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Video understanding is one of the fundamental problems in computer vision.

Videos provide more information to the image recognition task by adding a temporal

component through which motion and other information can be additionally used.

Encouraged by the success of deep convolutional neural networks (CNNs) on image

classification, we extend the deep convolutional networks to video understanding by

modeling both spatial and temporal information.

To effectively utilize deep networks, we need a comprehensive understanding

of convolutional neural networks. We first study the network on the domain of

image retrieval. We show that for instance-level image retrieval, lower layers often

perform better than the last layers in convolutional neural networks. We present an

approach for extracting convolutional features from different layers of the networks

and adopt VLAD encoding to encode features into a single vector for each image.

Our work provides guidance for transferring deep convolutional networks to other

tasks.



We then propose and evaluate several deep neural network architectures to

combine image information across a video over longer time periods than previously

attempted. We propose two methods capable of handling full length videos. The

first method explores various convolutional temporal feature pooling architectures,

examining the various design choices which need to be made when adapting a CNN

for this task. The second proposed method explicitly models the video as an ordered

sequence of frames. For this purpose we employ a recurrent neural network that

uses Long Short-Term Memory (LSTM) cells which are connected to the output of

the underlying CNN.

Next, we propose a multitask learning model ActionFlowNet to train a single

stream network directly from raw pixels to jointly estimate optical flow while recog-

nizing actions with convolutional neural networks, capturing both appearance and

motion in a single model. Experiments show that our model effectively learns video

representation from motion information on unlabeled videos.

While recent deep models for videos show improvement by incorporating opti-

cal flow or aggregating high-level appearance across frames, they focus on modeling

either the long-term temporal relations or short-term motion. We propose Tempo-

ral Difference Networks (TDN) that model both long-term relations and short-term

motion from videos. We leverage a simple but effective motion representation: dif-

ference of CNN features in our network and jointly modeling the motion at multiple

scales in a single CNN.
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Chapter 1: Introduction

1.1 Motivation

Video understanding is one of the fundamental problems in computer vision.

Videos provide more information to the image recognition task by adding a temporal

component through which motion and other information can be additionally used.

Encouraged by the success of deep convolutional neural networks (CNNs) on image

classification, in this dissertation we extend the deep convolutional networks to video

understanding by modeling both spatial and temporal information.

Traditionally, video action recognition research has been very successful at

extracting local features from videos which encode local spatio-temporal patterns.

Hand-crafted features such as Histogram of Oriented Gradients (HOG), Histogram

of Optical Flow (HOF), Motion Boundary Histogram (MBH) and trajectories are

extracted from the videos [6, 7]. These local descriptors are then encoded to pro-

duce a global video-level feature representation with Bag-of-Word (BoW), VLAD,

or Fisher vector encodings. By aggregating spatio-temporal local features to obtain

global video representations, these approaches are able to obtain state-of-the-art

results in a wide range of video recognition benchmarks.

Deep convolutional networks have shown great success in large scale image

1



classification [8]. By learning a hierarchy of feature representations through end-to-

end optimization, CNNs give superior performance compared to traditional hand-

crafted features. It shows great success when transferred to other related tasks such

as object detection, semantic segmentation and image retrieval. Different improving

network architectures have been proposed like AlexNet [8], VGG [4], Inception [9]

and ResNet [10].

There have been several challenges on applying deep networks for video un-

derstanding. First, appropriate models are needed to learn spatial appearance and

temporal information. Both short term motion and long term context are required to

obtain full understanding of videos. Second, having one extra dimension compared

to images, processing videos are computationally expensive. Efficient algorithms are

needed to process large amounts of data.

In this dissertation, we study the problem of video classification with deep

networks. We present multiple approaches for video action recognition which focuses

on both aggregating long-term temporal information as well as capturing short-term

motion and local apppearance.

1.2 Approaches

To effectively utilize deep networks, we need comprehensive understanding of

convolutional neural networks. We first study the network on the domain of image

retrieval. We then propose different network architectures for video classification.

First, we study network architectures for full-length video classification. Second, we
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introduce methods for learning short-term motion representation for video action

recognition. Finally, we propose a framework to jointly model low-level motion and

high-level temporal relations.

1.2.1 Exploiting Local Features from Deep Networks for Image Re-

trieval

Deep convolutional neural networks have been successfully applied to image

classification tasks. When these same networks have been applied to image retrieval,

the assumption has been made that the last layers would give the best performance,

as they do in classification. We show that for instance-level image retrieval, lower

layers often perform better than the last layers in convolutional neural networks. We

present an approach for extracting convolutional features from different layers of the

networks, and adopt VLAD encoding to encode features into a single vector for each

image. We investigate the effect of different layers and scales of input images on

the performance of convolutional features using the recent deep networks VGG-16

and GoogLeNet. Experiments demonstrate that intermediate layers or higher layers

with finer scales produce better results for image retrieval, compared to the last

layer. Our work provides guidance for transferring deep networks trained on image

classification to other tasks.
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1.2.2 Deep Networks for Full Length Video Classification

CNNs have been extensively applied for image recognition problems giving

state-of-the-art results on recognition, detection, segmentation and retrieval. When

extended to video classification, CNNs for video classification are limited to modeling

short video clips, instead of reasoning on full length videos.

We propose and evaluate several deep neural network architectures to com-

bine image information across a video over longer time periods than previously

attempted. We propose two methods capable of handling full length videos. The

first method explores various convolutional temporal feature pooling architectures,

examining the various design choices which need to be made when adapting a CNN

for this task. The second proposed method explicitly models the video as an ordered

sequence of frames. For this purpose we employ a recurrent neural network that

uses Long Short-Term Memory (LSTM) cells which are connected to the output of

the underlying CNN.

1.2.3 Learning Motion Representation for Action Recognition

For action recognition, in addition to understanding the appearance such as

objects and scenes, motion is a key component to fully understand the dynamics

in a video. However, even with large amounts of labeled action classification data,

convolutional networks are still ineffective in learning motion representation from

raw pixels, which suggests that action classification supervision could be insufficient

in learning motion in videos. In addition, large-scale labeled video datasets are

4



often difficult to collect, therefore it is essential that the model could learn motion

representation with a small amount of data.

We present a data-efficient representation learning approach to learn video

representation with small amounts of labeled data. We propose a multi-task learning

model ActionFlowNet to train a single stream network directly from raw pixels to

jointly estimate optical flow while recognizing actions with convolutional neural

networks, capturing both appearance and motion in a single model. Our model

effectively learns video representation from motion information on unlabeled videos

to improve action recognition performance.

1.2.4 Temporal Difference Network for Action Recognition

With the help of the strong appearance models learned from large amount

of image classification data, deep models significantly improve the performance of

video recognition systems. While the deep models for videos show improvement by

incorporating optical flow or aggregating high level appearance across frames, they

focus on modeling either the long term temporal relations or short term motion. We

propose Temporal Difference Networks (TDN) that model both long term relations

and short term motion from videos. We leverage a simple but effective motion

representation: difference of CNN features in our network and jointly modeling the

motion at multiple scales in a single CNN. By taking multiple level of motions on

CNN features, our network learns both low-level motion and high-level temporal

relations.

5



1.3 Organization

This dissertation is organized as follows. Chapter 2 introduces the approach

of feature extraction from deep convolutional networks for image retrieval. Chapter

3 presents deep network architectures for full length video classification. Chapter

4 proposes ActionFlowNet, a network architecture which jointly learns motion and

appearance in a single network through multi-task learning for action recognition.

Chapter 5 introduces the Temporal Difference Network (TDN) for learning motion

and temporal relations in multiple appearance levels. Finally, in Chapter 6, we

conclude and discuss future research directions.
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Chapter 2: Exploiting Local Features from Deep Networks for Image

Retrieval

2.1 Motivation

Image retrieval has been an active research topic for decades. Most existing

approaches adopt low-level visual features, i.e., SIFT descriptors, and encode them

using bag-of-words (BoW), vector locally aggregated descriptors (VLAD) or Fisher

vectors (FV) and their variants. Since SIFT descriptors capture local characteristics

of objects, such as edges and corners, they are particularly suitable for matching

local patterns of objects for instance-level image retrieval.

Recently, convolutional neural networks (CNNs) demonstrated excellent per-

formance on image classification problems such as PASCAL VOC and ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) [4,8,9,11]. By training multi-

ple layers of convolutional filters, CNNs are capable to automatically learn complex

features for object recognition and achieve superior performance compared to hand-

crafted features. A few works have suggested that CNNs trained for image classifi-

cation tasks can be adopted to extract generic features for other visual recognition

tasks [12–14]. Although several approaches have applied CNNs to extract generic

7



features for image retrieval tasks and obtained promising results, a few questions

still remain unaddressed. First, by default CNNs are trained for classification tasks,

where features from the final layer (or higher layers) are usually used for decision be-

cause they capture more semantic features for category-level classification. However,

local characteristics of objects at the instance level are not well preserved at higher

levels. Therefore, it is questionable whether it is best to directly extract features

from the final layer or higher layers for instance-level image retrieval, where different

objects from the same category need to be separated. Second, most existing work

assumes the size of a test image is the same as that of the training images. However,

different scales of input images may affect the behavior of convolutional layers as

images pass through the network. Only a few recent works attempt to investigate

such effects on the performance of CNNs for image retrieval [15,16].

In view of the power of low-level features (i.e., SIFT) in preserving the local

patterns of instances, and the success of CNN features in abstracting categorical

information, we process CNN activations from lower to higher layers to construct

a new feature for image retrieval by VLAD, although other encoding schemes can

be readily applied. Recent deep networks VGG-16 and GoogLeNet pre-trained on

ImageNet database are used for evaluation. We find that features from lower layers

capture more local patterns of objects, and thus perform better than features from

higher layers for instance-level image retrieval, which indicates that it is not the

best choice to directly apply the final layer or higher layers that are designed for

classification tasks to instance-level image retrieval. In addition, we conduct further

experiments by changing the scale of input images and using the same feature ex-
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traction and encoding methods. It is surprising that the behavior of filters in each

layer changes significantly with respect to the scale of input images. With input

images of higher resolution, even the filters at higher layers effectively capture lo-

cal characteristics of images as well, apart from semantic concepts of objects, thus

producing better features and subsequent better retrieval results.

The contributions of this work are three-fold. First, we design and conduct

systematic and thorough experiments to investigate the performance of features

from different layers and different scales of input test images in instance-level image

retrieval. Second, we introduce using VLAD encoding of local convolutional features

from CNNs for image retrieval. The new convolutional feature mimics the ability

of SIFT descriptors to preserve local characteristics of objects, in addition to the

well-known power of CNNs of capturing category-level information. Our framework,

based on the new features, outperforms other VLAD and CNN based approaches

even with a relatively low-dimensional representation. Finally, we provide insights

as to why lower layers should be used for instance-level image retrieval rather than

higher layers, while higher layers may achieve better performance for high resolution

input images.

2.2 Related Work

Traditional image retrieval approaches rely on hand-crafted features like SIFT

descriptors, which are usually encoded into bag-of-words (BoW) histograms [17].

To increase the discriminative ability of SIFT descriptors, RootSIFT [18] was pro-
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posed to address the burstiness problem by using the Hellinger kernel on the original

SIFT descriptors. Jégou et al . [19] proposed the vector locally aggregated descriptor

(VLAD) to obtain a compact representation as a replacement for BoW histograms,

which achieves good results while requiring less storage. PCA and whitening [20],

signed square root (SSR) on VLAD vectors [19] and intra-normalization [21] are

later applied to the original VLAD descriptors to reduce noise and further boost

performance. Multi-VLAD [21] is based on constructing and matching VLAD fea-

tures of multiple levels from an image to improve localization accuracy. Other global

features such as GIST descriptors and Fisher Vector (FV) [22] have also been eval-

uated for large-scale image retrieval. Some approaches rely on semantic concepts

or attributes to capture mid-level image information [23–25], where attributes are

binary values indicating the presence of semantic characteristics. Relative attributes

have been widely applied to refine search results. In [26], a set of ranking functions

are learned offline to predict the strength of attributes, which are then updated by

relative attribute feedback to rerank relevant images from the query stage. Implicit

feedback [27] to learn ranking functions using implied user feedback cues and pivot

attributes selection [28] to reduce the system’s uncertainty have also been proposed

to improve reranking performance. [29] learns a generic prediction function and

adapts it into a user-specific function using user-labeled samples for personalized

image search.

CNNs have led to major improvements in image classification [12–14]. As a

universal image representation, CNN features can be applied to other recognition

tasks and perform well [11, 12, 14]. Razavian et al . [13] first investigated the use of
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CNN features, i.e., OverFeat [30], for various computer vision tasks, including image

retrieval. However, the performance of CNN feature extracted from the final layer

lags behind that of simple SIFT-based methods with BoW and VLAD encoding.

Only by additionally incorporating spatial information do they achieve comparable

results. In [31], CNN features learned from natural images with various augmenta-

tion and pooling schemes are applied to painting retrieval and achieve good results.

Gong et al . [15] introduce Multi-scale Orderless Pooling (MOP) to aggregate CNN

activations from higher layers with VLAD, where these activations are extracted by

a sliding window with multiple scales. Experiments on an image retrieval dataset

have shown promising results, but choosing which scales and layers to use remains

unclear. In [32], a CNN model is retrained on a separate landmark database that

is similar to the images at query time. Not surprisingly, features extracted from

the retrained CNN model obtain very good performance. Unfortunately, collecting

training samples and retraining the entire CNN model requires significant amounts

of human and computing resources, making the application of this approach rather

limited. [33] conducted a comprehensive study on applying CNN features to real-

world image retrieval with model retraining and similarity learning. Encouraging

experimental results show that CNN features are effective in bridging the semantic

gap between low-level visual features and high-level concepts. Recently, [16] con-

ducted extensive experiments on different instance retrieval dataset and obtained

excellent results by using spatial search with CNN features. Our work is inspired

by [15] which also employs VLAD on CNN activations on multi-scale setting, but

fundamentally different from [15]. They utilize higher layers and multi-scale slid-
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ing window to extract CNN features from multiple patches independently, so the

network has to be applied multiple times. In contrast, we apply the network only

once to the input image, and extract features at each location of the convolutional

feature map in each layer. We also explicitly verify the effectiveness of intermediate

layers for image retrieval and provide additional analysis on the effect of scale.

[34] introduces latent concept descriptors for video event detection by extract-

ing and encoding features using VLAD at the last convolutional layer with spatial

pooling. In contrast, we extend the use of convolutional features to lower layers with-

out additional pooling to preserve local information. We also focus on evaluating

performance of different convolutional layers for instance-level image retrieval.

2.3 Approach

We describe our approach of extracting and encoding CNN features for image

retrieval in this section. We start by introducing the deep neural networks used in

our framework, and then describe the method for extracting features. To encode

features for efficient retrieval, we adopt VLAD to compress the CNN features into

a compact representations.

