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While infection from communicable diseases has posed a longstanding threat 

to human health throughout history, the modern realities of population 

expansion, global travel, and climate change have facilitated the rapid 

emergence and worldwide distribution of RNA viruses at an unprecedented 

scale. Of particular concern are the alphaviruses, mosquito borne viruses 

from the Togaviridae family. These viruses were previously relegated to rare 

outbreaks in isolated forested regions but have dramatically spread across 

the globe in the past decade. One of these viruses, Venezuelan equine 

encephalitis virus (VEEV), is a noted bioterror threat due to its ability for 

aerosol transmission and successful weaponization during the Cold War. 



  

While no FDA approved drugs exist against alphaviruses, their reliance on 

programmed translational recoding mechanisms to regulate gene expression 

presents a potential vulnerability for therapeutic exploitation. Two instances of 

translational recoding have been identified but poorly characterized in the 

alphavirus genome. The first is a termination codon readthrough (TCR) event 

required for expression of the alphavirus replicase. The second is a 

programmed -1 ribosomal frameshift (-1 PRF) that produces a C-terminally 

extended variant of viroporin 6K. In this work, the cis-acting RNA elements 

that mitigate alphavirus recoding were functionally and structurally 

characterized. The predicted TCR and -1 PRF sequences were cloned into 

dual luciferase reporter vectors and their ability to promote efficient recoding 

was verified in several mammalian cell lines. Chemical probing assays 

elucidated the presence of highly structured stemloop elements downstream 

of the alphavirus recoding sites, which function as a kinetic trap for elongating 

ribosomes. Notably, mutations that abrogate efficient -1 PRF not only 

attenuated pathogenesis of VEEV in mice, but also provided protective 

immunity to subsequent wild-type challenge. These findings suggest a novel 

approach to the development of a safe and effective live attenuated vaccine 

strategy against VEEV, closely related alphaviruses, and potentially all 

viruses that rely on translational recoding mechanisms for optimal gene 

expression. 
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Chapter 1: Introduction 

Historical and Modern Context of Emerging Viral Diseases 

Human history is no stranger to scourges wrought by microbial infections. 

Despite advances in public health over the last century1, communicable diseases 

remain the predominant cause of death in low income countries (Figure 1)2,3. Of 

particular global concern is the threat of emerging diseases from RNA viruses. 

These viruses have higher mutation rates compared to their DNA counterparts 

and are capable of opportunistic infections that can even transgress species 

boundaries (Figure 2)4. 
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Figure 1. Communicable diseases remain the leading cause of death in low-
income countries. Top 10 causes of death in low income countries between the 
years of 2000 and 2016, as collected by the World Health Organization (WHO) 
and the World Bank2. “Low-income” is defined as any country with a gross 
national income (GNI) per capita of 1005 or lower5.  
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Figure 2. Cross-species transmission occurs more readily in RNA viruses 
than DNA viruses. Range of topological distance between DNA (blue) and RNA 
(yellow) virus families as normalized by the Penny and Hendy metric (nPH85). 
Simulated data (red) denotes the extremes of the nPH85 scale, where 0 is 
indicative of 1:1 virus/host co-divergence and 1 denotes a propensity for frequent 
host switching. Virus families are ranked in descending order for visual clarity. 
Image adapted from Geoghegan et al. 20174.   

 
 

The introduction of viral diseases to naïve human populations has historically 

been catastrophic. One of the earliest notable instances in the American 

continents was the unintentional import of viruses such as smallpox and 

influenza from European invaders6. Lacking immunity to these foreign 

pathogens, indigenous civilizations of the New World quickly succumbed to 
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disease, particularly in densely populated cities. Mere months after the arrival of 

the Spanish Conquistadors in April 1520, nearly half the population of the Aztec 

capital of Tenochtitlán had died of smallpox, rendering the remainder helpless 

against the assault of Hernán Cortés6. Similarly, the Taino people –who had an 

estimated population of 60,000 to 8 million during the initial contact with 

Christopher Columbus in 1492- were reduced to less than 500 people by 15486. 

Smallpox and measles were also introduced to indigenous populations to similar 

consequence as Europeans colonized what would eventually become the United 

States of America7,8. Here, transmission was not always unintentional. In an early 

example of bioterrorism, settlers would intentionally distribute smallpox-infected 

blankets to native groups7. To this day, there are still isolated indigenous tribes in 

central and south America that are deemed at-risk to transmission of foreign-

borne pathogens, whom local governments have taken steps to protect from 

epidemics6. 

    The threat of emerging viral disease persists despite -and in many cases 

because of- advances in modern technology. The increasing global connectivity 

of human civilization allows for the rapid transportation of people and goods 

throughout the world. This also facilitates the unpredictable dissemination of 

infectious diseases at a previously unprecedented scope9. It is not by 

coincidence that the deadliest recorded pandemic in human history –the H1N1 

Spanish influenza that infected a third of the world’s population between 1918 

and 1919 and killed an estimated 50-100 million people- occurred during the 20th 

century10. While no influenza outbreak in the past century has rivaled the 
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casualties of Spanish flu, the World Health Organization (WHO) considers the 

advent of the next pandemic flu imminent and urges preparations to control the 

spread of influenza at both a national and global level11. Another consideration 

regarding emerging diseases is the geographic expansion of the human 

population into forested regions of the world, which increases the probability of 

contact with reservoir host animals harboring viruses that can easily jump across 

species12. The progenitor to Human Immunodeficiency Virus (HIV-1) was 

originally hosted in chimpanzees and the local bushmeat trade has been 

implicated in its introduction to human hosts13. While there is evidence that this 

jump had occurred several times previously, international trade and global sex 

tourism in the 1970s exposed HIV-1 to a larger human population than ever 

before14,15. The virus quickly reached pandemic status due to predominately 

infecting high-risk groups (male homosexuals, intravenous drug users, and blood 

transfusion recipients) and delayed government response12,14,16. As of 2017, an 

estimated 40 million people have died of complications from HIV-1, while 36.9 

million are currently living with the virus, 1.8 million of those newly infected that 

year17,18. The coronavirus responsible for Severe Acute Respiratory Syndrome 

(SARS-CoV) is another example of a zoonotic virus that was propelled to 

pandemic status through a globalized economy. The 2003 outbreak started in 

Guandong, China, where the virus jumped from the initial bat reservoir to civets, 

and then to a doctor spending the night at a hotel in Hong Kong19. Thirteen 

additional hotel occupants were unknowingly infected before returning to their 

home countries9. Over the next 114 days, the SARS-CoV pandemic would 
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spread to 29 other countries with an estimated 8098 reported cases, 774 

subsequent fatalities and a damaging blow to the Asian economy20,21. 

Worryingly, the capabilities of rapid global travel can also facilitate the 

transmission of viruses that are typically self-limiting due the severity of 

pathology. In 2014, an outbreak of Ebola was reported in Guinea that quickly 

spread to the neighboring countries of Liberia and Sierra Leone22. The situation 

was declared an emergency of international concern by the WHO that summer 

after the virus spread to the densely populated cities of all three countries, 

including the capitols22. The West Africa Ebola epidemic ended in June 2016 with 

a reported 28,600 cases and 11,325 deaths22,23. An additional 36 cases of Ebola 

and 15 deaths were also reported amongst seven other countries (Italy, Mali, 

Nigeria, Senegal, Spain, the United Kingdom, and the United States) over the 

course of the outbreak, primarily in medical workers22. These reports serve as a 

cautionary tale of how quickly an emerging virus can be inadvertently transported 

to other parts of the globe.  

 Global climate change also exerts an influence on the dynamics of emerging 

viral diseases24,25. Many RNA viruses utilize hematophagous insect vectors such 

as ticks and mosquitoes as a central component of their transmission cycle26,27. 

Increasing global temperatures and extreme climate phenomena such as El Niño 

have expanded the effective breeding and habitat range of insect vectors 

throughout the world28,29. Of particular concern are mosquitos from the Aedes 

genus that are competent vectors for many medically important viruses27,30,31. 

Their global distribution has increased dramatically over the years, including 
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previously inhospitable regions such as Europe (Figure 3)32,33,28,34. Consequently, 

viruses of an African or tropical origin now have a global presence, particularly 

from the Flaviviridae family35. Dengue virus (DENV), for example, is endemic in 

over 100 countries, with an estimated 2.5 billion people at risk of infection, and 

50 million infections and 500,000 annual hospitalizations from hemorrhagic 

complications36,37,26.  

 

Figure 3. Worldwide presence of vector competent Aedes mosquitos. 
Summary data of global distribution of Aedes mosquitos (blue) as of 2015. 
Specific incidences of Aedes aegypti (black) and Aedes albopictus (yellow) noted 
where applicable. Image derived from Campbell et al. 201538. 

 

The combined effects of globalization and climate change were recently 

responsible for the epidemic emergence of the closely related Zika virus (ZIKV) 

(Figure 4)39,40,41. First described in 1947 and isolated from a human host in 1952, 

cases of ZIKV infections were rarely reported and limited to rural forested regions 

of central Africa42,43. This changed in the past 15 years, in which outbreaks of 

ZIKV were reported in previously unaffected regions of the world. The first 
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notable outbreak occurred in 2007 on Yap Island of Micronesia, infecting 5000 

people44,45. A second outbreak of ZIKV occurred in French Polynesia in 201345. 

An estimated 30,000 individuals were infected, and “DENV like symptoms” and 

neurological complications were reported for the first time in ZIKV cases45,40. The 

largest recorded epidemic of ZIKV started in Brazil, 2015, shortly after the 2014 

World Cup46. ZIKV infections once again manifested as DENV-like symptoms of 

fever, rash headache and arthralgia, but worryingly were also implicated in a 

sudden increase of Guillain-Barré syndrome and severe congenital 

malformations including but not limited to neonatal microcephaly47,39,48. The ZIKV 

virus epidemic quickly spread throughout South and Central America, spurred 

along by a general lack of immunity to the disease, densely populated urban 

centers, and an abundance of permissible mosquito vectors45,41,49. 

Comprehensive statistics are not readily available, but the Brazilian Ministry of 

Health estimates between 497,593 and 1,482,701 ZIKV virus infections occurred 

in that country alone41. Though the ZIKV epidemic didn’t reappear the following 

summer, it remains a cautionary example of risk posed by an obscure virus re-

emerging into the modern world. 
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Figure 4. Global proliferation of ZIKV is a recent phenomenon. Chronological 
spread of ZIKV based on outbreak reports (blue) serologic surveys (red) and 
laboratory diagnosed individual cases (orange). Initially discovered in 1947, ZIKV 
originated in central Africa and remained in relative obscurity until a sudden 
large-scale outbreak on Yap Island of Micronesia in 2007. Blue arrows denote 
the subsequent spread of the virus to the American continents, precipitating the 
2015 Brazilian outbreak. Figure derived from Weaver et al. 201641. 

 

The Alphaviruses as an Emerging Global Threat 

The alphaviruses represent another emerging threat to public health and 

security. Alphaviruses are small, enveloped, single stranded, positive-sense 

viruses that comprise a genus within the Togaviridae family (Figure 5). The 

alphavirus genome is roughly 11 kilobases in length, with a 5’ cap and a 

polyadenylated tail. It is organized into two open reading frames (ORFs). The first 

ORF encodes a polypeptide that is post-translationally cleaved into four non-

structural proteins responsible for host evasion, transcription and replication: 

nsP1, nsP2, nsP3 and nsP4. The second ORF –accessible only as a 
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subgenomic transcript- encodes a polyprotein comprising the structural proteins 

C, E3, E2, 6K and E1. Mature alphavirus particles are organized as spherical 

capsids ~70 nm in diameter with T=4 icosahedral symmetry. The nucleocapsid is 

enveloped by a host cell-derived lipid membrane obtained through budding50. 

The envelope is further modified with spike protein trimers of E1, E2 and E3 that 

play a role in both the entry and egress from host cells51,52,53. These viruses are 

typically maintained in a zoonotic cycle between small mammal or avian 

reservoirs and blood-feeding arthropod vectors, predominately mosquitos from 

the Aedes and Culex genera54. As a consequence of increased globalization and 

urbanized environments, humans can serve as amplifying reservoirs as well55. 

  

Figure 5. Alphavirus structural organization. Generic schematic of a mature 
alphavirus virion. A capped, polyadenylated, positive sense RNA genome is 
encapsidated a 70 nm diameter icosahedral capsid with T=4 symmetry. A host-
derived membrane envelopes the capsid. Trans-membrane spike proteins are 
used for host cell entry and membrane fusion. Image derived from ViralZone56.  
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Over 26 species of alphavirus have been described, several of which are of 

medical concern to humans57. They can be roughly organized into two major 

groups based on geographic distribution and pathology: old world and new world. 

Old world alphaviruses are endemic to Africa and Asia and include medically 

relevant viruses such as Chikungunya (CHIKV), O’Nyong’Nyong (ONNV), 

Sindbis (SINV) and Semliki Forest (SFV). Infection by these viruses are 

predominately characterized by febrile illness and severe arthralgia58. These 

symptoms typically result in high morbidity in human hosts for weeks or even 

months59,60,61. Additionally, complications during the infection can lead to painful 

sequelae that can persist for years after viral clearance62. Climate change and 

human globalization over the past half-century have exerted a tremendous 

influence over the global distribution patterns of these viruses25. CHIKV, for 

example, was an uncommonly reported disease since its initial discovery in 

195263, primarily associated with small, localized outbreaks in forested regions of 

Africa. In 2004, the first large-scale outbreaks of CHIKV were reported in Africa 

and Asia64. Over the next few years CHIKV would become established to 44 

other countries, including the Floridian peninsula of the United States in 2014 

(Figure 6)26,65,66. 
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Figure 6. Global distribution of CHIKV. Map of the worldwide presence of 
CHIKV as of May 2018. Dark green countries highlight countries where local 
mosquito transmission has been reported. Circles are used to highlight islands 
for added visual clarity. Imported cases of CHIKV are not shown on this map. 
Image obtained from the CDC67.    

 

The new world alphaviruses are endemic to the American continents and are 

comprised of the Eastern, Venezuelan and Western equine encephalitis viruses 

(EEEV, VEEV and WEEV, respectively). Similar to their old world counterparts, 

these viruses are transmitted through mosquito vectors and can infect large 

mammal hosts such as humans and equines54. New world alphavirus infection 

exhibits a biphasic pattern of disease. The initial phase is characterized by high-

titer viremia and replication in lymphoid tissue or osteoblasts in the case of 

EEEV68,69. Symptoms during this phase consist of fever, chills, vomiting and 

myalgia that manifest two to five days post infection58. The second phase occurs 

in the event of the virus bypassing the blood-brain barrier and infecting the 
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neurons of the brain and spinal cord, leading to cases of acute 

encephalomyelitis70. In equines, progression to encephalitis occurs five to ten 

days post-infection and has a high-case fatality rate up to 90% for EEEV, 70% for 

VEEV and 50% for WEEV, respectively71,72,73. This fact alone makes these 

viruses severe social and economic threat to livestock producing countries. 

The incidence and severity of encephalitis in human infections is heavily 

influenced by the specific alphavirus. EEEV has been implicated in the most 

severe cases of encephalitis in humans. Infected individuals experience an initial 

phase of escalating fever and headaches that ultimately culminates in 

neurological disease with the possibility of paralysis, coma and death in 30 to 

70% of cases71,74. Complications from encephalitis will persist as debilitating 

sequelae in 35% of surviving patients74, the long term care of which can total up 

to several million dollars75. Currently, the neurovirulence of EEEV is mitigated by 

a low incidence of infection, with only 270 reported cases between 1964 and 

201076. However, the recent geographic expansion of demonstrated alphavirus 

vector Aedes albopictus in the United States has elevated the risk of larger scale 

EEEV outbreaks in the future77.  

In contrast, the case fatality rate of WEEV in humans is considerably lower at 

an estimated 3-4%78. Fewer than 700 cases of WEEV have been documented 

since 196479. However, WEEV has demonstrated epidemic potential since its 

discovery in 1930, with fatal outbreaks peaking between 1940-195080,81. The 

decrease of reported WEEV infections is not attributed to any notable decline in 

the virulence of the virus itself, and is more likely associated with changing 
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environmental factors unfavorable for the competence of their associated insect 

vectors79,82,83. As with EEEV, the risk remains that shifting environmental 

circumstances can lead to the reemergence of WEEV as an epidemic threat.  

Presently, VEEV is the most active of the encephalitic alphaviruses (Figure 

7). First isolated in Yaracuay state, Venezuela in 1938, the virus is endemic to 

Central and South America. VEEV is comprised of 14 subtypes and 7 different 

virus species (figure 7)55. Six of these subtypes have been implicated as 

antigenic to human hosts, though the IA/B and IC epizootic strains are 

responsible for the largest outbreaks of encephalitis72,84. VEEV has been 

implicated in many large-scale outbreaks in the American continents with 

occasional reported fatalities85. One of the largest of these outbreaks occurred in 

Venezuela and Columbia in 1995 and infected over 100,000 people86. Outbreaks 

of VEEV have also been reported in North America as well, particularly in Mexico 

and the southern border of the United States87. A comprehensive look at the 

scope of VEEV outbreaks is difficult to achieve, as the virus inhabits the same 

geographic range as other mosquito-borne arboviruses such as DENV and share 

many similarities in clinical presentation88. VEEV infection in humans is 

characterized by acute, incapacitating morbidity consisting of fever, headaches 

and myalgia, followed by a longer two-to-three week period of lethargy and 

anorexia70,71,89. The progression of encephalitis from VEEV infection is 

uncommon, with an incidence of >1% that predominantly afflicts children and the 

elderly89. Mortality from VEEV-instigated encephalitis varies by age, ranging from 
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10% in adults and up to 35% in children, with the threat of lifelong neurological 

complications persisting after viral clearance72,90. 

 

Figure 7. Major outbreaks of VEEV in the Americas. Geographic distribution 
and specific incidences of VEEV outbreaks in North, Central and South America. 
Shaded purple areas denote regions of major VEEV outbreaks primarily from the 
IA/B and IC epizootic strains. Dates of major outbreaks and the responsible 
VEEV subtype are identified in the shaded area. Colored symbols are used to 
represent additional enzootic subtypes of VEEV. Figure originally appears in 
Weaver and Barrett, 200491.  
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Separate from natural outbreak concerns, the encephalitic alphaviruses also 

pose a threat to public health and national security as a potential bioterror 

weapon92.  These viruses have been classified as a category B select agent by 

the National Institutes of Health (NIH) and Centers for Disease Control and 

Prevention (CDC) due to its high morbidity in human hosts and characteristics 

conducive for weaponization93. Firstly, they can be quickly grown to high titers, 

require a low infectious dose and can be easily lyophilized94,95,96. Secondly, all 

three of the encephalitic alphavirus have demonstrated a potential to achieve 

lethal infection through the aerosol route, likely infecting the central nervous 

system through the olfactory bulb97,98,99,100. This bypasses the requirement for 

insect vectors or other mechanical means of transmission. Thirdly, VEEV was 

successfully weaponized by both the United States and the former Soviet Union 

during the 1950s and 1960s101,95. This means that the procurement, production 

and dissemination of biothreat encephalitic alphaviruses at a large scale is 

achievable to malicious actors with even modest modern laboratory facilities102. 

It therefore constitutes an urgent problem that there are currently no 

therapeutics against alphaviruses that the Food and Drug Administration (FDA) 

has approved for civilian use. Veterinary and investigational vaccines have been 

approved for at-risk military personal and laboratory researchers, but generally 

produce unacceptably severe side effects. One prominent example is TC-83, a 

live attenuated strain of VEEV. TC-83 is derived from serial passage of the 

neurovirulent VEEV Trinidad Donkey (TrD) strain through guinea pig heart 

cells103. TC-83 attenuation is attributed to two point mutations. The first of which 
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is located in the 5’ UTR and destabilizes a critical stem-loop element (figure 8)104, 

while the second mutation is found in the E2 envelope glycoprotein105. While TC-

83 vaccination elicits a neutralizing antibody response in 80% of human 

recipients, moderate flu-like symptoms have been observed in 40% of cases94. 

TC-83 is a similarly sub-optimal vaccine candidate for animals. Significant levels 

of viremia are observed in vaccinated horses and acute illness and death has 

been observed in mouse strains following subcutaneous or intra-cranial 

inoculation106,107. While other vaccination modalities against VEEV are in 

development against encephalitic alphaviruses (summarized in figure 9)94, live 

attenuation models consistently remain the most immunogenic and efficacious94. 

Therefore, emphasis should be placed on the discovery of attenuating mutations 

that minimize pathology and are resistant to wild-type reversion. 
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Figure 8. A single point mutation in VEEV TC-83 destabilizes a critical 
stemloop in the 5’ UTR. Secondary structure and free energy comparison of a 
5’ UTR stemloop between VEEV TRD and VEEV TC-83. A notable characteristic 
of VEEV TC83 is a C to U mutation near the base of the stem on the 3’ side. 
Consequences of this mutation include a markedly less stable stem and smaller 
loop. Figure derived from Kulasegaran-Shylini et al. 2009104. 
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Figure 9. A multitude of proposed vaccine modalities against VEEV. 
Examples of other vaccine strategies in development against VEEV beyond the 
live-attenuated model. Chimera models are a synthesis between the non-
structural proteins of old world SINV and the structural proteins of VEEV. Viral 
replicon particles (VRPs) are infectious but non-replicating variants of VEEV. 
Virus-vectored models use viruses such as adenovirus to transmit key antigens 
of VEEV to targeted cells. DNA vaccines are comprised of plasmids that express 
VEEV antigens into target cells. Subunit vaccines contain whole or fragment 
peptides from VEEV designed to provoke a host immune response. Image 
derived from Spurgers and Glass, 201194. 

 

Programmed Translational Recoding Signals in Viruses 

Programmed translational recoding mechanisms are an underexplored 

potential target for vaccine development. Translational recoding is broadly 

defined as processes that direct ribosomes to transgress canonical translational 

mechanisms. Translational recoding is heavily utilized by many RNA viruses as a 

means to expand the coding capacity of what are typically very limited genomes. 

Many modalities of translation recoding have been documented, but of particular 
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interest to this document are programmed -1 ribosomal frameshifting (-1 PRF) 

and termination codon readthrough (TCR). 

