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Design of a physical system and its controller has significant ramifications on

the overall system performance. The traditional approach of first optimizing the

physical design and then the controller may lead to sub-optimal solutions. This

is due to the interdependence between the physical design and control parameters

through the dynamic equations. Recognition of this fact paved the way for inves-

tigation into the “Co-Design” research theme wherein the overall system’s physical

design and control are simultaneously optimized.

Co-design involves simultaneous optimization of the design and the control

variables with respect to certain structural property as constraint. The structural

property may be in the form of stability, observability or controllability leading

to different types of co-design problems. Co-design optimization problems are non-

convex optimization problems involving bilinear matrix inequality (BMI) constraints

and are NP-hard in general.

In this dissertation, four interrelated research tasks in the area of co-design are



undertaken. In the first research task, a theoretical and computational framework is

developed to co-design a class of linear time invariant (LTI) dynamical systems. A

novel solution procedure based on an iterative combination of generalized Benders

decomposition and gradient projection method is developed guaranteeing conver-

gence to a solution in a finite number of iterations which is within a tolerance bound

from the nearest local/global minimum. In the second research task, the sparse and

structured static feedback design problem is modeled as a co-design problem. A

formulation based on the alternating direction method of multipliers is used to solve

the sparse feedback design problem which has given robustness as a constraint. In

the third research task, the optimal actuator placement problem is formulated as a

co-design problem. The actuator positions are modeled as 0/1−binary design vari-

ables and result in a mixed integer nonlinear programming (MINLP) problem. In

the fourth research task, a heuristic procedure to place sensors and design observer

is developed for a class of Lipschitz nonlinear systems. The procedure is based on

the relation between Lipschitz constant, sensor locations and observer gain.

The vast and diverse application potential of co-design across all engineering

branches is the primary motivation and relevance of the research work carried out

in this dissertation.
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Preface

कमर्ण्येवा￸धकारस्ते मा फलेषु कदाचन ।

मा कमर्फलहेतुभूर्मार् ते सङ्गोऽस्त्वकमर्￱ण ॥

श्रीमद् भगवद्गीता २-४७

“You have the right to work only, but never to its fruits.

Let not the fruits of action be your motive,

nor let your attachment be to inaction.”

Srimad Bhagavad-Gita Chapter 2 Verse 47
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Chapter 1: Introduction

In this chapter, the motivation and the objective behind this research are

discussed. The chapter begins with motivating examples and objective of this dis-

sertation followed by a brief description of the co-design problem and the challenges

associated with it. Finally, the research tasks undertaken in this dissertation are

briefly described.

1.1 Motivation and Objective

In the traditional system design approach, the design variables (passive com-

ponents) are optimized first and then the control variables (active components) are

optimized. This sequential approach leads to a sub-optimal system in general [3, 4]

due to the interdependence of the design and the control variables [5] through the

dynamics of the system. This is demonstrated next through a practical engineering

system.

Figure 1.1 shows a self-balancing unicycle which is a single wheel personal

transporter. A self-balancing unicycle is a battery operated device with a capacity

of one rider. Due to its compact size, an unicycle needs less space to operate (park)

and as it is battery operated, it causes no pollution. This makes the unicycle a very

1



popular mode of transport in crowded cities. The unicycle is controlled by using

gyroscopes and accelerometers.

(a) (b)

Figure 1.1: Self-balancing unicycle (a) Unicycle with rider [1]; (b) Unicycle [1].

For analysis and design purposes, an unicycle can be modeled as an inverted

pendulum system as shown in Figure 1.2. An inverted pendulum is a naturally

unstable system consisting of a cart of mass M which is an abstraction of the

body of an unicycle, an inverted pendulum of length l having a mass m attached

at the end depicting the height of the unicycle and the rider respectively. The

unicycle is driven by a battery operated motor in a “controlled” manner such that

a consumption of “minimum” energy is expected. In traditional system design,

physical design parameters or passive components like M, l,m are optimized first

by taking into account a gross approximation of the system dynamics. Then, based

on the optimal values of M, l,m, active component, i.e., the control variable u is

designed such that u stabilizes the naturally unstable system. Thus the traditional

2



Figure 1.2: An inverted pendulum system.

sequential design process does not exactly take into account the interdependence

between M, l,m and u and this might cause the unicycle to be too heavy (or light)

leading to a higher consumption of energy in order to maintain stability. Higher

energy consumption will require bigger and costlier battery than necessary. To

avoid this over (under) design of physical and control parameters, a simultaneous

optimization of both is necessary. This need gave rise to the idea of “Co-Design”

also known as “co-optimization of design and control”.

Co-design has been applied to the design of aerospace structures [6], smart

structures [7], electric DC motor [3], mechatronic systems [8], robotic manipulators

[9], mechanisms and machine tools [10], chemical process design and control [11].

This wide application of co-design to almost all engineering branches is the basic

motivation behind this research.

3



1.2 Main Topics of the Dissertation

In this section, the main topics of the dissertation are discussed. It is also

shown how each topic is a type of co-design problem and can be categorized under

the umbrella of “Co-Design”.

1.2.1 Co-design Modeling and Optimization

The unicycle discussed in Section 1.1 is modeled to follow linear time invariant

(LTI) dynamics as discussed next. Consider the following LTI system,

ẋ = Ax+Bu, y = Cx, (1.1)

where A ∈ Rn×n, B ∈ Rn×q, C ∈ Rp×n are state (system), input and output matrices

respectively. x ∈ Rn, y ∈ Rp, u ∈ Rq denote the state vector, output vector and

control input of the system respectively. The initial state of x is known and is

denoted by x0 with x0 ∈ Rn. The system in (1.1), can be controlled by applying

a full-state feedback (FSF) control or a static output feedback (SOF) control as

follows,

FSF control : u = −Kx,

SOF control : u = −Ky,
(1.2)

where K ∈ Rq×n or K ∈ Rq×p is the FSF controller gain or SOF controller gain

respectively depending on the context. For FSF control, all the state measurements

are necessary for control while for SOF control only partial state measurements

are required. Let A = (aij) , B = (bij) , C = (cij) , K = (kij). The components

4



of the matrices A,B,C,K are linear functions of the design variables. Co-design

optimization problems are typically multi-objective optimization problems. The ob-

jective function of optimization is a linear combination of a convex design objective

function and a quadratic control objective function. The control objective function

is of the form,

fc or J :=

∫ ∞

0

(
yTQy + uTRu

)
dt, (1.3)

where Q is a known positive semidefinite matrix and R is a known positive definite

matrix. The co-design optimization problem is formulated as,

min
d,u

fd + fc = fd (d) +

∫ ∞

0

(
yTQy + uTRu

)
dt,

Subject to the constraints,

d ≤ d ≤ d, g1 (d) ≤ 0, g2 (d) = 0,

ẋ = A (d)x+B (d)u, y = C (d)x, x (0) = x0,

Designed system should be stable,

(1.4)

where d ∈ Rnd is the design variable and g1, g2 are convex design constraints. Ma-

trices A,B,C are functions of the design variable d.

From the unicycle perspective, d represents the design variables M, l,m. u is

the control variable which is an abstraction of an effort (force) applied to drive the

unicycle in a “regulated” (stabilized) manner. fd is the design (generally passive)

objective function which may be minimizing weight etc., fc is the control objective

which may be the energy supplied by the battery to produce the effort required

for driving. g1, g2 are constraints on the design variables which can be for example

5



bounds on M, l,m. It should be noted that constraints on the control variable can

be approximated in terms of the design variables. The abstract constraint “Designed

system should be stable” ensures the stability of the co-designed system. As fc is a

quadratic objective, linear-quadratic regulator (LQR) which is a FSF controller is

used to control the system.

The problem (1.4) is reformulated as,

min
d,P

fd (d) + Tr (P ) ,

Subject to the constraints,

d ≤ d ≤ d, g1 (d) ≤ 0, g2 (d) = 0, P ≽ 0,

S (d, P ) := A (d)T P + PA (d) +Q− PB (d)R−1B (d)T P = 0,

(1.5)

where the symmetric matrix P is the control variable and Tr (·) denotes the trace of

the matrix (·). The constraint S (d, P ) = 0 in (1.5) is an Algebraic Riccati Equation

(ARE) [12] constraint and is the mathematical representation of the abstract sta-

bility constraint in (1.4). The constraint S (d, P ) is a non-convex, nonlinear matrix

equality constraint and is a function of design variables d and matrix control variable

P . This makes computing a solution to the multi-objective, nonlinear, non-convex

co-design optimization problem in (1.3) challenging and is the focus of this topic.

1.2.2 Sparse and Structured Feedback Design

A good control for a dynamical system should provide robust stability against

worst case disturbances and model uncertainties while ensuring good performance.

It is well-known that H∞ control guarantees the necessary robustness and H2 control

6



imparts good performance [13,14]. Hence, it is natural for a control system designer

to synthesize a control which offers both robustness and good performance. Feed-

back controllers are of two types: dynamic state feedback and static state feedback.

Dynamic feedback control involves controller dynamics making their usage difficult

contrary to static feedback which is simple in structure, economically cheap and

easy to implement. This makes static feedback a preferred choice of feedback.

Figure 1.3: A mass-spring-damper chain of N masses

Consider a mass-spring-damper system shown in Figure 1.3 which is an ab-

straction of structural systems. The dynamics of the said system is described as,

ẋ = Ax+Bu, y = Cx, u = Ky. (1.6)

A,B,C are known system matrices while the feedback controller gain matrix K

is unknown. K can be FSF or SOF depending upon C. A feedback controller in

a dynamical system can be viewed as a central station which gathers information

from “distributed sensors”, processes it and generates control action commands for

“distributed actuators” [15]. In short a controller is a communication link between

sensors and actuators. As the system size increases the static feedback controller

becomes complex (dense) causing maintenance and cost issues. Hence, it is desirable

to have a sparse or structured feedback. Mathematically, sparse controllers have the

7



number of 0s (zeros) in the gain matrix as large as possible. For example, for the

system in Figure 1.3 with N = 10 will have 20 states and can be controlled by a

sparse 10 × 20 FSF controller as shown in Figure 1.4. In Figure 1.4, X indicates a

non-zero entry in the gain matrix while a blank space signifies a 0.

Figure 1.4: A sparse 10× 20 FSF controller

Structured controllers are a subset of sparse controller where the non-zero

entries have a specific pattern i.e., position of 0s is predefined. For example, for

the system in Figure 1.3 with N = 10 with only velocity measurements available,

structured (diagonal and tridiagonal) 10 × 10 SOF controllers are shown in Figure

1.5. In practical terms, designing a sparse controller means minimizing the number

of communication links between sensors and actuators while in case of structured

controller, design is constrained to already present communication links.

As discussed before, a controller should ensure robustness of the system against

disturbances/uncertainties along with good performance (consuming minimum en-

ergy). In control, H2 norm is the measure of performance while H∞ norm measures

robustness [13,14]. Mathematically, the sparse and structured feedback design prob-

8



(a) (b)

Figure 1.5: 10× 10 structured SOF (a) Diagonal, (b) Tridiagonal

lem considering a given robustness level γ is as follows.

min
K

fd (K) + fc (u, γ) ,

Subject to the constraints,

ẋ = Ax+Bu, y = Cx, u = Ky,

g (K) ,

Designed system should be stable,

(1.7)

where fd is the design function related to the sparsity of the controller and fc is the

performance measure (abstraction of input energy) dependent upon the controller

K and robustness γ . Constraint g (K) is a design constraint related to the spar-

sity/structure of the controller. Although only the controller is being optimized,

the structure/sparsity of the controller introduces a (design) constraint on the vari-

able K and makes this a co-design problem retaining its challenges. To develop a

procedure to design sparse and structured feedback controllers is the aim of this

topic.
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1.2.3 Optimal Actuator Placement

The state of a dynamical system is driven by actuators based on control input.

The ability of any state of a system to get modified (driven) is determined by the

controllability of the system. Formally, controllability is the property of a dynamical

system which ensures that the system can be steered from any initial state to any

final state with the application of an input. The (energy) input is provided to

the dynamical system by using one or more actuators in the system. The system

controllability as well as energy consumption depends on the placement and number

of actuators. In general, computing a minimum number of actuators that ensure

controllability of the system is a NP-hard problem [16]. Hence, a practical approach

to overcome this difficulty is to place (use) limited number of actuators such that

system is controllable. Use of limited number of actuators results in different possible

combinations of actuator locations. For example, if the structural system shown in

Figure 1.3 can be controlled by two actuators placed on any two available positions,

then it can result in multiple possible placement combinations. These multiple

combinations may have different energy consumption. This makes the actuator

placement problem very important in dynamical system design. In a dynamical

system (shown in (1.8)) the input matrix B represents the position of actuators.
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Mathematically, the optimal actuator placement problem is written as follows,

min
d

fc (d)

Subject to the constraints,

ẋ = Ax+B (d)u,

Bii ∈ {0, 1}, Bij = 0 for i ̸= j,

Tr (B) ≤ Bmax,

(A,B) is controllable,

(1.8)

where d is the design variable which depicts the actuator presence (Bii = 1) or

absence (Bii = 0) in the diagonal input matrix B. d is actually a vector of 0’s

and 1’s conveying the value of each diagonal element of B. The value of the input

control energy fc depends upon d. Thus, actuator placement problem is also a type

of co-design. To formulate the optimal actuator placement problem and propose a

solution procedure is the objective of this topic.

1.2.4 Sensor Placement and Observer Design

In a dynamical system, the output of system y may be purely (some or all)

internal states x or a linear combination of some or all the internal states of the

system. A sensor in the system measures the output y. The position of sensors

in the system is represented in the output matrix C. Information about internal

states is required to generate control input to the system. However, the availability

of information about the complete internal state depends upon the observability of
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the system. Observability is a property of the dynamical system by virtue of which

the internal states of a system can be computed from the input-output informa-

tion [17]. Hence sensors should be placed in the system such that the system is

observable. For an observable system, when all the internal states are not known,

so an observer is constructed to “estimate” the complete state from input-output

information. Consider the following nonlinear system with its observer.

ẋ = Ax+Bu+ ϕ (x) , y = C (d)x,

˙̂x = Ax̂+Bu+ ϕ (x̂) + L (y − Cx̂) ,

(1.9)

where d is the design variable similar to the actuator placement problem which

depicts the sensor presence (Cii = 1) or absence (Cii = 0) in the diagonal output

matrix C. x̂ is an estimate of the real state x, ϕ (x) is a Lipschitz nonlinear function

[17]. L is the observer gain chosen such that ||x−x̂||F −→ 0 as t −→ 0 where || (·) ||F

is the Forbenius norm [18] of (·). The objective is to select design d (place sensors)

and L such that the output (control object) is maximized. Thus, sensor placement

and observer design can be classified as a co-design problem. The intention of this

topic is to formulate a procedure to place sensors and compute linear gain for the

observer.

1.3 General Challenges in Co-Design

The co-design optimization problem is modeled as a nonlinear and non-convex

optimization problem. The nonlinearity and non-convexity arises due to the sys-

tem stability constraint which finally transforms into a bilinear matrix inequality
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(BMI) [19]. It is well known that the BMI optimization problems are NP-hard in

general [20, 21]. Moreover, in sparse and structured feedback design, sparsity and

structure constraints on the controller enhance the nonlinearity and non-convexity

of the problem. In addition to nonlinearity and non-convexity, sensor and actua-

tor placement problems have 0/1−integer variables. This results in solving NP-hard

mixed-integer nonlinear programming (MINLP) [22] problems to synthesize optimal

sensor and actuator locations.

The main topics considered in Section 1.2 and the aforementioned challenges

lead to the study of the research components discussed next.

1.4 Research Components in the Dissertation

In this section, an overview of the research problems studied in this dissertation

is given.

1. Co-design Modeling and Optimization: The objective of this research

task is to develop a co-design problem formulation and solution procedure

which will lead to optimal solutions with guarantees. The co-design optimiza-

tion problem is modeled as a BMI optimization problem. A solution procedure

consisting of an iterative combination of the generalized Benders decomposi-

tion (GBD) [23] and the gradient projection method (GPM) [24] is proposed

with provable guarantees. The proposed method is applied to numerical and

engineering examples to test its utility. Results show that the proposed ap-

proach computes a solution in a finite number of iterations which is with in a
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finite provable tolerance from a local/global minimum.

2. Structured Static Output Feedback Design: The structured static out-

put feedback (SSOF) problem is formulated as a BMI optimization problem.

Similar to the co-design optimization problem, the SSOF design problem is

solved using an iterative combination of GBD and GPM. The proposed for-

mulation is applied to design a SSOF controller for an aircraft with favorable

results.

3. Sparse Feedback Design: Sparse feedback synthesis is posed as an optimiza-

tion problem with given robustness level as constraint. A scalable solution pro-

cedure based on the alternating direction method of multipliers (ADMM) [25]

is proposed. The proposed formulation is applied on a class of second order

systems which represent a large number of real world applications.

4. Optimal Actuator Placement: The optimal actuator placement problem

is formulated as a mixed integer BMI optimization problem. By the use of

McCormick’s relaxation technique [26], the BMI optimization problem is refor-

mulated as an novel equivalent 0/1−mixed-integer semidefinite programming

(MISDP) problem which can be easily solved using the branch-and-bound

method [27]. The proposed formulation is applied to a integrator chain sys-

tem.

5. Sensor Placement and Observer Design: The sensor placement and ob-

server design problem for Lipschitz nonlinear systems is set up as an opti-
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mization problem. The optimization metric depends upon a relation between

Lipschitz constant, sensor positions, observer gain and asymptotic estimation.

A heuristic procedure is proposed to solve the optimization. The formulation

is then applied to place sensors and design observer for a pipeline without a

leak dynamical system.

1.5 Organization of the Dissertation

The remainder of the dissertation is organized as follows: Each of the chap-

ters 2 to 6 is dedicated to the research problems discussed in Section 1.4. Chap-

ter 2 which is to be read first discusses the Co-design Modeling and Optimization

Problem. Chapter 3 discusses the SSOF problem. Chapter 4 discusses the Sparse

Feedback Design problem. Chapter 5 discusses the Optimal Actuator Placement

problem. Chapter 6 discusses the Sensor Placement and Observer Design problem.

Each chapter starts with an introduction section which includes a literature review,

discusses the challenges involved and contribution in detail. Next, the proposed

problem formulation, solution methodology, examples and summarizing remarks

follow. Chapter 7 discusses the conclusion of the dissertation work and future di-

rections for further research. Chapters 3 4, 5 and 6 can be read in any order.
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Chapter 2: Co-design Modeling and Optimization

This chapter is based on the publications [28, 29].

In this chapter, a novel approach to address the co-design problem for a class

of LTI dynamic systems controlled by a LQR feedback is presented. The considered

co-design problem is formulated as a non-convex optimization problem with ARE

constraint and convex design objective function. Using semi-definite programming

(SDP) duality the ARE constraint is reduced into equivalent BMI constraints. This

reformulated co-design problem is solved using an iterative algorithm based on the

GBD and GPM. The proposed algorithm converges to a solution which is within a

specified tolerance from the nearest local minimum (in special cases global minimum)

in a finite number of iterations. Necessary and sufficient conditions are developed

to test minimality. Three examples are presented to show efficacy of the proposed

algorithm.

2.1 Introduction

The wide applicability of co-design has led researchers to concentrate on dif-

ferent strategies to solve the co-design problem. The literature reports on several

strategies for solving the co-design optimization problem. Some of these include:
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iterative method using optimal control and coupled nonlinear equations [6], co-

design based on the coupling property of a system [3, 30, 31], co-design using dy-

namic optimization technique [32], sequential co-design using Control Proxy Func-

tion (CPF) [33]. The general framework of the co-design optimization problem for

linear dynamic systems involves system stability conditions. The system stabil-

ity conditions are reduced to non-convex matrix inequalities which generally have

a BMI [19] form, for example in the case of structural systems [34]. The non-

convexity in the co-design optimization problem arises from a product of system

(physical design) and control parameter matrices. This non-convexity presents sev-

eral challenges in obtaining an optimal solution to the co-design problem and is the

main focus of this research.

A brief overview of the properties of BMIs can be found in [35]. Non-convex

matrix inequalities due to the system stability constraints were encountered in a

structural co-design optimization problem in [7]. The co-design problem was solved

using an iterative procedure which involved convexification of the non-convex matrix

inequalities using special convexifying functions. The procedure led to a convergent

solution which was not guaranteed to be stationary. A homotopy linearization ap-

proach to solve co-design problems involving BMI constraints was studied in [36].

The convergence of the homotopy method to an “acceptable solution” was depen-

dent on the initial value of the variables used at the commencement of the method.

A branch-and-bound approach to solve co-design problems involving BMIs was pro-

posed in [35]. A guaranteed globally convergent method to solve co-design problems

involving BMIs using dual Lagrangian formulation and exhaustive partitioning of
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the space of complicating variables was proposed in [37]. The slow converging nature

of the branch-and-bound and exhaustive search approaches limits their application

to systems with a small number of decision variables. A convergent gradient-based

approach with a local optimality test for the converged stationary solution was dis-

cussed in [38]. An iterative approach for co-design by relaxing the BMI constraint

into convex sub-problems was studied in [39].

Structurally, it can be shown that BMIs fit well into bilinear optimization

problems. GBD is a useful algorithm to solve bilinear optimization problems [23].

A special case of co-design optimization using GBD known as the global optimal joint

actuator location and control problem was studied in [40]. An algorithm based on

GBD to solve optimization problems with a linear objective function subject to BMI

constraints was proposed in [41]. However, the proposed method was limited to the

case when the objective function is linear. Further, the authors in [41] conjectured

that the algorithm converged to the global optimum. In [28], a BMI formulation

for the co-design optimization was proposed without demonstrating convergence to

a local/global minimum.

