of MAR, many are not easy to

follow. Moreover, most of the calculations, including Averin and Bardas’s, assumed

the two superconductors had the same superconducting gap. In my STM, the S-I-S

junction formed by the tip and the sample were usually asymmetrical, i.e. the tip

and sample had different gaps. I then need a theory that can describe asymmetrical

junctions.

In Section 7.4 I generalize the scattering approach developed by Averin et al.

[122] to the asymmetrical case, and demonstrate that this yields results that are in

agreement with Wu et al. [126], who used a Green’s function approach to describe

MAR in asymmetrical Josephson junctions. I make some general comments about

asymmetrical junctions and describe results for the supercurrent and subgap current

from this model.

In Section 7.5, I discuss the dc and ac Josephson effects. In Section 7.6, I

examine expressions for the critical current derived previously and my derivation of

MAR effects in asymmetrical junctions. Finally, in Section 7.7, I conclude with a

summary of my main results from the analysis.
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7.2 MAR in symmetrical junction with transparency D = 1

7.2.1 Averin-Bardas model

In 1995, Averin and Bardas (AB) presented an accesible description of An-

dreev and ac Josephson effects in an S-I-S junction with a single quantum channel

[122]. They considered a model of a junction as a short constriction between two

superconductors and obtained a quantitative description of the current-voltage char-

acteristics and how it depends on the temperature and barrier transparency. The

single quantum channel can be thought of as a normal channel (∆=0) and, de-

pending on the transparency, the junction can be used to describe S-N-S or S-I-S

tunneling.

Figure 7.1 shows an illustration of the AB model of an S-I-S junction. The

left lead is a superconductor with gap ∆1 and the right lead is an superconductor

with gap ∆2. The center is the weak link, which acts as a scattering region for

quasiparticles. If there is no scattering, the link is completely transparent, and

the channel has transparency D = 1. On the other hand, if the scattering is not

zero the quantum channel will not be completely transparent, and the transparency

parameter D will be between 0 and 1. Here the transparency D is different from the

barrier height Z defined in Chapter 6. However they are related as D = 1/(1 +Z2).

Andreev reflections [44, 45] happen at each S/N interface and quasiparticles also

scatter within the link region. This leads to the possibility of multiple Andreev

reflections and multiple scattering, which greatly complicates the analysis. Averin
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Figure 7.1: Illustrate of Andreev reflections off of two S/N interfaces

and Bardas proceeded by defining a scattering matrix and determining separate

relations for Andreev reflections at each S/N boundary.

As I discussed in Chapter 5, Andreev reflection at an NS interface can be

characterized by a reflection amplitude a that depends on quasiparticle energy ε

[122]:

a(ε) =
1

∆
×


ε− sgn(ε)(ε2 −∆2)1/2, for |ε| > ∆

ε− i(∆2 − ε2)1/2, for |ε| < ∆

(7.1)
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AB then defined a scattering matrix to account for the weak link [122]:

Sel =

r t

t −r∗t/t∗

 . (7.2)

where r is the probability of the quasiparticle being reflected in the normal region,

and t is the probability of the quasiparticle being transmitted in the normal region.

Here the transparency is D=|t|2 = 1/(1 + Z2). They then wrote the wavefunctions

in region 1 in the channel (see Fig. 7.1) generated by a quasiparticle incident from

the left superconductor as [122]:

ψel =
∑
n

[(a2nAn + Jδn0)eikx +Bne
−ikx]e−i(ε+2neV )t/h̄ (7.3a)

ψh =
∑
n

[Ane
ikx + a2nBne

−ikx]e−i(ε+2neV )t/h̄ (7.3b)

Here k and ε are the wave-vector and energy of the incident quasiparticle, and

am = a(ε + meV ). The second term in Eq. (7.3a) corresponds to a quasiparticle

incident from the superconductor, which produces an electron in the normal region

with effective source amplitude J(ε) = [1−|a(ε)|2]1/2. For this case the wave function

in region 2 of the channel (see Fig. 7.1) can be written as,

ψel =
∑
n

[Cne
ikx + a2n+1Dne

−ikx]e−i(ε+(2n+1)eV )t/h̄ (7.4a)

ψh =
∑
n

[a2n+1Cne
ikx +Dne

−ikx]e−i(ε+(2n+1)eV )t/h̄ (7.4b)
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where the sum over n represents contributions from multiple reflections and is taken

over all integers from -∞ to ∞.

From the basic properties of waves, we can relate the incoming electrons to

the outgoing electrons in regions 1 and 2 using a scattering matrix. Similarly there

will be a scattering matrix connecting the holes in the two regions. AB wrote this

as:

Bn

Cn

 = Sel

a2nAn + Jδn0

a2n+1Dn

 ,

 An

Dn−1

 = Sh

 a2nBn

a2n−1Cn−1

 (7.5)

where

Sh = S∗el, Sel =

r t

t −r∗t
t∗

 . (7.6)

At this point in this paper [122], AB present a recursion relation for finding

the An, Bn, Cn and Dn. The authors omit detailed steps and only consider the case

where the left and right superconductors have the same gap. This is clearly not true

in our case, and it is important to understand how to find the recursion relation

before trying to generalize it to our situation where the superconducting gaps are

different on the left and right.

If we stare at the Eq. (7.5), we see that Bn is a function of An and Dn. Moving

the equation around, we get Dn as a function of An and Bn. Since Cn is a function

of An and Dn, we can now use Dn(An, Bn) to get Cn(An, Bn). From Eq. (7.5) I find:
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Bn = ra2nAn + rJδn0 + ta2n+1Dn (7.7a)

Cn = ta2nAn + tJδn0 −
r∗t

t∗
a2n+1Dn (7.7b)

To proceed, I rearrange Eq. (7.7a) and plug it into Eq. (7.7b) to get Cn and

Dn as a function of An and Bn:

Dn =
1

ta2n+1

Bn −
ra2n

ta2n+1

An −
rJδn0

ta2n+1

(7.8)

Cn = (
|r|2

t∗
a2n + ta2n)An −

r∗

t∗
Bn + (

|r|2

t∗
+ t)Jδn0 (7.9)

Similarly for the hole equation, I find:

An = r∗a2nBn + t∗a2n−1Cn−1 (7.10a)

Dn−1 = t∗a2nBn −
rt∗

t
a2n−1Cn−1 (7.10b)

From Eq. (7.10a), we can write:

An+1 = r∗a2n+2Bn+1 + t∗a2n+1Cn (7.11)
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I now substitute Cn from Eq. (7.9) into Eq. (7.11) to get:

An+1 = r∗a2n+2Bn+1 + t∗a2n+1[(
|r|2

t∗
a2n + ta2n)An −

r∗

t∗
Bn + (

|r|2

t∗
+ t)Jδn0]

= r∗a2n+2Bn+1 +Ra2na2n+1An +Da2na2n+1An − r∗a2n+1Bn

+Ra2n+1Jδn0 +Da2n+1 (7.12)

and thus:

An+1 − a2n+1a2nAn =
√
R(a2n+2Bn+1 − a2n+1Bn) + Ja1δn0 (7.13)

where R=|r|2. Equation (7.13) is exactly the same as the second recursion relation

Eq. (5) from the AB paper [122].

To derive the recursion relation for Bn, I proceed as follows. From Eq. (7.10b),

I can rewrite :

Dn = t∗a2n+2Bn+1 −
rt∗

t
a2n+1Cn (7.14)
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Plugging in Dn and Cn from Eq. (7.8) and Eq. (7.9) then gives

1
ta2n+1

Bn − ra2n

ta2n+1
An − rJδn0

ta2n+1

= t∗a2n+2Bn+1 − rt∗

t
a2n+1[( |r|

2

t∗
a2n + ta2n)An − r∗

t∗
Bn + ( |r|

2

t∗
+ t)Jδn0]

a2
2n+1ra2nAn − ra2nAn

= Da2n+1a2n+2Bn+1 + [a2
2n+1R− 1]Bn + rJδn0 − a2

2n+1rJδn0

ra2nAn = D a2n+1a2n+2

a2
2n+1−1

Bn+1 +
a2

2n+1R−1

a2
2n+1−1

Bn − rJδn0

(7.15)

Eq. (7.15) is important because it shows that An is related to Bn+1 and Bn. Plugging

Eq. (7.15) into Eq. (7.13) gives us a recursion relation for Bn+1, Bn, Bn−1 which

eventually gives me the first recursion relation Eq. (5) from the AB paper [122].

To proceed, I rewrite the index from Eq. (7.13) so that

An − a2n−1a2n−2An−1 = R1/2(Bna2n −Bn−1a2n−1) + Ja1δn−1,0 (7.16)

Plugging An from Eq. (7.15) into Eq. (7.16), I get:

D

ra2n

a2n+1a2n+2

a2
2n+1 − 1

Bn+1 +
1

ra2n

a2
2n+1R− 1

a2
2n+1 − 1

Bn −
J

a2n

δn0

−
Da2

2n−1a2n

r(a2
2n−1 − 1)

Bn −
a2n−1

r
(
a2

2n−1R− 1

a2
2n−1 − 1

)Bn−1 + Ja2n−1δn−1,0

=
√
R(a2nBn − a2n−1Bn−1) + Ja1δn−1,0 (7.17)

After rearranging terms, I arrive at the first recursion relation Eq. (5) in the AB
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paper [122]:

Da2n+1a2n+2

1− a2
2n+1

Bn+1 − (
a2

2n+1R− 1

a2
2n+1 − 1

−
Da2

2n−1a
2
2n

a2
2n−1 − 1

−Ra2
2n)Bn + (

a2n−1a2n(a2
2n−1R− 1)

a2
2n−1 − 1

−Ra2na2n−1)Bn−1

= −rJδn,0 − rJa2a1δn−1,0 + rJa2a1δn−1,0 (7.18)

This recursion relation is important because it gives us the wavefunction am-

plitudes An and Bn for different transparency D. From the wavefunction, we can

determine an expression for the current flowing through the S-I-S junction, as I

discuss in the next section. After that, I discuss how to generalize to the case of

different gaps for the left and right superconductors.

7.2.2 Finding the expression for the current when the gaps are the

same

In this section, I work out Eq. (6) from Averin-Bardas. This gives the current

through an S-I-S junction when the superconductors have the same gap and there is

Multiple Andreev Reflection (MAR). This will help us understand the physics and

how to generalize to the case where the left and right superconductors have different

gaps. To simplify the discussion, I examine the situation for D=1. This is the case

of no scattering of the electrons or holes, i.e. a completely transparent weak link

with Z = 0.

For an electron-like quasiparticle with energy ε that is incident from the left
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Figure 7.2: Configuration of the multiple Andreev reflection at trans-
parency D = 1. An electron-like quasiparticle (filled circle) is incident
from the left with energy ε and is Andreev reflected with amplitude A
as a hole (open diamond) from the right S/N interface. Note that a hole
below the Fermi level has positive energy.
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superconducting electrode onto the S/N interface, the probability amplitude of an

electron being created in the normal region is [122]: J =
√

1− |a(ε)|2. I now assume

voltage V is applied to the right electrode and the left electrode is at 0 V (Fig. 7.2).

Again for simplicity, I consider D = 1, so there is no scattering, and nothing is

reflected back while traveling in the normal region, so that all particles reach the

right electrode. Since the right electrode is at voltage V (V > 0), the quasiparticle

arrives at the right electrode with E=ε + eV . The particle will then be Andreev

reflected back [44, 122] as a hole with amplitude a1(ε+ eV ). This Andreev reflected

hole will travel back to the left, and since it is a hole, it will pick up additional

energy eV and reach the left electrode with energy ε+2eV . It will then be Andreev

reflected as an electron with amplitude a2(ε+2eV ), etc. (see Fig. 7.2). Keep in mind

that, if the energy E = |ε+neV | after reflection is smaller than the superconducting

gap ∆ of the electrode at the interface, then the electron will be Andreev reflected

as a hole.

Since D = 1, we have R = 0 in the scattering matrix Eq. (7.6), and the

scattering matrices become

Sh = S∗el and Sel =

0 1

1 0

 . (7.19)

Plugging this into Eq. (7.5), I get four relations:

Bn = a2n+1Dn (7.20a)
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Cn = a2nAn + Jδn0 (7.20b)

An = a2n−1Cn−1 (7.20c)

Dn−1 = a2nBn (7.20d)

In this case, with D = 1, A0 = 0, there is no scattering so Bn = 0 and thus Dn = 0.

From Eq. (7.20), I can now construct An and Cn recursively. For example:

C0 = J,A1 = a1C0 = a1J,C1 = a2A1, A2 = a3C1 = a3a2a1J , etc. We can also see

that the An are only non-zero for positive n and for D = 1, I find

A−3 = A−2 = A−1 = A0 = 0 (7.21a)

A1(ε, V ) = J(ε)a1(ε+ eV ) (7.21b)

A2(ε, V ) = J(ε)a1(ε+ eV )a2(ε+ 2eV )a3(ε+ 3eV ) (7.21c)

A3(ε, V ) = J(ε)a1(ε+ eV )a2(ε+ 2eV )a3(ε+ 3eV )a4(ε+ 4eV )a5(ε+ 5eV )

(7.21d)

... (7.21e)

Thus, the An(ε, V ) are functions of the incident quasiparticle amplitude J at energy

ε and the quasiparticle picks up energy eV each time it transits the normal region.
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From Eq. (7.18), Eq. (7.20) and Eq. (7.3) the wavefunction can now be written as:

ψel =
∑
n

[(a2nAn + Jδn0)eikx]e−i(ε+2neV )t/h̄ (7.22a)

ψh =
∑
n

[Ane
ikx]e−i(ε+2neV )t/h̄ (7.22b)

where the n’s are positive integers. Notice that the electron wavefunction has com-

ponents traveling to the right, represented as eikx, while the hole wavefunction has

components traveling to the left, represented as eikx; note that the hole travels in

the opposite direction of the k vector [113].

From the wavefunction, we can calculate the electron and the hole probability

current density using the well-known quantum expression:

j =
h̄

2mi
(ψ∗∇ψ − ψ∇ψ∗) (7.23)

For the electron probability current density, I find:

ψel = eikx(Je−iεt/h̄ + a2A1e
−i(ε+2eV )t/h̄ + a4A2e

−i(ε+4eV )t/h̄ + a6A3e
−i(ε+6eV )t/h̄ + ...)

(7.24a)

ψ∗el = e−ikx(Jeiεt/h̄ + a∗2A
∗
1e
i(ε+2eV )t/h̄ + a∗4A

∗
2e
i(ε+4eV )t/h̄ + a∗6A

∗
3e
i(ε+6eV )t/h̄ + ...)

(7.24b)
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and thus:

jel =
h̄

2mi
∗ 2ik

(
[|J |2 + |a2|2|A1|2 + |a4|2|A2|2 + |a6|2|A3|2 + ...]

+ [Ja∗2A
∗
1 + a2A1a

∗
4A
∗
2 + a4A2a

∗
6A
∗
3 + ...]ei2eV t/h̄

+ [Ja∗4A
∗
2 + a2A1a

∗
6A
∗
3 + a4A2a

∗
8A
∗
4 + ...]ei4eV t/h̄ + [...]ei6eV t/h̄ + ...

+ [J∗a2A1 + a∗2A
∗
1a4A2 + a∗4A

∗
2a6A3 + ...]e−i2eV t/h̄

+ [J∗a4A2 + a∗2A
∗
1a6A3 + a∗4A

∗
2a8A4 + ...]e−i4eV t/h̄ + [...]e−i6eV t/h̄ + ...

)
(7.25)

For the probability current density from the holes that are generated by

electron-like quasiparticles incident from the left, I find:

ψh = eikx(A1e
−i(ε+2eV )t/h̄ + A2e

−i(ε+4eV )t/h̄ + A3e
−i(ε+6eV )t/h̄ + ...) (7.26a)

ψ∗h = e−ikx(A∗1e
i(ε+2eV )t/h̄ + A∗2e

i(ε+4eV )t/h̄ + A∗3e
i(ε+6eV )t/h̄ + ...) (7.26b)

jh =
h̄

2mi
∗ 2ik

(
[|A1|2 + |A2|2 + |A3|2 + ...]

+ [A∗1A2 + A∗2A3 + ..]e−i2eV t/h̄ + [A∗1A3 + A∗2A4 + ..]e−i4eV t/h̄ + [..]e−i6eV t/h̄ + ...

+ [A∗2A1 + A∗3A2 + ..]ei2eV t/h̄ + [A∗3A1 + A∗4A2 + ..]ei4eV t/h̄ + [...]ei6eV t/h̄ + ...

)
(7.27)

The total probability current density is then j = jel + jh, where the direction of

the charge flow has been taking care of from the definition of the wavefunction
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Eq. (7.22). I find

j(ε, t) =
h̄k

m

(
[|J |2 + |A1|2(1 + |a2|2) + |A2|2(1 + |a4|2) + |A3|2(1 + |a6|2) + ...]

+ [Ja∗2A
∗
1 + A1A

∗
2(1 + a2a

∗
4) + A2A

∗
3(1 + a4a

∗
6) + ...]ei2eV t/h̄

+ [Ja∗4A
∗
2 + A1A

∗
3(1 + a2a

∗
6) + A2A

∗
4(1 + a4a

∗
8) + ...]ei4eV t/h̄ + [...]ei6eV t/h̄ + ...

+ [J∗a2A1 + A2A
∗
1(1 + a4a

∗
2) + A3A

∗
2(1 + a6a

∗
4) + ...]e−i2eV t/h̄

+ [J∗a4A2 + A3A
∗
1(1 + a6a

∗
2) + A4A

∗
2(1 + a8a

∗
4) + ...]e−i4eV t/h̄ + [...]e−i6eV t/h̄

+ ...

)
(7.28)

Equation (7.28) gives the probability current density due to an electron-like

quasiparticle with energy ε incident from the left superconducting electrode. The

probability current density can be written as a sum of Fourier components:

j(ε, t) =
h̄k

m

∑
K=0,±1,±2,..

jK(ε, V )ei2KeV t/h̄ (7.29)

where K are integers. Summing up the probability current density from all energies,

weighted by the Fermi distribution, I obtain the total probability current density

coming from the left electrode.

Since this is a 1-channel problem, the total electrical or charge current is

directly proportional to the probability current density, and I can write:

IL(t) =
e

2πh̄

m

h̄k

∫ ∞
−∞

dεj(ε, t)f(ε) (7.30)
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where f(ε) is the Fermi distribution for the incident quasiparticle at energy ε. For

the left electrode, this gives

IL(ε, t) =
e

2πh̄

∫
dε

(
[|J |2 + |A1|2(1 + |a2|2) + |A2|2(1 + |a4|2) + |A3|2(1 + |a6|2)

+ ...] + [Ja∗2A
∗
1 + A1A

∗
2(1 + a2a

∗
4) + A2A

∗
3(1 + a4a

∗
6) + ...]ei2eV t/h̄

+ [Ja∗4A
∗
2 + A1A

∗
3(1 + a2a

∗
6) + A2A

∗
4(1 + a4a

∗
8) + ...]ei4eV t/h̄ + [...]ei6eV t/h̄ + ...

+ [J∗a2A1 + A2A
∗
1(1 + a4a

∗
2) + A3A

∗
2(1 + a6a

∗
4) + ...]e−i2eV t/h̄

+ [J∗a4A2 + A3A
∗
1(1 + a6a

∗
2) + A4A

∗
2(1 + a8a

∗
4) + ...]e−i4eV t/h̄ + [...]e−i6eV t/h̄

+ ...

)
× 1

eε/kBT + 1
=

∞∑
K=−∞

I
(K)
L (ε)ei2KeV t/h̄ (7.31)

where the last expression is written as a sum over Fourier components.

This completes half of the story. For the net current, we also have to consider

the current due to electron-like quasiparticles incident from the right electrode.

This is similar to the case discussed above of quasiparticles incident from the left

electrode, however an electron-like quasiparticle traveling from right to left picks up

energy −eV rather than eV as it traverses the normal region.

To proceed, note again that for D = 1, I will have Bn = 0 and Dn = 0, i.e.

no scattered wave. Since the right electrode has applied voltage V , it effectively

shifts the Fermi level down. To simplify the equations, I consider an electron-like

quasiparticle incident from the right with energy ε+ eV and source term J(ε+ eV ).

