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There are three work on signature matching for document analysis. In the first work,

we propose a large-scale signature matching method based on locality sensitive hashing

(LSH). Shape Context features are used to describe the structure of signatures. Two stages

of hashing are performed to find the nearest neighbors for query signatures. We show

that our algorithm can achieve a high accuracy even when few signatures are collected

from one same person and perform fast matching when dealing with a large dataset. In

the second work, we present a novel signature matching method based on supervised

topic models. Shape Context features are extracted from signature shape contours which

capture the local variations in signature properties. We then use the concept of topic

models to learn the shape context features which correspond to individual authors. We

demonstrate considerable improvement over state of the art methods. In the third work,

we present a partial signature matching method using graphical models. In additional

to the second work, modified shape context features are extracted from the contour of



signatures to describe both full and partial signatures. Hierarchical Dirichlet processes

are implemented to infer the number of salient regions needed. The results show the

effectiveness of the approach for both the partial and full signature matching.

There are three work on deep learning for object detection and segmentation. In

the first work, we propose a deep neural network fusion architecture for fast and robust

pedestrian detection. The proposed network fusion architecture allows for parallel pro-

cessing of multiple networks for speed. A single shot deep convolutional network is

trained as an object detector to generate all possible pedestrian candidates of different

sizes and occlusions. Next, multiple deep neural networks are used in parallel for further

refinement of these pedestrian candidates. We introduce a soft-rejection based network

fusion method to fuse the soft metrics from all networks together to generate the final

confidence scores. Our method performs better than existing state-of-the-arts, especially

when detecting small-size and occluded pedestrians. Furthermore, we propose a method

for integrating pixel-wise semantic segmentation network into the network fusion archi-

tecture as a reinforcement to the pedestrian detector. In the second work, in addition to

the first work, a fusion network is trained to fuse the multiple classification networks.

Furthermore, a novel soft-label method is devised to assign floating point labels to the

pedestrian candidates. This metric for each candidate detection is derived from the per-

centage of overlap of its bounding box with those of other ground truth classes. In the

third work, we propose a boundary-sensitive deep neural network architecture for portrait

segmentation. A residual network and atrous convolution based framework is trained as

the base portrait segmentation network. To better solve boundary segmentation, three

techniques are introduced. First, an individual boundary-sensitive kernel is introduced by



labeling the boundary pixels as a separate class and using the soft-label strategy to assign

floating-point label vectors to pixels in the boundary class. Each pixel contributes to mul-

tiple classes when updating loss based on its relative position to the contour. Second, a

global boundary-sensitive kernel is used when updating loss function to assign different

weights to pixel locations on one image to constrain the global shape of the resulted seg-

mentation map. Third, we add multiple binary classifiers to classify boundary-sensitive

portrait attributes, so as to refine the learning process of our model.
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Chapter 1: Introduction

1.1 Document Image Analysis and Signature Matching

The continuing growth of digital imaging has lead to a significant increase in the

number of larger repositories in all aspects of government and business. For example, the

now well known Tobacco Litigation has produced a document database of approximately

50 million pages. The massive increase in document database sizes have rekindled interest

in the difficult challenges of indexing, querying and retrieving relevant documents.

In today’s electronic world, signatures are still widely used as a method for autho-

rization and identification, and in some cases document retrieval. This is due to the fact

that signatures are written in a ballistic manner and will carry discriminative features that

are difficult to forge by an amateur. Hence, signature matching is an important problem

in document image retrieval and forensic applications [1] [2] [3]. Given an image of a

query signature, the problem is to find all documents in a (possibly large) database, which

were signed by the same person. Signature matching is usually treated as nearest neigh-

bour problem, with emphasis on the numerical representation of the signature and the

similarity measures used to compute distances between these representations.

Document authorization and identification applications which rely on signatures

typically involve processes of signature detection [4], signature verification [5] [6] [7],

1



and/or signature matching [4] [8] [9]. Signatures detection is the localization of the

signature region in the document image using techniques such as multi-scale structural

saliency. Signature verification aims to authenticate signatures as genuine given known

samples from the same signer. Several competitions held in conjunction with the ICDAR

and ICFHR conference, have focused on signature verification have resulted in datasets

containing both genuine and forged signatures [10] [11] [12]. The signature matching

problem attempts to match questioned signatures with sample signatures based primarily

on shape. The goal of signature matching is simply to identify signatures in large collec-

tions that look similar, but not necessarily to authenticate them. Authentication (and/or)

verification can be performed once the number of candidate signatures is more manage-

able.

1.2 Deep Learning with Application to Pedestrian Detection

Pedestrian detection has applications in various areas such as video surveillance,

person identification, image retrieval, and advanced driver assistance systems (ADAS) [13].

Real-time accurate detection of pedestrians is a key for adoption of such systems. A

pedestrian detection algorithm aims to draw bounding boxes which describe the locations

of pedestrians in an image in real-time. However, this is difficult to achieve due to the

tradeoff between accuracy and speed [14]. Whereas a low-resolution input will, in gen-

eral, result in fast object detection but with poor performance, better object detection can

be obtained by using a high-resolution input at the expense of processing speed. Other

factors such as crowded scene, non-person occluding objects, or different appearances of

2



pedestrians (different poses or clothing styles) also make this problem challenging.

The general framework of pedestrian detection can be decomposed into region pro-

posal generation, feature extraction, and pedestrian verification [15]. Classic methods

commonly use sliding window based techniques for proposal generation, histograms of

gradient orientation (HOG) [16] or scale-invariant feature transform (SIFT) [] as features,

and support vector machine (SVM) [17] or Adaptive Boosting [18] as the pedestrian veri-

fication methods. Recently convolutional neural networks have been applied to pedestrian

detection. Hosang et al. [19] use SquaresChnFtrs [20] method to generate pedestrian pro-

posals and train a AlexNet [21] to perform pedestrian verification. Zhang et al. [22] use

a Region Proposal Network (RPN) [23] to compute pedestrian candidates and a cascaded

Boosted Forest [24] to perform sample re-weighting to classify the candidates. Li et

al. [25] train multiple Fast R-CNN [26] based networks to detect pedestrians with differ-

ent scales and combine results from all networks to generate the final results.

1.3 Deep Learning with Application to Portrait Segmentation

Semantic segmentation is a fundamental problem in computer vision community

which aims to classify pixels into semantic categories. We target a special binary class

semantic segmentation problem, namely portrait segmentation, which generates pixel-

wise predictions as foreground (i.e., people) or background. Recently, it is becoming a

hot topic and has been widely used in many real-world applications, such as augmented

reality (AR), background replacement, portrait stylization, depth of field, etc. Although

numerous deep learning based approaches (e.g., [27] [28] [29] [30] [31] [32] [33] [34])

3



were proposed to solve the general semantic segmentation problem, direct adaptation of

these methods cannot satisfy the high precision requirement in the portrait segmentation

problem.

In portrait segmentation, precise segmentation around object boundaries is crucial

but challenging. For applications like background replacement, accurate and smooth

boundary segmentation (such as hair and clothes) is the key for better visual effects.

However, this has long been one of the most challenging part of portrait segmentation,

especially when using convolutional neural networks (CNN). Since the neighborhood

of boundary pixels contains a mixture of both foreground and background labels, con-

volutional filters fuse information of different classes, which may confuse the network

when segmenting boundary pixels. Previous CNN based semantic segmentation meth-

ods, which use either the conventional hard-label method or ignore the boundary pixels

during training [27] [35] [36] [28] [29], fail to solve this problem. These methods

aim to train a better model to separate foreground and background while sacrificing the

accuracy when predicting the boundary pixels.
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Chapter 2: Signature Matching for Document Analysis

2.1 Large-scale Signature Matching using Multi-Stage Hashing

2.1.1 Introduction

Methods used for shape matching can generally be grouped into two categories

based on whether or not a correspondence between the points of the query shape and

points of the database shapes is used. Methods that do not explicitly solve a corre-

spondence problem construct global shape representations, using, for example, Fourier

descriptors [37] or other structural descriptors [38], and directly compare the shape rep-

resentations to find the nearest shapes. The main limitation of these methods is that it

is typically challenging to extract global descriptor from real images and this therefore

affects the matching accuracy. Moreover, extracting global shape representations restricts

these methods to shapes with high degrees of rigidity.

Methods that depend on extracting point features on the contours of the shapes be-

ing compared, and try to solve a correspondence problem between these points to recover

an unknown transformation between the shapes [38]. These methods typically produce

better matching performance, since they tolerate lower degrees of rigidity. However, they

are generally computationally expensive and require solving the correspondence problem,
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which renders these methods intractable as the size of the dataset grows. In [38], for ex-

ample, Shape Context (SC) [39] features are extracted around the contours of the query

and test signatures and a correspondence problem is solved using thin-plate splines. Four

different similarity measures were computed between the query and test signatures. The

method is computationally expensive and as the number of test signatures in the dataset in-

creases, it becomes computationally intractable, since this correspondence problem must

be solved between the query signatures and all other signatures in the dataset.

In this work, we introduce a new signature matching method specifically designed

to scale to large-scale datasets. We use a Locality Sensitive Hashing (LSH) [40] in a

mutlistage approach to avoid comparing the query signature against all other signatures

in the dataset. Moreover, we use LSH to reduce the dimensionality of extracted feature

vectors, without the need to perform any clustering or vector quantization.

LSH is a probabilistic dimensionality reduction technique. The idea is to hash

points that exist in a high-dimensional feature space such that the probability of collision

is much higher for near-by points than for those that are far apart. Points whose hashing

values collide with each other fall into the same bucket. LSH has been used for nearest

neighbour search [40] [41] [42] [43], content-based image retrieval [44] [45] and large-

scale clustering [46]. In this work, we employ Random Projection LSH (RP-LSH) [40],

which uses randomly generated hyperplanes to partition the higher dimensional feature

space. RP-LSH depends on generating a set of random vectors ri and i = 1, . . . , M1,

where M1 is the number of generated random vectors, and use them to hash an input

vector v, as shown in Equation (2.1).
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Figure 2.1: Illustration of random projection locality sensitive hashing in 2D feature

space. Two hashing vectors r1 and r2 are using to create 2-bit hash codes for the in-

put vectors. Each random vector partitions the feature space into two halves. Points on

the left of the random vector are hashed with 0 while points on the right are hashed with

1.

7



hi =


0, if v · ri >= 0

1, if v · ri < 0

(2.1)

Each random vector ri produces a 1-bit hash value for an input vector v. The M1-

bits are used to generate a 1D decimal hash code for each input vector. Figure 2.1 illus-

trates the idea in 2D feature space. Two hashing vectors r1 and r2 are using to create 2-bit

hash codes for the input vectors. Each random vector partitions the feature space into two

halves. Points on the left of the random vector are hashed with 0 while points on the right

are hashed with 1.

2.1.2 Multi-stage Signature Matching via Locality Sensitive Hashing

The primary motivation of the method presented In this work is to be able to perform

fast signature matching against large-scale signature datasets. We formulate the problem

as a nearest neighbour search problem. However, instead of matching the query signature

against the entire signature dataset, we limit the search space using Locality Sensitive

Hashing (LSH), effectively limiting the similarity measures to a few signature that share

the same hash code with the query signature. Moreover, rather than using simple global

features to represent the signature, such as Fourier descriptors, and to accurately capture

the structure of the signatures, we use Shape Context (SC) features computed on the con-

tour. Furthermore, to avoid solving the computationally expensive point correspondence

problem, we use LSH to reduce the dimensionality of the SC features and construct a

unified representation for the signature with low computational overhead.

Figure 2.2 shows a sample signature and extracted contour. The contour is evenly
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Figure 2.2: Feature extraction from a signature. A sample signature is shown in the top

figure. The middle figure shows the contour extracted from the signature. Finally, the

lower figure shows a fixed number of points evenly sampled from the contour of the

signature. SC features are computed at each one of the sampled contour points.

sampled and a fixed number of points, K, are extracted. SC is calculated around each of

contour sample, producing a D-dimensional feature vector, where D = nr ∗ nθ and nr

and n are the number of concentric circles and the number of angular sections, respec-

tively. Hence, each signature i is essentially represented using a K-D-dimensional feature

vectors, vi1, v
i
2, ..., v

i
K . Let M1 be a number of D-dimensional zero-mean, unity-variance

random vectors, where M1 represents the length of the locality-sensitive hash code. For

a given signature i, all vectors vij are hashed using the M1 vectors as shown in Equation

(2.2).

hm =


0, if vj · rm >= 0

1, if vj · rm < 0

(2.2)
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where m = 1, 2, ...,M1 and j = 1, 2, ..., K, which produces M1-bit has code for each

vector. Hash codes for all vectors extracted from the dataset are pooled to construct

a dictionary of distinct hash codes. For each signature i, the K hash codes are used

to calculate a Term-Frequency (TF) (i.e. histogram), which is used a unified signature

representation.

The TF is a higher level representation of the signature and it encodes the structural

features of the signature represented by the shape context features. Therefore, signatures

created by the same author should have similar TF representations. Given the TF repre-

sentation of a query signature, in order to find other signatures created by the same author,

we must perform a linear search to compute the similarity between the query and test sig-

natures. However, as the size of the signature dataset increases, the linear search becomes

computationally inefficient.

We use a second set M2 of zero-mean, unity-variance random vectors to compute

locality-sensitive hash codes for the TF representations of the signatures. However, rather

than converting the hash codes to decimal numbers, signatures are compared by comput-

ing the Hamming distance between binary hash codes. The Hamming distance is used to

find other signatures in the dataset that shares the same M2 binary hash with the query

signature, thus avoiding the linear search.

2.1.3 Experiments

To evaluate the performance of the proposed method, two sets of experiments were

conducted. The first set of experiments was on a small dataset to study the performance
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Figure 2.3: Sample signatures from DS-I. The dataset includes 189 signatures from 63

authors. Signatures are relatively clean without any underlying machine printed text.

of our signature matching algorithm when the number of samples of each author is small.

The second set of experiments was performed on a larger data set to illustrate the perfor-

mance of the algorithm as the size of the dataset grows and demonstrate the scalability of

our method.