From the aforementioned literature, it can be concluded that the non-convex

nonlinear matrix constraints (generally BMIs) are commonly encountered while in-

vestigating co-design optimization problems. The non-convex nonlinear matrix con-

straints typically arise from the stability conditions for the considered system. The

current algorithms in the literature for addressing co-design optimization have cer-

tain shortcomings. Certain co-design formulations require special functions for op-

timization (for example, convexifying function in [7], CPF in [31, 33]). Co-design
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optimization problems involving BMIs can also be solved using a branch-and-bound

approach which requires prior knowledge of control variable bounds [35]. The BMI

optimization problems solved using the GBD approach [41] face the shortcoming of

being applicable to only linear objective functions. The work in [41] was conjec-

tured to provide a global optimal solution. Moreover, the available BMI formula-

tions and their solution procedures for co-design optimization have issues related to

convergence as well as the nature of the computed solution (local/global optimal

or sub-optimal) [7, 39, 41]. Works like [3, 30, 31] provided only necessary conditions

for local optimality of the co-design optimization problem. The work [40] focused

on the global minimum solution of a special co-design problem when the design

variables (in linear or nonlinear form) were present only in the input matrix but

does not give any insight when the design variables are present in all the system

matrices. The co-design optimization procedure developed in [39] required knowl-

edge of the initial system parameters as well as an initial stabilizing control policy

which may not always be available and makes the co-design solution dependent on

the initial input data. Additionally, the iterative BMI optimization procedures were

dependent upon the initialization of the optimization procedure [36]. This presents

an additional challenge of finding an appropriate feasible initial design. Addition-

ally, co-design optimization studies like those developed in [39, 40] do not consider

a design objective in the optimization problem. Motivated by the aforementioned

challenges, the contributions of this chapter are as follows,

1. A new formulation to co-design a class of LTI systems using LQR feedback
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controller is proposed where the elements of the system matrices are linear

functions of the design variables. By a novel use of SDP duality theory, the

optimization problem is reduced to a non-convex problem with a BMI con-

straint. This formulation has a nonlinear, convex design objective function.

2. The reduced non-convex BMI optimization problem is proved to satisfy the

requirements of the GBD procedure. A deterministic algorithm, which itera-

tively uses the GBD procedure, and a gradient projection method is studied

to solve the co-design problem. The proposed algorithm is guaranteed to con-

verge to a solution which is within a specified tolerance from the nearest local

minimum (and in special cases global minimum) co-design solution in a finite

number of iterations. The proposed solution procedure does not require exis-

tence of special functions, prior knowledge of control variable bounds, initial

system design parameters, initial stabilizing control policy and is independent

of the knowledge of the initial design. It should be noted that all the de-

sign parameters appearing linearly in the system matrices can act as design

optimization variables.

3. Computationally efficient necessary and sufficient conditions are devised to test

the stationarity and local minimality of the converged solution point. These

conditions are independent of the control variables, utilize only the design

variables, and hence are computationally efficient to handle. Additionally, an

upper bound on the specified minimality tolerance is also derived.

4. Conditions under which the co-design problem is convex and has a unique
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global minimum solution are established and proved.

5. The novel utilization of SDP duality theory provides a new perspective for

handling stabilization/optimization problems involving BMIs.

The remaining chapter is organized as follows: In Section 2.2 the co-design prob-

lem is proposed, in Section 2.3 the solution procedure is derived, and in Section

2.4 the co-design algorithm is outlined. In Section 2.5 conditions for convergence

and optimality are provided, followed by the computational complexity analysis in

Section 2.6. In Section 2.7 three co-design problems are presented, and summarizing

remarks are presented in Section 2.8.

2.2 Problem Description

Consider a system with LTI dynamics as follows,

ẋ = A (d)x+B (d)u, y = Cx, (2.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n, are system matrices, d ∈ Rnd . x ∈ Rn, y ∈

Rq, u ∈ Rm denote the design, state vector, output vector and control input of the

system respectively, nd is the number of design variables. A = (aij) and B = (bij),

where each aij and bij are assumed to be linear functions of the design d. The

bound on the design is defined by the set Dd =
{
d | d ≤ d ≤ d

}
. Let the set

Gd = { d | g1 (d) ≤ 0 and g2 (d) = 0 }. The co-design problem for the system in
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(2.1) is stated as follows,

min
d,u

fd + fc = fd (d) +

∫ ∞

0

(
xTQx+ uTRu

)
dt,

Subject to the constraints,

d ≤ d ≤ d, g1 (d) ≤ 0, g2 (d) = 0,

ẋ = A (d)x+B (d)u, x (0) = x0,

(2.2)

where x0 ∈ Rn, fd : Rnd 7→ R, g1 : Rnd 7→ Rng1 , g2 : Rnd 7→ Rng2 , and Q ≽ 0, R ≻ 0

are given real symmetric weight matrices. fd and fc are the design and control

objective functions respectively. For a matrix X, the notation X ≽ (≻) 0 implies X

is a positive semidefinite (definite) matrix and XT denotes the transpose of matrix

X. Next, assumptions under which the co-design problem is formulated and solved

are listed along with a discussion on their generality, limitations and usage followed

by the co-design problem formulation.

2.2.1 Assumptions

The assumptions for the co-design problem formulation are as follows,

(A1) The system in (2.1) follows LTI dynamics.

(A2) The system utilizes an LQR type of feedback controller. This helps signifi-

cantly in the analytical treatment of the co-design problem due to the well

established theoretical results for LQR control.

(A3) The system in (2.1) is assumed to be stabilizable and detectable in the design

set Dd.
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(A4) The elements of the system matrices A and B are linear functions of the design

variables. Though this assumption helps in synthesizing the final bilinear form

of the co-design optimization problem, it limits the application of the proposed

formulation. However, by use of suitable algebraic manipulations the required

linear property can be realized for certain nonlinear cases (see Example 3).

(A5) The design objective function fd (d) is a smooth, convex and bounded func-

tion of design d. The design constraints g1 (d) are smooth and convex while

the design constraints g2 (d) are continuous and linear. This assumption is

necessary for the application of the GBD procedure.

Assumptions (A1) and (A2) are not restrictive as general LTI are considered. While

addressing the co-design problem for nonlinear dynamical systems would broaden

the scope of the work, however, as discussed in Section 2.1, it is an open problem

to demonstrate a provably correct approach for the aforementioned LTI co-design

problem (2.2). The assumption (A4) that the elements of the system matrices A

and B are linear functions of the unknown design variables is satisfied by a large

class of practical systems such as structural systems [7], robotic systems [42] etc.

The assumption (A3) that the system should be stabilizable and detectable in

the design domain Dd may not always be realized but enables simplified development

of the proposed co-design framework. This assumption also helps in establishing the

upper bound on the tolerance from the nearest local/global minimum as explained in

the proof of Proposition 2.5.2. The proposed algorithm can also be applied without

the assumption (A3). An insight regarding this is provided in the Remark 2.4.1 in
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Section 2.4.

The assumption (A5) that the design objective function and the design con-

straints should be convex enables the computation of the global minimum solution

for the current relaxed master problem formulated at each GBD iteration (Section

2.3.3). By dropping the convexity assumption the current relaxed master problem

cannot be globally minimized and then no guarantees can be provided on the resul-

tant co-design solution. More often than not, the design constraints are in the form

of bounds on the design variables which are convex in nature [7,39]. The smoothness

assumption for the design objective function as well as the design constraints helps

in computing the bound on the tolerance of the converged solution from the nearest

(local/global) minimum. In many real world applications, the co-design objective

function consists of only control objective and the unknown design variables are

embodied in the constraints of the co-design optimization problem [7, 39, 40].

2.2.2 Co-design Problem Formulation

Consider the control objective function fc as follows,

fc :=

∫ ∞

0

(
xTQx+ uTRu

)
dt,

Dynamics := ẋ = A (d)x+B (d)u,

Initial State := x (0) = x0.

(2.3)

As the system is stabilizable and detectable, problem in (2.3) has an unique stabiliz-

ing solution [43] which minimizes fc. The candidate Lyapunov function V = xTPx

where P is a symmetric matrix with P ≽ 0 is used to prove the stability of the
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system. It is shown that, by using an optimal controller, the LQR control objective

is minimized and can be reformulated as [44],

fc =

∫ ∞

0

(
xTQx+ uTRu

)
dt = xT0 Px0, (2.4)

where P is the unique stabilizing solution of the ARE,

ARE := ATP + PA+Q− PBR−1BTP = 0. (2.5)

The full-state optimal feedback controller is given by, u = −Kx = −R−1BTPx,

where K = R−1BTP is the controller gain. The control objective fc depends on the

initial state x0 of the system which is generally not known a priori. This undesirable

difficulty is removed by assuming x0 to be a random vector with zero mean and unit

variance. Instead of minimizing the control objective fc in (2.4), an average or

expected value of the control objective is minimized as follows [44],

E [fc] = E
[
xT0 Px0

]
= Tr (P ) , (2.6)

where E is the mathematical expectation operator and Tr (·) represents the trace of

the matrix (·). Using (2.4), (2.5), and (2.6), the co-design problem (2.2) is formulated

as,

min
d,P≽0

f (d, P ) := fd (d) + Tr (P ) ,

Subject to the constraints,

d ≤ d ≤ d, g1 (d) ≤ 0, g2 (d) = 0, P ∈ Sn,

AT (d)P + PA (d) +Q− PB (d)R−1BT (d)P = 0,

(2.7)

where Sn is the space of real symmetric matrices.
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It is demonstrated next that the problem in (2.7) can be reformulated as an

equivalent nonlinear optimization problem stated in (2.8) below,

min
d,Z

f (d, Z) := fd (d) + Tr (Z22R) + Tr (Z11Q) ,

Subject to the constraints,

d ≤ d ≤ d, g1 (d) ≤ 0, g2 (d) = 0,

S (d, Z) := I + Z12B
T (d) +B (d)ZT

12 + Z11A
T (d) + A (d)Z11 = 0,

Z =

Z11 Z12

ZT
12 Z22

 ≽ 0,

(2.8)

where I is an identity matrix of appropriate dimension, Z ∈ Sn+m, Z11 ∈ Sn, Z12 ∈

Rn×m, Z22 ∈ Sm. Sn+m,Sn and Sm are the spaces of real symmetric matrices. The

functions f (d, Z) and S (d, Z) are continuous and at least twice differentiable. It

should be noted that throughout this chapter, the variable Z has the structure

defined in (2.8). The main result in this section is proved next.

Theorem 2.2.1. Consider a system having LTI dynamics as in (2.1) ∀d ∈ Dd. If

the system is stabilizable and detectable in the entire set Dd, then the co-design

optimization problems in (2.7) and (2.8) are equivalent.

Proof. For a known d ∈ Dd, the ARE in (2.5) is written as a maximization
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problem [45] as,

max
P∈Sn

Tr (P ) ,

Subject to the constraints,

SP (P ) :=

ATP + PA+Q PB

BTP R

 ≽ 0.

(2.9)

Using (2.9), the co-design problem in (2.7) is written as,

min
d

fd (d) + Tr (P ) ,

Subject to the constraints,

d ≤ d ≤ d, g1 (d) ≤ 0, g2 (d) = 0,

max
P∈Sn

Tr (P ) ,

Subject to the constraints,AT (d)P + PA (d) +Q PB (d)

BT (d)P R

 ≽ 0.

(2.10)

The Lagrangian of the maximization problem (2.9) is,

LP (P,Z) = Tr (P ) + Tr (ZSP ) ,

= Tr
(
P + Z12B

TP + ZT
12PB + Z11A

TP + Z11PA+ Z11Q
)
+ Tr (Z22R) ,

where Z =

Z11 Z12

ZT
12 Z22

 ≽ 0, is the Lagrange multiplier. Using ∂LP

∂P
= 0, the dual

problem of (2.9) is written as,

min
Z≽0

Tr (Z22R) + Tr (Z11Q) ,

Subject to the constraints,

I + Z12B
T +BZT

12 + Z11A
T + AZ11 = 0.

(2.11)
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From SDP duality theory [45,46], for stabilizable and detectable LTI systems, strong

duality holds between (2.9) and (2.11). Problem (2.10) is then written as,

min
d

fd (d) + vL (d) ,

Subject to the constraints,

d ≤ d ≤ d, g1 (d) ≤ 0, g2 (d) = 0,

vL (d) = min
Z≽0

Tr (Z22R) + Tr (Z11Q)

Subject to the constraint,

I + Z12B
T (d) +B (d)ZT

12 + Z11A
T (d) + A (d)Z11 = 0.

(2.12)

Using the concept of projection [23,47,48], the problem (2.12) is written as a single

level problem as,

min
d,Z≽0

fd (d) + Tr (Z22R) + Tr (Z11Q) ,

Subject to the constraints,

d ≤ d ≤ d, g1 (d) ≤ 0, g2 (d) = 0,

I + Z12B
T (d) +B (d)ZT

12 + Z11A
T (d) + A (d)Z11 = 0,

which implies equivalence of (2.7) and (2.8).

�

Remark 2.2.1. It should be noted that when the initial state is known, the objective

function in (2.7) becomes fd (d)+xT0 Px0 and the constraint S (d, Z) in (2.8) reduces

to S (d, Z) := x0x
T
0 + Z12B

T (d) +B (d)ZT
12 + Z11A

T (d) + A (d)Z11 = 0.
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2.3 Solution Approach

In this section a solution approach to solve the co-design optimization problem

in (2.8) is formulated. As stated earlier in Section 2.2, the elements of the matri-

ces A and B are linear in d and this assumption makes the constraint S (d, Z) in

(2.8) bilinear. The problem in (2.8) assumes a special “bilinear” structure which is

transformed into a convex form when d or Z is held fixed. GBD [23] is a popular

method used to solve the optimization problems involving this kind of special bi-

linear structure. The GBD procedure used in the co-design algorithm presented in

this section along with some of the lemmas is inspired from [23, 48]. The lemmas

show fulfillment of the GBD requirements as one of the variables in the co-design

problem is a matrix variable.

2.3.1 Comparison of GBD and Co-design Problems

The non-convex co-design optimization problem in (2.8) has a bilinear struc-

ture similar to the GBD problem [23]. However, the problem in (2.8) has a matrix

variable and this differentiates it from the original GBD problem formulation. The

objective function f (d, Z) is convex but the problem as a whole is non-convex due to

the presence of the non-convex matrix equality constraint S (d, Z) = 0. If Z = (zij),

then the matrix constraint S (d, Z) has two types of components. The components

which are bilinear functions of d and zij are called as the complicating constraints.

The components which are only linear functions of zij are called as non-complicating

constraints. It is to be noted that the constraint S (d, Z) = 0 is linear (convex) when
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any one of the d ∈ Dd or Z ∈ Z is held fixed. Since the set Dd is the domain set of

design variables, it is non-empty, compact and convex. It needs to be demonstrated

that Z and its components zij belong to non-empty, compact and convex sets so

that the co-design problem in (2.8) can be cast as a GBD problem. To this end, the

following Lemma 2.3.1 is proved.

Lemma 2.3.1. Let Zij =
{
zij | zij ∈ R, zij ≤ zij ≤ zij

}
, i, j = 1, 2, . . . , n + m,

and

Z = { Z | Z = (zij) , zij ∈ Zij, Z ∈ Sn+m }. For the sets Z and set Zij =[
zij, zij

]
⊂ R, the following hold,

1. Set Z is bounded i.e., ∃σZ ∈ R, 0 < σZ <∞ such that 0 ≼ Z ≼ σZI ∀Z ∈ Z.

2. Each set Zij is bounded i.e., |zij| <∞, |zij| <∞, ∀i, j.

3. Sets Zij are non-empty, compact and convex.

4. Set Z is non-empty, compact and convex.

Proof.

1. From the assumptions (A1) – (A5), the system is stabilizable and detectable

in the set Dd =⇒ solution exists for the ARE in (2.5) ∀d ∈ Dd. The solution

to the ARE can be computed using optimization problems in (2.9) or (2.11)

(see proof of Theorem 2.2.1). There exists strong duality property between

primal problem in (2.9) and dual problem in (2.11).

Matrix bounds for the ARE solution P in terms of the matrices A,B,Q,R have

been reported in [49]. As A,B,Q,R are bounded matrices for d ∈ Dd =⇒ P
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is bounded and Tr (P ) has a finite positive upper bound. From duality theory

[50], ∑
i

wizii +
∑
i ̸=j

rijzij = Tr (P ) ,

where wi and rij are the function of components of matrices the A,B,Q,R.

This implies
∑

i zii <∞ and hence,

∃σZ ∈ R, 0 < σZ <∞, 0 ≼ Z ≼ σZI, ∀Z ∈ Z.

2. Let σi be the eigenvalues of Z, the by using properties of Frobenius norm for

square symmetric matrices [18],

||Z||2F =
∑
i,j

|zij|2 =
∑
i

σ2
i .

Part 1 of this lemma implies all eigenvalues of Z are bounded, and hence zij

are bounded. Consequently, |zij| <∞, |zij| <∞, ∀i, j.

3. Follows from Zij =
[
zij, zij

]
⊂ R.

4. If the linear system is stabilizable and detectable then the problems in (2.9)

and (2.11) are feasible ∀d ∈ Dd [46].

=⇒ Z is non-empty.

Let ⟨di⟩ be a sequence of di ∈ Dd. For every di ∈ Dd, there exists a Zi ∈ Z.

As di → d̂ ∈ Dd, corresponding Zi → Ẑ ∈ Z =⇒ Z is a closed set.

From Part 1 of this lemma, 0 ≼ Z ≼ σZI, ∀Z ∈ Z, hence Z is bounded. This

implies Z is compact.

As Z ≽ 0 =⇒ ∀y ∈ Rn+m, yTZy ≥ 0.
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Let Z1, Z2 ∈ Z and λ ∈ [0, 1],

0 ≤ yT (λZ1 + (1− λ)Z2) y ≤ yT (λσZI + (1− λ)σZI) y,

=⇒ 0 ≼ λZ1 + (1− λ)Z2 ≼ σZI,

=⇒ λZ1 + (1− λ)Z2 ∈ Z =⇒ Set Z is convex.

�

The algorithm to solve the co-design optimization problem in (2.8) follows a similar

iterative pathway as in the GBD procedure and is described in the successive sub-

sections.

2.3.2 The Primal Sub-Problem

In case of the co-design optimization problem, the design d is taken as the

complicating variable. Since the solution procedure is an iterative process, at the

kth GBD iteration for d = dk ∈ Dd ∩ Gd, the primal sub-problem is formulated as,

min
Z≽0

f
(
dk, Z

)
,

Subject to the constraints,

S
(
dk, Z

)
= 0.

(2.13)

The optimal value of the primal sub-problem in (2.13) at d = dk represents an upper

bound (UBD) for the optimal objective function value of the co-design problem in

(2.8) after the kth iteration. It should be noted that design d is always chosen as the

complicating variable for the co-design problem because when d is held fixed, the

primal sub-problem is always feasible (proved in Lemma 2.3.2 in Section 2.3.3). This
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eliminates the infeasible primal problem issue encountered in the GBD procedure

[23] for the co-design problem (2.8).

The lower bound (LBD) for the optimal objective function value of the co-

design problem in (2.8) is computed by solving the current relaxed master problem

presented next.

2.3.3 The Current Relaxed Master Problem

The current relaxed master problem is derived using the dual representation of

the primal sub-problem in (2.13) and requires the existence of strong duality for the

co-design optimization problem at any fixed d = dk. For this the following Lemma

2.3.2 is proved.

Lemma 2.3.2. Consider the linear system in (2.1) with the co-design optimization

problem in (2.8). ∀d̂ ∈ Dd ∩ Gd, the problem in (2.8) is always feasible and satisfies

the conditions of strong duality.

Proof. For any fixed d = d̂ ∈ Dd ∩ Gd,

min
Z≽0

fd

(
d̂
)
+ Tr (Z22R) + Tr (Z11Q) ,

Subject to the constraints,

I + Z12B
T
(
d̂
)
+B

(
d̂
)
ZT

12 + Z11A
T
(
d̂
)
+ A

(
d̂
)
Z11 = 0.

1. From assumption (A3) in Section 2.2.1, ∀d̂ ∈ Dd, the system in (2.1) is sta-

blizable and detectable =⇒ ∃Ẑ ∈ Z such that S
(
d̂, Ẑ

)
= 0,

=⇒ problem in (2.8) is always feasible ∀d̂ ∈ Dd ∩ Gd.

2. From Theorem 6.2.4 in [51] conditions for strong duality are satisfied.
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Since strong duality is established in Lemma 2.3.2 at d = dk, the problem in (2.8)

can be reformulated as an inner and outer optimization problem using the concept

of projection [23, 47, 48] as follows,

min
d∈Dd∩Vd

v (d) ,

Subject to the constraints,

v (d) = min
Z≽0

f (d, Z) ,

Subject to the constraints,

S (d, Z) = 0,

g1 (d) ≤ 0, g2 (d) = 0,

Vd = { d | S (d, Z) = 0 for some Z ≽ 0 } .

(2.14)

The function v (d) is called as the projected function and the problem (2.14) is

called as the projected problem [47]. The solution of the primal problem in (2.13)

is identical to the solution of its dual problem due to the existence of strong duality

at d = dk as follows,

min
Z≽0

{
f
(
dk, Z

)
: S

(
dk, Z

)
= 0,

}
= sup

λ∈Sn

min
Z≽0

{
L
(
dk, Z, λ

)}
, ∀dk ∈ Dd ∩ Gd ∩ Vd,

where L
(
dk, Z, λ

)
= f

(
dk, Z

)
+ Tr

(
λTS

(
dk, Z

))
,

(2.15)

L
(
dk, Z, λ

)
is the Lagrange function of the primal problem in (2.13) and λ is the

Lagrange (optimal) multiplier vector. The inner minimization problem for a general
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d can be written using (2.15) as,

v (d) = sup
λ∈Sn

min
Z≽0

{L (d, Z, λ)}

= sup
λ∈Sn

min
Z≽0

{
f (d, Z) + Tr

(
λTS (d, Z)

)}
, ∀d ∈ Dd ∩ Gd ∩ Vd.