Evidence of -1 PRF was initially documented in the Rous-Sarcoma retrovirus 

(RSV) in 1985 by Tyler Jacks and Harold Varmus. Analysis of the RSV genome 

revealed that sequence for coat protein gag overlapped with the 5’ open reading 

frame for replicase gene pol by 205 to 241 nucleotides. Expression of pol was 

contingent on the synthesis of a 160 kDa gag-pol fusion polypeptide at a 1:20 

ratio to standalone gag expression108. Closer sequencing analysis revealed 

presence of an amber (UAG) termination codon 58 nucleotides into the 

overlapping reading frames and more crucially that the overlapping pol sequence 

was encoded in a -1 reading frame respective to gag (figure 10A)108. The 

synthesis of the gag-pol fusion protein, then, was reasoned to only occur 

consequent to an RNA splicing event (despite a marked absence of traditional 

donor or acceptor sites) or a -1 ribosomal frameshifting event. Experiments 

utilizing a cell free rabbit reticulocyte lysate system demonstrated the ability of 

both gag and gag-pol products to be synthesized from the same RNA transcript 

(figure 10B)108, lending strong support to the latter hypothesis. Subsequent work 

sought to elucidate the precise location of the frameshift event108,109. RSV gag-

pol synthesis was shown to be unaffected by large deletions to the gag 

sequence, including the termination codon. The minimum sequence required to 

promote efficient RSV -1 PRF was ultimately localized to a 147 nucleotide 

sequence along the overlapping reading frames that notably harbored an A AAU 
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UUA sequence amenable to tRNA repositioning and a downstream stemloop 

structure (figure 11)109. 

 

Figure 10. Initial discovery of -1 PRF in RSV. (A) In vitro experimental 
schematic for assaying -1 PRF. Gag-pol region of RSV was cloned into SP6 
vector SP65. Vectors were linearized with XbaI prior to in vitro translation in a 
rabbit reticulocyte system. Anticipated kDa weights of RSV gag and gag-pol 
shown below. (B) Autoradiogram of a 10% SDS-PAGE of 35S-labeled translation 
products. Lane 1 is unpreciptated product, lane 2 is immunoprecipidated with 
rabbit serum to p19gag, lane 3 is immunoprecipidated with rabbit anti-reverse 
transcriptase serum, and lane 4 is immunoprecipidated with non-immuned rabbit 
serum. Weight markers are shown on the right of the gel, while the specific 
identities of PR76gag and P108gag-pol are shown on the left. Image taken from 
Jacks and Varmus, 1985108.   
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Figure 11. Downstream stimulatory structure implicated in the efficient -1 
PRF of RSV. (A) Predicted secondary structure of stimulatory hairpin element 
downstream of predicted RSV slippery sequence. A collection of mutants –SM1, 
SM2, and intended rescue mutant SM1+2- and the predicted consequences on 
the wild-type secondary structure are also depicted. (B) Subsequent fluorogram 
of a 10% SDS-PAGE of 35S-labeled, rabbit reticulocyte-derived translation 
products of (lane 1) wildtype RSV (wt), (lane 2) SM1, (lane 3) SM2, or (lane 4) 
SM1+2. Band identities of RSV gag and gag-pol are indicated on the left and 
molecular weights on the right. Image taken from Jacks and Varmus, 1988109. 

 
  

The gag-pol -1 PRF junction was further explored in the human 

immunodeficiency virus (HIV-1)110. Similar to the arrangement described in RSV, 

the reading frames for gag and pol overlapped, with the latter gene only 

expressed as a fusion protein consequent to a -1 PRF event. Recapitulating the 
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results found with RSV, gag and pol were arranged as overlapping reading 

frames on the HIV-1 genome, the presence of the resulting fusion protein once 

again detectable following expression in a rabbit reticulocyte lysate system110. As 

a shift into the -1 frame by definition alters the codon identity of the downstream 

nucleotide sequence, the radioactivity profiles of the fusion polypeptide were 

analyzed via Edman degradation to verify the presence of the trans-frame 

polypeptide (figure 12)110. The position of the trans-frame peptide once again 

implicated the conserved UUA leucine codon near the 5’ end of the overlap as 

the locus of the frameshift, and subsequent experimental mutations ablated 

synthesis of gag-pol (figure 13)110. Later studies investigated the role of the 

structure downstream of this slippery region. Silent mutations that destabilized 

the secondary structure of this element were correlated with a decrease in -1 

PRF in HIV-1 and related retroviruses111. 

 

 

 

 

 



 

38 
 

 

Figure 12. Biochemical evidence of a frameshifted gag-pol peptide in HIV-1. 
(A) Nucleotide and corresponding amino-acid sequences of the HIV-1 -1 PRF 
signals cloned into and SP6 vector (pHSS). The nucleotide sequence of the HIV-
1 -1 PRF sequence is displayed in the center, preceded by a short leader 
sequence. The zero frame amino acid sequence is displayed above the 
nucleotide sequence, while the amino acid sequence achieved through a -1 PRF 
event is shown below in italics. (B) Predicted amino-acid sequence of the 
frameshifted gag-pol peptide. The bracket line between codon 9 and 10 denotes 
the position of the predicted trans-frame peptide junction. (C) Radioactivity 
profiles of automated Edman degradation of pHSS-encoded protein synthesized 
in the presence of [35S]methionine and either [3H]phenylalanine (left panel), 
[3H]leucine (center panel) or [3H]arginine (right panel). Figure derived from Jacks 
and Varmus 1988110.   
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Figure 13. Efficient HIV-1 -1 PRF occurs at a designated slippery site. (A) 
Diagram of HIV-1 gag-pol junction sequence with highlighted UUUA “slippery 
sequence and downstream stimulatory hairpin element. (B) In vitro translation 
products of an M13 DNA vector harboring the cloned in sequence from 13A that 
were immunopreciptated with anti-p25gag antiserum and separated through 10% 
SDS-PAGE. Lanes 2 and 3 contain samples with U to C point mutations in the 
highlighted UUUA sequence in 13A. The expected position of the gag-pol band is 
indicated on the left. Molecular weight positions are shown on the right. Figure is 
taken from Jacks and Varmus 1988110  

 
 

The modern canonical model of a -1 PRF signal consists of a heptameric 

“slippery” sequence N NNW WWH, where spaces denote 0 frame codon 

arrangement, N denotes identical nucleotides, W denotes identical weak bases 

adenine or uracil, and H is not guanine, an optional spacer region and a highly 

structured downstream region that is typically either a hairpin stemloop112 or a 

pseudoknot113,114. These elements function in concert as a kinetic trap for 

elongating ribosomes, a fraction of which will pause over the slippery site115. Per 

the “simultaneous slippage” model, the non-wobble bases of tRNAs occupying 
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the A and P sites of the ribosome shift one nucleotide in the 5’ direction on the 

slippery site (Figure 14)56. When the ribosome resumes translation, it does so in 

the -1 frame, permitting the translation of an alternative polypeptide116. 

 

 

Figure 14. Canonical mechanism of -1 PRF. A canonical -1 PRF signal is 
comprised of a N NNW WWH slippery site, short spacer region, and downstream 
stimulatory element. These components work in concert as a kinetic trap for 
elongating ribosomes, a fraction of which will pause over the slippery sequence. 
Changes in kinetic partitioning result in the A and P site tRNAs to reposition one 
nucleotide in the 5’ direction, allowing translation in the -1 frame when ribosomal 
elongation resumes. Image from ViralZone56. 
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Concurrent research to that of RSV reported an alternative mechanism for 

gag-pol polypeptide synthesis in other retroviruses. In retroviruses such as feline 

and murine leukemia virus (FeLV, MuLV, respectively), gag and pol were shown 

to share the same reading frame117,118. Here, the amber termination codon 

serves as the junction point between the two genes, the readthrough of which 

was required to synthesize gag-pol. Experiments with beta-galactosidase 

reporter vectors demonstrated that efficient termination readthrough is predicated 

on the presence of a downstream stimulatory element similar to that of -1 PRF 

utilizing retroviruses (figure 15)119. 

 

Figure 15. Amber TCR is required to express gag-pol in some retroviruses. 
(A) Experimental schematic for beta-galactosidase constructs that assay efficient 
TCR of a type C murine retrovirus (AK). Constructs include an RSV promoter-
enhancer region followed by a minimal leader sequence as a negative control 
(pRSV c), an unaltered LacZ gene as a positive control (pRSV c-lac), 300 bases 
of the AK gag-pol sequence inserted 5’ of LacZ (pRSV c-gp-lac), or a single 
amber stop codon 5’ of LacZ (pRSV c-am-lac). (B) Monoclonal antibody 
detection of β-gal following transfection into vertebrate cells and spotting of 
extracts onto nitrocellulose. Images derived from Panganiban, 1988119. 
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With minor differences, viral TCR signals share a similar collection of cis-

acting elements described in -1 PRF signals. In this instance, the ribosome 

pauses over a termination codon, where the downstream stimulatory element is 

hypothesized to prevent association of the eRF1/3 complex. This increases the 

probability of the A site erroneously accepting a near cognate tRNA in the place 

of eRF3, permitting the ribosome to continue translating the current reading 

frame (figure 16)56. Numerous studies have also shown that the likelihood of TCR 

recoding is heavily influenced by the specific stop codon identity, with the less 

common amber and opal (UGA) stop codons more prominently associated with 

these signals120. Other factors, such as the identity of the nucleotides directly 3’ 

of the stop codon have also been implicated as contributors to leaky 

termination121. 
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Figure 16. Canonical mechanism of TCR. Schematic of how cis-acting 
elements on the RNA transcript can facilitate efficient TCR. Under classical 
termination circumstances a ribosome will pause over a termination codon, 
enabling the incorporation of the eRF1/3 complex and subsequent dissociation of 
the ribosomal subunits from the transcript. A TCR signal contains a highly 
structured downstream element that impedes the association of the eRF1/3 
complex and increases the likelihood that the A-site vacancy will instead be filled 
by a near-cognate tRNA. Should this occur, translation will resume on the 0 
frame, allowing for an extended peptide sequence. Image obtained from 
ViralZone56. 

 
 

The efficiency of these recoding signals is a crucial component of viral gene 

expression. Seminal research on this subject was conducted in the totivirus L-A, 

a small double-stranded RNA virus that infects yeast. Gag-pol frameshifting in a 

manner similar to retroviruses has been demonstrated in L-A at a recoding 

efficiency of ~1.9%122. As the L-A capsid is organized into a simple icosahedron 
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of 60 subunits, the implication here is that L-A synthesizes gag-pol at an 

efficiency that allots one fusion protein for every capsid123. When the L-A slippery 

sequence was experimentally mutated to alter -1 PRF efficiency above or below 

1.9% a marked decrease in viral propagation was observed (figure 17)124. Similar 

results were observed when the L-A slippery sequence was replaced with a +1 

PRF slippery motif derived from the yeast retrotransposon Ty1, demonstrating 

that the importance of the stoichiometric ratio between gag and gag-pol is 

independent of the recoding mechanism124. An imbalance in the gag to gag-pol 

ratio was similarly demonstrated to impair the replication of HIV-1125, raising the 

possibility that -1 PRF represents a potential target for novel therapeutic 

exploitation. 
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Figure 17. Altering L-A -1 PRF efficiency diminishes propagation of M1 
satellite virus. Effect of altered -1 PRF efficiency on the viability of L-A, 
measured by the consequences to M1 propagation. Plasmids with cloned slippery 
site mutations of L-A -1 PRF were introduced alongside M1 into yeast strain 
3063. As 3063 harbors a mak10-1 mutation, L-A is lost while M1 is stably 
supported by a wild-type L-A reporter (-1 PRF = 1.9%). Nucleic acids extracted 
from these strains were run through a 1.5 agarose gel stained with ethidium 
bromide. Frameshift efficiencies of mutant L-A (determined elsewhere via beta-
galactosidase experiments) are shown on the top. Band position of M1 is 
indicated on the right. L-BC, a virus unrelated to L-A or M1, is also shown. Figure 
adapted from Dinman and Wickner, 1992124. 

 
 

While much of the previous text has contextualized recoding events as the 

regulatory junction point between structural and enzymatic viral genes, it is 

important to note that these mechanisms serve a more modular function for viral 

gene expression. For example, research into SARS-CoV has identified a -1 PRF 

signal that serves as a division point between the early stage genes required for 

host cell takeover, and the ORF harboring genes required for viral replication126, 

127. Here too, the proper stoichiometric expression of the two ORFs is critical. 
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Experimental mutations to the SARS-CoV slippery site that ablated -1 PRF were 

correlated with significantly diminished production of viral genomic and sub-

genomic RNAs (figure 18A)128. Mutations that destabilized the downstream three-

stemmed pseudoknot serving as the stimulatory element for SARS-CoV 

achieved similar results (figure 18B,C)129,130. 
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Figure 18. Alterations to efficient -1 PRF diminish genomic and 
subgenomic RNA production in SARS-CoV. (A) Relative abundance of SARS-
CoV genomic (gRNA) and subgenomic (sgRNA) RNA following mutations to the 
slippery site. Taqman analysis was used to measure the abundance of viral RNA 
molecules compared to a reference RNA transcribed from a WT SARS-CoV 
replicon. (B) Schematic of the stimulatory pseudoknot of WT SARS-CoV. Two 
additional mutations –L2-UUC and S3D- are shown alongside. Shaded areas 
denote mutated areas, and the structures have subsequently been modified to 
reflect predicted changes from those mutations. (C) Relative abundance of 
SARS-CoV gRNA and sgRNA RNA consequent to pseudoknot mutations. 
Taqman analysis was used to measure the abundance of viral RNA molecules 
compared to a reference RNA transcribed from a WT SARS-CoV replicon. 
Figures jointly obtained from Plant et al. 2010 (A) and Plant et al. 2013 (B, 
C)128,129. 
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Translational recoding, then, can be distilled into a few unifying principles. 

Cis-acting elements on the RNA transcript serve as a kinetic trap for elongating 

ribosomes131, stalling them over a recoding sequence, be it a slippery sequence 

or uncommon stop codon. Fluctuations in kinetic partitioning during the ribosomal 

pause increase the probability of a recoding event, resulting in the translation of 

alternative polypeptides at precise stoichiometric ratios. 

A growing amount of research suggests that the conformational dynamics of -

1 PRF stimulatory elements are highly influenced by the helicase activity of 

elongating ribosomes. Indeed, optical tweezer experiments conducted on the 

HIV-1 -1 PRF signal revealed several different refolding conformations after 

ribosomal perturbation, ranging from a simple hairpin stemloop to a pseudoknot-

like triplex structure132. Elements upstream of the slippery site have also been 

implicated in exerting regulatory control over the central PRF structure133. 

Additional research, particularly in plant viruses, has reported long range 

interactions from elements elsewhere on the viral genome that can further 

influence the conformational dynamics of recoding signals134,135,136,137. While the 

full scope and function of these interactions are poorly understood, it is apparent 

that the factors that govern programmed translational recoding extend beyond 

the immediate structure.  

Two separate instances of translational recoding signals have been recorded 

in the alphavirus genome. In the non-structural ORF, a widely conserved opal 

termination codon has been identified at the 3’ end of the nsp3 gene, the 

readthrough of which is required to express the alphavirus replicase nsP4138. The 
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elements that govern this readthrough are currently poorly understood, and only 

limited computational predictions currently exist to describe the nature of the 

downstream stimulatory elements for this signal (figure 19)139. However, research 

has shown that mutating the opal stop to an arginine codon is correlated with 

attenuated pathogenicity in old world alphaviruses (figure 20)140, again 

demonstrating the optimal stoichiometric gene expression ratios enforced by 

these signals. Similar mutations have also been associated with decreased 

infectivity in mosquito vectors, suggesting that the presence of the opal stop 

codon between nsP3 and nsp4 confers important fitness advantages outside of 

the context of host cell infection as well141. 
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Figure 19. Computational prediction of VEEV TCR signal. Predicted 
secondary structure of VEEV TCR signal. Position of the amber termination 
codon is shown in bold. Sequences variations of the stem are shown with arrows. 
Remaining 95 nucleotides after the first stem are abstracted with a circle. Image 
derived from Firth et al. 2011139. 
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Figure 20. Arginine substitution of the opal stop codon attenuates CHIKV 
infection in mice. C57BL/6J mice were infected in the rear left footpad with 
either a mock treatment, 100 PFU of WT CHIKV, or 100 PFU of CHIKV where 
the opal termination codon has been mutated to AGA arginine (Opal524R). N = 
6, 9, and 10, respectively. Pathology is measured as footpad swelling in mm over 
the next 7 days post infection. Image taken from Jones et al 2017140.  

 
 

A -1 PRF signal has also been identified in the subgenomic ORF, at the 3’ 

end of the 6K gene. 6K is a small, hydrophobic, cysteine-rich protein that is 

thought to be incorporated as ion channels into the envelopes of mature 

alphavirus particles142. Instances of -1 PRF result in a unique C-terminally 

extended, 8.4 kDa variant of 6K known as “Trans-Frame”, or TF (figure 21)143. 

Notably, downstream protein E1 is not translated following a TF frameshift event. 

While the precise function of TF is not known, research has shown that it too is 

anchored by its cysteine residues into the envelope of maturing alphavirus 

particles144. Both 6K and TF appear to be crucial for virus budding, as research 

that limited expression exclusively to either protein led to diminished viral 
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replication and markedly weaker structural integrity of world world alphaviruses 

compared to that of wild-type particles 144,145,146,147. However, it has also been 

demonstrated that TF is subject to unique posttranslational modifications 

compared to 6K144, suggesting additional functional differences148. Alphavirus -1 

PRF is localized at a universally conserved U UUU UUA slippery region. A 

diverse array of downstream stimulatory structures have been computationally 

predicted downstream of the slippery site149, suggesting either that the 6K/TF 

stoichiometric needs vary greatly between alphaviruses, or that a minimum 

threshold of the frameshifted product is generated in all cases148. Crucially, 

however, the majority of alphavirus signals in the literature have only been 

characterized in a computationally predictive capacity with a predominate focus 

on the old world groups. 
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Figure 21. Discovery of alphavirus -1 PRF product TF. A -1 PRF signals was 
identified at the end of the alphavirus 6K gene. The result of this frameshift is an 
8.4 kDa product dubbed “Trans-Frame” or TF. SFV-infected BHK cells were 
labeled with [35S]Met/Cys and lysates were analyzed via SDS-PAGE. Wild type 
SFV is presented along side a mutant that prevents expression of TF (TF-). Band 
identities are presented on the left. Image derived from Firth et al. 2008143. 

 

Targeting Translational Recoding in Alphaviruses 

This work seeks to investigate the potential application of recoding signals as 

a therapeutic target against alphaviruses. Here, we performed a thorough genetic 

and structural investigation of the encephalitic alphavirus -1 PRF signals, which 

had previously only been characterized through predictive computational 

methodologies. These signals were capable of promoting efficient -1 PRF in 

several mammalian cell lines, but were intolerant of mutations that ablated 
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canonical frameshifting mechanisms. Chemical probing experiments elucidated 

the presence of hairpin elements immediately 3’ of the conserved slippery 

sequence that served as the minimum required stimulatory structure for efficient -

1 PRF. A deeper analysis into the VEEV -1 PRF signal revealed that ablation of 

the slippery site inhibits in-vitro replication kinetics and attenuates 

neuropathology of the virus in mouse models. Crucially, a followup experiment 

revealed the presence of neutralizing antibodies in the sera of mice 

subcutaneously infected with the VEEV -1 PRF mutant, which provided 100% 

protection against subsequent challenge with a lethal dose of wild type VEEV. 

These results suggest that -1 PRF mutants could serve as the foundation for live-

attenuated vaccine models against VEEV.  

The research pipeline used to characterize VEEV -1 PRF signals was then 

applied to CHIKV, selected as a representative old world alphavirus due to its 

global prevalence as an emerging pathogen. We identified high levels of 

sequence conservation in CHIKV TCR and -1 PRF signals consolidated from 

geographically distinct regions. Similar to the work conducted in VEEV, both 

signals promoted efficient termination codon readthrough and -1 frameshifting, 

respectively, in mammalian cell lines. Chemical probing analysis elucidated large 

hairpin stemloop structures downstream of the TCR opal stop and the -1 PRF 

slippery site, likely serving as the stimulatory structures for both recoding events. 

Interestingly, none of the polymorphisms identified between the geographic 

isolates of CHIKV had any significant effect on the recoding efficiency or higher 
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order structure of either recoding signal, implying that mutations that ablate either 

signal’s functionality could have broad-range applicability against the virus.  

Finally, we consider the possibility that the attenuated pathogenesis observed 

in the VEEV -1 PRF mutant implies that recoding signals constitute a broadly 

applicable therapeutic target against all viruses that employ them to regulate 

gene expression. A collection of recoding signals from alphaviruses, flaviviruses 

and retroviruses have been genetically and structurally characterized with the 

research strategies described above. While the completion of this phase extends 

beyond the scope of this body of work, it will hopefully lay the foundation for 

extended work into the field of programed translational recoding signals as a 

potential Achilles heel to the pathogenic competence of emerging viruses. 
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Abstract 

The alphaviruses, Venezuelan, eastern and western equine encephalitis 

viruses (VEEV, EEEV, WEEV) are arthropod-borne (+) RNA viruses that are 

capable of causing acute and fatal encephalitis in many mammals including 

humans. VEEV was weaponized during the Cold War, and is recognized as a 

select agent. Currently, there are no FDA approved vaccines or therapeutics for 

these viruses. The spread of VEEV and other members of this family due to 

climate change-mediated vector range expansion underscore the need for 

research aimed at developing medical countermeasures. These viruses utilize 

programmed -1 ribosomal frameshifting (-1 PRF) to synthesize the viral trans-

frame protein (TF), which has previously been shown to be important for 

neuropathogenesis in the related Sindbis virus. Here, the alphavirus -1 PRF 

signals were characterized revealing novel -1 PRF stimulatory structures. -1 PRF 

attenuation mildly affected the kinetics of VEEV accumulation in cultured cells, 

but strongly inhibited its pathogenesis in an aerosol infection mouse model. 