2.1.3.1 Evaluation protocol and datasets

We use a top-N accuracy strategy to assess the performance of the proposed sig-

nature matching method. For each query signature, if another signature from the same

author appears in the top-N neighbours, selected by our method using the Hamming dis-

tance, we regard this is a successful match. The process if repeated for all signatures in the

dataset and the average of all signatures is reported. Accuracy statistics were collected on

two datasets. The first dataset (DS-I) contains 189 signatures collected from 63 authors

with three signatures from each author. Signatures in this dataset are fairly clean, since

they are extracted from high-quality document images with little noise or machine-printed

text on them. Several signatures in this dataset are shown in Figure 2.3.

The second dataset (DS-II) contains 26,661 signatures, from 890 individuals, ex-
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Figure 2.4: Sample signatures from DS-II. The dataset includes 26,661 from 890 au-

thors. Signatures vary in image quality, occlusion, underlying and complexity. The signa-

tures are collected from letters and memorandums from the Tobacco litigation document

dataset.

tracted from the Tobacco litigation document dataset. This dataset is more representative

of a realistic signature matching problem. Unlike the previous dataset, signatures here are

blocks extracted from letters and memorandums. Several common and unrelated content

and degradations appear, such as:

• Machine-printed text or lines which do not belong to the signature

• Signatures may be occluded

• Different styles may be used by the same writer, such as, the use of initials in place

of names

• Images may be of different sizes and qualities

• Some signatures may be overly simple
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Figure 2.5: Accuracy of the proposed signature matching algorithm on DS-I. The reported

accuracy is the average of 10 different runs of the algorithm.

Figure 2.4 shows some samples of the signatures in DS-II illustrating the varying

levels of image quality, underlying text, and signature complexity.

2.1.3.2 Results

The first set of experiments was conducted on DS-I. The resolution of the signa-

tures is 480 × 152 and the number of contour points extracted is K = 300. To extract

shape context (SC) features, we use nr = 5 and nθ = 12. Therefore, for each signature

in the dataset, we extract 30060 − D feature vectors. To counteract the randomization

property of hash functions, we repeat hash function generation process 40 times. Each
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Figure 2.6: Accuracy of the proposed signature matching algorithm on DS-II.
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iteration produces a top-N matching result. The nth neighbour is the most frequently

appearing term. To compute average accuracy with high confidence, the procedure is re-

peated 10 times and the mean accuracy is reported. Figure 2.5 shows the performance of

the signature matching algorithm on DS-I. The best accuracy is achieved at M1 = 7.

DS-I was used to evaluate the performance of the method proposed by Zhu et al. [4].

They reported a less than 10% accuracy on this dataset due to the small number of signa-

tures from each author. Meanwhile, the execution time for [4] requires approximately 11

hours to train and the same amount of time to find the nearest neighbours for all signa-

tures in the dataset, for a total of 22 hours. On the other hand, the execution time for our

algorithm is approximately 1.77 seconds.

The second set of experiments was conducted on DS-II. All signatures were nor-

malized to the mean signature size of 482×182. Other system parameters were set similar

to the previous experiment. Figure 2.6 shows the performance of the proposed algorithm.

Peak accuracy was obtained at M1 = 8.

The execution time of the proposed algorithm, to find matching signatures for all

samples in the dataset, was 24 minutes. We were not able to test the method proposed

in [4] due to the computational intractability, since it is estimated that it years to run.

Tables 2.1 and 2.2 show the peak performance of the proposed method for various top-N

accuracies, for both DS-I and DS-II, respectively.
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Top-10 Top-5 Top-3 Top-1

Accuracy 92.80% 92.28% 90.58% 87.41%

Table 2.1: Peak accuracy of the proposed signature matching algorithm for DS-I.

Top-25 Top-10 Top-5 Top-1

Accuracy 86.24% 84.15% 82.27% 76.79%

Table 2.2: Peak accuracy of the proposed signature matching algorithm for DS-II.

2.2 Signature Matching using Supervised Topic Models

2.2.1 Introduction

State of the art methods used for signature matching can generally be classified as

either global-shape and point-level approaches. Approaches that use global-shape rep-

resentations such as Fourier descriptor [8] and global shape structure [9] [47] work effi-

ciently and accurately for simple shape matching tasks. However, signatures are shapes

with high degree of variability, so as the signatures become distorted or occluded, match-

ing becomes increasingly challenging for these global methods. Other methods depend

on the point-level features of the signature. Samples from the spine or contours are often

used and features such as Shape Context [48] [49], or FREAK [50] are extracted to form

descriptors. By solving the point correspondence problem, a shape transformation be-

tween signature and a model can be recovered. These methods tend to be more robust as

they can tolerate a low degree of variation, which is a must-solve problem for handwritten
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content.

Previous work on point-based signature matching problem has focused primarily on

pairwise correspondence and comparison. In [4], for example, all pairs of corresponding

points between two signatures are compared to form four global weights during training.

This method may achieve a high accuracy, but it is computationally expensive and does

not scale as the number of signatures grows. In [46], signature matching problem is

modeled as a nearest neighbour (NN) search problem. Locality sensitive hashing (LSH)

is performed to reduce the dimension of features and to reduce the search radius for

the NNs. This method is fast and efficient when dealing with large datasets, but is less

accurate as LSH may miss true NNs and this method only uses L1-norm distance between

high-level features to determine the matching points.

In this work, we model the signature matching problem using supervised latent

Dirichlet allocation (sLDA) [51]. SLDA is a statistical model developed from latent

Dirichlet allocation (LDA) [48] and was originally used for labeling documents. Co-

occurring observations are combined in latent distributions called topics, which have an

unknown distribution over the vocabulary. The collection of documents share a set of

topics and a specific mixture of topics are represented by each document. The model is

built as follows. First, for each document, we draw a mixture of topics from a Dirichlet

distribution parameterization. We then repeatedly choose one topic from the mixture dis-

tributed as a multinomial distribution to assign to the current document and draw a word

from the corresponding topic. The label for each document is regarded as a response

variable from the latent topics in that document. With only the observations known, vari-

ational inference is used to learn to rest unknown parameters. (For details please refer
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to [48] and [51])

Motivated by sLDA, we model signature matching problem in a similar way: a

document is a signature, a topic is a salient region, a/an word/observation is the class

label of a point-level feature, and a document label is an authorship for one signature.

We model each signature as a mixture of salient regions, which are latent groupings for

similar observations in feature space. Our point-level SC features are used to generate

observations. Then the generative process of each observation is described as follows.

First, we draw a mixture of salient regions from a Dirichlet distribution. Second, we draw

a specific salient region for a signature and a specific observation from that salient region.

2.2.2 Building the Vocabulary

The first step of our algorithm is to build the TF histogram based on point-level

features then to build the vocabulary that will be used in the supervised topic model.

Many different features have been used to describe various kinds of images including

local point features such as SIFT [51] or SURF [5] or simple global features like Fourier

descriptors. To address the local binary and curvature properties of signatures, SC feature

provides a reasonable alternative. SC feature preserves the relative position of local points

and tolerate simple distortion from similar shapes.

For a new signature, we first extract the contour of the signature and sample K

points along the contour. Second, for each point, a D = Nr × Nθ dimensional SC

feature is computed, where Nr and Nθ represent the two dimensions of log-polar space.

This results in a K-D-dimensional feature for each signature. Figure 2.7 shows a sample

18



Figure 2.7: Contour extraction and points sampling of a signature. A sample signature is

shown in the top figure. The middle figure shows the extracted contour. Points are evenly

sampled from contour, and SC features are computed based on the points, which is shown

in the bottom figure.

signature, the contour and the sampled K points.

After obtaining the features, we reduce the feature dimension and build codebook

by classifying all points and computing the TF histogram based on their class labels. One

simple and efficient way to do this is by hashing [8]. M hyperplanes are generated, and

all high dimensional feature points are hashed into bins in a lower dimensional space

by measuring the relative position of points and hyperplanes. The index of the bin is

used as the class label. This is very effective for large-scale datasets, but in practice the

accuracy may be reduced due to the fact that the hyperplanes are randomly generated and

the number of classes must be 2M.

To increase accuracy, we use a M-class K-means clustering to build the codebook.

In K-means, the number of classes can be chosen smoothly. First, features for all training
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points are classified into M classes. Second, an M-length TF histogram is built to compute

the appearance frequency of the M classes among all the points in each signature.

Until now, a signature is represented by the M-dimensional TF vector. The class

label of SC feature of a contour point will be used as an observation later in sLDA step.

The value of each unit in the TF vector represents how many contour points are classified

into this class. This further represents the appearance frequency of one observation in one

signature. All the M labels (M different observations, in other words) form the vocabulary.

Currently, the choice of M is closely related to the size of dataset. A smaller M

will tend to group different features into same group. A larger M will make the data

over-classified and become more time consuming.

2.2.3 Building Supervised Topic Model

In this section, sLDA is used to build model for authors and infer the authorship

for query signatures. We build our model as shown in Figure 2.8. α is the Dirichlet

parameter; θd is the per-signature salient region proportions; Zd, n is the per-observation

salient region assignment; Wd, n is the observed class label of SC feature of one contour

point; γk is the salient region, which is drawn from Dirichlet process parameterized by η;

Yd is the authorship for one signature, which is a response from all the salient regions in

this signature.

The generative process for the observation is as follows:

• Draw salient region proportions θd from Dir(α)

• For each observation
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Figure 2.8: SLDA model for our problem. SC features and authorship labels are observed.

– Draw salient region assignment Zd, n from Mult(θd)

– Draw observation Wd, n from Mult(βZd,n
)

• Draw authorship variable Yd from N(η, σ2)

where Dir(α),Mult(θd), andN(η, σ2) represent Dirichlet distribution, multinomial dis-

tribution, and normal distribution.

In this model, for each signature, the labels of D-dimensional SC features of the

K contour points are used as observations, and they form the TF histogram to represent

the appearance frequency of all observations. Points with similar local SC features are

more likely to be grouped into a same salient region. So signatures from same author

should share similar salient region composition, which makes them neighbors in the fea-

ture space. During training, η, the distribution of observations over all salient regions, is

estimated. Based on the observed authorships, we infer the salient region distributions for

all authors. During testing, φ, the salient region assignments of observations, is computed.

Using η and φ, we can get the salient region distribution for query signatures. The closest
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salient region distribution among all authors is considered as the resulting authorship.

The choice of the number of salient regions is closely related to the size of vocabu-

lary M, which further depends on the size of dataset.

2.2.4 Experiments and results

2.2.4.1 Datasets

Two datasets are used to evaluate the performance of our method. We first test

on a small and clean dataset to illustrate our method can do well in modeling author

characteristics. Second we test on a larger dataset to demonstrate the robustness to noisy

realistic data even when the number of training samples is limited.

The first dataset is DS-I Tobacco dataset. This dataset contains 189 signatures col-

lected from 63 authors with 3 signatures per author. The signatures are extracted from

high quality document so there is limited noise present and machine-printed text rarely ap-

pears in the signature blocks. This is the same dataset used in signature hashing work [8].

Samples of signatures from DS-I dataset are shown in Figure 2.9.

The second dataset is DS-II UMD dataset. Signatures from this dataset are extracted

from the same Tobacco litigation document dataset [6]. This dataset represents more of

a realistic signatures dataset as signatures are extracted from letters and memorandums,

and signatures may have various degradations. We choose a 1000-signature set from 100

authors with 10 signatures per author. Signatures from DS-II UMD dataset are shown in

Figure 2.10.
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Figure 2.9: Samples signatures from DS-I Tobacco dataset.

Figure 2.10: Sample signatures from DS-II UMD dataset.
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2.2.4.2 Evaluation Metrics

For both datasets, we use Top-N accuracy to evaluate the performance. After rank-

ing the inferred authorship for each query signature, if one of the top-N authors is correct,

corresponding to the referring labels of testing signatures, the top-N accuracy is set to one

for this query. The total top-N accuracy is the mean of all query signatures.

2.2.4.3 Experiment I

In the first experiment on DS-I Tobacco signature dataset, all images are normalized

to 495× 186 pixels and 300 points are extracted from each contour. A 5× 12 SC feature

(Nr = 5, Nθ = 12) is used as the feature descriptor resulting in a 300 × 60-dimensional

feature to describe each signature.

Two main parameters that may directly affect the accuracy are M, the number of

classes in K-means which corresponds to the size of the vocabulary, and the number of

salient regions in sLDA (# SR). The effects of the two parameters on the final results are

shown in Figures 2.11 and 2.12. We choose M=700 and the # SR=90 empirically. Since

the K-means algorithm uses random initialization points as centers, we repeat the process

20 times to obtain the 20 top-N authorships. The most frequently appearing term at top

nth is set as the nth authorship.

To compare with the previous hashing method [8] and Zhus method [4], each com-

bination of two of the three signatures from one author are used to train and remaining

one is used to test. This results in three rounds. From Figure 2.13 we can see our new

method significantly improves the performance of the previous hashing method on this
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Figure 2.11: Performance curve of different M on DS-I Tobacco dataset. An optimal

result is given by 700 classes.

Figure 2.12: Performance curve of different # SR on DS-I Tobacco dataset. The accuracy

stops increasing after a number of salient regions near 90.
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Figure 2.13: Performance curve and accuracy table of the proposed method and state-

of-the-art hashing method. We can see the Top-1, Top-3, Top5, Top-10 accuracies are

improved a lot.

dataset, from 87.41% to 96.83% on Top-1 accuracy, even when limited signatures are

used for training. Due to the limited number of training samples, Zhus method reported

less than 10% accuracy.

The execution time for Zhus method requires as long as 11 hours to train and an-

other 11 hours to test. On the other hand, the hashing method requires approximately 1.8

seconds, as it is designed for fast matching. Our method is a little slower than hashing

method but still much faster than Zhus method. The execution time of training is about 7

minutes and the execution time of testing is less than 5 seconds.
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Top-accuracy Top-1 Top-3 Top-5 Top-10

Kmeans + sLDA 96.83% 97.88% 98.41% 98.41%

LSH 87.41% 90.58% 92.28% 92.8%

Table 2.3: Accuracy table of the proposed method and state-of-the-art hashing method.

We can see the Top-1, Top-3, Top5, Top-10 accuracies are improved a lot.

2.2.4.4 Experiment II

We conducted a second experiment on DS-II UMD dataset. For each author, 5

signatures are used to train and 5 are used to test. The set up of system parameters are

similar to the first dataset. Empirically we choose M=1300 and # SR=140 to optimize

efficiency and accuracy. Results from different M and # SR are plotted in Figure 2.14 and

2.15.