Examining Fig. 7.3, one can see that when an electron travels from right to left,

it loses energy eV , and thus then Andreev reflection amplitude at the left S/N
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J(ε+eV)a1(ε)=A1
ε-2eV

J(ε+eV)a1(ε)a2(ε-eV)

      =a2A1

ε-3eV

J(ε+eV)a1(ε)a2(ε-eV)a3(ε-2eV)

      =A2

ε-4eV

J(ε+eV)a1(ε)a2(ε-eV)a3(ε-2eV)

               a4(ε-3eV)=a4A2

J(ε+eV)a1(ε)a2(ε-eV)a3(ε-2eV)

    a4(ε-3eV)a5(ε-4eV)=A3

ε
ε-eV

EF

EF

S1 N S2

incident electron-like
quasiparticle

Figure 7.3: Illustration of multiple Andreev reflection of an electron-like
quasiparticle that is incident at ε from the right electrode. Since the
right electrode has voltage V , it effectively brings down the Fermi level
of the right side.
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interface will be a1(ε+ eV − eV ) = a1(ε). Thus the energy of the electron that will

be Andreev reflected as an hole is ε. The hole will travel to the right, and it loses

energy eV , which gives a reflection amplitude of a2(ε − eV ) at the right electrode.

This process continues and each time the particle’s energy decreases by eV when

traveling across the normal region. Thus I obtain:

A−3 = A−2 = A−1 = A0 = 0 (7.32a)

A1(ε+ eV,−V ) = J(ε+ eV )a1(ε) (7.32b)

A2(ε+ eV,−V ) = J(ε+ eV )a1(ε)a2(ε− eV )a3(ε− 2eV ) (7.32c)

A3(ε+ eV,−V ) = J(ε+ eV )a1(ε)a2(ε− eV )a3(ε− 2eV )a4(ε− 3eV )a5(ε− 4eV )

(7.32d)

... (7.32e)

The wave function due to an electron-like quasiparticle incident from the right side

is thus, for D = 1:

ψel =
∑
n

[(a2nAn + Jδn0)e−ikx]e−i(ε−2neV )t/h̄ (7.33a)

ψh =
∑
n

[Ane
−ikx]e−i(ε−2neV )t/h̄ (7.33b)

The corresponding current due to electron-like quasiparticles incident from the right
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is then:

IR(ε, t) = − e

2πh̄

∫ ∞
−∞

dε

(
[|J |2 + |A1|2(1 + |a2|2) + |A2|2(1 + |a4|2) + |A3|2(1 + |a6|2

+ ...] + [Ja∗2A
∗
1 + A1A

∗
2(1 + a2a

∗
4) + A2A

∗
3(1 + a4a

∗
6) + ...]e−i2eV t/h̄

+ [Ja∗4A
∗
2 + A1A

∗
3(1 + a2a

∗
6) + A2A

∗
4(1 + a4a

∗
8) + ...]e−i4eV t/h̄ + [..]e−i6eV t/h̄ + ...

+ [J∗a2A1 + A2A
∗
1(1 + a4a

∗
2) + A3A

∗
2(1 + a6a

∗
4) + ...]ei2eV t/h̄

+ [J∗a4A2 + A3A
∗
1(1 + a6a

∗
2) + A4A

∗
2(1 + a8a

∗
4) + ...]ei4eV t/h̄ + [...]ei6eV t/h̄ + ...

)
× 1

e(ε−µR)/kBT + 1
=

∞∑
K=−∞

I
(K)
R (ε)ei2KeV t/h̄ (7.34)

where the last expression is written as a sum over Fourier components. Also note

in Eq. (7.34) that the chemical potential µR of the right electrode is -eV .

I can now find the total current by combining the current from the left and

the right side. For simplicity, let’s look at the DC case. Taking the zeroth Fourier

component K = 0 in Eq. (7.31) and Eq. (7.34), I find:

IDC =

∫ ∞
−∞

dε(I0
L(ε) + I0

R(ε))

=
e

2πh̄

[ ∫ ∞
−∞

dε[|J(ε)|2 + |A1(ε, V )|2(1 + |a2(ε+ 2eV )|2) + |A2(ε, V )|2(1

+ |a4(ε+ 4eV )|2) + |A3(ε, V )|2(1 + |a6(ε, V )|2) + ...]
1

eε/kBT + 1

−
∫ ∞
−∞

dε[|J(ε+ eV )|2 + |A1(ε+ eV,−V )|2(1 + |a2(ε+ eV − 2eV )|2)

+ |A2(ε+ eV,−V )|2(1 + |a4(ε+ eV − 4eV )|2) + |A3(ε+ eV,−V )|2(1+

|a6(ε+ eV − 6eV )|2) + ...]
1

e(ε+eV )/kBT + 1

]
(7.35)
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Substituting for the An from Eq. (7.21) and Eq. (7.32), I can write

IDC =
e

2πh̄

[ ∫ ∞
−∞

dε[|J(ε)|2 + |J(ε)|2|a1(ε+ eV )|2 + |J(ε)|2|a1(ε+ eV )|2

|a2(ε+ 2eV )|2 + |J(ε)|2|a1(ε+ eV )|2|a2(ε+ 2eV )|2|a3(ε+ 3eV )|2...] 1

eε/kBT + 1

−
∫ ∞
−∞

dε[|J(ε+ eV )|2 + |J(ε+ eV )|2|a1(ε)|2 + |J(ε+ eV )|2|a1(ε)|2|a2(ε− eV )|2

+ |J(ε+ eV )|2|a1(ε)|2|a2(ε− eV )|2|a3(ε− 2eV )|2...] 1

e(ε+eV )/kBT + 1

]
(7.36)

Let’s look at the |J(ε)|2 terms first. I find:

∫ ∞
−∞

dε

(
|J(ε)|2 1

eε/kBT + 1
− |J(ε+ eV )|2 1

e(ε+eV )/kBT + 1

)
=

∫ ∞
−∞

dε

(
(1− |a(ε)|2)

1

eε/kBT + 1
− (1− |a(ε+ eV )|2)

1

e(ε+eV )/kBT + 1

)
=

∫ ∞
−∞

dε

[
(

1

eε/kBT + 1
− 1

e(ε+eV )/kBT + 1
)− (|a(ε)|2 1

eε/kBT + 1

− |a(ε+ eV )|2 1

e(ε+eV )/kBT + 1
)

]
= eV (7.37)

This eV is the first term in Eq. (6) in Averin and Bardas [122].

For the rest of the terms, I change variables for the incoming current from the

right. Defining ε′ = ε+ eV , I can now write Eq. (7.36) as

IDC =
e2V

2πh̄
+

e

2πh̄

[ ∫ ∞
−∞

dε[|J(ε)|2|a1(ε+ eV )|2 + |J(ε)|2|a1(ε+ eV )|2|a2(ε+ 2eV )|2

+ |J(ε)|2|a1(ε+ eV )|2|a2(ε+ 2eV )||a3(ε+ 3eV )|2...] 1

eε/kBT + 1

−
∫ ∞+eV

−∞+eV

dε′[|J(ε′)|2|a1(ε′ − eV )|2 + |J(ε′)|2|a1(ε′ − eV )|2|a2(ε′ − 2eV )|2
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+ |J(ε′)|2|a1(ε′ − eV )|2|a2(ε′ − 2eV )|2|a3(ε′ − 3eV )|2...] 1

eε′/kBT + 1

]
(7.38)

We see there is some kind of the symmetry for the case of equal gaps. From the

definition of J(ε) =
√

(1− |a(ε)|2), this is an even function: J(ε)=J(−ε). In terms

of a(ε), by inspecting the definition from Eq. (7.1), we get the following relation:


a(−E) = −a(E) = −a∗(E), for |E| > ∆

a(−E) = −a∗(E), for |E| < ∆

(7.39)

I use E to represent the total energy of the particle to avoid confusion in the notation.

ε is the original energy that the incident particle carries. V is the voltage that the

incident quasiparticle sees. Thus:

an(−ε,−V ) = a(−ε− neV ) = a(−E)

= −a∗(E) = −a∗(ε+ neV ) = −a∗n(ε, V ) (7.40)

Using Eq. (7.40), I can show that there is a relation between A1(ε, V ) =

J(ε)a1(ε+ eV ) and A1(−ε,−V ) = J(−ε)a1(−ε− eV ), where I find:

A1(−ε,−V ) = −A∗1(ε, V ) (7.41)

This relation holds for A1, A2, A3..., as each An has an odd number of factors of a(ε),
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therefore it always picks up a minus sign. Thus the general relation for A(ε, V ) is:

An(−ε,−V ) = −A∗n(ε, V ) (7.42)

as stated by AB [122].

Using Eq. (7.41) and Eq. (7.42), the negative ε′ terms in Eq. (7.38) can combine

with the positive ε terms, and I find:

IDC =
e

2πh̄

[
eV +

∫ ∞
−∞

dε[|J(ε)|2|a1(ε+ eV )|2 + |J(ε)|2|a1(ε+ eV )|2|a2(ε+ 2eV )|2

+ |J(ε)|2|a1(ε+ eV )|2|a2(ε+ 2eV )|2|a3(ε+ 3eV )|2...] 1

eε/kBT + 1

−
∫ ∞−eV
−∞−eV

dε[|J(−ε)|2|a1(−ε− eV )|2 + |J(−ε)|2|a1(−ε− eV )|2

|a2(−ε− 2eV )|2 + |J(−ε)|2|a1(−ε− eV )|2|a2(−ε− 2eV )|2|a3(−ε− 3eV )|2

...]
1

e−ε/kBT + 1

]
=

e

2πh̄

[
eV +

∫ ∞
−∞

dε[|J(ε)|2|a1(ε+ eV )|2 + |J(ε)|2|a1(ε+ eV )|2|a2(ε+ 2eV )|2

+ |J(ε)|2|a1(ε+ eV )|2|a2(ε+ 2eV )|2|a3(ε+ 3eV )|2

...](
1

eε/kBT + 1
− 1

e−ε/kBT + 1
)

−
∫ −∞
−∞−eV

dε[|J(−ε)|2|a1(−ε− eV )|2 + |J(−ε)|2|a1(−ε− eV )|2|a2(−ε− 2eV )|2

+ |J(−ε)|2|a1(−ε− eV )|2|a2(−ε− 2eV )|2|a3(−ε− 3eV )|2...] 1

e−ε/kBT + 1

+

∫ ∞
∞−eV

dε[|J(−ε)|2|a1(−ε− eV )|2 + |J(−ε)|2|a1(−ε− eV )|2|a2(−ε− 2eV )|2

+ |J(−ε)|2|a1(−ε− eV )|2|a2(−ε− 2eV )|2|a3(−ε− 3eV )|2...] 1

e−ε/kBT + 1

]
=

e

2πh̄

[
eV −

∫ ∞
−∞

dε tanh

(
ε

2kBT

)(
|J(ε)|2|a1(ε+ eV )|2 + |J(ε)|2|a1(ε+ eV )|2
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|a2(ε+ 2eV )|2 + |J(ε)|2|a1(ε+ eV )|2|a2(ε+ 2eV )|2|a3(ε+ 3eV )|2...
)

−
∫ ∞+eV

∞
dε

(
|J(ε)|2|a1(ε− eV )|2 + |J(ε)|2|a1(ε− eV )|2|a2(ε− 2eV )|2

+ |J(ε)|2|a1(ε− eV )|2|a2(ε− 2eV )|2|a3(ε− 3eV )|2...
)

1

eε/kBT + 1

+

∫ −∞+eV

−∞
dε

(
|J(ε)|2|a1(ε− eV )|2 + |J(ε)|2|a1(ε− eV )|2|a2(ε− 2eV )|2

+ |J(ε)|2|a1(ε− eV )|2|a2(ε− 2eV )|2|a3(ε− 3eV )|2...
)

1

eε/kBT + 1

]
=

e

2πh̄

[
eV −

∫ ∞
−∞

dε tanh

(
ε

2kBT

)(
|J(ε)|2|a1(ε+ eV )|2 + |J(ε)|2|a1(ε+ eV )|2

|a2(ε+ 2eV )|2 + |J(ε)|2|a1(ε+ eV )|2|a2(ε+ 2eV )|2|a3(ε+ 3eV )|2...
)]

(7.43)

The second integral vanishes because the Fermi function vanishes as ε → ∞. The

last integral also vanishes because a(ε) goes to zero as ε → −∞, as can be seen

from Eq. (7.1). Later on, when I consider the case where D is not equal to 1, the

last term will need to be reexamined.

A similar analysis can be done with the other Fourier components in Eq. (7.31)

and Eq. (7.34). In particular, I find that for the first Fourier component K = 1:

IAC = I1
L(t) + I1

R(t)

= ei2eV t/h̄
e

2πh̄

∫ ∞
−∞

dε[J(ε)a∗2(ε, V )A∗1(ε, V ) + A1(ε, V )A∗2(ε, V )(1 + a2(ε, V )

a∗4(ε, V )) + A2(ε, V )A∗3(ε, V )(1 + a4(ε, V )a∗6(ε, V )) + ...]
1

eε/kBT + 1

− ei2eV t/h̄ e

2πh̄

∫ ∞+eV

−∞+eV

dε[J∗(ε)a2(ε,−V )A1(ε,−V ) + A∗1(ε,−V )A2(ε,−V )(1

+ a∗2(ε,−V )a4(ε,−V )) + A∗2(ε,−V )A3(ε,−V )(1 + a∗4(ε,−V )a6(ε,−V ))

169



7.2. MAR IN SYMMETRICAL JUNCTION WITH TRANSPARENCY D = 1

+ ...]
1

eε/kBT + 1
(7.44)

This can be rearranged to give

IAC = ei2eV t/h̄
e

2πh̄

∫ ∞
−∞

dε[J(ε)a∗2(ε, V )A∗1(ε, V ) + A1(ε, V )A∗2(ε, V )(1 + a2(ε, V )

a∗4(ε, V )) + A2(ε, V )A∗3(ε, V )(1 + a4(ε, V )a∗6(ε, V )) + ...]
1

eε/kBT + 1

− ei2eV t/h̄ e

2πh̄

∫ ∞−eV
−∞−eV

dε[J∗(−ε)a2(−ε,−V )A1(−ε,−V ) + A∗1(−ε,−V )

A2(−ε,−V )(1 + a∗2(−ε,−V )a4(−ε,−V )) + A∗2(−ε,−V )A3(−ε,−V )

(1 + a∗4(−ε,−V )a6(−ε,−V )) + ...]
1

e−ε/kBT + 1

= −ei2eV t/h̄ e

2πh̄

∫ ∞
−∞

dε tanh

(
ε

2kBT

)
[J(ε)a∗2(ε, V )A∗1(ε, V )

+ A1(ε, V )A∗2(ε, V )(1 + a2(ε, V )a∗4(ε, V )) + A2(ε, V )A∗3(ε, V )

(1 + a4(ε, V )a∗6(ε, V )) + ...]

− ei2eV t/h̄ e

2πh̄

∫ ∞+eV

∞
dε[J∗(ε)a2(ε,−V )A1(ε,−V ) + A∗1(ε,−V )A2(ε,−V )

(1 + a∗2(ε,−V )a4(ε,−V )) + A∗2(ε,−V )A3(ε,−V )(1 + a∗4(ε,−V )a6(ε,−V ))

+ ...]
1

eε/kBT + 1

+ ei2eV t/h̄
e

2πh̄

∫ −∞+eV

−∞
dε[J∗(ε)a2(ε,−V )A1(ε,−V ) + A∗1(ε,−V )A2(ε,−V )

(1 + a∗2(ε,−V )a4(ε,−V )) + A∗2(ε,−V )A3(ε,−V )(1 + a∗4(ε,−V )a6(ε,−V ))

+ ...]
1

eε/kBT + 1
(7.45)
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Finally I find:

IAC = −ei2eV t/h̄ e

2πh̄

∫ ∞
−∞

dε tanh

(
ε

2kBT

)
[J(ε)a∗2(ε, V )A∗1(ε, V ) + A1(ε, V )A∗2(ε, V )

(1 + a2(ε, V )a∗4(ε, V )) + A2(ε, V )A∗3(ε, V )(1 + a4(ε, V )a∗6(ε, V )) + ...]

(7.46)

If we do the analysis for all the Fourier components, I find:

I(t) =
∑
k

Ike
i2keV t/h̄ (7.47)

where

Ik = 2× e

2πh̄
[eV δk0 −

∫ ∞
−∞

dε tanh

(
ε

2kBT

)(
J(ε)(a∗2kA

∗
k + a−2kA−k)

+
∞∑

n=−∞

(1 + a2na
∗
2(n+k))(AnA

∗
n+k)

)
] (7.48)

I note that this expression has Ak=0 for k < 0 and it holds only for the very special

case where there is no scattering, i.e. D = 1.

Examining Eq. (7.48), we see that the current component Ik has a leading

factor of 2. This accounts for a hole-like quasiparticle incident from the left and

a hole-like quasiparticle incident from the right, where the sum of both terms con-

tributes exactly the same as an electron-like quasiparticle incident from the right

and an electron-like quasiparticle incident from the left. However this situation only

applies when the left and right superconductors have the same gap ∆. In a later
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section, we will see that when the electrons have different gaps, one needs to consider

four different scenarios (electron-like quasiparticle incident from the left, electron-

like quasiparticle incident from the right, hole-like quasiparticle incident from the

left, hole-like quasiparticle incident from the right) in order to obtain the correct

current expression.

7.3 MAR in symmetrical junction with D 6= 1

To find the current where the barrier transparency D 6= 1, we need to account

for quasiparticles being reflected at the barrier in the weak link (see Fig. 7.1). For

D 6= 1, when a quasiparticle is incident from the left the wave function is

ψel =
∑
n

[(a2nAn + Jδn0)eikx +Bne
−ikx]e−i(ε+2neV )t/h̄ (7.49a)

ψh =
∑
n

[Ane
ikx + a2nBne

−ikx]e−i(ε+2neV )t/h̄ (7.49b)

From this wavefunction, we can get the total probability current j = jel + jh using

Eq. (7.23). As we see above the wavefunction of the electron and the hole have

taken care of the current flow.

For the electron wave function:

ψel = eikx(a−4A−2e
−i(ε−4eV )t/h̄ + a−2A−1e

−i(ε−2eV )t/h̄ + (J + a0A0)e−iεt/h̄

+ a2A1e
−i(ε+2eV )t/h̄ + a4A2e

−i(ε+4eV )t/h̄ + a6A3e
−i(ε+6eV )t/h̄ + ...)
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+ e−ikx(B−2e
−i(ε−4eV )t/h̄ +B−1e

−i(ε−2eV )t/h̄ +B0e
−iεt/h̄ +B1e

−i(ε+2eV )t/h̄

+B2e
−i(ε+4eV )t/h̄ + ...) (7.50)

and thus

ψ∗el = e−ikx(a∗−4A
∗
−2e

i(ε−4eV )t/h̄ + a∗−2A
∗
−1e

i(ε−2eV )t/h̄ + (J + a∗0A
∗
0)eiεt/h̄

+ a∗2A
∗
1e
i(ε+2eV )t/h̄ + a∗4A

∗
2e
i(ε+4eV )t/h̄ + a∗6A

∗
3e
i(ε+6eV )t/h̄ + ...)

+ eikx(B∗−2e
i(ε−4eV )t/h̄ +B∗−1e

i(ε−2eV )t/h̄ +B∗0e
iεt/h̄

+B∗1e
i(ε+2eV )t/h̄ +B∗2e

i(ε+4eV )t/h̄ + ...). (7.51)

I then find the probability current density:

jel =
h̄

2mi
∗ 2ik

{(
[...+ |a−4|2|A−2|2 + |a−2|2|A−1|2 + |J |2 + J(a0A0 + a∗0A

∗
0)

+ |a0|2|A0|2 + |a2|2 + |A1|2 + |a4|2|A2|2 + |a6|2|A3|2 + ...]− [...+ |B−2|2 + |B−1|2

+ |B0|2 + |B1|2 + |B2|2 + ...]

)
+

(
[...a−4A−2a

∗
−2A

∗
−1 + a−2A−1(J + a∗0A

∗
0)

+ (J + a0A0)a∗2A
∗
1 + a2A1a

∗
4A
∗
2 + a4A2a

∗
6A
∗
3 + ...]− [...+B−2B

∗
−1 +B−1B

∗
0

+B0B
∗
1 +B1B

∗
2 + ...]

)
ei2eV t/h̄ + [...]ei4eV t/h̄ + [...]ei6eV t/h̄ + ...