(2.16)

From the definition of supremum it follows,

v (d) ≥ min
Z≽0

{
f (d, Z) + Tr

(
λTS (d, Z)

)}
, ∀λ ∈ Sn. (2.17)

From Lemma 2.3.2 the inner minimization problem is always feasible. Using the

dual representation in (2.17), the equivalent of problem (2.14) can be written as,

min
d∈Dd∩Vd

v (d) ,

Subject to the constraints,

v (d) ≥ min
Z≽0

{
f (d, Z) + Tr

(
λTS (d, Z)

)}
, ∀λ ∈ Sn,

g1 (d) ≤ 0, g2 (d) = 0.

(2.18)

The optimization problem in (2.18) is called as the master problem which is still

difficult to solve due to the presence of the constraint d ∈ Dd∩Vd. The most obvious

strategy to overcome this difficulty is to ignore or relax the constraint d ∈ Dd ∩ Vd

which leads to the following relaxed problem,

min
d∈Dd,µB∈R

µB,

Subject to the constraints,

µB ≥ min
Z≽0

{
f (d, Z) + Tr

(
λTS (d, Z)

)}
, ∀λ ∈ Sn,

g1 (d) ≤ 0, g2 (d) = 0.

(2.19)

The formulation of the current relaxed master problem is based on the Lagrangian

formulations. The Lagrangian formulation after kth GBD iteration and for any
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d ∈ Dd ∩ Gd where Zk, λk is obtained by solving the sub-problem (2.13) for d = dk

is defined as,

L
(
d, Zk, λk

)
= f

(
d, Zk

)
+ Tr

(
λk

T
S
(
d, Zk

))
. (2.20)

The local linear support function for the kth GBD iteration is formulated as follows,

L
(
d, Zk, λk

) ∣∣∣lin
dk

= L
(
dk, Zk, λk

)
+∇dLT

(
d, Zk, λk

) ∣∣∣
dk

(
d− dk

)
. (2.21)

The outer approximation used in the current relaxed master problem is actually

a set of local linear support functions cumulatively constructed on the objective

function using the Lagrangian formulations in (2.20). It should be noted that the

linear support functions are also called as optimality cuts. The current relaxed

master problem at the kth GBD iteration is stated as,

min
d∈Dd,µB∈R

µB,

Subject to the constraints,

µB ≥ L
(
d, Zj, λj

) ∣∣∣lin
dj
, ∀j = 1, 2, . . . , k,

µB ≥ L
(
d, Zk, λk

) ∣∣∣lin
dk
, ∀

(
dk, Zk, λk

)
∈ Λkn

v

g1 (d) ≤ 0, g2 (d) = 0.

(2.22)

The current relaxed master problem in (2.22) for any GBD iteration is a convex

problem. kn is the GBD restart number and Λkn
v is the set of valid optimal-

ity cuts whose significance is explained in Section 2.3.6. The constraint µB ≥

L (d, Zj, λj)
∣∣∣lin
dj
, ∀j = 1, 2, . . . , k, in (2.22) refers to the accumulation of linear

support functions approximating the objective function until the kth GBD iteration.
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At the end of the kth GBD iteration, the optimal value of the current relaxed mas-

ter problem represents the LBD for the optimal value of the co-design optimization

problem in (2.8). It should be noted that, at each (k + 1)th GBD iteration of the

current relaxed master problem in (2.22) one constraint is added to the constraints

present in the previous kth GBD iteration thereby reducing the size of the feasible

region. Hence, µk
B ≤ µk+1

B i.e., the sequence ⟨µk
B⟩ is a non-decreasing sequence. Here

⟨(·)⟩ represents the sequence of (·).

2.3.4 Validity of the Outer Approximation

The outer approximation defined in (2.21) is a valid under-estimator for the

objective function value f (d, Z) or equivalently of v (d) as defined in (2.14) if it

globally underestimates v (d) for any feasible d ∈ Dd ∩ Gd [47]. For any convex

function, its first-order approximation is its global under-estimator as well as the

linear support function [50]. For the existence of valid global linear support functions

for v (d) using Lagrangian in (2.20), it is necessary to prove that v (d) is a continuous

and convex function. One condition for v (d) to be convex is proved in Theorem 2

below.

Theorem 2.3.1. Let M = BR−1BT and A has no design variables. If the elements

of M are linear functions of the design d ∈ Dd∩Vd then the projected function v (d)

defined in (2.14) is a convex function in the design d.

Proof. The function v (d) is defined in (2.14) as v (d) : Dd∩Vd 7→ R. The assumption

(A3) makes the set Dd ∩ Vd convex.
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=⇒ domain of v (d) is convex.

From assumption (A3) and [45,46], for any d ∈ Dd ∩ Vd, v (d) is the solution of the

ARE at d. From [52], the solution of the ARE in (2.5) is a convex function of matrix

M . As elements of M are linear functions of d ∈ Dd ∩Vd =⇒ solution of the ARE

is convex in d.

=⇒ v (d) is a convex function in the design variable d ∈ Dd ∩ Vd.

�

Two properties related to v (d) when it is a convex function are proved in Lemma

2.3.3 and Lemma 2.3.4. These properties help in proving the convergence of the

proposed algorithm to a solution which is within a specified bound from the global

minimum solution for the convex case.

Lemma 2.3.3. If the projected function v (d) defined in (2.14) is a convex function

of design d then L (d, Zj, λj)
∣∣∣lin
dj

defined in (2.21) is the global underestimating linear

support function of v (d) at any point dk ∈ Dd ∩ Vd.

Proof. From (2.14) and (2.15),

v
(
dk
)
= L

(
dk, Zk, λk

)
= f

(
dk, Zk

)
+ Tr

(
λk

T
S
(
dk, Zk

))
,

where Zk, λk is obtained by solving the sub-problem (2.13) for d = dk. For fixed

Zk, λk, the function f
(
d, Zk

)
is convex in d and Tr

(
λk

T
S
(
d, Zk

))
is linear in d.

Also, from Theorem 2.3.1, v (d) is convex in d. Hence, L (d, Zj, λj)
∣∣∣lin
dj

is the globally

underestimating linear support function of v (d) at any point dk ∈ Dd ∩ Vd [50].

�
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Lemma 2.3.4. When the projected function v (d) defined in (2.14) is a convex

function of design d, the following holds,

1. If Z = Zk is the solution of the optimization problem (2.13) at d = dk and

λ = λk is the corresponding Lagrangian multiplier then,

v
(
dk
)
= f

(
dk, Zk

)
= L

(
dk, Zk, λk

)
≥ L

(
dk, Z, λ

) ∣∣∣lin
d

.

2. At the optimal point
(
d̂, Ẑ, λ̂

)
,

f
(
d̂, Ẑ

)
= v

(
d̂
)
= L

(
d̂, Ẑ, λ̂

)
= L

(
d̂, Ẑ, λ̂

) ∣∣∣lin
d̂

.

Proof.

1. From (2.16), (2.20) and Lemma 2.3.2, ∀dk ∈ Dd ∩ Gd

v
(
dk
)
= f

(
dk, Zk

)
= L

(
dk, Zk, λk

)
.

From Lemma 2.3.3, L (d, Z, λ) is a convex function in d when Z, λ are held

fixed, so from the properties of convex functions [50],

L
(
dk, Z, λ

)
≥ L (d, Z, λ) +∇dLT (d, Z, λ)

∣∣∣
d

(
dk − d

)
,

v
(
dk
)
= f

(
dk, Zk

)
= L

(
dk, Zk, λk

)
≥ L

(
dk, Z, λ

) ∣∣∣lin
d
.

2. At the optimal point
(
d̂, Ẑ, λ̂

)
,

∇dL
(
d, Ẑ, λ̂

) ∣∣∣
d̂
= 0,

v
(
d̂
)
= f

(
d̂, Ẑ

)
= L

(
d̂, Ẑ, λ̂

)
= L

(
d̂, Ẑ, λ̂

) ∣∣∣lin
d̂
.

�

For the case when the design variables are present in matrices A and B, the

function v (d) is in general non-convex. When the function v (d) is non-convex, the
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GBD procedure may not even converge to a stationary point [47]. In this case, the

GBD procedure needs to be modified suitably to compute a solution which is within

a specified tolerance from the nearest local minimum. The theoretical development

for this is presented in the subsequent sequel.

2.3.5 Necessary and Sufficient Conditions for Minimum

The GBD procedure may converge to a design point which may not even be

stationary. To conclude if the converged design point is a stationary point, the

following proposition is stated.

Proposition 2.3.1. Let the GBD procedure converge to the design point d∗ ∈ Dd∩

Gd and Z∗, λ∗ are computed from the primal sub-problem (2.13), then d∗ is a station-

ary point for the co-design problem in (2.8) if ∇df (d
∗, Z∗)+∇dTr

(
λ∗TS (d∗, Z∗)

)
+

βT
1 ∇dg1 (d

∗) + βT
2 ∇dg2 (d

∗) + δu − δl = 0 and βT
1 g1 (d

∗) + βT
2 g2 (d

∗) + δTl (d− d∗) +

δTu
(
d∗ − d

)
= 0 for some β1 ∈ Rng1 , β1 ≥ 0, β2 ∈ Rng2 , δl ∈ Rnd , δl ≥ 0, δu ∈ Rnd , δu ≥

0.

Proof. The Lagrangian of the problem in (2.8) can be written as,

Lv (d, β1, β2, λ, Z) = f (d, Z) + Tr
(
λTS (d, Z)

)
+ βT

1 g1 (d)

+ βT
2 g2 (d)− Tr

(
λTZZ

)
+ δTl (d− d) + δTu

(
d− d

)
,

where β1 ∈ Rng1 , β1 ≥ 0, β2 ∈ Rng2 , δl ∈ Rnd , δl ≥ 0, δu ∈ Rnd , δu ≥ 0, λZ ∈ Sn, λZ ≽

0 are the Lagrangian dual variables. Taking gradient of Lv (d, β1, β2, λ, Z) with re-

spect to d at (d∗, λ∗, Z∗) and applying Karush-Kuhn-Tucker (KKT) conditions [51]

gives the required result. It should be noted that the KKT conditions related to Z
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are always satisfied due to the assumption (A3).

�

The computed stationary point d∗ may not be a minimum. To conclude if the

stationary point computed using GBD procedure is a local minimum, the following

proposition is utilized.

Proposition 2.3.2. The stationary point d∗ ∈ Dd ∩ Gd computed using the GBD

procedure, is a local minimum point for the co-design problem in (2.8), if H (d∗) =

∇2
dfd (d

∗) +∇2
dTr (P (d∗)) +∇2

d

(
βT
1 g1 (d

∗)
)
≻ 0.

Proof. Lv (d, β1, β2, λ, Z) is as defined in proof of Proposition 2.3.1. For each d ∈

Dd, corresponding λ, Z are computed from (2.13) and corresponding P is computed

from the ARE in (2.5). From Theorem 2.2.1,

f (d, Z) + λS (d, Z, ) = f (d, P ) = fd (d) + Tr (P ) .

Lv (d, β1, β2, λ, Z), can be rewritten using f (d, P ). Here, λZ = 0 as Z ≻ 0 and P

is a function of d through the ARE in (5). The result follows from the sufficient

condition for a local minimum at the at a stationary design point d∗ of (2.8) is [51],

�

While the computation of ∇2
dfd (d

∗) and ∇2
d

(
βT
1 g1 (d

∗)
)

is straightforward,

∇2
dTr (P (d∗)) is computed from the parametric sensitivity of the ARE [53] as follows.

Let ∂X
∂di

= Xi,
∂2X

∂di∂dj
= Xij, X

∗ = X (d∗) and M = BR−1BT . P ∗ is the solution

of the ARE, ATP +PA+Q−PMP = 0 at the design point d∗. Differentiating the
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ARE with respect to the design vector component di at the design point d∗ gives,

A∗
c
TPi + PiA

∗
c +Θ = 0,

A∗
c = A∗ −M∗P ∗,

Θ = A∗
i
TP ∗ + P ∗A∗

i − P ∗M∗
i P

∗.

(2.23)

Differentiating (2.23) with respect to the design vector component dj at the design

point d∗ gives

A∗
c
TPij + PijA

∗
c +Υ = 0,

Υ = A∗
i
TP ∗

j + A∗
j
TP ∗

i + P ∗
j A

∗
i + P ∗

i A
∗
j − P ∗

i M
∗
j P

∗ − P ∗
i M

∗P ∗
j

− P ∗
j M

∗
i P

∗ − P ∗M∗
ijP

∗ − P ∗M∗
i P

∗
j − P ∗

j M
∗P ∗

i − P ∗M∗
j P

∗
i .

(2.24)

where, P ∗
i , P

∗
j are computed from (2.23).

Hij (d
∗) =

∂2fd (d
∗)

∂di∂dj
+
∂2

(
βT
1 g1 (d

∗)
)

∂di∂dj
+ Tr (Pij (d

∗)) . (2.25)

Remark 2.3.3. In practice the necessary conditions are implemented as∣∣∣{∇df (d
∗, Z∗)+∇dTr

(
λ∗TS (d∗, Z∗)

)
+βT

1 ∇dg1 (d
∗)+βT

2 ∇dg2 (d
∗)+δu−δl

}
i

∣∣∣ ≤ εS

where |(·)| is the absolute value of (·), {·}i is the ith component of the vector {·}

and 0 < εS < 1 is a small predefined constant.

Remark 2.3.4. In practice while implementing the sufficient condition it should be

ensured that the Hessian matrix H (d∗) is away from singularity.

Remark 2.3.5. If xT0 Px0 is used instead of Tr (P ) in the co-design objective function

in (2.7) then xT0 Pij (d
∗)x0 should be used instead of Tr (Pij (d

∗)) in (2.25).

If the GBD procedure converges to a non-optimal design point d∗ then the

GBD procedure needs to be restarted from a new (better) design point d∗∗ such
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that f (d∗∗, P ∗∗) < f (d∗, P ∗). The procedure to compute the new design point d∗∗

is explained in the next subsection.

2.3.6 New Design Point and Valid Optimality Cuts

The new design point is computed using the GPM for linear and nonlinear

constrained optimization problems. The method is well explained in Chapter 5

of [24] and hence the details are skipped due to space considerations.

At the non-minimum stationary point d∗, let N be the matrix whose columns

are linearly independent gradients of active inequality and equality constraints from

the constraint set
{
g1 (d) ≤ 0, g2 (d) = 0, d ≤ d ≤ d

}
. Here, N ∈ Rnd×pN , where pN

is the number of linearly independent gradients of active constraints at d∗. The new

design point d∗∗ is given by,

d∗∗ = d∗ − αr

[
I −N

(
NTN

)−1
NT

] ∇df
∗

||∇df ∗||
,

∇df
∗ = ∇dfd (d)

∣∣∣
d=d∗

+∇dTr (P (d))
∣∣∣
d=d∗

,

(2.26)

where αr > 0 is a predefined step-size. ∇dTr (P (d)) can be computed using (2.23).

If d∗ is a saddle point or a maximum point, then d∗∗ is computed as,

d∗∗ = arg min
d∈Dd∩Gd

{
f ∗
−1, f

∗
1 , . . . , f

∗
−i, f

∗
i , . . . , f

∗
−p, f

∗
p

}
,

f ∗
−i = f (d∗ − αrsei) , f ∗

i = f (d∗ + αrsei) ,

(2.27)

where αrs > 0 is a predefined step-size and ei ∈ Rnd×1 is a unit vector with 1 as the

ith component and rest all components 0.

The GBD procedure is restarted from the new design point d∗∗. Some of the

linear support functions, (di, Z i, λi), generated from the previous GBD procedure
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iterations can be retained after the restart of GBD procedure at d∗∗. These retained

linear support functions are called as valid optimality cuts. The valid optimality

cuts are re-utilized in the current relaxed master problem (2.22) to accelerate the

GBD procedure by decreasing the design search space. The set of valid optimality

cuts are selected using (2.20) and (2.21) as follows,

f (d∗∗, P (d∗∗)) ≥ L
(
d∗∗, Zk, λk

) ∣∣∣lin
dk
,

k = 1, 2, . . . , Nop,

(2.28)

where Nop are the total number of valid optimality cuts generated from the previous

GBD procedures. The set of valid optimality cuts at the GBD restart number kn is

defined by Λkn
v as follows,

Λkn
v =

{(
di, Z i, λi

)
|
(
di, Z i, λi

)
∈ Λkn−1

v and(
di, Z i, λi

)
satisfy (2.28) for d∗∗

}
, kn ≥ 1.

(2.29)

It should be noted that at the start of the co-design optimization procedure kn = 0,

Λkn
v does not exist. At the first restart kn = 1, Λ0

v is the set of all the optimality

cuts generated when the GBD procedure was used for the first time.

Remark 2.3.6. The search space for the current relaxed master problem (2.22)

can be increased by modifying the condition in (2.28) as f (d∗∗, P (d∗∗)) − εV ≥

L
(
d∗∗, Zk, λk

) ∣∣∣lin
dk

, where, εV > 0 is a predefined constant. It should be noted that

the GBD procedure can also be restarted at d∗∗ without the use of valid optimality

cuts.

Remark 2.3.7. In this work the GPM for linear and nonlinear constrained op-

timization problems is used to compute the new design point d∗∗. Instead, other
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computational methods, for example, the feasible directions method [24] can also

be utilized to compute d∗∗.

2.4 Co-design Optimization Algorithm

The steps of the algorithm to solve the co-design optimization problem are

given below. The GBD procedure convergence parameter is ε > 0.

1. Set LBD = −∞,UBD = +∞, ε, εS, εV , αr, αrs and GBD restart number kn =

0. Starting design point d1 = ds. Here ds ∈ Dd ∩ Gd is any known feasible

design point.

2. Set GBD iteration number k = 1, dk = d1.

3. Solve the primal problem in (2.13) for fixed d = dk to compute dk, Zk and λk.

Store the output and if f
(
dk, Zk

)
< UBD then set UBD = f

(
dk, Zk

)
, d∗ = dk.

4. Solve the current relaxed master problem in (2.22) to compute µB and d. Set

LBD = µB, k = k + 1, dk = d.

5. Check the convergence of bounds using LBD ≥ UBD − ε. If convergence is

achieved then continue to Step 6 otherwise go to Step 3.

6. If convergence is achieved at Step 5, then test the stationarity condition using

εS and Section 2.3.5 for d∗. If d∗ is stationary, test sufficient condition for local

minimum.

(a) If d∗ is a non-stationary point or non-minimum stationary point then,
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kn = kn + 1, compute new design point d∗∗ and update set Λkn
v using

αr, αrs, εV and Section 2.3.6. Go to Step 2 and with input d1 = d∗∗ and

Λkn
v .

(b) If d∗ fulfills sufficient condition for local minimum go to Step 7.

7. f opt = UBD, dopt = d∗. Using the synthesized design dopt compute the solution

matrix P in (2.5). The full-state feedback controller gain is computed using,

K = R−1BTP .

Remark 2.4.1. The above algorithm can also be applied without the assumption

(A3), that is, without assuming system (2.1) to be stabilizable and detectable in the

design space Dd. If the assumption (A3) is neglected then there may be design points

computed from the current relaxed master problem in Section 2.3.3 for which the

system (2.1) is not stabilizable. For such design points from Lemma 2.3.2, the primal

problem (2.13) will be infeasible. In such situations an infeasible primal problem

can be constructed to generate infeasiblity cuts which are added as constraints in

the current relaxed master problem in Section 2.3.3 [23,48]. It should be noted that

for d1 = ds in the proposed algorithm, the system (2.1) should be stabilizable.

In the next section, convergence and optimality properties of the algorithm are

analyzed.

2.5 Convergence and Optimality Analysis

In [23, 48] convergence and optimality analysis for the GBD formulation was

done for the case of algebraic variables. In the case of the co-design problem (2.8),
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one of the variables is a matrix variable. Hence, suitable modifications are made in

the original lemmas in [23, 48] so that the convergence proof in [23, 48] is directly

applicable to the co-design problem. The optimality proof is not trivial due to the

presence of the matrix variable and is given in Proposition 2.5.2. For the convergence

proof, the upper semi-continuity of the set of optimal solutions of the primal sub-

problem in (2.13) for fixed d and the uniform boundedness of the set of optimal

(Lagrangian) multipliers is required. Consequently, the following Lemma 2.5.1 is

proved first.

Lemma 2.5.1. Let f (d, Z) and S (d, Z) be continuous on Dd ×Z. Let for fixed d,

P (d) be the set of optimal solutions of the primal sub-problem in (2.13) and U
(
dk
)

be the set of corresponding optimal multipliers, then for fixed d = dk ∈ Dd at the

kth GBD iteration the following hold,

1. If dk → d̂ and λk → λ̂ then λ̂ ∈ U
(
d̂
)

.

2. If dk → d̂ then P (d) is upper semi-continuous at d̂.

3. If for d̂ ∈ Dd, ∃Ẑ ∈ Z such that S
(
d̂, Ẑ

)
= 0, then the set U (d) is uniformly

bounded in some neighborhood of d̂.

Proof. The proof is constructed using Lemma 2.1 in [23], Lemma 7.2 and Lemma

7.3 in [48].