Even if only five signatures from each author are used in the training set and data

is added with different kinds of noise, our 95.2% Top-1 accuracy still outperformed the

previous hashing methods 80.6% Top-1 accuracy. The result is given in Figure 2.16.

The execution time of the proposed algorithm is about 20 minutes for training and

less than 5 seconds for testing. The hashing method is a little faster (5 minutes). Zhus

method would be computational intractable, since it is estimated to take months to run.

27



Figure 2.14: Performance curve of different M on DS-II UMD dataset. Optimal result is

given by a number between 1300 and 1800.

Figure 2.15: Performance curve of different # SR on DS-II UMD dataset. The accuracy

stops increasing after a number of salient regions near 140.
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Figure 2.16: Performance curve and accuracy table of the proposed method and state-of-

the-art hashing method on DS-II dataset.

Top-accuracy Top-1 Top-3 Top-5 Top-10

Kmeans + sLDA 95.2% 97.4% 97.6% 98.4%

LSH 80.6% 88.8% 91.2% 94.0%

Table 2.4: Accuracy table of the proposed method and state-of-the-art hashing method on

DS-II dataset.

2.3 A Graphical Model Approach for Matching Partial Signatures

2.3.1 Introduction

In this work, we distinguish between two problems—full signature matching, which

assumes an accurate segmentation and an author who has produced a complete and consis-
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tent signature, and partial signature matching, where we enroll a full reference signature,

but may only have a partial signature or even initials to match against the reference sig-

nature. A lot of work has shown great promise for addressing the full signature matching

problem using feature descriptors such as shape context [52] [53] [54] [55]. However,

partial signature matching remains an open problem. When dealing with real applica-

tions, even though full signatures are collected, many query signatures are only part of

the authors’ full name. This is due to multiple factors including the fact that people some-

times only sign their first/last names or initials, part of a signature may be missing when

performing signature extraction from documents, or when the signature is obscured by

other information, such as the machine-printed text in a signature block.

To address the partial signature matching problem, we developed a method based

on the combination of supervised latent Dirichlet allocation (sLDA) [56] and hierarchi-

cal Dirichlet processes (HDP) [57]. SLDA was first developed as a statistical model of

labeled documents, derived from latent Dirichlet Allocation (LDA) [58]. Unlike LDA, in

sLDA, each document is paired with a label. Topic distributions are estimated over the

vocabulary and relation between topics and labels are discovered in the training stage.

For an unlabeled document, the label is regressed from its topic structure. In our formu-

lation, ”signature” corresponds to ”document”, ”salient region” corresponds to ”topic”,

”observation” corresponds to ”word”, and ”authorship” corresponds to ”label”.

In this approach, sLDA is first used to discover the salient regions in all training

signatures. A salient region is a distribution over the features in the visual vocabulary,

which groups similar co-occurring observations. Each author is modeled as a combina-

tion of all salient regions with different proportions. For a query signature, classification
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is performed by computing the salient region proportions for the signature based on ob-

servations. Further, instead of guessing the number of salient regions empirically, HDP is

used to estimate the number needed for the given dataset.

2.3.2 Observation and vocabulary building

In this section, we describe how signatures are modeled as a group of observations.

2.3.2.1 Partial shape context feature extraction

The first step of modeling signatures as a group of observations is to find a proper

feature descriptor. As we are working with 2-D binary shapes, we want to find a feature

descriptor that captures the relations between points in the binary shapes while preserv-

ing the local information between full and partial signatures. In this case, popular features

like SIFT [] and SURF [59] are not suitable since they use gradient information of fea-

ture points which is not informative with binary points. Therefore, we use shape context

features, a feature designed for 2-D shape, which describes the relations between nearby

points while tolerating slight shape distortion. This is especially important for the sig-

nature matching problem since even high-quality signatures from same author may have

slight differences.

To build observations, we first extract contour points from one signature propor-

tional to the total length of the contour. The result is that partial signature will have

similar contour points as its corresponding part in the full signature. For each contour

point ci, a r ∗ θ log-polar space is formed around it with uniform bins. A histogram si
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is built by calculating the number of nearby points that fall in each bin in a certain order,

based on the relative distance and angle of the two points, as shown in Equation (2.3).

si = [si(1), si(2), ..., si(n)]

si(k) = # {p : p∈bin(k), p6=ci}
(2.3)

where n = r ∗ θ is the total number of histogram bins. p represents the contour points. In

order to make shape context applicable to partial signature matching, instead of normal-

izing the pairwise point distances within each signature, we normalize the pairwise point

distances for all possible point pairs in all signatures by dividing by the mean value D̄, as

shown in Equation (2.4).

D̄ = (

Nsig∑
l=1

∑
i,j∈sl

D(pi, pj))/Npair

Dnorm(pi, pj) = D(pi, pj)/D̄

(2.4)

where D(pi, pj) represents the distance between two points pi and pj in signature sl,

Nsig is the total number of signatures, and Npair is the total number all possible pairs of

points in all signatures. Since the size of log-polar space is fixed for all signatures, this

makes partial signatures have more similar shape context features to a corresponding full

signature, as illustrated in Figure 2.17.

2.3.2.2 Building the visual vocabulary

After extracting contour points and computing shape context features, the next step

is to build the visual vocabulary for all signatures. One intuitive way is to cluster all

contour points and treat each cluster label as one observation. The vocabulary consists of

all the cluster labels. For each signature, the number of contour points being classified
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Figure 2.17: Shape context features for three signatures. The first row shows a full sig-

nature and the log-polar space of the shape context features. The second row shows its

partial signature and the log-polar space by using the standard shape context features. The

third row shows the same partial signature and the log-polar space by using our modified

shape context features.
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into one cluster is regarded as the appearance frequency of this observation.

In our method, we use K-means clustering. A histogram ht for the tth signature is

formed to indicate the appearance frequencies of all observations, as shown in Equation

(2.5).

ht = [ht(1), ht(2), ..., ht(K)]

ht(k) = # {p : p∈Cluster(k), p∈Sig(t)}
(2.5)

Finally, signatures are represented by an observation-frequency histograms.

2.3.3 Supervised topic models for partial signature-matching

In this section, we build a supervised topic model for the partial signature matching

problem and briefly review the variational inference solution based on the work of Wang

et al. [60].

2.3.3.1 Building supervised topic model

For our problem, the generative process for the nth observation in the tth signature

is given as follows:

1. For the tth signature, draw salient region proportions θt from Dir(α)

2. For the nth observation:

(a) Draw a salient region assignment St,n from Mult(θt)

(b) Draw an observation Ot,n from Mult(βSt,n)

3. Draw authorship variable At from N(ηᵀS̄t, σ
2)

34



Figure 2.18: SLDA model for our problem.

Where the Dir(·), Mult(·), N(·) represent the Dirichlet distribution, the Multino-

mial distribution, and the Normal distribution respectively. α is an R-dimensional hy-

perparameter for the Dirichlet distribution with R being the number of salient regions.

β = [β1, β2, ..., βR], where each βr is the distribution of the salient region r over the

vocabulary, and S̄t is the mean of the salient regions of the tth signature. With only ob-

servations and authorship given, we want to estimate α, β, η, σ2. The model is given in

Figure 2.18.

Variational EM algorithm [60] is used to solve the sLDA model. Here we give a

brief description.

By introducing the free variational parameters γ and φ, the posterior distribution

p(θ, S|O,A, α, β, η, σ2) is approximated by Equation (2.6).

q(θ, S|γ, φ) = q(θ|γ)
N∏
n=1

q(Sn|φn) (2.6)

Here γ is a R-dimensional variational Dirichlet hyperparameter that governs salient re-

gion distribution of each signature. We can regard it as an approximation for α in the
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original model. φ = [φ1, φ2, ..., φNt ] is an approximation to θ, but specific for each obser-

vation.

The variational EM algorithm works as follows: In the E-step, γ and φ are computed

to minimize the KL divergence between the true posterior and the approximation. In the

M-step, each of the salient regions βr is estimated by counting how many times each

observation is assigned to this salient region among all signatures. η and σ2 are estimated

by the relationships between salient regions and the labels for all training signatures. For

a new signature, the label is predicted by Equation (2.7).

E[A|O,α, β, η, σ2] = ηᵀestE[S|O,α, β] = ηᵀestφest (2.7)

For more details about the algorithm in this section please refer to [58] [60] [56].

2.3.3.2 HDP for salient region estimation

In LDA/sLDA, the number of salient regions need to be prefixed and it is always

chosen empirically. When processing new and massive data, it is not possible to easily

choose an optimal number and it is also very expensive to reprocess the massive data

multiple times to find out the optimal number. To solve this problem, Teh [57] provided

a new topic model structure called hierarchical Dirichlet processes, which lets the data

estimate the number of salient regions needed.

The main difference between HDP and standard LDA lies in the model structure. In

HDP, each group of data (signature in our case) has its own mixture model with random

probability measure Gt. Gt’s are distributed as a Dirithlet process with a global base

distribution G0. G0 itself is also distributed as a Dirichlet process.
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Gt ∼ DP (α0, G0) (2.8)

G0 ∼ DP (γ,H) (2.9)

where α0, γ are the concentration parameters, and H is the base distribution for G0.

A straightforward way to explain HDP is the Chinese restaurant franchise. We give

a brief introduction as follows: Let θt,n be the salient region for the nth observation in

the tth signature, ψt,r’s be the existing salient regions for signature t, Nt,r be the number

of observations in signature t under salient region r, Mt be the number of salient regions

used in signature t. For an new observation, the salient region assignment is given as

follows:

θt,n|θt,1, ..., θt,n−1, α0, G0 ∼
Mt∑
r=1

Nt,r

n− 1 + α0

δψt,r +
α0

n− 1 + α0

G0

(2.10)

The salient region of a new observation either can be an existing salient region

within this signature, which is a draw from the first summation term on the right-hand

side of Equation (2.10) with a probability proportional to the number of observations

under that salient region, or can be a new salient region with probability given by the

second term on the right-hand side of Equation (2.10). If a new salient region is needed

for this observation, we draw one salient region ψt,r from G0 and increase Mt by one as

follows:
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ψt,r|ψ1,1, ..., ψt,r−1, γ,H ∼
R∑

r0=1

Mr0

M + γ
δφr0 +

γ

M + γ0
H

(2.11)

where Mr0 is the number of times salient region r0 is used in all signatures and M

is the total number of times all salient regions are used in all signatures. If the first term of

the right-hand side of Equation (2.11) is chosen, the new salient region for θt,n is picked

among the existing salient regions with a probability proportional to the number of times

one salient region is used in all signatures. If the second term is chosen, a new salient

region is introduced and the total number of salient regions is increased by one. For more

details about the algorithm, please refer to [57] [61].

2.3.4 Experiments and results

2.3.4.1 Datasets

Two popular datasets for signature matching problem are the DS-I Tobacco signa-

ture dataset and the DS-II UMD signature dataset. The DS-I Tobacco signature dataset

contains 189 relatively clean and high-quality signatures from 63 authors (three per au-

thor). All the signatures are full signatures, meaning each contains the full name of the

author. The DS-II UMD signature dataset contains 26661 signatures from 887 authors.

It is a more challenging and more realistic dataset since the signatures are extracted from

the Tobacco litigation corpuses, memos and letters. It is a mixture of both full signatures

and partial signatures as many signatures are partial signatures or initials. Moreover, sig-

natures in this dataset have other different kinds of degradations such as: signatures with
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Figure 2.19: Sample signatures in DS-I partial dataset. Left column shows three full

signatures. Right column shows their partial signatures.

low-quality; machine-printed texts like address and date appear in the signature block;

signatures are occluded; signatures are too simple to be classified.

Our method is tested on two partial signature datasets and one full signature dataset.

The two partial signature datasets are built based on the DS-I Tobacco signature dataset

and the DS-II UMD signature dataset. We refer to them as the DS-I partial dataset and

DS-II partial dataset. The full signature dataset is the DS-I Tobacco signature dataset

itself.

DS-I partial dataset: As there are no partial signature datasets which contain clean

and high-quality partial signatures, we manually selected the DS-I partial set from the

DS-I Tobacco signature dataset by clipping out the first names of all full signatures. Full

signatures are used to train and partial signatures are used to test in the experiment. Sam-

ples from the DS-I partial set are shown in Figure 2.19.

DS-II partial dataset: This dataset contains 495 full signatures for training from

495 authors and 1732 signatures contain both partial and full signatures for testing. To
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Figure 2.20: Sample signatures in DS-II partial dataset. Left column shows five full sig-

natures. Right column shows their partial signatures with different kinds of degradations.

build the DS-II partial dataset, we use authors in the DS-II UMD dataset with at least one

partial signature. Here we define a partial signature as follows: For each signature, when

compared to a full sample, if any part that should belong to the full signature is missing,

we consider it to be a partial signature. We didn’t test on the whole dataset because the

number of partial signatures is relatively too small compared to full signatures. Due to the

limited samples in this dataset, we only pick one full signature per author to train (which

is the usual case in real life applications) and use other signatures (may contain both full

and partial signatures) to test. Each author has at least one and at most 30 signatures for

testing. Samples from DS-II partial dataset are given in Figure 2.20.
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2.3.4.2 Evaluation protocol

In our experiments, the top-N rank accuracy is used for evaluation. Top-N rank

strategy means for each query signature, in the prediction stage, if the full signature sam-

ple of the true author appears in any position of the first Nth ranks, the top-N rank accu-

racy for that sample is set to 1. The total top-N rank accuracy is the mean of all query

signatures.

2.3.4.3 Results on DS-I partial dataset

We normalize the height of each signature to the mean height of all training signa-

tures and set the widths to the aspect ratios. In this experiment, the heights of all signatures

are fixed to 182. For shape context features, r = 5 and θ = 12 are used. As we have

three signatures from each author in this dataset, each time we pick two full signatures to

train and the partial signature of the rest one to test. We run three rounds to cover all the

signatures in both training and testing stages. The average accuracy is reported.

First we run HDP on the DS-I parital dataset to estimate the number of salient

regions. R = 90 is suggested after 1000 iterations. For K in K-means algorithm, empir-

ically we choose K = 1300. Due to the random initialization of K-means algorithm, we

rerun the whole experiment 10 times. The term most frequently appears on the 10 ith’s

rank is taken. Our method is compared with Du et al. [53] and Zhu et al. [52]. We refer

to them as LSH method and pairwise matching method. Results are given in Figure 2.21

and Table 2.5.