2.3.1 Convolutional neural network

Our approach is applicable to various convolutional neural network architec-

tures. We experiment with two variants of recent deep neural networks: VGG-16 [4]

and GoogLeNet [9], which ranked top two in ILSVRC 2014. The networks are pre-
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trained on ImageNet by Caffe implementation [35] and publicly available on the

Caffe model zoo. We adopt the 16 layers VGG-16 trained by [4] as it gives similar

performance to the 19 layer version. The network consists of stacked 3 × 3 convo-

lutional layers and pooling layers, followed by two fully connected layers and takes

images of 224× 224 pixels as input. We also use a 22-layer deep convolutional net-

work GoogLeNet [9], which gives state-of-the-art results in ImageNet classification

tasks. The GoogLeNet takes images of 224× 224 pixels as input that is then passed

through multiple convolutional layers and stacking “inception” modules. Each in-

ception module is regarded as a convolutional layer containing 1×1, 3×3 and 5×5

convolutions, which are concatenated with an additional 3 × 3 max pooling, with

1×1 convolutional layers in between for dimensionality reduction. There are totally

9 inception modules sequentially connected, followed by an average pooling and a

softmax at the end. Unlike VGG-16, fully connected layers are eliminated which

simplifies our experiments, so that we can focus on the convolutional feature maps.

Finally, the networks are trained by average-pooled activation followed by softmax.

The fully convolutional network GoogLeNet simplifies the extension to applying the

network to multiple scales of images, and lets us encode the local convolutional fea-

tures in the same way for all layers, which allows fair comparisons among layers.

Table 2.1 shows the output size of intermediate layers in VGG-16 and GoogLeNet.

Since it is time consuming to evaluate the lower layers which have large feature

maps, some lower layers are omitted in our evaluation.
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2.3.2 Extracting convolutional features

Given a pre-trained network (VGG-16 or GoogLeNet) with L layers, an input

image I is first warped into an n × n square to fit the size of training images, and

then is passed through the network in a forward pass. In the l-th convolutional

layer Ll, after applying the filters to the input image I, we obtain an nl × nl × dl

feature mapMl, where dl is the number of filters with respect to Ll. For notational

simplicity, we denote nl
s = nl × nl. Similar to the strategy in [34], at each location

(i, j), 1 ≤ i ≤ nl and 1 ≤ j ≤ nl, in the feature mapMl, we obtain a dl-dimensional

vector f li,j ∈ Rdl containing activations of all filters, which is considered as our feature

vector. In this way, we obtain nl
s local feature vectors for each input image at the

convolutional layer Ll, denoted as Fl = {f l1,1, f l1,2, ···, f lnl,nl} ∈ Rdl×nl
s . While [34] only

extracts features from the last convolutional layer, we extend the feature extraction

approach to all convolutional layers. By processing the input image I throughout

the network, we finally obtain a set of feature vectors for each layer, {F1,F2, ···,FL}.

The feature extraction procedure is illustrated in Figure 2.11.

2.3.3 VLAD encoding

Unlike image classification, which is trained with many labeled data for every

category, in instance retrieval generally there is no training data available. There-

fore, a pre-trained network is likely to fail to produce good holistic representations

that are invariant to translation or viewpoint changes while preserving instance level

1The k-means clustering figure is from http://www.vlfeat.org/overview/kmeans.html
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information. In contrast, local features, which focus on smaller parts of images, are

easier to represent and generalize to other object categories while capturing invari-

ance.

Since each image contains a set of low-dimensional feature vectors, which has

similar structure as dense SIFT, we propose to encode these feature vectors into

a single feature vector using standard VLAD encoding. The VLAD encoding is

effective for encoding local features into a single descriptor while achieving a favor-

able trade-off between retrieval accuracy and memory footprint. An overview of our

system is illustrated in Figure 2.1.

Figure 2.1: Overview of our feature extraction and encoding.

VLAD encoding is similar to constructing BoW histograms. Given a collection

of L2-normalized convolutional features from layer Ll, we perform k-means clustering

to obtain a vocabulary cl
1, ..., c

l
k of k visual words, where k is relatively small (k = 100

in our experiments following [15]), so the vocabulary is coarse. For each image, a
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(a) GoogLeNet

Layer (low → high) Output size (nl × nl × dl)

pool1-norm1 56× 56× 64
conv2-norm2 28× 28× 192

Inception 3a 28× 28× 256
Inception 3b 28× 28× 480

Inception 4a 14× 14× 512
Inception 4b 14× 14× 512
Inception 4c 14× 14× 512
Inception 4d 14× 14× 528
Inception 4e 14× 14× 832

Inception 5a 7× 7× 832
Inception 5b 7× 7× 1024

(b) VGG-16

Layer (low → high) Output size (nl × nl × dl)

conv2 1 112× 112× 128
conv2 2 112× 112× 128
conv2 3 112× 112× 128

conv3 1 56× 56× 256
conv3 2 56× 56× 256
conv3 3 56× 56× 256

conv4 1 28× 28× 512
conv4 2 28× 28× 512
conv4 3 28× 28× 512

conv5 1 14× 14× 512
conv5 2 14× 14× 512
conv5 3 14× 14× 512

Table 2.1: Size of feature maps

convolutional feature f li,j from layer Ll is assigned to its nearest visual word cl
i =

NN(f li,j). For the visual word cl
i, the vector difference between cl

i and the feature

f li,j (residual), f li,j − cl
i, is recorded and accumulated for all features assigned to cl

i.

The VLAD encoding converts the set of convolutional features of an image, Fl, from

layer Ll to a single dl× k-dimensional vector vl ∈ Rdl×k, describing the distribution
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of feature vectors regarding the visual words. Formally, a VLAD descriptor of an

image regarding layer Ll is represented as

vl = [
∑

NN(f li,j)=cl1

f li,j − cl
1, · · ·,

∑
NN(f li,j)=clk

f li,j − cl
k]. (2.1)

Here
∑

NN(f li,j)=clk
f li,j − cl

k is the accumulated residual between the visual word cl
k

and all convolutional features f li,j that are assigned to cl
k. The VLAD descriptors

are normalized by intra-normalization which has been shown to give superior results

than signed square root (SSR) normalization [21]. Since the dimensionality of the

original VLAD descriptor is very high, making direct comparison expensive, we

further apply PCA to reduce the dimensionality of VLAD descriptors to improve

retrieval efficiency and then whitening to increase its robustness against noise.

2.3.4 Image Retrieval

For all database images and a query image, we extract convolutional features

and encode them into VLAD descriptors. Image retrieval is done by calculating

the L2 distance between the VLAD descriptors of the query image and database

images. We use PCA to compress the original VLAD descriptors to relatively low-

dimensional vectors (128-D), so that the computation of L2 distance can be done

efficiently. We will show in the experiments that the compressed 128-D VLAD

vectors achieve excellent results with little loss of performance.
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2.4 Experiments

We perform experiments on 3 instance-level image retrieval datasets: Holi-

days [36], Oxford [37] and Paris [38]. The Holidays dataset includes 1491 images of

personal holiday photos from 500 categories, where the first image in each category

is used as the query. The Oxford and Paris datasets consist of 5062 images and 6412

images of famous landmarks in Oxford and Paris, respectively. Both datasets have

55 queries with specified rectangular region of interest enclosing the instance to be

retrieved, where each landmark has multiple query images. To simplify the exper-

iments, the rectangular regions are ignored and full images are used for retrieval

in this work. Following the standard evaluation protocol, we use mean average

precision (mAP) to evaluate the performance of our approach.

2.4.1 Comparison of layers

We first study the performance of convolutional features from different layers.

We use VLAD to encode convolutional features from each layer and evaluate the

mAP with respect to the corresponding layer. Figure 2.2 shows the performance for

both VGG-16 and GoogLeNet. There is a clear trend in the results of both networks

on the first scale (solid lines in the figure). The mAP first increases as we go deeper

into the network because the convolutional features achieve more invariance, until

reaching a peak. However, the performance at higher layers gradually drops since

the features are becoming too generalized and less discriminative for instance-level

retrieval. The best performing layers of GoogLeNet on the Holidays, Oxford and
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Figure 2.2: Performance of different layers on both scales: Solid and dash lines
correspond to the original and second scale respectively. Fully-connected layers of
VGG-16 are omitted due to incompatible size of the last convolutional layer at scale
2.

Paris datasets are Inception 3a, Inception 4a, and Inception 4e respectively.

On the Holidays dataset, the performance of intermediate layers is much better than

that of the last layer (82.0% vs 68.5%). In contrast, the best performing layers on

the Oxford and Paris datasets are from middle upper layers. Nevertheless, similar

trends can still be clearly seen on these two datasets that the intermediate layers

perform better than the last layer. We then conduct similar experiment with the 16

layers VGG-16. Although VGG-16 is less deeper than GoogLeNet, we still see this

trend. On the Oxford and Paris datasets, the best performing layer is not the last

layer, but the intermediate convolutional layers conv5 1, showing that increasing

generalization at higher layers is not always useful in instance retrieval. This verifies

that across different network architectures and datasets, intermediate layers perform

the best and should be used for instance-level retrieval.
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When convolutional networks grow deeper, which gives an increasing number

of choice for layers to transfer, it becomes more important to examine the layers used

for image retrieval, since the layers perform very differently in deep networks. Unlike

recent work, which suggests only using the last two fully connected layers [13,15,32],

or the last convolutional layers [16], our experiments show that higher layers are not

always optimal depending on the tasks considered, especially for the very deep net-

works recently proposed. For instance-level image retrieval, which is very different

from classification tasks, lower layers usually perform better than higher layers as

features from lower layers preserve more local and instance-level characteristics of

objects. We envisage this trend will become more pronounced when networks be-

come deeper in the future.

2.4.2 Scales

Applying a network at multiple scales gives significant improvement over its

original scale as shown in previous work [13,15]. In view of this, apart from using the

original size of input images (scale 1), we enlarge the size of the input image to 2n×2n

(scale 2) to generate 4 times larger feature maps at each layer, and conduct similar

experiments. We evaluate the difference in performance using features extracted

from scale 1 and scale 2.

Figure 2.2 shows the performance of different layers at both scales. In general,

features from the finer scale, which are obtained from higher resolution images, give

better performance than the original scale except VGG-16 on the Holidays dataset.
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Interestingly, the relative performance among layers at the higher scale are quite

different from the original scale from GoogLeNet. On the Holidays dataset, the

performance at scale 2 first increases and then decreases as we go up to higher layers.

The trend is similar to scale 1 although the performance difference between layers at

scale 2 is smaller. On the Oxford and Paris datasets, we obtain better results using

features from higher layers than those from lower layers on the finer scale (scale 2).

It is surprising that the networks perform better with larger input images, although

by default they should take images of 224 × 224 pixels that they are trained on as

the input [16]. An intuitive explanation for the good performance of the last layer

at scale 2 is that the original filters focus more on local details of enlarged images

since the size of the filters remains unchanged. Therefore, the convolutional features

extracted from the higher layers at a finer scale actually focuses on smaller parts

of the images, thus preserving mid-level details of objects to some extent instead of

global categorical and abstract information as in the original scale. Our experiments

suggest that higher resolution images are preferable even if the network was trained

at a coarser level. In contrast, different layers in VGG-16, which was trained in a

multi-scale setting, behave similarly for both scales.

2.4.3 Feature visualization

To further understand the features of different layers and scales, we produce

visualizations of GoogLeNet features based on the Holidays dataset.

Correspondence visualization. We construct a visualization to observe
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Original images Inception 4a Inception 5b Inception 5b (scale 2)

1-NN

5-NN

1-NN

5-NN

Figure 2.3: Correspondence visualization of images (best viewed electronically).

the correspondence behavior following [39]. To produce the visualization, we first

represent each convolutional feature regarding a layer in the database by a square

image patch which is obtained from the center of the image region that affects the

local feature. Specifically, for an n× n image with a layer output size nl × nl, each

local feature will be represented by a square image patch of size n
nl × n

nl . For each

convolutional feature, the original image patch will be replaced by the average of its k

nearest neighbors from all patches extracted in the database. If the local distinction

has been abstracted by high level abstraction, locally different image patches will

have similar neighbors as these patches may be semantically close; otherwise the
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neighbors can be also different since the local distinction is preserved. Note that

although the actual image region that affects the local features is much larger than

the displayed patch itself due to stacked convolutions, the center patch still preserves

localized correspondence [39].

The intermediate convolutional layers of the shallow AlexNet [8] preserve cor-

respondence between different instance objects as well as traditional SIFT descrip-

tor [39]. However, as CNNs become deeper, it is unclear how the intermediate to

high level convolutional layers would perform in capturing correspondence informa-

tion. In addition, we observe the behavior difference between scales of the feature

from the visualization. In particular, we would like to understand why the higher

layers at finer scale obtain better performance than at lower scale. [39] focuses on

part correspondence across different object instances, which is in contrast to our goal

of finding correspondence between objects. However, we believe part correspondence

is an important step for achieving instance correspondence, and this visualization is

also useful in understanding the CNN features in instance correspondence.

The visualization is presented in Figure 2.3. The size of the convolutional

feature map in Inception 5b scale 1 is 7× 7, which is much smaller than 14× 14

in Inception 4a’s . Therefore, each patch of Inception 5b in the visualization is

much larger than Inception 4a. From the visualization, it is clear that features

from Inception 5b do not correspond well compared to those from Inception

4a. In Inception 5b, we can see many repetitive patterns for both 1-NN and 5-

NN cases, which means that local features spatially close to each other are highly

similar while the local appearance disparity between them is blurred by convolution
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operations. One possible reason is that GoogLeNet is trained with average pooling

just before softmax, which encourages the features of the last convolutional layer to

be similar. Comparing Inception 5b (scale 2) to Inception 4a, which have the

same feature map sizes, Inception 5b retrieves more semantically relevant rather

than locally distinct patches. When applied to finer scale (scale 2), Inception

5b contains more local appearance details than the original scale, thus producing

more diverse patches and roughly preserving the original appearance of the objects.

The visualization of Inception 4a contains more semantically irrelevant patches,

especially in textureless regions, like retrieving grass or sea patches in the pyramid.

However, there are less repetitive patterns in the visualization, and the edges in

the images are better preserved. This shows that, as an intermediate convolutional

layer, Inception 4a is more powerful at preserving correspondence of objects and

capturing local appearance distinctions.

Patch clusters. To better observe the clustering of local CNN features, we

sample patches in the dataset and show their nearest neighbors on different layers.

Each convolutional feature is represented as a patch in the same way as in the

correspondence visualization. Figure 2.4 shows the patch clustering visualization of

GoogLeNet layers Inception 3a, Inception 5b and Inception 5b (scale 2). The

patch clusters in the lower layer Inception 3a are quite similar to SIFT-like low

level features, where strong edges, corners and texture are discovered and encoded.

For higher layers, such as Inception 5b, we can see more generalization of parts

with semantic meaning, such as different views of a car or scene, which reflects the

tendency of higher layers to capture category-level invariances. However, for the
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same layer Inception 5b applied to the finer scale, the features focus on smaller

parts of the images, thus capturing more local appearance. This confirms that the

features behave quite differently when applied to images of different resolutions.

Although the higher layers are supposed to encode high level categorical features,

more instance-level details are also preserved when they are applied to finer scales,

so they are more useful for image retrieval.

(a) Inception 3a (scale 1)

(b) Inception 5b (scale 1)

(c) Inception 5b (scale 2)

Figure 2.4: Visualization of local convolutional features on different layers and scales.
Each row represents a cluster of local convolutional features by displaying the cor-
responding patches. The leftmost column shows the sampled reference patches, and
other patches are sorted according to their L2 distance with the reference patches.
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Method Holidays Oxford Paris

SIFT-based method

BoW 200k-D [19] 54.0 36.4 46.0
Improved Fisher [22] 62.6 41.4 -

LCS+RN [40] 65.8 51.7 -
VLADintra+ RootSIFT [21] 65.3 55.8 -

CVLAD [41] 82.7 51.4 -

CNN-based method

CNNaug-ss [13] 84.3 68.0 79.5
Multi-resolution

89.7 84.4 85.3
Spatial Search [16]
Neural codes [32] 79.3 54.5 -
MOP-CNN [15] 80.2 - -

Ours (VGG-16) 83.8 64.9 69.4
Ours (GoogLeNet) 84.0 58.1 68.8

Table 2.2: Comparison with other methods on image retrieval dataset.