�
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Define,

∇dLv (d, Z, λ, β1, β2, δl, δu) = ∇df (d, Z) +∇dTr
(
λTS (d, Z)

)
+ βT

1 ∇dg1 (d) + βT
2 ∇dg2 (d) + δu − δl,

CC (d, β1, β2, δl, δu) = βT
1 g1 (d) + βT

2 g2 (d) + δTl (d− d) + δTu
(
d− d

)
.

(2.30)

Let the co-design algorithm converge to d∗ when the following convergence conditions

are fulfilled,∣∣∣{∇dLv (d
∗, Z∗, λ∗, β∗

1 , β
∗
2 , δ

∗
l , δ

∗
u)
}

i

∣∣∣ ≤ εS, for i = 1, 2, . . . , nd,

CC (d∗, β∗
1 , β

∗
2 , δ

∗
l , δ

∗
u) = 0,

∇2
dfd (d

∗) +∇2
dTr (P (d∗)) +∇2

d

(
βT
1 g1 (d

∗)
)
≻ 0,

(2.31)

where nd is the number of design variables. Let d̂ be the nearest minimum design

point to d∗ such that,{
∇dLv

(
d̂, Ẑ, λ̂, β̂1, β̂2, δ̂l, δ̂u

)}
i
= 0, for i = 1, 2, . . . , nd,

CC
(
d̂, β̂1, β̂2, δ̂l, δ̂u

)
= 0,

∇2
dfd

(
d̂
)
+∇2

dTr
(
P
(
d̂
))

+∇2
d

(
βT
1 g1

(
d̂
))

≻ 0.

(2.32)

Next, propositions guaranteeing convergence and optimality are presented.

2.5.1 Convergence and Optimality Proofs

Proposition 2.5.1. Consider the linear system in (2.1) and co-design optimization

problem in (2.8) with the assumptions (A1) – (A5). The proposed algorithm in

Section 2.4 when applied to the problem in (2.8) converges in a finite number of

iterations for 0 < εS < 1, ε > 0.
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Proof. The co-design optimization algorithm is an iterative combination of gra-

dient projection method and GBD procedure. The proof for convergence of GBD

procedure in a finite number of iterations for ε > 0 between restarts is constructed

from the Theorem 2.5 in [23] and Theorem 7.1 in [48] with suitable modifications.

The GPM is solved only once before each GBD restart to compute a new (better)

design point. The new (better) design point has a lower objective function value.

The aggregate algorithm results in computing a non-increasing sequence of objective

function values at each step of the algorithm till the stopping criterion described in

Section 2.3.5 is fulfilled for 0 < εS < 1. Also, the objective function has a finite lower

bound. Hence, the co-design optimization algorithm converges in a finite number

of iterations for 0 < εS < 1, ε > 0.

�

Proposition 2.5.2. Consider the linear system in (2.1) and co-design optimization

problem in (2.8) with the assumptions (A1) – (A5). The proposed algorithm in

Section 2.4 when applied to the problem in (2.8),

1. converges to a solution within a specified GBD tolerance ε > 0 from the unique

global minimum when the projected function v (d) is convex.

2. converges to a solution within a specified GBD tolerance ε > 0 from the

unique global minimum when M = BR−1BT is a linear function of d and A

is a constant matrix having no design variables.

3. converges to a solution within a tolerance of √ndεS||d − d|| from the nearest

local minimum when the projected function v (d) is non-convex.
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Proof.

1. Let the algorithm in Section 2.4 converge to (d∗ ∈ Dd, µ
∗
B ∈ R) after k itera-

tions where d∗ is a solution of the co-design problem within a specified GBD

tolerance ε > 0 from the global minimum =⇒ (d∗, µ∗
B) is the solution of the

current relaxed master problem in (2.22) after k GBD iterations,

µ∗
B = min

d∈Dd,µB∈R
µB,

Subject to the constraints,

µB ≥ L
(
d, Zj, λj

) ∣∣∣lin
dj
, ∀j = 1, 2, . . . , k,

g1 (d) ≤ 0, g2 (d) = 0.

(2.33)

Corresponding values of primal variable and optimal multiplier are Z∗ and λ∗

respectively. From Lemma 2.3.4,

L (d∗, Z∗, λ∗) = f (d∗, Z∗) = v (d∗) ,

with µ∗
B ≥ f (d∗, Z∗)− ε, and f (d∗, Z∗)− f

(
d̂, Ẑ

)
≤ ε,

where
(
d̂, Ẑ

)
is the global optimal solution. Assume d∗ is not the solution

within a specified tolerance from the global minimum. This implies,

f (d∗, Z∗)− f
(
d̂, Ẑ

)
> ε and ∃d∗∗ ∈ Dd, µ

∗∗
B ∈ R, Z∗∗ ∈ Z, λ∗∗ ∈ Rnc ,

(2.34)

such that,

f (d∗∗, Z∗∗)− f
(
d̂, Ẑ

)
≤ ε,

µ∗∗
B = L (d∗∗, Z∗∗, λ∗∗) = f (d∗∗, Z∗∗) ,

g1 (d
∗∗) ≤ 0, g2 (d

∗∗) = 0,

µ∗∗
B < µ∗

B.

(2.35)
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As v (d) is given to be convex then from Lemma 2.3.4,

µ∗∗
B ≥ L (d∗∗, Z, λ)

∣∣∣lin
d
. (2.36)

Now, (2.36) is true for any (dj, Zj, λj), with, j = 1, 2, . . . , k implies,

µ∗∗
B ≥ L

(
d∗∗, Zj, λj

) ∣∣∣lin
dj

for j = 1, 2, . . . , k. (2.37)

From (2.37), (d∗∗, µ∗∗
B ) lies in the feasible set of convex optimization problem

(2.33),

=⇒ µ∗∗
B ≥ µ∗

B. (2.38)

Above inequality (2.38) contradicts the assumption made in (2.34) and (2.35).

Hence, f (d∗, Z∗) is a solution within a specified GBD tolerance ε from the

global minimum.

2. Follows from Theorem 2.3.1 and Part 1 of this Proposition.

3. When v (d) is a non-convex function, the GBD procedure in the co-design

optimization algorithm may converge to a non-minimum design point. This

is tested by necessary and sufficient conditions for a local minimum derived

in the Section 2.3.5 using εS. If the converged design point is not a local

minimum, then the GBD procedure is restarted at a new (better) design point

computed using the GPM as explained in Section 2.3.6. If the algorithm

performs multiple restarts then, f 0 > f 1 > . . . > f i > . . . > fkn where f i is

the function value at the GBD restart number i, and kn is the current GBD

restart number. The sequence {f i} is a decreasing sequence and f has a finite
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lower bound. At each instance when the GBD procedure converges, necessary

and sufficient conditions for a local minimum (as defined using εS) are tested.

From Proposition 2.5.1, the algorithm converges to a d∗ ∈ Dd. Let Lv be as

defined in proof of Proposition 2.3.2 using P . The convergence condition is,∣∣{∇dLv

}
i

∣∣ ≤ εS for i = 1, 2, . . . , nd,

=⇒
∣∣∣∣∇dLv

∣∣∣∣ ≤ √
ndεS,

where || · || represents the norm of a vector. As (2.1) is stabilizable and de-

tectable, Tr (P ) is an analytic function of design d for all d ∈ Dd [54]. This

makes Lv (d) a smooth function of d and ∇dLv locally Lipschitz around d̂ [55].

Let d̂ be the nearest local minimum to d∗. Using ∇dLv

(
d̂
)
= 0, the following

is true,∣∣∣∣∣∣∇dLv

(
d̂+ tL

(
d∗ − d̂

))
−∇dLv

(
d̂
) ∣∣∣∣∣∣

≤ LctL
∣∣∣∣d∗ − d̂

∣∣∣∣, ∀tL ∈ [0, 1] , Lc =

√
ndεS∣∣∣∣d∗ − d̂

∣∣∣∣ .
Using the Descent Lemma [56],

Lv (d
∗) ≤ Lv

(
d̂
)
+
(
d∗ − d̂

)T

∇dLv

(
d̂
)
+
Lc

2
||d∗ − d̂||2. (2.39)

Using (2.31) the following can be written,

Lv (d
∗) = f (d∗, Z∗) = f (d∗, P ∗) ,

Lv

(
d̂
)
= f

(
d̂, Ẑ

)
= f

(
d̂, P̂

)
,

(2.40)

where Z and P are computed using (2.13) and (2.5) for the corresponding d.

Substituting Lc and (2.40) in (2.39) gives,

f (d∗, P ∗) ≤ f
(
d̂, P̂

)
+

√
ndεS
2

||d∗ − d̂||,

=⇒ f (d∗, P ∗)− f
(
d̂, P̂

)
≤

√
ndεS||d− d||.
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Remark 2.5.3. εS −→ 0, ε −→ 0 results in f (d∗, Z∗) −→ f
(
d̂, Ẑ

)
. From extensive

simulations it was observed that 0.1 ≤ εS ≤ 0.001 and 0 < ε < 1 are good choices for

εS and ε respectively. The lower value of ε increases the number of GBD iterations

while the lower value of εS may increase the number of GBD restarts.

In the next section, a discussion on the computational complexity of the algo-

rithm is presented.

2.6 Computational Complexity Analysis

The co-design optimization algorithm described earlier has three main parts,

the GBD procedure, the testing of necessary/sufficient conditions at the convergence

point, and if required, the evaluation of a new design point. The GBD procedure

consists of iteratively solving the primal sub-problem and the current relaxed mas-

ter problem. The primal subproblem (2.13) is an SDP with martix variable Z of

dimension (n+m)× (n+m). The worst case complexity of solving the primal sub-

problem for each GBD iteration is O
(
(n+m)6.5

)
using interior-point methods [57].

For a known d, due to the existence of strong duality, instead of solving (2.13), the

problem (2.9) can be solved. The matrix variable P has dimension n × n and the

variable Z is the dual variable of the constraint SP (P ) in (2.9). This brings down

the worst case complexity to O (n6.5). The current relaxed master problem is always

convex with no matrix variable and can be solved quickly. The testing of neces-

sary and sufficient condition for optimality, as per Section 2.3.5, requires solving of
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multiple Lyapunov equations. The complexity of solving Lyapunov equations with

a n × n matrix variable is O (n3) [58]. The last step of finding a new design point

as described in Section 2.3.6 involves computing inverse of the matrix NTN . The

matrix NTN is a square matrix of dimension pN . The complexity for this matrix

inversion is O (p3N).

From the aforementioned discussion, the slowest step of the co-design opti-

mization algorithm is computation of the solution of the primal sub-problem SDP.

Hence, an estimate of the number of times the primal SDP with a n × n matrix

variable is solved in the worst case can act as a complexity measure for the algorithm

in Section 2.4. In general, an expression stating the GBD complexity is not known

in the literature. GBD procedure is similar to a cutting plane algorithm. An esti-

mate for the worst case complexity of a cutting plane procedure similar to GBD is

known to be O∗ (n2
dε

−2) [59], where the O∗ means the lower order terms are ignored.

The worst case complexity of the gradient descent method for an unconstrained

non-convex optimization to compute a √
ndεS-stationary solution is known to be

O
(
n−1
d ε−2

S

)
[60]. Assuming no improvement for the constrained case for the gradient

projection method, in the worst case the number of times the primal SDP with a n×n

matrix variable needs to be solved is approximately O
(
n−1
d ε−2

S

)
· O∗ (n2

dε
−2). When

there is no GBD restart, the complexity is approximately O∗ (n2
dε

−2). Though the

aforementioned complexity bounds are very conservative, the algorithm converges

much faster in practice.

In the next section, three examples are presented to demonstrate the utility

of the proposed co-design approach.
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2.7 Examples

The first example demonstrates the proposed co-design algorithm in detail

while the second and third examples demonstrate Proposition 2.5.2. The software

MATLAB [61], with packages YALMIP [62] and SeDuMi-1.3 [63] is used for compu-

tation. YALMIP solves the primal problem in step 3 while ‘fmincon’ in MATLAB

solves the current relaxed master problem in step 4 of the algorithm proposed in

Section 2.4.

2.7.1 Example 1: Numerical Example

Consider a linear dynamic system with system matrices and other relevant

information is,

A =



0 1 0 0

−25 16d1 6 −8

0 −1 0 1

0 −8 −6 8


, B =



0 0

d1 0

0 0

0 −d2


,

C =

(
1 1 1 1

)
, Q = CTC, R = I2,

d =

(
d1 d2

)T

, fd (d) = (d1 − 10)2 + 100 (d2 − 0.8)2 ,

0.2 ≤ d1, d2 ≤ 2, f (d, P ) = fd (d) + Tr (P ) .

The surface and contour plots of the objective function f (d, P ) in the given de-

sign domain are shown in Figure 2.1. The function f (d, P ) as well as its pro-
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Figure 2.1: Objective function f (d, P ), (a) Surface plot, (b) Contour plot.

jection on the design domain v (d) is non-convex. The function f has three sta-

tionary points as shown in the Figure 2.1b with black dots namely, a global mini-

mum at (0.2 1.4212)T with f = 237.95, a saddle point at (1.3207 1.5050)T with

f = 571.69 and a local minimum at (2 1.3144)T with f = 495.73. The co-design

optimization problem was formulated as in (2.8), and the co-design optimization

algorithm proposed in Section 2.4 was applied for different starting design points

ds. The predefined parameters are, ε = 0.01, εS = 0.1, εV = 15, αr = αrs = 0.2.

For ds = (1.3 1.4)T , the local minimum was obtained after 5 GBD restarts, for

ds = (0.5 1.25)T , the global minimum was obtained after 1 GBD restart and for

ds = (1.3207 1.5050)T , that is, starting at the saddle point, the local minimum

was obtained after 2 GBD restarts. Table 2.1 shows the number of GBD iterations

at each GBD restart required to reach the local minimum when the co-design opti-

mization algorithm was applied for ds = (1.3 1.4)T . In the case when εS = 0.01

and all other parameters unchanged, the same local minimum was reached in 7 GBD
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restarts. It should be noted that at each restart new design point was computed

using the GPM. The system was also designed following the traditional sequen-

GBD restart number 0 1 2 3 4 5

GBD iterations 4 12 5 4 2 1

Table 2.1: GBD iteration at each GBD restart for εS = 0.1, ds = (1.3 1.4)T .

tial design methodology. By traditional sequential design methodology, first the

system’s design function fd is optimized to compute the optimal design do without

taking into consideration the control constraints. Now, using this computed optimal

design do, the LQR controller is synthesized. Using the traditional design procedure,

do = (2 0.81)T and f = fd + fc = 573, which is worse than the co-design solu-

tion computed using the proposed algorithm. For nd = 2, ε = 0.01, εS = 0.1, from

Section 2.6, the worst case computations of the primal SDP are O (50) · O∗ (104).

From Table 2.1, for the proposed algorithm in Section 2.4, the total number of

computations of the primal SDP are 28 which is much less than the worst case

complexity.

2.7.2 Example 2: Satellite Attitude Control

Attitude or orientation about the pitch-roll-yaw axes of earth pointing satel-

lites on circular orbits is controlled by using two pairs of thrust jets [64]. This exam-

ple studies the co-design of the roll-yaw orientation system. The design parameter

is the orientation of the roll-yaw thrust jet pair in the roll-yaw plane controlled
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by optimal feedback gains. This co-design problem was previously studied in [40]

to obtain a global co-design solution. The roll-yaw linearized dynamic system and

various parameters describing the system are [40, 64],

A =



0 1 0 0

−4kx 0 0 kx − 1

0 0 0 1

0 ky + 1 ky 0


, B =



0

Iz
Ix

cosα

0

Iz
Iy

cos β


,

C =

1 0 0 0

0 0 1 0

 , Q = CTC, R = 1,

x =

(
ϕ ϕ̇ ψ ψ̇

)T

, d1 = cosα, d2 = cos β,

kx =
Ix − Iy
Ix

, ky =
Iz − Ix
Iy

,
Iz
Ix

=
7

6
,

Ix
Iy

= 3,

where α, β, denote the directions of the thrust jets in the roll-yaw plane which

produce the normalized control u. The parameters Ix, Iy and Iz denote the principal

moments of inertia about the roll, yaw and pitch axes respectively, while kx and ky

are the characteristic satellite constants. The following geometrical constraint is

also imposed,

cos2 α + cos2 β = 1, α, β ∈
[
0,
π

2

]
,

=⇒ d21 + d22 = 1, d1, d2 ∈ [0, 1] .

(2.41)

There is no design objective hence fd = 0. The design variable d =

(
d1 d2

)T

appears linearly in the input matrix B. The eigenvalues of the open loop system

are,

Eig (A) = (−1.89j, 1.89j,−0.69, 0.69) .
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The presence of one eigenvalue with positive real part makes the open loop system

unstable. The system was co-designed to make the closed loop system stable with

design objective being optimal placement (orientation) of the actuator thrust jets.

The geometrical constraint in (2.41) is a non-convex constraint which makes the

approach proposed in this work inapplicable. The non-convex constraint is refor-

mulated as follows,

X − ddT = 0, X ≽ 0, X ∈ S2,

Tr (X) = 1.

(2.42)

RelaxingX−ddT = 0 asX−ddT ≽ 0 and applying Schur complement procedure [50],

the relaxed convex constraints are as follows,X d

dT 1

 ≽ 0, X ≽ 0, X ∈ S2,

Tr (X) = 1.

(2.43)

In this case, X becomes an additional design variable. The co-design problem is

formulated as follows,

min
d1,d2,X,Z

Tr (Z11Q) + Tr (Z22R) ,

Subject to the constraints,

0 ≤ d1 ≤ 1, 0 ≤ d2 ≤ 1,

I + Z12B
T +BZT

12 + Z11A
T + AZ11 = 0,X d

dT 1

 ≽ 0, Tr (X) = 1,

Z ≽ 0, Z ∈ S5, X ≽ 0, X ∈ S2.

(2.44)
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ε 10−1 10−2 10−3 10−4 10−5

α 39.94◦ 39.94◦ 39.29◦ 39.29◦ 39.14◦

f 4.2169 4.2169 4.2157 4.2157 4.2156

GBD itrs. 5 5 8 9 10

Table 2.2: Comparison of results for various values of ε (GBD itrs.: GBD iterations).

The convergence parameter value was set as ε = 10−5. The starting point was taken

to be ds1 = cos 89.42◦. It should be noted that in this problem M = BR−1BT can

be written as a linear function of X. Hence the algorithm should converge to the

global minimum solution within a specified tolerance justifying Proposition 2.5.2.

The algorithm in Section 2.4 converged to the global minimum of the co-design

problem in (2.44) in 10 GBD iterations and 0 (zero) GBD restarts. The exhaustive

search results were obtained by dividing the design set of α ∈
[
0, π

2

]
in 200 parts.

RG PA ε = 10−5 ES

f opt 4.2159 4.2156 4.2156

α 38.74◦ 39.14◦ 39.14◦

Table 2.3: Comparison of results from various methods (RG: Ref. [40], PA: Proposed

Algorithm, ES: Exhaustive Search).

The synthesized controller is K = (−0.1481 0.4959 1.2395 1.0384)T and it sta-
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bilizes the co-designed system. The advancement of UBD/LBD is shown in Figure

2.2. Table 2.2 shows the comparison of results computed for different values of the

1 2 3 4 5

Iteration Number

-6

 1

 7

14

B
o
u

n
d

s

Upper Bound

Lower Bound

Figure 2.2: Advancement of UBD/LBD.

convergence parameter ε. From Table 2.2, as ε decreases the number of GBD it-

erations increase but there is not much improvement in the optimal value of the

objective function. Table 2.3 shows comparison of the solution obtained using the

proposed algorithm with [40] and exhaustive search solutions. This example also

shows the effective application of the convex relaxation in (2.43) to the non-convex

constraint in (2.42). It should be noted that the synthesized co-design resulted in a

stable closed loop system. The method to compute the global minimum solution of

the co-design actuator location problem presented in [40] only applies when the de-

sign parameters (in linear or nonlinear form) are present only in the input matrix B

of the linear dynamics in (2.1). Also, the co-design optimization problem presented

in [40] had no design objective function. The proposed algorithm ensures conver-

gence to a solution within a provable tolerance from the nearest local minimum and

applies to the co-design problem with the design variables appearing in linear form
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in the matrices A and B of the linear dynamics in (2.1). The proposed algorithm

also handles the case of the presence of the design objective in the objective func-

tion of the co-design optimization problem. From Table 2.2, it is evident that the

number of primal SDP computations for the proposed algorithm in Section 2.4 is

much less than the worst case primal SDP computations O∗ (n2
dε

−2) calculated for

the respective ε.

2.7.3 Example 3: Load Positioning System

The load positioning system co-design optimization was studied in Section 4

of [39] and Section V-A of [38]. It should be noted that the original system had

system matrices as nonlinear functions of the design variables. By suitable change

of variables, the system matrices were reformulated as linear functions of the design

variables. The proposed algorithm was applied to the load positioning system from

the same starting design point as in [39] and εS = 0.05, ε = 10−4. The co-design op-

timization algorithm converged to d∗ = (1 0.0667 0.4 0.0097)T , f opt = 169.5734

in just 6 GBD iterations and 0 (zero) GBD restarts while the computation method

used in [39] converged to an objective function value of 169.5836 in 24 iterations.

Here the total number iterations refer to the total number of SDP computations

with a 4× 4 matrix variable. The worst case SDP computations are O∗ (109). The

solution d∗ also satisfied the necessary and sufficient conditions for a local minimum

as per Section 2.3.5. An exhaustive search done by dividing the design domain

into 20× 20× 20× 20 grid points computed the minimum objective function value
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f es = 169.5579. Now, √ndεS||d−d|| = 0.1149 and f opt− f es = 0.0115. This implies

f opt − f es <
√
ndεS||d− d|| as described in Proposition 2.5.2.