+

(
[...+ a−2A−1a

∗
−4A

∗
−2 + a∗−2A

∗
−1(J + a0A0) + (J + a∗0A

∗
0)a2A1 + a∗2A

∗
1a4A2

+ a∗4A
∗
2a6A3 + ...]− [...+B−1B

∗
−2 +B0B

∗
−1 +B1B

∗
0 +B2B

∗
1 + ...]

)
e−i2eV t/h̄

+ [...]e−i4eV t/h̄ + [...]e−i6eV t/h̄ + ...

}
(7.52)
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For the hole wave function:

ψh = eikx(A−2e
−i(ε−4eV )t/h̄ + A−1e

−i(ε−2eV )t/h̄ + A0e
−iεt/h̄ + A1e

−i(ε+2eV )t/h̄

+ A2e
−i(ε+4eV )t/h̄ + ...) + e−ikx(a−4B−2e

−i(ε−4eV )t/h̄ + a−2B−1e
−i(ε−2eV )t/h̄

+ a0B0e
−iεt/h̄ + a2B1e

−i(ε+2eV )t/h̄ + a4B2e
−i(ε+4eV )t/h̄ + ...) (7.53)

and thus

ψ∗h = e−ikx(A∗−2e
i(ε−4eV )t/h̄ + A∗−1e

i(ε−2eV )t/h̄ + A∗0e
iεt/h̄ + A∗1e

i(ε+2eV )t/h̄

+ A∗2e
i(ε+4eV )t/h̄ + ...) + eikx(a∗−4B

∗
−2e

i(ε−4eV )t/h̄ + a∗−2B
∗
−1e

i(ε−2eV )t/h̄

+ a∗0B
∗
0e
iεt/h̄ + a∗2B

∗
1e
i(ε+2eV )t/h̄ + a∗4B

∗
2e
i(ε+4eV )t/h̄ + ...) (7.54)

I then find the probability current density:

jh =
h̄

2mi
∗ 2ik

{(
− [...+ |A−2|2 + |A−1|2 + |A0|2 + |A1|2 + |A2|2 + ...]

+ [|a−4|2|B−2|2 + |a−2|2|B−1|2 + |a0|2|B0|2 + |a2|2|B1|2 + |a4|2|B2|2 + ...]

)
+

(
− [A1A

∗
2 + A0A

∗
1 + A−1A

∗
0 + A−2A

∗
−1...] + [a2B1a

∗
4B
∗
2 + a0B0a

∗
2B
∗
1

+ a−2B−1a
∗
0B
∗
0 + a−4B−2a

∗
−2B

∗
−1]

)
ei2eV t/h̄ + [...]ei4eV t/h̄ + [...]ei6eV t/h̄ + ...

+

(
− [A∗1A2 + A∗0A1 + A∗−1A0 + A∗−2A−1...] + [a∗2B

∗
1a4B2 + a∗0B

∗
0a2B1

+ a∗−2B
∗
−1a0B0 + a∗−4B

∗
−2a−2B−1]

)
e−i2eV t/h̄ + [...]e−i4eV t/h̄ + [...]e−i6eV t/h̄ + ...

}
(7.55)
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From Eq. (7.52) and Eq. (7.55), I can now get a version of Averin and Bardas’s

Eq. (6) in [122] that is valid for all D:

I(t) =
∑
k

Ike
i2keV t/h̄ (7.56)

where

Ik = 2× e

2πh̄

{
eV δk0 −

∫ ∞
−∞

dε tanh

(
ε

2kBT

)[
J(ε)(a∗2kA

∗
k + a−2kA−k)

+
∞∑

n=−∞

(1 + a2na
∗
2(n+k))(AnA

∗
n+k −BnB

∗
n+k)

]
+

∫ −∞+eV

−∞
dε
[
J(ε)(a∗2kA

∗
k

+ a−2kA−k) +
∞∑

n=−∞

(1 + a2na
∗
2(n+k))(AnA

∗
n+k −BnB

∗
n+k)

] 1

eε/kBT + 1

}

=
e

πh̄

{
eV Dδk0 −

∫ ∞
−∞

dε tanh

(
ε

2kBT

)[
J(ε)(a∗2kA

∗
k + a−2kA−k)

+
∞∑

n=−∞

(1 + a2na
∗
2(n+k))(AnA

∗
n+k −BnB

∗
n+k)

]}
(7.57)

I note that the eV D δk0 term in the final expression is not equal to eV in this case

because the last term does not disappear when D 6= 1. One finds that the B0B
∗
0

terms in the sum yield eV R, which then combine with the first term eV − eV R =

eV D. Note that in Eq. (7.57) the A and B terms are in general non-zero for all k,

which are the integers 0,±1,±2,±3, ....

To calculate the I − V characteristics from Eq. (7.57), one needs to use the

definition of a(ε) from Eq. (7.1) to plug into the recursion relation Eq. (7.18) and

Eq. (7.13) to get An, Bn. Once I have the An and Bn terms, I plug them into

Eq. (7.57) and numerically integrate the equation to get the current at coltage V
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(see Appendix C).

Figure 7.4 shows the calculated dc I − V characteristics of an S-I-S junction

that I obtained from Eq. (7.57) for k=0. The different curves are for different trans-

parency D. For example, for D = 0.01 and T = 0, the barrier has low transparency,

and the junction I(V) curve goes to the conventional S-I-S tunneling limit [64].

There is a clear rise in the current at the sum of the superconducting gaps, but no

obvious subgap behavior on this scale. In contrast, the other curves with D ≥ 0.1

are for more transparent junctions, and these show current steps at eV = 2∆/n,

where n = 1, 2, 3...is an integer.

7.4 MAR in Asymmetrical junctions

In the previous section I showed how to obtain Averin and Bardas’s expres-

sion for the I(V) characteristics of an S-I-S junction when both electrodes have the

same gap. Here I generalize their approach to the case where the electrodes have

different superconducting gaps. The key thing to note is that the Andreev reflection

amplitude will now depend on which interface is reflecting the particle. To simplify

the discussion, let’s again start by looking at the case D = 1. Consider an electron-

like quasiparticle incident from the left with energy ε and a voltage V applied to

the right electrode. Now when a transmitted electron goes from the left to the

right interface, its energy becomes ε+ eV and the Andreev reflection amplitude will

be A1(ε, V ) = JL(ε)aR1 (ε + eV ). An Andreev reflected hole will then travel from
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Figure 7.4: Calculated I−V characteristics of a symmetrical S-I-S junc-
tion with MAR. The superconducting gap is the same for the two super-
conductors and the different curves correspond to D values of 1, 0.99,
0.9, 0.7, 0.4, 0.1 and 0.01 from top to bottom. GT is the normal state
conductance of the channel GT = e2D/πh̄.
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right to left and pick up extra energy eV . This hole will be Andreev reflected at

the left interface, producing a rightward traveling electron with amplitude aL2 (ε)A1

=JL(ε)aR1 (ε+eV )aL2 (ε+2eV ). When the electron again travels to the right, it picks

up another energy increment of eV and at the right interface yields an Andreev

reflected hole with amplitude JL(ε)aR1 (ε+ eV )aL2 (ε+ 2eV )aR3 (ε+ 3eV ). This is the

same process shown in Fig. 7.2, it is just that we need to keep in mind that the

left and right sides produce different reflection amplitudes because they may have

different gaps.

As we can see from this description, all the odd indices for an come from the

right electrode, and all the even indices for an are from the left electrode. To get

A1, A2, A3..., we have to calculate the amplitude using corresponding aLeven and aRodd.

To help keep things straight, we emphasize that here we first consider quasiparticles

incident from the left electrode at energy ε, and now we relabel the A1, A2,.. as

A1L(ε, V ), A2L(ε, V ), A3L(ε, V )... We will go on to consider quasiparticles incident

from the right.

Previously for the case of electrodes with the same superconducting gap, I

obtained Eq. (7.39) and Eq. (7.42). These relations are important because they

allowed me to simplify the calculation of the current. For the case of different gaps,

I need to re-examine these relations to see if they still hold.

To see what happens to Eq. (7.42), let’s examine the situation when an

electron-like quasiparticle is coming from the right electrode with energy −ε and

the left electrode is at the potential of 0 V while the right electrode is at the poten-

tial of V . When it goes from the right to the left interface, its energy decreases by
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eV with respect to the Fermi energy on the left side. An Andreev reflected hole with

amplitude A1(−ε,−V ) = JR(−ε)aL1 (−ε − eV ) will then travel from the left to the

right and its energy decreases by eV on reaching the right side. An Andreev reflected

electron then propagates from the right to the left with amplitude aR2 (−ε− 2eV )A1

=JR(−ε)aL1 (−ε − eV )aR2 (−ε − 2eV ). At the left interface the electron energy will

again decrease by eV , and an Andreev reflected hole will be generated with ampli-

tude A2 = JR(−ε)aL1 (−ε− eV )aR2 (−ε− 2eV )aL3 (−ε− 3eV )....etc.

Clearly A1(ε, V ) = JL(ε)aR1 (ε + eV ) and A1(−ε,−V ) = JR(−ε)aL1 (−ε − eV )

if the gaps are not equal, i.e.

A1(ε, V ) 6= −A∗1(−ε,−V ) (7.58)

because aR1 (ε+ eV ) is different than aL1 (−ε− eV ) because of the different gaps.

Therefore, to calculate the total current, we have to first calculate the current

IL from quasiparticles incident from the left by summing over all possible energies

and weighting them by the Fermi distribution. I then need to find the current

IR due to quasiparticles incident from the right superconductor by summing over

all possible energies and weighting with the Fermi distribution. I can then find

I = IL − IR, which is the net current that flows through the junction.

Let’s again start by finding the dc part. Starting from Eq. (7.43) and keeping

track of the left and right, I can write,

IDC = IL + IR
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=
e

2πh̄

[ ∫ ∞
−∞

dε[
∣∣JL(ε)

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε+ eV )
∣∣2 +

∣∣JL(ε)
∣∣2∣∣aR1 (ε+ eV )

∣∣2
∣∣aL2 (ε+ 2eV )

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε+ eV )
∣∣2∣∣aL2 (ε+ 2eV )

∣∣2
∣∣aR3 (ε+ 3eV )

∣∣2...] 1

eε/kBT + 1

−
∫ ∞
−∞

dε[
∣∣JR(ε+ eV )

∣∣2 +
∣∣JR(ε+ eV )

∣∣2∣∣aL1 (ε)
∣∣2 +

∣∣JR(ε+ eV )
∣∣2∣∣aL1 (ε)

∣∣2
∣∣aR2 (ε− eV )

∣∣2 +
∣∣JR(ε+ eV )

∣∣2∣∣aL1 (ε)
∣∣2∣∣aR2 (ε− eV )

∣∣2
∣∣aL3 (ε− 2eV )

∣∣2...] 1

e(ε+eV )/kBT + 1

]
=

e

2πh̄

[ ∫ ∞
−∞

dε[
∣∣JL(ε)

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε+ eV )
∣∣2 +

∣∣JL(ε)
∣∣2∣∣aR1 (ε+ eV )

∣∣2
∣∣aL2 (ε+ 2eV )

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε+ eV )
∣∣2∣∣aL2 (ε+ 2eV )

∣∣2
∣∣aR3 (ε+ 3eV )

∣∣2...] 1

eε/kBT + 1

−
∫ ∞+eV

−∞+eV

dε[
∣∣JR(ε)

∣∣2 +
∣∣JR(ε)

∣∣2∣∣aL1 (ε− eV )
∣∣2 +

∣∣JR(ε)
∣∣2∣∣aL1 (ε− eV )

∣∣2
∣∣aR2 (ε− 2eV )

∣∣2 +
∣∣JR(ε)

∣∣2∣∣aL1 (ε− eV )
∣∣2∣∣aR2 (ε− 2eV )

∣∣2
∣∣aL3 (ε− 3eV )

∣∣2...] 1

eε/kBT + 1

]
(7.59)

To proceed I now arrange things to make the integration limits look much

nicer. This will result in an expression with the same “format” as Averin found in

a paper on multi-channel MAR for the case of identical gaps [127]. Working with

the limits of integration, I can write:

IDC =
e

2πh̄

[ ∫ ∞
−∞−eV

dε[
∣∣JL(ε)

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε+ eV )
∣∣2 +

∣∣JL(ε)
∣∣2∣∣aR1 (ε+ eV )

∣∣2
∣∣aL2 (ε+ 2eV )

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε+ eV )
∣∣2∣∣aL2 (ε+ 2eV )

∣∣2
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∣∣aR3 (ε+ 3eV )
∣∣2...] 1

eε/kBT + 1

−
∫ ∞
−∞−eV

dε[
∣∣JR(ε+ eV )

∣∣2 +
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e
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∣∣2 +
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∣∣2∣∣aR2 (ε− 2eV )

∣∣2
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∣∣2...] 1

eε/kBT + 1

]
=

e

2πh̄
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[∣∣JL(ε)
∣∣2 +

∣∣JL(ε)
∣∣2∣∣aR1 (ε+ eV )

∣∣2 +
∣∣JL(ε)
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∣∣2

∣∣aL2 (ε+ 2eV )
∣∣2 +

∣∣JL(ε)
∣∣2∣∣aR1 (ε+ eV )

∣∣2∣∣aL2 (ε+ 2eV )
∣∣2

∣∣aR3 (ε+ 3eV )
∣∣2...] 1

eε/kBT + 1

−
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∣∣2
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∣∣2 +
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∣∣2
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∣∣2...] 1
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}
(7.60)

Note that when the gap of the left and right electrodes are the same, the term in

square brackets in each integral is the same and the two integrals can be combined

such that the two Fermi functions produce an overall leading factor of 1
eε/kBT+1

−
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1
e−ε/kBT+1

= − tanh
(

ε
2kBT

)
. This yields an equation for the current that has the

same overall form as Eq. (4) in Averin’s multi channel paper [127].

Unfortunately, when the electrodes have different gaps, a quasiparticle will

have different reflection amplitudes at the left and right S/N interfaces. In this

case I realized that it was necessary to explicitly consider the hole-like quasiparticle

current incident from the left and right, as well as the electron-like quasiparticle

incident from the left and right, a total of four separate processes.

Let’s now consider the situation when a hole-like quasiparticle is incident from

left superconducting electrode onto the right S/N interface and voltage V is applied

to the right electrode. Figure 7.5 illustrates this situation for a hole-like quasiparticle

incident above the Fermi energy with energy ε. In contrast to the case of an electron,

the Fermi level for the holes on the right electrode is shifted upwards; i.e. the

hole loses kinetic energy as it moves from left to right across the normal region.

Considering the D = 1 case, An can then be written as:

A−3 = A−2 = A−1 = A0 = 0 (7.61)

A1h(ε,−V ) = JL(ε)aR1 (ε− eV ) (7.62)

A2h(ε,−V ) = JL(ε)aR1 (ε− eV )aL2 (ε− 2eV )aR3 (ε− 3eV ) (7.63)

A3h(ε,−V ) = JL(ε)aR1 (ε− eV )aL2 (ε− 2eV )aR3 (ε− 3eV )aL4 (ε− 4eV )aR5 (ε− 5eV )
(7.64)

The wavefunction produced when a hole-like quasiparticle is incident from the left

can then be written as
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Figure 7.5: Illustration of multiple Andreev reflection for transparency
D = 1 for a hole-like quasiparticle incident from the left with energy ε
and voltage V applied to the right electrode while the left electrode is
grounded. The hole experiences repulsive force from the right electrode
and decreases its kinetic energy. This effectively shifts the Fermi energy
of the holes on the right electrode up by eV .
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ψh =
∑
n

[(a2nAn + Jδn0)e−ikx]e−i(ε−2neV )t/h̄ (7.65)

ψel =
∑
n

[Ane
−ikx]e−i(ε−2neV )t/h̄ (7.66)

The electrical current that is then produced by an incoming hole from the left, can

then be written as:

ILh(ε, t) = − e

2πh̄

∫
dε

(
[|J |2 + |A1|2(1 + |a2|2) + |A2|2(1 + |a4|2) + |A3|2(1 + |a6|2)

+ ...] + [Ja∗2A
∗
1 + A1A

∗
2(1 + a2a

∗
4) + A2A

∗
3(1 + a4a

∗
6) + ...]e−i2eV t/h̄

+ [Ja∗4A
∗
2 + A1A

∗
3(1 + a2a

∗
6) + A2A

∗
4(1 + a4a

∗
8) + ...]e−i4eV t/h̄ + [..]e−i6eV t/h̄

+ ...+ [J∗a2A1 + A2A
∗
1(1 + a4a

∗
2) + A3A

∗
2(1 + a6a

∗
4) + ...]ei2eV t/h̄

+ [J∗a4A2 + A3A
∗
1(1 + a6a

∗
2) + A4A

∗
2(1 + a8a

∗
4) + ...]ei4eV t/h̄ + [...]ei6eV t/h̄

+ ...

)
× 1

eε/kBT + 1
(7.67)

I also need to consider the situation when there is a hole-like quasiparticle

incident from the right with energy ε− eV and voltage V is applied to the right. As

shown in Fig. 7.6, this time the hole increases its kinetic energy each time it travels

from the right to the left. I can then write for this process:

A−3 = A−2 = A−1 = A0 = 0 (7.68)

A1h(ε− eV, V ) = JR(ε− eV )aL1 (ε) (7.69)
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Figure 7.6: Illustration of multiple Andreev reflection for a hole-like
quasiparticle incident with energy ε−eV from the right electrode, which
has voltage V applied. The hole increases its kinetic energy when it
moves from right to left.
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A2h(ε− eV, V ) = JR(ε− eV )aL1 (ε)aR2 (ε+ eV )aL3 (ε+ 2eV ) (7.70)

A3h(ε− eV, V ) = JR(ε− eV )aL1 (ε)aR2 (ε+ eV )aL3 (ε+ 2eV )aR4 (ε+ 3eV )aL5 (ε+ 4eV )
(7.71)

The resulting wavefunction for the case of a hole incident from the right electrode,

then can be written as:

ψh =
∑
n

[(a2nAn + Jδn0)eikx]e−i(ε+2neV )t/h̄ (7.72)

ψel =
∑
n

[Ane
ikx]e−i(ε+2neV )t/h̄ (7.73)

The electrical current produced by the hole incident from the right side is then:

IRh(ε, t) =
e

2πh̄

∫
dε

(
[|J |2 + |A1|2(1 + |a2|2) + |A2|2(1 + |a4|2) + |A3|2(1 + |a6|2)

+ ...] + [Ja∗2A
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∗
2(1 + a2a

∗
4) + A2A

∗
3(1 + a4a

∗
6) + ...]ei2eV t/h̄

+ [Ja∗4A
∗
2 + A1A

∗
3(1 + a2a

∗
6) + A2A

∗
4(1 + a4a

∗
8) + ...]ei4eV t/h̄ + [...]ei6eV t/h̄ + ...
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∗
1(1 + a4a

∗
2) + A3A

∗
2(1 + a6a

∗
4) + ...]e−i2eV t/h̄

+ [J∗a4A2 + A3A
∗
1(1 + a6a

∗
2) + A4A

∗
2(1 + a8a

∗
4) + ...]e−i4eV t/h̄

+ [...]e−i6eV t/h̄ + ...

)
× 1

e(ε−µR)/kBT + 1
(7.74)

where the chemical potential µR of the right electrode is −eV .