2.4.4 Comparison to state-of-the-art

Since our method only uses simple CNN features and VLAD encoding, we

only compare to other recent CNN based approaches and classic SIFT-based repre-

sentations with BoW and VLAD encoding.

Uncompressed representation. We first compare our approach using un-

compressed VLAD representation with other state-of-the-art approaches in Ta-

ble 2.2. In Figure 2.2, the best performing layers on Holidays, Oxford and Paris

datasets are Inception 3a on original scale (scale 1), Inception 5b and Inception

4e on finer scale (scale 2) on GoogLeNet respectively, and conv4 2, conv5 1 and

conv5 2 for Holidays, Oxford and Paris dataset on VGG-16 respectively. The VLAD
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descriptors from the two scales on the best performing layer are concatenated as our

final multi-scale descriptors. VGG-16, which has much larger convolutional feature

maps, performs slightly better than GoogLeNet for image retrieval. Although we

do not focus on producing state-of-the-art results on image retrieval but more on

investigating the behavior of convolutional features from different layers and the

effect of multiple scales, our system gives competitive results compared to state-of-

the-art methods. Specifically, our approach significantly outperforms all the classic

SIFT-based approaches with BoW and VLAD encoding, which verifies the represen-

tative power of the convolutional features compared to traditional SIFT descriptors.

Although better results are reported by other SIFT-based approaches using large

vocabularies, spatial verification and query expansion, etc., our framework is not lim-

ited to the current setting, and can be readily adapted to other encoding schemes

(i.e., BoW and FV), and re-ranking techniques (i.e., query expansion). In addi-

tion, compared to recent CNN-based approaches, our method still produces better

or comparable results. In particular, our approach outperforms its rivals that either

use time-consuming multi-scale sliding windows to extract features [15] or retrain

the entire network using extra data [32]. It should be noted that including spatial in-

formation greatly boosts the performance of CNN-based approaches such as spatial

search [13, 16]. Although [13] and [16] produce better results than our method, we

believe that our approach of extracting and encoding convolutional features using

lower layers and our investigation of how scales affect convolutional features provide

a better understanding of why spatial search on multi-scale features from the last

layer performs well. Spatial information can be also included in our framework with
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few modifications, which will be studied in future work. It would also be interesting

to combine multiple layers from the best scales in spatial search to fully utilize the

power of deep networks. Low-dimensional representation. To trade-off between

retrieval accuracy and storage space, most approaches compress the original feature

vector to a low-dimensional representation. Therefore, we conduct additional ex-

periments using compressed VLAD descriptors and compare the results with those

of other approaches using low-dimensional representations. We use PCA to reduce

the dimensionality to 128 and apply whitening to further remove noise.

As shown in Table 2.3, our method obtains state-of-the-art results on two out

of three datasets with minimal performance loss. Our method outperforms all SIFT-

based approaches by a large margin, which again demonstrates the power of CNNs.

Moreover, we obtain better results than [32], even though [32] fine-tunes the pre-

trained CNNs using a large amount of additional data. Although adopting similar

VLAD encoding scheme, our method still outperforms MOP-CNN [15] which uses a

larger 512-D representation, which further verifies that our approach of extracting

convolutional features from intermediate layers is more suitable for instance-level

image retrieval. The performance of [16] with low-dimensional descriptors drops

notably compared to our 128-D representation, showing that elimination of spa-

tial search greatly reduces the power of CNN representation. It is also important

to use more sophisticated encoding methods to capture the local information of

convolutional features instead of simple max-pooling as in [16]. In contrast, our

low-dimensional representation is robust and retains good discriminative power.
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Method dim Holidays Oxford Paris

VLADintra+SIFT [21] 128 62.5 44.8 -
FV+T-embedding [42] 128 61.7 43.3 -

Neural codes [32] 128 78.9 55.7 -
MOP-CNN [15] 512 78.4 - -

Spatial Pooling [16] 256 74.2 53.3 67.0

Ours (VGG-16) 128 81.6 59.3 59.0
Ours (GoogLeNet) 128 83.6 55.8 58.3

Table 2.3: Comparison of low dimensional descriptors.

2.5 Conclusion

In this work, we systematically experiment with features from different lay-

ers of convolutional networks and different scales of input images for instance-level

image retrieval, and provide insights into performance through various visualiza-

tions. With VLAD encoding on convolutional response, we achieve state-of-the-art

retrieval results using low dimensional representations on two of the instance image

retrieval datasets.
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Chapter 3: Full Length Video Classification

3.1 Motivation

Convolutional Neural Networks have proven highly successful at static image

recognition problems such as the MNIST, CIFAR, and ImageNet Large-Scale Visual

Recognition Challenge [8,9,11]. By using a hierarchy of trainable filters and feature

pooling operations, CNNs are capable of automatically learning complex features

required for visual object recognition tasks achieving superior performance to hand-

crafted features. Encouraged by these positive results several approaches have been

proposed recently to apply CNNs to video and action classification tasks [43–46].

Video analysis provides more information to the recognition task by adding a

temporal component through which motion and other information can be addition-

ally used. At the same time, the task is much more computationally demanding

even for processing short video clips since each video might contain hundreds to

thousands of frames, not all of which are useful. A näıve approach would be to treat

video frames as still images and apply CNNs to recognize each frame and average

the predictions at the video level. However, since each individual video frame forms

only a small part of the video’s story, such an approach would be using incom-

plete information and could therefore easily confuse classes especially if there are
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Figure 3.1: Overview of our approach.

fine-grained distinctions or portions of the video irrelevant to the action of interest.

Therefore, we hypothesize that learning a global description of the video’s

temporal evolution is important for accurate video classification. This is challeng-

ing from a modeling perspective as we have to model variable length videos with a

fixed number of parameters. We evaluate two approaches capable of meeting this

requirement: feature-pooling and recurrent neural networks. The feature pooling

networks independently process each frame using a CNN and then combine frame-

level information using various pooling layers. The recurrent neural network archi-

tecture we employ is derived from Long Short Term Memory (LSTM) [47] units, and

uses memory cells to store, modify, and access internal state, allowing it to discover

long-range temporal relationships. Like feature-pooling, LSTM networks operate
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on frame-level CNN activations, and can learn how to integrate information over

time. By sharing parameters through time, both architectures are able to maintain

a constant number of parameters while capturing a global description of the video’s

temporal evolution.

Since we are addressing the problem of video classification, it is natural to

attempt to take advantage of motion information in order to have a better perform-

ing network. Previous work [45] has attempted to address this issue by using frame

stacks as input. However, this type of approach is computationally intensive since

it involves thousands of 3D convolutional filters applied over the input volumes.

The performance grained by applying such a method is below 2% on the Sports-

1M benchmarks [45]. As a result, in this work, we avoid implicit motion feature

computation.

In order to learn a global description of the video while maintaining a low

computational footprint, we propose processing only one frame per second. At this

frame rate, implicit motion information is lost. To compensate, following [46] we

incorporate explicit motion information in the form of optical flow images computed

over adjacent frames. Thus optical flow allows us to retain the benefits of motion in-

formation (typically achieved through high-fps sampling) while still capturing global

video information. Our contributions can be summarized as follows:

1. We propose CNN architectures for obtaining global video-level descriptors and

demonstrate that using increasing numbers of frames significantly improves

classification performance.

2. By sharing parameters through time, the number of parameters remains con-

32



stant as a function of video length in both the feature pooling and LSTM

architectures.

3. We confirm that optical flow images can greatly benefit video classification

and present results showing that even if the optical flow images themselves

are very noisy (as is the case with the Sports-1M dataset), they can still

provide a benefit when coupled with LSTMs.

Leveraging these three principles, we achieve state-of-the-art performance on

two different video classification tasks: Sports-1M (Section 3.4.1) and UCF-101

(Section 3.4.2).

3.2 Related Work

Traditional video recognition research has been extremely successful at obtain-

ing global video descriptors that encode both appearance and motion information

in order to provide state-of-art results on a large number of video datasets. These

approaches are able to aggregate local appearance and motion information using

hand-crafted features such as Histogram of Oriented Gradients (HOG), Histogram of

Optical Flow (HOF), Motion Boundary Histogram (MBH) around spatio-temporal

interest points [6], in a dense grid [48] or around dense point trajectories [7, 49–51]

obtained through optical flow based tracking. These features are then encoded in

order to produce a global video-level descriptor through bag of words (BoW) [6] or

Fisher vector based encodings [51].

However, no previous attempts at CNN-based video recognition use both mo-

tion information and a global description of the video: Several approaches [43–45]
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employ 3D-convolution over short video clips - typically just a few seconds - to learn

motion features from raw frames implicitly and then aggregate predictions at the

video level. Karpathy et al . [45] demonstrate that their network is just marginally

better than single frame baseline, which indicates learning motion features is diffi-

cult. In view of this, Simonyan et al . [46] directly incorporate motion information

from optical flow, but only sample up to 10 consecutive frames at inference time.

The disadvantage of such local approaches is that each frame/clip may contain only

a small part of the full video’s information, resulting in a network that performs no

better than the näıve approach of classifying individual frames.

Instead of trying to learn spatio-temporal features over small time periods, we

consider several different ways to aggregate strong CNN image features over long

periods of a video (tens of seconds) including feature pooling and recurrent neural

networks. Standard recurrent networks have trouble learning over long sequences

due to the problem of vanishing and exploding gradients [52]. In contrast, the Long

Short Term Memory (LSTM) [47] uses memory cells to store, modify, and access

internal state, allowing it to better discover long-range temporal relationships. For

this reason, LSTMs yield state-of-the-art results in handwriting recognition [53,54],

speech recognition [5,55], phoneme detection [56], emotion detection [57], segmenta-

tion of meetings and events [58], and evaluating programs [59]. While LSTMs have

been applied to action classification in [60], the model is learned on top of SIFT

features and a BoW representation. In addition, our proposed models allow joint

fine tuning of convolutional and recurrent parts of the network, which is not possi-

ble to do when using hand-crafted features, as proposed in prior work. Baccouche

34



et al . [60] learns globally using Long Short-Term Memory (LSTM) networks on the

ouput of 3D-convolution applied to 9-frame videos clips, but incorporates no explicit

motion information.

3.3 Approach

Two CNN architectures are used to process individual video frames: AlexNet

and GoogLeNet. AlexNet, is a Krizhevsky-style CNN [8] which takes a 220 × 220

sized frame as input. This frame is then processed by square convolutional layers

of size 11, 9, and 5 each followed by max-pooling and local contrast normalization.

Finally, outputs are fed to two fully-connected layers each with 4096 rectified linear

units (ReLU). Dropout is applied to each fully-connected layer with a ratio of 0.6

(keeping and scaling 40% of the original outputs).

GoogLeNet [9], uses a network-in-network approach, stacking Inception mod-

ules to form a network 22 layers deep that is substantially different from previous

CNNs [8, 11]. Like AlexNet, GoogLeNet takes a single image of size 220 × 220 as

input. This image is then passed through multiple Inception modules, each of which

applies, in parallel, 1×1, 3×3, 5×5 convolution, and max-pooling operations and

concatenates the resulting filters. Finally, the activations are average-pooled and

output as a 1000-dimensional vector.

In the following sections, we investigate two classes of CNN architectures ca-

pable of aggregating video-level information. In the first section, we investigate

various feature pooling architectures that are agnostic to temporal order and in the
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following section we investigate LSTM networks which are capable of learning from

temporally ordered sequences. In order to make learning computationally feasible,

in all methods CNN share parameters across frames.

3.3.1 Feature Pooling Architectures

Temporal feature pooling has been extensively used for video classification [6,

48, 49], and has been usually applied to bag-of-words representations. Typically,

image-based or motion features are computed at every frame, quantized, then pooled

across time. The resulting vector can be used for making video-level predictions.

We follow a similar line of reasoning, except that due to the fact that we work with

neural networks, the pooling operation can be incorporated directly as a layer. This

allows us to experiment with the location of the temporal pooling layer with respect

to the network architecture.

We analyze several variations depending on the specific pooling method and

the particular layer whose features are aggregated. The pooling operation need not

be limited to max-pooling. We considered using both average pooling, and max-

pooling which have several desirable properties as shown in [61]. In addition, we

attempted to employ a fully connected layer as a “pooling layer”. However, we

found that both average pooling and a fully connected layer for pooling failed to

learn effectively due to the large number of gradients that they generate. Max-

pooling generates much sparser updates, and as a result tends to yield networks

that learn faster, since the gradient update is generated by a sparse set of features
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from each frame. Therefore, in the rest of the chapter we use max-pooling as the

main feature aggregation technique.

Unlike traditional bag of words approaches, gradients coming from the top

layers help learn useful features from image pixels, while allowing the network to

choose which of the input frames are affected by these updates. When used with

max-pooling, this is reminiscent of multiple instance learning, where the learner

knows that at least one of the inputs is relevant to the target class.

We experimented with several variations of the basic max-pooling architecture

as shown in Figure 3.2:

Conv Pooling: The Conv Pooling model performs max-pooling over the final

convolutional layer across the video’s frames. A key advantage of this network is

that the spatial information in the output of the convolutional layer is preserved

through a max operation over the time domain.

Late Pooling: The Late Pooling model first passes convolutional features

through two fully connected layers before applying the max-pooling layer. The

weights of all convolutional layers and fully connected layers are shared. Com-

pared to Conv Pooling, Late Pooling directly combines high-level information across

frames.

Slow Pooling: Slow Pooling hierarchically combines frame level information

from smaller temporal windows. Slow Pooling uses a two-stage pooling strategy:

max-pooling is first applied over 10-frames of convolutional features with stride 5

(e.g. max-pooling may be thought of as a size-10 filter being convolved over a 1-D

input with stride 5). Each max-pooling layer is then followed by a fully-connected
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layer with shared weights. In the second stage, a single max-pooling layer combines

the outputs of all fully-connected layers. In this manner, the Slow Pooling network

groups temporally local features before combining high level information from many

frames.

Local Pooling: Similar to Slow Pooling, the Local Pooling model combines

frame level features locally after the last convolutional layer. Unlike Slow Pooling,

Local Pooling only contains a single stage of max-pooling after the convolutional

layers. This is followed by two fully connected layers, with shared parameters.

Finally a larger softmax layer is connected to all towers. By eliminating the second

max-pooling layer, the Local Pooling network avoids a potential loss of temporal

information.

Time-Domain Convolution: The Time-Domain Convolution model con-

tains an extra time-domain convolutional layer before feature pooling across frames.

Max-pooling is performed on the temporal domain after the time-domain convo-

lutional layer. The convolutional layer consist of 256 kernels of size 3 × 3 across

10 frames with frame stride 5. This model aims at capturing local relationships

between frames within a small temporal window.

GoogLeNet Conv Pooling: We experimented with an architecture based

on GoogLeNet [9], in which the max-pooling operation is performed after the dimen-

sionality reduction (average pooling) layer in GoogLeNet. This is the layer which in

the original architecture was directly connected to the softmax layer. We enhanced

this architecture by adding two fully connected layers of size 4096 with ReLU acti-

vations on top of the 1000D output but before softmax. Similar to AlexNet-based
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models, the weights of convolutional layers and inception modules are shared across

time.