2.8 Summary

In this chapter, a new formulation for the optimal co-design of a class of LTI

dynamic systems controlled by a LQR feedback has been presented. The design

objective in the proposed formulation is convex and the elements of the system ma-

trices are linear functions of the design variables. With the effective use of SDP

duality properties, the co-design problem is reformulated into an equivalent bilin-

ear and non-convex optimization problem. An iterative algorithm based on GBD

and GPM has been proposed to solve the optimization problem. The algorithm

is guaranteed to converge in a finite number of iterations to a solution which is

within a tolerance bound from the nearest local/global minimum. To implement

the algorithm, neither the existence of special functions nor the prior knowledge of

the control variable bounds is required. The algorithm is also independent of the

knowledge of the initial design or the initial stabilizing control variables. Moreover,

conditions for obtaining a global minimum of the co-design problem within a speci-

fied tolerance are provided. It should be noted that the reformulation of the original

co-design problem demonstrates the utility of duality in semidefinite programming

which paves a way for the use of known optimization methods. The utility of the

proposed algorithm has been demonstrated by three examples.
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Chapter 3: Structured Static Output Feedback Design

This chapter is based on the publication [65].

Conventional full-state feedback requires information about all the states to

control the system. In many applications either information about all states is not

available or not required to control the system. In those cases a SOF controller is

used to control the system. SSOF is a class of controllers for which controller gain

structure can be predefined.

In this chapter, a new design procedure is proposed for a class of linear time

invariant systems controlled by SSOF controllers. The SSOF synthesis problem is

posed as an optimization problem with a Lyapunov equation like constraint which

is quadratic in gain variables. The problem is reformulated as an optimization

problem with a Bilinear Matrix Inequality constraint. An iterative combination

of GBD and GPM is used to solve the proposed design problem. Necessary and

sufficient conditions are derived to test the minimality of the computed solution.

Finally, the proposed formulation is demonstrated through an engineering example.
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3.1 Introduction

Conventional full-state feedback control requires utilization of full state in-

formation. In many applications, this may not be feasible and hence SOF control

provides a useful alternative for control design. SOF finds wide applications in

control of structural systems [66], vehicle control [67], flight control [68], network

control [69] where the network can be an electric power grid or communication net-

work, etc. In SOF, it is possible to select the controller gain structure a priori. This

formulation is known as SSOF control and is the focus of the proposed work in this

chapter.

SOF due to its simplicity has been an interesting topic for designers since the

1970s. One of the earliest works uses SOF design for closed-loop pole assignment

[70]. SOF stabilization using decision methods has been studied in [71]. A brief

survey of SOF is presented in [72]. Stability, convexity and performance analysis of

SOF problems is presented in [73,74]. Linear quadratic sub-optimal SOF control is

studied in [75]. Conventional SOF design methods of synthesizing controllers, for

example using Algebraic Riccati equation, do not offer designers the flexibility to

choose the controller gain structure. Here, choosing the structure of the controller

gain implies presetting certain elements of the controller gain matrix to zero.

A survey of SSOF design is presented in [76]. SSOF design problem imposes

certain constraints on the controller gain variables and such problems are known to

be NP-hard [20, 21]. SSOF design using a gradient based iterative method while

penalizing the elements of gain matrix is studied in [77]. The NP-hardness of the
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SSOF design problem is due to the BMI [21] constraints. The BMI constraints are

involved in the SSOF design problem due to the system stability constraints. Various

methods such as, convexifying potential function [78], linearization algorithm [79],

non-smooth techniques [80], Linear Matrix Inequality (LMI) relaxation methods [81]

have been proposed to solve the SSOF design problem. The gain structure is usually

a predefined sparse pattern and is synthesized using augmented Lagrangian approach

for the state feedback case in [82]. Rank constrained optimization for synthesizing

structured controllers is utilized in [83–85]. SSOF problems are BMI optimization

problems which are solved using branch-and-bound method [35, 86], path-following

method [36], GBD [23] in [41]. The aforementioned methods have at least one of

the following shortcomings: requirement of convexifying functions, knowledge of

bounds on all unknown variables, dependence on penalty constant, convergence and

optimality guarantees, and dependence on the initial design.

In this work, a SSOF design procedure is proposed for a class of LTI systems

with stabilizing SSOF controller gain. The problem is formulated as an optimization

problem with an integral Linear Quadratic (LQ) objective function and a Lyapunov

equation [87] like constraint which is quadratic in gain variables. With the use of

Schur complement procedure [50] and projection technique [23], the problem lends

itself into an optimization problem with linear objective function and a BMI con-

straint. An iterative combination of GBD and GPM [24] is used to compute the

solution. Necessary and sufficient conditions are derived to test the stationarity and

local minimality of the converged solution. Though it has been observed that the

proposed algorithm converges at least to a local minimum solution, the proof guar-
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anteeing the convergence has not been established yet. The proposed formulation

when applied to a practical example previously studied in [77] resulted in a globally

minimum solution.

The chapter is organized as follows, Section 3.2 describes the problem in de-

tail, Section 3.3 describes the theoretical aspects of the solution procedure, Section

3.4 describes the optimization algorithm. In Section 3.5, an example is presented

validating the proposed design procedure and Section 3.6 presents a summary of the

chapter.

3.2 Problem Description

Consider a system with LTI dynamics as follows,

ẋ = Ax+Bu, y = Cx, x (0) = x0, (3.1)

where A ∈ Rn×n, B ∈ Rn×q, C ∈ Rp×n are state (system), input and output matrices

respectively. x ∈ Rn, y ∈ Rp, u ∈ Rq denote the state vector, output vector and

control input of the system respectively. The initial state of x is known and is

denoted by x0. The output feedback control is of the form,

u = −Ky, (3.2)

where K ∈ Rq×p is the stabilizing SSOF controller gain for the LTI system (A,B,C).

K belongs to the set K =
{
K | K ≤ K ≤ K

}
. It should be noted that the structure

of each gain matrix K ∈ K is predefined. Set K is non-empty, continuous, compact

and convex. When C is an identity matrix then K is a full state feedback. The gain

67



K is chosen such that it minimizes the control energy,

J :=

∫ ∞

0

(
xTQx+ uTRu

)
dt, (3.3)

where Q ≽ 0, R ≻ 0 are known real symmetric weight matrices. For a matrix Y ,

the notation Y ≽ (≻) 0 implies Y is a positive semidefinite (definite) matrix and

Y T denotes the transpose of matrix Y . The optimal static output feedback design

problem is stated as,

min
K

∫ ∞

0

(
xTQx+ uTRu

)
dt

Subject to the constraints,

K ≤ K ≤ K,

ẋ = Ax+Bu, y = Cx, x (0) = x0,

u = −Ky, Ac = A−BKC is Hurwitz.

(3.4)

The following assumptions are made for the stabilizing SSOF design problem,

(A1) Output matrix C is full row rank.

(A2) Pair (A,B) is stabilizable.

(A3) Pair
(√

Q,A
)

is detectable.

(A4) System (A,B,C) is output stabilizable i.e., there exists a K ∈ K such that

(A−BKC) is Hurwitz.

Using the following well known result [77],

J =

∫ ∞

0

(
xTQx+ uTRu

)
dt = xT0 Px0,

= Tr
(
Px0x

T
0

)
= Tr (PX0) ,

(3.5)
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where X0 = x0x
T
0 and P ≽ 0, P ∈ Sn is the unique solution of the Lyapunov like

equation (LE),

LE := AT
c P + PAc +Q+ CTKTRKC = 0,

Ac = A−BKC,

(3.6)

and Sn is the space of real symmetric matrices. Here, Ac is Hurwitz and Tr (·)

represents the trace of matrix (·). If x0 is an uniformly distributed random variable

with zero mean and unit variance, then J = E [Tr (PX0)] = Tr (P ) i.e., X0 = I in

(3.5) where I is an identity matrix of appropriate dimension. The problem in (3.4)

is rewritten as,

min
K,P

Tr (PX0)

Subject to the constraints,

K ≤ K ≤ K, X0 = x0x
T
0 ,

LE = AT
c P + PAc +Q+ CTKTRKC = 0,

Ac = A−BKC, P ≽ 0, P ∈ Sn.

(3.7)

The problem in (3.7) is non-convex due to the constraint LE which is nonlinear and

non-convex in the unknown variables. The solution to the Lyapunov like constraint

LE is computed by solving a SDP problem [50] which is explained in the following

Lemma 3.2.1,

Lemma 3.2.1. Consider the LTI system in (3.1). If K ∈ K is a known stabilizing

SSOF controller gain of the system, then the solution P ≽ 0, P ∈ Sn to the equation

LE in (3.6) is computed by solving a SDP problem.
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Proof. As K ∈ K is a known stabilizing output feedback controller gain of the

system, this implies Ac = A− BKC is Hurwitz. From results in Chapter 6 of [87],

the solution to the equation LE in (3.6) is the solution of the optimization problem

given as follows,

min
P

Tr (PX0)

Subject to the constraints,

LE1 := −AT
c P − PAc −Q− CTKTRKC ≽ 0,

P ≽ 0, P ∈ Sn, Ac = A−BKC.

(3.8)

As R ≻ 0, applying Schur complement procedure [50] to the constraint LE1 in (3.8)

gives,

min
P

Tr (PX0)

Subject to the constraints,−AT
c P − PAc −Q CTKT

KC R−1

 ≽ 0,

P ≽ 0, P ∈ Sn, Ac = A−BKC, X0 = x0x
T
0 .

(3.9)

The above optimization problem (3.9) is a SDP problem [50] in the variable P .

�

The nonlinear design optimization problem in (3.7) is converted into an optimization

problem with a BMI [19] constraint using Lemma 3.2.1 and is demonstrated in

Theorem 3.2.1 next,

Theorem 3.2.1. Consider the LTI system in (3.1). If the assumptions (A1)-(A4)

hold, then the optimal SSOF design problem stated in (3.7) is reformulated as an
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equivalent optimization problem with a BMI constraint.

Proof. As the assumptions (A1)-(A4) hold, this implies a stabilizing output feed-

back controller gain K ∈ K exists such that Ac = A − BKC is Hurwitz. For

a stabilizing controller gain K ∈ K, substituting (3.9) from Lemma 3.2.1 for the

constraint LE in (3.7) gives,

min
K

vK (K)

Subject to the constraints,

K ≤ K ≤ K,

vK (K) = min
P

Tr (PX0)

Subject to the constraints,−AT
c P − PAc −Q CTKT

KC R−1

 ≽ 0,

P ≽ 0, P ∈ Sn,

Ac = A−BKC, X0 = x0x
T
0 .

(3.10)
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Using the concept of projection [23, 47, 48], the problem (3.10) is written as an

equivalent single level problem as,

min
K,P

J (P ) = Tr (PX0)

Subject to the constraints,

K ≤ K ≤ K, X0 = x0x
T
0 , Ac = A−BKC,

S (K,P ) :=

−AT
c P − PAc −Q CTKT

KC R−1

 ≽ 0,

P ≽ 0, P ∈ Sn.

(3.11)

The optimization problem in (3.11) has a linear objective function J (P ) and a BMI

constraint S (K,P ). The constraint S (K,P ) has bilinear matrix products between

K and P . Hence, optimization problem (3.11) is equivalent to (3.7).

�

An important property of formulations (3.7), (3.9) and (3.11) is proved in the The-

orem 3.2.2 next,

Theorem 3.2.2. Consider the LTI system in (3.1). If K = K̂ ∈ K is a non-

stabilizing controller gain, then optimization problems (3.7), (3.9) and (3.11) are

infeasible for K = K̂ ∈ K.

Proof. For known K = K̂ ∈ K, problems (3.9) and (3.11) are equivalent. For

non-stabilizing controller gain K = K̂ ∈ K, no P ≽ 0, P ∈ Sn exists such that

the constraint LE in (3.7) is fulfilled. This implies infeasibility of the optimization

problems (3.7), (3.9) and (3.11) for K = K̂ ∈ K.

�
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3.3 Solution Procedure

In this section, the solution procedure to solve the SSOF design optimization prob-

lem (3.11) is presented. The problem in (3.11) is a non-convex optimization problem

with linear objective function J (P ) and one non-convex BMI constraint S (K,P ).

The problem (3.11) assumes a special “bilinear” structure for which GBD [23] is

used to compute the solution. When K is held constant then (3.11) transforms into

a convex SDP problem. Here, K is called as the “complicating” variable while P

is called as the non-complicating variable. The BMI constraint S (K,P ) is called

as the complicating constraint. The theoretical details about GBD are explained

in [23] and are skipped due to space limitation. The GBD procedure proceeds by

first formulating the feasible (or infeasible) primal sub-problem and later the mas-

ter problem. The feasible primal sub-problem provides the UBD while the master

problem gives the LBD of (3.11). The GBD procedure iterates between primal

subproblem and master problems till UBD and LBD are sufficiently close as per a

predefined convergence criterion. However, it is known that the GBD may or may

not converge to a stationary point [47]. Hence, a local (or global) solution may

not be obtained by using GBD. To overcome this difficulty, the GBD is restarted

from a new design point. In this section, first the GBD procedure details are given

in Sections 3.3.1, 3.3.2 and 3.3.3. Section 3.3.4 states the necessary and sufficient

conditions for minimum. Section 3.3.5 presents the procedure for computation of a

new design point required to restart the GBD.
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3.3.1 Feasible Primal Sub-Problem

For a stabilizing SSOF controller gain Ki ∈ K the feasible primal sub-problem

is formulated as,

min
P

Tr (PX0)

Subject to the constraints,

X0 = x0x
T
0 , Ai

c = A−BKiC,

S
(
Ki, P

)
≽ 0, P ≽ 0, P ∈ Sn.

(3.12)

The optimal value of (3.12) is the UBD of (3.11). Let Zi ≽ 0, Z i ∈ Sn+q be the

Lagrange dual variable of the constraint S (Ki, P ) ≽ 0 and P i the computed primal

variable.

3.3.2 Infeasible Primal Sub-Problem

From Theorem 3.2.2, when K = Kj
1 ∈ K is non-stabilizing, then (3.11) is

infeasible. The infeasible primal sub-problem for GBD at K = Kj
1 is formulated as

follows,

min
P1,ρS

ρS

Subject to the constraints,

Aj
c = A−BKj

1C, ρS ≥ 0,

S
(
Kj

1 , P1

)
+ ρSI ≽ 0, P1 − ρP I ≽ 0, P1 ∈ Sn.

(3.13)

The constant ρP > 0 is known and it ensures P1 ≻ 0. Let Zj
1 ≽ 0, Zj

1 ∈ Sn+q be the

Lagrange dual variable of the constraint S
(
Kj

1 , P1

)
+ ρSI ≽ 0 and P j

1 the computed

primal variable.
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3.3.3 Master Problem

The master problem is formulated using P, P1, Z, Z1 which are computed by

solving the feasible and infeasible primal sub-problems. The master problem com-

putes K and the LBD for (3.11). To construct the master problem, the feasible

primal problem (3.12) must fulfill conditions for strong duality which are discussed

in Lemma 3.3.1.

Lemma 3.3.1. Consider the LTI system in (3.1) with assumptions (A1)-(A4). For

a stabilizing gain K̂ ∈ K, (3.12) fulfills conditions of strong duality.

Proof. As K̂ ∈ K is a stabilizing gain, this implies ∃P ≻ 0 such that S
(
K̂, P

)
≻ 0.

Also, problem (3.12) is convex. From Theorem 6.2.4 in [51], (3.12) fulfills conditions

of strong duality.

�

Next, Lagrangians for the feasible and infeasible primal sub-problems are con-

structed. The Lagrangian for the feasible primal sub-problem in (3.12) for stabilizing

K is,

L (K,P, Z) = Tr (PX0)− Tr (ZS (K,P )) . (3.14)

The Lagrangian for the infeasible primal sub-problem in (3.12) for non-stabilizing

K1 is,

L1 (K1, P1, Z1) = −Tr (Z1S (K1, P1)) . (3.15)
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The master problem after the N th
G GBD iteration is given as,

min
µ,K

µ

Subject to the constraints,

K ≤ K ≤ K, µ ∈ R, X0 = x0x
T
0 ,

L
(
K,P i, Z i

)
≤ µ, i = 1, . . . , Nf ,

L1

(
K,P j

1 , Z
j
1

)
≤ 0, j = 1, . . . , Nif ,

(3.16)

where Nf and Nif are the number of stabilizing and non-stabilizing K ∈ K respec-

tively computed till the N th
G GBD iteration. The master problem is convex and after

each GBD iteration feasible space reduces hence µNG = LBD forms a non-decreasing

sequence. The GBD converges to a stabilizing (K∗, P ∗) when LBD ≥ UBD − εG,

where εG > 0 is a predefined GBD convergence criterion. Next, tests to check the

stationarity and local minimality of K∗ are presented.

3.3.4 Necessary and Sufficient Conditions for Minimum

The necessary conditions for K∗ to be a local minimum point of problem in

(3.11) are derived next. Let k = vec (K) , k∗ = vec (K∗), where vec (·) is the vector

representation of the matrix (·). The lower and upper bounds of k are k and k

respectively. The conditions to determine if K∗ is a stationary point are as follows,

Proposition 3.3.1. Let the GBD procedure converge to the point K∗ ∈ K and

let Z∗, P ∗ be computed from the feasible primal sub-problem (3.12). Then K∗ is a

stationary point for the problem in (3.11), if −Tr (Z∗∇kS (K∗, P ∗)) + δu − δl = 0,

Tr (Z∗S (K∗, P ∗)) = 0, and δTl (k − k)+δTu
(
k − k

)
= 0 for some δl ∈ Rqp, δl ≥ 0, δu ∈
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Rqp, δu ≥ 0 and k = vec (K).

Proof. The Lagrangian for the problem (3.11) is,

Lv (K,P ) = Tr (PX0)− Tr (ZS (K,P )) + δTl (k − k) + δTu
(
k − k

)
− Tr (λPP ) ,

(3.17)

where δl ∈ Rqp, δl ≥ 0, δu ∈ Rqp, δu ≥ 0, λP ∈ Sn, λP ≽ 0 are the Lagrangian

dual variables. Taking gradient with respect to k at (K∗, P ∗) and applying KKT

conditions [51] gives the required result.

�

As K∗ is a stabilizing SSOF controller gain, the KKT conditions corresponding to

the variable P are automatically fulfilled. In practice, the stationarity conditions are

implemented as
∣∣∣( − Tr (Z∗∇kS (K∗, P ∗)) + δu − δl

)
i

∣∣∣ ≤ εS, Tr (Z∗S (K∗, P ∗)) = 0

and δTl (k − k) + δTu
(
k − k

)
= 0 where |(·)| is the absolute value of (·), (·)i is the ith

component of the vector (·) and 0 < εS < 1 is a small predefined constant. To test

the local minimality of the stationary point K∗ the following condition is applied,

Proposition 3.3.2. If H (K∗) = ∇2
kJ (P (K∗)) = Tr (∇2

kP (K∗)X0) ≻ 0, then the

stationary point K∗ ∈ K computed using the GBD procedure is a local minimum

point of (3.11).

Proof. P is a function of K through the Lyapunov like equation LE in (3.6).

From theory of optimality [51], the condition for K∗ to be a local minimum point

is H (K∗) = ∇2
kJ (P (K∗)) = Tr (∇2

kP (K∗)X0) ≻ 0.

�

The procedure to compute H (K∗) is presented next. Let k = vec (K) , ∂Y
∂ki

=
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ki,
∂2Y

∂ki∂kj
= Yij, Y

∗ = Y (K∗). As P ∗ is the solution of LE in (3.6) at K = K∗

and Ki is always a constant, differentiation of LE with respect to component ki of

k at K∗ gives,

A∗
c
TPi + PiA

∗
c +Θ = 0,

Θ = Ac
T
i P

∗ + P ∗Aci +M∗
i +M∗

i
T ,

M∗
i = CTKT

i RK
∗C, Aci = −BKiC.

(3.18)

Differentiation of (3.18) with respect to component kj of k at K∗ gives,

A∗
c
TPij + PijA

∗
c +Υ+Mij +MT

ij = 0,

Υ = Ac
T
j P

∗
i + P ∗

i Acj + Ac
T
i P

∗
j + P ∗

j Aci

Mij = CTKT
i RKjC,

Aci = −BKiC, Acj = −BKjC,

(3.19)

where Pi, Pj are computed from (3.18). The components of H (K∗) are computed

as,

Hij (K
∗) = Tr (Pij (K

∗)X0) . (3.20)

The above equations (3.18) and (3.19) are Lyapunov like equations and can be easily

solved. If the point K∗ is not an local minimum, then GBD is restarted from a new

design point K∗∗ such that Tr (P ∗∗X0) < Tr (P ∗X0).

3.3.5 New Design Point

The new design point is computed using the GPM for constrained optimization

problems. The details of the method are skipped due to space limitation and the

reader is referred to Chapter 5 of [24] for additional details. Let W be a matrix
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whose columns are the linearly independent gradients of active constraints from

the constraint set
{
k ≤ k ≤ k

}
at the point k∗. If pW are the number of linearly

independent gradients of active constraints at k∗, then W ∈ Rqp×pW . The new design

point k∗∗ = vec (K∗∗) is given by,

k∗∗ = k∗ − αr

[
I −W

(
W TW

)−1
W T

] ∇kJ
∗

||∇kJ∗||
,

∇kJ
∗ = ∇k (Tr (P (K∗)X0)) ,

(3.21)

where αr > 0 is a predefined step-size and ∇k (Tr (P (K∗))) can be computed using

(3.18). If K∗ is a saddle point, then k∗∗ = vec (K∗∗) is computed using,

k∗∗ = arg min
k≤k≤k

{
J∗
−1, J

∗
1 , . . . , J

∗
−i, J

∗
i , . . . , J

∗
−qp, f

∗
qp

}
J∗
−i = J (P (k∗ − αrsei)) , J

∗
i = J (P (k∗ + αrsei)) ,

(3.22)

where, αrs > 0 is a predefined step-size and ei ∈ Rqp is the standard basis. The

values of αr, αrs should be such that the new k∗∗ lies in the feasible domain and the

resultant K∗∗ is stabilizing. In the next section, the design optimization algorithm

is presented.