The total dc current due to hole-like quasiparticles incoming from the left and

right can now be expressed as:

IDCh =
e

2πh̄

[
−
∫ ∞
−∞

dε[
∣∣JL(ε)

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε− eV )
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∣∣2
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∣∣JL(ε)
∣∣2∣∣aR1 (ε− eV )

∣∣2∣∣aL2 (ε− 2eV )
∣∣2

∣∣aR3 (ε− 3eV )
∣∣2...] 1

eε/kBT + 1

+

∫ ∞
−∞

dε[
∣∣JR(ε− eV )

∣∣2 +
∣∣JR(ε− eV )

∣∣2∣∣aL1 (ε)
∣∣2 +

∣∣JR(ε− eV )
∣∣2∣∣aL1 (ε)

∣∣2
∣∣aR2 (ε+ eV )

∣∣2 +
∣∣JR(ε− eV )

∣∣2∣∣aL1 (ε)
∣∣2∣∣aR2 (ε+ eV )

∣∣2
∣∣aL3 (ε+ 2eV )

∣∣2...] 1

e(ε−eV )/kBT + 1

]
=

e

2πh̄

[
−
∫ ∞
−∞

dε[
∣∣JL(ε)

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε− eV )
∣∣2 +

∣∣JL(ε)
∣∣2∣∣aR1 (ε− eV )

∣∣2
∣∣aL2 (ε− 2eV )

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε− eV )
∣∣2∣∣aL2 (ε− 2eV )

∣∣2
∣∣aR3 (ε− 3eV )

∣∣2...] 1

eε/kBT + 1

+

∫ ∞−eV
−∞−eV

dε[
∣∣JR(ε)

∣∣2 +
∣∣JR(ε)

∣∣2∣∣aL1 (ε+ eV )
∣∣2 +

∣∣JR(ε)
∣∣2∣∣aL1 (ε+ eV )

∣∣2
∣∣aR2 (ε+ 2eV )

∣∣2 +
∣∣JR(ε)

∣∣2∣∣aL1 (ε+ eV )
∣∣2∣∣aR2 (ε+ 2eV )

∣∣2
∣∣aL3 (ε+ 3eV )

∣∣2...] 1

eε/kBT + 1

]
(7.75)

To summarize where we are in the calculation, I now have Eq. (7.59) for the

current due to electron-like quasiparticles incident from the left and right. I also

have the current due to hole-like quasiparticles incident from the left and right

superconductors Eq. (7.75). Adding the electron-like quasiparticle current and the

hole-like quasiparticle current, I get the total dc current.

IDC = IDCe + IDCh

=
e

2πh̄

[ ∫ ∞
−∞

dε[
∣∣JL(ε)

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε+ eV )
∣∣2 +

∣∣JL(ε)
∣∣2∣∣aR1 (ε+ eV )

∣∣2
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∣∣aL2 (ε+ 2eV )
∣∣2 +

∣∣JL(ε)
∣∣2∣∣aR1 (ε+ eV )

∣∣2∣∣aL2 (ε+ 2eV )
∣∣2

∣∣aR3 (ε+ 3eV )
∣∣2...] 1

eε/kBT + 1

−
∫ ∞+eV

−∞+eV

dε[
∣∣JR(ε)

∣∣2 +
∣∣JR(ε)

∣∣2∣∣aL1 (ε− eV )
∣∣2 +

∣∣JR(ε)
∣∣2∣∣aL1 (ε− eV )

∣∣2
∣∣aR2 (ε− 2eV )

∣∣2 +
∣∣JR(ε)

∣∣2∣∣aL1 (ε− eV )
∣∣2∣∣aR2 (ε− 2eV )

∣∣2
∣∣aL3 (ε− 3eV )

∣∣2...] 1

eε/kBT + 1

−
∫ ∞
−∞

dε[
∣∣JL(ε)

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε− eV )
∣∣2 +

∣∣JL(ε)
∣∣2∣∣aR1 (ε− eV )

∣∣2
∣∣aL2 (ε− 2eV )

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε− eV )
∣∣2∣∣aL2 (ε− 2eV )

∣∣2
∣∣aR3 (ε− 3eV )

∣∣2...] 1

eε/kBT + 1

+

∫ ∞−eV
−∞−eV

dε[
∣∣JR(ε)

∣∣2 +
∣∣JR(ε)

∣∣2∣∣aL1 (ε+ eV )
∣∣2 +

∣∣JR(ε)
∣∣2∣∣aL1 (ε+ eV )

∣∣2
∣∣aR2 (ε+ 2eV )

∣∣2 +
∣∣JR(ε)

∣∣2∣∣aL1 (ε+ eV )
∣∣2∣∣aR2 (ε+ 2eV )

∣∣2
∣∣aL3 (ε+ 3eV )

∣∣2...] 1

eε/kBT + 1

]
(7.76)

Regrouping terms and changing variables, I find:

IDC =
e

2πh̄

[ ∫ ∞
−∞

dε[
∣∣JL(ε)

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε+ eV )
∣∣2 +

∣∣JL(ε)
∣∣2∣∣aR1 (ε+ eV )

∣∣2
∣∣aL2 (ε+ 2eV )

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε+ eV )
∣∣2∣∣aL2 (ε+ 2eV )

∣∣2
∣∣aR3 (ε+ 3eV )

∣∣2...] 1

eε/kBT + 1

−
∫ ∞
−∞

dε[
∣∣JL(−ε)

∣∣2 +
∣∣JL(−ε)

∣∣2∣∣aR1 (−ε− eV )
∣∣2 +

∣∣JL(−ε)
∣∣2∣∣aR1 (−ε− eV )

∣∣2
∣∣aL2 (−ε− 2eV )

∣∣2 +
∣∣JL(−ε)

∣∣2∣∣aR1 (−ε− eV )
∣∣2∣∣aL2 (−ε− 2eV )

∣∣2
∣∣aR3 (−ε− 3eV )

∣∣2...] 1

e−ε/kBT + 1
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−
∫ ∞+eV

−∞+eV

dε[
∣∣JR(ε)

∣∣2 +
∣∣JR(ε)

∣∣2∣∣aL1 (ε− eV )
∣∣2 +

∣∣JR(ε)
∣∣2∣∣aL1 (ε− eV )

∣∣2
∣∣aR2 (ε− 2eV )

∣∣2 +
∣∣JR(ε)

∣∣2∣∣aL1 (ε− eV )
∣∣2∣∣aR2 (ε− 2eV )

∣∣2
∣∣aL3 (ε− 3eV )

∣∣2...] 1

eε/kBT + 1

+

∫ ∞+eV

−∞+eV

dε[
∣∣JR(−ε)

∣∣2 +
∣∣JR(−ε)

∣∣2∣∣aL1 (−ε+ eV )
∣∣2 +

∣∣JR(−ε)
∣∣2

∣∣aL1 (−ε+ eV )
∣∣2∣∣aR2 (−ε+ 2eV )

∣∣2 +
∣∣JR(−ε)

∣∣2∣∣aL1 (−ε+ eV )
∣∣2

∣∣aR2 (−ε+ 2eV )
∣∣2∣∣aL3 (−ε+ 3eV )

∣∣2...] 1

e−ε/kBT + 1

]
(7.77)

Additional simplification gives:

IDC =
e

2πh̄

[ ∫ ∞
−∞

dε[
∣∣JL(ε)

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε+ eV )
∣∣2 +

∣∣JL(ε)
∣∣2∣∣aR1 (ε+ eV )

∣∣2
∣∣aL2 (ε+ 2eV )

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε+ eV )
∣∣2∣∣aL2 (ε+ 2eV )

∣∣2
∣∣aR3 (ε+ 3eV )

∣∣2...]( 1

eε/kBT + 1
− 1

e−ε/kBT + 1
)

−
∫ ∞+eV

−∞+eV

dε[
∣∣JR(ε)

∣∣2 +
∣∣JR(ε)

∣∣2∣∣aL1 (ε− eV )
∣∣2 +

∣∣JR(ε)
∣∣2∣∣aL1 (ε− eV )

∣∣2
∣∣aR2 (ε− 2eV )

∣∣2 +
∣∣JR(ε)

∣∣2∣∣aL1 (ε− eV )
∣∣2∣∣aR2 (ε− 2eV )

∣∣2
∣∣aL3 (ε− 3eV )

∣∣2...]( 1

eε/kBT + 1
− 1

e−ε/kBT + 1
)

=
e

2πh̄

[ ∫ ∞
−∞

dε[
∣∣JL(ε)

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε+ eV )
∣∣2 +

∣∣JL(ε)
∣∣2∣∣aR1 (ε+ eV )

∣∣2
∣∣aL2 (ε+ 2eV )

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε+ eV )
∣∣2∣∣aL2 (ε+ 2eV )

∣∣2
∣∣aR3 (ε+ 3eV )

∣∣2...]( 1

eε/kBT + 1
− 1

e−ε/kBT + 1
)

−
∫ ∞
−∞

dε[
∣∣JR(ε)

∣∣2 +
∣∣JR(ε)

∣∣2∣∣aL1 (ε− eV )
∣∣2 +

∣∣JR(ε)
∣∣2∣∣aL1 (ε− eV )

∣∣2
∣∣aR2 (ε− 2eV )

∣∣2 +
∣∣JR(ε)

∣∣2∣∣aL1 (ε− eV )
∣∣2∣∣aR2 (ε− 2eV )

∣∣2
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∣∣aL3 (ε− 3eV )
∣∣2...]( 1

eε/kBT + 1
− 1

e−ε/kBT + 1
)

−
∫ ∞+eV

∞
dε
∣∣JR(ε)

∣∣2(
1

eε/kBT + 1
− 1

e−ε/kBT + 1
)

+

∫ −∞+eV

−∞
dε
∣∣JR(ε)

∣∣2(
1

eε/kBT + 1
− 1

e−ε/kBT + 1
)

]
(7.78)

Since JR(ε) =

√
1− |aR0 (ε)|2 and |aR| → 0 as ε → ∞, the second to last

integral reduces to − lim
L→∞

∫ L+eV

L

dε(− 1

e−ε/kBT + 1
) = eV . Similarly the last integral

also reduces to eV . Therefore the dc current for the case of D = 1 and different

gaps case can be written as:

IDC =
e

2πh̄

[
2eV −

∫ ∞
−∞

dε tanh

(
ε

2kBT

)
[
∣∣JL(ε)

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε+ eV )
∣∣2

+
∣∣JL(ε)

∣∣2∣∣aR1 (ε+ eV )
∣∣2∣∣aL2 (ε+ 2eV )

∣∣2 +
∣∣JL(ε)

∣∣2∣∣aR1 (ε+ eV )
∣∣2

+
∣∣aL2 (ε+ 2eV )

∣∣2∣∣aR3 (ε+ 3eV )
∣∣2...]

+

∫ ∞
−∞

dε tanh

(
ε

2kBT

)
[
∣∣JR(ε)

∣∣2 +
∣∣JR(ε)

∣∣2∣∣aL1 (ε− eV )
∣∣2 +

∣∣JR(ε)
∣∣2

∣∣aL1 (ε− eV )
∣∣2∣∣aR2 (ε− 2eV )

∣∣2 +
∣∣JR(ε)

∣∣2∣∣aL1 (ε− eV )
∣∣2∣∣aR2 (ε− 2eV )

∣∣2
∣∣aL3 (ε− 3eV )

∣∣2...]] (7.79)

To check this expression, if ∆1 = ∆2 then Eq. (7.79) becomes

IDC =
e

2πh̄

[
2eV −

∫ ∞
−∞

dε tanh

(
ε

2kBT

)
[|J(ε)|2 + |J(ε)|2|a1(ε+ eV )|2 + |J(ε)|2

|a1(ε+ eV )|2|a2(ε+ 2eV )|2 + |J(ε)|2|a1(ε+ eV )|2

|a2(ε+ 2eV )|2|a3(ε+ 3eV )|2...]
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+

∫ ∞
−∞

dε tanh

(
ε

2kBT

)
[|J(ε)|2 + |J(ε)|2|a1(ε− eV )|2 + |J(ε)|2

|a1(ε− eV )|2|a2(ε− 2eV )|2 + |J(ε)|2|a1(ε− eV )|2|a2(ε− 2eV )|2

|a3(ε− 3eV )|2...]
]

=
e

2πh̄

[
2eV −

∫ ∞
−∞

dε tanh

(
ε

2kBT

)
[|J(ε)|2|a1(ε+ eV )|2 + |J(ε)|2

|a1(ε+ eV )|2|a2(ε+ 2eV )|2 + |J(ε)|2|a1(ε+ eV )|2

|a2(ε+ 2eV )|2|a3(ε+ 3eV )|2...]

+

∫ ∞
−∞

dε tanh

(
− ε

2kBT

)
[|J(−ε)|2|a1(−ε− eV )|2 + |J(−ε)|2

|a1(−ε− eV )|2|a2(−ε− 2eV )|2 + |J(−ε)|2|a1(−ε− eV )|2

|a2(−ε− 2eV )|2|a3(−ε− 3eV )|2...]
]

=
e

2πh̄

[
2eV − 2

∫ ∞
−∞

dε tanh

(
ε

2kBT

)
[|J(ε)|2|a1(ε+ eV )|2 + |J(ε)|2

|a1(ε+ eV )|2|a2(ε+ 2eV )|2 + |J(ε)|2|a1(ε+ eV )|2

+ |a2(ε+ 2eV )|2|a3(ε+ 3eV )|2...]
]

=
e

πh̄

[
eV −

∫ ∞
−∞

dε tanh

(
ε

2kBT

)
[|J(ε)|2|a1(ε+ eV )|2 + |J(ε)|2

|a1(ε+ eV )|2|a2(ε+ 2eV )|2 + |J(ε)|2|a1(ε+ eV )|2

+ |a2(ε+ 2eV )|2|a3(ε+ 3eV )|2...]
]

(7.80)

which is the same as Eq. (7.43) for the case D = 1 except Eq. (7.80) is twice as

large because we included both hole-like quasiparticles incident from the left and

right and electron-like quasiparticle incident from the left and right.

I can now generalize to the case of two different gaps and transparency D not
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restricted to one. Consider for example the k = 1 Fourier component which gives

the ei2eV t/h̄ terms. To make the source of each contribution clearer, I use subscripts

R and L to label contributions that are from the right (R) and left (L) interfaces or

electrodes. Thus I find from:

IAC = ei2eV t/h̄
e

2πh̄

∫ ∞
−∞

dε[JL(ε)a∗2L(ε, V )A∗1L(ε, V ) + A1L(ε, V )A∗2L(ε, V )

(1 + a2L(ε, V )a∗4L(ε, V )) + A2L(ε, V )A∗3L(ε, V )

(1 + a4L(ε, V )a∗6L(ε, V )) + ...]
1

eε/kBT + 1

− ei2eV t/h̄ e

2πh̄

∫ ∞
−∞

dε[J∗R(ε)a2R(ε,−V )A1R(ε,−V ) + A∗1R(ε,−V )A2R(ε,−V )

(1 + a∗2R(ε,−V )a4R(ε,−V )) + A∗2R(ε,−V )A3R(ε,−V )

(1 + a∗4R(ε,−V )a6R(ε,−V ) + ...]
1

eε/kBT + 1

− ei2eV t/h̄ e

2πh̄

∫ ∞
−∞

dε[[J∗L(ε)a2L(ε,−V )A1L(ε,−V ) + A2L(ε,−V )A∗1L(ε,−V )

(1 + a4L(ε,−V )a∗2L(ε,−V )) + A3L(ε,−V )A∗2L(ε,−V )

(1 + a6L(ε,−V )a∗4L(ε,−V )) + ...]
1

eε/kBT + 1

+ ei2eV t/h̄
e

2πh̄

∫ ∞
−∞

dε[JR(ε)a∗2R(ε, V )A∗1R(ε, V ) + A1R(ε, V )A∗2R(ε, V )

(1 + a2R(ε, V )a∗4R(ε, V )) + A2R(ε, V )A∗3R(ε, V )

(1 + a4R(ε, V )a∗6R(ε, V )) + ...]
1

eε/kBT + 1
(7.81)

The first term in Eq. (7.81) comes from electron-like quasiparticles that are incident

from the left electrode. The second term is due to electron-like quasiparticles that

are incident from the right electrode. The third term is due to hole-like quasipar-
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ticles that are incident from the left electrode and the last term is due to hole-like

quasiparticles that are incident from the right electrode.

Examining the first term and the third term, we will show that they can

be combined. Similarly, we will see that the second and the fourth terms can be

combined. To see this, I change the integration variable from ε to -ε in the third

and the fourth terms, and after some rearranging so that the two L terms are first

and the R terms second:

IAC = ei2eV t/h̄
e

2πh̄

[ ∫ ∞
−∞

dε[JL(ε)a∗2L(ε, V )A∗1L(ε, V ) + A1L(ε, V )A∗2L(ε, V )

(1 + a2L(ε, V )a∗4L(ε, V )) + A2L(ε, V )A∗3L(ε, V )

(1 + a4L(ε, V )a∗6L(ε, V )) + ...]
1

eε/kBT + 1

−
∫ ∞
−∞

dε[[J∗L(−ε)a2L(−ε,−V )A1L(−ε,−V ) + A2L(−ε,−V )A∗1L(−ε,−V )

(1 + a4L(−ε,−V )a∗2L(−ε,−V )) + A3L(−ε,−V )A∗2L(−ε,−V )

(1 + a6L(−ε,−V )a∗4L(−ε,−V )) + ...]
1

e−ε/kBT + 1

−
∫ ∞
−∞

dε[J∗R(ε)a2R(ε,−V )A1R(ε,−V ) + A∗1R(ε,−V )A2R(ε,−V )

(1 + a∗2R(ε,−V )a4R(ε,−V )) + A∗2R(ε,−V )A3R(ε,−V )

(1 + a∗4R(ε,−V )a6R(ε,−V )) + ...]
1

eε/kBT + 1

+

∫ ∞
−∞

dε[JR(−ε)a∗2R(−ε, V )A∗1R(−ε, V ) + A1R(−ε, V )A∗2R(−ε, V )

(1 + a2R(−ε, V )a∗4R(−ε, V )) + A2R(−ε, V )A∗3R(−ε, V )

(1 + a4R(−ε, V )a∗6R(−ε, V )) + ...]
1

e−ε/kBT + 1

]
(7.82)
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I can now use Eq. (7.39) and Eq. (7.42) to simplify Eq. (7.82) and arrive at

IAC = ei2eV t/h̄
e

2πh̄

[
−
∫ ∞
−∞

dε[JL(ε)a∗2L(ε, V )A∗1L(ε, V ) + A1L(ε, V )A∗2L(ε, V )

(1 + a2L(ε, V )a∗4L(ε, V )) + A2L(ε, V )A∗3L(ε, V )

(1 + a4L(ε, V )a∗6L(ε, V )) + ...] tanh (
ε

2kBT
)

+

∫ ∞
−∞

dε[J∗R(ε)a2R(ε,−V )A1R(ε,−V ) + A∗1R(ε,−V )A2R(ε,−V )

(1 + a∗2R(ε,−V )a4R(ε,−V )) + A∗2R(ε,−V )A3R(ε,−V )

(1 + a∗4R(ε,−V )a6R(ε,−V )) + ...] tanh (
ε

2kBT
)

]
(7.83)

Finally take all the Fourier components and combine them with the dc term, we get

the final current expression for the case of different gaps:

I(t) =
∑
k

Ike
i2keV t/h̄ (7.84)

where the k-th Fourier component is:

Ik =
e

2πh̄

[
2eV Dδk0 −

∫ ∞
−∞

dε tanh

(
ε

2kBT

)(
JL(ε)(a

∗(L)
2k A

∗(L)
k + a

(L)
−2kA

(L)
−k )

+
∑
n

(1 + a
(L)
2n a

∗(L)
2(n+k))(A

(L)
n A

∗(L)
n+k −B

(L)
n B

∗(L)
n+k )

)
+

∫ ∞
−∞

dε tanh

(
ε

2kBT

)(
JR(ε)(a

(R)
2k A

(R)
k + a

∗(R)
−2kA

∗(R)
−k )

+
∑
n

(1 + a
∗(R)
2n a

(R)
2(n+k))(A

∗(R)
n A

(R)
n+k −B

∗(R)
n B

(R)
n+k)

]
. (7.85)

In this expression a
(L)
m−>odd = aRight(ε+meV ) and a

(L)
m−>even = aLeft(ε+meV ).
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Note that for a quasiparticle incident from the left, the Andreev reflection amplitude

depends on the interface it hits. If it is an odd number subscript, then the Andreev

reflection amplitude is for the right superconducting gap (∆R). On the contrary, for

an even number, the Andreev reflection amplitude is for the left superconducting gap

(∆L). Similarly for a quasiparticle incident from the right, a
(R)
m−>odd = aLeft(ε−meV )

and a
(R)
m−>even = aRight(ε −meV ); the odd indices are for the left superconducting

gap (∆L) while the even indices use the right superconducting gap (∆R). Thus:

aLeft(ε) =
1

∆L

×


ε− sgn(ε)(ε2 −∆2

L)1/2, |ε| > ∆L

ε− i(∆2
L − ε2)1/2, |ε| < ∆L

(7.86)

while

aRight(ε) =
1

∆R

×


ε− sgn(ε)(ε2 −∆2

R)1/2, |ε| > ∆R

ε− i(∆2
R − ε2)1/2, |ε| < ∆R.