Importantly, the decreased viral titers in the brains of mice infected with the 

mutant virus suggests that the alphavirus TF protein is important for passage 

through the blood-brain barrier, and/or for neuroinvasiveness. These findings 

suggest a novel approach toward development of safe and effective live 

attenuated vaccines directed against VEEV and perhaps other closely related -1 

PRF utilizing viruses.  
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Importance 

Venezuelan equine encephalitis virus (VEEV) is as a select agent that has 

been weaponized. This arthropod-borne (+) RNA virus causes acute and fatal 

encephalitis in many mammals including humans. There is no vaccine or other 

approved therapeutic. VEEV and related alphaviruses utilize programmed -1 

ribosomal frameshifting (-1 PRF) to synthesize the viral trans-frame protein (TF), 

which is important for neuropathogenesis. -1 PRF attenuation strongly inhibited 

VEEV pathogenesis in mice, and viral replication analyses suggest that TF 

protein is critical for neurological disease. These findings suggest a new 

approach toward the development of safe and effective live attenuated vaccines 

directed against VEEV and other related viruses.  

 

Introduction 

Venezuelan equine encephalitis virus (VEEV) belongs to the family 

Togaviridae, genus alphavirus, which is further subdivided into old world and new 

world alphaviruses based on geographical distribution. The old-world 

alphaviruses include sindbis virus (SINV), Semliki Forest virus (SFV), and 

chikungunya virus (CHIKV): these generally cause diseases resulting in fever, 

rash, and arthritic disease. The new world alphaviruses are categorically 

encephalitic and include eastern and western equine encephalitis viruses (EEEV 

and WEEV) in addition to VEEV. VEEV, EEEV, and WEEV infections in humans 

result in 1%, 50-78%, and 3-7% mortality, respectively71. Mortality rates in horses 

are overall more severe at 20-80% for VEEV, 70-90% for EEEV, and 3-50% for 
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WEEV71. There are no FDA-licensed vaccines or therapeutics for VEEV, EEEV, 

and WEEV infections, underscoring the need to investigate the molecular biology 

and pathogenic mechanisms of these pathogens.  

The small genomes of RNA viruses limit their coding capacity. In 

response, they can expand their coding capacity by utilizing alternative 

splicing151, RNA editing152, leaky ribosomal scanning153 and programmed 

ribosomal frameshifting (PRF)153,154,155. In -1 PRF, the ribosome encounters a 

cis-acting element, termed the frameshift signal, which causes it to stall on the 

mRNA over a special ‘slippery sequence’. The ribosome is then directed to shift 

one nucleotide backward, allowing it to synthesize a protein with an alternative C-

terminal peptide sequence154. Typical -1 PRF signals are composed of three 

modules arranged in the following 5’ to 3’ direction: a heptameric “slippery site”, a 

short spacer, and a strong RNA secondary structural element, often an mRNA 

pseudoknot115. Multiple RNA viruses including West Nile virus, human 

immunodeficiency virus, and severe acute respiratory syndrome coronavirus 

utilize -1 PRF153,155,130.  

Alphaviruses were bioinformatically predicted to use -1 PRF to generate 

the trans-frame protein (TF), which shares its N-terminal region with the 6K 

protein149. Mass spectrometric analyses were used to confirm TF production by 

multiple alphavirus family members, including SFV, SINV, and CHIKV149,147.  A 

Sindbis virus (SINV) based molecular genetics study examining the 

consequences of altering the production, size, or sequence of TF revealed 

reduced levels of SINV viral release from both mammalian and mosquito cells, 
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without influencing genomic replication, specific infectivity, or migration of the 

envelope protein to the cell surface, suggesting that TF was likely involved in 

viral assembly147. Moreover, SINV with mutated TF was attenuated in a SINV 

neuropathogenic mouse model. To date there have been no studies on the role 

and importance of TF in the new world alphaviruses. The current study 

characterizes the frameshifting signals in new world alphaviruses (VEEV, EEEV, 

and WEEV). Standard molecular genetics analyses are consistent with the 

prediction that these viruses utilize -1 PRF to synthesize their TF proteins. VEEV 

harboring a silent protein coding mutation that attenuates -1 PRF activity 

(VEEVPRFm) displayed mildly decreased viral replication kinetics in vitro. Strikingly 

however, mice infected with VEEVPRFm showed dramatically increased survival 

and decreased clinical signs of disease as compared to mice infected with WT 

VEEV. These data demonstrate that frameshifting is a critical mechanism utilized 

by alphaviruses to encode TF, which is important for pathogenesis, and suggest -

1 PRF attenuation as a general strategy for exploring rational development of live 

attenuated vaccines.  

Materials and Methods 

Computational Prediction of Viral PRF Signals 

Accession numbers of virus genomes predicted to contain programmed -1 

PRF signals were imported from NCBI (http://www.ncbi.nlm.nih.gov) into the 

Dinman lab’s -1 PRF database (http://prfdb.umd.edu)156. PRFdb search 

algorithms were used to identify N NNW WWH slippery site sequences in the 

genome, as well as the alternate polypeptide sequences consequent to a 
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recoding event. Feynman diagrams of the predicted downstream stimulatory 

structures were generated using folding algorithms NUPAK157 and RNAfold158 as 

guides for subsequent cloning. 

Dual reporter plasmid construction and bacterial transformation 

All dual reporter plasmids were adapted from the dual luciferase read-

through control plasmid, pLuci (pJD175f)159. The multiple cloning site of pJD175f 

was digested at Sal I and Sac I restriction sites using the respective Fast-

DigestTM restriction enzymes (Thermo-Fisher). Restriction digest products were 

separated via 1% agarose gel electrophoresis, visualized by ethidium bromide 

staining and UV detection and isolated via NucleoSpin® Gel and PCR Cleanup 

Kit (Macherey-Nagel). Experimental plasmid inserts containing putative 

frameshift signals were generated as gBlocks (IDT) using complementary 

oligonucleotides and cloned into the linearized plasmid backbone via an In-

Fusion® HD Cloning kit (Clontech Laboratories). Specifically, the following virus-

derived sequences were cloned into pJD175f: a 126 nt EEEV-derived sequence 

beginning at nt 9961; a 117 nt VEEV-derived sequence beginning at nt 9970; and 

a 92 nt WEEV-derived sequence beginning at nt 9927. Assembly products were 

transformed into Stellar™ competent E. coli cells (Clontech Laboratories) and 

spread onto LB agar plates containing 50 µg/ml carbenicillin. Positive clones 

were verified by DNA sequencing (Genewiz®). Plasmid and primer sequences 

available upon request. Additionally, a series of frameshift reporter negative 

controls based on these three clones were constructed using olignonucleotide 

directed site specific. These consisted of (a) insertion of a 0-frame UAA 
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termination codon immediately 5’ of the slippery sites in each plasmid (denoted 

5’Ter), (b) silent coding mutagenesis of the U UUU UUA slippery sites to G UUC 

UUG (named ssM), and (c) a UAA termination codon in the -1 frame inserted 

after the viral sequences (denoted 3’ -1 Ter).  

Cell Culture 

HeLa (# CCL-2), U-87 MG (# HTB-14), and Vero (# CCL-81) cells were 

obtained from ATCC (Manassas, VA). Cells were cultured in Dulbecco’s Modified 

Eagle Media (DMEM) supplemented with 1% L-glutamine and 10% heat 

inactivated fetal bovine serum (FBS) and maintained in a humidified 37°C 

incubator with 5% CO2. Cycling AP-7 rat olfactory bulb neuronal cells were 

cultured in DMEM supplemented with 1% L-glutamine and 10% FBS at 33°C and 

10% CO2
160. For in vitro differentiation, cycling AP-7 cells were plated in 6-well 

plates at a seeding density of 2.0 x 105 cells per well. The next day, media was 

changed to DMEM containing 1% L-glutamine, 1% penicillin/streptomycin, 10% 

FBS, 2 µg/mL insulin, 40 µM dopamine hydrochloride, and 100 µM ascorbic acid. 

Cells were maintained at 39°C and 5% CO2 for 5 to 6 days before infection. 

Plasmid and siRNA transfection 

HeLa or U-87 MG cells were seeded 0.6 x 105 cells per well into 24 well 

plates in 0.5 ml of DMEM enhanced with 1% L-glutamine, 15% FBS and 1X 

penicillin/streptomycin at 37° C and 5% CO2. Following a 24 hour incubation, 

control and experimental dual luciferase reporter plasmids were then transfected 

into cells using the Fugene HD® transfection kit at a 3:1 transfection reagent to 
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DNA ratio. siRNAs directed against human DGCR8, Exportin 5, Argonaute 1, 

Argonaute 2 or scrambled sequences were transfected into U87-MG or HeLa 

cells as previously described161. 

Assays of programmed -1 ribosomal frameshifting 

Frameshifting efficiency of the experimental reporter plasmids was 

assayed as previously described162 using a Dual Luciferase Reporter Assay 

System kit (Promega). Twenty-four hours post transfection, cell culture media 

was aspirated and cells were rinsed twice with 1x phosphate buffered saline 

before disruption with 1X passive lysis buffer. Cell lysates were assayed in 

triplicate in a 96 well plate. Firefly and Renilla luciferase activity was quantified 

using a Glowmax® 96 Microplate Luminometer (Promega).   

Chemical modification analysis of -1 PRF promoting RNA structural elements 

mRNAs were structurally assayed using SHAPE163,164. DNA templates for 

mRNA secondary structure analysis were generated by PCR amplification using 

a DreamtaqTM DNA Polymerase kit (ThermoFisherTM). Forward and reverse 

primers for the Renilla and firefly regions on reporter plasmid pJD175f were used 

to amplify the inserted PRF sequence and attach a T7 promoter sequence and 

Kozak sequence at the 5’ end of the amplicons. Amplicons were isolated by 

agarose gel purification and in vitro transcribed RNA was generated using a T7 

MEGAscript kit® (Life TechnologiesTM). In vitro transcripts were purified using a 

MEGAclear® cleanup kit (Life TechnologiesTM) and the quality of the RNA 

transcripts were assessed by agarose gel electrophoresis. Nine pmols of the 
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PRF RNA templates were denatured at 65°C for four minutes and refolded at 

37°C for 20 mins in 5x folding buffer (400 mM Tris HCL pH 8.0, 800 mM NH4Cl, 

55 mM MgOAc). Probing of flexible bases in the RNA transcripts was conducted 

through N-methylisatoic anhydride (NMIA) acylation of unprotected 2’-OH 

groups. Primer extension with γ32P radiolabeled probes and reverse transcription 

was carried out as reported elsewhere163,164. cDNA products were separated 

through an 8% urea gel and visualized on a phosphoimager. Visual clarity of gel 

images was adjusted on Adobe Photoshop Lightroom 5.  

3-dimensional structural modeling of the tVEEV -1 PRF stimulatory element 

All-atom models were generated using the MC-Fold and MC-sym pipeline 

programs165. Initially, the RNA sequence of tVEEV was imported into MC-Fold to 

generate a series of secondary structures. Over 1000 structures were explored in 

total and the top 20 were selected for further consideration based on their 

energetic scores. Among these, the one whose secondary structure was most 

consistent with the SHAPE experiments was submitted to MC-Sym for 3D 

modeling. 200 structures were subsequently generated, and these were 

subjected to energy minimization and solvent refinement, yielding 15 best 

models. The highest scoring model was selected to represent the predicted 3-

dimensional structure of tVEEV shown in Figure 23E. 

 

Introducing -1 PRF mutations into infectious VEEV clones 

Synonymous substitutions were introduced by overlapping PCR extension 

using standard techniques to disrupt the -1 PRF signals in the TC83 and TrD 
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genomes. The silent slippery site mutations consisted of the following changes - 

T9964G, T9967C, A9970G – to change the U UUU UUA slippery sites to G UUC 

UUG within the pTC83 (VEEV) and pV3000 (TrD) plasmids. There are five amino 

acid changes between the TC83 strain as compared to TrD which all lie within 

the structural coding region: four in E2 (K7N, H85Y, T120R, V192D, T296I) and 

one in E1 (L161I[105,166]). Furthermore, the V3000 clone of TrD utilized for this 

study also encodes for two additional changes within E2 (one previously 

published, N239I167; and one unpublished, E323G). All plasmid constructs were 

verified by restriction enzyme digestion and sequencing. Plasmid and primer 

sequences are available upon request. 

VEEV viral stocks 

Viral stocks were produced from electroporation of in vitro transcribed viral 

RNA generated from either the pTC83 plasmid105, the pV3000 plasmid (TrD168) 

or PRF mutants pTC83PRFm and pV3000PRF plasmids. In brief, the viral cDNA 

was linearized with restriction enzyme and then purified using the MinElute PCR 

Purification kit (Qiagen) according to manufacturer’s directions. Capped RNAs 

were synthesized using the MEGAScript kit (Invitrogen) with a 2:1 ratio of cap 

analog [m7G(5')ppp(5')G NEB] to GTP and treated with DNase I supplied with the 

kit. RNA was then isolated with the RNeasy Mini kit with a second DNAse I on-

column digestion (Qiagen). The RNA integrity and concentration were 

determined by gel electrophoresis and absorbance at 260nm, respectively. In 

vitro transcribed viral RNAs were electroporated into BHK-J cells utilizing a 2mm 

gap cuvette (BTX ECM 630 exponential decay wave electroporator; Harvard 
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Apparatus, Holliston, MA). After trypsinization, cells were washed twice and 

resuspended in cold Dulbecco's phosphate-buffered saline without Ca2+/Mg2+ (D-

PBS; RNase-free) at 1.25 × 107 cells/ml. An aliquot of the cell suspension (400 

µl) was mixed with 1 µg of RNA transcripts, placed into the cuvette, and pulsed 

once at 860V, 25 µF capacitance, and 950 Ω resistance. Cells were allowed to 

recover for 5 min at room temperature and resuspended in complete minimal 

essential medium (MEM; Gibco-Invitrogen). Cells from three replicate 

electroporations were plated in three 75cm2 culture flasks for virus production. 

On the next day (~12 hours post electroporation [hpe]), transfection media was 

replaced with fresh MEM. Media supernatants were harvested at several 

timepoints, pooled and stored at 4°C. After the last collection, supernatants were 

then filtered (0.2µM), aliquoted, and stored at -80°C. Viral titers were determined 

by plaque assay on Vero cells. 

Analysis of viral kinetics 

VEEV RNA replication as well as infectious viral titers were determined 

within Vero cells. Vero cells (seeded in 12-well plates) were infected at a 

multiplicity of infection (MOI) of 1 for 1 hour. After the inoculum was removed, 

cells were washed twice with D-PBS, and cultured further in complete media. At 

3, 6, 9, 18 and 24 hours post infection (hpi) supernatants were collected and cells 

were washed once with D-PBS and lysed in Trizol-LS (TC83 viruses) or RLT 

buffer (RNeasy kit; TrD viruses). Both sample sets were stored at -80°C until they 

could be further processed. Infectious virus titers were determined by plaque 

assay on Vero cells. Differentiated AP-7 (dAP-7) cells were infected with either 
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TrD or TrDPRFm at an MOI 1.0 and maintained at differentiation conditions 

throughout the experiment. Supernatants and RNA lysates were harvested at 3, 

9, 18, 24, and 48hpi. 

Total cellular RNA was isolated from Trizol-LS lysates utilizing Direct-zolTM 

RNA MiniPrep kit (Zymo Research, Irvine, CA) or RNeasy Mini kit (Qiagen) 

according to manufacturer’s directions. RNA quality and concentration was 

analyzed by gel electrophoresis and absorbance at 260nm, respectively. For TrD 

virus containing samples, High-Capacity RNA-to-cDNA™ Kit (Thermo Fisher) 

was used to generate complementary (c)DNA. Quantification of viral RNA was 

determined by quantitative reverse transcription PCR (qRT-PCR; TC83) or qPCR 

(TrD) using the StepOnePlus Real-Time PCR System (Applied Biosystems). 

Primer-pairs (forward 5’ TCTGACAAGACGTTCCCAATCA 3’, reverse 5’ 

GAATAACTTCCCTCCGACCACA 3’) and Taq-man probe (5’ 6-

carboxyfluorescein-TGTTGGAAGGGAAGATAAACGGCTACGC-6-carboxy-

N,N,N’,N’-tetramethylrhodamine-3’) for nucleotides 7931–8005 of VEEV TC-83 

were originally described previously169. TC83 reactions were assembled using 

the RNA UltraSenseTM One-Step Quantitative RT-PCR System (Invitrogen) and 

absolute quantification was calculated based on the threshold cycle (Ct) relative 

to the standard curve. For TrD reactions, TaqMan® Gene Expression Master Mix 

(Thermo Fisher) was used and relative quantification to the 3 hpi timepoint was 

calculated based on the 2-DDCt method using 18S rRNA170. Undetermined Ct 

values were given the value of 40 for analysis.  
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Animal experiments 

Six to eight week old female BALB/c mice were obtained from Harlan 

Laboratories. Groups of 35 mice were infected with VEEV-TrD or VEEV-TrDPRFm 

using Biaera’s AereoPm System, whole body chamber and a three jet Collison 

nebulizer. They were exposed to 1x105 pfu/ml of VEEV-TrD or VEEV-TrDPRFm for 

10 min. Hank’s Balanced Salt Solution (HBSS) plus 1% FBS was used for viral 

aerosol. Ten animals from each group were observed for survival over the course 

of twenty-one days. Five animals from each group were euthanized on Days 2, 4, 

6, 8 and 10 post infection to determine the kinetics of disease in the mouse 

system. Serum, spleen, and brain were collected from each animal. Organs were 

homogenized using Omni Bead Ruptor 4 (Omni International) and then 

centrifuged at 10,000 rpm for 10 min. Supernatants were analyzed by plaque 

assays to determine viral titers. All VEEV TrD experiments were performed in 

animal bio-safety level 3 (ABSL-3) facilities, in accordance with the National 

Research Council’s Guide for the Care and Use of Laboratory Animals171 and 

under GMU IACUC protocol number 0331.  

Statistical analysis 

Frameshifting efficiencies and statistical analyses were calculated as 

previously described172. Frameshifting assays were independently repeated a 

minimum of three times as technical triplicates. Data was normally distributed 

and statistical analyses were conducted using a Student’s t-test. Statistical 

analysis for viral kinetics was performed using Prism 6 (GraphPad). Multiple 

unpaired t-test analysis of the titer and RT-qPCR datasets with the Holm-Sidak 
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correction was applied with the assumption that all comparisons had the same 

scatter. 

Results 

Alphavirus-derived sequences promote efficient levels of -1 PRF 

The alphavirus genomes consist of a single (+) RNA that harbors two 

open reading frames (ORFs) (Fig. 22A). The 5’ ORF encodes four non-structural 

proteins, while five structural proteins are encoded by the 26S subgenomic RNA. 

These two ORFs are translated as polyproteins which are proteolytically 

processed into the mature proteins (reviewed in 172). In two old world 

alphaviruses, SINV and CHIKV, -1 PRF events in the 6K gene result in 

production of 8.4 kDa trans-frame (TF) protein147. Similar signals are predicted to 

be located near the 3’ end of the sequence encoding the 6K protein in the New 

World alphaviruses143, and the 8.4 kDa TF protein is produced consequent to -1 

PRF events. Strategies for cloning the predicted -1 PRF signals from EEEV, 

VEEV and WEEV into dual luciferase reporters159 were determined by identifying 

their conserved 5’ slippery sites and in silico RNA folding of 3’ sequences156. 