3.4 Design Optimization Algorithm

The steps to solve the design optimization problem (3.11) are as follows,

1. Set LBD = −∞,UBD = +∞, ρP , εG, εS, αr, αrs and GBD restart number

NR = 0. Let Nf = 0 and Nif = 0 be the indices for stabilizing and non-

stabilizing K respectively. Set SSOF controller gain matrix bounds K,K.

Input any feasible starting stabilizing design point K1 = Ks such that Ks ∈ K.
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2. Set GBD iteration number NG = 1, KNG = K1.

3. Test if KNG is stabilizing or non-stabilizing by examining if the Hurwitz prop-

erty holds for ANG
c = A−BKNGC or not.

(a) If KNG is stabilizing. Solve the feasible primal problem (3.12) in Section

3.3.1 for fixed K = KNG
to compute KNG , PNG and ZNG . Store KNf =

KNG , PNf = PNG , ZNf = ZNG and set Nf = Nf +1. If J
(
PNG

)
< UBD,

then set UBD = J
(
PNG

)
, K∗ = KNG .

(b) If KNG is non-stabilizing. Solve the infeasible primal problem (3.13) in

Section 3.3.2 for fixed K1 = KNG
to compute KNG

1 , PNG
1 and ZNG

1 . Store

K
Nif

1 = KNG , PNif = PNG , ZNif = ZNG and set Nif = Nif + 1.

4. Solve the master problem in (3.16).

(a) If master problem is feasible. Compute µ and K. Set NG = NG +

1,LBD = µ,KNG+1 = K. Check the convergence of bounds using LBD >

UBD − εG. If convergence is achieved, then continue to Step 5 with

K = K∗ otherwise go to Step 2.

(b) If master problem is infeasible go to Step 5 with K = K∗.

5. For K = K∗ test the stationarity condition using εS and Section 3.3.4 for K∗.

If K∗ is stationary, test for local minimality.

(a) If K∗ is a non-stationary point or non-minimal stationary point, then,

NR = NR + 1. Compute new stabilizing design point K∗∗ using αg, αrs

and Section 3.3.5. Go to Step 2 and with input K1 = K∗∗.
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(b) If K∗ is a local minimum point go to Step 6.

6. When local minimum is achieved Jopt = UBD, Kopt = K∗. Using the synthe-

sized design Kopt compute the solution matrix P opt in (3.6).

In the next section, an engineering example justifying the proposed design approach

is presented.

3.5 Example

Consider the lateral axis model of L-1011 aircraft at cruise flight condition

controlled by SSOF control and studied in [68,77]. The details of the dynamic model

can be obtained from [68,77]. The matrices A ∈ R7×7, B ∈ R7×2, C ∈ R4×7 are state

(system), input and output matrices respectively. The vectors x ∈ R7, y ∈ R4, u ∈ R2

are state, output and input vectors respectively. Due to the special dynamics of the

L-1011 system, the SSOF controller gain K ∈ R2×4 has the following structure,

K =

k11 0 k13 0

0 k22 0 k24

 . (3.23)

The SSOF design optimization problem is formulated as in (3.11) and design opti-

mization algorithm in Section 3.4 is applied. The values of input parameters for the
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algorithm are,

ρP = 5, εG = 0.1, εS = 0.5,

αr = 0.2, αrs = 0.2, X0 = I,

− 7 ≤ ky ≤ 7, y = 11, 22, 13, 24,

Ks =

−6 0 0 0

0 0 0 −1

 ,

Q = diag
{(

1 1 30 30 5 5 1

)T }
,

R = diag
{(

1 1

)T }
,

(3.24)

where ky is the non-zero SSOF controller gain matrix entry. The algorithm in Sec-

tion 3.4 converges to the optimal after 4 GBD restarts. The GBD iterations for each

GBD restart are tabulated in Table 3.1.

GBD restart number 0 1 2 3 4

GBD iterations 19 3 3 19 42

Table 3.1: GBD iterations for each GBD restart

The optimal stabilizing SSOF controller gain and the objective function value com-

puted are,

Kopt =

−2.77 0 3.25 0

0 −5.31 0 −6

 ,

Jopt = Tr
(
P optX0

)
= 142.8.

(3.25)

The global minimum solution computed by exhaustively searching the design space

K is Jglobal = 142.76. Thus, the stabilizing SSOF controller gain synthesized using
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the algorithm in Section 3.4 converges to a global minimum solution within practical

error limits.

3.6 Summary

In this chapter, a new formulation for the design of optimal stabilizing SSOF

controller gain for LTI systems is presented. The original design problem has a

quadratic constraint in the controller gain variables is reformulated into an equiv-

alent optimization problem with a BMI constraint. The equivalent problem with

BMI constraint is then solved using an iterative combination of GBD and GPM

procedures. Necessary and sufficient conditions are derived to test the stationarity

and minimality of the computed solution. Though it has been observed that the

proposed algorithm leads at least to a local minimum solution, the proof guaran-

teeing it is not included in this work. The proposed formulation is applied to the

design of a SSOF controller of an engineering system previously studied in [68, 77].

Application of the design optimization algorithm in Section 3.4 results in a globally

minimum solution for the engineering problem which was verified by an exhaustive

search procedure.

It has been observed during simulations that constants ρP , εG, εS, αr, αrs in-

fluence the execution time of the algorithm proposed in Section 3.4. Small value of

εG increase the number of GBD iterations. Small values of ρP , εS, αr, αrs increase

the number of GBD restarts.

83



Chapter 4: Sparse Feedback Design

A controller of a dynamical system should impart robustness to the system

with good performance. Along with robustness and good performance, sparsity of

the controller is also important as sparse feedback controller implies less complicated

system.

In this chapter, a scalable sparse feedback controller design procedure is pre-

sented for the mixed H2/H∞ control problem. Sparse controller design procedure

for a class of second order systems such as structural systems and power systems

with collocated sensors, actuators and disturbances is also proposed. The proposed

formulation is justified with examples.

4.1 Introduction

The mixed H2/H∞ control problem was first introduced in [88] where a nec-

essary condition for minimizing an upper bound of the H2 norm with a H∞ norm

constraint was proposed. [89–91] solved the mixed H2/H∞ control problem as a dual

of the problem in [88] giving a sufficient condition for minimization. In [92], it was

proved that the necessary condition in [88] is also sufficient and the sufficient condi-

tion in [89–91] is also necessary. In [93], it was demonstrated that for H∞ control,
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the static state feedback control delivers the same performance as the dynamic state

feedback control. Dynamic feedback control involves controller dynamics making

their use difficult as compared to the static feedback which is simple in structure,

economically cheap and easy to implement. This makes static feedback a preferred

choice for mixed H2/H∞ control. Approaches in literature to design the static state

and output feedback for mixed H2/H∞ are discussed next. Convex optimization

based approaches involving linear/bilinear matrix inequalities (LMIs/BMIs) were

used to design static mixed H2/H∞ controllers in [13, 94, 95, 95–99]. Other ap-

proaches include non-smooth optimization [14], Riccati equation based suboptimal

approach [100], successive over-bounding of quadratic terms approach [101], exte-

rior point approach [102]. An upper bound expression for the mixed H∞ norm for

collocated structural systems was derived in [66]. Although static feedback con-

trollers have advantages, their centralized structure has drawbacks when the size

of the system becomes large. A controller in a dynamical system can be viewed

as a central station which gathers information from “distributed sensors”, processes

it and generates control action commands for “distributed actuators” [15]. When

the size of the system is large, the centralized controller structure involves a lot of

interconnections (for information transmission) which increases the system’s com-

plexity and creates maintenance issues [103]. This makes the prospect of having

sparse controllers desirable. It should be noted that here sparse controller means

that the number of interconnections between sensors and actuators should be as less

as possible. Mathematically, a sparse controller signifies that the number of zeros

in the gain matrix should be as large as possible.

85



Sparse and structured (full state or output) feedback controller design has

been a very popular research problem due to its vast and diverse application scope

as well as its difficult nature (known to be NP-hard [20]). Structured feedback is

a subset of sparse feedback in which the positions of zeros in the gain matrix are

predefined. For introducing sparsity in the controller gain matrix, ℓ1−minimization

framework is generally used [104]. Convex optimization based approaches used

to design sparse and structured controllers are: quadratic invariance property for

synthesizing sparse controllers [105, 106], Youla (like) parameterization based ap-

proaches [107, 108], rank constraint relaxation approach [83, 84], convexifying po-

tential function approach [78], convex relaxation approach using polyhedral Lya-

punov functions [109], structured dynamic output feedback controllers for a given

H∞ performance [110]. Convex approaches like [111–113] require the optimization

variable to have a block diagonal structure. A scalable convex optimization based

approach with block diagonal requirement and using chordal decomposition was

presented in [114]. A convex optimization based globally convergent approach to

synthesize H2 norm sparse controllers was proposed in the recent work [103]. An

ADMM [25] based approach to design H2 norm sparse and structured controllers

was used in [82, 104].

From the aforementioned literature survey, it can be concluded that the sparse

mixed H2/H∞ control is an important research problem. Although, convex opti-

mization based methods are popular for sparse controller synthesis, their computa-

tional performance deteriorates as the size of the system increases. Also, scalable

convex approaches require optimization variables to have a special block diagonal
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structure. Approaches in literature for sparse and structured controller design are

mainly concentrated for H2 control with little consideration to the H∞ performance.

Keeping in view the aforementioned shortcomings, the contributions of this chapter

are as follows.

1. The ADMM based ℓ1−minimization framework is adapted to design sparse

mixed H2/H∞ control feedback. The H∞ performance is included in the

constraint of the minimization problem. The proposed approach is scalable

and is guaranteed to converge to a stationary solution under certain conditions.

2. Sparse feedback design procedure for mixed H2/H∞ control for a class of

second order system having collocated actuators, sensors and disturbances is

presented. The class of system consists of structural systems and linearized

power system/network swing equation. The proposed formulation also in-

cludes a method to select an initial stabilizing controller.

3. For the linearized swing equation, a computationally fast heuristic procedure

which uses only matrix operations to design sparse (diagonal) output feedback

controllers is proposed.

This chapter is organized as follows: Section 4.2 introduces the mixed H2/H∞ con-

trol problem, Section 4.3 describes the sparse feedback controller design problem

followed by Section 4.4 explaining the design procedure. Section 4.5 presents com-

ments on the implementation of the design procedure, Section 4.6 studies a class of

second order systems with its properties, Section 4.7 presents examples justifying

the proposed formulation followed by summarizing remarks in Section 4.8.
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4.2 Mixed H2/H∞ Control

In this section, the mixed H2/H∞ control problem is described.

Figure 4.1: Plant P with controller F

Consider the plant P along with its controller F as shown in Figure 4.1. The

plant P follows LTI dynamics and F is a static (full state or output) feedback

controller. Mathematically, the plant-controller system is represented as,

P :


ẋ

z

y

 =


A B2 B∞ B

Cz 0 0 Dz

C 0 0 0





x

w2

w∞

u


,

u = Fy,

(4.1)

where x ∈ Rnx is the state, y ∈ Rny is the measured output, u ∈ Rnu is the control

input and w2 ∈ Rnw2 , w∞ ∈ Rnw∞ are exogenous inputs. A,B,C,B2, B∞, Cz, Dz

are system matrices of appropriate dimension. Static output feedback gain matrix

F is also of appropriate dimension. When C = I, where I is an identity matrix,

then F is a full state feedback gain. It should be noted that, throughout this
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chapter, I denotes an identity matrix of appropriate dimension as required. z is the

performance vector. The system in (4.1) has the following assumptions,

(A1) (A,B) , (A,B2) , (A,B∞) are stabilizable.

(A2) (A,C) , (A,Cz) are detectable.

(A3) DT
z

(
Dz Cz

)
=

(
Rz 0

)
, Rz ≻ 0.

Here, matrix X ≻ (≽) 0 means X is positive definite (semidefinite) matrix and XT

denotes the transpose of the matrix X.

The mixed H2/H∞ control problem is stated for a given H∞ norm γ > 0 as

follows [14],

min
F

||Tw2→z||H2 ,

Subject to the constraints,

||Tw∞→z||H∞ ≤ γ,

System dynamics in (4.1),

(A+BFC) is Hurwitz.

(4.2)

Here, Tw(·)→z is the closed-loop transfer function for w(·) → z and is a function of F .

|| · ||H2 and || · ||H∞ denote the H2 and H∞ norms [12] respectively. The problem in

(4.2) is challenging mainly due to the non-smoothness of the H∞ constraint. Instead

of solving the difficult problem in (4.2), its suboptimal version [97, 100] is solved.

The performance metric for the mixed H2/H∞ is derived next.
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4.2.1 Optimization Metric

The H2 performance of the system is measured by the squared H2 norm. Let

F be a stabilizing static feedback controller such that Ã = A+BFC is Hurwitz. It

is known that [97],

||Tw2→z||2H2
= Tr

(
BT

2 X2B2

)
, (4.3)

where Tr (·) is trace of the matrix (·) and X2 ≻ 0 is the solution of the Lyapunov

equation,

ÃTX2 +X2Ã+ C̃T
z C̃z = 0,

where C̃z = Cz +DzFC.

(4.4)

Also from [89, 97],

Tr
(
BT

2 X2B2

)
≤ J (F ) = Tr

(
BT

2 X∞B2

)
, (4.5)

where X∞ ≻ 0 is the solution of the Riccati equation for a known H∞ norm γ > 0,

ÃTX∞ +X∞Ã+ γ−2X∞B∞B
T
∞X∞ + C̃T

z C̃z = 0. (4.6)

Hence to include the effect of γ, the objective J (F ) is minimized. Next, the formu-

lation for the sparse feedback design problem is presented.

4.3 Sparse Feedback Controller Design Problem

In this section, the problem formulation for the sparse feedback design problem

is presented. The sparse feedback design problem is designed on the lines of H2
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sparse feedback problem in [104] as follows.

min
F

J (F ) + λg (F ) ,

g (F ) =
∑
i,j

Wij|Fij|.
(4.7)

Here λ ≥ 0 is a sparsity promoting constant with larger value of λ resulting in a

sparser F . The weights Wij ≥ 0 where (·)ij is the element in the (i, j)th position of

the matrix (·). The weighted ℓ1−norm,
∑

i,j Wij|Fij| is the convex relaxation of the

cardinality of F . When Wij = 1
|Fij | , Fij ̸= 0 and Wij = 1

εW
, Fij = 0, 0 < εW ≪ 1,

the ℓ1−norm coincides with the cardinality of F . The objective function in (4.7) is

the sum of two functions. With a new variable G, the problem (4.7) is rewritten as

follows.

min
F,G

J (F ) + λ
∑
i,j

Wij|Gij|,

Subject to the constraints,

F −G = 0.

(4.8)

The augmented Lagrangian of (4.8) is,

Lρ (F,G,Λ) = J (F ) + λ
∑
i,j

Wij|Gij|+ Tr
(
ΛT (F −G)

)
+
ρ

2
||F −G||2F , (4.9)

where || · ||F is the Frobenius norm [18]. The ADMM solution procedure to solve

the optimization problem (4.8) is discussed next.

4.4 Sparse Feedback Design Procedure

In this section the ADMM based sparse feedback algorithm presented in [104]

is adapted to design sparse feedback controllers for mixed H2/H∞ control. A pre-

liminary property required in the design algorithm is proved first.
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Lemma 4.4.1. For a given γ > 0, let F be a stabilizing gain such that Ã = A+BFC

and Ãγ = Ã+ γ−2B∞B
T
∞X∞ are Hurwitz, C̃z = Cz +DzFC then,

∇FJ = 2
[
DT

z C̃z +BTX∞

]
Y CT , (4.10)

where ∇F (·) is the gradient of (·) with respect to F and Y ≻ 0, X∞ ≽ 0 are the

solutions of,

ÃTX∞ +X∞Ã+ γ−2X∞B∞B
T
∞X∞ + C̃T

z C̃z = 0, (4.11a)

ÃγY + Y ÃT
γ +B2B

T
2 = 0. (4.11b)

Proof. From [115], the derivative J ′dF where dF is the differential of F is,

J ′dF = Tr
(
∇FJ

TdF
)
= Tr

(
B2B

T
2 X

′
∞dF

)
. (4.12)

Differentiating (4.11b) with respect to F gives,

ÃT
γX

′
∞dF +X ′

∞dFÃγ + (BdFC)T X∞ +X∞ (BdFC)

+ (DzdFC)
T C̃z + C̃T

z (DzdFC) = 0.

(4.13)

Multiplying (4.11b) by X∞dF and (4.13) by Y . Subtracting new (4.13) from new

(4.11b), taking trace and using (4.12) gives the required result (4.10).

�

Next subsections present the steps involved in the design procedure.

4.4.1 Initialization Step

Select the weight matrix W to be a matrix of ones of the size same as F . Set

λ and γ. Choose initial stabilizing F 0, G0 = F 0, Λ0 = 0. Set convergence constants

εFG, εGG, εF , ADMM iteration k = 0.
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4.4.2 F−Minimization Step

The F−minimization involves solving the following problem,

F k+1 = arg min
F

Lρ

(
F,Gk,Λk

)
. (4.14)

The problem (4.14) is reformulated using Uk = Gk −
(

1
ρ

)
Λk and completing the

squares with respect to F as,

F k+1 = arg min
F

ϕ (F ) ,

ϕ (F ) = J (F ) +
ρ

2
||F − Uk||2F .

(4.15)

The problem (4.15) is solved using a modified version of Anderson-Moore algorithm

[116] as follows.

1. Set i = 0, stabilizing Fi = F k.

2. Using Fi, compute X∞i from (4.11a).

3. Using Fi and X∞i compute Yi from (4.11b).

4. The necessary optimality condition of (4.14) using (4.10) and Assumption (A3)

is ∇Fϕ = ∇FJ+ρ
(
F − Uk

)
= 0 which yields the following Sylvester equation,

2
(
RzFC +BTX∞

)
Y CT + ρ

(
F − Uk

)
= 0. (4.16)

Using Fi and X∞i and Yi, compute F i.

5. Form F̃i = F i−Fi. Compute Ftemp = F i+siF̃i, where step-size si is calculated

using Armijo rule [56, 104].

6. If ||∇Fϕ (Fi) ||F < εF then F k+1 = Fi, end F−minimization and go toG−minimization

in Section 4.4.3. Else, i = i+ 1 and Fi = Ftemp go to Step 2.
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4.4.3 G−Minimization Step

The G−minimization involves solving the following problem,

Gk+1 = arg min
G

Lρ

(
F k+1, G,Λk

)
. (4.17)

The problem (4.17) is reformulated using V k = F k+1 +
(

1
ρ

)
Λk and completing the

squares with respect to G as,

Gk+1 = arg min
G

ϕ (G) ,

ϕ (G) = λ
∑
i,j

Wij|Gij|+
ρ

2
||G− V k||2F .

(4.18)

The function ϕ (G) in (4.18) is rewritten as ϕ (G) =
∑

i,j

(
λWij|Gij|+ ρ

2

(
Gij − V k

ij

)2)
and the component-wise unique solution is [25, 104],

Gk+1
ij =


(
1− λ

ρ

Wij

|Vij |

)
Vij, if |Vij| > λ

ρ
Wij,

0, if |Vij| ≤ λ
ρ
Wij.

(4.19)

4.4.4 Λ−Update Step

The value of Λ is updated as,

Λk+1 = Λk + ρ
(
F k+1 −Gk+1

)
. (4.20)

4.4.5 Convergence Testing Step

If ||F k+1 − Gk+1||F ≤ εFG and ||Gk+1 − Gk||F ≤ εGG, then ADMM convergence is

achieved. Optimal values of unknowns are F opt = F k, Gopt = Gk,Λopt = Λk and go
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to next step in Section 4.4.6. Else, k = k+1 and go to ADMM step in Section 4.4.2

with F k, Gk,Λk.

4.4.6 Reweighing Step

The ADMM procedure steps are from Section 4.4.2 to Section 4.4.5. For im-

proving the sparsity of F , the ADMM procedure should be restarted by readjusting

(reweighing) the weight matrix W with respect to F opt as follows,

Wij =
1∣∣F opt

ij

∣∣+ εW
, 0 < εW ≪ 1. (4.21)

The ADMM procedure is restarted with the new weight matrix W as per (4.21) and

k = 0, F 0 = F opt, G0 = Gopt,Λ0 = Λopt. From computational experience εW = 10−3

and repeating the ADMM procedure with new weights for 5 times gives good results.

4.5 Comments on Algorithm Implementation

Some points to be considered while implementing the sparse controller design

algorithm are described in this section.

4.5.1 Selection of Initial Stabilizing F

The success of the algorithm depends upon availability of the initial stabiliz-

ing F . When full-state feedback controller is used, the initial stabilizing F is the

standard LQR gain. When F is a output feedback controller, then the initial sta-

bilizing F is computed using method described in [117]. It should be noted that
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computing an initial stabilizing output feedback F is itself a challenging task and

may not always be possible.

4.5.2 Selection of γ

The value of γ is selected with respect to the initial stabilizing F . For a stable

closed loop system (in Hurwitz sense i.e all the eigenvalues of Ã have negative real

parts), the analytical expressions for computing the lower bound (γlb) and upper

bound (γub) of γ are provided in [118]. Any γ satisfying 0 < γlb ≤ γ ≤ γub is the

H∞ norm if the Hamiltonian matrix H for the ARE in (4.6) [118],

H =

 Ã γ−2B∞B
T
∞

−C̃T
z C̃z −ÃT

 (4.22)

has no purely imaginary eigenvalues.