Our method achieves 87.8% top-1 rank accuracy on this partial dataset, which sig-
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Figure 2.21: Performance curves on DS-I partial dataset.

Top-1 Top-3 Top-5 Top-10

LSH 0.175 0.249 0.307 0.487

Pairwise matching <0.05 <0.05 <0.05 <0.05

Our method 0.878 0.921 0.931 0.958

Table 2.5: Results on DS-I partial dataset

nificantly outperforms the LSH method by 17.5% and the pairwise matching method. The

pairwise matching method reported a less than 5% top-1 rank accuracy on this dataset due

to incapability of dealing with partial signature-matching problem and insufficient train-

ing samples.

2.3.4.4 Results on DS-I Tobacco full signature dataset

In order to show that our method also works well on full signature dataset, we test on

the DS-I Tobacco full signature dataset. We run this experiment three times and report the
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Figure 2.22: Performance curves on DS-I Tobacco full dataset.

Top-1 Top-3 Top-5 Top-10

LSH 0.874 0.906 0.923 0.928

Pairwise matching <0.1 <0.1 <0.1 <0.1

Our method 0.921 0.947 0.958 0.974

Table 2.6: Results on DS-I Tobacco full dataset

average accuracy as we did in the previous experiment except that the full signatures are

used to test. We use the same setups as the previous experiment, since the training stages

are identical. The results are compared to the LSH method and the pairwise matching

method reported in [62] [63]. Figure 2.22 and Table 2.6 show the results.

Our 92.1% top-1 rank accuracy outperforms both of the previous methods on this

dataset. This proves that our method is not only specifically designed for partial signature

matching, but also works well on full signature dataset.
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Figure 2.23: Performance curves on DS-II partial dataset.

2.3.4.5 Results on DS-II partial dataset

This dataset is extremely challenging since we only have one training sample per

class to perform the 495-class classification task. To setup the experiment, the heights of

all signatures are fixed to 166, and r = 5 and θ = 12 shape context features are used. 230

salient regions are estimated from HDP after 1000 iterations, and empirically K = 1500

is chosen. Figure 2.23 and Table 2.7 show the results from our method and the LSH

method. Our algorithm achieve 37.8% top-1 rank accuracy, which outperforms the LSH

method by 23.1%. We didn’t compare to the pairwise matching method since it is not

scalable to large datasets.

2.3.4.6 Effects of parameters

The two parameters that have impact on the performance are the number of cen-

ters K in K-means algorithm and the number of salient regions R in sLDA. We test on

different values of K and R to see how they change the performance.
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Number of clusters: The choice of K depends on the data and the size of the

dataset. A larger value of K tends to over-classify the data and make the classification

more computationally intensive. A smaller value ofK tends group incorrect data together.

The results of K versus top-1 rank accuracy graphs on DS-I partial dataset and DS-II

partial dataset are given in Figure 2.24 and Table 2.8, and Figure 2.25 and Table 2.9, at

fixed R = 90 and R = 230 respectively.

Figure 2.24: The impact of K on DS-I partial dataset.

Number of salient regions: The choice of R depends on the size of vocabulary

and the observations. HDP provides us an alternative way to choose R. The top-1 rank

accuracy comparisons between R predicted by HDP and other R values on DS-I partial

Top-1 Top-3 Top-5 Top-10 Top-25

LSH 0.231 0.279 0.321 0.379 0.465

Our method 0.378 0.487 0.534 0.590 0.660

Table 2.7: Results on DS-II partial dataset
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Figure 2.25: The impact of K on DS-II partial dataset.

#K 100 300 500 700 900 1100 1300 1500 1700 1900

Accuracy 0.624 0.762 0.799 0.857 0.809 0.857 0.878 0.867 0.857 0.857

Table 2.8: Results from different K at R = 90 on DS-I partial set

dataset and DS-II partial dataset are given in Figure 2.26 and Table 2.10, and Figure 2.27

and Table 2.11, at K = 1300 and K = 1500 respectively.

From Figure 2.27 we see HDP overfit the training samples of DS-II partial dataset

with a large value of R. This is due to the variety of the training samples.

#K 300 500 700 900 1100 1300 1500 1700 1900 2100

Accuracy 0.334 0.335 0.327 0.337 0.303 0.358 0.378 0.335 0.335 0.314

Table 2.9: Results from different K at R = 230 on DS-II partial set
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Figure 2.26: The impact of R and comparisons between different R and R predicted by

HDP on DS-I partial dataset.

Figure 2.27: The impact of R and comparisons between different R and R predicted by

HDP on DS-II partial dataset.

2.3.4.7 Failure examples

There are several common cases in DS-II partial dataset that will lead to a mis-

matching, such as the full signature of a query partial signature is close to another signa-

ture, the partial signature is more similar to the full signature of another author, signatures
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#R 10 30 50 70 90 110 130 150

Accuracy 0.317 0.582 0.704 0.788 0.878 0.864 0.878 0.870

Table 2.10: Results from different R at K = 1300 on DS-I partial dataset

#R 70 90 110 130 150 170 190 210 230 250

Accuracy 0.298 0.337 0.342 0.354 0.360 0.364 0.370 0.378 0.378 0.370

Table 2.11: Results from different R at K = 1500 on DS-II partial dataset

are not informative because of too many handwritten texts, and signatures are so simple

that limited information can be collected. Figure 2.28 shows four failure cases.
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Figure 2.28: Failure examples for four query signatures. For each box, the first signature

is a query signature; the middle signature is the incorrect match; the last signature is the

true full signature.

49



Chapter 3: Deep Learning with Applications to Pedestrian Detection and

Portrait Segmentation

3.1 Fused DNN: A deep neural network fusion approach to fast and ro-

bust pedestrian detection

3.1.1 Overview

In this work, we propose a deep neural network fusion architecture to address the

pedestrian detection problem, called Fused Deep Neural Network (F-DNN). Compared

to previous methods, the proposed system is faster while achieving better detection accu-

racy. The architecture consists of a pedestrian candidiate generator, which is obtained by

training a deep convolutional neural network to have a high detection rate, albeit a large

false positive rate. A novel network fusion method called soft-rejection based network fu-

sion is proposed. It employs a classification network, consisting of multiple deep neural

network classifiers, to refine the pedestrian candidates. Their soft classification probabil-

ities are fused with the original candidates using the soft-rejection based network fusion

method. A parallel semantic segmentation network, using deep dilated convolutions and

context aggregation [64], delivers another soft confidence vote on the pedestrian candi-

dates, which are further fused with the candidate generator and the classification network.
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Figure 3.1: The whole pipeline of our proposed work.

Our work is evaluated on the Caltech Pedestrian dataset [14]. We improve log-

average miss rate on the ’Reasonable’ evaluation setting from 9.58% (previous best result

[22]) to 8.65% (8.18% with semantic segmentation network). Meanwhile, our speed is

1.67 times faster (3 times faster for ’Reasonable’ test). Our numerical results show that

the proposed system is accurate, robust, and efficient.

3.1.2 The Fused Deep Neural Network

The proposed network architecture consists of a pedestrian candidate generator, a

classification network, and a pixel-wise semantic segmentation network. The pipeline of

the proposed network fusion architecture is shown in Figure 3.1.

For the implementation described In this work, the candidate generator is a single
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shot multi-box detector (SSD) [65]. The SSD generates a large pool of candidates with the

goal of detecting all true pedestrians, resulting in a large number of false positives. Each

pedestrian candidate is associated with its localization box coordinates and a confidence

score. By lowering the confidence score threshold above which a detection candidate is

accepted, candidates of various sizes and occlusions are generated from the primary de-

tector. The classification network consists of multiple binary classifiers which are run in

parallel. We propose a new method for network fusion called soft-rejection based net-

work fusion (SNF). Instead of performing hard binary classification, which either accepts

or rejects candidates, the confidence scores of the pedestrian candidates are boosted or

discounted based on the aggregated degree of confidence in those candidates from the

classifiers. We further propose a method for utilizing the context aggregation dilated con-

volutional network with semantic segmentation (SS) as another classifier and integrating

it into our network fusion architecture. However, due to the large input size and complex

network structure, the improved accuracy comes at the expense of a significant loss in

speed.

3.1.2.1 Pedestrian Candidate Generator

We use SSD to generate pedestrian candidates. The SSD is a feed-forward con-

volutional network which has a truncated VGG16 as the base network. In VGG16 base,

pool5 is converted to 3×3 with stride one, and fc6 and fc7 are converted to convolutional

layers with atrous algorithm [64]. Additional 8 convolutional layers and a global aver-

age pooling layer are added after the base network and the size of each layer decreases
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Figure 3.2: The structure of SSD. 7 output layers are used to generate pedestrian candi-

dates in this work.

progressively. Layers ’conv4 3’, ’fc7’, ’conv6 2’, ’conv7 2’, ’conv8 2’, ’conv9 2’, and

’pool6’ are used as the output layers. Since ’conv4 3’ has a much larger feature scale, an

L2 normalization technique is used to scale down the feature magnitudes [66]. After each

output layer, bounding box(BB) regression and classification are performed to generate

pedestrian candidates. Figure 3.2 shows the structure of SSD.

For each output layer of size m× n× p, a set of default BBs at different scales and

aspect ratios are placed at each location. 3 × 3 × p convolutional kernels are applied to

each location to produce classification scores and BB location offsets with respect to the

default BB locations. A default BB is labeled as positive if it has a Jaccard overlap greater

than 0.5 with any ground truth BB, otherwise negative (as shown in Equation (3.1)).

label =


1, if

ABBd
∩ABBg

ABBd
∪ABBg

> 0.5

0, otherwise

(3.1)

where ABBd
and ABBg represent the area covered by the default BB and the ground true
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Figure 3.3: Left figure shows the pedestrian candidates’ BBs on an image. Right fig-

ure shows the SS mask over the BBs. We can visualize several false positives (such as

windows and cars) are softly rejected by the SS mask.

BB, respectively. The training objective is given as Equation (3.2):

L =
1

N
(Lconf + αLloc) (3.2)

where Lconf is the softmax loss and Lloc is the Smooth L1 localization loss [26], N is

the number of positive default boxes, and α is a constant weight term to keep a balance

between the two losses. For more details about SSD please refer to [65]. Since SSD uses

7 output layers to generate multi-scale BB outputs, it provides a large pool of pedestrian

candidates varying in scales and aspect ratios. This is very important to the following

work since pedestrian candidates generated here should cover almost all the ground truth

pedestrians, even though many false positives are introduced at the same time. Since SSD

uses a fully convolutional framework, it is fast.
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3.1.2.2 Classification Network and Soft-rejection based DNN Fusion

The classification network consists of multiple binary classification deep neural net-

works which are trained on the pedestrian candidates from the first stage. All candidates

with confidence score greater than 0.01 and height greater than 40 pixels are collected as

the new training data for the classification network. For each candidate, we scale it to a

fixed size and directly use positive/negative information collected from Equation (3.1) for

labeling.

After training, verification methods are implemented to generate the final results.

Traditional hard binary classification results in hard rejection and will eliminate a pedes-

trian candidate based on a single negative vote from one classification network. Instead,

we introduce the SNF method which works as follows: Consider one pedestrian candi-

date and one classifier. If the classifier has high confidence about the candidate, we boost

its original score from the candidate generator by multiplying with a confidence scaling

factor greater than one. Otherwise, we decrease its score by a scaling factor less than

one. We define ”confident” as a classification probability of at least ac. To prevent any

classifier from dominating, we set bc as the lower bound for the scaling factor. Let pm be

the classification probability generated by the mth classifier for this candidate, the scaling

factor is computed as Equation (3.3).

am = max(pm ×
1

ac
, bc) (3.3)

where ac and bc are chosen as 0.7 and 0.1 by cross validation. To fuse all M classifiers,

we multiply the candidate’s original confidence score with the product of the confidence
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scaling factors from all classifiers in the classification network. This can be expressed as

Equation (3.4).

SFDNN = SSSD ×
M∏
m=1

am (3.4)

The key idea behind SNF is that we don’t directly accept or reject any candidates,

instead we scale them with factors based on the classification probabilities. This is be-

cause a wrong elimination of a true pedestrian (e.g. as in hard-binary classification) can-

not be corrected, whereas a low classification probability can be compensated for by larger

classification probabilities from other classifiers.

3.1.2.3 Pixel-wise semantic segmentation for object detection reinforce-

ment

We utilize an SS network, based on deep dilated convolutions and context aggrega-

tion [64], as a parallel classification network. The SS network is trained on the Cityscapes

dataset for driving scene segmentation [67]. To perform dense prediction, the SS network

consists of a fully convolutional VGG16 network, adapted with dilated convolutions as

the front end prediction module, whose output is fed to a multi-scale context aggrega-

tion module, consisting of a fully convolutional network whose convolutional layers have

increasing dilation factors.

An input image is scaled and directly processed by the SS network, which produces

a binary mask with one color showing the activated pixels for the pedestrian class, and the

other color showing the background. We consider both the ‘person’ and ‘rider’ categories

in Cityscapes dataset as pedestrians, and the remaining classes as background. The SS
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mask is intersected with all detected BBs from the SSD. We propose a method to fuse

the SS mask and the original pedestrian candidates. The degree to which each candidate’s

BB overlaps with the pedestrian category in the SS activation mask gives a measure of the

confidence of the SS network in the candidate generator’s results. We use the following

strategy to fuse the results: If the pedestrian pixels occupy at least 20% of the candidate

BB area, we accept the candidate and keep its score unaltered; Otherwise, we apply SNF

to scale the original confidence scores. This is summarized in Equation (3.5):

Sall =


SFDNN , if Am

Ab
> 0.2

SFDNN ×max(Am

Ab
× ass, bss), otherwise

(3.5)

where Ab represents the area of the BB, Am represents the area within Ab covered by

semantic segmentation mask, ass, and bss are chosen as 4 and 0.35 by cross validation. As

we don’t have pixel-level labels for pedestrian detection datasets, we directly implement

the SS model [64] trained on the Cityscape dataset [67]. Figure 3.3 shows an example of

this method and how we fuse it into the existing model.