3.3.2 LSTM Architecture

In contrast to max-pooling, which produces representations which are order

invariant, we propose using a recurrent neural network to explicitly consider se-

quences of CNN activations. Since videos contain dynamic content, the variations

between frames may encode additional information which could be useful in making

more accurate predictions.

Given an input sequence x = (x1, . . . , xT ) a standard recurrent neural network

computes the hidden vector sequence h = (h1, . . . , hT ) and output vector sequence

y = (y1, . . . , yT ) by iterating the following equations from t = 1 to T :

ht = H(Wihxt +Whhht−1 + bh) (3.1)

yt = Whoht + bo (3.2)

where the W terms denote weight matrices (e.g. Wih is the input-hidden weight

matrix), the b terms denote bias vectors (e.g. bh is the hidden bias vector) and H is

the hidden layer activation function, typically the logistic sigmoid function.

Unlike standard RNNs, the Long Short Term Memory (LSTM) architecture

[62] uses memory cells (Figure 3.3) to store and output information, allowing it to

better discover long-range temporal relationships. The hidden layer H of the LSTM
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is computed as follows:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (3.3)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (3.4)

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (3.5)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (3.6)

ht = ot tanh(ct) (3.7)

where σ is the logistic sigmoid function, and i, f , o, and c are respectively the input

gate, forget gate, output gate, and cell activation vectors. By default, the value

stored in the LSTM cell c is maintained unless it is added to by the input gate i

or diminished by the forget gate f . The output gate o controls the emission of the

memory value from the LSTM cell.

We use a deep LSTM architecture [5] (Figure 3.4) in which the output from

one LSTM layer is input for the next layer. We experimented with various numbers

of layers and memory cells, and chose to use five stacked LSTM layers, each with 512

memory cells. Following the LSTM layers, a Softmax classifier makes a prediction

at every frame.
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3.3.3 Training and Inference

The max-pooling models were optimized on a cluster using Downpour Stochas-

tic Gradient Descent starting with a learning rate of 10−5 in conjunction with a

momentum of 0.9 and weight decay of 0.0005. For LSTM, we used the same op-

timization method with a learning rate of N ∗ 10−5 where N is number of frames.

The learning rate was exponentially decayed over time. Each model had between

ten and fifty replicas split across four partitions. To reduce CNN training time, the

parameters of AlexNet and GoogLeNet were initialized from a pre-trained ImageNet

model and then fine-tuned on Sports-1M videos.

Network Expansion for Max-Pooling Networks: Multi-frame models

achieve higher accuracy at the cost of longer training times than single-frame models.

Since pooling is performed after CNN towers that share weights, the parameters for

a single-frame and multi-frame max-pooling network are very similar. This makes

it possible to expand a single-frame model to a multi-frame model. Max-pooling

models are first initialized as single-frame networks then expanded to 30-frames

and again to 120-frames. While the feature distribution of the max-pooling layer

could change dramatically as a result of expanding to a larger number of frames

(particularly in the single-frame to 30-frame case), experiments show that transfering

the parameters is nonetheless beneficial. By expanding small networks into larger

ones and then fine-tuning, we achieve a significant speedup compared to training a

large network from scratch.

LSTM Training: We followed the same procedure as training max-pooled
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network with two modifications: First, the video’s label was backpropagated at

each frame rather than once per clip. Second, a gain g was applied to the gradients

backpropagated at each frame. g was linearly interpolated from 0...1 over frames t =

0...T . g had the desired effect of emphasizing the importance of correct prediction

at later frames in which the LSTM’s internal state captured more information.

Compared empirically against setting g = 1 over all time steps or setting g = 1 only

at the last time step T (g = 0 elsewhere), linearly interpolating g resulted in faster

learning and higher accuracy. For the final results, during training the gradients are

backpropagated through the convolutional layers for fine tuning.

LSTM Inference: In order to combine LSTM frame-level predictions into a

single video-level prediction, we tried several approaches: 1) returning the prediction

at the last time step T , 2) max-pooling the predictions over time, 3) summing the

predictions over time and return the max 4) linearly weighting the predictions over

time by g then sum and return the max.

The accuracy for all four approaches was less than 1% different, but weighted

predictions usually resulted in the best performance, supporting the idea that the

LSTM’s hidden state becomes progressively more informed as a function of the

number of frames it has seen.

3.3.4 Optical Flow

Optical flow is a crucial component of any video classification approach be-

cause it encodes the pattern of apparent motion of objects in a visual scene. Since
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our networks process video frames at 1fps, they do not use any apparent motion

information. Therefore, we additionally train both our temporal models on optical

flow images and perform late fusion akin to the two-stream hypothesis proposed

by [46].

Interestingly, we found that initializing from a model trained on raw image

frames can help classify optical flow images by allowing faster convergence than when

training from scratch. This is likely due to the fact that features that can describe

for raw frames like edges also help in classifying optical flow images. This is related

to the effectiveness of Motion Boundary Histogram (MBH), which is analogous to

computing Histogram of Oriented Gradients (HOG) on optical flow images, in action

recognition [51].

Optical flow is computed from two adjacent frames sampled at 15fps using the

approach of [63]. To utilize existing implementation and networks trained on raw

frames, we store optical flow as images by thresholding at −40, 40 and rescaling the

horizontal and vertical components of the flow to [0, 255] range. The third dimension

is set to zero when feeding to the network so that it gives no effect on learning and

inference.

In our investigation, we treat optical flow in the same fashion as image frames

to learn global description of videos using both feature pooling and LSTM networks.
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3.4 Results

We empirically evaluate the proposed architectures on the Sports-1M and

UCF-101 datasets with the goals of investigating the performance of the proposed

architectures, quantifying the effect of the number of frames and frame rates on

classification performance, and understanding the importance of motion informa-

tion through optical flow models.

3.4.1 Sports-1M dataset

The Sports-1M dataset [45] consists of roughly 1.2 million YouTube sports

videos annotated with 487 classes, and it is representative of videos in the wild.

There are 1000-3000 videos per class and approximately 5% of the videos are an-

notated with more than one class. Unfortunately, since the creation of the dataset,

about 7% of the videos have been removed by users. We use the remaining 1.1

million videos for the experiments below.

Although Sports-1M is the largest publicly available video dataset, the anno-

tations that it provides are at video level. No information is given about the location

of the class of interest. Moreover, the videos in this dataset are unconstrained. This

means that the camera movements are not guaranteed to be well-behaved, which

means that unlike UCF-101, where camera motion is constrained, the optical flow

quality varies wildly between videos.

Data Extraction: The first 5 minutes of each video are sampled at a frame

rate of 1fps to obtain 300 frames per video. Frames are repeated from the start
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for videos that are shorter than 5 minutes. We learn feature pooling models that

process up to 120 frames (2 minutes of video) in a single example.

Data Augmentation: Multiple examples per video are obtained by randomly

selecting the position of the first frame and consistent random crops of each frame

during both training and testing. It is necessary to ensure that the same transforms

are applied to all frames for a given start/end point. We process all images in the

chosen interval by first resizing them to 256× 256 pixels, then randomly sampling a

220×220 region and randomly flipping the image horizontally with 50% probability.

To obtain predictions for a video we randomly sample 240 examples as described

above and average all predictions, unless noted otherwise. Since LSTM models

trained on a fixed number of frames can generalize to any number of frames, we also

report results of using LSTMs without data augmentation.

Video-Level Prediction: Given the nature of the methods presented in this

chapter, it is possible to make predictions for the entire video without needing to

sample, or aggregate ( the networks are designed to work on an unbounded number

of frames for prediction). However, for obtaining the highest possible classification

rates, we observed that it is best to only do this if resource constrained (i.e., when

it is only possible to do a single pass over the video for prediction). Otherwise the

data augmentation method proposed above yields between 3-5% improvements in

Hit@1 on the Sports-1M dataset.

Evaluation: Following [45], we use Hit@k values, which indicate the fraction

of test samples that contain at least one of the ground truth labels in the top k

predictions. We provide both video level and clip level Hit@k values in order to
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Method Clip Hit@1 Hit@1 Hit@5

Conv Pooling 68.7 71.1 89.3
Late Pooling 65.1 67.5 87.2
Slow Pooling 67.1 69.7 88.4
Local Pooling 68.1 70.4 88.9

Time-Domain Convolution 64.2 67.2 87.2

Table 3.1: Conv-Pooling outperforms all other feature-pooling architectures (Figure
3.2) on Sports-1M using a 120-frame AlexNet model.

compare with previous results where clip hit is the hit on a single video clip (30-120

frames) and video hit is obtained by averaging over multiple clips.

Comparison of Feature-Pooling Architectures: Table 3.1 shows the re-

sults obtained using the different feature pooling architectures on the Sports-1M

dataset when using a 120 frame AlexNet model. We find that max-pooling over the

outputs of the last convolutional layer provides the best clip-level and video-level

hit rates. Late Pooling, which max-pools after the fully connected layers, performs

worse than all other methods, indicating that preserving the spatial information

while performing the pooling operation across the time domain is important. Time-

Domain Convolution gives inferior results compared to max-pooling models. This

suggests that a single time-domain convolutional layer is not effective in learning

temporal relations on high level features, which motivates us to explore more so-

phisticated network architectures like LSTM which learns from temporal sequences.

Comparison of CNN Architectures: AlexNet and GoogLeNet single-

frame CNNs (Section 3.3) were trained from scratch on single-frames selected at
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Method Hit@1 Hit@5

AlexNet single frame 63.6 84.7
GoogLeNet single frame 64.9 86.6

LSTM + AlexNet (fc) 62.7 83.6
LSTM + GoogLeNet (fc) 67.5 87.1

Conv pooling + AlexNet 70.4 89.0
Conv pooling + GoogLeNet 71.7 90.4

Table 3.2: GoogLeNet outperforms AlexNet alone and when paired with both Conv-
Pooling and LSTM. Experiments performed on Sports-1M using 30-frame Conv-
Pooling and LSTM models. Note that the (fc) models updated only the final layers
while training and did not use data augmentation.

random from Sports-1M videos. Results (Table 3.2) show that both CNNs out-

perform Karpathy et al .’s prior single-frame models [45] by a margin of 4.3-5.6%.

The increased accuracy is likely due to advances in CNN architectures and sampling

more frames per video when training (300 instead of 50).

Comparing AlexNet to the more recent GoogLeNet yields a 1.9% increase in

Hit@5 for the max-pooling architecture, and an increase of 4.8% for the LSTM. This

is roughly comparable to a 4.5% decrease in top-5 error moving from the Krizhevsky-

style CNNs that won ILSVRC-13 to GoogLeNet in ILSVRC-14. For the max-pool

architecture, this smaller gap between architectures is likely caused by the increased

number of noisy images in Sports-1M compared to ImageNet.

Fine Tuning: When initializing from a pre-trained network, it is not always

clear whether fine-tuning should be performed. In our experiments, fine tuning was

crucial in achieving high performance. For example, in Table 3.2 we show that a
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Method Frames Clip Hit@1 Hit@1 Hit@5

LSTM 30 N/A 72.1 90.4

Conv pooling
30 66.0 71.7 90.4
120 70.8 72.3 90.8

Table 3.3: Effect of the number of frames in the model. Both LSTM and Conv-
Pooling models use GoogLeNet CNN.

Method Hit@1 Hit@5

LSTM on Optical Flow 59.7 81.4
LSTM on Raw Frames 72.1 90.6
LSTM on Raw Frames + LSTM on Optical Flow 73.1 90.5

30 frame Optical Flow 44.5 70.4
Conv Pooling on Raw Frames 71.7 90.4
Conv Pooling on Raw Frames + Conv Pooling on Optical Flow 71.8 90.4

Table 3.4: Optical flow is noisy on Sports-1M and if used alone, results in lower
performance than equivalent image-models. However, if used in conjunction with
raw image features, optical flow benefits LSTM. Experiments performed on 30-frame
models using GoogLeNet CNNs.

LSTM network paired with GoogLeNet, running on 30 frames of the video achieves

a Hit@1 rate of 67.5. However, the same network with fine tuning achieves 69.5

Hit@1. Note that these results do not use data augmentation and classify the entire

300 seconds of a video.

Effect of Number of Frames: Table 3.3 compares Conv-Pooling and LSTM

models as a function of the number of frames aggregated. In terms of clip hit, the

120 frame model performs significantly better than the 30 frame model. Also our

best clip hit of 70.8 represents a 70% improvement over the Slow Fusion approach

of [45] which uses clips of few seconds length. This confirms our initial hypothesis

that we need to consider the entire video in order to benefit more thoroughly from
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Category Method Frames Clip Hit@1 Hit@1 Hit@5

Prior Single Frame 1 41.1 59.3 77.7
Results [45] Slow Fusion 15 41.9 60.9 80.2

Conv Pooling Image and Optical Flow 120 70.8 72.4 90.8

LSTM Image and Optical Flow 30 N/A 73.1 90.5

Table 3.5: Leveraging global video-level descriptors, LSTM and Conv-Pooling
achieve a 20% increase in Hit@1 compared to prior work on the in Sports-1M dataset.
Hit@1, and Hit@5 are computed at video level.

its content.

Optical Flow: Table 3.4 shows the results of fusion with the optical flow

model. The optical flow model on its own has a much lower accuracy (59.7%) than

the image-based model (72.1%) which is to be expected given that the Sports dataset

consists of YouTube videos which are usually of lower quality and more natural than

hand-crafted datasets such as UCF-101. In the case of Conv Pooling networks the

fusion with optical flow has no significant improvement in the accuracy. However,

for LSTMs the optical flow model is able to improve the overall accuracy to 73.1%.

Overall Performance: Finally, we compare the results of our best models

against the previous state-of-art on the Sports-1M dataset at the time of submission.

Table 3.5 reports the results of the best model from [45] which performs several

layers of 3D convolutions on short video clips against ours. The max-pool method

shows an increase of 18.7% in video Hit@1, whereas the LSTM approach yields a

relative increase of 20%. The difference between the max-pool and LSTM method is

explained by the fact that the LSTM model can use optical flow in a manner which

lends itself to late model fusion, which was not possible for the max-pool model.

49



3.4.2 UCF-101 Dataset

The UCF-101 [64] contains 13,320 videos with 101 action classes covering

a broad set of activities such as sports, musical instruments, and human-object

interaction. We follow the suggested evaluation protocol and report the average

accuracy over the given three training and testing partitions. It is difficult to train

a deep network with such a small amount of data. Therefore, we test how well our

models that are trained in Sports-1M dataset perform in UCF-101.

Comparison of Frame Rates: Since UCF-101 contains short videos, 10-

15 seconds on average, it is possible to extract frames at higher frame rates such

as 6fps while still capturing context from the full video. We compare 30-frame

models trained at three different frame-rates: 30fps (1 second of video) and 6fps

(5 seconds). Table 3.6 shows that lowering the frame rate from 30fps to 6fps yields

slightly better performance since the model obtains more context from longer input

clips. We observed no further improvements when decreasing the frame rate to

1fps. Thus, as long as the network sees enough context from each video, the effects

of lower frames rate are marginal. The LSTM model, on the other hand can take

full advantage of the fact that the videos can be processed at 30 frames per second.