4.5.3 Convergence

The convergence of the sparse controller design algorithm depends on the

selection of γ and sparsity parameter λ.

Proposition 4.5.1. For a given γ, λ, if the sparse controller design ADMM based

algorithm described in Section 4.4 converges, then it converges to a critical point of

(4.7).

Proof. Convergence of ADMM to (F ∗, G∗,Λ∗) implies F ∗ −G∗ = 0. F ∗ minimizes

(4.14) implies ∇FJ (F ∗) + Λ∗ = 0. G∗ minimizes (4.17) implies λ∂g (G∗)− Λ∗ = 0.

Here, ∂g is the sub-gradient of convex function g. Above discussion along with
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F ∗ −G∗ = 0 implies ∇FJ (F ∗) + λ∂g (F ∗) = 0 which is the necessary condition for

optimality of (4.7). Hence, (F ∗, G∗,Λ∗) is the critical point of (4.7).

�

4.5.4 Complexity of Algorithm

The ADMM algorithm described in Section 4.4 uses AREs or Lyapunov equa-

tions which can be solved cheaply with a computational complexity of O (n3) [58]

rather than the expensive semidefinite programming methods with complexity O (n6)

[119]. Thus, repeatedly solving the sparse design problem for different values of in-

put parameters becomes a feasible task for the designer and will result in sparser

controllers with acceptable γ.

4.5.5 Miscellaneous Points

The algorithm breaks down when γ is too small or λ is too large. In such

situations, adjusting values of γ and λ will ensure smooth path for the ADMM

procedure to achieve convergence with acceptable γ and sparsity.

4.5.6 Structured Feedback Design

Structured feedback for mixed H2/H∞ control can be designed using Lemma

4.4.1 and method described in [82].

Next, sparse controller design procedure for a class of second order systems is
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discussed.

4.6 Class of Second Order Systems

In this section, sparse controller design for a class of a second order dynamical

systems with special properties is studied. The class of systems has dynamics as

follows,

Mθ̈ +Dθ̇ + Lθ = Buu+Bww,

y = Cyθ̇, z = Cz

θ
θ̇

+Dzu, u = Fy.

(4.23)

The dynamics in (4.23) is followed by several practical systems such as structural

systems and linearized power system/network swing equation. M,D,L are inertia,

damping and stiffness or graph Laplacian matrices respectively. The dynamics in

(4.23) is rewritten as in (4.1) as,

x =

(
θ θ̇

)T

, w2 = w∞ = w,

A =

 0 I

−M−1L −M−1D

 , B =

 0

M−1Bu

 ,

B2 = B∞ =

 0

M−1Bw

 , C =

(
0 Cy

)
.

(4.24)
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The matrix Dz should satisfies the assumption (A3) in Section 4.2. It is also assumed

that the sensors, actuators as well as disturbances are collocated i.e.,

Cz =

0 Cz0

0 0

 , Dz = Dz,

Bu = Bw = CT
y = CT

z0.

(4.25)

Due to specific properties, both structural systems and linearized swing equation are

separately discussed next. Let αmax (Z) be the largest eigenvalue of the symmetric

matrix Z. Matrix Z† be the Moore-Penrose generalized inverse [18] of matrix Z.

For a given real matrix Z, the matrix Z⊥ is the orthogonal complement such that

Z⊥Z = 0 and Z⊥Z⊥T ≻ 0.

4.6.1 Structural Systems

For structural systems (4.23), M,D,L are symmetric positive definite matri-

ces. Two properties from [66] related to structural systems are stated below.

Theorem 4.6.1. [66] Consider a structural system (4.23) and its state space rep-

resentation (4.24) with assumptions (4.25) and Dz = 0. The system has an open

loop (i.e. u = 0) H∞ norm γ0 which satisfies γ0 < γmax = αmax

(
BT

uD
−1Bu

)
.

Theorem 4.6.2. [66] Consider a structural system (4.23) and its state space rep-

resentation (4.24) with assumptions (4.25) and Dz = 0. For any γ0 < γmax there

exists a symmetric matrices F̃0 and F0 as follows.

1. If Bu is square and invertible, then

F0 ≻ F̃0 =
1

γ0
I −B−1

u DB−1
u

T
. (4.26)
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2. If BuB
T
u is singular, then

F0 ≻ F̃0 = B†
u

[
DB⊥

u

T
(
B⊥

uDB
⊥
u

T
)−1

B⊥
uD −D +

1

γ0
BuB

T
u

]
B†

u

T
. (4.27)

The F0 computed above is such that for F = −F0, the matrix (A+BFC) is

Hurwitz and the closed loop system has an H∞ norm less than γ0.

Remark 4.6.1. As Bu is a full column rank matrix with dimension nx × nu,

its Moore-Penrose generalized inverse is B†
u =

(
BT

uBu

)−1
BT

u . The orthogonal

complement of Bu which is B⊥
u is computed using the singular value decompo-

sition (SVD) [18] of Bu. The SVD of Bu =

(
Pnu|Pnx−nu

)Σnu

0

QT
nu

. Then

B⊥
u = P T

nx−nu
, where Pnx−nu is a matrix of dimension nx × (nx − nu).

When Dz ̸= 0, then F̃0 computed as in Theorem 4.6.2 results in a closed loop

system with H∞ norm greater than γ0 as proved in Proposition 4.6.2 next.

Proposition 4.6.2. Consider the structural systems (4.23) and (4.24) with assump-

tions (4.25). Let F̃0 be computed for given γ0 > 0 and Dz = 0 as in Theorem 4.6.2.

If Dz ̸= 0, then the closed loop H∞ norm of the system is less than γ with γ > γ0.

Proof. Let for the closed loop system (4.23) and (4.24), Ã = A + BF̃0C with

Dz = 0. Ã is stable. The closed loop system has an H∞ norm less than γ0 and

satisfies the bounded real lemma (BRL) [87] for a symmetric Lyapunov matrix
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P =

L 0

0 M

 ≻ 0 as follows,


ÃTP + PÃ PB∞ CT

z

BT
∞P −γ0I 0

Cz 0 −γ0I

 ≼ 0. (4.28)

Let C̃z = Cz +DzF̃0C and Θ = ÃTP + PÃ then,
Θ PB∞ C̃T

z

BT
∞P −γI 0

C̃z 0 −γI

 =


Θ PB∞ CT

z

BT
∞P −γI 0

Cz 0 −γI


︸ ︷︷ ︸

BRL1

+


0 0 (DzF0C)

T

0 0 0

DzF0C 0 0


︸ ︷︷ ︸

BRL2

.

(4.29)

From (4.28), BRL1 ≼ 0 for γ = γ0 and BRL2 is a symmetric real indefinite matrix

with 0 (zero) trace. Then, BRL1 + BRL2 ≼ 0 for γ > γ0. Hence for Dz ̸= 0, the

closed loop H∞ norm of the system is less than γ with γ > γ0.

�

Remark 4.6.3. From Theorem 4.6.2 for F0 = F̃0 + cfI with cf > 0 and Dz = 0,

the closed loop system will have an H∞ norm less than γ0. When Dz ̸= 0, suitable

values of cf and γ are selected using Section 4.5.2 and then the sparse feedback design

procedure is applied. To get a better design, the design procedure is repeated for

various cf , γ.

Next, properties of the linearized swing equation are discussed.
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4.6.2 Linearized Swing Equation

For the linearized swing equation (4.23), M,D are diagonal positive definite

matrices. The Laplacian matrix L represents the network interactions and is sym-

metric positive semidefinite i.e. L = LT ≽ 0. Let nθ be the dimension of the

vector θ in (4.23), 1nθ
be a vector of 1’s with dimension nθ, 0 be a vector of 0’s

of appropriate dimension as required and η0 =

1nθ

0

 ∈ R2nθ . L has a 0 (zero)

eigenvalue with the corresponding eigenvector 1nθ
i.e. L1nθ

= 0. The matrix A is

not Hurwitz but marginally stable i.e. A has one 0 (zero) eigenvalue corresponding

to the marginally stable mode η0. The remaining eigenvalues of A are stable having

negative real parts. Next lemma will show that the marginally stable mode η0 is

not observable.

Lemma 4.6.1. Consider the linearized swing equation (4.23) and (4.24) with as-

sumptions (4.25). If Cη0 = 0 then the marginally stable mode η0 corresponding to

the eigenvalue 0 is not observable.

Proof. As Aη0 = 0, Cη0 = 0 implies from [12] the required result.

�

The unobservable mode η0 does not appear in the performance output z and

hence, the system has a finite H2 norm as shown in [120]. If the marginally stable

mode is eliminated then the remaining system is stable and has a finite H∞ norm.

To eliminate the marginally stable mode, the system needs to be transformed into

a basis orthogonal to η0. Consider the SVD of matrix A, A = UAΛAV
T
A . VA is a
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2nθ × 2nθ matrix with the first 2nθ − 1 column vectors orthogonal η0. Let, Φ be the

2nθ × (2nθ − 1) transformation matrix composed of the first 2nθ − 1 column vectors

of the matrix VA such that,

ΦTη0 = 0, ΦTΦ = I, ΦΦT = I − 1

nθ

η0η
T
0 . (4.30)

The new state vector in the transformed basis is ξ = ΦTx ∈ R2nθ−1. The system

matrices are transformed as,

A = ΦTAΦ, B = ΦTB = B∞,

C = CΦ, Cz = CzΦ, Dz = Dz.

(4.31)

The transformed system (A,B, C,B∞, Cz,Dz) is stable. The Proposition 4.6.4 pre-

sented next shows that the Theorem 4.6.1, Theorem 4.6.2 and Proposition 4.6.2 in

Section 4.6.1 derived for structural systems are also applicable for the transformed

linearized swing equation.

Proposition 4.6.4. Theorem 4.6.1, Theorem 4.6.2 and Proposition 4.6.2 in Section

4.6.1 derived for structural systems are also applicable for the transformed linearized

swing equation (A,B, C,B∞, Cz,Dz).

Proof. Consider the Lyapunov matrix P̃ = ΦTPΦ with P =

L 0

0 M

. P ≽ 0 but

P̃ ≻ 0 as the transformed basis does not contain the marginally stable mode η0. As

the transformed system (A,B, C,B∞, Cz,Dz) is stable then from BRL [87] ∃γ > 0

103



such that for Dz = 0, u = 0,

M =


AT P̃ + P̃A P̃B∞ CT

z

BT
∞P̃ −γI 0

Cz 0 −γI

 ≼ 0. (4.32)

Using (4.30) and (4.31),

M = ΠT


ATP + PA PB∞ CT

z

BT
∞P −γI 0

Cz 0 −γI


︸ ︷︷ ︸

BRLP

Π ≼ 0, where Π =


Φ 0 0

0 I 0

0 0 I

 .

(4.33)

For M ≼ 0 requires BRLP ≼ 0. The required result now follows from [66] and

Section 4.6.1.

�

For Bu = I, for the swing equation with Dz = 0, F0 computed using Theorem 4.6.1

is a sparse diagonal stabilizing controller gain. But when Dz ̸= 0, the sparse (diag-

onal) feedback can be designed using only matrix operations as shown in Example

4.7.2 in Section 4.7.

Next, examples are presented justifying the sparse controller design design

procedure.

4.7 Examples

In this section two examples justifying the proposed mixed H2/H∞ sparse

controller design procedure are presented. The first example is a structural system
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while the second example is a linearized swing equation for a power network adapted

from [120].

4.7.1 Structural System Example

Consider a chain of mass-spring-damper blocks of length N = 50. Each block

has values of mass, stiffness and damping coefficient to be unity. This leads to a

second order system similar to (4.23). For this case inertia matrix M = I where I is

a 50×50 identity matrix. The damping matrix D and stiffness matrix L are 50×50

symmetric tridiagonal matrices with 2 at each main diagonal place and −1 at each

first sub- and super-diagonal places. Bu = B∞ = B2 = Cz0 = I, Dz =

 0

√
10I

.

The state vector is of dimension 100 and the state matrix is of dimension 100×100.

The system is controlled by a sparse state feedback (SpSF) and a sparse output

feedback (SpOF) control. The H∞ norm is selected as γ = 8. The analysis and

comparison for the SpSF and SpOF cases is presented next.

4.7.1.1 Sparse Full State Feedback

In this case the complete state vector is measured which implies C is an identity

matrix of dimension 100. The initial stabilizing F i.e F 0
SF is the LQR feedback

computed from the following,

ATX +XA+ CT
z Cz −XB

(
DT

z Dz

)−1
BTX = 0,

F 0
SF = −

(
DT

z Dz

)−1
BTX.

(4.34)
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The dimension of FSF is 50× 100 which means F has 5000 unknown variables and

λ = 0.00248. The structure of synthesized F is as shown in Figure 4.2 with the dots

representing non-zero values.

0 20 40 60 80 100
nz = 328

0

20

40

Figure 4.2: Designed sparse FSF

4.7.1.2 Sparse Output Feedback

In this case only the velocity components of the state are measured which

implies C =

(
0 I

)
of dimension 50 × 100. The initial stabilizing F i.e F 0

OF is

computed as per Proposition 4.6.2 with cf = 4. The dimension of FOF is 50 × 50

which means F has 2500 unknown variables and λ = 0.00285. The structure of

synthesized F is as shown in Figure 4.3 with the dots representing non-zero values.
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0 50
nz = 238

0

20

40

Figure 4.3: Designed sparse FOF

Parameter Full State Feedback Output Feedback

λ 0.00248 0.00285

No. of unknowns 5000 2500

Initial non-zero Fij 5000 148

Optimal non-zero Fij 328 238

Initial J0 35.12 410.52

Optimal J 35.31 35.53

Initial squared H2 norm 33.64 398.5

Optimal squared H2 norm 33.81 34.01

Execution time (CPU seconds) 26.48 60.69

Table 4.1: Sparse full state and output feedback comparison
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4.7.1.3 Comparison of Results

The proposed algorithm is programmed in MATLAB [61] on a 64-bit laptop

computer with core i7-7500 processor and 16 GB RAM. The Table 4.1 shows the

comparison of results for sparse full state and output feedback controllers. It is

interesting to note from Figure 4.2 that the state feedback only uses the velocity

measurements. This is because in the performance index z, the weight matrix Cz

only multiplies the velocity components of the state. The final designed controllers

for both full state and output feedback are dependent on the choice of the initial

stabilizing F . In case of full state feedback, the initial and optimal squared H2 norms

are almost the same. For the output feedback case, although the initial stabilizing

F0 computed using Proposition 4.6.2 is sparse and tridiagonal with initial 94.08%

sparsity but the system has a large squared H2 norm. The optimal F has 90.48%

sparsity with squared H2 norm less than one-tenth of the initial. Thus by sacrificing

3.6% sparsity, the performance of the system has improved more than 10 times.

From Table 4.1, it is evident that the execution time of the design procedure is very

less and this facilitates the application of the procedure for different values of cf , γ, λ

in order to obtain a better F .

4.7.2 Linearized Swing Equation Example

In this section, a 12 bus three-area power network adapted from [120] is studied

to show the efficacy of Proposition 4.6.4. The matrices M,D,K of dimension 9× 9
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are as follows.

M =

(
37.24 12.41 7.22 35.38 35.38 12.73 37.24 37.24 37.24

)T

,

D =

(
1.95 3.34 2.71 2.29 1.11 4.77 2.23 2.23 7.50

)T

,

L =

20.22 −7.82 −12.40 0 0 0 0 0 0

−7.82 38.82 −31.00 0 0 0 0 0 0

−12.40 −31.00 58.89 0 0 −7.81 0 0 −7.68

0 0 0 20.55 −7.81 −12.74 0 0 0

0 0 0 −7.81 40.48 −32.67 0 0 0

0 0 −7.81 −12.74 −32.67 61.67 0 0 −8.45

0 0 0 0 0 0 19.79 −7.80 −11.99

0 0 0 0 0 0 −7.80 38.37 −30.57

0 0 −7.68 0 0 −8.45 −11.99 −30.57 58.69



.

Bu = B∞ = B2 = Cz0 = I where I is a 9 × 9 identity matrix. The system matrix

A is of dimension 18 × 18. For Dz = 0, by using Proposition 4.6.4, γmax and F0

for γ0 < γmax are computed by using matrix operations. When Dz ̸= 0, from

Proposition 4.6.4, the new closed loop γ > γ0 and satisfies 0 < γlb < γ < γub.

γlb, γub are computed as per Section 4.5.2 for C̃z = Cz+DzF0C. The new stabilizing

feedback gain F = F0 + cfI is computed by adjusting γ and cf . As F0 is a sparse

diagonal matrix, the resulting F is also diagonal. For the considered example, with

Dz = 0 gives γmax = 0.9 and F0 is computed for γ0 = 0.8 as per Proposition
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4.6.4. When Dz =

 0

2I

 where I is a 9 × 9 identity matrix, γlb = 2.1, γub = 70.5.

The optimal F is computed by adjusting values of γ and cf The optimal values

are: γ = 2.2 and cf = 1.8. Since only matrix operations, are utilized, the design

procedure although heuristic is very fast which makes it practically very useful.

This justifies Proposition 4.6.4. To further optimize the performance, a structured

feedback design problem as per Section 4.5.6 can be solved using the computed F

as initialization and diagonal structure as constraint.

4.8 Summary

In this chapter, an ADMM based computationally fast and scalable procedure

to design sparse mixed H2/H∞ feedback controllers has been presented. The scal-

ability of the design procedure facilitates its usage for large scale practical applica-

tions. Sparse feedback design for a class of second order systems such as structural

systems and power systems/networks which are widely applied in real world has

also been described. While selection of initial stabilizing controller still remains a

challenge for the general sparse output feedback problem, it has been successfully

resolved for the class of second order systems described in this chapter.
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Chapter 5: Optimal Actuator Placement

This chapter is based on the publication [121].

A completely controllable linear dynamical system can be steered from any

given initial state to any specified final state with an application of input control

energy. The input control energy is provided through a combination of actuators.

It is desirable to have a limited number of actuators, which also presents the pos-

sibility of multiple actuator combinations that render the system completely con-

trollable. Hence, the optimal actuator placement problem very important in system

design. Previous studies have been mainly focused on solving the optimal actuator

placement problem using greedy heuristic methods which can provide a sub-optimal

solution.

In this chapter, the optimal actuator placement problem is presented as a

0/1−MISDP problem, and is solved using the branch-and-bound procedure [27].

The problem formulation can be applied to both stable and unstable systems, and

the solution procedure does not require an initial controllable actuator combination

(starting point). Numerical simulations performed on two examples yield the global

optimal solution for the optimal actuator placement problem.

111



5.1 Introduction

Actuators are utilized to control many complex systems such as biological

networks [122, 123], social networks [124], electrical smart grids [125] and traffic

system networks [126].

The concept of controllability was first introduced by Kalman [127] ,and since

then it has been researched extensively. The work [127] answered the question

whether the system is completely controllable or not, and sheds some light regarding

the “quality” [64] of a completely controllable system. The quality of a completely

controllable can be neglected if there exists a unique combination of actuators. If

multiple combinations of actuators are able to completely control a certain system,

then it is useful to order the various actuator combinations with respect to a “metric”

so that non-optimal selection of actuators can be avoided.

The actuators require “control energy” to actuate (control) the system, and

this concept can be utilized for ordering the potential actuator combinations. One

of the earliest work on optimally selecting the actuator combination based on the

control energy perspective was reported in [128]. Three physical measures, based

on the control energy concept, were proposed in [64] to quantify the quality of a

completely controllable system. The three measurable quantities are determinant,

trace and the maximal eigenvalue of the inverse characteristic controllability gram-

mian [64]. In the recent work [129], two more energy based controllability criteria

were specified, namely, trace and minimum eigenvalue of the controllability gram-

mian. In [130], it has been demonstrated that the trace of grammian as a metric may
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not automatically ensure controllability and can lead to a poor choice of actuator

combination.

An actuator is a source of input control energy consumption. The optimal

actuator placement problem involves selection of an actuator combination using a

limited number of actuators such that the system is completely controllable and

consumes minimum energy. This problem was shown to be NP-hard [16]. Actuator

placement for linear systems based on H2 and H∞ optimization was presented in

[131]. An iterative procedure based on the ADMM [25] procedure was presented

in [132]. A framework for structural input and control configuration selection to

achieve structural controllability was presented in [133].

It has been proved that the control energy is equivalent to the trace of the

inverse of controllability grammian metric and is a supermodular function [2, 129].

This supermodularity property is used to solve the actuator placement problem

using a greedy heuristic procedure [134] to obtain a solution which is provably

close to the optimal solution. Actuator placement problem was solved as a leader

selection problem in network consensus dynamics in [135] where the leader states

act as control inputs. The solution procedure in [135] is based on a greedy heuristic

procedure which used supermodularity property of the mean square error of link

noise. In [16], the actuator placement problem was solved using greedy heuristic

algorithm which maximizes the rank increase of the controllability matrix. In [2],

the actuator placement problem was solved iteratively by using supermodularity.

The available formulations for the optimal actuator placement problems are solved

using procedures based on greedy heuristic algorithm. The greedy procedure does
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not guarantee global optimality of the obtained solution. In the related work [129],

authors assume a controllable system to place additional actuators to minimize the

input control energy metric using the greedy heuristic procedure. This assumption

of an initially controllable system introduces sub-optimality in the solution. In

all the aforementioned formulations, it was assumed that trace of inverse of the

controllability gramian is supermodular. In [136], it was proved that trace of inverse

of the controllability gramian is not supermodular. Hence, no guarantee can be

established on the computed solution.