SNF with an SS network is slightly different from SNF with a classification net-

work. The reason is that the SS network can generate new detections which have not

been produced by the candidate generator, which is not the case for the classification net-

work. To address this, the proposed SNF method eliminates new detections from the SS

network.
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3.1.3 Experiments and result analysis

3.1.3.1 Data and evaluation settings

We evaluate the proposed method on the most popular pedestrian detection dataset:

Caltech Pedestrian dataset. The Caltech Pedestrian dataset contains 11 sets (S0-S10),

where each set consists of 6 to 13 one-minute long videos collected from a vehicle driv-

ing through an urban environment. There are about 250,000 frames with about 350,000

annotated BBs and 2300 unique pedestrians. Each BB is assigned with one of the three

labels: ’Person’, ’People’ (large group of individuals), and ’Person?’ (unclear identifi-

cations). The original frame size is 480 × 640. The log-average miss rate (L-AMR) is

used as the performance evaluation metric [14]. L-AMR is computed evenly spaced in

log-space in the range 10−2 to 100 by averaging miss rate at the rate of nine false positives

per image (FPPI) [14]. There are multiple evaluation settings defined based on the height

and visible part of the BBs. The most popular settings are listed in Table 3.1.

3.1.3.2 Training details and results

To train the SSD candidate generator, all images which contain at least one anno-

tated pedestrian from Caltech training set, ETH dataset [71], and TudBrussels dataset [72]

are used. By using both original and flipped images, it provides around 68,000 images.

Among all annotations, only ’Person’ and ’People’ categories are included. We further

classify ’Person’ into ’Person full’ and ’Person occluded’. This results in 109,000 pedes-

trians in ’Person full’, 60,000 pedestrians in ’Person occluded’, and 35,000 pedestrians
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Setting Description

Reasonable 50+ pixels. Occ. none or partial

All 20+ pixels. Occ. none, partial, or heavy

Far 30- pixels

Medium 30-80 pixels

Near 80+ pixels

Occ. none 0% occluded

Occ. partial 1-35% occluded

Occ. heavy 35-80% occluded

Table 3.1: Evaluation settings for Caltech Pedestrian dataset.

in ’People’. All the images are in their original size 480× 640. To set up the SSD model,

we place 7 default BBs with aspect ratios [0.1, 0.2, 0.41a, 0.41b, 0.8, 1.6, 3.0] on top

of each location of all output feature maps. All default BBs except 0.41b have relative

heights [0.05, 0.1, 0.24, 0.38, 0.52, 0.66, 0.80] for the 7 output layers. The heights for

0.41b are [0.1, 0.24, 0.38, 0.52, 0.66, 0.80, 0.94]. Since 0.41 is the average aspect ratio

for all annotated pedestrians, we use two default BBs with slightly different heights. The

aspect ratio ’1.6’ and ’3.0’ are designed for ’People’. By doing so, we can generate a

rich pool of candidates so as not to lose any ground truth pedestrians. We then fine-tune

our SSD model from the Microsoft COCO [73] pre-trained SSD model for 40k iterations

using stochastic gradient descent (SGD), with a learning rate of 10−5. All the layers after

each output layer are randomly initialized and trained from scratch.
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Method Reas. All Far Medium Near Occ. none Occ. partial Occ. heavy

SCF+AlexNet [19] 23.32% 70.33% 100% 62.34% 10.16% 19.99% 48.47% 74.65%

SAF R-CNN [25] 9.68% 62.6% 100% 51.8% 0% 7.7% 24.8% 64.3%

MS-CNN [68] 9.95% 60.95% 97.23% 49.13% 2.60% 8.15% 19.24% 59.94%

DeepParts [69] 11.89% 64.78% 100% 56.42% 4.78% 10.64% 19.93% 60.42%

CACT-Deep [70] 11.75% 64.44% 100% 53.23% 3.99% 9.63% 25.14% 65.78%

RPN+BF [22] 9.58% 64.66% 100% 53.93% 2.26% 7.68% 24.23% 69.91%

F-DNN (Ours) 8.65% 50.55% 77.37% 33.27% 2.96% 7.10% 15.41% 55.13%

F-DNN+SS (Ours) 8.18% 50.29% 77.47% 33.15% 2.82% 6.74% 15.11% 53.76%

Table 3.2: Detailed breakdown performance comparisons of our models and other state-

of-the-art models on the 8 evaluation settings. All numbers are reported in L-AMR.

To train the classification network, we use all pedestrian cadidates generated by

SSD as well as all ground truth BBs. All the training samples are horizontally flipped with

probability 0.5. This results in 69, 000 positive samples and 163, 000 negative samples,

with a ratio 1 : 2.4. As the high similarity between consecutive frames sometimes leads

to identical training samples, we scale all samples to a fixed size of 250 × 250, and then

randomly crop a 224× 224 patch for data augmentation (center cropping for testing). We

then fine-tune two models in parallel: ResNet-50 [74] and GoogleNet [75], from their

ImageNet pre-trained models. All models are trained using SGD with a learning rate of

10−4.

For the SS network, since there is a lack of well-labeled SS dataset for pedestrian

detection, we directly implement the network trained on the Cityscapes dataset with image
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size 1024 × 2048. To preserve the aspect ratio, we scale all images to height 1024, then

pad black pixels on both sides.

All the above models are built on Caffe deep learning framework [76].

Evaluation on Caltech Pedestrian : The detailed breakdown performance of our two

models (without and with semantic segmentation) on this dataset is shown in Table 3.2.

We compare with all the state-of-the-art methods reported on Caltech Pedestrian website.

We can see that both of our models significantly outperform others on almost all evalua-

tion settings. On the ’Reasonable’ setting, our best model achieves 8.18% L-AMR, which

has a 14.6% relative improvement from the previous best result 9.58% by RPN+BF. On

the ’All’ evaluation setting, we achieve 50.29%, a relative improvement of 17.5% from

60.95% by MS-CNN [68]. The L-AMR VS. FPPI plots for the ’Reasonable’ and ’All’

evaluation settings are shown in Figure 3.5 and Figure 3.6. F-DNN refers to fusing the

SSD with the classification network, whereas F-DNN+SS refers to fusing the SSD with

both the classification network and the SS network. Results from VJ [77] and HOG [16]

are plotted as the baselines on this dataset.

3.1.3.3 Result analysis

Effectiveness of classification network We explore how effective the classification net-

work refines the original confidence scores of the pedestrian candidates. As many false

positives are introduced from SSD, the main goal of the classification network is to de-

crease the scores of the false positives. By using ResNet-50 with classification probability

0.7 as the confidence scaling threshold, 96.7% scores of the false positives are decreased
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on the Caltech Pedestrian testing set. This improves the performance on the ’Reasonable’

setting from 13.07% to 8.98%. A similar result is obtained by GoogleNet-97.1% scores

of the false positives are decreased, which improves performance from 13.07% to 9.41%.

As the two classifiers do not decrease scores of the same set of false positives, by fusing

their results with SNF, almost all false positives are covered, and the L-AMR is further

improved to 8.65%. Concerning limits to performance, if we were able to train an oracle

classifier with classification accuracy 100%, the L-AMR would be improved to only 4%.

This is shown in Table 3.3.

Method Reasonable

SSD 13.06%

SSD+GoogleNet 9.41%

SSD+ResNet-50 8.97%

SSD+GoogleNet+ResNet-50 (F-DNN) 8.65%

SSD+Oracle classifier 4%

Table 3.3: Effectiveness of the classification network.

Soft rejection versus hard rejection SNF plays an important role in our system. Hard

rejection is defined as eliminating any candidate which is classified as a false positive

by any of the classifiers. The performance of hard-rejection based fusion depends on

the performance of all classifiers. A comparison between the two methods is shown

in Table 3.4. We also compare against the case when the SSD is fused with the SS

network only, labeled as ’SSD+SS’. For the classification network, a 0.5 classification
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probability threshold is used for hard rejection, while for the SS network, an overlap ratio

of 5% is used. We can see that hard rejection hurts performance significantly, especially

for the classification network. All numbers are reported in L-AMR on the ’Reasonable’

evaluation setting.

Method Hard rejection Soft rejection

SSD+SS 13.4% 11.57%

F-DNN 20.67% 8.65%

F-DNN+SS 22.33%% 8.18%

Table 3.4: Performance comparisons on Caltech ’Reasonable’ setting between soft rejec-

tion and hard rejection. The original L-AMR of SSD alone is 13.06%

Robustness on challenging scenarios The proposed method performs much better than

all other methods on challenging scenarios such as the small pedestrian scenario, the

occluded pedestrian scenario, crowded scenes, and the blurred input image. Figure 3.7

visualizes the results of the ground truth annotation, our method, and RPN-BF (previous

state-of-the-art method). The four rows represent the four challenging scenarios and the

four columns represent the BBs from the ground true annotations, the pedestrian candi-

dates generated by SSD alone, our final detection results, and the results from RPN-BF

method. By comparing the third column with the second column, we can see that the

classification network and the SS network are able to filter out most of the false positives

introduced by the SSD detector. By comparing the third column with the last column,

we can see our method is more robust and accurate on the challenging scenarios than
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Figure 3.4: L-AMR VS. FPPI plot on ’Reasonable’ evaluation setting.

RPN-BF method.

Speed analysis There are 4 networks in the proposed work. As the SSD uses a fully

convolutional framework, its processing time is 0.06s per image. For the speed of the

classification network, we perform two tests: The first test runs on all pedestrian candi-

dates; The second test runs only on candidates above 40 pixels in height. The second test

is targeting only the ’Reasonable’ evaluation setting. Using parallel processing, the speed

for the classification network equals its slowest classifier, which is 0.24s and 0.1s per im-

age for the two tests. The overall processing time of F-DNN is 0.3s and 0.16s per image,

which is 1.67 to 3 times faster than other methods. Note that the speed for GoogleNet on

’Reasonable’ test is only 0.05s per image. If we only fuse the SSD with GoogleNet, we

can still achieve the state-of-the-art performance while being 0.11s per image. We also
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Figure 3.5: L-AMR VS. FPPI plot on ’All’ evaluation setting.

Method Speed on TITAN X

(seconds per image)

CompACT-Deep 0.5

SAF R-CNN 0.59

RPN+BF 0.5

F-DNN 0.3

F-DNN (Reasonable) 0.16

SSD+GoogleNet (Reasonable) 0.11

SSD+SqueezeNet (Reasonable) 0.09

F-DNN+SS 2.48

Table 3.5: A comparison of speed among the state-of-the-art models.
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Figure 3.6: Detection comparisons on four challenging pedestrian detection scenarios.

The four rows represent the small pedestrian scenario, the occluded pedestrian scenario,

the crowed scenes, and the blurred input image. The four columns represent the ground

true annotations, the pedestrian candidates generated by SSD alone, our final detection

results, and the results from the RPN-BF method.
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test fusing SSD with SqueezeNet [78] only to achieve 0.09s per image, which is above 10

frames per second (with a L-AMR around 10.8%). As the SS network uses 1024× 2048

size input with a more complex network structure, it’s processing time is 2.48s per image.

As it can be processed in parallel with the whole F-DNN pipeline, the overall processing

time will be limited to 2.48s per image. We use one NVIDIA TITIAN X GPU for all the

speed tests. All the classifiers in the classification network are processed in parallel on

one single GPU. Table 3.5 compares the processing speed of our methods and the other

methods.

3.2 Efficient Pedestrian Detection using Deep Neural Network Fusion

3.2.1 Overview

This work is extended from the work in the previous section [79]. We propose the

Fused Deep Neural Network 2 (F-DNN2). The whole architecture of this work consists

of two parallel systems: the pedestrian detection system and the semantic segmentation

system.

The pedestrian detection system consists of a pedestrian candidate generator, which

is trained to have a high detection rate, albeit a lot of false positives are introduced at the

same time. To collect the detected bounding boxes as the training data to the following

steps, we design a novel soft-label method to assign floating point labels. The value of the

soft-label is set to be the largest overlap ratio between the current detected bounding box

and all the ground-truth bounding boxes. The candidate generator is followed by a clas-

sification system which consists of multiple classification networks and a soft-rejection
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Figure 3.7: The whole pipeline of our proposed work.
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based fusion network. Here we use the idea of ensemble learning: Multiple networks

with different structures are trained separately and their opinions are fused together at the

end by the fusion network.

In parallel with the pedestrian detection system, we run an semantic segmentation

network, using deep dilated convolutions and context aggregation [64], to further refine

the pedestrian detection results. However, due to the large input size and complex network

structure, the improved accuracy comes at the expense of a loss in speed. The whole

architecture is shown in Figure 3.7.

The novel ideas In this work are the soft-label method, the soft-rejection based

fusion network, the new kernel based method to fuse the results of the semantic segmen-

tation system and the detection system. The new techniques help to significantly increase

the performance on Caltech dataset from 8.18% to 7.65%. We also extend the model to

work on more classes besides pedestrian, such as car, cyclist. Besides the Caltech Pedes-

trian dataset, we evaluate on three more popular pedestrian detection datasets: INRIA,

ETH, and KITTI. We outperformed all the previous state-of-the-arts on Caltech, INRIA,

and ETH in both accuracy and speed, and achieved comparable results on KITTI. More

experiment analysis is conducted to explain the effectiveness of our system.

3.2.2 Pedestrian Detection system

3.2.2.1 Pedestrian Candidate Generator

In order to quickly obtain pedestrian candidates in various sizes and aspect ratios at

all possible locations of the input image, we use an single shot multi-box detector (SSD)
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Figure 3.8: The structure of the pedestrian candidate generator.
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as the candidate generator. The main reason we select SSD instead of other system is that

it uses multiple feature maps as the output layers. By lowering the accepting threshold

of the confidence score, it outputs a large number of pedestrian candidates which are

very likely to cover all the ground-truth pedestrians. Since it has a fully convolutional

framework, it’s also very fast in speed.

The SSD network is a feed-forward convolutional network which consists of a

VGG16 base, 8 convolutional layers above it, and a global pooling layer at the top. In

the VGG16 base, the kernel size of the pool5 layer is set to 3 × 3 and the stride is set to

one, and the fc6 and fc7 layers are converted to dilated convolutional layers. Bounding

box regression and classification are performed on the feature maps of ’conv4 3’, ’fc7’,

’conv6 2’, ’conv7 2’, ’conv8 2’, ’conv9 2’, and ’pool6’ to generate the pedestrian candi-

dates. A L2 normalization technique is used to scale down the feature magnitudes [66] of

’conv4 3’ since it has a much larger feature scale than other output layers. The network

structure is shown in Figure 3.8.