Overall Performance: Our models achieve state-of-the-art performance on

UCF-101 (Table 3.7), slightly outperforming approaches that use hand-crafted fea-

tures and CNN-based approaches that use optical flow. As before, the performance

edge of our method results from using increased numbers of frames to capture more

of the video.
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Method Frame Rate 3-fold Accuracy (%)

Single Frame Model N/A 73.3

Conv Pooling (30 frames)
30 fps 80.8
6 fps 82.0

Conv Pooling (120 frames)
30 fps 82.6
6 fps 82.6

Table 3.6: Lower frame rates produce higher UCF-101 accuracy for 30-frame Conv-
Pooling models.

Our 120 frames model improves upon previous work [46] (82.6% vs 73.0%)

when considering models that learn directly from raw frames without optical flow

information. This is a direct result of considering larger context within a video, even

when the frames within a short clip are highly similar to each other.

Compared to Sports-1M, optical flow in UCF-101 provides a much larger im-

provement in accuracy (82.6% vs. 88.2% for max-pool). This results from UCF-101

videos being better centered, less shaky, and better trimmed to the action in question

than the average YouTube video.

High Quality Data: The UCF-101 dataset contains short, well-segmented

videos of concepts that can typically be identified in a single frame. This is evidenced

by the high performance of single-frame networks (See Table 3.7). In contrast, videos

in the wild often feature spurious frames containing text or shot transitions, hand-

held video shot in either first person or third person, and non-topical segments such

as commentators talking about a game.
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Method 3-fold Accuracy (%)

Improved Dense Trajectories (IDTF)s [51] 87.9

Slow Fusion CNN [45] 65.4

Single Frame CNN Model (Images) [46] 73.0

Single Frame CNN Model (Optical Flow) [46] 73.9

Two-Stream CNN (Optical Flow + Image Frames, Averaging) [46] 86.9

Two-Stream CNN (Optical Flow + Image Frames, SVM Fusion) [46] 88.0

Our Single Frame Model 73.3

Conv Pooling of Image Frames + Optical Flow (30 Frames) 87.6
Conv Pooling of Image Frames + Optical Flow (120 Frames) 88.2

LSTM with 30 Frame Unroll (Optical Flow + Image Frames) 88.6

Table 3.7: UCF-101 results. The bold-face numbers represent results that are higher
than previously reported results.

3.5 Conclusion

We presented two video-classification methods capable of aggregating frame-

level CNN outputs into video-level predictions: Feature Pooling methods which

max-pool local information through time and LSTM whose hidden state evolves with

each subsequent frame. Both methods are motivated by the idea that incorporating

information across longer video sequences will enable better video classification.

Unlike previous work which trained on seconds of video, our networks utilize up to

two minutes of video (120 frames) for optimal classification performance. If speed is

of concern, our methods can process an entire video in one shot. Training is possible

by expanding smaller networks into progressively larger ones and fine-tuning. The

resulting networks achieve state-of-the-art performance on both the Sports-1M and

52



UCF-101 benchmarks, supporting the idea that learning should take place over the

entire video rather than short clips.

Additionally, we explore the necessity of motion information, and confirm

that for the UCF-101 benchmark, in order to obtain state-of-the-art results, it is

necessary to use optical flow. However, we also show that using optical flow is not

always helpful, especially if the videos are taken from the wild as is the case in the

Sports-1M dataset. In order to take advantage of optical flow in this case, it is

necessary to employ a more sophisticated sequence processing architecture such as

LSTM. Moreover, using LSTMs on both image frames, and optical flow yields the

highest published performance measure for the Sports-1M benchmark.

In the current models, backpropagation of gradients proceeds down all layers

and backwards through time in the top layers, but not backwards through time in

the lower (CNN) layers. In the future, it would be interesting to consider a deeper

integration of the temporal sequence information into the CNNs themselves. For

instance, a Recurrent Convolutional Neural Network may be able to generate better

features by utilizing its own activations in the last frame in conjunction with the

image from the current frame.
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(a) Conv Pooling (b) Late Pooling

(c) Slow Pooling (d) Local Pooling

(e) Time-Domain Convolution

Figure 3.2: Different Feature-Pooling Architectures: The stacked convolutional lay-
ers are denoted by “C”. Blue, green, yellow and orange rectangles represent max-
pooling, time-domain convolutional, fully-connected and softmax layers respectively.
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Figure 3.3: Each LSTM cell remembers a single floating point value ct (Eq. 3.5).
This value may be diminished or erased through a multiplicative interaction with the
forget gate ft (Eq. 3.4) or additively modified by the current input xt multiplied by
the activation of the input gate it (Eq. 3.3). The output gate ot controls the emission
of ht, the stored memory ct transformed by the hyperbolic tangent nonlinearity (Eq.
3.6,3.7). Image duplicated from [5].

Figure 3.4: Deep Video LSTM takes input the output from the final CNN layer at
each consecutive video frame. CNN outputs are processed forward through time
and upwards through five layers of stacked LSTMs. A softmax layer predicts the
class at each time step. The parameters of the convolutional networks (pink) and
softmax classifier (orange) are shared across time steps.
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Chapter 4: ActionFlowNet: Learning Motion Representation for Ac-

tion Recognition

4.1 Motivation

Convolutional Neural Networks have demonstrated great success to multiple

visual recognition tasks. With the help of large amount of annotated data like

ImageNet, the network learns multiple layers of complex visual features directly from

raw pixels in an end-to-end manner without relying on hand-crafted features. Unlike

image labeling, manual video annotation often involves frame-by-frame inspection

and temporal trimming of videos that are expensive and time consuming. This

prohibits the technique to be applied to other problem domains like medical imaging

where data collection is difficult.

We focus on effectively learning video motion representation for action recog-

nition without large amount of external annotated video data. Following previous

work [65–67] that leverages spatio-temporal structure in videos for unsupervised or

self-supervised representation learning, we are interested in learning video represen-

tation from motion information encoded in videos in addition to semantic labels.

Learning motion representation on videos from raw pixels is challenging. With
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Figure 4.1: ActionFlowNet for jointly estaimting optical flow and recognizing ac-
tions. Orange and blue blocks represent ResNet modules, where blue blocks repre-
sents strided convolution. Channel dimension is not shown in the figure.

large scale datasets such as Sports-1M [45] and Kinetics [68], one could train a high

capacity classifier to learn complex motion signatures for action recognition by ex-

tending image based CNN architectures with 3D convolutions for video action recog-

nition [2,45,69]. However, while classification loss is an excellent generic appearance

learner for image classification, it is not necessarily the most effective supervision

for learning motion features for action recognition. As shown in [2], even with large

amount of labeled video data, the model still benefits from additional optical flow

input stream. This suggests that the model is ineffective in learning motion repre-

sentation for action recognition from video frames, and thus alternative approach

should be explored for learning video representation.

Two-stream convolutional neural networks, which separately learn appearance

and motion by two convolutional networks on static images and optical flow respec-

tively, show impressive results on action recognition [46]. The separation, however,

fails to learn the interaction between the motion and the appearance of objects, and
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introduces additional complexity of computing the flow to the classification pipeline.

In addition, human visual system does not take optical flow as front end input sig-

nals but infer the motion from raw intensities internally. Therefore, we focus to learn

both motion features and appearance directly from raw pixels without hand-crafted

flow input.

Encouraged by the success on estimating optical flow with convolutional neural

networks [70], we train a single stream feed-forward convolutional neural network -

ActionFlowNet - for jointly recognizing actions and estimating optical flow. Specif-

ically, we formulate the learning problem as multitask learning, which enables the

network to learn both appearance and motion in a single network from raw pixels.

The proposed architecture is illustrated in Figure 4.1. With the auxiliary task of

optical flow learning, the network effectively learns useful representations from mo-

tion modeling without a large amount of human annotation. Based on the already

learned motion modeling, the model then only requires action annotations as super-

vision to learn action class specific details, which results in requiring less annotation

to perform well for action recognition.

Our experiments and analyses show that our model successfully learns motion

features for action recognition and provide insights on how the learned optical flow

quality affects action classification. We demonstrate the effectiveness of our learned

motion representation on two standard action recognition benchmarks - UCF101

and HMDB51. Without providing external training data or fine-tuning from already

well-trained models with millions of samples, we show that jointly learning action

and optical flow significantly boosts action recognition accuracy compared to state-
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of-the-art representation learning methods trained without external labeled data.

Remarkably, our model outperforms the models trained with large datasets Sports-

1M pretrained C3D by 1.6% on UCF101 dataset, showing the importance of feature

learning algorithms.

4.2 Related Work

Over the past few years, action recognition accuracy has been greatly improved

by learned features and various learning models utilizing deep networks. Two-stream

network architecture was proposed to recognize action using both appearance and

motions separately [46]. A number of follow up methods have been proposed based

on two-stream networks that further improved action recognition accuracies [3, 71–

74]. Our work is motivated by their success in incorporating optical flow for action

recognition, but we focus on learning from raw pixels instead of relying on hand-

crafted representations.

Optical flow encodes motion between frames and is highly related to action

recognition. Our model is motivated by the success of FlowNet [70] and 3D convo-

lutions for optical flow estimation in videos [1], but emphasizes on improving action

recognition.

Pre-training the network with a large dataset helps to learn appearance signa-

tures for action recognition. Karpathy et al . proposed a “Slow Fusion” network for

large scale video classification [45]. Tran et al . trained a 3D convolutional neural net-

work (C3D) with a large amount of data and showed the learned features are generic
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for different tasks [69]. Recently, Carreira and Zisserman trained I3D models [2] on

the Kinetics dataset [68] and achieved strong action recognition performance. In

contrast, since training networks on such large scale datasets is extremely computa-

tionally expensive, we focus on learning from small amounts of labeled data. With

only small amount of labeled data, we show that our model performs competitive

to models trained with large datasets.

Leveraging videos as a source for unsupervised learning has been suggested

to learn video representations without large labeled data. Different surrogate tasks

have been proposed to learn visual representations from videos without any labels.

Wang et al . trained a network to learn visual similarity for patches obtained from

visual tracking in videos [75]. Misra et al . trained a network to differentiate the

temporal order of different frames from a video [65]. Jacob et al . learned apperance

features by predicting the future trajectories in videos [76]. Fernando et al . proposed

Odd-One-Out networks (O3N) to identify video sequences that are out of order

for self-supervised learning [67]. Our work, similarly, uses video as an additional

source for learning visual representation. However, in contrast to previous work

which focused on learning visual representations for a single image, we learn motion

representations for videos which models more than a single frame. Vondrick et al .

used a Generatie Adversarial Network to learn a generative model for video [66].

We focus on learning motion representations but not video generation.

Independent to our work, Diba et al . trained a two stream network with flow

estimation [77]. They based their network on C3D with a two-stream architecture.

Our work employs a single stream network to learn both appearance and motion.
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While we both estimate motion and recognize actions in the same model, we focus

on learning motion representations without pretraining on large labeled datasets

and provide more analysis to learn flow representations for action recognition.

4.3 Approach

We propose a single end-to-end model to learn both motions and action classes

simultaneously. Our primary goal is to improve action classification accuracy with

the help of motion information; we use optical flow as a motion signature. Unlike

previous methods that utilize externally computed optical flow as the input to their

models, we only use the video frames for input and simultaneously learn the flow

and class labels.

4.3.1 Multi-frame Optical Flow with 3D-ResNet

Fischer et al . proposed FlowNet [70] that is based on convolutional neural

networks to estimate high quality optical flow. Tran et al . proposed to use 3D con-

volution and deconvolution layers to learn multi-frame optical flow from videos [1].

In addition, He et al . introduced residual networks (ResNet) to train a deeper con-

volutional neural network model by adding shortcut connections [10].

In addition to the benefit of easy training, ResNet is fully convolutional, so

is easily applied to pixel-wise prediction of optical flow, unlike many architectures

with fully connected layers including AlexNet [8] and VGG-16 [4]. In contrast to

other classification architectures like AlexNet and VGG-16, which contains multiple
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max pooling layers that may harm optical flow estimation, the ResNet architecture

only contains one pooling layer right after conv1. We believe the reduced number of

pooling layers makes ResNet more suitable for optical flow estimation where spatial

details need to be preserved. Specifically, we use an 18 layers ResNet, which is

computationally efficient with good classification performance [10].

Taking advantage of ResNet for flow estimation, we extend ResNet-18 to 3D-

ResNet-18 for multi-frame optical flow estimation by replacing all k × k 2D con-

volutional kernels with extra temporal dimension k × k × 3, inspired by [1]. The

deconvolution layers in the decoder are extended similarly. Skip connections from

encoder to decoder are retained as in [70] to obtain higher resolution information

in the decoder. Unlike [70], we only use the loss on the highest resolution to avoid

downsampling in the temporal dimension. We do not apply temporal max pooling

suggested in [1, 69], but use only strided convolutions to preserve temporal details.

After the third residual block, the temporal resolution is reduced by half when the

spatial resolution is reduced.

Future Prediction. In addition to computing the optical flow between the

T input frames, we train the model to predict the optical flow on the last frame,

which is the optical flow between the T th and (T + 1)st frames. There are two

benefits of training the model to predict the optical flow of the last frame: 1) It is

practically easier to implement a model with the same input and output sizes, since

the output sizes of deconvolution layers are usually multiples of the inputs; and 2)

Semantic reasoning is required for the model to extrapolate the future optical flow

given the previous frames. This possibly trains the model to learn better motion
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features for action recognition, as also suggested by previous work [76], which

learned appearance feature by predicting the future.

Following [70], the network is optimized over the end-point error (EPE), which

is the sum of L2 distance between the ground truth optical flow and the obtained

flow over all pixels. The total loss for the multiple frame optical flow model is the

EPE of T output optical flow frames:

T∑
t=1

∑
p

‖oj,t,p − ôj,t,p‖2, (4.1)

where oj,t,p is 2-dimensional optical flow vector of the tth and the (t+ 1)st frame in

the jth video at pixel p.

Note that the T th optical flow frame oj,t is the future optical flow for the T th

and (T + 1)st input frames, where the (T + 1)st frame is not given to the model.

4.3.2 ActionFlowNet

Knowledge Transfer by Finetuning. Finetuning a pretrained network is a com-

mon practice to transfer knowledge from different datasets and tasks. Unlike pre-

vious work, where knowledge transfer has been accomplished between very simi-

lar tasks (image classification and detection or semantic segmentation), knowledge

transfer in our model is challenging since the goals of pixel-wise optical flow and

action classification are not obviously compatible. We transfer the learned motion

by initializing the classification network using a network trained for optical flow

estimation. Since the network was trained to predict optical flow, it should encode
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motion information in intermediate levels which support action classification. How-

ever, finetuning a pretrained network is known to have the problem of catastrophic

forgetting. Specifically, when training the network for action recognition, the orig-

inally initialized flow information could be destroyed when the network adapts the

appearance information. We prevent catastrophic forgetting by using the multitask

learning framework.

ActionFlowNet. To force the model to learn motion features while training for

action recognition, we propose a multitask model ActionFlowNet, which simultane-

ously learns to estimate optical flow, together with predicting the future optical flow

of the last frame, and action classification to avoid catastrophic forgetting. With

optical flow as supervision, the model can effectively learn motion features while not

relying on explicit optical flow computation.

In our implementation, we take 16 consecutive frames as input to our model.