Information pertaining to these clones is shown in Figure 22B. Figure 22C shows 

that all of these sequences promoted efficient levels of -1 PRF in both HeLa and 

U-87 MG cell lines. These findings are in general agreement with prior 

measurements of VEEV and EEEV frameshifting efficiencies measured by dual-

luciferase assays149. To rule out the possibilities that these sequences harbor 

IRES activity, cryptic promoters or cryptic splice sites, a series of mutants 

harboring slippery site inactivation mutations (ssM), in-frame termination codons 
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prior to the slippery sites (5’ Ter), and -1 frame termination codons 3’ of the virus-

derived sequences (3’ -1 Ter) were tested. Dual luciferase reporter assays 

ascertained that all of these mutations significantly reduced apparent -1 PRF 

activity (Figure 22D), indicating that these sequences encode bona fide -1 PRF 

signals. A prior study demonstrated that -1 PRF can be naturally regulated in 

cells by microRNAs (miRNAs)161. To investigate this possibility, miRNA 

processing or export was inhibited by siRNA knocking down expression of 

DGCR8, Exportin5 or Ago2 in U87-MG cells, and the effects on VEEV-mediated -

1 PRF were subsequently assayed. As positive controls, -1 PRF mediated by the 

HIV-1 and CCR5 -1 PRF signals were also assayed. Results from these 

experiments suggest that, unlike HIV-1 and CCR5, VEEV -1 PRF is not regulated 

by miRNAs in this cell type (Figure 22E). Similarly, siRNA knockdown of Ago1 in 

HeLa cells did not significantly affect -1 PRF promoted by the VEEV, EEEV, or 

WEEV sequences in HeLa cells (data not shown).  
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Figure 22. Identification and monitoring of -1 PRF in the alphaviruses. (A) 
General schematic of the alphavirus genome and subgenomic transctript. The 
specfici nucleotide numbers are given for the boundaries of the VEEV 
untranslated regions (UTRs). This family of viruses harbors -1 PRF signals 
toward the 3’ end of the 6K structural protein-encoding mRNA. The resulting 
frameshifting product is an 8.4-kDa protein called the trans-frame (TF) protein. 
gRNA, genomic RNA; sgRNA, subenomic RNA. (B) Accession numbers of the 
sequences from which the predicted -1 PRF signals were cloned, nucleotide 
positions of the first base of the predicted slippery sites, the slippery site 
sequences (the 0 frame is indicated by spaces), and the lengths of inserts (in 
numbers of nucleotides) initially tested for -1 PRF activities. (C) The predicted -1 
PRF signals derived from EEEV, VEEV and WEEV were cloned into the dual-
luciferase reporter plasmid pJD175f, and their ability to promote efficient levels of 
frameshifting was measured in both HeLa cells and U-87 MG astrocyte cells. The 
-1 PRF signals from HIV-1 was employed as a positive control. (D) Site-directed 
mutagenesis was utilized to genetically validate the -1 PRF activities of the 
EEEV-, VEEV-, and WEEV-derived sequences in U-87 MG cells. WT, wild type; 
ssM, silent mutations of the slippery sites; 5’Ter, 0-frame termination codons 
introduced upstream for the slippery sites; 3’-1 Ter, termination codons inserted 
in the -1 reading frame ‘3 of the virus-derived sequences. (E) miRNA processing 
or export was inhibited by siRNA knockdown of DGCR8 (siDGCR8), Exportin 5 
(siExp5), or Argonaute 2 (siAgo2) in U-87 MG cells, and the rates of -1 PRF 
promoted by the indicated sequences were monitored. Control samples were 
transfected with siRNAs harboring scrambled (Scr) sequences. For assays of -1 
PRF, a minimum of three or more biological replicates was performed in triplicate 
until biological significance was achieved, as previously described172. Bars 
represent standard errors of the means. **, P < 0.01; NS, not significant. 
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Efficient alphavirus -1 PRF is stimulated by stem-loop mRNA structural elements 

In classic -1 PRF signals, RNA structural elements located immediately 3’ 

of heptameric slippery sites serve as kinetic traps to stimulate frameshifting by 

stalling elongating ribosomes over the slippery site115. Typically, these are mRNA 

pseudoknot structures, although -1 PRF can be stimulated by simple stem loop 

structures as well173. Selective 2’ hydroxyl acylation and primer extension 

(SHAPE)174 was employed to characterize the nature of the EEEV, VEEV and 

WEEV -1 PRF stimulating elements (Figure 23A-C). Analysis of the SHAPE data 

revealed the presence of tandem stem-loops rather than RNA pseudoknot 

structures for all three of the viral sequences. Dual luciferase reporter assays of 

3’ truncation mutants (tEEEV, t2EEEV, tVEEV and tWEEV) revealed that only 

the slippery site proximal stem loops are required to promote efficient rates of -1 

PRF (Figure 23D). Guided molecular dynamics simulations of the tVEEV element 

suggests that this folds into a novel V-shaped structure comprising three stems 

labeled Sa, Sb and Sc (Figures 23B, 23E). How this may promote efficient levels 

of -1 PRF is discussed below.   
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Figure 23. Structural analysis of alphaviral -1 PRF signals. The EEEV (A), 
VEEV (B), and WEEV (C) -1 PRF signals were chemically resolved using 
selective 2’-hydroxyl acylation and primer extension (SHAPE). RNAs for the -1 
PRF signals of each alphavirus were transcribed from their corresponding 
reporter plasmids, RNA samples were treated with N-methylisatoic anhydrie 
(NMIA), primer extension reactions were carried out, the reaction mixtures were 
separated through 8% urea-PAGE, and 32P cDNA products were visualized 
using a Typhoon phosphorimager (left). (Right) RNA structures deduced from the 
SHAPE data. The 3’ truncation mutants are indicated in the boxed regions. (D) 
Identification of the minimal structures required to promote efficient levels of -1 
PRF (defined as >1%). The truncated sequences in panels A. to C. were cloned 
into pJD175f dual-reporter plasmids and assayed for their ability to promote 
efficient levels of frameshifting in U-87 MG cells. For assays of -1 PRF, a 
minimum of three or more biological replicates was performed in triplicated until 
statistical significance was achieved, as previously described172. Bars represent 
standard errors of the means. (E) Predicted three-dimensional structure of the 
tVEEV -1 PRF stimulatory element. 
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Ablation of -1 PRF mildly decreases VEEV virus production in vitro 

Prior studies have suggested that viral -1 PRF signals have evolved to 

promote frameshifting at very precise rates, and that changes in -1 PRF 

efficiencies have detrimental effects on virus propagation125,128,175. To test the 

importance of -1 PRF on virus propagation in cultured cells, a silent protein 

coding change was introduced into the VEEV infectious clones for the TC83 

vaccine strain and the highly pathogenic Trinidad Donkey (TrD)168 strain to create 

pTC83PRFm and pTrDPRFm (Figure 24A). Vero cells were infected with TC83, 

TC83PRFm, TrD, or TrDPRFm as described in the Materials and Methods, and 

samples were collected for analysis at 3, 6, 9, 18 and 24 hours post infection 

(hpi). Surprisingly, although statistically significant effects were observed at some 

of the later time points, ablation of -1 PRF within the TC83 backbone had 

minimum effects on virus titers and viral RNA accumulation (Figure 24B and 

24E). Similar results were observed with C6/36 mosquito cells (data not shown). 

Disruption of the -1 PRF signal within TrD resulted in decreased viral titers (~1.5 

logs) starting at 9 hpi (Figure 24F). Viral RNA levels were not affected until 18 

hpi, which is consistent with a defect in viral assembly (Figure 24C).  Replication 

analysis was also performed in dAP-7 rat neuronal cells, which represent a more 

relevant physiological model of VEEV infection.  Viral RNA levels did not differ 

between TrD and TrDPRFm (Figure 24D), but a decrease in viral titers was 

observed with TrDPRFm (Figure 24G), supporting the notion that TF protein plays a 

role in viral assembly.  dAP-7 cells have exited the cell cycle whereas Vero cells 

are cycling, which may be one reason for the observed differences in viral RNA 
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levels between the two cell types.  With several substitutions within E2 and E1 

between TrD and TC83 (as noted within the Materials and Methods) this may 

indicate that there is less dependence on the -1 PRF signal for the attenuated 

TC83 strain in vitro.   

 

Figure 24. Ablation of -1 PRF decreases VEEV release in vitro. (A) Schematic 
diagram indicated silent coding nucleotide substitutions ablating the -1 PRF 
signals in the VEEV TC83 and TrD infectious clones (VEEVPRFm). (B to G) 
Replication kinetics of the TC83 and TC83PRFm in Vero cells (B and E), TRD and 
TRDPRFm in Vero cells (C and F), and TrD and TrDPRFm in dAP-7 cells (D and 
G) infected at an MOI of 1. (B to D) Total RNAs were isolated from cells, and the 
absolute quantities for (TC83-infected cells) and relative quantities (for TrD-
infected cells) of VEEV genomic copies were determined by qRT-PCR. For TrD-
infected cells, relative fold change values were calculated using the number of 
genomic copies of the respective virus detected at 3 hpi. Data are plotted as 
means with standard deviations (n = 9 experiments for TC83-infected cells, n = 6 
experiments for TrD-infected Vero cells, n = 6 experiments for TrD-infected dAP-
7 cells). For all data sets, a multiple unpaired t test analysis with the Holm-Sidak 
correction was applied to each time point. Bars represent standard deviations. *, 
P < 0.05. 
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Ablation of -1 PRF strongly attenuates VEEV pathogenesis 

Prior studies in which -1 PRF was ablated in flaviviruses revealed that the 

NS1’ frameshift PRF product is required for neuroinvasion and replication in both 

avian and insect hosts176,177. Similarly, deletion of the 6K gene reduced the 

pathogenesis of the Ross River alphavirus in mice178. To determine the 

importance of the -1 PRF signal for VEEV pathogenesis, mice were exposed to 

1x105 pfu/ml of VEEV-TrD or VEEV-TrDPRFm for 10 min via aerosol route. Two 

groups of mice were followed for 21 days in order to assess survival, while others 

were sacrificed over the course of infection to assess viral kinetics in vivo.  

Kaplan-Meier survival analysis shows that ablation of -1 PRF had a strong 

negative effect on VEEV-induced mortality (Figure 25A). VEEV TrD infected mice 

succumbed to infection beginning at 8 days post infection (dpi) with all mice 

succumbing by 13 dpi. In contrast, 70% of VEEV TrDPRFm infected mice survived 

infection. Weight loss (Figure 25B) and clinical symptoms of disease (Figure 

25C) were less severe and delayed in VEEV TrDPRFm infected mice as compared 

to VEEV TrD infected mice. In parallel experiments, virus titers were monitored in 

the serum, spleens and brains of infected mice every two days for 10 days total. 

In all of the VEEV TrD infected mice, virus was detected in the blood and spleen 

early after infection (2 and 4 dpi) and cleared by 6dpi (Figure 25D). In contrast 

following infection with VEEV TrDPRFm, virus was only detectable in the blood and 

spleen in 50% of the mice at 2 dpi, and in only 60% of the mice at 4 dpi. Virus 

was also detected in the spleen at 6 dpi in 80% of the VEEV TrDPRFm infected 

mice. Plaque assays of brains revealed the presence of high levels of virus in the 
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VEEV TrD infected mice at all time points tested. In contrast, virus was not 

detectable in the VEEV TrDPRFm infected mice until 4 dpi, and was cleared in 

80% by 10 dpi. These results indicate that the dissemination of VEEV TrDPRFm is 

altered in vivo resulting in less viral replication within the brain and overall 

decreased pathogenesis.     
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Figure 25. Ablation of -1 PRF strongly attenuates VEEV pathogenesis. (A) 
BALB/c mice were infected with VEEV TrD or VEEV TrDPRFm by aerosol 
exposure. Animals were monitored for 21 days post-challenge and survival 
curves were determined. The data plotted represent those for 10 animals per 
group. (B) Mice were monitored for weight loss daily over 21 days. The 
percentage of weigh maintained (relative to the starting weight) was determined. 
The data plotted represent the mean values and standard deviations for 10 
animals per group. (C) Mice were also monitored at least daily for clinical 
symptoms of disease over 21 days. Data are plotted per animal per day. The 
gray-shaded area indicates the time frame when clinical disease was observed in 
VEEV TrD-infected mice. ϕ, one animal had to be euthanized due to self-
mutilation. Necropsy indicated no signs of disease in this mouse. (D) Mice were 
infected as described in the legend to panel A and were sacrificed at 2, 4, 6, 8, 
and 10 dpi. Brain, spleen and serum were harvested. Viral titers were determined 
by plaque assays. The data plotted represent means and standard errors of the 
means for five animals per condition. Filled and open squares, VEEV TrD and 
VEEV TrDPRFm, respectively. Samples without dectectable plaques were plotted 
as 1 PFU/ml. 

6

Scruffy, less active

Scruffy, hunched, lethargic
Moribund/euthanized
Rear limb paralysis

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 21
0

1

2

3

4

5

6

7

8

9

10

Days post infection

A
ni

m
al

 N
um

be
r

6

6

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 21
0

1

2

3

4

5

6

7

8

9

10

Days post infection

A
ni

m
al

 N
um

be
r

6

6

q

C) TrD TrDPRFm

A) B)

D)
Serum BrainSpleen

Fig. XX

0 2 4 6 8 10 12 14 16 18 20 22
0

25

50

75

100

Days

Pe
rc

en
t s

ur
vi

va
l

TrD
TrDPRFm

0 2 4 6 8 10 12 14 16 18 20 22
0

25

50

75

100

125

Days post infection

%
 W

ei
gh

t m
ai

nt
ai

ne
d

TrDPRFm

TrD

2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

Time (dpi)

lo
g 10

 p
fu

/m
L

2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

Time (dpi)

lo
g 10

 p
fu

/m
L

2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

Time (dpi)

lo
g 10

 p
fu

/m
L

TrD
TrDPRFm



 

79 
 

Discussion 

‘Canonical’ -1 PRF signals are described as being composed of three 

elements arranged from 5’ to 3’ in the following order: a heptameric N NNW 

WWH slippery site, a vaguely defined short spacer segment, and a downstream 

structural element which is typically a variation of an mRNA pseudoknot 

(reviewed in 179). Examples in which efficient -1 PRF is stimulated by stem-loop 

structures are rare, the most well-documented of which is the HIV-1 frameshift 

signal110,180,181. However, while the HIV-1 stem loop is sufficient to promote 

efficient -1 PRF, local genomic RNA secondary structure influences -1 PRF 

efficiency182 suggesting that more complex and dynamic interactions between the 

ribosome and -1 PRF stimulating RNA structural elements are involved. The 

novel predicted tVEEV structure (Figure 23E) may provide an explanation for 

how these structural elements may stimulate -1 PRF. Here, the internal loop 

results in a structure in which two of the stems (labeled Sb and Sc) abut one 

another. We suggest that, as this structure enters the ribosomal mRNA entry 

tunnel, Sb and Sc are compressed toward one another, bringing their 

phosphodiester backbones in close proximity. At a certain point, the ensuing 

charge repulsion may drive the decompression or “opening-up” of the structure, 

resulting in the backward movement of the mRNA relative to the ribosome, i.e. a 

-1 frameshift. We envision that emerging computational and single-molecule 

experimental platforms can be applied to test this novel mechanistic model of -1 

PRF. Interestingly, a prior study indicated that a VEEV deletion mutant harboring 

only 32 nt of sequence (predicted to retain the Sb structure while eliminating the 



 

80 
 

Sa and Sc structural elements) stimulated -1 PRF approximately twice as well as 

VEEV with the native sequence149. As discussed in that work, these findings 

indicate that a diverse array of 3’ RNA structures are capable of promoting 

efficient levels of -1 PRF.   

Programmed -1 ribosomal frameshifting was first discovered in 

retroviruses, where it directs the synthesis of Gag-pol polyproteins183. 

Subsequent studies using retroviruses184 and totiviruses124 demonstrated that 

changes in -1 PRF efficiency affects virus production. From this, a bioeconomics 

model emerged in which -1 PRF rates are optimized to maximize virus particle 

assembly by ensuring the synthesis of the correct stoichiometric ratios of the 

structural Gag-derived proteins to the enzymes encoded by the Pol open reading 

frame (ORF) (reviewed in 175). These findings engendered interest in targeting -1 

PRF for antiviral therapeutics (reviewed in 185). In parallel, early studies also 

examined -1 PRF signals in virus families where they do not occur between open 

reading frames encoding structural and enzymatic open reading frames (ORFs), 

e.g. in coronaviruses and luteoviruses. The finding that the Barley Yellows Dwarf 

virus uses -1 PRF as a developmental switch, from initial translation of non-

structural proteins to those involved in viral genome replication, represented an 

expansion of our understanding of the utility of this molecular mechanism186. 

Similarly, research in coronaviruses revealed that -1 PRF also serves as a 

switch, in this case from expression of immediate early non-structural proteins 

that are implicated in modulating the innate immune response, to the next 

developmental step of the viral program, expression of viral replication machinery 
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(reviewed in references127,187). Nonetheless, altering -1 PRF efficiency in SARS-

CoV severely impacted its infectivity in tissue culture, reinforcing the idea of -1 

PRF as an antiviral therapeutic target128. In flaviviruses the viral (+) RNA genome 

encodes a single ORF in which the structural proteins are encoded by the 5’ third 

of the genome, and the 3’ two-thirds encode the non-structural proteins. In these 

viruses, the location of the -1 PRF signal in the first non-structural gene (NS1) 

has been proposed to ensure production of large amounts of structural proteins 

for virus particle assembly, and smaller amounts of the non-structural proteins155. 

Interestingly, lower rates of -1 PRF correlate with decreased pathogenicity in 

West Nile Virus155, and production of the NS1’ frameshift product is critical for 

neuroinvasiveness in West Nile and Japanese encephalitis viruses176,188. In these 

viruses, the NS1’ protein is thought to be important for virion assembly176,189. 

Additionally, -1 PRF has now been demonstrated to be used to control the 

expression of a large fraction of cellular genes in eukaryotes by functioning as to 

control mRNA stability (reviewed in 190). Thus, we suggest that -1 PRF is an 

ancient, basic biological regulatory mechanism that has been evolutionarily 

selected for numerous end uses. On a final note, the observation that -1 PRF in 

alphaviruses does not appear to be regulated by host cellular miRNAs is not 

surprising from an evolutionary point of view. Like many RNA viruses, their 

evolution has followed a generalist strategy favoring the ability to produce acute, 

high yield infections in a wide range of host organisms as opposed to viruses that 

have co-evolved with a single or closely related host species over a long period 

of time. Thus, a HIV-1 with its long co-evolutionary history with the Great Apes 
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would be expected to utilize host-encoded miRNAs, while the alphaviruses would 

not.  

While related to flaviviruses, the alphavirus genomes are arranged such 

that the non-structural proteins are located in the 5’ ORF, while the structural 

protein genes are in a separate 3’ ORF, and are expressed from the 26S 

subgenomic RNA (see Figure 22A). In alphaviruses, production of the 8.4 kDa 

TF protein may have two consequences. First, because E1 is a structural protein, 

-1 PRF may play a role in virion assembly by controlling E1 expression levels, 

and thus altered E1 production could negatively interfere with virion 

assembly147,191. The data presented in Figure 3 partially supports this model, as 

ablation of the -1 PRF signal resulted in decreased viral production/release in 

vitro. This small decrease in virion production may provide just enough of a 

difference to enable the host to mount an effective immune response, as 

evidenced by the longer viral residence times of TrDPRFm in the spleen (Figure 

25D). Alternatively, TF itself may have a biological role separate from viral 

particle assembly. This is supported by the observation that -1 PRF inhibition 

attenuated VEEV pathogenicity and altered viral spread in mice. Consistent with 

the flavivirus NS1’ protein literature, the observation that TrDPRFm virus promoted 

decreased viral titers in the brains of infected mice suggest that the VEEV TF 

may be important for passage through the blood-brain barrier, and/or for 

neuroinvasiveness147,176,188. It is important to note that these two options are not 

mutually exclusive, in that decreased TF expression and the accompanying 

increase in E1 levels may influence viral assembly/release, while at the same 
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time impact an as yet unidentified role of TF. There have been no studies to date 

examining the interactions between TF and other viral or cellular proteins. Such 

analyses would lend great insight into the role of TF and will be the focus of 

future studies. It is also worth noting that attenuation of TC83 is due a 

substitution at position 120 of the E2 glycoprotein105; thus it is possible that the 

differences observed with the PRF mutant in TC83 as compared to TrD may be 

due to disruption of an interaction between E2 and TF.  

The development of VEEV as a biological weapon in the U.S. and former 

USSR, and a documented history of over 150 cases of serious laboratory 

infections by VEEV71 led to it being included as a select agent by the government 

of the United States of America. As noted above, the FDA has not approved any 

vaccines or therapeutics for the equine encephalitis viruses. The attenuated 

vaccine strain, TC83, was generated in the early 1960’s by serially passing 

VEEV 83 times in guinea pig heart cells192. TC83 poses a high risk for reversion 

due to the fact that it harbors only two attenuating mutations105, and can also be 

transmitted by mosquito vectors193. Because of these risks, coupled to its 

demonstrated ability to cause mild- to severe flu-like symptoms in approximately 

25% of volunteers, and promoted seroconversion in only 80% of volunteers194, 

TC83 has only limited utility for use in humans and its use is limited to laboratory 

personnel and military at risk of contracting the virus195. More recent live 

attenuated vaccine candidates are based on the VEEV TrD infectious clone used 

in the current study. These include insertion of specific point mutations or a 

mutation in the PE2 cleavage-signal combined with a mutation that rescues E1 
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gene function. The resulting V3526 strain is safe and immunogenic in non-human 

primates and mice, and has a lower risk for mosquito transmission (reviewed in 

195). The finding in this study that attenuation of -1 PRF strongly attenuated VEEV 

neuropathogenicity of the virus represents a promising new avenue of inquiry 

toward the development of safe and effective live attenuated vaccines directed 

against VEEV and perhaps other -1 PRF utilizing members of the Togavirus and 

Flavivirus families. In addition, novel -1 PRF stimulating mRNA elements 

identified here may also serve as targets for small molecule therapeutics directed 

against these viruses. 
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Abstract 

Climate change and human globalization have facilitated the rapid spread of 

mosquito-borne diseases to naïve populations. One such emerging virus of 

public health concern is Chikungunya virus (CHIKV), a member of the 

Togaviridae family, genus alphavirus. CHIKV pathogenesis is predominately 

characterized by acute febrile symptoms and severe arthralgia, which can persist 

in the host long after viral clearance. CHIKV has also been implicated in cases of 

acute encephalomyelitis and vertical transmission has been reported. Currently, 

no FDA approved treatments exist for this virus. Here, we report the molecular 

and structural characterization of two CHIKV translational recoding signals: a 

termination codon readthrough (TCR) element located between the non-

structural protein 3 and 4 genes, and a programmed -1 ribosomal frameshift (-1 

PRF) signal located toward the 3’ end of the CHIKV 6K gene. Efficient TCR and -

1 PRF were validated and genetically characterized using dual-luciferase and 

immunoblot assays in HEK293T and U-87 MG mammalian cell lines. Analyses of 

RNA chemical modification data (SHAPE) revealed that CHIKV -1 PRF is 

stimulated by a tightly structured, triple stem hairpin element, consistent with 

previously investigated alphaviruses, and that the TCR signal is composed of a 

single large multi-bulged hairpin element. These findings illuminate the roles of 

RNA structure in translational recoding and provide critical information toward 

creating of live-attenuated vaccine design. 
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Introduction 

The spread of mosquito-borne viruses has been accelerated by climate 

change and advances in globalization27. One such example is Chikungunya virus 

(CHIKV), a member of the Togaviridae family, genus alphavirus. First identified 

during an outbreak in Tanzania in 195263, CHIKV was implicated in large-scale 

outbreaks in Africa and Asia in 2004196. Its geographic spread has since 

encompassed Europe, Australia, the Pacific Islands and the Americas197. “Old-

World” alphaviruses including CHIKV, Sindbis virus (SINV), Semliki Forest Virus 

(SFV) and O’Nyong’Nyong virus (ONNV) are endemic to Africa and central Asia, 

and infections are characterized by fever, rash, and arthritic disease. The 

pathogenesis of CHIKV is predominately characterized by an incubation period of 

3-7 days, followed by acute, febrile illness and severe arthralgia58. Most patients 

recover within two weeks, but complications can result in debilitating sequelae 

persisting for years after viral clearance. Recent reports have implicated CHIKV 

in cases of acute encephalomyelitis198,199 similar to that of “New World” Equine 

Encephalitis alphaviruses, and the capability for vertical transmission during 

pregnancy or birth200,201 has been demonstrated. Currently, no FDA approved 

treatments for CHIKV have been approved for civilian use. 