(7.87)

To calculate the I − V characteristics from Eq. (7.57) for the asymmetrical

junction with the MAR effect, one needs to use the definition of a(ε) from Eq. (7.86)

and Eq. (7.87) to plug into the recursion relation Eq. (7.18) and Eq. (7.13) to get

A
(R)
n , A

(L)
n , B

(R)
n and B

(L)
n . However keep in mind that the two electrodes have

different superconducting gap, thus we need to be careful of which Andreev reflection

amplitude to use. For example, the recursion relation for an incoming electron

incident from the left can be expressed as:

A
(L)
n+1 − aR2n+1a

L
2nA

(L)
n =

√
R(aL2n+2B

(L)
n+1 − aR2n+1B

(L)
n ) + JaR1 δn0 (7.88)
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and

D
aR2n+1a

L
2n+2

1− (aL2n+1)2
B

(L)
n+1 −

[
D

(
(aR2n+1)2

1− (aR2n+1)2
+

(aL2n)2

1− (aR2n−1)2

)
+ 1− (aL2n)2

]
B(L)
n

+D
aL2na

R
2n−1

1− aR2n−1

B
(L)
n−1 = −

√
RJδn,0 (7.89)

we then obtain A
(L)
n and B

(L)
n terms. Similarly, I can also get A

(R)
n and B

(R)
n . I

plug them into Eq. (7.85) and numerically integrate the equation to get the cur-

rent. For this calculation, I modified the Fortran code provided from Averin for the

symmetrical MAR effect case (see Appendix D).

Figure 7.7 shows an example of the dc I−V characteristics of an asymmetrical

S-I-S junction calculated using Eq. (7.85) for different values of D and for T = 0.

Here I set the ratio of the two superconducting gaps to ∆R/∆L = 2 so that the

sum of the gaps is ∆L + ∆R = 1.5∆R. As expected, the I − V shows a sudden rise

at V = 1.5∆R/e. For D = 0.4, for example, we see clear subgap current steps at

V = ∆R/e and V = ∆L/e.

I also used Eq. (7.85) to examine what happens to the I(V) characteristics

when the temperature is not at T = 0 K. Figure 7.8 shows examples of the dc I−V

characteristics calculated using Eq. (7.85) at different temperatures. In this case,

I set the transparency parameter to D=0.25 and used a superconducting gap ratio

∆R/∆L=1/0.47. Notice that when the temperature is higher, the current increases

in the subgap region. This happens because there are more quasiparticles present

to generate MAR. Examining Fig. 7.8, one also sees that the subgap steps become

more rounded for higher temperatures.
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Figure 7.7: Calculated I − V characteristics of an asymmetrical S-I-S
junction with MAR at T = 0. The ratio of the two superconducting
gaps is ∆R/∆L = 2 and the different curves correspond to D value of 1,
0.99, 0.9, 0.7, 0.4, 0.1. and 0.01 from top to bottom.
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Another interesting effect that we can examine by a trivial modification of

Eq. (7.85) is what happens to the I(V) curves when the big gap superconductor

and the small gap superconductor have different temperatures. Asymmetric junc-

tions have been used as electronic refrigerators [128–130] and thermal transport and

heating effects can be important in small junctions. For example, in the supercon-

ducting STM, since the STM tip sits on the end of a long thin superconducting wire,

it may have more difficulty dissipating heat and reach a higher temperature than a

superconducting sample when the junction is biased at a non-zero voltage. I also

show in Chapter 5 how local heating effects seamed to be important.

Figure 7.9 shows four I − V characteristics for four different scenarios. For all

the curves I set the superconducting gap ratio to ∆R/∆L=1/0.47, the transparency

to D = 0.1 and ∆R = 1 meV. The red points are for TL = TR = 0.06 K. The black

points are TL = 0.06 K and TR = 2.3 K. The blue points are for TL = TR = 2.3 K

and green diamonds are for TL = 2.3 K and TR = 0.06 K. Comparing the red and

the black curves, we see that the characteristics seem not to be affected. This is not

surprising because ∆R � kBT and ∆L � kBT . In contrast, comparing the green

curve to red or the black curve in Fig. 7.9, we see the current is somewhat higher

in the subgap region for the green curve, causing the I − V characteristic curve to

be shifted upwards. This suggests that the characteristics are more sensitive to the

temperature of the electrode with a smaller superconducting gap, which is what we

would have expected since more quasiparticles will be excited in this case. Finally,

comparing the blue and green curves, we see the I−V characteristics are essentially

the same, even though the temperature of the high gap side is different. Again, this
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is consistent with the characteristics being less sensitive to the temperature of the

electrode with the larger superconducting gap. In principle this behavior can be

used to determine the temperature of each electrode in the junction.

7.5 The Josephson effect

Electrons in a superconductor form Cooper pairs with charge 2e below the

transition temperature Tc. The ground state of a superconductor system can be

described by a single macroscopic wave function Φ = |
√
N | exp(iφ) where the phase

φ is well defined and N is the number density of pairs. A Josephson junction is

formed when two superconducting pieces are separated by a thin insulating layer.

Ignoring quasiparticles and assuming that the barrier is sufficiently high so that

we can ignore MAR, many of the electrical properties of such a junction can be

understood by using simple quantum mechanics [131].

Following a discussion in Feynman’s Lecture on Physics, we can write the

wavefunction of the pair as

Ψ =
2∑

α=1

Cαψα (7.90)

where ψ1 is non-zero only in superconductor 1 and ψ2 is non-zero only in supercon-

ductor 2. If the two superconductors are uncoupled, then we can write Schrödinger’s

equation for each superconductor as:

ih̄
∂ψα
∂t

= Eαψα (7.91)
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Figure 7.9: Calculated I − V characteristics for different electrode tem-
peratures with transparency D =0.1, ∆R = 1 meV and ∆L = 0.47 meV.
The open red triangles have TL = TR = 0.06 K. The solid black squares
lie on the red points but have TL = 0.06 K and TR = 2.3 K. The open
green diamonds have TR = 0.06 K and TL = 2.3 K. The blue points have
TL = TR = 2.3 K and lie on top of the green diamonds.
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Here Eα (for α = 1, 2) are the energies of the uncoupled superconductor 1 and 2.

If the superconductors are now joined by a thin insulating region and the

insulator thickness is small enough, the wavefunctions from the two superconductors

can overlap with each other, and the wavefunction of the coupled superconductors

should satisfy the Schrödinger equation

ih̄
∂Ψα

∂t
= ĤΨα (7.92)

where

H =

E1 + e∗V/2 −K

−K E2 − e∗V/2

 (7.93)

is the total Hamiltonian. The diagonal elements H11 = E1 + e∗V/2 and H2 =

E2 − e∗V/2 correspond to the energies of state 1 and 2, where e∗ = −2e is the

charge of a Cooper pair. The off-diagonal elements H12 = H21 = −K describe

couplings between the two superconductors. Substituting Eq. (7.90) and Eq. (7.93)

into Eq. (7.92), we have


ih̄
∂C1

∂t
= eV C1(t)−KC2(t)

ih̄
∂C2

∂t
= −KC1(t)− eV C2(t)

(7.94)

I now let C1 =
√
N1e

iφ1 , C2 =
√
N2e

iφ2 where N1 and N2 are the number density of

Cooper pairs in superconductor 1 and 2. Separating the real and imaginary parts,

we find equations for the N1 part,
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h̄
dN1

dt
= −2K

√
N1N2 sin(φ2 − φ1) (7.95)

or:

h̄N1
dφ1

dt
= −eV N1 +K

√
N1N2 cos(φ2 − φ1). (7.96)

Similarly we have for the N2 part,

h̄
dN2

dt
= 2K

√
N1N2 sin(φ2 − φ1) (7.97)

or:

h̄N2
dφ2

dt
= eV N2 +K

√
N1N2 cos(φ2 − φ1) (7.98)

Adding Eq. (7.95) and Eq. (7.97) we find d(N1 +N2)/dt=0 and N1 +N2 must

be constant, as required by charge conservation. If we multiply Eq. (7.95) and

Eq. (7.97) by the charge −2e, I find

−2e
dN1

dt
= 4e

K

h̄

√
N1N2 sin(φ2 − φ1) (7.99)

2e
dN2

dt
= 4e

K

h̄

√
N1N2 sin(φ2 − φ1) (7.100)

Examining Eq. (7.99) and Eq. (7.100) we see that they have the same form as the

dc Josephson equation [30, 31],

Is = Ic sinφ (7.101)

where φ = φ1−φ2 is the phase difference between the two electrodes, Is = dQ/dt =
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2e(dN2/dt) = −2e(dN1/dt) is the supercurrent that flows between the two super-

conductors and the critical current of the junction Ic = 4eK
√
N1N2/h̄.

Next consider Eq. (7.96) and Eq. (7.98). Since the individual phases should

play no physical role, we can set φ2 = φ/2. φ1 = −φ/2. Equation (7.96) and

Eq. (7.98) becomes,


h̄N1

dφ

dt
= eV N1 −K

√
N1N2 cos(φ2 − φ1)

h̄N2
dφ

dt
= eV N2 +K

√
N1N2 cos(φ2 − φ1).

(7.102)

Adding these two equations, we get the ac Josephson equation [30, 31],

h̄(N1 +N2)

2

dφ

dt
= eV (N1 +N2), (7.103)

which reduces to

dφ

dt
=

2eV

h̄
(7.104)

Thus the voltage drop V across the junction is related to the rate at which the phase

difference φ changes.
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7.6 Critical current in Asymmetrical junctions with MAR

In the previous section, I presented a simple discussion of the critical current

of a Josephson junction in the limit of small barrier transparency. However, it is

not obvious from that discussion exactly how the critical current is related to the

superconducting gap. In the next chapter I discuss my STM setup with a supercon-

ducting Nb tip and a superconducting Nb sample, which formed a Josephson tunnel

junction. In most cases, the superconducting tip did not show a full gap and thus

we need to understand how this affects the critical current.

Van Duzer in ”Principles of Superconducting, Devices and Circuits” [132]

pointed out that when one electrode has gap ∆1 and the other gap ∆2, the quasi-

particle current rise Iss at voltage (∆1+∆2)/e is given by:

Iss =
Gnπ
√

∆1∆2

2e
(7.105)

In the experiment described in the next chapter, I show that ∆1 and ∆2 can be ex-

tracted from the voltage at which Andreev steps are observed. We also can measure

the point where the quasiparticle current rises and the resistance Rn = 1/Gn of the

I(V) characteristics for V � (∆1 + ∆2)/e. Thus we can compare the theoretical Iss

value to the measured value Iqp. Of course these results are not for the junction

critical current but are for the quasiparticle current in a low-transparency barrier.

I can also measure the critical current of a junction and compare it to the

theoretical prediction of Ambegaokar and Baratoff [133, 134]. In this paper they
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used thermodynamic Green’s functions to find an expression for the critical current

of a junction with arbitrarily low transparency (i.e. MAR effects are not included).

They found:

I0 = R−1
n ∆1(T )∆2(T )

π

βe

∑
l=0,±1,±2...

[(ω2
l + ∆2

1(T ))(ω2
l + ∆2

2(T ))]
−1/2

(7.106)

where ωl=π(2l+ 1)/β, β = 1/kBT . In the limit T → 0, the sum can be replaced by

an integral and they found:

I0 =
1

e
R−1
n ∆1(T )K([1−∆2

1(T )/∆2
2(T )]1/2) (7.107)

where ∆1 is the smaller of the two energy gaps and K is the modified Bessel function

[135]. For a symmetrical junction Eq. (7.107) can be analytically simplified to:

I0 =
π

2e
R−1
n ∆(T )tanh

(1

2
β∆(T )

)
(7.108)

which agrees with the well-known Ambegaokar-Baratoff formula [133, 134] for the

critical current of a Josephson junction.

Of interest here is that the critical current can also be obtained from the MAR

theory discussed in the previous parts of this chapter. In particular, Averin’s [122]

calculation of the ac current terms can be used to extract the critical current of a

junction with a single channel at different transparency parameters D, while my

analysis of the case of different gaps allows me to obtain I0 for different gaps at

arbitrary transparency. In particular, the critical current is simply related to the
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first Fourier component.

Figure 7.10 (a) shows examples of the real part and the imaginary part of the

first Fourier component of the current I1(t)=I1e
2ieV t/h̄ from Eq. (7.85) with k = 1.

Note Re(I1)=0 when the transparency D < 1. Therefore the only contribution to

the critical current is from Im(I1). Notice in Fig. 7.10 (b), when the voltage V

approaches zero, the current approaches a finite value. This “a.c. current at zero

volts” is due to the critical current of the junction.

To find an approximate expression for the critical current, we know from

Eq. (7.85) with k = 1 that we can write:

I1 = | Im(I1)|e−i
π
2 e

2ieV t
h̄ (7.109)

I−1 = | Im(I−1)|ei
π
2 e−

2ieV t
h̄ (7.110)

where | Im(I−1)| = | Im(I1)|. We will assume the critical current can be approxi-

mated as the sum of the first Fourier component term (i.e. I2, I3...are small) and

write:

I0 = I1 + I−1 = | Im(I1)|(e−i(
π
2
− 2eV t

h̄
) + ei(

π
2
− 2eV t

h̄
))

= 2| Im(I1)| cos

(
π

2
− 2eV t

h̄

)
= 2| Im(I1)| sin

(
2eV t

h̄

)
(7.111)

Equation (7.111) is the same form as expected for the Josephson supercurrent.
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Figure 7.10: (a) Normalized real part and (b) imaginary part of the AC
current (first Fourier component) versus normalized voltage for different
transparency D and for ∆R/∆L=1/0.5 at T=0.
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To see this, note that Eq. (7.101) and Eq. (7.104) can be combined to yield

Is = Ic sin

(
2eV t

h̄

)
(7.112)

Comparing equations Eq. (7.111) and Eq. (7.112), we find the critical current of the

asymmetrical junction is:

Ic = 2| Im(I1)| (7.113)

where I1 can be obtained numerically from Eq. (7.85) for arbitrary D,∆1,∆2 and

T .

As mentioned in Ref. [136], Haberkorn et al. obtained results for the critical

current for a junction with arbitrary transparency and electrodes with the same gap.

In fact, Averin et al. note in their paper that they obtained the same form as [136]

by using the ac current expression [122]. However the expression Haberkorn et al.

[136] found was only for a symmetrical junction. Here I have obtained results for

the critical current of an arbitrary transparency asymmetrical junction. In practice,

Eq. (7.85), Eq. (7.86) and Eq. (7.87) can be evaluated numerically to calculate the

value I0 = 2|Im(I1)| in the limit of V = 0.

Finally, in Fig. 7.11 I plot the normalized critical current as a function of

the temperature T by evaluating Eq. (7.85) for ∆R = 1 meV, k = 1, ∆R/∆L=2

and D=0.5. Note that the critical current reaches a maximum value of about

0.62(2∆/eRn) at T = 0 and decreases rapidly above about 2 K. For the blue curve,
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I assumed that ∆R and ∆L are independent of temperature, which is why the plot

still shows a critical current at relatively high temperature. For the orange curve

I assumed a BCS temperature dependence for the gaps with ∆R(0) = 1 meV and

∆L(0) = 0.5 meV. I then used BCS theory to calculate the corresponding gap at

specific temperatures and with these gap values, obtained the critical current by

evaluating Eq. (7.85). Note that this critical current decreases much more rapidly

above 2 K and goes to zero at 3.5 K, when the left electrode goes normal.

7.7 Conclusion

In conclusion, I first discussed Averin and Bardas’s derivation of a theoretical

model of the I(V) of symmetrical S-I-S junctions with MAR [122]. Once I under-

stood their Eq. (6) for the current [122], I moved on to generalize the theory to the

asymmetrical S-I-S junction with MAR. I showed that this generalization essentially

yields the same result for the I(V) as in Ref. [126], which used a Green’s function

approach.

Using the generalized theory, I also obtained an expression for the critical

current of an asymmetrical S-I-S junction and its dependence on the transparency

D. In Chapter 8, I will show the experimental results from STM of an asymmetrical

S-I-S junction with a Nb tip and a Nb sample. Although both the tip and the

sample are nominally the same material, the tip does not show a full Nb gap, hence

our junction is essentially an asymmetrical junction with different superconducting
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Figure 7.11: Semi-log plot of normalized critical current Ic/(∆RGT/2e)
vs. logarithmic scale of temperature T calculated from Eq. (7.85),
Eq. (7.86) and Eq. (7.87) for transparency D = 0.5. The blue curve uses
fixed ∆R = 1 meV, ∆R/∆L=2 while the orange curve uses temperature
dependent gap from BCS theory ∆R(T ) and ∆L(T ) with ∆R(0) = 1 meV
and ∆L(0) = 0.5 meV.
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gaps. I also discuss the critical current of our STM formed Josephson junction using

the MAR theory of the critical current that I described in Section 7.6. Finally, I

note that a critical current is a signature of a phase coherent response of the tunnel

junction and it is essential for constructing a SQUID STM.

212



CHAPTER 8

Ultra-small Josephson Junction Formed Using a

Nb STM Tip and Nb Sample

8.1 Introduction

Multiple Andreev Reflection (MAR) effects [137–141] become important when

two superconductors are connected through a weak link that has a non-negligible

transparency. As I discussed in Chapter 7, MAR causes current to flow at subgap

voltage V = ∆/ne, where n is a positive integer. The current-voltage charasteristics

for a single superconducting channel with MAR and arbitrary transmission has been

calculated theoretically [122–125] and my own analysis for the case of different gaps

is presented in Chapter 7. Numerous previous experiments have demonstrated MAR

effects in mechanically controllable break-junctions [137, 138, 141, 142] and scanning

tunneling microscopy (STM) [71, 139, 140, 143]. However, investigations of MAR

effects in Josephson junctions that have electrodes with different superconducting

gaps is apparently relatively rare, not only experimentally but also theoretically

[71, 126]. Recent interest in Josephson STMs [32, 36, 144–146] has been driven
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by the need for better understanding of the physics of small Josephson junctions

[147–154] and the behavior of high Tc superconductors.

In this chapter, I describe my use of a scanning tunneling microscope (STM)

[20] to look at atomic-scale superconducting tunnel junctions formed between a Nb

tip and a Nb sample. In Section 8.2, I discuss the sample preparation and the

experimental setup. In Section 8.3, I show the I − V characteristics obtained at 50

mK and 1.5 K for junction tunnel resistance Rn from 10 MΩ to 300 Ω. I analyzed

the I − V characteristics by fitting to the MAR theory of Chapter 7. Depending on

the temperature T and distance z between the tip and the sample, which determines

the tunneling resistance Rn and the junction capacitance C, the junction can be in

the phase-diffusion regime [34–36, 38, 71], the underdamped small junction limit

[64] or the point contact regime [143, 155]. Next, in Section 8.4 I discuss some

important parameters extracted from the fits and some other phenomena, including

early switching current and finite resistance on the supercurrent branch. Finally, I

conclude in Section 8.5 with a summary and discussion of some implications.

8.2 Sample preparation and experimental setup

Each tip in the millikelvin dual-tip STM [41, 42] (see Fig. 8.1) was made from

250 µm diameter Nb wire etched in an SF6 reactive ion etcher for about 90 minutes

[94]. Each tip was mounted on the STM and was usually cleaned by performing

high voltage field emission on an Au(100) or Au(111) single crystal under vacuum
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conditions. To perform field emission on a tip, I turn off the z-feedback, pull the tip

a few nanometers away from the sample, and then ramp the sample bias to 80-100

V. The current is monitored during the ramp until we see a sudden drop of the

current to zero, indicating that the front part of the tip has been ripped of. After

cleaning, the quality of the tip is checked by taking I − V spectroscopy on the Au

sample to see if the tip is metallic (or superconducting) and by taking images to see

if the tip is atomically sharp. Once the quality of the tip is good, I use the sample

transfer system to take out the Au sample and put in the sample that I would like

to examine next.

I used a 4.5 mm x 4.5 mm x 1 mm Nb (100) single crystal as our sample [156].

The sample was prepared by Ar ion sputtering with a kinetic energy of 2 keV at

an Ar pressure of 2.0 × 10−5 mbar for 3-4 hours followed by annealing to 900◦C in

UHV for 20 minutes. This cycle was repeated two or three times and the sample

was then transferred to the STM mounted at the mixing chamber without breaking

vacuum [41]. Figure 8.2 shows topographic images taken from the Nb(100) surface

at 1.5 K and 50 mK. Atomically flat terraces are clearly visible.