To generate the pedestrian candidates, a set of default bounding boxes are placed

on top of each output feature map. At every pixel location of the 7 output layers, we

place 6 default bounding boxes with aspect ratios [0.1, 0.2, 0.41, 0.8, 1.6, 3.0] and rel-

ative heights [0.05, 0.1, 0.24, 0.38, 0.52, 0.66, 0.80]. Since ’0.41’ is the average aspect

ratio of all the pedestrian annotations, we place another set of default bounding boxes

with relative heights [0.1, 0.24, 0.38, 0.52, 0.66, 0.80, 0.94] for it. In the training stage,

we further categories all the pedestrians into three classes: ’Full pedestrian’, ’Occluded

pedestrian’, and ’People’. The ’People’ class is defined as a group of people that close to

or overlap with each other. The aspect ratio ’1.6’ and ’3.0’ are designed for ’People’. For
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each default bounding box, a 3 × 3 × p convolutional kernel is applied to produce clas-

sification scores and perform bounding box regression by calculating the location offsets

with respect to the default bounding box.

The multi-task training objective of SSD is given by Equation (3.6)

L =
1

N
(Lconf + αLloc) (3.6)

where Lconf is the softmax loss for the classification task and Lloc is the smooth L1 lo-

calization loss [26], N is the number of positive default boxes, and α is a constant weight

term to keep a balance between the two losses. For more details about SSD please refer

to [65]. Since SSD uses 7 output layers to generate multi-scale BB outputs, it provides a

large pool of pedestrian candidates varying in scales and aspect ratios.

3.2.2.2 Classification System

networks and the soft-label method When preparing the training data for classification

system, the hard-label used in common object detection problem assigns a binary label

to each pedestrian candidate bounding box by thresholding the overlap ratio between this

bounding box and the ground-truth bounding boxes. However, this is not the optimal

strategy, especially when the overlap ratio is close to the threshold. In this work, we

introduce the soft-label strategy to label the pedestrian candidates. The soft-label method

will assign a floating point label to each pedestrian candidate using the largest overlap

ratio between the current pedestrian candidate and all the ground-truth bounding boxes.

Suppose we have a pedestrian candidate and the ground-truth bounding box it overlaps

most. The soft-labels for the pedestrian class labelped and the background class labelbg
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are calculated as Equation (3.7) and (3.8).

labelped =
ABBd

∩ ABBg

ABBd

(3.7)

labelbg = 1−
ABBd

∩ ABBg

ABBd

(3.8)

To update the back-propagation algorithm for this change, we modify the cross en-

tropy loss for the classification networks as Equation (3.9). Note that for the conventional

binary labeling method, li is the indicator function, which equals to 1 for the correct class

and 0 otherwise. Minimizing the cross entropy is equivalent to maximizing the softmax

probability of the correct class. In our case, the softmax probabilities of all the classes are

used to contribute to the cross entropy loss. The floating point soft-labels will determine

how much each class contributes.

ε = −logL(θ|t, z) = −
c∑
i=1

lilog(yi) (3.9)

where li and yi are the soft-label and the softmax probability for class i. Note
∑

i li =

1. When doing back-propagation, the derivative of the cross entropy cost function with

respect to class i is calculated as Equation (3.10).

∂ε

∂zi
= −

c∑
j=1

lj
∂log(yj)

∂zi
= − li

yi

∂yi
∂zi
−

c∑
j 6=i

lj
yj

∂yj
∂zi

= − li
yi
yi(1− yi)−

c∑
j 6=i

lj
yj

(−yjyi)

= −li + yi

c∑
j=1

lj = yi − li

(3.10)

We note that Equation (5) shows the gradient for the conventional method, where a train-

ing sample has label 1 for the correct class, and label 0 for the incorrect classes. We also
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note that it still holds for the soft-label schemes as long as all the soft labels sum to 1.

We devise a hybrid soft-label/hard-label strategy, as follows: If the overlap ratio

between the pedestrian candidate and the ground truth bounding box is lower than thresh-

old tha or greater than threshold thb, we think it’s safe to label the current sample as

background or pedestrian with probability one. For the candidates with intermediate con-

fidence, the soft-label method is used to assign floating point labels, and we normalize

the range [tha, thb] to [0, 1]. Equation (3.11) and (3.12) illustrates the overall idea of the

soft-label method.

labelped =



1, if
ABBd

∩ABBg

ABBd

> thb

0, if
ABBd

∩ABBg

ABBd

< tha

ABBd
∩ABBg

ABBd
−tha

thb−tha
, otherwise

(3.11)

labelbg = 1− labelped (3.12)

After we generate a large pool of pedestrian candidates in the previous step, a lot

of false positives are introduced at the same time. In this step, we attempt to eliminate or

decrease the confidence in many of the false positives. Here we use the idea of ensemble

learning: The classification network consists of multiple classification deep neural net-

works which have different network structures but trained with the same input data. The

opinions of all the networks are combined at the end. By doing so, it’s more likely to get

a lower error than each of the single network. Since it’s hard to bias towards each of the

single network, it’s also less likely to overfit.
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Figure 3.9: The two fusion network designs. The left structure is an end-to-end training

scheme. The right structure trains all the networks separately.
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Soft-rejection based fusion The last step of the classification system is to fuse the re-

sults of all the classification networks together. There are several conventional methods

commonly used such as computing the mean of all results, majority voting, or the hard-

rejection method, which classifies the input to be a false positive if any of the network

classifies the input as a false positive. In this work, as we use classification networks

with different structures, we expect each network to work well in some of the subcat-

egories while performing mediocre in other categories. We introduce the soft-rejection

based fusion method. The soft-rejection based fusion method can be described as: For

one pedestrian candidate, the kth classification network gives us a classification probabil-

ity pk. If pk is higher than a threshold t1, we generate a scaling factor sk greater than one

to boost the initial confidence score generated by SSD. Otherwise, we generate a scaling

factor less than one to decrease the initial confidence score. To prevent any of the classi-

fication network from dominating the final results, we set a lower bound t2 to the scaling

factors. The scaling factors coming out from all the classification networks are further

multiplied together with the initial confidence score to produce the final score. The idea

behind this is that instead of accepting or rejecting any candidate, we boost or decrease

their scores instead. This is because a poor classification network can be compensated by

other good ones, whereas, a wrong elimination of a true pedestrian cannot be corrected.

The idea is illustrated in Equation (3.13) and Equation (3.14).

sk = max(pk ×
1

t1
, t2) (3.13)

SFDNN = SSSD ×
K∏
k=1

sk (3.14)
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Soft-rejection based fusion network The values of all the parameters in the soft-rejection

based fusion method are selected by cross-validation in the previous work. This is ad hoc

and difficult to generalize to new datasets. Instead of hand-craft all parameters, we use

a neural network to train them while keeping the idea of the soft-rejection based fusion

method. We call the new method soft-rejection based fusion network.

To keep the idea of the previous hand-craft method, we design the fusion network

as follows: Suppose we have p1, p2, ..., pK as the inputs to the fusion network, where pk

is the output of the kth classification network. The input layer is followed by two fully

connected layers, each has 500 neurons, and one softmax layer to predict the classifi-

cation probability. By the nature of the neural network, the final result is scaled by the

exponential function of the weighted sum of all classification probabilities. To follow the

soft-rejection based fusion method, where the final result is scaled by the multiplication

of all classification probabilities, we add one log layer after the input layer. At last, we

have the form of Equation (3.15)

SFDNN = SSSD ∗ exp(
K∑
k=1

wk ∗ log(pk))

= SSSD ∗
K∏
k=1

pwk
k

(3.15)

where the wk are the new parameters to be learnt by the fusion network.

Train the classification system There are two ways to train the classification system.

The first method is to train an end-to-end system. For all the classification networks,

we remove their loss layers and concatenate the output neurons for the pedestrian class

from the softmax layers to form the input layer to the fusion network. This system has
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classification networks as branches and merged together by the fusion network at the end.

This is shown at the left of Figure 3.9. However, since we train all the networks together,

the structure grows huge and is prone to overfitting. What’s more, since all the branches

have different structures, they require different settings of optimal hyper-parameters and

have different converging speed, it’s much more difficult to train than the first method.

The second method is to train the classification networks first, and use the output

probabilities to train the fusion network separately. Since this is straightforward and easy

to implement, as shown at the right figure of Figure 3.9, this method is finally used In this

work.

3.2.3 Pixel-wise Semantic Segmentation System

The recent pixel-wise semantic segmentation systems have shown great perfor-

mance on tasks working with high-resolution digital images. In our work, we utilize

an semantic segmentation system based on deep dilated convolutions and context aggre-

gation [64] running in parallel with the pedestrian detection system to further refine the

detection results at the end of the whole system. The network is trained on the Cityscapes

dataset for driving scene segmentation [67]. To perform dense prediction, the network

consists of a fully convolutional VGG16 network, adapted with dilated convolutions as

the front end prediction module, whose output is fed to a multi-scale context aggregation

module, consisting of a fully convolutional network whose convolutional layers have in-

creasing dilation factors. We consider both the ”person” and ”rider” classes in Cityscapes

dataset as pedestrians, and the remaining classes as background.
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Figure 3.10: The idea of kernel-based method to fuse the semantic segmentation system

and the detection system.

To fuse the results of the semantic segmentation system and the pedestrian detection

system, we do it as follows: First, we process the same original input image using the

semantic segmentation system. This produces a binary mask where the foreground pixel

is set to 1 to represent pedestrian class and the background pixel is set to 0. Then, for each

of the pedestrian bounding box detected by the detection system, we analysis the pixels

at the same locations on the binary mask. A scaler is computed as the weighted sum of

the foreground pixels and a weight matrix within the bounding box on the binary mask.

We call the weight matrix as a kernel. The kernel is trained as the mean of the semantic

segmentation binary masks of all ground-truth pedestrian bounding boxes in the training

set and normalized to have sum 1. To perform element-wise multiplication, we rescale all

detected bounding boxes to the same size as the kernel. The fusion method is described

in Equation (3.16) and (3.17).
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sSS =

ABB∑
i,j

mask(i, j) ∗ kernel(i, j) (3.16)

Sall = SFDNN × sSS (3.17)

where the ABB is the area of the bounding box. mask(i, j) and kernel(i, j) are the

pixel value of the binary mask and the kernel at location (i, j). From the visualization of

the weight mask, we see that the pixels at the center of the kernel tend to have higher val-

ues than the pixels at the boundary. This agrees the fact in a perfect detection, the person

tends to appear at the center of the bounding box. The idea is illustrated in Figure 3.10.

We can see that the kernel will boost the score of a detection whose bounding box fits a

person and decrease the score of a detection whose bounding box is not well located.

3.2.4 Experiments and result analysis

3.2.4.1 Training settings

The proposed method is trained on the training sets of the Caltech Pedestrian dataset,

the ETH dataset, and the TudBrussels dataset.

To train the pedestrian candidate generator, both the original images and the hor-

izontally flipped images which contain at least one annotated bounding box are used,

which grives us around 68,000 training images in total. Among all the annotated bounding

boxes, there are about 109,000 annotated bounding boxes in ’Person full’ class, 60,000

annotated bounding boxes in ’Person occluded’ class, and 35,000 bounding boxes in

’People’ class. All the images are in size 480×640. The model is fine-tuned from the Mi-

crosoft COCO [73] pre-trained SSD model for 40k iterations using the standard stochastic
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gradient descent (SGD) algorithm and the back-propagation algorithm at a learning rate

of 10−5.

To train the classification system, all the ground-truth annotations and the pedestrian

candidates generated from the previous stage with height greater than 40 in pixel and

confidence score larger than 0.01 are selected and rescaled into size 250 × 250 as the

training samples. For data augmentation, a 224 × 224 patch is randomly cropped out of

each training sample and horizontally flipped with probability 0.5. To label to training

samples, a combination of the soft-label method and the hard-label method as described

in Equation (9) and Equation (10) is implemented. The thresholds tha and thb are set to

0.4 and 0.6, respectively. To build the classification networks, one ResNet-50 [74] and

one GoogleNet [75] are used as the classification networks. Both of the classifiers are

fine-tuned from the ImageNet pre-trained models using the standard SGD algorithm and

the back-propagation algorithm at a learning rate of 10−4.

To incorporate the semantic segmentation network, the dilated convolution model

[64] trained on the Cityscapes dataset is directly implemented. All the classes are disabled

as background except the ’Person’ and ’Rider’. Since a lack of well-labeled pedestrian

dataset for our problem, no fine-tune is involved in this step. All the input images are

rescaled from 480× 640 into 1024× 2048. To preserve the aspect ratio so as to preserve

the human body shape, the image’s height is firstly scaled to 1024 and then blank patches

are padded on both left and right sides.

All the above mentioned models are built with Caffe deep learning framework [76].
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3.2.4.2 Evaluation settings and results

We evaluate the proposed method on four most popular pedestrian detection datasets:

the Caltech Pedestrian dataset, the INRIA dataset, the ETH dataset, and the KITTI dataset.

The log-average miss rate (L-AMR) is used as the performance evaluation metric [14].

L-AMR is computed evenly spaced in log-space in the range 10−2 to 100 by averaging

miss rate at the rate of nine false positives per image (FPPI) [14]. There are multiple

evaluation settings defined based on the height and visible part of the bounding boxes.

The most popular settings are listed in Table 3.6. Descriptions of each dataset and the

evaluation results are given blow. We refer our two models as F-DNN2, which is the

proposed pedestrian detection system, and F-DNN2+SS, which is F-DNN2 system plus

the semantic segmentation system.