Many RNA viruses employ translational recoding mechanisms to expand 

the coding capacity of limited genome space and to optimize the stoichiometric 

expression of critical proteins115. Two recoding signals have been documented in 

alphaviruses: those promoting termination codon readthrough (TCR) and 

programmed -1 ribosomal frameshifting (-1 PRF). The CHIKV TCR is located at 
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an opal (UGA) termination codon in the genomic RNA beginning at nucleotide 

position 5656, which marks the boundary between the nsP3 and nsP4 genes138. 

A closely associated downstream stimulatory element is thought to prevent 

efficient association of the eRF1/eRF3 complex with the ribosomes stalled at this 

codon, increasing the likelihood of a TCR event139. The specific stop codon 

identity for this signal is critical for optimal alphavirus functionality, as 

substitutions to amber or ochre stop codons or an arginine readthrough have 

been associated with lowered transmission in mosquito vectors and significantly 

attenuated pathogenesis140,202,141. The -1 PRF signal is located in the 

subgenomic RNA that encodes a polyprotein that is subsequently processed into 

structural proteins. -1 PRF occurs at a conserved U UUU UUA slippery site 

sequence near the 3’ end of the 6K gene, resulting in production of a trans-frame 

(TF) product143. TF then undergoes unique post-translational modifications 

respective to 6K and is integrated into the envelopes of mature virions144. While 

the biological function of TF is poorly understood148, it has been hypothesized to 

function as an ion channel, similar to its 6K counterpart142. A study with SINV 

mutants that disrupted production of TF resulted in reduced virus production in 

mammalian and insect cell lines that was independent of genome replication, 

particle infectivity or envelope protein transport to the cellular membrane. These 

findings suggest potential roles for TF in virus particle assembly and budding. 

Notably, SINV mutants with disrupted TF production strongly attenuated the virus 

in mouse models147. Similarly, ablation of -1 PRF in VEEV, a new world 

alphavirus, had minimal effects on viral replication while abrogating 
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neurovirulence in mouse models150. These findings suggest that ablation of 

alphavirus recoding elements could serve as the foundation for live-attenuated 

vaccines for this virus family. 

This study describes the genetic and structural characterization of the 

CHIKV TCR and -1 PRF signals. We demonstrate that the bioinformatically 

predicted CHIKV recoding signals promote efficient levels of translational 

recoding in several mammalian cell lines. The observed recoding efficiencies 

were genetically verified through mutations used to ablate the respective TCR 

and -1 PRF mechanisms. Analyses of chemical modification assays identified the 

presence of well-organized hairpin structures downstream of the respective 

recoding sequences, the structures of which were tolerant of geographically 

isolated polymorphisms. Key mutations were elucidated that significantly ablated 

recoding functionality were identified for both signals, laying a foundation for 

follow-up attenuated live virus experiments in animal models. 

Materials and Methods 

Computational prediction of CHIKV recoding signals 

CHIKV sequences were imported from NCBI (http://www.ncbi.nlm.nih.gov) 

into the Dinman lab frameshifting database (http://prfdb.umd.edu)156. The 

conserved opal stop codon at the 3’ end of the NSP3 gene, and the UUUUUUA 

slippery site in the 6K gene, were used to identify the sequences harboring the 

CHIKV TCR and -1 PRF stimulatory elements respectively. The RNA folding 

algorithm NUPACK157 was employed to model potential downstream RNA 
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secondary structures of these recoding signals, serving as guides for subsequent 

cloning into reporter vectors. 

Dual reporter plasmid construction 

Translation recoding rates were monitored using pJD2257 based dual 

luciferase vectors, a modification of pSGDluc203 in which a duplicate Bam HI and 

Sal I restriction site was eliminated, leaving unique sites located between the 

Renilla and firefly luciferase coding sequences. DNA sequences harboring the 

CHIKV recoding signals containing 5` and 3’ overlapping sequences with 

pJD2257 were designed in silico and synthesized by Genewiz (Supplementary 

Table 1) (Gaithersburg MD). These were used to construct reporter plasmids by 

the DNA fragment assembly method204 using the In-Fusion® HD cloning plus kit 

from Clontech laboratories (Mountain View CA, catalog # 638911). These inserts 

we also cloned into control variants of pJD2257 that harbor in frame UAA 

termination codons either 5’ or 3’ of the multiple cloning site (pJD2267 and 

pJD2269, respectively). Plasmids and sequences are described in 

Supplementary Table 2, and are available upon request.   

Cell Culture 

Cell lines for HEK293T (catalog # CRL-3216) and U-87 MG (catalog # HTB-14) 

were purchased through ATCC (Manassas, VA). HEK293T cells were cultured in 

Dulbecco's modified Eagle medium (DMEM) (Lonza) and U-87 MG cells were 

cultured in Eagle's minimum essential medium (EMEM) (Lonza) supplemented 
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with 1% L-glutamine, 10% FBS and 1X penicillin-streptomycin to obtain complete 

growth media. The cells were grown at 37oC in 5% CO2.  

 

Plasmid Transfections 

HEK293T, or U-87 MG cells were seeded at 0.6 X 105 cells in 0.5 ml per well for 

24-well plates for dual luciferase transfections in appropriate complete growth 

media (DMEM or EMEM). Following a 24-hour incubation period, control and 

experimental reporter plasmids were then transfected into cells using a 

Lipofectamine 3000 transfection reagent from ThermoFisher (catalog# 

L3000015).  

Assays of translational recoding 

Translational recoding efficiencies measured using pJD2257 based reporter 

plasmids were assayed as previously described150 using a dual-luciferase 

reporter assay system kit from Promega (catalog# E1980). At 24-hours post-

transfection, cell culture media was aspirated and the cells were rinsed twice with 

1X phosphate-buffered saline (PBS) before disruption with 1X Passive Lysis 

Buffer (PLB). Cell lysates were assayed in triplicate in a 96-well plate. Firefly and 

Renilla luciferase activities were quantified using a GloMax®-Multi Detection 

system from Promega (catalog# E7041).  

Immunoblot Analyses 

HEK293T cells were seeded at 1 X 106 cells/well in 6-well plates followed by 

transfections with dual luciferase plasmid vectors using the Lipofectamine 3000 
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transfection reagent from ThermoFisher (catalog # L3000015). Cell were 

harvested 48 hours post transfection and lysates were prepared using NP-40 

lysis buffer (from Boston BioProducts catalog# BP-119) including protease and 

phosphatase inhibitors (from ThermoFisher catalog# 78440). Protein 

concentrations were determined and 15-20 µg of each sample was separated by 

SDS-PAGE (4-15% gels from Bio-Rad catalog# 4568084) and then transferred to 

0.45µm nitrocellulose membranes from Fisher (catalog# LC2001). Post-transfer 

membranes were blocked with 5% non-fat skim milk in 1× PBST (1× PBS, 0.5% 

Tween20) for 2 hours at room temperature and then incubated overnight at 4°C 

with primary firefly luciferase (polyclonal anti-goat from Promega catalog# G7451 

and Lot# 0000255518) and Renilla luciferase (monoclonal anti-rabbit from 

BosterBio catalog# MT0022 and Lot# 001812M2250) antibodies at 1:1000 

dilution in 1× PBST containing 5% BSA. Blots were washed with 1× PBST and 

incubated for 3 hours at room temperature with goat anti-goat IgG HRP 

conjugate secondary antibody (from Bethyl laboratories catalog# NC9452917 

and Lot# A50-201P) and anti-rabbit IgG HRP conjugate secondary antibody 

(from Cell Signalling catalog# 7074S and Lot# 26) in 5% non-fat skim milk 1× 

PBST. Immunoreactive bands were detected using LumiGLO reagent from Cell 

Signaling Technologies (catalog# 7003S) and visualized in Fuji, LAS-3000 

imager. 

RNA structure analyses 

The CHIKV -1 PRF and TCR signals were structurally assayed by Selective 2’-

Hydroxyl Acylation analyzed by Primer Extension (SHAPE) as previously 
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described with the following modifications205,206. DNA templates for in 

vitro transcription reactions were generated by PCR amplification 

using DreamTaq DNA polymerase from Thermo Fisher (catalog # 

FERK1071PM). Complementary primers for the Renilla and Firefly regions were 

used to amplify the inserted CHIKV sequence and attach a T7 promoter 

sequence to the 5' end of the amplicons. in vitro transcription was carried out with 

a T7 MEGAscript kit from Life Technologies (catalog#AM1334). 

Transcribed RNA was purified with MEGAclear cleanup kit (Life Technologies, 

catalog# 1908) and the quality of the RNA samples was assessed through urea-

PAGE. Modification of flexible bases with N-methylisatoic anhydride (NMIA) was 

carried out as previously described150. The oligonucleotide 5'-

AGGATAGAATGGCGCCGGGCC-3' was 5’ labled using g[32P] ATP  from Perkin 

Elmer (catalog # BLU502Z250UC) and polynucleotide kinase. The primer was 

annealed to modified RNA and and subsequent reverse transcription (using 

Superscript III RT, ThermoScientific catalog# 18080044) were carried out 

as previously reported205,206. Radioactivity of cDNA samples was standardized 

with a liquid scintillator prior to electrophoresis though 8% urea-PAGE (SequaGel 

UreaGel system, National Diagnostics catalog# EC-833). cDNA products were 

visualized on a Fujifilm phosphorimager. Visual clarity of gel imagers was 

adjusted with Abobe Photoshop Lightroom 5. All primers were purchased through 

IDT.  
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Three-dimensional structural modeling of CHIKV -1 PRF and TCR stimulatory 

elements 

All-atom models were generated using the MC-Fold and MC-Sym pipeline 

programs165. RNA sequences for the CHIKV -1 PRF and TCR signals were 

imported into the MC-Fold program to generate a series of secondary structures 

as previously described150. The highest-scoring model was selected to represent 

the predicted 3-dimensional structure of the viral PRF signals. 

Phylogenetic analyses 

Accession numbers of CHIKV sequences isolated from patients of either African-

Asian origin (n=14) or Caribbean origin (n=5) were considered for phylogenetic 

analysis. Translational recoding sequences (PRF and TCR) from these strains 

were aligned using Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/)207.  

Statistical analyses 

Translational recoding assays repeated in triplicate (experimental replicates) 

were independently repeated a minimum of three times (biological replicates) 

and mean technical replicate values for each independent biological replicate are 

shown on graphs along with standard deviation of biological replicates. Statistical 

analyses were conducted using a Student’s t test or one-way ANOVA as 

appropriate using Prism, version 6, software (GraphPad). 
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Results 

The CHIKV translational recoding sequences are highly conserved 

Alphaviruses have single-stranded, positive sense RNA genomes that 

contain two large open reading frames (ORF) (Figure 26A)57. The first ORF 

encodes a polyprotein that is proteolytically cleaved into the non-structural 

proteins nsP1, nsP2, nsP3 and nsP4 (nsP4 encodes the viral RNA-dependent 

RNA polymerase or replicase). The second ORF, accessible to the translational 

apparatus as a sub-genomic transcript, encodes a polyprotein which is 

subsequently processed into the C, E2, E3, 6K and E1 structural proteins. 

Programmed translational recoding signals have been identified in both ORFs. In 

the nonstructural ORF, the nsP3 gene ends with a UGA opal termination: thus 

expression of the nsP4 replicase requires a programmed termination codon 

readthrough (TCR) mechanism138. In the subgenomic RNA, a programmed -1 

frameshift signal (-1 PRF) located in the 3’ region of the 6K viroporin gene 

enables synthesis of a C-terminally extended trans-frame variant dubbed TF that 

has been identified in the envelope of mature alphavirus particles143. Ribosomes 

that have been shifted to the -1 frame to produce TF cannot translate the E1 

protein. 

 Human globalization and climate change have facilitated the rapid global 

spread of CHIKV, resulting in the generation of multiple viral strains and lineages 

with differing degrees of pathogenicity208,26,25. A prior analysis revealed 

considerable amounts of heterogeneity among these strains throughout their 

genomes209. Consensus sequences of patient-derived CHIKV isolates from the 
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Africa/Asia and Caribbean geographic regions (abbreviated as Af/As and Carib) 

were aligned to assess the conservation of the TCR and -1 PRF recoding regions 

(Figure 26B). The full collection of CHIKV isolate sequences used in this study 

can be found in Figure 35. The opal termination codon is universally conserved in 

both consensus sequences, but five polymorphisms were identified in the 

downstream sequence predicted to harbor the accompanying TCR stimulatory 

element. Similarly, full conservation of the alphaviral U UUU UUA slippery site 

was observed in both CHIKV -1 PRF consensus sequences, but the sequence 

identity of the downstream stimulatory structure diverged by only a single 

nucleotide. Following this analysis, it was determined that both geographic 

consensus sequences for the CHIKV TCR signal would be considered for 

subsequent experiments, while only the Af/As sequence of the CHIKV -1 PRF 

signal was selected as a representative. 
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Figure 26. Identification and conservation analysis of CHIKV derived 
programmed translational recoding signals. (A) General schematic of the 
alphavirus genome and subgenomic transcript. The presence of the TCR signal 
3’ of nsP3 and the -1 PRF signal in the 3’ region of 6K are identified. The oval 
chains below denote the two polyproteins that can be synthesized from both the 
nonstructural and structural ORFs, and the proteins that are encoded by TCR 
(nsP4) or -1 PRF (TF) are shaded. (B) Consensus sequence alignments of 
patient-derived CHIKV programmed translational recoding signals from the Af/As 
and Carib geographic regions. Numbers indicate the starting and ending 
nucleotide positions of each region under investigation. Asterisks (*) are used to 
denote identical nucleotides among consensus sequences. 

 

CHIKV-derived sequences promote efficient recoding in mammalian cell lines 

The Af/As and Carib variants of the CHIKV TCR signal and the singular -1 

PRF signal were cloned into dual luciferase reporter vectors. The firefly luciferase 

ORF flanking the 3’ end of the inserted sequences was adjusted such that 

translation could only be achieved consequent to a termination codon 

readthrough event or a ribosomal shift into the -1 frame, respectively172. Dual 
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luciferase reporters harboring the Murine Leukemia Virus (MuLV) TCR and the 

VEEV -1 PRF signals were employed as positive controls and a reporter with a 

UAA termination codon inserted 5’ of the firefly luciferase ORF (5’ UAA) 

constituted the negative control. All three CHIKV-derived sequences promoted 

efficient levels of translational recoding in HEK293T and U-87 MG human 

astrocyte-derived cell lines (Figure 27A). Specifically, average Af/As and Carib 

TCR efficiencies were in the range of 7.0% and 7.1% in HEK293T cells and 

13.4% and 13.7% in U-87 MG cells, respectively. These values were very similar 

to those measured from the MuLV TCR control reporter. Notably, no significant 

differences in TCR efficiency were recorded between the Af/As and Carib 

geographic variants of CHIKV. Average CHIKV -1 PRF efficiency was lower, 

approximately 1.8% in HEK293T cells and 4.5% in U-87 MG cells, as compared 

to the VEEV -1 PRF reporter (average 2.3% in U-87MG, and 4.6% in HEK293T 

cells). However, all of these values were statistically significantly greater than the 

5’ UAA control (<1% in both cell lines). The possibility that the observed recoding 

efficiencies were the products of a cryptic promoter, splice site or IRES was 

tested with two modified vector backbones that placed an in-frame termination 

codon either directly 5’ of the inserted test sequence or in the outgoing reading 

frame 3’ of the insert prior to the firefly sequence. Dual luciferase assays 

revealed that these control vectors significantly abrogated CHIKV Af/As and 

Carib-meditated TCR and -1 PRF efficiencies in both cell lines, supporting the 

hypothesis that these are indeed legitimate viral recoding signals (Figure 27B). 

As an orthogonal approach to characterizing efficient recoding, the firefly and 
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Renilla luciferase products of transfected HEK293T cells were also visualized by 

immunoblot; these data effectively recapitulated the enzymatic reporter data 

(Figure 27C). 

 

 

Figure 27. Characterization and validation of efficient CHIKV translational 
recoding in mammalian cell lines. (A) The predicted TCR and -1 PRF signals 
identified in Figure 26 were cloned into pJD2257 dual luciferase reporter vectors 
and their ability to promote efficient recoding was monitored in HEK293T and U-
87 MG cells: human kidney and astrocyte cell lines, respectively. MuLV and 
VEEV were employed as positive controls for efficient TCR and -1 PRF, as well 
as a negative control consisting of a UAA termination codon in the 0 frame. (B) 
CHIKV recoding signals were cloned into dual reporter control vectors containing 
a premature termination codon either 5’ of the insert sequence in the 0 frame 
(5’ter) or 3’ of the insert in the -1 frame (3’ter). (C) Representative immunoblot of 
protein lysates generated from HEK293T cells transfected with the indicated 
reporter plasmids. The slower migrating band in the firefly luciferase probed 
panel corresponds to incomplete cleavage of the Stop/Go inteins that were 
inserted immediately 3’ of the recoding signals (n=2). Dual luciferase data is 
presented as means with standard errors, where each point denotes a biological 
replicate assayed as technical triplicates. Asterisks denote statistical significance, 
where * p<0.05; ** p<0.01.  
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Targeted mutations alter CHIKV recoding efficiencies 

Prior studies revealed that efficient -1 PRF in encephalitic alphaviruses 

can be abrogated by strategically targeted slippery sequence point mutations, 

leading to attenuated pathogenesis147,150. Site-directed mutagenesis was 

employed to test the effects of targeted mutations of CHIKV translational 

recoding efficiencies in HEK293T cells. A significant decrease in efficient TCR in 

mammalian cell lines was observed when the termination codon was substituted 

with more frequently employed UAA and UAG stop codons, reducing Af/As TCR 

from ~10% to 3.7% and 2.7%, respectively, and 0.9% and 2.7% for Carib (Figure 

28A). Similarly, silent coding mutations to the slippery site of the -1 PRF signal 

intended to impede 5’ slippage of tRNA non-wobble bases resulted in 

significantly decreased frameshifting efficiency (<1.0%) (Figure 28A). Reports in 

the literature have also indicated that substitution of an arginine codon for the 

UGA codon of the CHIKIV TCR signals promoted reduced viral pathogenesis140. 

When the TCR opal termination codon was mutated to an AGA arginine, 83.6% 

and 77.0% readthrough efficiencies were observed for the Af/As and Carib 

consensus sequences (Figure 28B). These results where replicated via Western 

blot as an orthogonal means of verification (Figure 28C, 28D).  
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Figure 28. Mutagenesis-mediated destabilization of efficient CHIKV 
recoding. (A) Site directed mutagenesis was employed to replace the UGA 
termination codon (WT) in the CHIKV TCR signal with either a UAA or UAG stop. 
A slippery site mutant of the CHIKV -1 PRF signal (ssM) that replaced the U UUU 
UUA sequence with G UUC UUG was also created. The recoding efficiencies 
promoted by recoding mutants relative to their wild-type counterparts were 
assayed in HEK293T and U-87 MG cell lines. (B) Site directed mutagenesis was 
used to substitute the UGA stop codon in both CHIKV TCR sequences with AGA. 
The readthrough efficiency of this mutant was tested alongside the wild-type TCR 
sequences in HEK293T cells. (C, D) Western blot verification of the results 
described in A and B (n=2). Sequences from MuLV and VEEV were employed as 
positive TCR and -1 PRF controls where appropriate. Dual luciferase assay data 
is presented as means with standard errors, where each point represents a 
biological replicate assayed as technical triplicates. Asterisks denote statistical 
significance, where * p<0.05; ** p<0.01. 
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Chemical modification analyses identify complex stem-loop elements 

immediately 3’ of CHIKV recoding sites 

Translational recoding signals typically require the presence of highly 

structured RNA stimulatory elements immediately 3’ of the recoding site. These 

cis-acting elements are hypothesized to function as kinetic traps for ribosomes, 

facilitating the conditions favorable for TCR or -1 PRF115. A diverse array of 3’ 

stimulatory structures have been reported, ranging from simple stem-loops to 

RNA pseudoknots149. Each unique recoding signal secondary structure plays an 

integral role in determining the specific efficiency of translational recoding130,129. 

Selective 2’ hydroxyl acylation and primer extension (SHAPE)164 was employed 

to resolve the cis-acting stimulatory elements of the CHIKV TCR and -1 PRF 

signals (Figure 29A-C). A large, terminally forked stem-loop structure was 

identified 3’ of the opal termination codon for both the Af/As and Carib variants of 

the CHIKV TCR signal (Figure 29D, 29E). Notably, the higher order structure of 

this stem-loop was permissive of all five of the polymorphisms between the two 

geographic variants. A smaller bulged stem-loop structure was also identified as 

the cis-acting element located downstream of the CHIKV -1 PRF slippery 

sequence (Figure 29F, 29G). The predicted organization and folding of this 

element is very similar to the minimum-required structures required for efficient -1 

PRF in the Equine Encephalitic virus family of alphaviruses150.  
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Figure 29. Structural analyses of the CHIKV recoding signals. (A-C) 
Stimulatory elements for Af/As and Carib CHIKV TCR and -1 PRF signals 
resolved through selective 2’ hydroxyl acylation and primer extension (SHAPE). 
RNA templates containing the translational recoding sequences were transcribed 
from corresponding dual-luciferase reporter vectors and treated with N-
methylisotoic anhydride (NMIA). Untreated RNAs were used as negative 
controls. γ32P radiolabeled cDNA products were separated through 8% urea-
PAGE and visualized via a Fujifilm phosphorimager. Autoradiograms are 
annotated to indicate the respective sequencing lanes (G, A, U, C), an untreated 
control lane (-) and the NMIA labeled experimental lane (+). Circles denote the 
relative reactivity of bases, where white is the most unreactive and black is the 
most reactive. For added visual clarity of the CHIKV TCR gels, a longer run of 
the samples has been provided to further separate the 5’ sequence information. 
(D, F) Structures of CHIKV recoding signals derived from the above SHAPE 
data. Circles correspond to the previously described nucleotide reactivity scale. 
Polymorphisms between the Af/As and Carib consensus sequences are 
indicated in red. (E, G) 3D models of the CHIKV TCR and -1 PRF signals were 
generated by Molecular Dynamics simulations and visualized in Pymol.    
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Discussion 

Although the presence of alphavirus TCR and -1 PRF recoding signals 

were first identified in 1983 and 2008 respectively138,143, the structural and 

functional characterization of these cis-acting control elements has only been 

minimally examined. The current study presents the first structural 

characterization of a TCR signal through direct experimentation, and reveals that 

the CHIKV -1 PRF signal is very similar to those characterized in the new world 

encephalitic alphaviruses150. Specifically, the predicted CHIKV TCR signal was 

also shown to promote recoding in mammalian cells at a similar efficiency to that 

Sindbis virus, another “Old World” alphavirus147. It was experimentally 

determined that the highly efficient TCR is dependent on the presence of the 

UGA opal stop codon, as amber UAA and ochre UAG stop codon substitutions 

resulted in diminished TCR efficiencies. A large stem-loop structure was 

characterized immediately 3’ of the opal termination codon, likely influencing 

TCR activity as well. CHIKV -1 PRF was ablated by mutations predicted to 

disrupt canonical recoding mechanisms, and chemical probing assays identified 

a downstream branched stem-loop element similar to what was observed in 

VEEV. 