To measure I(V) characteristics I used a relay box to switch from a standard

voltage-biased mode to a current-biased mode (See Fig. 8.1). In voltage-biased

mode, I acquired topographic images, I(V) and dI/dV − V curves. In the current-

biased mode, I used either a 1 MΩ, 10 MΩ or 100 MΩ resistor in series with the

voltage source to set the current I and then measured the voltage V across the

junction using an SR560 voltage amplifier. See Section 2.4 for a detailed description

of the current-bias mode.
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Figure 8.1: Relay box used to switch from STM topographic mode to
current bias mode. Rb is set to 1 MΩ, 10 MΩ or 100 MΩ, depending on
the tunnel junction resistance. Rw ≈ 220 Ω is the resistance of each wire
and Rc is the contact resistance between the sample mounting stud and
the measurement wires.
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Figure 8.2: Topography of different regions on the Nb crystal surface
obtained using the STM at (a)-(d) 1.5 K and (e)-(f) 50 mK.
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8.3 I − V characteristics from a Nb tip and a Nb sample

Figure 8.3 shows three I − V characteristics for junction tunnel resistances of

Rn =72 kΩ, 7.9 kΩ and 460 Ω. This data was acquired using the current-biased

mode at 1.5 K. The blue points are from the backward sweeps (from positive current

to negative current) and the black points are from the forward sweeps (from negative

current to positive current). Before plotting, the data was processed by subtracting

the effect of a contact resistance Rc ≈ 173 Ω between the sample mounting stud

and the measurement wires (see Fig. 8.1).

Examining Fig. 8.3 (a), which shows I(V) when Rn = 72 kΩ, we see that the

curve looks somewhat like a standard S-I-S tunneling junction with a well defined

current rise at voltage V = (∆tip + ∆sample)/e ≈ 2.1 mV. The quasiparticle current

rise at V = 2.1 mV is Iqp = 23 nA. The main discrepancies between this I(V) and

standard S-I-S tunneling characteristics are the apparent absence of a supercurrent

and the significant subgap current steps at about 0.67 mV and 1.4 mV. The current

steps are more easily seen in the detailed plot of the sub-gap current shown in

Fig. 8.4 (a), which also reveals a supercurrent of about 450 pA. The current steps

are what one expects from MAR and the voltages at which they occur provide a

direct measure of the gap in the electrodes. Moreover, Fig. 8.3 (b) and (c) show

that the steps and supercurrent increase rapidly as the tunnel junction resistance

decreases.

The red curves in Fig. 8.3 and Fig. 8.4 show my fits to the MAR theory, with

T = 0 and the other parameters given in Table 8.1. The theory replicates the clear
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Figure 8.3: I − V characteristics for junction tunneling resistance mea-
sured at T =1.5 K of (a) Rn = 72 kΩ, (b) 7.9 kΩ and (c) 0.46 kΩ. In
each, the blue curve is a forward sweep, the black curve is a backward
sweep, and the red curve is a fit to the asymmetrical MAR theory of
Chapter 7. Note the red line at zero voltage is the ideal critical cur-
rent I0 predicted from the MAR theory at 1.5 K. See Table 8.1 for fit
parameters.
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Figure 8.4: (a) Semi-log plot of I−V characteristics from Fig. 8.3 (a). (b)
and (c) show detailed view of low voltage section of I−V characteristics
from Fig. 8.3 (b) and (c). The ideal critical current is off-scale and not
shown.
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Table 8.1: Extracted parameters Rn,∆tip,∆sample,∆sum, D, Z from fitting the I −V
characteristics in Fig. 8.3 (a)-(c) to the asymmetrical MAR model at T = 0. Z is
the barrier height parameter and D is the transparency parameter.

Rn (kΩ)
∆sample

(meV)

∆tip

(meV)

∆sum

(meV)
D Z

Fig. 8.3 (a) 72 kΩ 1.43 0.668 2.098 0.035 4.25

Fig. 8.3 (b) 7.9 kΩ 1.48 0.592 2.072 0.27 1.644

Fig. 8.3 (c) 0.46 kΩ 1.4 0.56 1.96 0.6 0.816

sudden rise at the sum of the superconducting gaps, and the subgap steps. The

subgap structure is very sensitive to the transparency value D, with a best fit value

of 0.035 for the Rn = 72 kΩ curve in Fig. 8.3 (a) and Fig. 8.4 (a). Fitting this curve

also gave two gaps with ∆sample = 1.43 meV and ∆tip = 0.67 meV.

Figure 8.3 (b) shows the corresponding I − V characteristics for Rn = 7.9 kΩ,

again with the red curve being the fit to the MAR theory. At V = ∆sum/e ≈ 2.1 mV,

the quasiparticle current Iqp ≈ 250 nA. Fitting this curve to the MAR theory with

T = 0 gives D = 0.27. Thus the junction characteristics in Fig. 8.3 (b) correspond

to a much more transparent tunnel barrier than that of Fig. 8.3 (a). The subgap

currents are also much larger in Fig. 8.3 (b) than Fig. 8.3 (a). Moreover, in Fig. 8.4
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(b), the switching current is Is ≈ 32 nA, which is about 80 times larger than the

switching current in Fig. 8.4 (a), even though Rn differs by less than a factor of 10.

Note however that the switching current is not a true super-current because this

part of the I(V) curve has a non-zero resistance R0 ≈ 373 Ω. Fig. 8.4 (b) also shows

hysteretic behavior with a retrapping current Ir (the current when switching from

a finite voltage state to the zero voltage state) of 4.6 nA.

If we keep lowering the junction resistance, the I(V) curve continues to evolve.

Figure 8.3 (c) shows the situation for Rn = 460 Ω. The characteristics are very

rounded and very unlike a traditional S-I-S tunneling characteristic. Note that Iqp

has increased to nearly 5.1 µA while the switching current has increased to nearly

2 µA. In this regime, unlike the hysteretic behavior in Fig. 8.3 (b), the switching

current Is is nearly equal to the retrapping current Ir. Fitting the MAR theory to

this data at T = 0, I found D = 0.6 and gaps of 0.56 meV and 1.4 meV.

Here is a good place to comment on the identification of the gap of the sample

and tip. I typically saw that one of the gaps was close to the value expected for

bulk Nb (1.52 meV) while the second gap was typically smaller and varied with the

tip cleaning. For this reason, I identified the larger gap as being due to the sample

and the smaller gap as being due to the tip. As Table 8.1 shows, ∆tip is significantly

smaller at Rn = 460 Ω compared its value at Rn = 72 kΩ. I also note that the red

fit curve in Fig. 8.3 (c) disagrees noticeably with the data below 1.5 mV, but overall

the fit does a remarkably good job of fitting the data. One possible explanation is

that our single channel MAR theory does not apply to the situation of low junction

resistance, and one needs to consider multiple channels with different transparencies
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[137–141].

Since we expect a single conductance channel can at most contribute a conduc-

tance of 2 × 2e2/h ' (6.5 kΩ)−1, it is not surprising that the single channel MAR

theory may fail for Rn ≤ Rq = 12.9 kΩ. To better understand this limit I measured

how the tunneling current at fixed voltage varied with the distance from the surface.

For these measurements, I set the sample voltage at 3 meV, which is above the gap,

and adjusted z to set Rn. I then recorded the current I while retracting the tip

a distance ∆z = 1.5 nm. Figure 8.5 shows the conductance G = I/V , normalized

by the quantum conductance (2e2/h) vs. the retraction distance ∆z. The different

colors represent curves with different starting resistances Rn. This also means that

the initial point of each curve has a different distance between the tip and the sam-

ple. I note that at V � (∆1 + ∆2)/e, the junction resistance in the STM is set by

the bias voltage V and the set current I, with Rn ≈ V/I. Here I actually set the

current, and since I ∝ e−αz this requires a smaller tip-sample separation for a lower

junction resistance. The curves shown in the plot are not in chronological order.

Examining Fig. 8.5, one sees two orange curves starting at Rn = 7.5 kΩ. One

curve shows a fairly smooth exponential-like dependence while the other curve just

shows some small sudden jumps in conductance. This second orange curve was taken

after a scan in which the tip had made contact with the sample surface. Evidently

a slight deformation of the tip or sample occurred during the previous scan. The

red curves show the behavior when I set the initial resistance to 3 kΩ. Many large

random jumps appear as the tip is withdrawn. We can safely conclude that at 3

kΩ, the tip is making physical contact with the sample, causing deformation of the
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tip or sample, or causing the transfer of material between the tip and sample. As

the tip moves away from the sample, different parts of the tip leave the sample at

random times causing this irregular behavior in the I-∆z curve.

As observed in break junctions, the typical variations in conductance are of

the order of the quantum conductance [137, 138, 140, 141]. Since the tip makes

solid contact with the sample for R ≤ 3.9 kΩ, and a single channel would have a

conductance of 6.5 kΩ (considering quasiparticles with both up and down spin), at

least two channels must be contributing. If these channels have different barrier

transparency, then my single channel asymmetrical MAR theory will not fit.

Another small but significant discrepancy between the MAR theory and the

measured characteristics is visible in Fig. 8.3 (a) and Fig. 8.3 (b) at V = 2.1 mV;

the theory systematically predicts less current or, we could say, the current rises

above the theory at the sum of the gaps.

To illustrate what might be going on, Fig. 8.6 shows the measured I − V

characteristics (blue) for a junction resistance of Rn = 13.5 kΩ. A detailed view

of the subgap region of this curve is shown in Fig. 8.7. One sees a clear hysteretic

behavior with a switching current Is = 12 nA and a retrapping current Ir = 1

nA. The green, pink, purple and red curves in Fig. 8.6 were calculated using MAR

theory for temperatures of 13.3 K, 8.3 K, 5 K and 0 K, respectively. Notice that

the 13.3 K curve (green) has more current at all voltages and in particular it follows

the data quite nicely for V > 2.1 mV. Of course T < 13.3 K and the curve does not

follow the data for V < 2.1 mV. Nevertheless this suggests that the junction may

be self-heating to a rather high temperature when biased at voltages above the sum
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Δz (nm)

Figure 8.5: Normalized conductance (G/G0) vs distance ∆z for different
starting normal resistance Rn, where G0 = 2e2/h is the conductance
quantum and ∆z is the distance from the original tip position where we
set Rn. All measurements were made at V = 3 mV and T = 1.5 K.
Around G = G0, the curves have occasional sudden jumps, suggesting
the tip is forming a point contact with the surface. For G > 3 G0, the
tip probably makes solid contact with the sample and the large variation
in conductance is probably due to different parts of the tip leaving the
surface at slightly different times.
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Figure 8.6: Blue and black points show measured I − V characteristics
at T = 1.5 K for Rn = 13.5 kΩ. Green, pink, purple and red curves
correspond to calculated MAR theory curves for T =13.3 K, 8.3 K, 5 K,
0 K, respectively. Here I used ∆sample = 1.43, ∆tip = 0.667 and D = 0.15
for all curves.
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Figure 8.7: Detailed view of subgap current behavior shown in Fig. 8.6.
The blue points show the measured forward sweep (large current to small
current), the black points show the measured backward sweep and the
red curve is a simulation at T = 0 K. Note that the zero voltage supercur-
rent branch has a non-zero resistance. For this simulation ∆sample = 1.43,
∆tip = 0.667, D = 0.15, T = 0 K and Rn = 13.5 kΩ.
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of the gaps. Note that this heating effect cannot be as significant in the sub-gap

region, but of course the dissipated power I × V is also much less in the subgap

region.

Figure 8.8 (a) shows ∆tip + ∆sample (black squares), ∆tip (red circles), and

∆sample (blue triangles) versus Rn, extracted from fitting the MAR theory to the

measured I(V) curves. Note that ∆tip + ∆sample is constant at about 2.2 mV for

Rn > 10 kΩ, but for Rn < 10 kΩ, it drops steadily. The red dots show ∆sample ≈ 1.48

meV which are nearly constant, this is close to the full superconducting gap of bulk

Nb sample (1.5 mV). The blue triangles show the smaller gap value ∆tip, which is

only ∼ 0.7 meV: since the Nb tip was exposed to air and Nb with O dissolved in it

has a lower Tc, it is perhaps not too surprising to see a reduced gap value. A gap of

∆tip = 0.7 meV; suggests Tc ∼ 4.5 K, which is consistent with 5 % oxygen in Nb

[157]. This is below the solubility limit of 9% [158]. It may also be note that the

end of the tip was contaminated in some other way, producing a superconducting

gap that is less than the bulk Nb gap.

From Figure 8.8 (a), we see that the gap of the Nb sample ∆sample stays almost

constant over the full range of Rn, actually there is a drop of about 0.03 meV at

small Rn values, which is barely visible on the plot. In contrast, ∆tip decreases as

Rn decreases below 5 kΩ. I note that this decrease is consistent with the decreasing

in the sum of the superconducting gaps, which was measured separately from the

I(V) characteristics. One possible explanation is that when the junction resistance

is below 5 kΩ, the tip starts to make contact with the sample. This applies pressure

to the material at the tip, reducing its Tc. In contrast, the sample Tc decreases
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Figure 8.8: (a) Superconducting gap of the Nb sample (red), Nb tip
(blue) and the sum of the gaps of the Nb sample and the tip (black) as
a function of tunneling resistance Rn of the junction. (b) Transparency
parameter D as a function of Rn.
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relatively little, perhaps because pure Nb is less sensitive to pressure than oxygen-

doped Nb, or perhaps because the spindly tip compresses more than the sample.

Another possible explanation is that the large current running through the junction

causes heating. The small tip not only has a harder time dissipating heat than the

sample, but it has a smaller Tc due to contaminants compared to the sample, leading

to a larger decrease in the superconducting gap.

Figure 8.8 (b) shows the corresponding plot of transparency D vs. Rn from

fitting the asymmetrical MAR theory to the I(V) data at 1.5 K. As expected, D � 1

when the junction resistance Rn is high, indicating very low transparency and the

junction is in the standard S-I-S tunneling limit [64]. As the tip and sample get

closer, Rn decreases and the transparency D becomes larger. Interestingly, D did

not reach 1 as Rn → 0 but saturated at around 0.6.

Figure 8.9 shows plots of Iqp, Is and Ir vs. the junction tunneling resistance Rn.

Iqp is the largest current value around the voltage of the sum of the superconducting

gap where it has the sudden rise in current. Is is the current where it switches out to

the finite voltage state from the supercurrent branch, while Ir is the current where

the junction is retrapped back to the supercurrent branch from the finite voltage

state. The filled points (squares, circles, triangles) were taken at 1.5 K and the

open points (squares, circles, triangles) were taken at 50 mK. The cyan stars are the

theoretical prediction of the critical current I0 from the asymmetric MAR theory

at 1.5 K and the red hexagons are the theoretical prediction of the quasiparticle

current Iqp from the asymmetrical MAR theory. The behavior can be divided into

three regimes. For 10 kΩ < Rn > 100 kΩ, no hysteresis and no switching current
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is observed, consistent with thermal fluctuations destroying phase coherence [34–

36, 38, 71]. For Rn < 100 kΩ, a small supercurrent branch and a switching current

Is are observed (triangles). In this regime, the switching current Is is only 1 % to

10 % of the ideal critical current I0 (cyan stars). The retrapping current Ir (green

circles) is relatively large, indicating significant damping in the junction. As Rn

decreases, the retrapping current Ir increases much more rapidly than the switching

current Is. For Rn < 3 kΩ, where the tip and the sample make contact, Ir ≈ Is.

I note that although there was a strong dependence of the junction behavior

on Rn, there was very little difference between the data at 1.5 K (filled symbols)

and 50 mK (open symbols). Although the thermal energy of the junction at 50 mK

was nominally 30 times smaller than at 1.5 K, Is was not significantly larger at 50

mK, nor was Ir substantially smaller at 50 mK. This suggests that the value of the

switching current in our STM junction is not being limited to the thermal energy

of the bath. One alternative is macroscopic quantum tunneling [64, 159, 160] of

the phase, which becomes important because of the small critical current and small

capacitance between the sample and the tip. Another possibility is external noise

driving the system to switch into the non-zero voltage state. A third possibility

is that with an applied bias current, heating in the leads is creating temperatures

well-above the bath temperature. This last two alternatives are unlikely, as principle

measurements in our system have shown relatively low noise [40].
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Figure 8.9: Nb-Nb junction parameters including extracted quasiparticle
current Iqp (black squares), switching current Is (blue triangles), and
retrapping current Ir (purple circles) plotted vs. Rn. The filled symbols
were taken at 1.5 K whereas the open points were taken at 50 mK. The
cyan stars are the critical current values obtained by fitting the I(V) data
to the asymmetric MAR theory of Chapter 7 at 1.5 K. Red hexagons
are the quasiparticle current values obtained by fitting to the asymmetric
MAR theory at 1.5 K. Above 0.1 MΩ, there was no observed supercurrent
branch and therefore Is and Ir were zero. Below 3 kΩ, the STM tip makes
contact with the sample and hysteretic behavior disappeared. For Rn

between 0.1 MΩ and 3 kΩ, the junction showed hysteretic behavior.
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8.4 Dissipation analysis from the retrapping current

So far, I have shown that I could obtain reasonable fitting of the MAR I −

V characteristics to my data. However, my observation of a relatively and large

retrapping current indicate that the junction is subject to significant dissipation. In

this section, I compare my results to the standard RCSJ model [64] to extract some

additional important junction parameters.

In the RCSJ model, the Stewart-McCumber [161, 162] hysteresis parameter

βc can be extracted from a hysteretic I(V) characteristics by using [64, 163]:

βc = (Iqp/Ir)
2 (8.1)

where Ir is the retrapping current and Iqp is the quasiparticle current at V = (∆1 +

∆2)/e. For βc > 1, the system is underdamped, while for βc < 1, the system is

overdamped. For small disturbance of the phase, the phase will oscillate at the

plasma frequency ωp =
√

2πI0/Φ0C with a quality factor Q =
√
βc.

Figure 8.10 shows extracted values of βc as a function of Rn (black squares).

Note that for all Rn values I found βc > 1. If we look carefully at Fig. 8.3 (c),

this I(V) curve at Rn = 490 Ω and βc ≈ 10 does not look like a conventional S-I-S

overdamped I(V) curve because of MAR effects. Nevertheless, we see that hysteresis

is present, Ir is about 90 % of the switching current Is, and Is ∼ 1
3
Iqp.
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Figure 8.10: Extracted values of Stewart-McCumber parameter βc
(black) and total effective capacitance C (red) of the junction versus
tunneling resistance Rn. βc � 1 indicates the junction is strongly un-
derdamped. The capacitance is roughly consistent with expected STM
junction capacitance in the range of fF to aF. Filled symbols represent
data taken at 1.5 K while open symbols represent data taken at 50 mK.
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The Stewart-McCumber parameter [161, 162] can also be written as:

βc = 2πI0R
2C/Φ0 (8.2)

where I0 is the true critical current of the junction (as opposed to the measured

switching current Is), R is the total effective resistance shunting the Josephson

junction and C is the total effective capacitance across the junction. Using the

extracted values of βc and assuming I0 = πIqp/4, I can use Eq. (8.2) to obtain:

C = 4βch̄/2eIqpR
2π. (8.3)

where the effective resistance at the retrapping voltage is simply:

R = Vr/Ir (8.4)

and Vr is the corresponding voltage at the retrapping current Ir.

Figure 8.10 shows a plot of the resulting capacitance C as a function of Rn

(red points) at 50 mK (open circles) and 1.5 K (filled circles). This method yields

a capacitance value that appears to be in a reasonable agreement with one would

expect for an STM tip that is near to a conducting surface [164–166], which is on

the order of fF to aF. As expected, C increases as Rn becomes smaller, because

the distance between the tip and the sample becomes smaller, resulting in a larger

capacitance value. For Rn ≥ 100 kΩ, I could not use this approach to determine C

because the retrapping current was too small to measure.
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Although I used the RCSJ model to estimate βc and C, the I−V characteristics

show some features that cannot be explained with just this simple model, including

MAR, early switching out of the supercurrent state and finite resistance of the

supercurrent branch. Although MAR explains much of the behavior for a non-

zero voltage, small Josephson junction physics is needed to explain the behavior

near V = 0. This behavior of Josephson junction [64] is governed by the level of

dissipation and the relative size of four different energies: the Coulomb charging

energy EC = e2/2C, the Josephson energy EJ = I0Φ0/2π, the thermal energy kBT

and the plasma energy ωp × h̄, which is approximately the energy required to excite

the junction out of its lowest energy quantum state. Since βc > 1 for all Rn (see

Fig. 8.10), the junctions are in the relatively low dissipation limit. Figure 8.11 shows

Josephson energy, Coulomb energy and plasma energy as a function of the tunneling

resistance Rn. As Fig. 8.11 shows, EJ > h̄ωp > Ec > kBT for Rn < 10 kΩ. This

is the phase qubit limit, where phase is well-defined but quantum tunneling effects

[64, 159, 160] can be important and produce early switching of the super-current.