In the last layer of the encoder, global average pooling across the spatial-temporal

feature map, with size 512×2×7×7, is employed to obtain a single 512 dimensional

feature vector, followed by a linear softmax classifier for action recognition. The

architecture is illustrated in Figure 4.1. The multitask loss is given as follows:

MT-Lossj = −1(yj = ŷj) log p(ŷj)︸ ︷︷ ︸
Classification Loss

+ λ

T∑
t=1

∑
p

‖oj,t,p − ôj,t,p‖2︸ ︷︷ ︸
Flow Loss

, (4.2)

where 1(·) is a indicator function, yj and ŷj are the groundtruth and predicted

action labels respectively of the jth video. λ is a hyper-parameter balancing the
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classification loss and the flow loss, where optical flow estimation can be seen as a

regularizer for the model to learn motion feature for classification.

Although previous work on multitask learning [78] suggests that sharing pa-

rameters of two different tasks may hurt performance, this architecture performs

well since optical flow is known empirically to improve video action recognition sig-

nificantly. In addition, our architecture contains multiple skip connections from

lower convolutional layers to decoder. This allows higher layers in the encoder to

focus on learning more abstract and high level features, without constraining them

to remembering all spatial details for predicting optical flow, which is beneficial

for action recognition. This idea is central to Ladder Networks [79] which intro-

duced lateral connections to learn denoising functions and significantly improved

classification performance.

It is worth noting that this is a very general architecture and requires minimal

architectural engineering. Thus, it can be trivially extended to learn more tasks

jointly to adapt knowledge from different domains.

ActionFlowNet Inference. During inference for action classification, optical flow

estimation is not required since the motion information is already learned in the

encoder. Therefore, the decoder can be removed and only the forward pass of the

encoder and the classifier are computed. If the same backbone architecture is used,

our model runs at the same speed as a single-stream RGB network without extra

computational overhead. Since the optical flow estimation and flow-stream CNN

are not needed, it is more efficient than two-stream counterparts.
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4.3.3 Two-Frame Based Models

In this section, we propose various models that take two consecutive input

frames. Experimenting with two-frame models has three benefits. First, when there

are multiple frames in the input, it is difficult to determine whether the performance

improvement comes from motion modeling or aggregating long term appearance

information. Thus for better analysis, it is desirable to use the two frame input.

Second, training two-frame models is computationally much more efficient than

multi-frame models which take N video frames and output N−1 optical flow images.

Third, we can measure the effectiveness of external large scale optical flow datasets,

such as the FlyingChairs dataset [70], which provide ground-truth flow on only two

consecutive frames, for action recognition.

Learning Optical Flow with ResNet. Similarly, we use ResNet-18 as our back-

bone architecture and learn optical flow. Like FlowNet-S [70], we concatenate two

consecutive frames to produce a 6(ch) × 224(w) × 224(h) input for our two frames

model. At the decoder, there are four outputs with different resolutions. The total

optical flow loss is the weighted sum of end-point error at multiple resolutions per

the following equation:
4∑

r=1

αr

∑
p

‖o(r)
j,t,p − ô

(r)
j,t,p‖2, (4.3)

where o
(r)
j,t,p is the optical flow vector of the rth layer output and αr is the weighting

coefficient of the rth optical flow output. We refer to this pre-trained optical flow

estimation network as FlowNet.
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We first propose an architecture to classify actions on top of the optical flow

estimation network, which we call the Stacked Model. Then, we present the two-

frame version of ActionFlowNet to classify the actions and estimate the optical flow,

which we call the ActionFlowNet-2F.

4.3.3.1 Stacked Model

A straightforward way to use the trained parameters from FlowNet is to take

the output of FlowNet and learn a CNN on top of the output, as shown in Fig-

ure 4.2. This is reminiscence of the temporal stream in [46] which learns a CNN on

precomputed optical flow. If the learned optical flow has high quality, it should give

similar performance to learning a network on optical flow.

6x224x224

ResNet

Optical	
Flow

Action	
Labels

64x56x56
128x28x28

256x14x14
512x7x7

64x56x56

FC

128x28x28
256x14x14

512x7x7

Softmax

Figure 4.2: Network structure of the ‘Stacked Model’.

Since the output of FlowNet has 4 times lower resolution than the original

image, we remove the first two layers of the CNN (conv1 and pool1) and stack the

network on top of it. We also tried to upsample the flow to the original resolution and

use the original architecture including conv1 and pool1, but this produces slightly

worse results and is computationally more expensive.

The stacked model introduces about 2x number of parameters compared to
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the original ResNet, and is also 2x more expensive for inference. It learns motion

features by explicitly including optical flow as an intermediate representation, but

cannot model appearance and motion simultaneously, similar to learning a CNN on

precomputed optical flow.
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Figure 4.3: Network structure of the ActionFlowNet-2F

4.3.3.2 ActionFlowNet-2F

The multitask ActionFlowNet-2F architecture, as illustrated in Figure 4.3,

is based on the two-frame FlowNet with additional classifier. Similar to Action-

FlowNet, classification is performed by average pooling the last convolutional layer

in the encoder followed by a linear classsifier.

Just as with the stacked model, the loss function is defined for each frame. For

the tth frame in the jth video the loss is defined as a weighted sum of classification
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loss and optical flow loss:

MT-Lossj,t = −1(yj = ŷj) log p(ŷj)︸ ︷︷ ︸
Classification Loss

+ λ

4∑
r=1

αr

∑
p

‖o(r)
j,t,p − ô

(r)
j,t,p‖2︸ ︷︷ ︸

Flow Loss

, (4.4)

4.4 Experiments

4.4.1 Datasets

We use two publicly available datasets, UCF101 and HMDB51, to evaluate

action classification accuracy. The UCF101 dataset contains 13,320 videos with

101 action classes [64]. The HMDB51 contains 6,766 videos with 51 action cate-

gories [50]. As the number of training videos in HMDB51 is small, we initialized

our models trained on UCF101 and fine-tuned for HMDB51 similar to [46]

The UCF101 and HMDB51 do not have groundtruth optical flow annotation.

Similar to [1], we use EpicFlow [80] as a psuedo-groundtruth optical flow to train

the motion part of the network.

To experiment models with better learned the motion signature, we also use

FlyingChairs dataset [70] as it has groundtruth optical flow since it is a synthetic

dataset. The FlyingChairs dataset contains 22,872 image pairs and ground truth

flow from synthetically generated chairs on real images. We use the Sintel dataset [81],

which provides dense groundtruth optical flow, to validate the quality of optical flow

models.
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4.4.2 Experimental Setup

Overfitting Prevention. We use different data augmentations on different datasets

and tasks. On the FlyingChairs dataset for optical flow estimation, we augment the

data using multi-scale cropping, horizontal flipping, translation and rotation follow-

ing [70]. On the UCF101 dataset for optical flow estimation, we use multi-scale

cropping and horizontal flipping, but do not use translation and rotation in order

to maintain the original optical flow distribution in the data. On UCF101 dataset

for action recognition, we use color jittering [9], multi-scale cropping and horizontal

flipping. Dropout is applied to the output of the average pooling layer before the

linear classifier with probability 0.5.

Optimization and Evaluation. The models are trained using Adam [82] for

40,000 iterations with batch size 128 and learning rate 1 × 10−4. For evaluation,

we sample 25 random video segments from a video and run a forward pass to the

network on the 10-crops (4 corners + center with their horizontal reflections) and

average the prediction scores.

4.4.3 Improving Action Recognition

We first evaluate the action recognition accuracy by the various proposed

two-frame models described in Section 4.3.3, and then the multi-frame models in

Section 4.3.2, on both UCF101 and HMDB51 datasets. All models take RGB inputs

only without external optical flow inputs. The recognition accuracies are summa-

rized in Table 4.1.
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Method UCF101 HMDB51

Two-frame Models

Scratch 51.3 23.9
FlowNet fine-tune 66.0 29.1

Stacked 69.6 42.4
ActionFlowNet-2F (UCF101) 70.0 42.4
ActionFlowNet-2F (FlCh+UCF101) 71.0 42.6

ImageNet pretrained ResNet-18 80.7 47.1

Multi-frame Models

Multi-frame FlowNet fine-tune 80.8 50.6
ActionFlowNet (UCF101) 83.9 56.4

Sports-1M pretrained C3D [69] 82.3 53.5
Kinetics pretrained I3D [2] 95.6 74.8

Table 4.1: Action recognition accuracies of our models on UCF101 and HMDB51
datasets (split 1). FlCh denotes FlyingChairs dataset. “ActionFlowNet-2F
(UCF101)” denotes its FlowNet part is pretrained on UCF101, and “ActionFlowNet-
2F (FlCh+UCF101)” denotes its FlowNet part is pretrained on FlyingChairs
dataset. All ActionFlowNets are then learned on UCF101 dataset for action and
flow. For reference, we additionally show the results trained with large scale
datasets [1, 2], but it is not directly comparable since our models are trained with
significantly less annotation.

Two-frame Models. ‘Scratch’ is a ResNet-18 model that is trained from

scratch (random initialization) using UCF101 without any extra supervision, which

represents the baseline performance without motion modeling. ‘FlowNet fine-tune’

is a model that is pretrained from UCF101 for optical flow only, and then fine-tuned

with action classification, which captures motion information by initialized FlowNet.

‘Stacked’ is a stacked classification model on top of optical flow output depicted in

Figure 4.2. Its underlying FlowNet is trained with UCF101 and is fixed to predict

optical flow, so only the CNN classifier on top is learned. ‘ActionFlowNet-2F’ is
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the multitask model depicted in Figure 4.3, which is trained for action recognition

and optical flow estimation to learn both motion and appearance. We trained two

versions of ActionFlowNet-2F: one with FlowNet pretrained on UCF101 and one on

FlyingChairs dataset.

As shown in the table, all proposed models - ‘FlowNet fine-tune’, ‘Stacked’

and ‘ActionFlowNet-2F’ significantly outperform ‘Scratch’ . This implies that our

models can take advantage of the learned motion for action recognition, which is

difficult to learn implicitly from action labels.

Both the Stacked model and two ActionFlowNet-2Fs outperform the finetun-

ing models by a large margin (up to 5.0% in UCF101 and up to 13.5% in HMDB51).

As all models are pretrained from the high quality optical flow model, the results

show that the knowledge learned from previous task is prone to be forgotten when

learning new task without multitask learning. With extra supervision from optical

flow estimation, multitask models regularize the action recognition with the effort

of learning the motion features.

While the Stacked model performs similarly to ActionFlowNet-2F when trained

only on UCF101, ActionFlowNet-2F is much more compact than the Stacked model,

containing only approximately half the number of parameters of the Stacked model.

When ActionFlowNet-2F is first pretrained with FlyingChairs, which predicts bet-

ter quality optical flow in EPE, and finetuned with the UCF101 dataset, it further

improves accuracy by 1%. This implies that our multitask model is capable of

transferring general motion information from other datasets to improve recognition

accuracy further.
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Our ActionFlowNet-2F still performs inferior compared to ResNet pretrained

on ImageNet, especially in UCF101 (71.0% vs 80.7%) because of the rich back-

ground context appearance in the dataset. When evaluated on HMDB51, where the

backgrounds are less discriminative, our ActionFlowNet-2F is only slightly behind

the ImageNet pretrained model (42.6% vs 47.1%), indicating that our model learns

strong motion features for action recognition.

Multi-frame Models. We train 16-frame ActionFlowNet on UCF101. The

results are shown in the lower part of Table 4.1. By taking more frames per model,

our multi-frame models significantly improve two-frame models (83.9% vs 70.0%).

This confirms previous work [45, 83] that taking more input frames in the model is

important.

Remarkably, without pretraining on large amounts of labeled data, our Ac-

tionFlowNet outperforms the ImageNet pretrained single frame model and Sports-

1M pretrained C3D. Our ActionFlowNet gives 1.6% and 2.9% improvements over

C3D on UCF101 and HMDB51 repsectively. The recently published I3D models [2]

achieved strong performance by training on the newly released Kinetics dataset [68]

with large amount of clean and trimmed labeled video data and performing 3D con-

volutions on 64 input frames instead of 16 frames. Although the I3D model achieved

better results compared to previous work, their RGB model could still benefit from

optical flow inputs, which indicates that even with large amount of labeled data the

I3D model does not learn motion features effectively.

It should be noted that there is prior work that gives better results with the

use of large scale datasets like ImageNet and Kinetics dataset [2], or with the help
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of external optical flow input [46]. Those results are not directly comparable to us

because we are using a significantly smaller amount of labeled data - only UCF101

and HMDB51. Nevertheless, our method shows promising results for learning mo-

tion representations from videos. Even with only a small amount of labeled data,

our action recognition network outperforms methods trained with a large amount

of labeled data with the exception of the recently trained I3D models [2] which used

ImageNet and Kinetics dataset [68]. We envision the performance of ActionFlowNet

would further improve when trained on larger datasets like Kinetics and taking more

input frames in the model.

Method UCF101 Accuracy

ResNet-18 Scratch 51.3
VGG-M-2048 Scratch [46] 52.9
Sequential Verification [65] 50.9
VGAN [66] 52.1
O3N [67] 60.3
OPN [84] 59.8

FlowNet fine-tuned (ours) 66.0
ActionFlowNet-2F (ours) 70.0

ActionFlowNet (ours) 83.9

Table 4.2: Results on UCF101 (split 1) from single stream networks with raw pixel
input and without pretraining on large labeled dataset.

Comparison to state-of-the-arts. We compare our approach to previous

work that does not perform pretraining with external large labeled datasets in Ta-

ble 4.2 on UCF101. All models are trained only with UCF101 labels with different

unsupervised learning methods. Our models significantly outperform previous work

that use videos for unsupervised feature learning [65–67,84]. Specifically, even with
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(a) Image (b) Output flow from
ActionFlowNet-2F

(c) ImageNet Model:
Appearance Only

(d) ActionFlowNet-2F:
Motion and Appear-
ance

Figure 4.4: Visualization of important regions for action recognition. Our
ActionFlowNet-2F discovers the regions where the motions are happening to be
important while ‘Appearance Only’ captures discriminative regions based on the
appearance.

only our two-frame fine-tuned model on UCF101, the model obtain more than 5.9%

improvement compared to Sequential Verification, VGAN and O3N, indicating the

importance of motion in learning video representations. When combined with mul-

titask learning, the performance improves to 70.0%. Finally, when extending our

model to 16 frames by 3D convolutions, the performance of ActionFlowNet further

boost to 83.9%, giving a 23.6% improvement over the best previous work. This

shows that explicitly learning motion information is important for learning video

representations.
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Figure 4.5: Optical flow and future prediction outputs from our multi-frame model.
The 1st and 3rd row shows an example of input videos, and the 2nd and 4th row
shows the corresponding optical flow outputs. The last optical flow output frames
(in red border) are extrapolated rather than computed within input frames. Only
last 8 frames are shown per sample due to space limit.

4.4.3.1 Learning Motions for Discriminative Regions

We visualize what is learned from the multitask network by using the method

from [11] by using a black square to occlude the frames at different spatial loca-

tions and compute the relative difference between classification confidence before

and after occlusion. We visualize the two-frame based ActionFlowNet-2F for more

straightforward visualization.

We compare the discriminative regions discovered by our multitask network

with ones by the ImageNet pretrained ResNet-18, which only models the discrimina-

tive appearances without motion. Figure 4.4 shows example results. The visualiza-

tion reveals that our model focuses more on motion, while the ImageNet pretrained

network relies more on background appearance, which may not directly relate to the
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action itself. However, when appearance is discriminative - for example the writing

on the board in the last example - our model can also focus on appearance, which

is not possible for models that learn from optical flow only.