A close examination of the recoding data suggest a few notable items. 

With regard to the TCR reporters, the apparent “readthrough” efficiency of the 

Arg containing mutant was ~90%, i.e. not 100% as would be expected.  This 

reporter retains the strong TCR stimulating stem-loop element, while the control 

readthrough reporter does not. Given that strong RNA secondary structures can 
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induce ribosome pausing and dropoff210,211,212,213,214, we speculate that this 

structural element may cause a fraction (~10%) of elongating ribosomes to drop 

off of the reporter mRNA, thus accounting for the observed TCR values of less 

than unity. Experiments to measure the fraction of ribosomes paused at this 

element, their pause times and dropoff rates are planned for the future. A second 

set of insights stems from the observation that the CHIKV -1 PRF signal 

promotes relatively low rates of recoding (most viral frameshifting is in the range 

of >5%, see 179). Examination of sequences proximal to the -1 PRF signal did not 

reveal the potential to form either a larger stem-loop or a more complex structure, 

e.g. an RNA pseudoknot. However, it is possible that this element may be 

involved in long range interactions which, by rendering it more difficult to unwind, 

would increase ribosome pause rates and thus -1 PRF efficiency215. For 

example, a -1 PRF stimulating long-distance RNA-RNA interaction was first 

demonstrated in Barley yellow dwarf virus (BYDV), where base-pairing between 

an internal bulge in the -1 PRF promoting stem-loop and a sequence nearly 4kb 

downstream is required to promote efficient  -1 PRF137,186. Similar long distance 

interactions involving bulges located inside of -1 PRF stimulating stem-loops 

have been observed in Red clover necrotic mosaic virus (RCNMV)216, in the Pea 

enation mosaic virus (PEMV)217, and in the TCR promoting elements of tobacco 

necrosis virus-D218 and Turnip crinkle virus (TCV)135. The bulged stem-loop in the 

CHIKV -1 PRF signal in the current study, and prior demonstration of similar -1 

PRF stimulating RNA structural elements in the new-world alphaviruses150 are 

highly reminiscent of the plant virus recoding signals, suggesting that the 
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alphaviral recoding elements may similarly involve long distance RNA-RNA 

interactions. More broadly, it is becoming clear that dynamic long range RNA-

RNA interactions are critical for programming the fundamental molecular 

processes of (+) ssRNA viruses, including the switch from translation to 

transcription, cap-independent translation, genome circularization, replicase 

complex assembly, subgenomic mRNA synthesis, and repriming during 

discontinuous template synthesis219,220. Many of these are characterized by base 

pairing interactions between the loops at the ends of stem-loop structures. In this 

respect, the forked distal tip of the CHIKV TCR signal may present a novel such 

interacting site. Thus it is not unlikely that interactions between the structured 

recoding elements identified in the current study and distal sequence elements 

are involved in the dynamic programming of the CHIKV life cycle. A deeper 

understanding of such interactions will require studies examining RNA structural 

dynamics of the gRNA, sgRNA, and (-) strand replicative intermediates. 

 PRF was first discovered in retroviruses, where ribosome slippage directs the 

synthesis of Gag-pol polyproteins183. Subsequent studies using totiviruses124, 

and later in retroviruses184 demonstrated that changes in -1 PRF efficiency affect 

virus production. From these findings, a bioeconomics model emerged in which -

1 PRF rates are optimized to maximize virus particle assembly by ensuring the 

synthesis of the correct stoichiometric ratios of the structural Gag-derived 

proteins to the enzymes encoded by the Pol open reading frame175. These 

findings engendered interest in targeting -1 PRF for antiviral therapeutics185. In 

parallel, early studies examined -1 PRF signals in virus families where they do 
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not occur between open reading frames encoding structural and enzymatic open 

reading frames (ORFs), e.g. in coronaviruses and luteoviruses. Altering -1 PRF 

efficiency in severe acute respiratory syndrome coronavirus (SARS-CoV) 

severely impacted its infectivity in tissue culture, reinforcing the idea of -1 PRF as 

an antiviral therapeutic target128. Lower rates of -1 PRF correlate with decreased 

pathogenicity in West Nile Virus155, and production of the NS1’ frameshift product 

is critical for neuroinvasiveness in West Nile and Japanese encephalitis 

viruses177. -1 PRF also presents a target for Alphaviruses: in mice ablation of -1 

PRF attenuated the symptoms of Sindbis147 and Venezuelan Equine Encephalitis 

Virus (VEEV)150 infections. Although less well studied than -1 PRF, five published 

studies report that alteration of TCR also has negative impacts on virus 

replication141,221,222,223,224. While 221,222,223 examined the impact of TCR ablation in 

a retrovirus (murine leukemia virus), pertinent to this study TCR ablation was 

shown to reduce the pathogenicity of two Alphaviruses: O’Nyong’Nyong and 

Sindbis viruses141,224. Thus, both -1 PRF and TCR represent important, yet 

underexploited targets for antiviral intervention. For example, ablation of -1 PRF 

and/or TCR signals may be incorporated into the design of attenuate live virus 

vaccines. In parallel, elucidation of the atomic resolution structures of these 

elements, and of their structural dynamics, may be useful in the design of 

therapeutic small molecule inhibitors.  
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Chapter 4: Conclusions and future directions 

Programmed translational recoding is a critical, multifaceted feature of many 

RNA viruses. Originally identified as a means of expanding the genetic economy 

of limited genome size, further investigation has contextualized these signals as 

a regulatory element for critical genes108,128. These signals are therefore under 

heavy selective pressure to maintain their recoding efficiency at specific 

stoichiometric ratios124. Due to their necessary inflexibility, it stands to reason 

that these signals constitute a crucial genetic vulnerability in viruses that can be 

exploited for therapeutic development.  

 The research into VEEV frameshifting in Chapter 2 elucidated the genetic 

and structural characteristics of encephalitic alphavirus -1 PRF signals. Key silent 

coding mutations to the VEEV slippery site resulted in attenuated pathogenesis 

in BALB/c mice infected through the aerosol route. In a follow-up study, it was 

also determined that VEEVPRFm has immunogenic capabilities. Following 

subcutaneous infection, significant levels of neutralizing antibodies were detected 

in mice 28 days post infection (Figure 30A, 30B). Critically, all of these mice 

survived successive challenge with a lethal dose of VEEVTRD (Figure 30C). In 

conjunction with the results from Chapter 2, these experiments demonstrated 

that mutations that ablate efficient -1 PRF constituted a promising foundation for 

the development of live-attenuated vaccines against VEEV and potentially other 

alphaviruses. 
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Figure 30. VEEV TrDPRFm induces high levels of neutralizing antibodies and 
protects mice from VEEV TrD infection. (A) Kaplan Meyer survival plot of mice 
subcutaneously (SQ) vaccinated/infected with vehicle (N=5), TC83 105 (N=5), 
PRF (N=10) or TrD (N=5) viruses. Mice were monitored up to 28 days post-
infection. (B) Serum samples collected at Day 28 were analyzed to determine 
neutralizing antibody levels via PRNT80 assay. (C) Kaplan Meyer survival plot of 
mice challenged with VEEV TrD on Day 29. Vehicle (N=5), TC83 105 (N=5), PRF 
103 (N=9), PRF 104 (N=7). 

 
 Further refinements of the current VEEVPRFm model are warranted. An 

immediate criticism that can be leveraged is the observation that only 70% of 

infected mice survived aerosol infection of VEEVPRFm (Figure 25A). Additionally, 

the incidence of reversion to WT VEEV TRD has not been investigated in the 

fatal cases of VEEVPRFm inoculation. However, as VEEVPRFm is the product of 

three point mutations to the VEEV slippery site, it is evident that a more robust 
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attenuated model that covers the entirety of the VEEV -1 PRF signal should be 

developed. Exploration of the downstream stimulatory structure in both a 

secondary (Figure 23B) and tertiary (Figure 23E) context will be instrumental in 

the elucidation of mutations of key regions that interface with ribosomal stalling. 

 This work was expanded in Chapter 3, with the investigation of CHIKV 

recoding signals. This work recapitulated the validated -1 PRF described in the 

new world encephalitic alphaviruses (Figure 27) and also provided the first 

structural characterization of the CHIKV TCR signal (Figure 29). It was further 

demonstrated that the CHIKV signals are remarkably conserved across disparate 

geographic lineages and that the higher order structure of these signals are 

resilient against incidental polymorphisms between geographic isolates. Taken 

together with the work conducted in Chapter 2, these results suggest that 

attenuating mutations to the CHIKV recoding signals will potentially have broad-

range effectiveness. While direct experimentation remains needed, these results 

also raise the possibility that ablative mutations of both the TCR and -1 PRF 

signal will cumulatively impair the attenuation of CHIKV pathogenesis. If 

successful, this dual ablation strategy of recoding signals could serve as 

additional protection against the hazard of wild type reversion. 

 While beyond the scope of this work, it is also worth mentioning that 

several key aspects of alphavirus frameshifting remain unresolved. The precise 

function of the TF -1 PRF product are poorly understood, despite reports of 

unique post-translational modification compared to 6K144. Additionally, the 

negative products of alphavirus -1 PRF have not been sufficiently explored. It is 
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known that expression of TF necessarily occurs at the expense of structural 

protein E1, meaning that the latter protein has three to ten percent less 

abundance than other structural alphavirus proteins. The importance of this 

discrepancy towards the viability of alphaviruses is unknown, but could 

potentially be explored in the future through recombinatory experiments. Finally, 

the previously described studies on alphavirus TCR signals necessarily require 

that only a small fragment of the sgRNA transcript is represented in a reporter 

vector. While this approach allows for the definitive identification of minimum 

structures required for promoting efficient recoding, by definition it cannot identify 

longer range RNA:RNA interactions along the transcript134,135. At the time of 

writing, a new technology –SHAPE-MaP- is a promising tool for future whole 

genome secondary structure analysis225. 

 Another consideration worth investigating is the fact that alphavirus 

transmission predominately occurs through mosquito vectors27. The replication 

cycle of alphaviruses in mosquito cell tissue is poorly explored in the literature. 

As a consequence, the degree to which different cell lines exert an influence on 

the dynamics of programmed translational recoding mechanisms has not been 

properly explored. Differences in recoding efficiency were observed in both 

CHIKV and the encephalitic alphaviruses across different cell lines (Figures 23, 

27, 28), which lend credence to the hypothesis that viral recoding mechanisms 

may be optimized for specific host tissues. If specialized alphaviral recoding 

dynamics can be identified in mosquito cells, directed mutagenesis strategies 
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can be employed to specifically attenuate replication –and therefore 

transmission- in primary vectors.  

 It is important to note that research into the nuances of viral recoding will 

only be as effective as the methods of detection. As programmed translational 

recoding efficiencies are primarily quantified in a reporter vector system, the 

fidelity of these vectors must be continually scrutinized. Between the research 

conducted in Chapter 2 and Chapter 3, a publication surfaced that identified 

distortions that can arise from inserted test sequence interference with the 

flanking luciferase reporter proteins203. Traditional recoding efficiency is 

measured as a ratio between downstream firefly luciferase activity to upstream 

Renilla luciferase expression, further normalized against the ratio of an 

unmodified control plasmid172. The position of firefly luciferase is adjusted such 

that it is only expressed consequent to the predicted recoding event of the 

inserted experimental sequence. In contrast, Renilla luciferase will always be 

expressed regardless of the downstream recoding activity. In the previous pLuci 

reporter model from which pJD175f was derived, this means that the Renilla 

peptide can be followed by two distinct peptide sequences, either of which 

capable of exerting an influence on protein folding and subsequent luminescent 

activity (figure)203. Thus, firefly expression is potentially normalized against two 

variants of Renilla, leading to potential distortions of data analysis if not outright 

false positives. An upgraded reporter vector, pSGDluc, has been developed to 

address these issues, containing self-cleaving intein sequences that separate the 

luciferase proteins from the experimental sequence (Figure 31). A modification of 
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this plasmid was used for the CHIKV experiments in chapter 3 (modifications 

summarized in the Chapter 3 methods section). Critically, the -1 PRF efficiency 

of VEEV from the modified pSGDluc vector recapitulated the results in chapter 2, 

implying that distortions arising from the older pLuci model were minimal. 

 

Figure 31. pSGDluc corrects potential sources of confounding distortions 
from the pLuci reporter vector. (A) General schematic of a dual luciferase 
assay conducted through the traditional pLuci reporter vector. A test sequence is 
cloned in between luciferase genes Renilla (blue) and Firefly (orange), such that 
Firefly is only expressed consequent to the respective recoding event. The 
products of standard and recoded translation are expressed a single polypeptide, 
linked by the test sequence. The recoding capabilities of the test sequence 
means that Renilla can potentially be followed by two distinct polypeptides, 
exerting differential influences on protein folding. (B) Plasmid map of the updated 
pSGDluc reporter vector constructed to address this issue. The cloning site for 
test sequences are now flanked 5’ and 3’ by StopGo intein sequences. The 
peptide sequences of these regions are post-translationally cleaved, allowing for 
standardized folding of Renilla and Firefly independent of test sequence recoding 
activity. Figure adapted from Louhgran et al, 2017203. 

 
Orthogonal methods of quantification can also be employed to verify viral 

recoding activities. For example, all recoding experiments in Chapter 3 were 

supplemented with western blot quantification that recapitulated the dual 
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luciferase results (Figures 27, 28). Another modality in development is a reporter 

plasmid that substitutes the Renilla and firefly luciferase genes with acGFP and 

mCherry fluorescent genes, respectively. Preliminary experiments using VEEV 

and CHIKV -1 PRF signals as test sequences have elicited efficient frameshifting 

in HEK293T cells, albeit at a lower level than what is achieved with the dual 

luciferase counterparts (Figure 32). This discrepancy in -1 PRF activity may be 

the product of undiagnosed issues with this new vector. Currently, HEK293T is 

the only cell line where these dual fluorescent reporters produce enough protein 

to be detectable with a luminometer. Further optimization should explore the 

transfection efficiency of these constructs as well as the possibility of cell-specific 

effects on the expression of the selected fluorescent proteins. Lastly, it should be 

noted that future inquiries into attenuating mutations of viral recoding signals will 

be heavily predicated on the presence of comprehensive structural analysis. 

Previous computational predictions of encephalitic alphavirus TCR signals, for 

example, were minimal in scope, only modeling the first helical turn of the stem 

before abstracting into circular diagrams (Figure 20)139. When the same signals 

are resolved through chemical probing assays, it quickly becomes apparent that 

the initial predictions omitted considerable detail of the minimum required 

structures (Figure 33). Direct experimentation, then, will always be the superior 

method of detecting critical structures for destabilizing mutations. 
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Figure 32. Efficient -1 PRF promoted by CHIKV and VEEV signals in bi-
fluorescent (BiFL) reporter vectors. A bi-fluorescent (BiFL) vector (pJD2262) 
that uses AcGFP and mCherry as reporter sequences was developed as an 
orthogonal approach for assaying translational recoding efficiencies. HEK293T 
cells seeded at 1.0 X 105 per well in 6 well plates were transfected with 2.5 ug of 
either the control BiFL plasmid, or with an inserted CHIKV -1 PRF signal, VEEV -
1 PRF signal, or associated mutants containing a termination codon 3’ of the 
insert sequence in the -1 frame (3’ter). Cells were lysed with NP-40 lysis buffer 
mixed with HALT protease/phosphatase inhibitor and centrifuged 48 hours post-
transfection. The supernatant was transferred into a black, clear-bottomed 96 
well plate and fluorescence was quantified using the “Fluorescence” setting of 
the GloMax 96 microplate luminometer. The green (Ex: 525 nm, Em: 580-640 
nm) and blue (Ex: 490, Em; 510-650) filters were used to quantify the fluorescent 
excitation of mCherry and AcGFP, respectively. In order to account for spectral 
overlap, lysates from cells transfected with a single color AcGFP expression 
vector were quantified for both AcGFP as well as mCherry fluorescence.  A 
standard curve was generated in order to subtract AcGFP signal bleed over into 
the mCherry channel.  *, P > 0.05. 
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Figure 33. Structural analyses of the EEEV, VEEV and WEEV TCR signals. 
The TCR signals for (A) EEEV (B) VEEV and (C) WEEV were chemically 
resolved through selective 2’ hydroxyl acylation and primer extension (SHAPE). 
RNA templates were transcribed from the corresponding dual-luciferase reporter 
structures and modified with NMIA. γ32P radiolabeled cDNA products were 
separated through 8% urea-PAGE and visualized via a Fujifilm phosphorimager. 
Gels have been annotated to indicate the sequencing lanes (G, A, U, C), an 
untreated control (-) and the NMIA modified experimental lane (+). Circles denote 
the relative reactivity of bases (white = unreactive; grey = partially reactive; black 
= highly reactive). Inset images of a longer run are provided for better separation 
of the 5’ region of the sequence. The position of the UGA stop codon is indicated 
with a red box. (D, E, F)  Corresponding structures of EEEV, VEEV and WEEV 
TCR structures derived from the above SHAPE gels. Circles correspond to the 
previously described nucleotide reactivities. The position of the 5’ UGA sequence 
is highlighted in red. A 3’ region of four Cs that appear on the gels as a single 
band are also highlighted in red text. 
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 A final point of consideration from this research is the broad range 

application of its results. If ablation of -1 PRF attenuates the pathogenesis of 

VEEV, then the possibility is raised that this vulnerability extends to all viruses 

that rely on translational recoding to regulate gene expression. Pilot experiments 

pertaining to the identification, characterization and validation of recoding signals 

of other RNA viruses in the Togavirus, Flavivirus and Retrovirus families have 

been conducted (Figure 34). While beyond the scope of this thesis, next steps 

will focus on the identification of destabilizing mutations to these recoding signals 

as well as investigating potential effects on the replication and pathology of the 

respective viruses. 

 

 

 

 



 

119 
 

 

Figure 34. Efficient translational recoding documented in other RNA 
viruses. (A, B) Predicted -1 PRF and TCR structures from viruses in the 
Alphavirus (EEEV, VEEV and WEEV; O’Nyong’Nyong virus, ONNV; Mayaro 
virus, MAYV), Flavivirus (Usutu virus, USUV) and Retrovirus (simian T-cell 
leukemia virus, STLV; baboon endogenous virus, BaEV; gibbon ape leukemia 
virus, GaLV; feline leukemia virus, FeLV; murine leukemia virus, MuLV) families 
were cloned into dual-luciferase reporter vectors and their ability to promote 
efficient recoding was monitored in HEK293T cells. (C, D) Site-directed 
mutagenesis was used to introduce silent coding mutations into the slippery site 
(ssM) of -1 PRF viruses, or substitute the wild type UGA termination codon (WT) 
with alternative UAA and UAG codons. As this figure summarizes preliminary 
experiments, the full set of mutants for each virus has not yet been generated. 
Data is presented as means with standard deviations, where each data point 
denotes a biological replicate assayed as technical triplicates. * P < 0.05. 
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Appendices 
 

Appendix A. Experimental insert sequences.  

(Table 1) 5’ and 3’ positions of the oligonucleotide sequence are indicated. 
Lowercase text denotes sequence overlap with plasmid backbone sequence. 
Uppercase text denotes the respective experimental sequence. Underlined 
regions indicate the position of the -1 PRF or TCR recoding site. Bold text 
denotes mutations from the wild type sequence.  