Also shown in Fig. 8.11 is the escape temperature TESC and the thermal energy

kBT . From the plot, TESC ≈ 1 K which suggests macroscopic quantum tunneling is

important. For Rn greater than about 100 kΩ, Ec dominates. In this limit charging

effects, phase diffusion and the impedance of the bias leads become important in

determining the I(V) characteristics, including in particular the size of the observed

phase-coherent supercurrent and the resistance of the supercurrent branch. As far

as we know, a full theory, including MAR, charging effects, and circuit impedance

has yet to be developed.
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Figure 8.11: Josephson energy EJ (black), charging energy EC (red)
and plasma energy h̄ωp (blue circles) of the Nb-Nb STM junction ver-
sus normal resistance Rn of the junction. Dashed dark gray lines show
temperature of 1.5 K and 50 mK. Green circles show the MQT escape
temperature vs. Rn. Note that TEQC ∼ 1K for a wide range of Rn.
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An important part of the small Josephson junction theory is understanding

effects produced by the lead impedance [73]. The plasma frequency ωp =
√

2eI0/h̄C

of a small junction is typically around 1010 Hz to 1011 Hz and at such frequencies the

shunting impedance Z1 of the bias leads has non-zero real and imaginary parts that

typically are of order 50 Ω. Thus Z1 is typically orders of magnitude smaller than

the quasiparticle resistance. Our output leads act like a mismatched transmission

line and give high-frequency damping which produces the retrapping current and

a measurable non-zero resistance on the supercurrent branch due to the inelastic

tunneling of Cooper pairs [64, 159, 160, 167].

The high frequency damping effect also produces noise which causes phase

diffusion [74, 152, 153] and an average voltage in the supercurrent branch. For

thermally generated noise and EJ � kBT , one finds a resistance of [64, 74]:

R0 = 2Z1(kBT/EJ)2 (8.5)

In our system there can also be a contact resistance Rc between the Nb sample

output leads and the sample bias lines (see Fig. 8.1). Equation (8.5) can then be

written as:

R0 = 2Z1

[
4e2kBTRn

h̄π∆

]2

+Rc(T ) (8.6)

Thus we expect that R0−Rc is proportional to the square of the normal resistance,

at least in the limit EJ � kBT .

Figure 8.12 shows a plot of R0 − Rc as a function of Rn. The black squares
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Figure 8.12: Plot of resistance R0 − Rc of the supercurrent branch ver-
sus normal tunnel resistance Rn of the junction. Blue circles are data
obtained at 50 mK, black squares show data obtained at 1.5 K and red
dashed line is a guide line showing R0 −Rc is proportional to R2

n.
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were taken at 1.5 K while the blue circles were taken at 50 mK. The red dashed

line is a guide line showing R0−Rc scales as R2
n. I estimated the contact resistance

Rc = 173 Ω at 1.5 K and Rc = 15 Ω at 50 mK. Although the data does not scale

exactly as R2
n, it is remarkably close, suggesting that the critical current is being

suppressed by phase diffusion, as expected.

8.5 Conclusion

In conclusion, by varying the distance between a Nb STM tip and a Nb sample

at 1.5 K, I varied the normal junction resistance Rn and observed I − V character-

istics that ranged from the low-transparency S-I-S tunnel limit to the high trans-

parency S-I-S limit with prominent MAR effects. The junction resistance varied

from Rn = 5 MΩ to 500 Ω, with standard S-I-S low-transparency behavior above

100 kΩ. For Rn between 3 kΩ and 100 kΩ, the junction behaved like a hysteretic

small Josephson junction with an early (premature) switching current Is and a small

but non-zero resistance R0 on the “supercurrent” branch. Below 3 kΩ, the STM

junction acts like a point contact and multiple channel MAR theory needs to be

taken into consideration. I also found that the superconducting gap of the tip was

significantly lower (70%) in this limit.

Using the retrapping current, I extracted estimates for the Stewart-McCumber

hysteresis parameter βc and the capacitance C of the junction. I also observed a

small, non-zero resistance of the supercurrent branch and found that this scaled as
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R2
n, as expected for phase diffusion. I note that early switching of the supercurrent

could be suppressed and the phase could be stabalized by using a SQUID-STM

configuration [39, 42, 43] in which two superconducting junctions can form a SQUID.

One tip could be pushed into the sample to achieve a relatively latge and stable

critical current while the other tip is scanned. One then picks up the coherent phase

signal detected by applying a small magnetic flux to the loop and then measuring

the switching current [39, 42, 43, 168, 169].
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CHAPTER 9

Conclusions

9.1 Summary of main results

In this thesis, I described results from my research on three main topics: (i)

work towards developing a dual-tip STM that can image the gauge-invariant phase

difference on a superconducting surface, (ii) STM imaging of Andreev reflection

effects on the surface of TiN which allowed mapping of local variations in the gap,

transparency and temperature, and (iii) the development of a theory of multiple

Andreev reflection and its application to the analysis of STM Nb-Nb S-I-S tunneling

characteristics. After an overview of the thesis in Chapter 1 and a brief review of

tunneling in Chapter 2, I described the millikelvin dual-tip STM system that I used

for all my research in Chapter 3.

In Chapter 4, I described how I modified the dual-tip STM to connect two

tips using a short flexible link made of Nb foil. I then described a new technique to

control both tips using dI/dzand showed results from simultaneous imaging with

both tips at room temperature and discussed the potential application of the system
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9.1. SUMMARY OF MAIN RESULTS

to imaging superconducting phase differences.

In Chapter 5, I reviewed the BTK theory of Andreev reflection effects in S-N

tunneling. In Chapter 6, I then showed STM images and tunneling spectroscopy

on 50 nm and 25 nm thick TiN film at 500 mK. For the 50 nm thick TiN film I

used a vanadium tip while for the 25 nm thick TiN film I used a Nb tip. I observed

prominent Andreev effects in the tunneling characteristics and used the BTK theory

to analyze the I(V) and dI/dV (V) data that I acquired. From the BTK analysis I

was able to extract maps of the gap, temperature and barrier transparency, which

showed large, correlated local variations. I presented a model that may explain the

correlated variation as well as differences between the thick and thin films.

In Chapter 7, I generalized the Averin and Bardas theory of MAR to describe

an S-I-S junction with electrodes with different superconducting gaps. Using this

theory I obtained an expression for the I(V) characteristics and a prediction of the

critical current as a function of the barrier transparency, gaps, and temperature. In

Chapter 8, I described my measurement of I(V) characteristics obtained at 50 mK

and 1.5 K using an STM with a Nb tip and a Nb sample. I then applied the theory

developed in Chapter 7 to analyze the I(V) characteristics and concluded that the

asymmetrical MAR theory worked remarkably well at describing the characteristics

over the full range of Rn values. The main discrepancies occurred for Rn < 5

kΩ, where the tip began to make contact with the sample. I also examined the

switching current and retrapping current and identified three regimes: the phase

diffusion regime (for Rn > 100 kΩ), the underdamped regime (for 3 kΩ < Rn < 100

kΩ) and the point contact regime (for Rn < 3 kΩ).
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9.1. SUMMARY OF MAIN RESULTS

One may well ask, since you succeeded in connecting two Nb STM tips together

and simultaneously scanning both tips, you should have been able to form an STM-

SQUID, measure flux sensitivity and image the gauge invariant phase difference. In

addition, was the observed supercurrent from the single S-I-S Josephson junctions

discussed in Chapter 8 phase coherent or incoherent tunneling of Cooper pairs?

Figure 9.1 shows the configuration of the STM controllers and read out elec-

tronics for running the SQUID setup. To operate the dual-point system as a SQUID,

I first stabilize the two STM tips at the desired junction tunneling resistance Rn,

turn the z feedback off and switch the relay to the current bias mode. I then use the

function generator to output the current to the junctions and start the counter. The

counter waits for a signal from the relay box; once the voltage across the SQUID

reaches the threshold (because the SQUID switching out from the supercurrent

branch), the counter stops. I repeat this switching measurement many times and

for different flux applied to the loop. I can plot the applied flux Φ vs. the switching

current Is (converted from the time for the supercurrent state to switch out to the

voltage state). Once all the measurements are done, the relay box switched the

STM electronics back to the voltage bias mode, and the STM feedback is turned

back on.

I actually spent a total of about 6 months attempting to run the STM-SQUID

at 30 mK before the refrigerator was damaged and then at 1.5 K after the refriger-

ator was temporarily fixed. However, I did not observe an obvious critical current

modulation when the flux was applied to the SQUID loop [42]. Below I discuss

several possible reasons and suggest some possible improvements for the future.
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Figure 9.1: Configuration of the STM controllers and read out electronics
for running the SQUID setup.
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9.2. SOME SUGGESTIONS FOR FURTHER RESEARCH

9.2 Some suggestions for further research

9.2.1 Low temperature requirement

Previously most of the reports on Josephson STMs were conducted in the

phase diffusive regime [34–36, 38, 71] where the critical current is highly suppressed.

For a symmetric superconducting junctions (with electrodes that have the same

superconducting gap), the Ambegaokar-Baratoff formula [133, 134] gives a critical

current

I0 =
π∆

2eRN

tanh

(
∆

2kBT

)
(9.1)

where RN is the tunneling resistance of the junction in the normal state [64]. For the

critical current I0 to be close to the measured switching current Is, the Josephson

coupling energy EJ = h̄I0
2e

must be much greater than the thermal energy ET =

kBT . As we saw in Fig. 8.11, the Josephson energy EJ (black), charging energy

EC (red), and thermal energy kBT (blue) can be relatively close to each other, and

for phase coherent operation for typical parameters we need to use a mK setup.

Unfortunately, as I described in Section 3.5, after the accident which damaged the

step heat exchanger, we found the refrigerator was stable down to about 0.5 K and

could not cool below 0.3 K. I tried to run the SQUID measurement at 0.5 K but

it was quite possible that the thermal energy was too big and the phase coherence

was not present for the range of junction parameters I tried. Clearly it would be
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9.2. SOME SUGGESTIONS FOR FURTHER RESEARCH

interesting to replace the refrigerator with a working mK unit and try again at 50

mK.

9.2.2 Smaller SQUID loop

As Roychowdhury et al. showed theoretically [40], it is better to have a smaller

inductance SQUID loop to observe a phase coherent response if one of the junctions

has a small critical current. Unfortunately, the STM tip length was relatively large

(∼ 2 mm) (see Fig. 4.2). This also meant that the SQUID had a large pickup area,

which makes it very sensitive to magnetic field noise. A total RMS field noise as

small as 1 nT would have destroyed the SQUID modulation with applied flux. It

clearly would be interesting to try again with a smaller loop formed from shorter

STM tips and holders. One could also bend the tips toward each other so that when

the tips approached the sample, they would form a smaller SQUID loop.

9.2.3 Better shielding

Currently the IVC can is enclosed in an Amuneal Manufacturing Amumetal

4K shield [170] to reduce the strength of low-frequency magnetic fields and electrical

noise in the system. I note that this level of shielding may not be adequate given the

relatively large pickup area of the SQUID. With a pickup area of ∼ 2 mm2, a field

change of 1 nT would produce a flux change of 1 Φ0 in the SQUID. Fluctuations

of this size would completely obscure measurements of the SQUID critical current.
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9.2. SOME SUGGESTIONS FOR FURTHER RESEARCH

Since background 60 Hz fields alone are typically 100 nT, we should shield by at

least a factor of 1000. In the future, adding one or two more Amumetal shields

or a superconducting shield would be a priority. It would also be advisable to add

additional radiation shields at the plate or still to reduce black-body radiation at

the STM which can produce excess quasiparticle at mK temperature.

9.2.4 Intrinsic system constraint

Dan Sullivan’s proof of principle experiment [42] demonstrated the feasibility

of using a highly asymmetric SQUID to make phase sensitive measurements. He

used e-beam lithography to pattern thin film junctions that mimicked actual STM

conditions. In particular, the SQUID had ∼ 1 nA of critical current modulation on

top of ∼ 1 µA critical current. To satisfy this requirement in a dual-point STM,

that means one tip would have ∼ 1 µA critical current, which is in the point contact

regime. The other tip can be in the nA range, which is in the underdamped regime,

just as Dan’s experiment.

During my data acquisition of the I−V characteristics, I often noticed that it

was hard to stabilize the tip with a fixed switching current in the nA range. When

I turned off the feedback to make SQUID measurements, the tip typically ended

up drifting and within a short time the junction’s switching current would change

significantly. Although I did not try to make the system run with a large and a small

junction, I did try to operate at 0.5 K with both tips having a large switching current.

It was stable enough to run the SQUID measurements. Unfortunately, I did not see
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9.2. SOME SUGGESTIONS FOR FURTHER RESEARCH

any modulation of the device critical current when I varied the flux. Although this

was in the point contact regime, I still should have observed a modulation. It is

possible that there was too much flux noise, or something was wrong with the coil I

was using to apply flux. In the future, it would be interesting to check these possible

problems by testing a conventional thin-film lithographically defined SQUID in the

apparatus. Another critical test of both the SQUID configuration and the single

STM point is to check the response to applied microwaves. As Roychowdhury et

al. showed, this can be used to distinguish phase coherent tunneling of pairs from

incoherent tunneling of pairs [40].
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APPENDIX A

χ2 fit for the TiN film

In Chapter 6 I showed several maps of the gap in TiN films. These supercon-

ducting gap maps had gray points which indicated points where I got a bad fit to

the BTK theory. Each conductance curve had 115 points and the uncertainty of

each measurement of conductivity was estimated to be 5 nS for V > ∆/e and 1 nS

for V < ∆/e. I used χ2 ≥ 5000 as the threshold for a truly bad fit in the image, in

Fig. 6.6 (b) and Fig. 6.8 (b), which had 28928 and 25856 pixels. Note that a good

fit should yield χ2 ≈ 115. Points with χ2 > 5000 were colored gray in the maps in

Chapter 6. For Fig. 6.6 of the 50 nm film, there were 6617 points that gave bad fits

to the Dynes model in Fig. A.1 (a) (22.87 %), while 6748 points had bad fits to the

BTK model in Fig. A.1 (b) (23.32 %). For the 25 nm film, there are 6258 points

with bad fits to the Dynes model in Fig. A.1 (c) (24.20 %), while 4939 points had

bad fits to the BTK model in Fig. A.1 (d) (19.1 %). In the 50 nm film, the quality

of the fits to the BTK model and to the Dynes model are not so different. In the

25 nm film, the BTK model gave significantly better fits.

Figure A.1 shows gap maps without using gray to indicate poor fits. Most of
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the formally gray points are now red, which suggests that the gap is high. However,

examination of these fits shows that this is misleading, as these fit curves have a

very poor correspondence with the data. Figure A.1 also shows histograms of the

corresponding χ2 values, which display a long tail.
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Figure A.1: (a) Gap ∆ map of the 50 nm thick TiN film from fitting to
the Dynes model and (b) the BTK model. (c) ∆ map of the 25 nm thick
TiN film from fitting to the Dynes model and (d) the BTK model. (e)
χ2 histograms of the 50 nm thick TiN film by fitting to the Dynes model
and (f) the BTK model. (g) χ2 histograms of the 25 nm thick TiN film
by fitting to the Dynes model (h) and the BTK model.
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APPENDIX B

50 nm TiN film showing S-I-S junction with a

vanadium tip

In the thesis, I mentioned that the superconducting tip did not show super-

conducting behavior due to it easily picking up debris from the surface. Here I show

that I successfully acquired one data set which shows the S-I-S junction on the TiN

surface.

Figure B.1 (a) shows a topographic image of a 70 nm × 33 nm region on

the 50 nm thick TiN film. The image was acquired at 0.5 K using a vanadium

tip and there are 256 × 122 pixels. The sample bias was set at 5 mV while the

tunneling current was set at 100 pA. Figure B.1 (b) shows the corresponding map of

∆ obtained from fitting the conductance curves at each point to the Dynes model.

Although in this case I did not use the BTK model to do the fitting (it is very

time consuming), from the map we can see that in general the values of the gap are

larger than the S-I-N data shown in Chapter 6. Figure B.1 (c) shows a histogram

of the superconducting gap using the Dynes fit. Compared to Fig. 6.10 where the

maximum of the superconducting gap value lies around 0.6 meV for the 50 nm film,
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in this case the peak of the superconducting gap is around 1.5 meV. This suggests

that the junction is S-I-S like, instead of S-I-N like.

Figure B.1 (d) shows a dI/dV vs. V curve taken from one location in Fig. B.1

(a). Qualitatively we see that the coherence peaks are much sharper and the spacing

of the coherence peaks is much wider, corresponding to the sum of gaps, 2(∆tip +

∆sample). Moreover, the conductance curve bottoms out at 0 for V < ∆tip + ∆sample.

This suggest that there is no current flow inside the superconducting gap, which is

expected for a standard S-I-S curve. The red curve in Fig. B.1 (d) shows the fit

to the Dynes model. As we can see here, the fit is not very good, and it tends to

underestimate the gap. In this case the fit yields the superconducting gap of ∆tip +

∆sample = 1.44 meV. In principle, a better fit could be obtained from the Tinkham

formula which involves the numerical integration of the expression Eq. (2.27).
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APPENDIX C

Fortran code for symmetrical S-I-S junction with

MAR effect

In the symmetrical S-I-S junction code with MAR effect that I present below,

t is the transparency which is D in the Chapter 7, r is the reflection probability

which is R in the Chapter 7 and th is the temperature in kelvin. ne is the largest

integration upper limit ε0, e is the integration variable ε, v is the voltage V while

ai is the current I.

I use function scat(t,r,n,e,v) to calculate An and Bn defined in Chapter 7, and

it yields a(k) and b(k), respectively. The Andreev reflection amplitude is defined as

an(x) in the code. The Source J(ε) in this code is used as so(x). ft(x,th) gives the

tanh
(
ε/2kBT

)
function.

Finally, I would like to thank Prof. Averin again for providing the Fortran code

for the symmetrical S-I-S junction case. I then modified the code and generalized it

to the asymmetrical S-I-S junction case (see Appendix C).
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1 program main

2 double complex a( -1000:1000) ,b( -1000:1000) ,w( -2000:2000)

3 double complex y,yy ,sa,ai,an

4 double precision e,ft,so

5

6 common/amp/a,b,w

7

8 open(1,file=’tmp1.dat’)

9 open(2,file=’tmp2.dat’)

10 open(3,file=’tmp3.dat’)

11 open(4,file=’tmp4.dat’)

12

13 !! This is the transparency parameter defined as D in the theory

14 write (*,*)’input barrier transparency t’

15 read (*,*)t

16

17 !! This is the temperature , normalized

18 th =0.005

19

20

21 !! R+T=1

22 r=1.0-t

23

24 !! jj is the Fourier component of the current term

25 jj=0.

26

27 !! v is the voltage

28 do 2 kv=1,150

29 v=0.02* kv

30

31 !! h is the integration interval

32 h=.001

33

34

35 !! n is how many terms of a(k) and b(k) have

36 n=int (2./v)

37 if(n.LT.20) n=20

38

39 !! ne is the maximum energy where the integration of the energy

goes up to

40 ne=int (20./h)

41 if(v.GT.1)ne=int ((18.+2.*v)/h)

42

43

44 !! je is just to alternate the integration terms , one term is 4

one terms is 2, in the end it divides by 3

45 !! "do 3" command sums up the current sa at each energy ke

46 sa=0.0

47 je=-1

48 do 3 ke=0,ne

49 je=-je

50

51 do 33 jth=1,2

52

53 !! both positive energy side and negative energy side have to be

summed up

54 e=((-1)**jth)*(h*ke +1.0005)
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55

56 !! y is to calculate the current at certain energy e

57 call scat(t,r,n,e,v)

58 y=(w(2*jj)*a(jj)+conjg(w(-2*jj)*a(-jj)))*so(e)

59 do 4 k=-n,n

60 kk=2*k

61 kj=k-jj

62 yy=1.+w(kk)*conjg(w(kk -2*jj))

63 y=y+yy*(a(k)*conjg(a(kj))-b(k)*conjg(b(kj)))

64 4 continue

65

66 !! sa is the summed current at specefic voltage v with fermi

distribution ft

67 sa=sa +(3.+je)*y*ft(e,th)

68 33 continue

69

70 3 continue

71

72 !! the final current needs to multiply the interval of the

integration energy

73 ai=sa*h/(3.*t)

74

75 write (*,*)v,ai

76 write (3,*)v,real(ai)

77 write (4,*)v,-imag(ai)

78

79 2 continue

80

81 stop

82 end

83

84

85

86 subroutine scat(t,r,n,e,v)

87 double complex a( -1000:1000) ,b( -1000:1000) ,w( -2000:2000)

88 double complex an,s,x,q,u,p,f

89 double precision e,so

90

91 common/amp/a,b,w

92

93 rr=sqrt(r)

94

95 do 1 k=-n-2,n+2

96 a(k)=cmplx (0. ,0.)