4.4.3.2 Optical Flow and Future Prediction

Figure 4.5 shows the optical flow estimation and prediction results from our

multi-frame model. Although the model does not have accurate optical flow groundtruth

for training, the optical flow quality is fairly good. The model predicts reasonable

future optical flow, which shows semantic understanding from the model to the

frames in addition to simply performing matching between input frames.

4.4.3.3 Classes Improved By Learning Motions

We compare the per class accuracy for ActionFlowNet, ImageNet pretrained

model and C3D. Not all action classes are motion-centric - objects and their con-

textual (background) appearances provide more discriminative information for some

classes [85], which can greatly benefit from large amounts of labeled data. As shown

in Figure 4.6, our model better recognizes action classes with simple and discrim-

inative motion like WallPushups and ApplyEyeMakeup, while C3D and ImageNet

models perform better on classes with complex appearance like MoppingFloor and

BaseballPitch.
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(a) ActionFlowNet vs C3D
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(b) ActionFlowNet vs ImageNet pretrained ResNet-18

Figure 4.6: Classwise accuracy improvement by ActionFlowNet over pretrained
models. The blue bars show positive improvements and the red ones show oth-
erwise.

4.4.4 Recognition and Optical Flow Quality

In this section, we study the effects of different optical flow models for action

recognition based on the two-frame models. We train our optical flow models on

FlyingChairs or UCF101 and evaluate their accuracies on the Sintel dataset (similar

to [70] that trains the model on FlyingChairs but tests on other datasets).

We investigate how the quality of the learned optical flow affects action recog-

nition. Since optical flow in the multitask model is collaboratively learned with

the recognition task, the quality of optical flow in the multitask model does not
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directly affect recognition accuracy. Thus, we use our Stacked model learned with

different datasets, fix the optical flow part and train the classification part in the

network shown in Figure 4.2. We compare the end-point-error of different optical

flow learners and the corresponding classification accuracy in Table 4.3.

Method EPE on Sintel Classification Accuracy (%)

Stacked on FlyingChairs 9.12 51.7
Stacked on UCF101 11.84 69.6

ResNet on EpicFlow 6.29 77.7

Table 4.3: Comparison between End-Point-Error (EPE, lower is better) and the
classification accuracy. Interestingly, better optical flow does not always result in
better action recognition accuracy. Refer to the text for discussion.

(a) Frame with move-
ments highlighted with
red

(b) EpicFlow (c) FlowNet on Fly-
ingChairs

(d) FlowNet on
UCF101

Figure 4.7: Qualitative comparison of flow outputs. It shows an example of small
motion, where the maximum magnitude of displacement estimated from EpicFlow
is only about 1.6px. FlowNet trained on FlyingChairs dataset fails to estimate small
motion, since the FlyingChairs dataset consists of large displacement flow.

Action Recognition with Learned Flow. Surprisingly, even with lower end-

point-error the Stacked model pretrained on FlyingChairs performs significantly

worse than the one pretrained on UCF101 dataset (51.7% vs 69.6%), as shown in

Table 4.3. Compared to the model directly taking high quality optical flow as input
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(77.7%), our models are still not as good as training directly on optical flow. We

believe this is because the quality of learned optical flow is not high enough.

To understand how the learned optical flow affects action recognition, we qual-

itatively observe the optical flow performance in Figure 4.7. Even though the end-

point error on Sintel of the FlowNet pretrained on FlyingChairs is low, the estimated

optical flow has lots of artifacts in the background and the recognition accuracy on

top of that is correspondingly low. We believe the reason is that the FlyingChairs

dataset mostly consists of large displacement flow, and therefore the model per-

forms badly on estimating small optical flow, which contributes less in the EPE

metric when averaged over the whole dataset. This is in contrast to traditional op-

timization based optical flow algorithms that can predict small displacements well

but have difficulties for large displacements.

In addition, traditional optical flow algorithms such as TV-L1 and EpicFlow

explicitly enforce smoothness and constancy. They are able to preserve object shape

information when the flow displacements are small, which is important for action

recognition. While our models perform comparably to traditional optical flow algo-

rithms in terms of endpoint error, our model is not optimized for preserving flow

smoothness. This shows that end-point-error of optical flow in public dataset may

not be a good indicator of action classification performance, since shape preservation

is not accounted for in the metric.
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4.5 Conclusion

We presented a multitask framework for learning action with motion flow,

named ActionFlowNet. By using optical flow as supervision for classification, our

model captures motion information while not requiring explicit optical flow com-

putation as input. Our model significantly outperforms previous feature learning

methods trained without external large scale data and additional optical flow input.
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Chapter 5: Temporal Difference Networks for Video Action Recog-

nition

5.1 Motivation

Video action recognition is one of the fundamental problems in computer vi-

sion. One of the main challenges is to model the complex temporal relations in

addition to image appearance. Unlike images, which have a fixed size input, videos

and their corresponding actions are of arbitrary length. While convolutional neural

networks (CNNs) have been very sucessful in image based recognition tasks [8–11],

it is still unclear how to model the temporal evolution of videos effectively by deep

networks. In recent work, there are two main approaches to model the tempo-

ral dimension of videos - model the short term motion and model the longer term

temporal relations.

Motion modeling usually focuses on video clips that span less than one second.

Optical flow has been used extensively [3, 46, 71–73, 83] as a motion representation

and shows improvement in conjunction with RGB image inputs for action recogni-

tion. While it is an effective hand-crafted feature as input for CNNs to recognize

action, it is still unclear how to learn motion features directly from raw pixels with-
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out hand-crafted inputs. Furthermore, optical flow, which is defined at the pixel

level, can only model short term motion effectively, but does not capture longer

range and high level temporal dependency.

Another line of work models the high level representation of frames from the

output of deep CNNs by models such as Long-short-term memory (LSTM). These

approaches rely on the strong high level CNN features but do not consider the low

level correspondence between frames. While they can sucessfully combine seman-

tic information over long videos, we believe that CNN features capture high level

abstract concepts and are unsuitable for learning motion, as the apperance of con-

secutive frames in a video might be very similar and the precise spatial details may

be lost after multiple pooling layers in the network.

We believe successful video action recognition models require temporal reason-

ing on multiple levels of appearance. Current approaches, which focus on modeling

either the long term temporal relations or short term motion, are insufficient as

they model on a fixed level of appearance. In this work, we propose a novel deep

network architecture - Temporal Difference Network (TDN) - to model temporal

relations in videos. Instead of leveraging independent techniques for modeling short

term motion [46] and high level temporal relations [3,72,83], our framework unifies

these two strategies and learns video motion representations from multiple levels of

apperance abstraction, leveraging low level to high level image features.

While pixel level motion can be represented using optical flow, the motion of

mid-level concepts is not well-defined. We consider an alternative representation

of motion - Eulerian motion - which is defined in terms of image differences. In
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addition to differences of raw input images, we consider the Eulerian motion of mid-

level to high-level image features, and then combine the multiple layers of motion

information in a single CNN. By forcing the network to model the motion directly

instead of implicitly learn from class label supervision, our network effectively mod-

els the temporal relations between frames rather than just aggregates apperance

information over a video.

We test our model on three public video classification benchmarks and achieve

state-of-the-art results. Remarkably, the improvement in the RGB stream is signifi-

cant, demonstrating the effectiveness of modeling temporal relations in our network

from raw pixels.

5.2 Related Work

Video action recognition has been studied extensively in computer vision.

Please refer to the survey by Poppe [86] and Wu et al . [87] for complete back-

ground. Recent work on action recognition falls into two main categories: 1) long

range temporal relations modeling and 2) short term motion representation.

Long range temporal relations modeling. Recurrent neural networks

have been used to model the temporal relations in video sequences [83, 88–91]. Ng

et al . learned long range temporal information in videos by LSTMs for long video

classification [83]. Donahue et al . similarly learns LSTM models for action recog-

nition. Mahasseni and Todorovic regularized the LSTM model with 3D human-

skeleton sequences [89]. Srivastava et al . learns LSTM in an unsupervised manner
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for action recognition. Another strategy to aggregate information across frames is

pooling. Ng et al . applied max pooling at the last convolutional layer for long video

classification [83]. Wang et al . proposed temporal segment networks to combine the

final categorical classification scores from multiple frames by average pooling [72].

Wang et al . represent actions by a transformation from the initial state to final state

of videos and treat the temporal location of the states as latent variables [3]. Rank

pooling has been proposed to capture temporal evolution of videos by considering

the temporal ordering of video frames [92–94].

All these methods learn temporal relations only based on high level CNN

features, i.e. the last convolutional layer or fully connected layers, which lose detailed

spatial information and do not effecitvely learn small motions. In contrast, our work

operates over multiple level of appearance within a single network, and learns both

small motions and high level temporal relations.

Ballas et al . exploit multiple layers of image features to train GRU-RNN for

video representations [91]. Instead of using recurrent networks, we train a feed-

forward network to directly model the motion between frames.

Many previous research leverages the temporal structure in videos for action

recognition [95–99]. Niebles et al . uses latent SVM to discover the temporal struc-

ture of videos [95]. Tang et al . model the temporal structure using a varient of

HMM [96]. Pirsiavash and Ramanan represent actions by segmental grammars [97].

However, their approaches are not end-to-end learnable for temporal structure mod-

eling and thus cannot fully utilize the advantage of deep networks.

Short term motion representation. Karpathy et al . trained a “Slow Fu-
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sion” network to learn motion from large number of labeled videos [45]. Ji et al . and

Tran et al . use multiple 3D convolutional layers for learning motion features from

raw pixels [44,69]. Varol et al . train 3D convolutional networks for longer clips and

show improvements in recognition. Carreira and Zisserman recently trained 3D con-

volutional networks [2] on newly released Kinetics dataset [68]. However, training

these models requires large labeled video datasets and is extremely computationally

expensive, which limits the size of the network that could be trained. Our work

reuses the pretrained static image appearance model and learns motion based on

that, which could easily adapt to very deep image based convolutional networks.

Bilen et al . computed dynamic image by rank pooling as motion representation

as input to the network [100]. Our Temporal Difference Networks learn motion from

multiple levels and is an end-to-end model.

Simonyan and Zisserman feed stacked optical flow frames as input to the net-

work and showed that combining optical flow network and ImageNet pretrained

network significantly improves action recognition performance over the single frame

appearance model [46]. We also train networks for both RGB and optical flow frames

as input, but in addition to modeling short term motion, our network learns higher

level temporal relations as well. Feichtenhofer et al . further improves the original

two stream networks by combining two input modalities into a single network [71,73].

Our network architecture is similar to [73], but we exploit the difference of image

features to learn temporal relations instead of using optical flow as input for motion.

Image difference, also known as the Eulerian motion, has been used to rep-

resent motion of images. Sun et al . and Wang et al . exploited image differences as
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inputs to the network [72, 101] to complement RGB inputs. Xue et al . represented

motion by Eulerican motion to synthesize future video frames from a single im-

age [102]. Villegas et al . decompose videos into motion and content by representing

motion as image differences for future video sequence prediction [103]. Wu et al .

magnify the Eulerian motion of videos to visualize subtle change in videos [104].

Extending these previous work, we compute the Eulerian motion not only of the

input frames, but also the intermediate CNN features to capture high level motion.

5.3 Approach

5.3.1 Eulerian Motion of Features

The image difference, also known as the Eulerian motion, of two images is

defined as:

v = I2 − I1

where I1 and I2 are consecutive frames in a video. While image differences capture

some short term motion information, they do not effectively model longer range

temporal relation in videos.

Instead, we encode motion additionally by differences of image features, which

can be regarded as the Eulerian motion of image features:

v(`) = f (`)(I2)− f (`)(I1)

where f (`)(I) is an appearance feature extractor for image I at layer ` in a CNN.
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Compared to raw images, the image features are more robust to translation and

appearance changes, and thus their differences are more suitable for capturing higher

level temporal relations across longer periods of time. The difference of features

can also be seen as a special case of rank pooling [92], where only two frames are

considered instead of multiple frames in the video. Similarly, image difference can

be seen as a special case of dynamic image [100] from two frames.

In a convolutional neural network (CNN), different layers capture different

levels of appearance abstraction [11]. For shorter time periods, the difference of

lower level features should be more informative as small motion can be captured

better in lower layers; and for longer time periods, higher level features should be

more useful to model the temporal relations between frames. While the best level of

abstraction is unclear and situation dependent, we use the differences over multiple

layers in the CNN features to capture temporal relations over all scales.

5.3.2 Temporal Difference Network

In this section, we describe the architecture of our proposed Temporal Differ-

ence Network (TDN).

Jointly learning motion and appearance on video action recognition datasets

is challenging, since image appearance provides abundant information to the model

to overfit the dataset, while ignoring motion which corresponds to the actual action.

While separating the motion into an independent optical flow CNN shows great

improvement to the RGB inputs [46], motions, however, clearly depend on appear-
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anace which suggests appearance model should help learning motion. Therefore,

in our proposed Temporal Difference Network, we leverage the image appearance

models to learn video motions, and force the network to learn the motion by explic-

itly model the Eulerian motion of image features as inputs. In addition to modeling

motion in a fixed layer, we aggregate the multi-level feature differences in one single

network.

We build the Temporal Difference Network on a well trained image appearance

model. We use a 50 layers Residual Network (ResNet-50) as our base model [10],

which provides a good trade-off between accuracy and training time. Our approach is

flexible to adopt other architectures and further recognition improvement is possible

with deeper and more accurate pretrained networks. The TDN consists of two

subnetworks: the image subnetwork and the difference subnetwork. The architecture

is illustrated in Figure 5.1.

Image subnetwork. The image subnetwork is a standard residual network

which takes a single frame (or stacked consecutive frames) as input. At the end of

the network, the prediction scores from different frames are averaged before softmax

similar to [72]. The parameters of the image subnetwork of different input frames

are shared. This is essential to force the network to learn from the feature differences

instead of using the appearance from one of the image subnetworks.

Difference subnetwork. The difference subnetwork has the exact same size

as the image subnetwork. At the layers right before reducing the spatial resolution,

we compute the Eulerian motion of the features from the image subnetwork, which

is the difference between two feature maps. The differences are then combined with
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Figure 5.1: The figure shows our Temporal Difference Network architecture. Each
rectangle in the figure represents the convolutional layers with max pooling or
stacked residual modules. The blue blocks represent layers in the image subnetwork
and the orange blocks represent layers in the difference subnetwork. The circles rep-
resent element-wise add or subtraction operation. At the layers before reducing the
spatial resolution, the difference of the convolutional feature maps from the image
subnetwork is computed and then added into the difference subnetwork. The class
prediction scores are obtained at the end of each subnetwork.

the bottom up activations from the difference subnetwork by element-wise addition,

inspired by [73], as the difference of features and the CNN features have the exact

same dimensions. Specifically, in our implementation the difference features have

spatial resolution of 224× 224 (input images), 56× 56, 28× 28 and 14× 14. More

layers in the network can be used for computing the image feature differences. The

difference in the last convolutional layer is not used because it would be immediately

fed into the final classifier without additional transformation, which makes it unlikely

to help classification.

While the difference in the features is basically a linear operation and could be

learned by 3D convolutions, which has been explored previously in [69,83], it is not

an effective method to model the motion between frames since the frame based image
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appearance already provides extremely strong cues to the classification task, and the

model can simply learn to aggregate the appearance context for classification instead

of learning the action itself. By explicitly taking the difference of the features, the

network is forced to focus on the motion and temporal evolution of the videos,

instead of relying on strong appearance cues for classification.