Gene Fragment Sequence Description 
HIV_PRF_WT 5’gcgagttctcaaaaatgaacaaatgtcgacTTTTTTAGGGAAGA

TCTGGCCTTCCCACAAGGGGAGGCCAGGGAATTTT
CTTCCGAGCTCGAAGACGCCAAAAACATAAAGAAA
GGCCCGGCGCCATTCTATCCTCTAGAGGATGGAAC
CGCTGGAGAGCAACTGCATAAGGCTgagctcatggaaga
cgccaaaaacataa3’ 
 

HIV-1 -1 PRF 
sequence 

CCR5_PRF_WT 5’gcgagttctcaaaaatgaacaaatgtcgacTTTAAAAGCCAGG
ACGGTCACCTTTGGGGTGGTGACAAGTGTGATCAC
TTGGGTGGTGGCTGTGTTTGCGTCTCTCCCAGGAA
TCATCTTTACCAGATCTCAAAAAGAAGGTCTTCATTA
CACCTGCAGCTCTCATTTTCCATACAGTCAGTATCA
ATTCTGGAAGAATTTCCAGACATTAAAGATAGTCAT
CTTGGGgagctcatggaagacgccaaaaacataa3’ 
 

CCR5 -1 PRF 
sequence 

EEEV_PRF_WT 5’gcgagttctcaaaaatgaacaaatgtcgacTTTTTTACTTGTCT
GCGGCGCCTTGGGCGCCGCAGCGTACGAACACAC
AGCAGTGATGCCGAACAAGGTGGGGATCCCGTACA
AAGCTTTAGTCGAACGCCCAGGTTATGCACCCGTTC
ACCTACAgagctcatggaagacgccaaaaacataa3’ 
 

EEEV -1 PRF 
sequence 

EEEV_PRF_ssM 5’gcgagttctcaaaaatgaacaaatgtcgacGTTCTTGCTTGTCT
GCGGCGCCTTGGGCGCCGCAGCGTACGAACACAC
AGCAGTGATGCCGAACAAGGTGGGGATCCCGTACA
AAGCTTTAGTCGAACGCCCAGGTTATGCACCCGTTC
ACCTACAgagctcatggaagacgccaaaaacataa3’ 
 

EEEV -1 PRF 
sequence with 
U UUU UUA -> 
G UUC UUG 

EEEV_PRF_5’ter 5’gcgagttctcaaaaatgaacaaatgtcgacATAATTTTTTACT
TGTCTGCGGCGCCTTGGGCGCCGCAGCGTACGAA
CACACAGCAGTGATGCCGAACAAGGTGGGGATCCC
GTACAAAGCTTTAGTCGAACGCCCAGGTTATGCACC
CGTTCACCTACAgagctcatggaagacgccaaaaacataa3’ 
 

EEEV -1 PRF 
sequence with 
5’ UAA codon 

EEEV_PRF_3’ter 5’gcgagttctcaaaaatgaacaaatgtcgacTTTTTTACTTGTCT
GCGGCGCCTTGGGCGCCGCAGCGTACGAACACAC
AGCAGTGATGCCGAACAAGGTGGGGATCCCGTACA
AAGCTTTAGTCGAACGCCCAGGTTATGCACCCGTTC
ACCTACAgagctcatggaagacgcctaaaacataa3’ 
 

EEEV -1 PRF 
sequence with 
3’ UAA codon 

in -1 frame 

tEEEV_PRF 5’gcgagttctcaaaaatgaacaaatgtcgacTTTTTTACTTGTCT Truncation of 
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GCGGCGCCTTGGGCGCCGCAGCGTACGAACACAC
AGCAGTGATGCCGAACAAGGTGGGGATCCCGTACA
AAGCgagctcatggaagacgccaaaaacataa3’ 
 

EEEV_PRF_W
T 

t2EEEV_PRF 5’gcgagttctcaaaaatgaacaaatgtcgacTTTTTTACTTGTCT
GCGGCGCCTTGGGCGCCGCAGCgagctcatggaagacgc
caaaaacataa3’ 
 

Truncation of 
tEEEV_PRF 

VEEV_PRF_WT 5’gcgagttctcaaaaatgaacaaatgtcgacTTTTTTAGTCGTGG
CCGGCGCCGCAGGCGCCGGCGCCTACGAGCACGC
GACCACGATGCCGAGCCAAGCGGGAATCTCGTACA
ACACCATAGTCAACAGAGCAGGCTACGCGCCACTga
gctcatggaagacgccaaaaacataa3’ 
 

VEEV -1 PRF 
sequence 

VEEV_PRF_ssM 5’gcgagttctcaaaaatgaacaaatgtcgacGTTCTTGGTCGTG
GCCGGCGCCGCAGGCGCCGGCGCCTACGAGCACG
CGACCACGATGCCGAGCCAAGCGGGAATCTCGTAC
AACACCATAGTCAACAGAGCAGGCTACGCGCCACT
gagctcatggaagacgccaaaaacataa3’ 
 

VEEV -1 PRF 
sequence with 
U UUU UUA -> 
G UUC UUG 

VEEV_PRF_5’ter 5’gcgagttctcaaaaatgaacaaatgtcgacATAATTTTTTAGTC
GTGGCCGGCGCCGCAGGCGCCGGCGCCTACGAGC
ACGCGACCACGATGCCGAGCCAAGCGGGAATCTC
GTACAACACCATAGTCAACAGAGCAGGCTACGCGC
CACTgagctcatggaagacgccaaaaacataa3’ 
 

VEEV -1 PRF 
sequence with 
5’ UAA codon 

VEEV_PRF_3’ter 5’gcgagttctcaaaaatgaacaaatgtcgacTTTTTTAGTCGTGG
CCGGCGCCGCAGGCGCCGGCGCCTACGAGCACGC
GACCACGATGCCGAGCCAAGCGGGAATCTCGTACA
ACACCATAGTCAACAGAGCAGGCTACGCGCCACTga
gctcatggaagacgcctaaaacataa3’ 
 

VEEV -1 PRF 
sequence with 
3’ UAA codon 

in -1 frame  

tVEEV_PRF 5’gcgagttctcaaaaatgaacaaatgtcgacTTTTTTAGTCGTGG
CCGGCGCCGCAGGCGCCGGCGCCTACGAGCACGC
GACCAC gagctcatggaagacgccaaaaacataa3’ 
 

Truncation of 
VEEV_PRF_W

T 

WEEV_PRF_WT 5’gcgagttctcaaaaatgaacaaatgtcgacTTTTTTATTGGTTG
CAGGCGTCTGCCTGGGGAAGGTAGACGCCTTCGAA
CATGCGACCACTGTGCCAAATGTTCCGGGGATCCC
GTAAgagctcatggaagacgccaaaaacataa3’ 
 

WEEV -1 PRF 
sequence 

WEEV_PRF_ssM 5’gcgagttctcaaaaatgaacaaatgtcgacGTTCTTGTTGGTTG
CAGGCGTCTGCCTGGGGAAGGTAGACGCCTTCGAA
CATGCGACCACTGTGCCAAATGTTCCGGGGATCCC
GTAAgagctcatggaagacgccaaaaacataa3’ 
 

WEEV -1 PRF 
sequence with 
U UUU UUA -> 
G UUC UUG 

WEEV_PRF_5’ter 5’gcgagttctcaaaaatgaacaaatgtcgacATAATTTTTTATT
GGTTGCAGGCGTCTGCCTGGGGAAGGTAGACGCC
TTCGAACATGCGACCACTGTGCCAAATGTTCCGGG
GATCCCGTAAgagctcatggaagacgccaaaaacataa3’ 
 

WEEV -1 PRF 
sequence with 
5’ UAA codon 

WEEV_PRF_3’ter 5’gcgagttctcaaaaatgaacaaatgtcgacTTTTTTATTGGTTG
CAGGCGTCTGCCTGGGGAAGGTAGACGCCTTCGAA
CATGCGACCACTGTGCCAAATGTTCCGGGGATCCC
GTAAgagctcatggaagacgcctaaaacataa3’ 

WEEV -1 PRF 
sequence with 
3’ UAA codon 
in the -1 frame 
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tWEEV_PRF 5’gcgagttctcaaaaatgaacaaatgtcgacTTTTTTATTGGTTG

CAGGCGTCTGCCTGGGGAAGGTAGACGCCTTCGAA
CATGCGACCACTGTGCCAAAgagctcatggaagacgccaaa
aacataa3’ 
 

Truncation of 
WEEV_PRF_W

T 

MuLV_TCR_WT 5’ggagacgtcgagtccaaccccgggccctcgtcgacGACCCTAGA
TGACTAGGGAGGTCAGGGTCAGGAGCCCCCCCCT
GAACCCAGGATAACCCTCAAAGTCGGGGGGCAACC
CGTCACCTTCCTGGTAGATACTGGGGCCCAAggatcc
gaggcacggcataagcaaaagatcg3’ 
 

MuLV TCR 
sequence 

CHIKV_Af/As_TCR
_WT 

5’ggagacgtcgagtccaaccccgggccctcgtcgacCGACGAGTT
ATGACTAGACAGGGCAGGTGGGTATATATTCTCGTC
GGACACCGGTCCAGGTCATTTACAACAGAAGTCAG
TACGCCAGTCAGTGCTGCCGGTGAACACCCTGGAG
GAAGTCCACGAGGAGAAGTGTTACCCACCTAAGCT
Gggatccgaggcacggcataagcaaaagatcg3’ 
 

CHIKV 
Africa/Asia 
TCR 
consensus 
sequence 

CHIKV_Af/As_TCR
_UAA 

5’ggagacgtcgagtccaaccccgggccctcgtcgacCGACGAGTT
ATAACTAGACAGGGCAGGTGGGTATATATTCTCGTC
GGACACCGGTCCAGGTCATTTACAACAGAAGTCAG
TACGCCAGTCAGTGCTGCCGGTGAACACCCTGGAG
GAAGTCCACGAGGAGAAGTGTTACCCACCTAAGCT
Gggatccgaggcacggcataagcaaaagatcg3’ 

CHIKV 
Africa/Asia 
TCR 
consensus 
sequence with 
UGA -> UAA 

CHIKV_Af/As_TCR
_UAG 

5’ggagacgtcgagtccaaccccgggccctcgtcgacCGACGAGTT
ATAGCTAGACAGGGCAGGTGGGTATATATTCTCGT
CGGACACCGGTCCAGGTCATTTACAACAGAAGTCA
GTACGCCAGTCAGTGCTGCCGGTGAACACCCTGGA
GGAAGTCCACGAGGAGAAGTGTTACCCACCTAAGC
TGggatccgaggcacggcataagcaaaagatcg3’ 

CHIKV 
Africa/Asia 
TCR 
consensus 
sequence with 
UGA -> UAG 

CHIKV_Af/As_TCR
_AGA 

5’ggagacgtcgagtccaaccccgggccctcgtcgacCGACGAGTT
AAGACTAGACAGGGCAGGTGGGTATATATTCTCGT
CGGACACCGGTCCAGGTCATTTACAACAGAAGTCA
GTACGCCAGTCAGTGCTGCCGGTGAACACCCTGGA
GGAAGTCCACGAGGAGAAGTGTTACCCACCTAAGC
TGggatccgaggcacggcataagcaaaagatcg3’ 

CHIKV 
Africa/Asia 
TCR 
consensus 
sequence with 
UGA -> AGA 

CHIKV_Carib_TCR
_WT 

5’ggagacgtcgagtccaaccccgggccctcgtcgacCGACGAGTT
ATGACTAGACAGGGCAGGTGGGTATATATTCTCGTC
GGACACTGGTCCAGGCCATTTACAACAGAAGTCGG
TACGCCAGTCAGTGCTGCCGGTAAACACCCTGGAG
GAAGTTCACGAGGAGAAGTGTTACCCACCTAAGCT
Gggatccgaggcacggcataagcaaaagatcg3’ 
 

CHIKV 
Caribbean TCR 
consensus 
sequence 

CHIKV_Carib_TCR
_UAA 

5’ggagacgtcgagtccaaccccgggccctcgtcgacCGACGAGTT
ATAACTAGACAGGGCAGGTGGGTATATATTCTCGTC
GGACACTGGTCCAGGCCATTTACAACAGAAGTCGG
TACGCCAGTCAGTGCTGCCGGTAAACACCCTGGAG
GAAGTTCACGAGGAGAAGTGTTACCCACCTAAGCT
Gggatccgaggcacggcataagcaaaagatcg3’ 
 

CHIKV 
Caribbean TCR 
consensus 
sequence with 
UGA -> UAA 

CHIKV_Carib_TCR
_UAG 

5’ggagacgtcgagtccaaccccgggccctcgtcgacCGACGAGTT
ATAGCTAGACAGGGCAGGTGGGTATATATTCTCGT
CGGACACTGGTCCAGGCCATTTACAACAGAAGTCG
GTACGCCAGTCAGTGCTGCCGGTAAACACCCTGGA

CHIKV 
Caribbean TCR 
consensus 
sequence with 
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GGAAGTTCACGAGGAGAAGTGTTACCCACCTAAGC
TGggatccgaggcacggcataagcaaaagatcg3’ 
 

UGA -> UAG 

CHIKV_Carib_TCR
_AGA 

5’ggagacgtcgagtccaaccccgggccctcgtcgacCGACGAGTT
AAGACTAGACAGGGCAGGTGGGTATATATTCTCGT
CGGACACTGGTCCAGGCCATTTACAACAGAAGTCG
GTACGCCAGTCAGTGCTGCCGGTAAACACCCTGGA
GGAAGTTCACGAGGAGAAGTGTTACCCACCTAAGC
TGggatccgaggcacggcataagcaaaagatcg3’ 
 

CHIKV 
Caribbean TCR 
consensus 
sequence with 
UGA -> AGA 

VEEV_PRF_WT 5’ggagacgtcgagtccaaccccgggccctcgtcgacTTTTTTAGTC
GTGGCCGGCGCCGCAGGCGCCGGCGCCTACGAGC
ACGCGACCACGATGCCGAGCCAAGCGGGAATCTC
GTACAACACCATAGTCAACAGAGCAGGCTACGCGC
CACTggatccgaggcacggcataagcaaaagatcg3’ 
 

VEEV -1 PRF 
sequence 

CHIKV_PRF_WT 5’ggagacgtcgagtccaaccccgggccctcgtcgacTTTTTTAGCC
GTAATGAGCGTCGGTGCCCACACTGTGAGCGCGTA
CGAACACGTAACAGTGATCCCGAACACGGTGGGgg
atccgaggcacggcataagcaaaagatcg3’ 
 

CHIKV -1 PRF 
sequence 

CHIKV_PRF_ssM 5’ggagacgtcgagtccaaccccgggccctcgtcgacGTTCTTGGC
CGTAATGAGCGTCGGTGCCCACACTGTGAGCGCGT
ACGAACACGTAACAGTGATCCCGAACACGGTGGGg
gatccgaggcacggcataagcaaaagatcg3’ 
 

CHIKV -1 PRF 
sequence with 
U UUU UUA -> 
G UUC UUG 

ONNV_PRF_WT 5’ggagacgtcgagtccaaccccgggccctcgtcgacTTTTTTAGCC
GTCATGAGCATCGGTGCCCGCACTGTGACCGCGTA
CGAGCACGCAACAGTGATCCCGAACACGGTGGGA
GTACCGTGggatccgaggcacggcataagcaaaagatcg3’ 
 

ONNV -1 PRF 
sequence 

MAYV_PRF_WT 5’ggagacgtcgagtccaaccccgggccctcgtcgacTTTTTTAGTC
GCAATGAGCATCGGGAGTGCCGTTGCCAGTGCTTA
CGAGCACACGGCAATCATTCCGAACCAAGTGGGAT
TCCCGTATGGggatccgaggcacggcataagcaaaagatcg3’ 
 

MAYV -1 PRF 
sequence 

MAYV_PRF_ssM 5’ggagacgtcgagtccaaccccgggccctcgtcgacGTTCTTGGT
CGCAATGAGCATCGGGAGTGCCGTTGCCAGTGCTT
ACGAGCACACGGCAATCATTCCGAACCAAGTGGGA
TTCCCGTATGGggatccgaggcacggcataagcaaaagatcg3’ 
 

MAYV -1 PRF 
sequence with 
U UUU UUA -> 
G UUC UUG 

USUV_PRF_WT 5’ggagacgtcgagtccaaccccgggccctcgtcgacTCCTTTTCA
GTTGGGCCTTCTGGTGATGTTTCTGGCCACCCAGG
AGGTCCTGAGGAAGAGGTGGACGGCCAGATTGACT
GTTCCGGCTATTGTGGGAGCTCTACTCGTggatccgag
gcacggcataagcaaaagatcg3’ 
 

USUV -1 PRF 
sequence 

USUV_PRF_ssM 5’ggagacgtcgagtccaaccccgggccctcgtcgacGCCCTTGCA
GTTGGGCCTTCTGGTGATGTTTCTGGCCACCCAGG
AGGTCCTGAGGAAGAGGTGGACGGCCAGATTGACT
GTTCCGGCTATTGTGGGAGCTCTACTCGTggatccgag
gcacggcataagcaaaagatcg3’ 
 

USUV -1 PRF 
sequence 
where U CCU 
UUC -> G CCC 
UUG 

STLV_PRF_WT 5’ggagacgtcgagtccaaccccgggccctcgtcgacAAAAAACTC
CATAGGGGGGGAGGTCTAACCTCCCCCCCCACATT

STLV -1 PRF 
sequence 
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ACGGCAAGTCCTTCCCAACCAAGGCCCGGCATCTA
TTCTGCCAGTTATACCGTTAGATCCCGCCCGCCGG
CCCATAATTggatccgaggcacggcataagcaaaagatcg3’ 
 

STLV_PRF_ssM 5’ggagacgtcgagtccaaccccgggccctcgtcgacGAACAAGTC
CATAGGGGGGGAGGTCTAACCTCCCCCCCCACATT
ACGGCAAGTCCTTCCCAACCAAGGCCCGGCATCTA
TTCTGCCAGTTATACCGTTAGATCCCGCCCGCCGG
CCCATAATTggatccgaggcacggcataagcaaaagatcg3’ 
 

STLV -1 PRF 
sequence 
where A AAA 
AAC -> G AAC 
AAG 

VEEV_TCR_WT 5’ggagacgtcgagtccaaccccgggccctcgtcgacACAACAACA
ATGACGGTTTGACGCGGGTGCATACATCTTTTCCTC
CGATACCGGTCAAGGGCATTTACAACAAAAATCAGT
AAGGCAAACGGTGTTATCCGAAGTGGTGTTGGAGA
GGACCGAATTGGAGATTTCGTATGCCCCGCGCCTC
ggatccgaggcacggcataagcaaaagatcg3’ 
 

VEEV TCR 
sequence 

VEEV_TCR_UAA 5’ggagacgtcgagtccaaccccgggccctcgtcgacACAACAACA
ATGACGGTTTAACGCGGGTGCATACATCTTTTCCTC
CGATACCGGTCAAGGGCATTTACAACAAAAATCAGT
AAGGCAAACGGTGTTATCCGAAGTGGTGTTGGAGA
GGACCGAATTGGAGATTTCGTATGCCCCGCGCCTC
ggatccgaggcacggcataagcaaaagatcg3’ 
 

VEEV TCR 
sequence 
where UGA -> 
UAA 

VEEV_TCR_UAG 5’ggagacgtcgagtccaaccccgggccctcgtcgacACAACAACA
ATGACGGTTTAGCGCGGGTGCATACATCTTTTCCTC
CGATACCGGTCAAGGGCATTTACAACAAAAATCAGT
AAGGCAAACGGTGTTATCCGAAGTGGTGTTGGAGA
GGACCGAATTGGAGATTTCGTATGCCCCGCGCCTC
ggatccgaggcacggcataagcaaaagatcg3’ 
 

VEEV TCR 
sequence 
where UGA 

EEEV_TCR_WT 5’ggagacgtcgagtccaaccccgggccctcgtcgacGAGGCACTC
GAATTGACGGTACGAAGCGGGCGCGTACATTTTCT
CATCCGAGACGGGACAAGGGCACCTGCAGCAAAAA
TCTACGCGGCAATGCAAACTCCAGTATCCAATCCTG
GAGCGTTCCGTCCATGAGAAATTTTACGCCCCGCG
CCTCGATggatccgaggcacggcataagcaaaagatcg3’ 
 

EEEV TCR 
sequence 

WEEV_TCR_WT 5’ggagacgtcgagtccaaccccgggccctcgtcgacTCAACACTC
CAACTGACGGTATGAAGCGGGAGCGTATATTTTCTC
ATCGGAAACAGGCCAAGGTCACCTTCAACAGAAAT
CAGTACGTCAATGTAAACTACAAGAACCTATATTGG
ATCGGGCCGTCCATGAGAAGTATTACGCCCCGCGC
CTCGATggatccgaggcacggcataagcaaaagatcg3’ 
 

WEEV TCR 
sequence 

MAYV_TCR_WT 5’ggagacgtcgagtccaaccccgggccctcgtcgacTAGTAATTCA
TCTTGACTAGGCCGTGCGGGGGCCTATATTTTCTCA
TCCGACGTCGGTCCAGGGCACCTGCAACAGAAATC
AGTGAGGCAGCATGACTTAGAGGTGCCGATTATGG
ATCGTGTGATTGAGGAAAAGGTCTACCCGCCTAAAT
TAGATggatccgaggcacggcataagcaaaagatcg3’ 
 

MAYV TCR 
sequence 

MAYV_TCR_UAA 5’ggagacgtcgagtccaaccccgggccctcgtcgacTAGTAATTCA
TCTTAACTAGGCCGTGCGGGGGCCTATATTTTCTCA
TCCGACGTCGGTCCAGGGCACCTGCAACAGAAATC

MAYV TCR 
sequence with 
UGA -> UAA 



 

125 
 

 
  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

AGTGAGGCAGCATGACTTAGAGGTGCCGATTATGG
ATCGTGTGATTGAGGAAAAGGTCTACCCGCCTAAAT
TAGATggatccgaggcacggcataagcaaaagatcg3’ 
 

MAYV_TCR_UAG 5’ggagacgtcgagtccaaccccgggccctcgtcgacTAGTAATTCA
TCTTAGCTAGGCCGTGCGGGGGCCTATATTTTCTCA
TCCGACGTCGGTCCAGGGCACCTGCAACAGAAATC
AGTGAGGCAGCATGACTTAGAGGTGCCGATTATGG
ATCGTGTGATTGAGGAAAAGGTCTACCCGCCTAAAT
TAGATggatccgaggcacggcataagcaaaagatcg3’ 
 

MAYV TCR 
sequence with 
UGA -> UAG 

BaEV_TCR_WT 5’ggagacgtcgagtccaaccccgggccctcgtcgacTGAGGACAG
CGAATAGGGGTGTCAGGGCTCTGGAGCCCCCCCC
GAGCCCCGGCTAACTCTATCTGTAGGGGGGCATCC
CACCACCTTCTTGGTGGACACAGGCGCCCAAggatcc
gaggcacggcataagcaaaagatcg3’ 
 

BaEV TCR 
sequence 

GALV_TCR_WT 5’ggagacgtcgagtccaaccccgggccctcgtcgacAGCCCTAGA
TAACTAGGGGAGTCAGGGTTCGGACCCCCTCCCCG
AACCTAGGGTAACACTGACTGTGGAGGGGACCCCC
ATTGAGTTCCTGGTCGACACCGGAGCTGAAggatccg
aggcacggcataagcaaaagatcg3’ 
 

GALV TCR 
sequence 

FeLV_TCR_WT 5’ggagacgtcgagtccaaccccgggccctcgtcgacCAACTTAGG
AGATTAGGAGAGTCAGGGCCAGGACCCCCCCCCT
GAGCCCAGGATAACCTTAAAAATAGGGGGGCAACC
GGTGACTTTCCTGGTGGACACGGGAGCCCAGggatc
cgaggcacggcataagcaaaagatcg3’ 
 

FeLV TCR 
sequence 
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Appendix B. Plasmids used in this work  

(Table 2) List of plasmid names and descriptions that were used in this 
dissertation. 
 