Setting Description

Reasonable 50+ pixels. Occ. none or partial

All 20+ pixels. Occ. none, partial, or heavy

Far 30- pixels

Medium 30-80 pixels

Near 80+ pixels

Occ. none 0% occluded

Occ. partial 1-35% occluded

Occ. heavy 35-80% occluded

Table 3.6: Evaluation settings for Caltech Pedestrian dataset.
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Method Reasonable All Far Medium Near Occ. none Occ. partial Occ. heavy

SCF+AlexNet [19] 23.32% 70.33% 100% 62.34% 10.16% 19.99% 48.47% 74.65%

SAF R-CNN [25] 9.68% 62.6% 100% 51.8% 0% 7.7% 24.8% 64.3%

MS-CNN [68] 9.95% 60.95% 97.23% 49.13% 2.60% 8.15% 19.24% 59.94%

DeepParts [69] 11.89% 64.78% 100% 56.42% 4.78% 10.64% 19.93% 60.42%

CompACT-Deep [70] 11.75% 64.44% 100% 53.23% 3.99% 9.63% 25.14% 65.78%

RPN+BF [22] 9.58% 64.66% 100% 53.93% 2.26% 7.68% 24.23% 69.91%

F-DNN+SS [80] 8.18% 50.29% 77.47% 33.15% 2.82% 6.74% 15.11% 53.76%

F-DNN2 (ours) 8.12% 51.86% 77.99% 36.72% 1.68% 6.75% 17.51% 40.84%

F-DNN2+SS (ours) 7.67% 49.80% 75.83% 35.09% 1.51% 6.35% 16.17% 39.84%

Table 3.7: Detailed breakdown performance comparisons of our models and other state-

of-the-art models on the 8 evaluation settings. All numbers are reported in L-AMR.

Evaluation on the Caltech Pedestrian data: The Caltech Pedestrian dataset con-

tains 11 sets (S0-S10), where each set consists of 6 to 13 one-minute long videos collected

from a vehicle driving through an urban environment. There are about 250,000 frames

with about 350,000 annotated BBs and 2300 unique pedestrians. Each bounding box is

assigned with one of the three labels: ’Person’, ’People’ (large group of individuals), and

’Person?’ (unclear identifications). The detailed breakdown performances of our two

models (detection system only and detection system plus semantic segmentation system)

on this dataset is shown in Table 3.7. We compare with all the state-of-the-art methods

reported on Caltech Pedestrian website. We can see that both of our models significantly

outperform others on almost all evaluation settings. On the ’Reasonable’ setting, our best

model achieves 8.18% L-AMR, which has a 14.6% relative improvement from the previ-

ous best result 9.58% by RPN+BF. On the ’All’ evaluation setting, we achieve 50.29%, a

relative improvement of 17.5% from 60.95% by MS-CNN [68]. The L-AMR VS. FPPI
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Figure 3.11: L-AMR VS. FPPI plot on ’Reasonable’ evaluation setting on Caltech Pedes-

trian dataset.

plots for the ’Reasonable’ and ’All’ evaluation settings are shown in Figure 3.11 and

Figure 3.12. Except the VJ [77] and the HOG [16] methods, which are plotted as the

baselines, all the other results are CNN-based methods.

Evaluation on INRIA: We evaluate the proposed method using the converted IN-

RIA pedestrian dataset provided by Caltech Pedestrian group. There are 614 full posi-

tive training images and 288 full positive testing images in the INRIA dataset. At least

one pedestrian is annotated in each image. To test the generalization capability of our

model, we directly test our Caltech-pretrained model on the INRIA test set without any

fine-tuning on the INRIA training set. On the ’Reasonable’ setting, our method achieves

6.78% L-AMR, outperforming the previous best result 6.9% by RPN+BF. Table 3.8 shows
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Figure 3.12: L-AMR VS. FPPI plot on ’All’ evaluation setting Caltech Pedestrian dataset.

the best results reported on INRIA dataset and Figure 3.13 shows the L-AMR VS. FPPI

plot. Results from VJ and HOG are plotted as the baselines.

Method RPN+BF SketchTokens SpatialPooling RandForest VJ HOG F-DNN2+SS

L-AMR 6.88% 13.32% 11.22% 15.37% 72.48% 63.49% 6.78%

Table 3.8: Performance comparisons of our models and other state-of-the-art models on

the INRIA dataset.

Evaluation on ETH: There are 1804 images from three video sequences in the

ETH pedestrian dataset. As we used the ETH images to train our model, int order to

test on the ETH dataset, we removed all the training images from the ETH dataset in our

training set and retrained our model. On the ’Reasonable’ setting, our method achieves

30.02% L-AMR, outperforming the previous best result 30.23% by RPN+BF. Table 3.9
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Figure 3.13: L-AMR VS. FPPI plot on ’Reasonable’ evaluation setting on INRIA dataset.

shows the best results reported on the ETH dataset and Figure 3.14 shows the L-AMR

VS. FPPI plot. Results from VJ and HOG are plotted as the baselines.

Method RPN+BF TA-CNN SpatialPooling RandForest VJ HOG F-DNN2+SS

L-AMR 30.32% 34.98% 37.37% 45.04% 74.69% 89.89% 30.02%

Table 3.9: Performance comparisons of our models and other state-of-the-art models on

the ETH dataset.

Evaluation on KITTI: We further generalize our method to multi-class detection

problem and test on KITTI object detection dataset. KITTI object detection dataset con-

tains 7481 training images and 7518 test images. All the annotations are split into 7

classes such as cars, vans, trucks, pedestrians, cyclists, trams, and ’Don’t care’. Only
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Figure 3.14: L-AMR VS. FPPI plot on ’Reasonable’ evaluation setting on ETH dataset.

cars, pedestrians, and cyclists are evaluated. There are three evaluation settings as shown

in Table 3.10. Following [68], we split the training data into training set and validation set.

We fine-tune three models using all training annotations for the three evaluating classes

respectively. For the three models, we set the main aspect ratio to the mean aspect ratio

of each class, which is 0.4 for pedestrians, 0.7 for cyclists, and 1.6 for cars. Table 3.11

shows the results on KITTI object detection dataset. We achieve comparable results on

all classes. Since the Caltech Pedestrian dataset doesn’t distinguish between pedestrians

and cyclists, while the KITTI object detection dataset does, it degrades our performance

on the pedestrians class and the cyclists class on KITTI.
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Setting Description

Easy Min. BB height: 40 Px, Max. occlusion level: Fully visible, Max. truncation: 15%

Moderate Min. BB height: 25 Px, Max. occlusion level: Partly occluded, Max. truncation: 30%

Hard Min. BB height: 25 Px, Max. occlusion level: Difficult to see, Max. truncation: 50%

Table 3.10: Evaluation settings for KITTI object detection dataset.

Benchmark Easy Moderate Hard

Car 89.68 % 85.11 % 70.35 %

Pedestrian 74.05 % 61.17 % 57.15 %

Cyclist 67.06 % 51.85 % 46.67 %

Table 3.11: Evaluation results on KITTI object detection dataset.

3.2.4.3 Result analysis

Effectiveness of the network fusion technique In this subsection, we analysis the perfor-

mance increases step by step from the candidate generator (CG) to the whole system. The

L-AMR is 11.52% by using the candidate generator alone, due to the large number of false

positives. By fusing the candidate generator with GoogLeNet, we can improve the per-

formance to 9.41%. By fusing the candidate generator with ResNet-50, we can improve

the L-AMR to 8.5%. Furthermore, by fusing the candidate generator with GoogLeNet

and ResNet-50 using our proposed fusion net, we can achieve the lowest L-AMR so far

at 8.12%. Finally, by fusing the semantic segmentation network into our system, we can
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achieve the best performance at 7.67%. The analysis shows the capability of the network

fusion framework and the advantages of using the idea of ensemble learning. The per-

formance increases of the reasonable setting on the Caltech Pedestrian dataset is given in

Table 3.12.

Method Reasonable

CG 13.06%

CG+GglNet 9.41%

CG+ResNet 8.97%

CG+GglNet+ResNet 8.65%

CG+GglNet+ResNet+Fusion net (F-DNN2) 8.12%

CG+GglNet+ResNet+Fusion net+SS (F-DNN2+SS) 7.67%

Table 3.12: Effectiveness of the network fusion technique.

GoogLeNet VS. ResNet-50 We explore how each part of the classification system con-

tributes to our final results. The breakdown performance comparisons of all evaluation

settings on the Caltech Pedestrian dataset between fusing with GoogLeNet alone and

fusing with ResNet-50 alone are given in Table 3.13. From the results we can see that

GoogLeNet works better in partial/heavy occluded pedestrians while ResNet-50 works

better in non-occluded pedestrians. By analyzing the weights learnt in Equation (3.15),

we see that the weight for GoogLeNet is 1.11 and the weight for ResNet-50 is 2.22%,

which means that our fusion network values the ResNet-50 more than the GoogLeNet.

This is reasonable since there are more non-occluded pedestrians in the training data.
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Method Reasonable All Far Medium Near Occ. none Occ. partial Occ. heavy

CA+GglNet 8.64% 51.59% 76.87% 37.75% 1.72% 7.18% 18.05% 41.19%

CA+ResNet 8.38% 49.58% 74.60% 34.88% 1.70% 6.94% 19.26% 42.71%

Table 3.13: .

Soft-label method versus hard-label method To test how effectively the soft-label method

improves the performance, we compare with the conventional hard-label method on the

ETH dataset. Since we use the overlap ratio between the candidate bounding box and

the ground-truth annotation to assign labels, the soft-label method gives us not only the

information of the existence of a pedestrian in each candidate’s bounding box, but also

how much of the bounding box belongs to the pedestrian. This feature benefits even more

in cases where the overlap ratio is around 0.5: e.g. it is too risky to directly assign a hard

label 1 or 0 to a bounding box with overlap ratio 0.49 or 0.51. We give the performance

comparisons between the hard-label method and the soft-label method in Table 3.14.

Method Reasonable

CG + ResNet + hard-label 33%

CG + GglNet + hard-label 32.82%

CG + ResNet + soft-label 30.8%

CG + GglNet + soft-label 30.42%

CG + GglNet + ResNet + soft-label 30.02%

Table 3.14: Effectiveness of the soft-label method compared to the conventional hard-

label method on ETH dataset.
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Figure 3.15: The whole architecture of our framework.

3.3 Boundary-sensitive Network for Portrait Segmentation

3.3.1 Overview

In this work, we propose a new boundary-sensitive network (BSN) for more ac-

curate portrait segmentation. In contrast to conventional semantic image segmentation

systems, we dilate the contour line of the portrait foreground and label the boundary

pixels as the third class with the proposed soft-label method. Two boundary-sensitive

kernels are introduced into the loss function to help the network learn better represen-

tations for the boundary class as well as govern an overall shape of the portrait. The

first boundary-sensitive kernel is designed for each training image such that a floating

point vector is assigned as a soft label for each pixel in the boundary class. The second

boundary-sensitive kernel is a global kernel where each location in the kernel indicates

the probability of the current location belonging to the boundary class. Furthermore, a
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Figure 3.16: The kernel generating process in our method: (a) represents the original im-

age; (b) represents the detected contour line; (c) shows the three class labels: foreground,

background, and dilated boundary; (d) shows the individual boundary-sensitive kernel;

(e) shows the global boundary-sensitive kernel.

boundary-sensitive attribute classifier is trained jointly with the segmentation network to

reinforce the training process. We evaluate our method on PFCN [81], the largest avail-

able portrait segmentation dataset. Our method achieves the best quantitative performance

in mean IoU at 96.7%. In order to show the effectiveness and generalization capability

of our method, we further test on the portrait images collected from COCO [82], COCO-

Stuff [83], PASCAL VOC [84] and the experiment results demonstrate that our method

significantly outperforms all other state-of-the-art methods.

3.3.2 Related work

Semantic segmentation systems can be categorized as unsupervised methods and

supervised methods. Unsupervised methods solve the semantic segmentation problem

with classic machine learning techniques include thresholding, K-means clustering, graph-

cut [85], etc. On the other hand, conventional supervised methods treat the semantic seg-

mentation problem as a pixel-wise classification problem which first build hand-crafted
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features and then train classifiers such as Support Vector Machines [17], Random For-

est [86], etc.

In recent years, convolutional neural network (CNN) based methods have been suc-

cessfully applied to semantic segmentation. In 2014, Long et al. [87] introduced the end-

to-end Fully Convolutional Networks (FCN) which takes a natural image as input and

performs dense pixel-wise predictions to generate a segmentation map of the same size

as the input image. Fully connected layers are removed from this network to preserve the

spatial information and deconvolutional layers are proposed for up-sampling to recover

the full image size. This paradigm popularized the CNN based method and was quickly

adopted by subsequent approaches. In traditional CNN architectures, pooling layer was

introduced to increase the receptive field as the network goes deeper. However, it also

decreases the resolution of feature map. Yu et al. [88] proposed the dilated convolutional

layer to replace the pooling layer, which allows for increasing the size of the receptive

field without losing resolution in feature maps. Chen et al. [89] proposed the DeepLab

system which passes multiple rescaled input images to different network branches in par-

allel and combines the features maps with max operation at the end.

Portrait segmentation is generally regarded as a sub-problem of semantic seg-

mentation, and it is different from traditional segmentation in two aspects. First, the

foreground object is limited to only people which provides additional prior information.

Meanwhile, portrait segmentation has higher precision requirement on boundary area.

Shen et al. [81] fine-tuned a portrait segmentation system from a pre-trained FCN net-

work with portrait images. To provide more portrait-specific information to the network,

two normalized x and y position channels and one mean mask shape channel are added
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to the input image. Shen et al. [90] proposed a joint correspondence and segmentation

estimation method by using extra information provided by dual-lens camera.

While most methods can easily generate a rough segmentation, they generally fail

to provide precise segmentation near the object boundaries. For refining the predictions

near the boundaries, the most commonly used solution is employing Conditional Random

Fields (CRF) along with CNN. Deeplab [89] employs dense CRF after CNN as a post

processing method to smooth out the predictions. However, CRF is generally used as a

post-precessing step and may be quite time-consuming.

3.3.3 Boundary-sensitive portrait segmentation

The architecture of our framework is shown in Figure 3.15. We use DeepLabv2 ResNet101

model as the base segmentation network. DeepLabv2 ResNet101 consists of three ResNet101

branches at the base which process different scales of the input image. Then the three

branches are followed by the atrous spatial pyramid pooling (ASPP) at different dilation

rates and fused together at the end. For more details please refer to [89]. To make the

model more sensitive to a portrait’s boundary, during training, we label the training sam-

ples with three non-overlapping classes: foreground, boundary, and background, using

the soft-label method described below. One individual boundary-sensitive kernel and one

global boundary-sensitive kernel are introduced when updating the loss function, which

affect both the forward pass and the back-propagation. The generation process of the two

kernels are shown in Figure 3.16. Furthermore, an attribute classifier which shares the

base layers with BSN is trained jointly with the segmentation task to reinforce the training
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process.