We employ a simple summation to combine the bottom up activations of the

difference subnetwork and the differences of image features. We have additionally

experimented with adding a 1 × 1 convolutional layer to the difference features

before the addition, or dynamicly computing the weights of two inputs by a gating

mechanism, but observed no significant difference in performance.

By taking the difference of higher level features, we are able to not only model

the motion between consecutive frames, but also over longer time periods. Since

the mid-level features are more robust to translation and view point changes, the

model can then focus on the difference in mid-level concepts like pose. Therefore,

we sparsely sample frames throughout the whole video as input, instead of only

considering consecutive frames.

Final prediction. There are many ways to combine the final classification

outputs of the image subnetwork and difference subnetwork during testing. We

found that simple averaging works very well and this is used in all experiments.

TDN with TSN. Our TDN can be trained with more than two frames as

a temporal segment network (TSN) [72]. As a TSN with s input snippets, our

TDN produces s outputs from image subnetworks for each frame, and s−1 outputs

from difference subnetworks for each pair of adjacent frames. Following [72], we
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use average pooling as the segmental consensus function to combine the prediction

scores of each network during training. Figure 5.2 illustrates an example with three

input frames (s = 3). By taking more frames, the network captures more context

in the video during training before classification. This is important especially for

training the difference subnetwork, since the difference of only two video frames may

not have enough information for recognizing actions where TSN reduce the noise in

training by considering more frames at once.

Input image 1

Input image 2

Input image 3

Average 
Prediction
Scores

Average 
Prediction
Scores

Figure 5.2: Temporal Difference Network as temporal segment network with s = 3
input snippets. The blue and orange blocks represent the image subnetworks and
difference subnetworks respectively. The class prediction scores of image subnet-
works and difference subnetworks are averaged across frames independently.
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5.3.3 Fusion from Multiple Modalities

Optical flow has shown improvements in conjunction with RGB inputs for

video action recognition performance. Our model can be applied to different modal-

ities including RGB and optical flow, although we expect more improvements from

the RGB network as optical flow already encodes motion. Long term temporal rela-

tions, which are not encoded in optical flow, can be learned through our framework.

Following previous work [72], we separately train two networks for RGB inputs as

spatial stream and stacked optical flow inputs as temporal stream. At test time, we

compute the weighted average of prediction scores with RGB:Flow as 1:1.5. We use

the confidence scores before softmax for fusion after `1-normalization.

5.3.4 Training

During training, we randomly sample frames throughout the videos as in tem-

poral segment network [72]. The input videos are split into s approximately equally

sized segments, and k consecutive frames (k = 1 for RGB input and k = 5 for optical

flow) are randomly picked from each segments as an input snippet.

Cross Modality Pretraining. Following [72,83], which suggests initializing

the optical flow network with image pretrained model, we initialize the weight of

convolutional layers in the difference subnetwork with ImageNet pretrained model.

Since the inputs to the difference subnetwork, which are the differences of image

features, contain similar spatial structure to the image features, ImageNet pretrained

models should possess useful representation for modeling the motion and thus help
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the training by initialization.

Two phase Training. To improve training stability, we employ a two phase

training strategy. We first fix the image subnetwork and only train the classifier in

the image subnetwork and the entire difference subnetwork. After convergence, we

jointly finetune both image subnetwork and difference subnetwork.

When using optical flow inputs, we initialize the “image” subnetwork with

a pretrained temporal segment network on optical flow inputs, and the difference

subnetwork is still initialized with ImageNet pretrained weights. We similarly fix

the already trained “image” subnetwork and train the difference subnetwork first,

and then finetune the entire network.

5.4 Experiments

5.4.1 Datasets

We test our Temporal Difference Networks on three video datasets: HMDB51,

ACT and FCVID.

The HMDB51 dataset [50] contains 6,766 video clips taken from mostly movies

with 51 action classes. The standard three splits averaged accuracy is reported. This

is a challenging action recognition dataset since many action classes, for example

“turn” and “kiss”, cannot be recognized from a static frame or backgroud context.

The ACT dataset [3] contains 11,234 video clips with 43 action classes. The

videos are donwloaded from the web and then labeled by a commercial crowdsourcing

organization. We evalute our model on the first task for the dataset, which is the
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standard action classification proposed in [3]. We follow the train and test split by

the dataset authors with 7,260 training videos and 3,974 for testing.

The Fudan-Columbia Video Dataset (FCVID) [105] contains 91,223 web videos

with 239 categories including social events, procedural events, objects and scenes.

The average video length is 167 seconds. It is computationally very expensive to

process such a large dataset, so the frames are sampled every three seconds and

resized to 256 × 256. We evaluate our models using the same train and test split

as [105], which contains approximately half of the videos for training and half for

testing, and compute the mean average precision (mAP) across categories.

We do not test on the UCF101 dataset [64] as it heavily relies on appearance

and context information, and the performance has already been saturated with more

than 94% accuracy by [72,73] and 98% with pretraining on the Kinetics dataset [2,

68].

5.4.2 Implementation

We implement our network with Torch7 [106] using multiple GPUs for data-

parallelism. SGD is used for training with mini-batch size 128 and momentum set

to 0.9. To regularize the network on small datasets, we follow the good practice

from [72] and use high dropout rate (drop probability 0.8), corner cropping, scale

jittering and partial-BN, which fixes the mean and variance in batch normalization

layers except the first one, to train the model on the HMDB51 and ACT datasets.

We also apply weight decay with rate 0.0005 and color jittering [9] for data aug-
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mentation.

We roughly follow [72] for numbers of training iterations and learning rate

decay schedules to train the network for the HMDB51 dataset. As the size of ACT

is similar to UCF101, we adopt their settings for training on ACT. For FCVID, we

first train the TSN for 30,000 iterations with initial learning rate 0.01, and divide

the learning rate by a factor of 10 every 10,000 iterations. The TDN is trained with

the same settings as TSN, and we jointly fine-tune the whole network for another

10,000 iterations. We use s = 3 input snippets for ACT and FCVID, and s = 2 for

HMDB51.

For the temporal stream networks, we compute the optical flow with the TV-

L1 algorithm [107] using the OpenCV implementation with CUDA and save the flow

as images after discretized into [0, 255] range following [46]. We sample 5 consecutive

optical flow frames as input to the flow network following [72].

Druing testing, we randomly sample 25 clips and perform 10 crop data aug-

mentation, which crop the 4 corners and 1 center with their horizontal reflections,

and compute the average of the prediction scores as final prediction.

5.4.3 Results

We present the results of our Temporal Difference Networks on various datasets.

For fair comparisons, we train ResNet-50 temporal segmental networks [72] in all

three evaluation datasets as our baselines.
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5.4.3.1 HMDB51 Dataset

We compare our TDN with previous two-stream based networks including [3,

46, 71–73, 101, 108–110] that uses ImageNet as the only external dataset. The 3

splits averaged accuracy of the models are shown in Table 5.1. We exclude the

fusion results with extra input modality like warped optical flow fields or hand-

crafted features like improved dense trajectories for fair comparison. We compare

to methods that only uses ImageNet as external datasets. Since different based

networks are used in previous work including VGG, BN-Inception and ResNet-50,

we additionally trained temporal segmental networks with ResNet-50 as baseline for

comparison. We would also want to note that the recent work ST-ResNet [73] is

also based on ResNet-50 and therefore can be directly compared.

Our implementation of TSN with ResNet-50 is better than the previous state-

of-the-art in [72], which verifies the strength of our baseline. Our Temporal Differ-

ence Networks further improve over TSNs on both RGB and optical flow streams.

Remarkably, our model significantly improves the RGB network by 4.4%. The

improvement on the temporal stream with optical flow inputs is marginal, which

is reasonable since the stacked optical flow already encodes motion information.

Overall, our TDN achieves better accuracy than previous work with improvement

of 1.9% (70.4% vs 68.5%).

Recently, Carreira and Zisserman trained I3D models [2] on newly released

Kinetics dataset [68]. While they obtained strong recognition performance, their

models have access to external video data thus could not be directly compared.
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Since training on Kinetics dataset is extermely computationally expensive, we leave

the experiments with Kinetics dataset as future work.

Method RGB Flow Fusion

Two Stream [46] 40.5 54.6 59.4
Two Stream (VGG) [3, 4] 42.2 55.0 58.5
FSTCN (SCI fusion) [101] - - 59.1
Actions ∼ Transformation [3] 44.1 57.1 62.0
TDD + FV [108] 50.0 54.9 63.2
Key Volumne Mining [109] - - 63.3
LTC [110] - 59.0 64.8
Two-stream Fusion [71] - - 65.4
ST-ResNet [73] - - 66.4
BN-Inception TSN [72] 51.0 64.2 68.5

ResNet-50 TSN 51.1 64.6 69.6
ResNet-50 TDN (ours) 55.5 64.8 70.4

Table 5.1: Classification accuracies on HMDB51 (3 splits average). Our model
achieves state-of-the-art accuracy on the HMDB51 dataset. In particular, the RGB
model significantly improves the TSN baseline.

5.4.3.2 ACT Dataset

We test our models on ACT and observe similar improvement. The evaluation

results are shown in Table 5.2. Our ResNet-50 TSN baseline is the better than pre-

vious two-stream based networks with precondition and effect modeling by [3], and

our TDNs again outperform the TSN baseline. The improvement in RGB stream is

especially significant (75.9% vs 72.0%), showing that our model is capable of learning

motion from the difference subnetwork. Overall, our TDNs improve on both RGB

and optical flow inputs, and give slight improvement to TSN after fusion. Our model

performs significantly better than previous work by a large margin (85.1% vs 80.6%).
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Method RGB Flow Fusion

Two Stream 66.8 71.4 78.7
LSTM + Two Stream 68.7 72.1 78.6
Actions ∼ Transformation [3] 69.5 73.7 80.6

ResNet-50 TSN 72.0 76.1 84.3
ResNet-50 TDN (ours) 75.9 77.0 85.1

Table 5.2: Performance comparison for the first task on ACT dataset. All baselines
are trained by [3] with VGG-16 [4]. Our models significantly outperform previous
methods.

5.4.3.3 FCVID

We compare our models to previous results reported by [105]. They provide

strong baselines by combining static CNN features, improved dense trajectories

and audio features with various fusion techniques. In particular, they proposed

rDNN to exploit features and class relationships with deep networks to combine the

predictions from multiple modalities.

As the dataset is very large and computing optical flow for the whole dataset is

very time consuming, we only train our network for raw image inputs. We lower the

weight decay rate to 0.0001 and do not use regularization techniques like dropout,

corner cropping and partial-BN suggested in [72] since the dataset is already very

large.

The recognition results are summarized in Table 5.3. The TSN baseline alone

is already much better than the previous state-of-the-art rDNN from [105], which
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fused multiple features, by 5.8% in mAP. We believe the difference in performance

should be due to: 1) the advancement in CNN architecture (ResNet vs AlexNet);

2) end-to-end finetuning rather than feature extraction in [105]; and 3) training as

TSN rather than single frame network.

Our TDN further improves the TSN model significantly by 1.9%, which demon-

strates that our network is able to learn temporal relationships effectively even on

large scale settings with unconstrained and noisy videos.

Method mAP (%)

Static CNN [105] 63.8
rDNN (Static CNN + Motion + Audio) [105] 76.0

ResNet-50 TSN 81.8
ResNet-50 TDN (ours) 83.7

Table 5.3: Performance comparison on the FCVID. Our TDN substantially improves
on the strong TSN baseline, and significantly outperforms previous work.

We compare the class-wise average precision of TSN and TDN. The top 5 im-

proving classes from our TDN are paperCutting (+14%), dumbbellWorkout (+13%),

makingIceCream (+10%), pushUps (+10%) and makingHotdog (+10%). We can

clearly observe that all of them are actions instead of scenes or objects, showing

that our model improves action recognition by modeling the temporal relations in

videos.
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(a) Input image 1 (b) Input image 2 (c) CAM of image
subnetwork on im-
age 1

(d) CAM of image
subnetwork on im-
age 2

(e) CAM of differ-
ence subnetwork
(overlaid on the
average of two
input images)

Figure 5.3: Class Activation Mapping (CAM) for the image subnetwork and differ-
ence subnetwork. The action classes from top to bottom are: turn, climbing-chairs,
hit, lifting-benchpress and kiss. Our difference subnetwork can capture the motion
regions effectively while the image subnetwork focuses on the apppearance and back-
ground context. Note the camera motion and large movement between frames may
make optical flow between two frames ineffective, but our TDN sucessfully learns
from the large difference on multiple CNN layers.
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5.4.4 Influence of Multiple Layers

One natural question to the TDN architecture is whether the multiple layers

of feature differences are really helpful in action recognition in addition to image

difference. To answer this question, we train TDNs with different settings on the

FCVID dataset. We train multiple models by incrementally adding layers of feature

differences into the network. As shown in Table 5.4, incorporating multiple layers

of feature differences gradually improves the performance. This shows that our

network benefits from the differences in higher level features in addition to image

difference, and incorporating motions in multiple layers are indeed important to

achieve good classification performance.

TDN Layers mAP (%)

input 82.7
input – conv1 82.9
input – res2 83.3
input – res3 83.8
input – res4 83.7

Table 5.4: Effects of incorporating multiple layers of motion. The “input” row
represents the network only taking difference of the RGB frames, and “input –
conv1” represents the network taking difference of RGB frames and conv1 outputs
into the network and so on. Adding more layers improves recognition performance.

5.4.5 Visualization

We visualize the network outputs to understand what is learned in the Tem-

poral Difference Network. As our base network is a residual network which includes
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a global average pooling layer before the final linear classifier, we can compute the

Class Activation Mapping (CAM) [111] of the image subnetwork and difference sub-

network respectively, by removing the average pooling layer and applying the linear

classifier in all spatial locations. We then use bilinear upsampling to enlarge the

heatmaps back to the input size 224× 224 and overlaid with the input images.

The visualizations are shown in Figure 5.3. Although the output heatmaps

only have 7×7 resolution restricted by the size of the last convolutional layer outputs,

we can clearly see what is salient to the network with respect to the action classes.

The image subnetwork focuses more on the appearance and the background context,

and the difference subnetwork focuses on the motions and actions. This shows that

the image subnetwork and the difference subnetwork learn complementary features

that help action classification when combined.

5.5 Conclusion

We present a novel network architecture - Temporal Difference Network - for

learning temporal relations from videos for action recognition. Instead of learning

temporal relation at a fixed level, we capture the Eulerian motions of image fea-

tures at multiple levels and combine with a single CNN to jointly model motions in

multiple scales. We obtain state-of-the-art performance on three public video action

recognition benchmarks, demonstrating the effectiveness of our approach.
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Chapter 6: Conclusion

In this dissertation, we study the problem of video understanding with deep

networks. We first study the deep networks through the problem of image retrieval.

We then introduce several deep neural network architectures to combine image in-

formation across a video over long time periods. Next, we present a multitask

learning framework ActionFlowNet to train a network directly from raw pixels to

learn motion representation for video action recognition. Finally, we propose Tem-

poral Difference Networks (TDN) that model both long term relations and short

term motion from videos.

While the performance of video action recognition system has been signifi-

cantly improved, there are still many remaining challenges for video understanding.

Future research directions include better network architecture for video recognition,

studies of the effectivness and transferrability of video action data, and explicit

higher level reasoning with scenes, poses and objects.
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