 

Plasmid Description 
pJD175f pLuci derived dual luciferase readthrough control 
pJD187 Dual luciferase reporter with inserted HIV-1 -1 PRF signal, pJD175f backbone 
pJD827 Dual luciferase reporter with inserted CCR5 -1 PRF signal, pJD175f backbone 

pJD1911 Dual luciferase reporter with inserted EEEV -1 PRF signal, pJD175f backbone 
pJD1622 Dual luciferase reporter with inserted EEEV -1 PRF signal and GUUCUUG slip site 

mutation, pJD175f backbone 
pJD1623 Dual luciferase reporter with inserted EEEV -1 PRF signal and 5’ termination 

codon, pJD175f backbone 
pJD1624 Dual luciferase reporter with inserted EEEV -1 PRF signal and 3’ termination 

codon, pJD175f backbone 
pJD1639 Dual luciferase reporter with inserted tEEEV -1 PRF signal, pJD175f backbone 
pJD1640 Dual luciferase reporter with inserted t2EEEV -1 PRF signal, pJD175f backbone 
pJD1910 Dual luciferase reporter with inserted VEEV -1 PRF signal, pJD175f backbone 
pJD1625 Dual luciferase reporter with inserted VEEV -1 PRF signal and GUUCUUG slip site 

mutation, pJD175f backbone 
pJD1626 Dual luciferase reporter with inserted VEEV -1 PRF signal and 5’ termination 

codon, pJD175f backbone 
pJD1627 Dual luciferase reporter with inserted VEEV -1 PRF signal and 3’ termination 

codon, pJD175f backbone 
pJD1641 Dual luciferase reporter with inserted tVEEV -1 PRF signal, pJD175f backbone 
pJD1928 Dual luciferase reporter with inserted WEEV -1 PRF signal, pJD175f backbone 
pJD1628 Dual luciferase reporter with inserted WEEV -1 PRF signal and GUUCUUG slip 

site mutation, pJD175f backbone 
pJD1629 Dual luciferase reporter with inserted WEEV -1 PRF signal and 5’ termination 

codon, pJD175f backbone 
pJD1630 Dual luciferase reporter with inserted WEEV -1 PRF signal 3’ termination codon, 

pJD175f backbone 
pJD1642 Dual luciferase reporter with inserted tWEEV -1 PRF signal, pJD175f backbone 
pJD2257 Modified pSGDluc (dual luciferase with inteins) readthrough control 
pJD2267 Modified pSGDluc (dual luciferase with inteins) with 5' termination codon upstream 

of multiple cloning site, 
pJD2269 Modified pSGDluc (dual luciferase with inteins) with 3’ -1 termination codon 

downstream of multiple cloning site,  
pJD2231 Modified pSGDluc (dual luciferase with inteins) with MuLV TCR insert, pJD2257 

backbone 
pJD1843 Modified pSGDluc (dual luciferase with inteins) with CHIKV Africa/Asia TCR 

consensus insert, pJD2257 backbone 
pJD2245 Modified pSGDluc (dual luciferase with inteins) with CHIKV Africa/Asia TCR 

consensus insert and 5` termination codon, pJD2257 backbone 
pJD2246 Modified pSGDluc (dual luciferase with inteins) with CHIKV Africa/Asia TCR 

consensus insert and 3' termination codon, pJD2257 backbone 
pJD1829 Modified pSGDluc (dual luciferase with inteins) with CHIKV Africa/Asia TCR 

consensus insert and stop codon mutated to UAA, pJD2257 backbone 
pJD1830 Modified pSGDluc (dual luciferase with inteins) with CHIKV Africa/Asia TCR 

consensus insert and stop codon mutated to UAG, pJD2257 backbone 
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pJD1831 Modified pSGDluc (dual luciferase with inteins) with CHIKV Africa/Asia TCR 
consensus insert with stop codon mutated to AGA (Arginine), pJD2257 backbone 

pJD1844 Modified pSGDluc (dual luciferase with inteins) with CHIKV Caribbean TCR 
consensus TCR insert, pJD2257 backbone 

pJD2247 Modified pSGDluc (dual luciferase with inteins) with CHIKV Caribbean TCR 
consensus TCR insert and 5` termination codon, pJD2257 backbone 

pJD2248 Modified pSGDluc (dual luciferase with inteins) with CHIKV Caribbean TCR 
consensus TCR insert and 3' -1 termination codon, pJD2257 backbone 

pJD1832 Modified pSGDluc (dual luciferase with inteins) with CHIKV Caribbean TCR 
consensus TCR insert and stop codon mutated to UAA, pJD2257 backbone 

pJD1833 Modified pSGDluc (dual luciferase with inteins) with CHIKV Caribbean TCR 
consensus TCR insert and insert stop codon mutated to UAG, pJD2257 backbone 

pJD1834 Modified pSGDluc (dual luciferase with inteins) with CHIKV Caribbean TCR 
consensus TCR insert and stop codon mutated to AGA (Arginine), pJD2257 
backbone 

pJD2360 Modified pSGDluc (dual luciferase with inteins) with VEEV -1 PRF insert, pJD2257 
backbone 

pJD2288 Modified pSGDluc (dual luciferase with inteins) with CHIKV -1 PRF insert, 
pJD2257 backbone 

pJD2289 Modified pSGDluc (dual luciferase with inteins) with CHIKV -1 PRF insert and 
upstream 5' premature terminator, pJD2267 backbone 

pJD2378 Modified pSGDluc (dual luciferase with inteins) with CHIKV -1 PRF insert and 3' -1 
termination codon, pJD2269 

pJD2368 Modified pSGDluc (dual luciferase with inteins) with CHIKV -1 PRF insert and 
GUUCUUG slip-site mutation, pJD2257 backbone 

pJD2261 Bifluorescent readthrough vector 
pJD2266 Bifluorescent readthrough vector with 3’ termination codon 
pJD2361 Bifluorescent readthrough vector with CHIKV -1 PRF insert, pJD2261 backbone 
pJD2362 Bifluorescent readthrough vector with CHIKV -1 PRF insert and 3’ termination 

codon, pJD2266 backbone 
pJD2365 Bifluorescent readthrough vector with VEEV -1 PRF insert, pJD2261 backbone 
pJD2366 Bifluorescent readthrough vector with VEEV -1 PRF insert and 3’ termination 

codon, pJD2266 backbone 
pJD2215 Modified pSGDluc (dual luciferase with inteins) with ONNV -1 PRF insert, pJD2257 

backbone 
pJD2229 Modified pSGDluc (dual luciferase with inteins) with MAYV -1 PRF insert, pJD2257 

backbone 
pJD2238 Modified pSGDluc (dual luciferase with inteins) with MAYV -1 PRF insert and 

GUUCUUG slip-site mutation, pJD2257 backbone 
pJD2220 Modified pSGDluc (dual luciferase with inteins) with USUV -1 PRF insert, pJD2257 

backbone 
pJD2239 Modified pSGDluc (dual luciferase with inteins) with USUV -1 PRF insert and 

GCCCTTG slip-site mutation, pJD2257 backbone 
pJD2218 Modified pSGDluc (dual luciferase with inteins) with STLV -1 PRF insert, pJD2257 

backbone 
pJD2240 Modified pSGDluc (dual luciferase with inteins) with STLV -1 PRF insert 

GAACAAG, pJD2257 backbone 
pJD2226 Modified pSGDluc (dual luciferase with inteins) with VEEV TCR insert, pJD2257 

backbone 
pJD2243 Modified pSGDluc (dual luciferase with inteins) with VEEV TCR insert and insert 

stop codon mutated to UAA, pJD2257 backbone 
pJD2244 Modified pSGDluc (dual luciferase with inteins) with VEEV TCR insert and insert 

stop codon mutated to UAG, pJD2257 backbone 
pJD2227 Modified pSGDluc (dual luciferase with inteins) with EEEV TCR insert, pJD2257 

backbone 
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pJD2228 Modified pSGDluc (dual luciferase with inteins) with WEEV TCR insert, pJD2257 
backbone 

pJD2229 Modified pSGDluc (dual luciferase with inteins) with MAYV TCR insert, pJD2257 
backbone 

pJD2241 Modified pSGDluc (dual luciferase with inteins) with MAYV TCR insert and insert 
stop codon mutated to UAA, pJD2257 backbone 

pJD2242 Modified pSGDluc (dual luciferase with inteins) with MAYV TCR insert and insert 
stop codon mutated to UAG, pJD2257 backbone 

pJD2232 Modified pSGDluc (dual luciferase with inteins) with BaEV TCR insert, pJD2257 
backbone 

pJD2234 Modified pSGDluc (dual luciferase with inteins) with GALV TCR insert, pJD2257 
backbone 

pJD2234 Modified pSGDluc (dual luciferase with inteins) with FeLV TCR insert, pJD2257 
backbone 
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Appendix C. Supplementary Figures for Chapter 3 

Figure 35.  Multiple sequence alignments of CHIKV TCR and -1 PRF sequences 
from 14 African/Asian (Af/As) strains (Top), and 5 Caribbean (Carib) strains.   

 
  

EU564335 CGACGAGUUAUGACUAGACAGGGCAAGGUGGGUAUAUAUUCUCGUCGGACACCGGUCCAGGUCAUUUACAACAGAA
EF027137 CGACGAGUUAUGACUAGACAGGGCAAGGUGGGUAUAUAUUCUCGUCGGACACCGGUCCAGGUCAUUUACAACAGAA
EF027134 CGACGAGUUAUGACUAGACAGGGCAAGGUGGGUAUAUAUUCUCGUCGGACACCGGUCCAGGUCAUUUACAACAGAA
HM045801 CGACGAGUUAUGACUAGACAGGGCAAGGUGGGUAUAUAUUCUCGUCGGACACCGGUCCAGGUCAUUUACAACAGAA
GU013528 CGACGAGUUAUGACUAGACAGGGCAAGGUGGGUAUAUAUUCUCGUCGGACACCGGUCCAGGUCAUUUACAACAGAA
FJ513628 CGACGAGUUAUGACUAGACAGGGCAAGGUGGGUAUAUAUUCUCGUCGGACACCGGUCCAGGUCAUUUACAACAGAA
FJ445433 CGACGAGUUAUGACUAGACAGGGCAAGGUGGGUAUAUAUUCUCGUCGGACACCGGUCCAGGUCAUUUACAACAGAA
FJ445502 CGACGAGUUAUGACUAGACAGGGCAAGGUGGGUAUAUAUUCUCGUCGGACACCGGUCCAGGUCAUUUACAACAGAA
FJ807896 CGACGAGUUAUGACUAGACAGGGCAAGGUGGGUAUAUAUUCUCGUCGGACACCGGUCCAGGUCAUUUACAACAGAA
HM045823 CGACGAGUUAUGACUAGACAGGGCAAGGUGGGUAUAUAUUCUCGUCGGACACCGGUCCAGGUCAUUUACAACAGAA
EF012359 CGACGAGUUAUGACUAGACAGGGCAAGGUGGGUAUAUAUUCUCGUCGGACACCGGUCCAGGUCAUUUACAACAGAA
HM045812 CGACGAGUUAUGACUAGACAGGGCAAGGUGGGUAUAUAUUCUCGUCGGACACCGGUCCAGGUCAUUUACAACAGAA
KJ941050 CGACGAGUUAUGACUAGACAGGGCAAGGUGGGUAUAUAUUCUCGUCGGACACCGGUCCAGGUCAUUUACAACAGAA
HM045811 CGACGAGUUAUGACUAGACAGGGCAAGGUGGGUAUAUAUUCUCGUCGGACACUGGUCCAGGUCAUUUACAACAGAA
         **************************************************** ***********************

EU564335 GUCAGUACGCCAGUCAGUGCUGCCGGUGAACACCCUGGAGGAAGUCCACGAGGAGAAGUGUUACCCACCUAAGCUG
EF027137 GUCAGUACGCCAGUCAGUGCUGCCGGUGAACACCCUGGAGGAAGUCCACGAGGAGAAGUGUUACCCACCUAAGCUG
EF027134 GUCAGUACGCCAGUCAGUGCUGCCGGUGAACACCCUGGAGGAAGUCCACGAGGAGAAGUGUUACCCACCUAAGCUG
HM045801 GUCAGUACGCCAGUCAGUGCUGCCGGUGAACACCCUGGAGGAAGUCCACGAGGAGAAGUGUUACCCACCUAAGCUG
GU013528 GUCAGUACGCCAGUCAGUGCUGCCGGUGAACACCCUGGAGGAAGUCCACGAGGAGAAGUGUUACCCACCUAAGCUG
FJ513628 GUCAGUACGCCAGUCAGUGCUGCCGGUGAACACCCUGGAGGAAGUCCACGAGGAGAAGUGUUACCCACCUAAGCUG
FJ445433 GUCAGUACGCCAGUCAGUGCUGCCGGUGAACACCCUGGAGGAAGUCCACGAGGAGAAGUGUUACCCACCUAAGCUG
FJ445502 GUCAGUACGCCAGUCAGUGCUGCCGGUGAACACCCUGGAGGAAGUCCACGAGGAGAAGUGUUACCCACCUAAGCUG
FJ807896 GUCAGUACGCCAGUCAGUGCUGCCGGUGAACACCCUGGAGGAAGUCCACGAGGAGAAGUGUUACCCACCUAAGCUG
HM045823 GUCAGUACGCCAGUCAGUGCUGCCGGUGAACACCCUGGAGGAAGUCCACGAGGAGAAGUGUUACCCACCUAAGCUG
EF012359 GUCAGUACGCCAGUCAGUGCUGCCGGUGAACACCCUGGAGGAAGUCCACGAGGAGAAGUGUUACCCACCUAAGCUG
HM045812 GUCAGUACGCCAGUCAGUGCUGCCGGUGAACACCCUGGAGGAAGUCCACGAGGAGAAGUGUUACCCACCUAAGCUG
KJ941050 GUCAGUACGCCAGUCAGUGCUGCCGGUGAACACCCUGGAGGAAGUCCACGAGGAGAAGUGUUACCCACCUAAGCUG
HM045811 GUCAGUACGCCAGUCAGUGCUGCCGGUGAACACCCUGGAGGAAGUCCACGAGGAGAAGUGUUACCCACCUAAGCUG
         ****************************************************************************

EU564335 UUUUUUAGCCGUAAUGAGCGUCGGUGCCCACACUGUGAGCGCGUACGAACACGUAACAGUGAUCCCGAACACGUAACAGUGAUCCCGAACACGGUGGG
EF027137 UUUUUUAGCCGUAAUGAGCGUCGGUGCCCACACUGUGAGCGCGUACGAACACGUAACAGUGAUCCCGAACACGUAACAGUGAUCCCGAACACGGUGGG
EF027134 UUUUUUAGCCGUAAUGAGCGUCGGUGCCCACACUGUGAGCGCGUACGAACACGUAACAGUGAUCCCGAACACGUAACAGUGAUCCCGAACACGGUGGG
HM045801 UUUUUUAGCCGUAAUGAGCGUCGGUGCCCACACUGUGAGCGCGUACGAACACGUAACAGUGAUCCCGAACACGUAACAGUGAUCCCGAACACGGUGGG
GU013528 UUUUUUAGCCGUAAUGAGCGUCGGUGCCCACACUGUGAGCGCGUACGAACACGUAACAGUGAUCCCGAACACGUAACAGUGAUCCCGAACACGGUGGG
FJ513628 UUUUUUAGCCGUAAUGAGCGUCGGUGCCCACACUGUGAGCGCGUACGAACACGUAACAGUGAUCCCGAACACGUAACAGUGAUCCCGAACACGGUGGG
FJ445433 UUUUUUAGCCGUAAUGAGCGUCGGUGCCCACACUGUGAGCGCGUACGAACACGUAACAGUGAUCCCGAACACGUAACAGUGAUCCCGAACACGGUGGG
FJ445502 UUUUUUAGCCGUAAUGAGCGUCGGUGCCCACACUGUGAGCGCGUACGAACACGUAACAGUGAUCCCGAACACGUAACAGUGAUCCCGAACACGGUGGG
FJ807896 UUUUUUAGCCGUAAUGAGCGUCGGUGCCCACACUGUGAGCGCGUACGAACACGUAACAGUGAUCCCGAACACGUAACAGUGAUCCCGAACACGGUGGG
HM045823 UUUUUUAGCCGUAAUGAGCGUCGGUGCCCACACUGUGAGCGCGUACGAACACGUAACAGUGAUCCCGAACACGUAACAGUGAUCCCGAACACGGUGGG
EF012359 UUUUUUAGCCGUAAUGAGCGUCGGUGCCCACACUGUGAGCGCGUACGAACACGUAACAGUGAUCCCGAACACGUAACAGUGAUCCCGAACACGGUGGG
HM045812 UUUUUUAGCCGUAAUGAGCGUCGGUGCCCACACUGUGAGCGCGUACGAACACGUAACAGUGAUCCCGAACACGUAACAGUGAUCCCGAACACGGUGGG
KJ941050 UUUUUUAGCCGUAAUGAGCGUCGGUGCCCACACUGUGAGCGCGUACGAACACGUAACAGUGAUCCCGAACACGUAACAGUGAUCCCGAACACGGUGGG
HM045811 UUUUUUAGCCGUAAUGAGCAUCGGUGCCCACACUGUGAGCGCGUACGAACACGUAACAGUGAUCCCGAACACGUAACAGUGAUCCCGAACACGGUGGG
         ******************* ******************************************************************************

TCR

-1 PRF

CHIKV Af/As

5645

5785

9951 10018

KX702401 CGACGAGUUAUGACUAGACAGGGCAAGGUGGGUAUAUAUUCUCGUCGGACACUGGUCCAGGCCAUUUACAACAGAA
KY415978 CGACGAGUUAUGACUAGACAGGGCAAGGUGGGUAUAUAUUCUCGUCGGACACUGGUCCAGGCCAUUUACAACAGAA
KY415985 CGACGAGUUAUGACUAGACAGGGCAAGGUGGGUAUAUAUUCUCGUCGGACACUGGUCCAGGCCAUUUACAACAGAA
KR046232 CGACGAGUUAUGACUAGACAGGGCAAGGUGGGUAUAUAUUCUCGUCGGACACUGGUCCAGGCCAUUUACAACAGAA
KR046228 CGACGAGUUAUGACUAGACAGGGCAAGGUGGGUAUAUAUUCUCGUCGGACACUGGUCCAGGCCAUUUACAACAGAA
         ****************************************************************************

KX702401 GUCGGUACGCCAGUCAGUGCUGCCGGUAAACACCCUGGAGGAAGUUCACGAGGAGAAGUGUUACCCACCUAAGCUG
KY415978 GUCGGUACGCCAGUCAGUGCUGCCGGUAAACACCCUGGAGGAAGUUCACGAGGAGAAGUGUUACCCACCUAAGCUG
KY415985 GUCGGUACGCCAGUCAGUGCUGCCGGUAAACACCCUGGAGGAAGUUCACGAGGAGAAGUGUUACCCACCUAAGCUG
KR046232 GUCGGUACGCCAGUCAGUGCUGCCGGUAAACACCCUGGAGGAAGUUCACGAGGAGAAGUGUUACCCACCUAAGCUG
KR046228 GUCGGUACGCCAGUCAGUGCUGCCGGUAAACACCCUGGAGGAAGUUCACGAGGAGAAGUGUUACCCACCUAAGCUG
         ****************************************************************************

KX702401 UUUUUUAGCCGUACUGAGCGUCGGUGCCCACACUGUGAGCGCGUACGAACACGUAACAGUGAUCCCGAACACGUAACAGUGAUCCCGAACACGGUGGG
KY415978 UUUUUUAGCCGUACUGAGCGUCGGUGCCCACACUGUGAGCGCGUACGAACACGUAACAGUGAUCCCGAACACGUAACAGUGAUCCCGAACACGGUGGG
KY415985 UUUUUUAGCCGUACUGAGCGUCGGUGCCCACACUGUGAGCGCGUACGAACACGUAACAGUGAUCCCGAACACGUAACAGUGAUCCCGAACACGGUGGG
KR046232 UUUUUUAGCCGUACUGAGCGUCGGUGCCCACACUGUGAGCGCGUACGAACACGUAACAGUGAUCCCGAACACGUAACAGUGAUCCCGAACACGGUGGG
KR046228 UUUUUUAGCCGUACUGAGCGUCGGUGCCCACACUGUGAGCGCGUACGAACACGUAACAGUGAUCCCGAACACGUAACAGUGAUCCCGAACACGGUGGG
         **************************************************************************************************

CHIKV Carib
TCR

-1 PRF

5645

5785

9951 10018
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Figure 36. A. Total protein of samples separated through 4-20% SDS-PAGE gel. 
10µg of readthrough control (rt.ctrl) sample and 15-20 µg other samples were 
loaded for immunoblot analysis. B. Raw images of Firefly luciferase (short and 
long exposures) and Renilla luciferase immunoblots of protein lysates from 
HEK293T cells transiently transfected with the indicated reporter plasmids. The 
lanes on either end is molecular weight marker (Precision Plus Protein™ 
Kaleidoscope™ Bio-Rad #1610375).  
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Figure 37. Panels A and B correspond to Figure 28C. Panels C and D 
correspond to Fig 28D. A and C. Original Gels. Total protein of samples 
separated through 4-20% SDS-PAGE gels. 10µg of readthrough control (rt.ctrl) 
sample and 15-20 µg other samples were loaded for immunoblot analyses. B 
and D: Original Blots. Raw images of Firefly luciferase (short and long 
exposures) and Renilla luciferase immunoblots of protein lysates from HEK293T 
cells transiently transfected with the indicated reporter plasmids. The lanes on 
either end is molecular weight marker (Precision Plus Protein™ Kaleidoscope™ 
Bio-Rad #1610375). 

rt.ctrl   WT AGA      WT AGA      mock

CHIKV Af/As CHIKV Carib

D. Original Blots

rt.ctrl   WT AGA   WT AGA   mock
CHIKV Af/As CHIKV Carib

C. Original Gel
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