97 1 b(k)=cmplx (0. ,0.)

98

99 do 2 k=-2*n-4,2*n+4

100 w(k)=an(e+k*v)

101 2 continue

102

103 s=(0. ,0.)

104 do 3 k=n,1,-1

105 j=2*k

106 j1=j-1

107 i1=j+1

108 u=t*w(j)/((1. ,0)-w(j1)**2)

109 f=t*w(i1)/((1. ,0)-w(i1)**2)
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110 q=f*w(j+2)

111 x=u*w(j1)

112 p=u*w(j)+f*w(i1)+(1. ,0.)-w(j)**2

113 s=x/(p-q*s)

114 3 b(k)=s

115

116

117 s=(0. ,0.)

118 do 4 k=-n,-1

119 j=2*k

120 j1=j-1

121 i1=j+1

122 u=t*w(j)/((1. ,0.)-w(j1)**2)

123 f=t*w(i1)/((1. ,0.)-w(i1)**2)

124 q=f*w(j+2)

125 x=u*w(j1)

126 p=u*w(j)+f*w(i1)+(1. ,0.)-w(j)**2

127 s=q/(p-x*s)

128 4 b(k)=s

129

130

131 u=t*w(0) /((1. ,0.)-w(-1)**2)

132 f=t*w(1) /((1. ,0.)-w(1) **2)

133 q=f*w(2)

134 x=u*w(-1)

135 p=u*w(0)+f*w(1) +(1. ,0.)-w(0) **2

136 b(0)=rr*so(e)/(p-b(1)*q-b(-1)*x)

137

138

139

140 !! calculation of b(k)

141 b(1)=b(0)*b(1)

142 b(-1)=b(0)*b(-1)

143 do 5 k=2,n

144 b(k)=b(k-1)*b(k)

145 b(-k)=b(-k+1)*b(-k)

146 5 continue

147

148

149 !! calculation of a(k)

150 do 6 k=-n,-1

151 j=2*k

152 j1=j+1

153 k1=k+1

154 u=a(k)*w(j)*w(j1)

155 f=rr*(b(k1)*w(j+2)-b(k)*w(j1))

156 a(k1)=u+f

157 6 continue

158

159 u=a(0)*w(0)*w(1)

160 f=rr*(b(1)*w(2)-b(0)*w(1))

161 a(1)=u+f+w(1)*so(e)

162

163

164

165 do 7 k=1,n

166 j=2*k
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167 j1=j+1

168 k1=k+1

169 u=a(k)*w(j)*w(j1)

170 f=rr*(b(k1)*w(j+2)-b(k)*w(j1))

171 a(k1)=u+f

172 7 continue

173

174

175

176 return

177 end

178

179 !! calculation of Andreev reflection amplitude

180 double complex function an(x)

181 double precision x,g

182 g=x**2

183 if(g.GE.1.) goto 2

184 an=cmplx(x,dsqrt(1.-g))

185 goto 1

186 2 t=x*(1.- dsqrt(g-1.)/abs(x))

187 an=cmplx(t,0.)

188 1 continue

189 return

190 end

191

192 !! calculation of incoming current source J(e)

193 double precision function so(x)

194 double precision x,z

195 double complex an

196 z=Real(an(x))

197 so=dsqrt (1.-z**2)

198 return

199 end

200

201 function sig(x)

202 double precision x

203 sig=x/abs(x)

204 return

205 end

206

207 !! ft corresponds to -tanh(e/2T)

208 double precision function ft(x,th)

209 double precision x,xx

210 xx=x/th

211 if(xx.LT.0.) goto 1

212 if(xx.GT.40) goto 2

213 z=dexp(-xx)

214 ft=(z-1.) /(1.+z)

215 goto 3

216 2 ft=-1.

217 goto 3

218 1 if(xx.LT.-40.) goto 4

219 z=dexp(xx)

220 ft=(1.-z)/(z+1.)

221 goto 3

222 4 ft=1.

223 3 continue
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224 return

225 end
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APPENDIX D

Fortran code for Asymmetrical S-I-S junction

with MAR effect

In this Fortran code, I calculated the ac part of the tunneling current, i.e.

jj=1, which is different from the dc part calculated in the previous Appendix C. As

I mentioned in Chapter 7, the main difference between the symmetrical junction and

the asymmetrical junction is that one has to be careful whether the quasiparticle is

reflected off the left electrode or the right electrode. For the case where the current

IL is produced from the left incident quasiparticle LAC, the left electrode Andreev

reflection amplitude is an(x), while for the right electrode the Andreev reflection

amplitude is bn(x). In contrast, for the case where the current IR is produced from

the right incident quasiparticle RAC, the left electrode is defined as bn(x) in the

code while an(x) is for the right electrode.

Finally, the total current from the asymmetrical S-I-S junction is calculated

using I = IL − IR. In my calculation here, the ratio of the gap of the left electrode

to the gap of the right electrode is ∆L/∆R = 1/0.5 = 2.
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LAC :

1 program main

2 double complex a( -1000:1000) ,b( -1000:1000) ,w( -2000:2000)

3 double complex y,yy ,sa,ai,an ,bn

4 double precision e,ft,so

5

6 common a,b,w

7

8 open(3,file=’tmp3.dat’)

9 open(4,file=’tmp4.dat’)

10

11

12 jj=1.

13

14 do 2 kt=1,50

15 th =0.05* kt

16 t=0.5

17 v=0.01

18

19 h=.001

20 r=1.-t

21

22

23 n=int (2./v)

24 if(n.LT.20) n=20

25

26 ne=int (20./h)

27 if(v.GT.1)ne=int ((18.+2.*v)/h)

28

29 sa=0.0

30 je=-1

31 do 3 ke=0,ne

32 je=-je

33

34 do 33 jth=1,2

35

36 e=((-1)**jth)*(h*ke +1.0005)

37

38

39 call scat(t,r,n,e,v)

40 y=(w(2*jj)*a(jj)+conjg(w(-2*jj)*a(-jj)))*so(e)

41 do 4 k=-n,n

42 kk=2*k

43 kj=k-jj

44 yy=1.+w(kk)*conjg(w(kk -2*jj))

45 y=y+yy*(a(k)*conjg(a(kj))-b(k)*conjg(b(kj)))

46 4 continue

47

48 sa=sa +(3.+je)*y*ft(e,th)

49 33 continue

50 3 continue

51

52 ai=sa*h/(3.*t)

53

54 write (*,*)th,ai
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55 write (3,*)th,real(ai)

56 write (4,*)th,-imag(ai)

57

58

59 2 continue

60

61 stop

62 end

63

64 subroutine scat(t,r,n,e,v)

65 double complex a( -1000:1000) ,b( -1000:1000) ,w( -2000:2000)

66 double complex an,bn,s,x,q,u,p,f

67 double precision e,so

68

69 common a,b,w

70

71 rr=sqrt(r)

72

73 do 1 k=-n-2,n+2

74 a(k)=cmplx (0. ,0.)

75 1 b(k)=cmplx (0. ,0.)

76

77 do 2 k=-2*n-4,2*n+4,2

78 w(k)=an(e+k*v)

79 2 continue

80

81 do 3 k=-2*n-3,2*n+3,2

82 w(k)=bn(e+k*v)

83 3 continue

84

85 s=(0. ,0.)

86 do 4 k=n,1,-1

87 j=2*k

88 j1=j-1

89 i1=j+1

90 u=t*w(j)/((1. ,0)-w(j1)**2)

91 f=t*w(i1)/((1. ,0)-w(i1)**2)

92 q=f*w(j+2)

93 x=u*w(j1)

94 p=u*w(j)+f*w(i1)+(1. ,0.)-w(j)**2

95 s=x/(p-q*s)

96 4 b(k)=s

97

98

99 s=(0. ,0.)

100 do 5 k=-n,-1

101 j=2*k

102 j1=j-1

103 i1=j+1

104 u=t*w(j)/((1. ,0.)-w(j1)**2)

105 f=t*w(i1)/((1. ,0.)-w(i1)**2)

106 q=f*w(j+2)

107 x=u*w(j1)

108 p=u*w(j)+f*w(i1)+(1. ,0.)-w(j)**2

109 s=q/(p-x*s)

110 5 b(k)=s

111
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112

113 u=t*w(0) /((1. ,0.)-w(-1)**2)

114 f=t*w(1) /((1. ,0.)-w(1) **2)

115 q=f*w(2)

116 x=u*w(-1)

117 p=u*w(0)+f*w(1) +(1. ,0.)-w(0) **2

118 b(0)=rr*so(e)/(p-b(1)*q-b(-1)*x)

119

120

121 b(1)=b(0)*b(1)

122 b(-1)=b(0)*b(-1)

123 do 6 k=2,n

124 b(k)=b(k-1)*b(k)

125 b(-k)=b(-k+1)*b(-k)

126 6 continue

127

128

129 do 7 k=-n,-1

130 j=2*k

131 j1=j+1

132 k1=k+1

133 u=a(k)*w(j)*w(j1)

134 f=rr*(b(k1)*w(j+2)-b(k)*w(j1))

135 a(k1)=u+f

136 7 continue

137

138 u=a(0)*w(0)*w(1)

139 f=rr*(b(1)*w(2)-b(0)*w(1))

140 a(1)=u+f+w(1)*so(e)

141

142

143 do 8 k=1,n

144 j=2*k

145 j1=j+1

146 k1=k+1

147 u=a(k)*w(j)*w(j1)

148 f=rr*(b(k1)*w(j+2)-b(k)*w(j1))

149 a(k1)=u+f

150 8 continue

151

152

153 return

154 end

155

156

157 double complex function an(x)

158 double precision x,g

159 g=x**2

160 if(g.GE.1.) goto 2

161 an=cmplx(x,dsqrt(1.-g))

162 goto 1

163 2 t=x*(1.- dsqrt(g-1.)/abs(x))

164 an=cmplx(t,0.)

165 1 continue

166 return

167 end

168

265



169 double complex function bn(x)

170 double precision x,g

171 g=x**2

172 if(g.GE..25) goto 3

173 bn=cmplx (2.*x,dsqrt (1. -4.*g))

174 goto 4

175 3 t=x*(2.- dsqrt (4.*g-1.)/abs(x))

176 bn=cmplx(t,0.)

177 4 continue

178 return

179 end

180

181

182 double precision function so(x)

183 double precision x,z

184 double complex an

185 g=x**2

186 if(g.LT.1.) goto 2

187 z=Real(an(x))

188 so=dsqrt (1.-z**2)

189 goto 1

190 2 so=0.0

191 1 continue

192 return

193 end

194

195

196 double precision function ft(x,th)

197 double precision x,xx

198 xx=x/th

199 if(xx.LT.0.) goto 1

200 if(xx.GT.40) goto 2

201 z=dexp(-xx)

202 ft=(z-1.) /(1.+z)

203 goto 3

204 2 ft=-1.

205 goto 3

206 1 if(xx.LT.-40.) goto 4

207 z=dexp(xx)

208 ft=(1.-z)/(z+1.)

209 goto 3

210 4 ft=1.

211 3 continue

212 return

213 end
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RAC :

1 program main

2 double complex a( -1000:1000) ,b( -1000:1000) ,w( -2000:2000)

3 double complex y,yy ,sa,ai,an ,bn

4 double precision e,ft,so

5

6 common a,b,w

7

8 open(3,file=’tmp3.dat’)

9 open(4,file=’tmp4.dat’)

10

11 !! calculate the AC part first Fourier component

12 jj=1.

13

14 do 2 kt=1,50

15 th =0.05* kt

16 t=0.5

17 v=0.01

18 h=.001

19

20

21 r=1.-t

22 n=int (2./v)

23 if(n.LT.20) n=20

24

25

26 !! now the ne goes a little bit further due to e only starts from

0.5005 instead of 1.005

27 ne=int (20.5/h)

28 if(v.GT.1)ne=int ((18.5+2.*v)/h)

29

30 sa=0.0

31 je=-1

32 do 3 ke=0,ne

33 je=-je

34

35 do 33 jth=1,2

36

37 !! the energy e where it starts to contribute some current is

outside the superconducting gap which is 0.5

38 e=((-1)**jth)*(h*ke +0.5005)

39

40

41 call scat(t,r,n,e,v)

42 y=(w(-2*jj)*a(-jj)+conjg(w(2*jj)*a(jj)))*so(e)

43 do 4 k=-n,n

44 kk=2*k

45 kj=k-jj

46 yy=1.+ conjg(w(kk))*w(kk -2*jj)

47 y=y+yy*(conjg(a(k))*a(kj)-conjg(b(k))*b(kj))

48 4 continue

49

50 sa=sa +(3.+je)*y*ft(e,th)

51 33 continue

52 3 continue
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53

54 ai=sa*h/(3.*t)

55

56 write (*,*)th,ai

57 write (3,*)th,real(ai)

58 write (4,*)th,-imag(ai)

59

60

61 2 continue

62

63 stop

64 end

65

66

67 subroutine scat(t,r,n,e,v)

68 double complex a( -1000:1000) ,b( -1000:1000) ,w( -2000:2000)

69 double complex bn,an,s,x,q,u,p,f

70 double precision e,so

71

72 common a,b,w

73

74 rr=sqrt(r)

75

76 do 1 k=-n-2,n+2

77 a(k)=cmplx (0. ,0.)

78 1 b(k)=cmplx (0. ,0.)

79

80

81 !! for the odd term it sees bn(x) function , even term it sees an(x

) function

82 do 2 k=-2*n-4,2*n+4,2

83 w(k)=an(e-k*v)

84 2 continue

85

86 do 3 k=-2*n-3,2*n+3,2

87 w(k)=bn(e-k*v)

88 3 continue

89

90 s=(0. ,0.)

91 do 4 k=n,1,-1

92 j=2*k

93 j1=j-1

94 i1=j+1

95 u=t*w(j)/((1. ,0)-w(j1)**2)

96 f=t*w(i1)/((1. ,0)-w(i1)**2)

97 q=f*w(j+2)

98 x=u*w(j1)

99 p=u*w(j)+f*w(i1)+(1. ,0.)-w(j)**2

100 s=x/(p-q*s)

101 4 b(k)=s

102

103

104 s=(0. ,0.)

105 do 5 k=-n,-1

106 j=2*k

107 j1=j-1

108 i1=j+1
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109 u=t*w(j)/((1. ,0.)-w(j1)**2)

110 f=t*w(i1)/((1. ,0.)-w(i1)**2)

111 q=f*w(j+2)

112 x=u*w(j1)

113 p=u*w(j)+f*w(i1)+(1. ,0.)-w(j)**2

114 s=q/(p-x*s)

115 5 b(k)=s

116

117

118 u=t*w(0) /((1. ,0.)-w(-1)**2)

119 f=t*w(1) /((1. ,0.)-w(1) **2)

120 q=f*w(2)

121 x=u*w(-1)

122 p=u*w(0)+f*w(1) +(1. ,0.)-w(0) **2

123 b(0)=rr*so(e)/(p-b(1)*q-b(-1)*x)

124

125

126 b(1)=b(0)*b(1)

127 b(-1)=b(0)*b(-1)

128 do 6 k=2,n

129 b(k)=b(k-1)*b(k)

130 b(-k)=b(-k+1)*b(-k)

131 6 continue

132

133

134 do 7 k=-n,-1

135 j=2*k

136 j1=j+1

137 k1=k+1

138 u=a(k)*w(j)*w(j1)

139 f=rr*(b(k1)*w(j+2)-b(k)*w(j1))

140 a(k1)=u+f

141 7 continue

142

143 u=a(0)*w(0)*w(1)

144 f=rr*(b(1)*w(2)-b(0)*w(1))

145 a(1)=u+f+w(1)*so(e)

146

147

148 do 8 k=1,n

149 j=2*k

150 j1=j+1

151 k1=k+1

152 u=a(k)*w(j)*w(j1)

153 f=rr*(b(k1)*w(j+2)-b(k)*w(j1))

154 a(k1)=u+f

155 8 continue

156

157

158 return

159 end

160

161 !! bn(x) function represents the full superconducting gap

162 double complex function bn(x)

163 double precision x,g

164 g=x**2

165 if(g.GE.1.) goto 2
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166 bn=cmplx(x,dsqrt(1.-g))

167 goto 1

168 2 t=x*(1.- dsqrt(g-1.)/abs(x))

169 bn=cmplx(t,0.)

170 1 continue

171 return

172 end

173

174 !! an(x) function represents the half superconducting gap (0.5)

175 double complex function an(x)

176 double precision x,g

177 g=x**2

178 if(g.GE..25) goto 3

179 an=cmplx (2.*x,dsqrt (1. -4.*g))

180 goto 4

181 3 t=x*(2.- dsqrt (4.*g-1.)/abs(x))

182 an=cmplx(t,0.)

183 4 continue

184 return

185 end

186

187 !! so(x) function function starts from gap 0f 0.5 (see codition g.

LT..25)

188 double precision function so(x)

189 double precision x,z

190 double complex an

191 g=x**2

192 if(g.LT..25) goto 2

193 z=Real(an(x))

194 so=dsqrt (1.-z**2)

195 goto 1

196 2 so=0.0

197 1 continue

198 return

199 end

200

201

202 double precision function ft(x,th)

203 double precision x,xx

204 xx=x/th

205 if(xx.LT.0.) goto 1

206 if(xx.GT.40) goto 2

207 z=dexp(-xx)

208 ft=(z-1.) /(1.+z)

209 goto 3

210 2 ft=-1.

211 goto 3

212 1 if(xx.LT.-40.) goto 4

213 z=dexp(xx)

214 ft=(1.-z)/(z+1.)

215 goto 3

216 4 ft=1.

217 3 continue

218 return

219 end
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[130] F. Giazotto, T. T. Heikkilä, A. Luukanen, A. M. Savin, and J. P. Pekola,
“Opportunities for mesoscopics in thermometry and refrigeration: Physics
and applications,” Rev. Mod. Phys. 78, 217 (2006).

[131] R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics,
Vol. III: The New Millennium Edition: Quantum Mechanics , The Feynman
Lectures on Physics (Basic Books, 2011).

[132] T. Van Duzer and C. W. Turner, “Principles of superconductive devices and
circuits,” (1981).

[133] V. Ambegaokar and A. Baratoff, “Tunneling between superconductors,” Phys.
Rev. Lett. 10, 486 (1963).

[134] V. Ambegaokar and A. Baratoff, “Tunneling between superconductors-
errata,” Phys. Rev. Lett. 11, 104 (1963).

[135] J. D. Jackson, Classical electrodynamics , 3rd ed. (Wiley, 1999).

[136] A. A. Golubov, M. Y. Kupriyanov, and E. IlIchev, “The current-phase relation
in Josephson junctions,” Rev. of Mod. Phys. 76, 411 (2004).

[137] E. Scheer, W. Belzig, Y. Naveh, M. H. Devoret, D. Esteve, and C. Urbina,
“Proximity effect and multiple Andreev reflections in gold atomic contacts,”
Phys. Rev. Lett 86, 284 (2001).

[138] B. Ludoph, N. Van der Post, E. Bratus, E. Bezuglyi, V. Shumeiko, G. Wendin,
and J. Van Ruitenbeek, “Multiple Andreev reflection in single-atom niobium
junctions,” Phys. Rev. B 61, 8561 (2000).

[139] R. Hiraoka, R. Arafune, N. Tsukahara, M. Kawai, and N. Takagi, “Transport
characteristics of a single C60-molecule junction revealed by multiple Andreev
reflections,” Phys. Rev. B 90, 241405 (2014).
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