3.3.3.1 The individual boundary-sensitive kernel and the soft-label method

To better address the boundary prediction problem, we introduce the individual

boundary-sensitive kernel. We label the boundary class as a third class to separate from

foreground and background classes and assign soft-labels to pixels in the boundary class

as follows. First, the portrait’s contour line is identified in the ground truth segmentation

map with the Canny edge detector [91]. The contour is then dilated to be P-pixels in

width and that map is overlayed onto the ground truth segmentation map. We call the new

label map the individual boundary-sensitive kernel. For each pixel in the kernel, a 1 × 3

floating-point vector Kindv = [lfg, lbdry, lbg] is assigned as the soft-label to represent how

likely the current pixel belongs to each class. The Kindv is computed as Equations (3.18)

(3.19) (3.20).

lbdryi =



min
∀Cj∈C

||Ii − Cj||∑
k

min
∀Cj∈C

||Ik − Cj||
, if i ∈ boundary

0 , if i ∈ foreground

0 , if i ∈ background

(3.18)

lfgi =



1(Mi ∈ fg)(1− lbdryi ) , if i ∈ boundary

1 , if i ∈ foreground

0 , if i ∈ background

(3.19)
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lbgi =



1(Mi ∈ bg)(1− lbdryi ) , if i ∈ boundary

0 , if i ∈ foreground

1 , if i ∈ background

(3.20)

where min
∀Cj∈C

||Ii−Cj|| represents the distance from the current pixel Ii to the nearest

point on the contour line C. Mi represents the binary label of the current pixel in the

original label map M . We can see that pixels in the foreground/background class are

labeled as [1, 0, 0]/[0, 0, 1] and pixels in the boundary class are labeled with a floating-

point vector. The soft-label method computes lbdry as the normalized distance from the

current pixel to the nearest point on the contour and sets lfg and lbg to either (1 − lbdry)

or 0 based on the class label of the current pixel in the ground truth segmentation map.

During the forward pass for each pixel in one sample, the new formula for updating the

loss function can be expressed as Equation (3.21):

ε = −
c∑
j=1

Kindv
j × log(

ezj∑
k

ezk
) = −

c∑
j=1

Kindv
j × log(yj) (3.21)

where lj denotes the soft-label for class j and yj = ezj/
∑
k

ezk denotes the softmax prob-

ability for this class. c represents all the three classes. The new back-propagation for this

sample can be derived as in Equation (3.22):
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∂ε

∂zi
= −

c∑
j=1

Kindv
j × ∂log(yj)

∂zi

= −(
Kindv
i

yi
× ∂yi
∂zi

+
c∑
j 6=i

×
Kindv
j

yj

∂yj
∂zi

)

= −(
Kindv
i

yi
× yi × (1− yi)−

c∑
j 6=i

Kindv
j

yj
× (yj × yi))

= −(Kindv
i − yi ×

c∑
j=1

lj) = −(Kindv
i − yi)

(3.22)

The last step holds since the soft-label vector sums to one.

By using the soft-label method, we can see that boundary pixels contribute not only

to the boundary class but also to the foreground/background class in a weighted manner

based on how close it is to the contour line.

3.3.3.2 The global boundary-sensitive kernel

By the nature of aligned portrait images, it is likely that some locations in the im-

age, such as the upper corner pixels, should belong to the background with very high

probabilities while some other locations, such as the middle bottom pixels, should belong

to the foreground with high probabilities. These pixels should be more easily classified,

while pixels in between should be harder to classify. We estimate a position sensitive

prior from the training data.

We design a global boundary-sensitive kernel to guide the network to learn a better

shape prediction specifically for portrait images. The global kernel is designed as follows.

First, a mean mask M is computed using the average of all ground truth segmentation

maps from the training samples. This generates a probability map where the value at
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each location indicates how likely the current location belongs to foreground/background.

Second, Equation (3.23) is employed to generate the global boundary-sensitive kernel.

All the values are normalized to range [a, b]. A larger value close to b in the global

kernel indicates that the current location has a higher probability to be boundary. In other

words, this location should be more difficult for the network to classify. To force the

network to focus more on the possible boundary locations, we weight the locations with

their corresponding kernel values when updating the loss function. When performing

the forward pass for one pixel location in one sample, we update the loss function as

equations (3.24)

Kglobal = b− (1− |M − 0.5|
0.5

)× (b− a) (3.23)

ε −= Kglobal
s ×

∑
j

1(j = c)× log(yj) (3.24)

where Kglobal
s denotes the global kernel value at the pixel location s. g denotes the ground

truth class label for the current pixel location. During back-propagation, the new gradient

is computed as Equation (3.25):

∂ε

∂zi
= −Kglobal

s ×
∑
j

1(j = g)× ∂log(yj)

∂zi

= −Kglobal
s × (

1

yi
× ∂yi
∂zi

)

= −Kglobal
s × (

1

yi
× yi × (1(i = g)− yi))

= −Kglobal
s × (1(i = g)− yi)

(3.25)

From the new forward pass and back-propagation functions we can see that the

pixels that are more likely to be located in the boundary (e.g., the pixels lying within the
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brighter region in Figure 3.16 (e)) are weighted higher so that they contribute more to the

loss. This guides the network to be more sensitive to the difficult locations.

3.3.3.3 The boundary-sensitive attribute classifier

Portrait attributes such as long/short hair play an important role in determining a

portrait’s shape. Training a network which is capable of classifying boundary-sensitive

attributes will give more prior information to the system, which further makes the system

more accurate and efficient on boundary prediction. Motivated by this idea, we train an

attribute classifier jointly with the portrait segmentation network for multi-task learning.

An example of how the hair style attribute changes the boundary shape is shown in Figure

3.17.

Figure 3.17: An example of how boundary-sensitive attributes affect the portrait’s shape:

long hair vs. short hair.

To design the attribute classifier, the base layers from “conv1 1” to “pool5” are
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shared between the segmentation network and the classifier. Above this, for each channel,

we add three more fully connected layers. The first two fully connected layers have 1024

neurons and are followed by a dropout layer and a ReLU layer. The last fully connected

layer has two neurons for binary classification.

3.3.4 Experiments and results analysis

3.3.4.1 Training settings and evaluation settings

Model details: To train our portrait segmentation system, we fine-tune the

DeepLabv2 ResNet101 model using the training set of the PFCN dataset. We will intro-

duce this dataset in the next subsection. There are three ResNet branches in DeepLabv2.

In each branch, 4 atrous convolution layers are added in parallel with dilation factors

[6, 12, 18, 24] and then summed together to produce the final feature map. Element-wise

max operation is performed at the end over the three branches to produce the final pre-

diction. To generate the individual kernel, we dilate the contour line to 10-pixels in width

and label the dilated boundary using the soft-label method. We select the weight range

in the global kernel as [0.9, 1]. Following PortraitFCN+, in addition to the three RGB

channels, we add two normalized x and y position channels and one mean mask shape

channel into the input. For more details please refer to [81]. At each iteration, a random

patch of size 400 × 400 is cropped out from the original image and randomly flipped

with probability 0.5 for data augmentation. Then the input image is rescaled by factors of

[0.5, 0.75, 1.0] as the new input images to the three branches of the DeepLabv2 network.

To train the attribute classifier, we label the training images into long/short hair classes.
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We use Stochastic Gradient Descent (SGD) with a learning rate of 2.5e−4 to train the

model for 20K iterations without the attribute classifier. Then we decrease the learning

rate by a factor of 10 and add the attribute classifier to train the model for another 20K

iterations. The whole network is built with the Caffe deep learning framework [92].

During testing, we ignore the boundary class and the attribute classifier. Only prob-

abilities from foreground and background classes are used for segmentation.

Mean IoU: The standard mean Intersection-over-Union (IoU) metric is used to

evaluate the segmentation performance. The mean IoU is computed as following.

IoU =
1

N
×

N∑
i

Asegi ∩ A
gt
i

Asegi ∪ A
gt
i

(3.26)

where Asegi and Agti represent the area of the segmentation results and the ground-truth

label mask for the ith testing sample, respectively.

3.3.4.2 Results on the PFCN dataset

We evaluate the proposed method on the largest publicly available portrait seg-

mentation dataset [81]. This dataset is collected from Flickr and manually labeled with

variations in age, pose, appearance, background, lighting condition, hair style, accessory,

etc. Most of the portrait images are captured by the frontal cameras of mobile phones.

This dataset consists of 1800 portrait images which are split into 1500 training images

and 300 testing images. All the images are scaled and cropped into size 800×600. In one

portrait image, the pixels are labeled as either “foreground” or “background”. We will

refer to this dataset as PFCN dataset. Some sample images from the PFCN dataset are
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Figure 3.18: Sample images from the PFCN dataset.

given in Figure 3.18.

We compare with the state-of-the-art method reported on this dataset: Portrait-

FCN+ [81] and the DeepLabv2 ResNet101 fine-tuned model , which we will refer to as

PortraitDeepLabv2. The PortraitDeepLabv2 model is fine-tuned using the same 6-channel

training data as PortraitFCN+ and the same training settings as BSN. For ablation study,

we report results of four models from our work: train with the attribute classifier only

(BSN AC), train with the global boundary-sensitive kernel only (BSN GK), train with

the individual boundary-sensitive kernel only (BSN IK), and the all-in-one model (BSN).

Our final model achieves the state-of-the-art mean IoU at 96.7%. The quantitative result

comparison is given in Table 3.15. Result from graph-cut [85] is shown as the baseline.
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Figure 3.19: Sample images from COCO, COCO-Stuff, and Pascal VOC portrait datasets.
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Figure 3.20: Result visualizations of three challenging examples. The first row shows

contains confusing objects in the background; the second row includes multiple people in

the background; in the third row the background color is close to the foreground.
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Method Mean IoU

Graph-cut 80.0%

PortraitFCN+ 95.9%

PortraitDeepLabv2 96.1%

BSN AC (ours) 96.2%

BSN GK (ours) 96.2%

BSN IK (ours) 96.5%

BSN (ours) 96.7%

Table 3.15: Quantitative performance comparisons on the PFCN dataset.

3.3.4.3 Evaluation on other datasets:

Since the performance on the PFCN dataset is pretty high and data for the boundary

class is unbalanced compare to foreground/background, a good performance on bound-

ary segmentation may only lead to marginal improvement in mean IoU on this dataset.

Thus we further test our method on the portrait images collected from three more popu-

lar semantic segmentation datasets to evaluate the effectiveness of our boundary-sensitive

techniques.

COCO portrait: We automatically collect all the portrait and portrait-like images

from the COCO dataset. We run a face detector over the dataset and keep the images only

containing one person where the face area covers at least 10% of the whole image. There

are 626 images in total with ground truth segmentation maps. We will refer to this dataset

105



as COCO portrait. COCO portrait is more challenging than the PFCN data in various

ways such as large pose variations, large occlusions, unlabeled individuals appear on the

background, large portion of background, different kinds of accessories, etc.

COCO-Stuff portrait: The COCO-Stuff dataset augments the COCO dataset with

refined pixel-level stuff annotations on 10K images. We collect 92 portrait and portrait-

like images from this dataset. The quality of images in this dataset are same as COCO

portrait. We will refer to this dataset as COCO-Stuff portrait.

Pascal VOC portrait: We use the same method to collect portrait and portrait-like

images from the Pascal VOC 2007, 2008, and 2012 datasets. Due to the lack of ground

truth segmentation maps on this dataset, 62 images are collected. The images in this

dataset are also challenging and unconstrained. We will refer to this dataset as PASCAL

VOC portrait. Some sample images from the three datasets are illustrated in Figure 3.19

and the statistics are given in Table 3.16.

To test the generalization capability of our model, we directly test on these three

datasets without fine-tuning. We achieve 77.7% mean IoU, 72.0% mean IoU, and 75.6%

mean IoU on COCO portrait, COCO-stuff portrait, and PASCAL VOC portrait, respec-

tively. We significantly outperform PortraitFCN+ on all the three datasets. The result

comparisons are illustrated in Table 3.17. Since the DeepLabv2 model is trained on these

dataset, we can not compare with it directly.
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Dataset Num. of Portrait

COCO portrait 626

COCO-Stuff portrait 92

PASCAL VOC portrait 62

Table 3.16: Statistics of the three portrait datasets.

Method COCO COCO- PASCAL

Stuff VOC

PortraitFCN+ 68.6% 60.8% 59.5%

BSN (ours) 77.7% 72.0% 75.6%

Table 3.17: Quantitative performance comparisons on COCO portrait, COCO-Stuff por-

trait and Pascal VOC portrait datasets.
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3.3.4.4 Result analysis

Visualization on challenging scenarios We visualize the overall performance of our

BSN model compared to DeepLabv2 and PortraitFCN+ using three challenging scenar-

ios: confusing objects in the background, multiple people appear in the image, and the

background color theme is close to the foreground. Figure 3.20 shows that our model is

more accurate and robust than other methods even under challenging conditions.

Accurate boundary segmentation Our method also delivers more precise boundary pre-

dictions thanks to its novel boundary-sensitive segmentation techniques. Figure 3.21

shows the comparison of our method with DeepLabv2 and PortraitFCN+ in three chal-

lenging scenarios: hair segmentation, accessory segmentation and ear segmentation. Re-

sults reveal that while other methods have difficulty in segmenting accessories and small

body parts, our method can provide a smooth and accurate segmentation.

Generating trimap for image matting Since our method can deliver an accurate bound-

ary prediction, it is a natural extension to generate trimaps for image matting models.

After performing segmentation, we use the same technique during training to dilate the

boundary pixels to 10-pixels in width. Several examples are shown in Figure 3.22.

Applications of portrait segmentation Portrait segmentation has been widely used in

various image processing applications such as background replacement, depth of field,

augmented reality, image cartoonization, etc. We show some applications in Figure 3.23.
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Figure 3.21: Boundary segmentation comparisons. The first column are the original im-

ages. The three subsequent columns represent the results from the PortraitFCN+ method,

the fine-tuned DeepLabv2 model with the attribute classifier, and our final model (magni-

fied for best viewing).
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Figure 3.22: Trimaps generated from our segmentation maps.

Figure 3.23: Some applications of portrait segmentation.
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