In this work, a novel formulation to solve the optimal actuator placement

problem for a linear system is presented. The nonlinear mixed integer optimal actu-

ator placement problem is reformulated into an equivalent novel linear 0/1−MISDP

problem using a convex relaxation technique. The proposed formulation is applied

to both stable and unstable chain of integrators [2] (with states ≤ 25). The afore-

mentioned examples, when solved using a branch-and-bound procedure, leads to the

global optimal actuator placement solution which is verified by exhaustive search

procedure, and is also compared with the greedy heuristic procedure. It should be

noted that no theoretical guarantee regarding the optimality or global nature of the

computed solution has been provided in this work.

The chapter is organized as follows: In section 5.2, the formulation of the

problem is developed which is followed by the solution procedure in Section 5.3. In

Section 5.4, numerical examples using the proposed approach are studied, and a

summary of the chapter is presented in Section 5.5.

114



5.2 Problem Formulation

Consider the continuous time linear system,

ẋ (t) = Ax (t) +Bu (t) ,

t ∈ R, t ≥ 0,

(5.1)

where A = (Aij) ∈ Rn×n, B = (Bij) ∈ Rn×n, are system matrices, x ∈ Rn×1, x0 ∈

Rn×1, u ∈ Rn×1 denote the state vector, initial state vector and control input of the

system respectively. The matrix B is a 0/1-diagonal matrix, i.e., Bii ∈ {0, 1} and

Bij = 0, ∀i ̸= j. The domain of B is denoted by DB. If Bii = 1 =⇒ the state

xi receives input, while Bii = 0 =⇒ the state xi does not receive any input. For

a matrix X, the notation X ≽ (≻) 0 implies X is a positive semidefinite (definite)

matrix and XT denotes the transpose of matrix X. Sn denotes the space of n × n

real symmetric matrices.

For the pair (A,B) in (5.1) the controllability grammian Wc, for any finite

t1 ∈ R, t1 > 0 and initial condition x (0) = x0, x0 ∈ Rn×1 can be written as [2, 137],

Wc (t1) =

∫ t1

0

eAtBBT eA
T tdt. (5.2)

The control energy for the system in (5.1) is,

Control Energy = min
u,x(0)=x0

∫ t1

0

uT (t)u (t) dt. (5.3)

As t1 → ∞, Wc (t1) → Wc the control energy is related to the controllability gram-

mian as [137],

Control Energy = min
u,x0

∫ ∞

0

uT (t)u (t) dt = xT0W
−1
c x0. (5.4)
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If x0 is assumed to be a random vector uniformly distributed on a unit sphere with

zero mean and unit variance, then the average control energy is,

Average Control Energy = Tr
(
W−1

c

)
, (5.5)

where Tr (·) represents the trace of (·).

The controllability grammian Wc can be computed as [138],

Case 1: If A is Hurwitz, then Wc is the unique solution of the equation,

AWc +WcA
T +BBT = 0. (5.6)

Case 2: If A is not Hurwitz but the pair (A,B) is stabilizable, then X is the

stabilizing solution to,

XA+ ATX −XBBTX = 0. (5.7)

Let F = −BTX, then Wc is the solution to,

(A+BF )Wc +Wc (A+BF )T +BBT = 0. (5.8)

If A is stable then X = 0 and (5.8) reduces to (5.6).

Another objective of actuator placement is the use of a limited number of

actuators to control the system. Taking into consideration minimum control energy
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and limited number of actuators the optimal actuator placement problem is,

min
u,B∈DB

∫ ∞

0

uT (t)u (t) dt

Subject to the constraints,

ẋ (t) = Ax (t) +Bu (t) ,

x (0) = x0,

Tr (B) ≤ Bmax,

(A,B) is controllable,

(5.9)

where Bmax is the upper limit on the number of actuators to be used.

Using the average control energy, the optimal actuator placement problem,

independent of the initial state and time with Ŵc = W−1
c , can be formulated as

follows,

min
B∈DB ,X≽0,Ŵc≽0

Tr
(
Ŵc

)
Subject to the constraints,

Tr (B) ≤ Bmax,

XA+ ATX −XBBTX = 0,

Ŵc

(
A−BBTX

)
+
(
A−BBTX

)T
Ŵc + ŴcBB

T Ŵc = 0.

(5.10)

The optimization problem in (5.10) has a linear objective and nonlinear equality con-

straints. The above problem can be reformulated as an optimization problem with

linear objective and bilinear constraints. To this end, the following lemma is proved.

Lemma 5.2.1. Consider the time invariant linear system in (5.1) where A may or

may not be Hurwitz. If the pair (A,B) is stabilizable, then
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1. ∃X ≽ 0, X ∈ Sn such that XA+ ATX −XBBTX = 0,

2. ∃F ∈ Rn×n,Wc ≽ 0,Wc ∈ Sn such that F = −BTX and (A+BF )Wc +

Wc (A+BF )T +BBT = 0,

3. ∃Ŵc ≽ 0, Ŵc ∈ Sn such that Ŵc = W−1
c and Ŵc (A+BF )+ (A+BF )T Ŵc +

ŴcBB
T Ŵc = 0,

4. The pair
(
X, Ŵc

)
is the solution of the optimization problem

max
X,Ŵc

Tr
(
Ŵc

)
Subject to the constraints,ATX +XA XB

BTX I

 ≽ 0,

ATXW +XWA −XWB

−BTXW I

 ≽ 0,

XW = X − Ŵc,

X ∈ Sn, Ŵc ∈ Sn.

(5.11)

Proof. Part 1 and 2 have been proved in Theorem 2 [138].

3. Since Wc satisfying (5.8) exists and is finite then Wc is invertible and Ŵc =

W−1
c ≽ 0 exists with WcŴc = I. Pre-multiplying and post-multiplying (5.8)

by Ŵc gives,

Ŵc (A+BF ) + (A+BF )T Ŵc + ŴcBB
T Ŵc = 0. (5.12)
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4. Substituting F = −BTX in (5.12) and using (5.7) gives,

ŴcA+ AT Ŵc − ŴcBB
TX −XBBT Ŵc

+ ŴcBB
T Ŵc = 0,

AT
(
Ŵc −X

)
+
(
Ŵc −X

)
A

+
(
Ŵc −X

)
BBT

(
Ŵc −X

)
= 0.

(5.13)

As (A,B) is stabilizable, from part 1 a unique X ≽ 0 exists which is the

solution of the ARE in (5.7). Hence, unique F = −BTX and corresponding

unique Ŵc ≽ 0 exist such that (A+BF ) is Hurwitz. As (5.7) and (5.13) are

AREs, X, Ŵc are solutions of the optimization problem [45] given by,

max
X,Ŵc

Tr
(
Ŵc −X +X

)
= Tr

(
Ŵc

)
Subject to the constraints,

SX :=

ATX +XA XB

BTX I

 ≽ 0,

SXW :=

ATXW +XWA −XWB

−BTXW I

 ≽ 0,

XW = X − Ŵc,

X ∈ Sn, Ŵc ∈ Sn.

(5.14)

�

Using the above Lemma 1, the problem in (5.10) can be written as an equivalent
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problem in (5.15) below. This is proved in Theorem 1.

min
B∈DB ,T,Z

Tr (Z22) + Tr (T22)

Subject to the constraints,

Tr (B) ≤ Bmax,

SZ (B,Z) := AZ11 + Z11A
T +BZT

12 + Z12B
T + I = 0,

ST (B, T ) := I − AT11 − T11A
T +BT T

12 + T12B
T = 0,

Z =

Z11 Z12

ZT
12 Z22

 ≽ 0, T =

T11 T12

T T
12 T22

 ≽ 0

Z ∈ S2n, T ∈ S2n.

(5.15)

Remark 5.2.1. It should be noted that when A is known to be Hurwitz, X = 0 in

(5.10) and Z = 0 in (5.15).

Remark 5.2.2. In the remainder of the chapter, it is understood that the symmetric

matrices Z and T have the same structure as defined in (5.15).

Theorem 5.2.1. Consider the linear system in (5.1). If the pair (A,B) is sta-

bilizable for B ∈ DB, then the actuator design optimization problem in (5.10) is

equivalent to the optimization problem in (5.15).

Proof. Using part 4 of Lemma 1, the optimal actuator placement problem can be
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reformulated as,

min
B∈DB

vL (B)

Subject to the constraints,

Tr (B) ≤ Bmax,

vL (B) = max
X,Ŵc

Tr
(
Ŵc

)
Subject to the constraints,ATX +XA XB

BTX I

 ≽ 0,

ATXW +XWA −XWB

−BTXW I

 ≽ 0,

XW = X − Ŵc,

X ∈ Sn, Ŵc ∈ Sn.

(5.16)

The Lagrangian of the problem in (5.14) is,

L (B,Z, T ) = Tr
(
Ŵc

)
+ Tr (ZSX) + Tr (TSXW ) ,

= Tr
(
Ŵc

)
+ Tr

(
Z11

(
ATX +XA

))
+ Tr

(
Z12B

TX + ZT
12XB + Z22I

)
+ Tr

(
T11

(
ATXW +XWA

))
+ Tr

(
T22I − T12B

TXW + T T
12XWB

)
,

(5.17)

where Z =

Z11 Z12

ZT
12 Z22

 ≽ 0, T =

T11 T12

T T
12 T22

 ≽ 0 are Lagrange multipliers. Using
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∂L
∂X

= 0, ∂L
∂Ŵc

= 0, the dual problem of (5.14) can be written as,

min
Z≽0,T≽0

Tr (Z22) + Tr (T22)

Subject to the constraints,

AZ11 + Z11A
T +BZT

12 + Z12B
T + I = 0,

I − AT11 − T11A
T +BT T

12 + T12B
T = 0.

(5.18)

When B = B̂ ∈ DB is held fixed, then problem in (5.14) is a convex problem. Since

(A,B) is stabilizable, from results in Section IV of [46], ∃X ≻ 0, Ŵc ≻ 0 such that

SX (X) ≻ 0 and SW

(
X, Ŵc

)
≻ 0. This leads to the existence of strong duality

between (5.14) and (5.18) [50, 51]. The problem can then be written as,

min
B∈DB

vL (B)

Subject to the constraints,

Tr (B) ≤ Bmax,

vL (B) = min
Z≽0,T≽0

Tr (Z22) + Tr (T22)

Subject to the constraints,

AZ11 + Z11A
T +BZT

12 + Z12B
T + I = 0,

I − AT11 − T11A
T +BT T

12 + T12B
T = 0.

(5.19)

Using the concept of projection [48], the problem (5.19) can be written as a single
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level problem,

min
B∈DB ,T≽0,Z≽0

Tr (Z22) + Tr (T22)

Subject to the constraints,

Tr (B) ≤ Bmax,

SZ (B,Z) := AZ11 + Z11A
T +BZT

12 + Z12B
T + I = 0,

ST (B, T ) := I − AT11 − T11A
T +BT T

12 + T12B
T = 0.

(5.20)

�

The following two propositions prove important properties of the formulations in

(5.10) and (5.15).

Proposition 5.2.3. Consider the linear system in (5.1) such that B = B̂ ∈ DB is

known. If the optimization problems in (5.10) is infeasible, then problem (5.15) is

also infeasible and vice versa.

Proof. From Theorem 1, problems (5.10) and (5.15) are equivalent. Hence, infea-

sibility of one implies infeasibility of the other.

�

Proposition 5.2.4. Consider the linear system in (5.1). For B = B̂ ∈ DB the

optimization problem in (5.15) is infeasible if and only if the pair
(
A, B̂

)
is uncon-

trollable.

Proof. When B = B̂ ∈ DB the pair
(
A, B̂

)
is uncontrollable ⇐⇒ the AREs in

(5.10) as well as SZ (B,Z) and ST (B, T ) in (5.15) have no positive semidefinite so-

lution leading to infeasible optimization problem (5.15).

�
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5.3 Solution Approach

The optimal actuator placement problem in (5.15) has bilinear terms in the con-

straints SZ (B,Z) and ST (B, T ). In SZ (B,Z) the bilinear product is between B

and Z12, and in ST (B, T ) the bilinear product is between B and T12. The bilinear

product is relaxed into linear inequalities using McCormick’s relaxation [26,139] as

follows,

Let, PY = BY, where, Y = ZT
12, T

T
12,

PY = (pij) , B = (bij) , Y = (yij) .

(5.21)

It is assumed that Y ∈
[
Y L, Y U

]
and B ∈ {0, 1}. Since B is a diagonal matrix, each

entry of PY , i.e, pij, will be of the form bijyij. The general term of the product pij

can be relaxed (dropping subscripts ij for brevity) as,

p = by,

p ≥ bLy + byL − bLyL,

p ≥ bUy + byU − bUyU ,

p ≤ bLy + byU − bLyU ,

p ≤ bUy + byL − bUyL.

(5.22)
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For bL = 0 and bU = 1, the constraints are reduced as,

p = by,

RY (B, Y, PY ) =



byL − p ≤ 0,

y + yU (b− 1)− p ≤ 0,

p− byU ≤ 0,

p− y − yL (b− 1) ≤ 0.

(5.23)

The general optimal actuator design problem can then be stated as,

min
B∈DB ,T≽0,Z≽0,PZ ,PT

Tr (Z22) + Tr (T22)

Subject to the constraints,

Tr (B) ≤ Bmax,

SPZ (B,Z, PZ) := AZ11 + Z11A
T + PZ + P T

Z + I = 0,

SPT (B, T, PT ) := I − AT11 − T11A
T + PT + P T

T = 0,

RZ (B,Z, PZ) ≤ 0,

RT (B, T, PT ) ≤ 0,

Z12 ∈
[
ZL

12, Z
U
12

]
, T12 ∈

[
TL
12, T

U
12

]
,

(5.24)

whereRZ (B,Z, PZ) andRT (B, T, PT ) represent vectors of corresponding McCormick’s

relaxation. The reformulation of the nonlinear optimization problem in (5.15) into

an equivalent linear optimization problem in (5.24) is proved in Theorem 2.

Theorem 5.3.1. For the linear system in (5.1), the optimal actuator placement

problems in (5.15) and (5.24) are equivalent.
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Proof. Consider the general bilinear product term in constraints SPZ (B,Z, PZ)

and SPT (B, T, PT ) in (5.24) as p = by as in (5.23). Now for any feasible value of

B ∈ DB, b = 0 or b = 1.

Case 1: b = 0,

RY (B, Y, PY ) =


p = 0

yL ≤ y ≤ yU .

(5.25)

Case 2: b = 1,

RY (B, Y, PY ) =


p = y

yL ≤ y ≤ yU .

(5.26)

From (5.25) and (5.26), it can be inferred that at any feasible B ∈ DB,

SZ (B,Z) = SPZ (B,Z, PZ) ,

ST (B, T ) = SPT (B, T, PT ) .

(5.27)

=⇒ Problems (5.15) and (5.24) are equivalent.

�

The optimal actuator design problem in (5.24) is a 0/1−MISDP problem. The

objective function and constraints are linear. The problem can be solved using

branch-and-bound procedure [140].

Remark 5.3.1. It should be noted that the above derived results are also applicable

for any general 0/1−B matrix.
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5.4 Examples

In this section, the proposed formulation is applied on two examples, namely

a stable integrator chain and an unstable integrator chain [2]. The proposed for-

mulation is tested on systems with increasing number of states/nodes. The stable

integrator chain system has −1 at each main diagonal entry and 1 at each first

sub-diagonal entry of the system matrix. Rest of the elements have value 0. An

example of a 5-node integrator chain is shown in Figure 5.1.

Figure 5.1: 5-node integrator chain [2]

The system matrix for the 5-node integrator chain is as follows,

A =



−1 0 0 0 0

1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1


. (5.28)

The maximum number of actuators are Bmax = ⌈n
4
⌉, where, n is the number

of states/nodes and ⌈·⌉ is the ceiling function. Here, 5 ≤ n ≤ 25 and n is
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an odd number. The unstable integrator chain system is formed by introduc-

ing 1 in the system matrix A at the position A (2, 2). It is assumed that Z12 ∈

15300 [−ones(n, n), ones(n, n)] and T12 ∈ 15300 [−ones(n, n), ones(n, n)]. Branch-

and-bound procedure is implemented to solve the optimal actuator placement prob-

lem using software MATLAB R2016a [61], with package YALMIP [62]. The simula-

tion is carried on a computer with Intel core i7-4770 CPU @3.40 GHz processor and

8 GB of RAM. An upper bound of 2000 iteration is set for the branch-and-bound

procedure of YALMIP. For n > 19 the algorithm stops after 2000 iterations.
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Figure 5.2: Comparison of branch-and-bound and greedy procedures for stable sys-

tem
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Figure 5.3: Comparison of branch-and-bound and greedy procedures for unstable

system

The branch-and-bound procedure, when applied to optimization problem in
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(5.24), computes the global optimal actuator combination for both stable and un-

stable systems. For n ≤ 17, the global optimal actuator placement combination is

also computed by exhaustively searching all possible actuator combinations. The

results of the exhaustive search were found to be identical to the results obtained by

the proposed formulation. Heuristic greedy procedure [129,134] is also implemented

to solve the optimal actuator placement problem. The comparison of results of the

greedy procedure and branch-and-bound procedures, for both stable and unstable

systems, are shown in Figure 5.2 and Figure 5.3.

 5 10 15 20 25

Number of states / nodes  n

   2

1702

3401

5101

6800

T
im

e
 (

C
P

U
s)

Stable Case

Unstable Case

Figure 5.4: Time complexity for stable and unstable system

5.5 Summary

This chapter presents a new formulation for the optimal actuator placement

problem with constraints on the number of actuators. The original time depen-

dent problem is converted into a time independent algebraic optimization problem

with mixed integer bilinear matrix equality constraints. Finally with application

of McCormick’s relaxation, the bilinear problem was converted into a 0/1−MISDP

which can be solved using branch-and-bound procedure. The utility of the proposed
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formulation is justified by applying it to design actuator placement for one stable

system and one unstable system. The proposed formulation, along with the appli-

cation of branch-and-bound procedure, yields a global optimal solution. This was

confirmed by an exhaustive search over all possible actuator combinations. How-

ever, it is to be noted that no theoretical guarantee regarding the optimality/global

nature of the computed solution has been provided in this chapter. Furthermore, no

initial assumption of controllable starting actuator combination is required to ini-

tiate the branch-and-bound procedure. In the examples considered in this chapter,

the proposed formulation along with branch-and-bound procedure outperforms the

greedy heuristic procedure which is evident from Figure 5.2 and Figure 5.3. For a

stable integrator system with n = 5 and Bmax = 2, the optimal actuator placement

obtained by using the proposed formulation is same as that presented in [2]. The

jumps in the objective function value as seen in Figure 5.2 and Figure 5.3 are due to

⌈n
4
⌉ actuators controlling n and n + 2 nodes. For example, n = 5 and n = 7 nodes

are controlled by 2 but n = 9 is controlled by 3 actuators. Hence this sudden jump

in objective function value has been observed.
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Chapter 6: Sensor Placement and Observer Design

A dynamic system is effectively regulated when the control applied is a reaction

to the changes happening in the system. The information about the changes in

some states of the system is generally measured as an output by a limited number

of expensive sensors. The unmeasured states are then estimated by an observer

using the information about the input and output. Thus, the placement of sensors

and observer design are interrelated and together they influence the estimate of the

complete state.

In this chapter, the sensor placement and observer design problem is studied for

a class of nonlinear systems in which the nonlinearity is at least locally Lipschitz. A

relation between Lipschitz constant, sensor positions, observer gain and asymptotic

estimation is derived using results from the literature. A heuristic procedure based

on the derived relation is proposed to place sensors and compute observer gain. The

proposed formulation and solution procedure is justified using a nonlinear dynamic

model of pipeline flow without a leak.
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6.1 Introduction

In general, sensor placement and observer design are treated as two sepa-

rate design problems. The sensor placement involves computing locations at which

sensors are placed and often lead to set function optimization problems [141]. Tra-

ditional approaches to place sensors are mainly focused on maximizing the observ-

ability of the system [142]. For LTI systems, observability for a given sensor location

combination is easily verified using Lyapunov equation [12]. In [129], it has been

proved that the trace of an observability matrix is a submodular set function of the

sensor locations. Using the submodularity property, scalable greedy approach [141]

is used to place sensors in LTI systems [129]. Controller design and observer design

are dual problems [143]. Hence, once sensors are placed, the observer can be easily

designed using well-known control design techniques.

The above mentioned techniques for sensor placement and observer design are

valid for LTI systems. In general, real world systems are often distributed and have

nonlinear dynamics. Usual procedure to place sensors in distributed systems is by

using discretization methods. The distributed system is first discretized into several

nodes and then the nonlinear dynamics can be written into state space form with the

node variables serving as state variables. Now, sensors are placed at (some of) these

nodes for measurement purpose and then methods like Kalman Filtering [143] are

used to estimate the complete state of the system. As the sensors to measure such

distributed processes are often expensive, it is desirable to place limited number of

sensors and then use effective state estimation techniques to compute the complete
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state.

Some distributed nonlinear processes like the pipeline fluid flow without a leak

may be represented by discretized nonlinear Lipschitz dynamics (refer Section 6.3).

In [144], it has been proved that the states of (at least locally) Lipschitz nonlinear

systems can be asymptotically estimated by an nonlinear observer with a linear gain.

Keeping in view the aforementioned requirements, in this chapter the sensor

placement and observer design is formulated as an optimization problem for a class

of Lipschitz nonlinear systems. A relationship between sensor locations, observer

gain, Lipshitz constant and asymptotic estimation is derived using results in the

literature. The derived relationship is used as an optimization metric and a heuristic

optimization procedure is developed to place sensors and design observer gain. The

proposed procedure is then applied to place sensors and design observer for a pipeline

flow without a leak dynamic system.

This chapter is organized as follows: In Section 6.2, sensor placement, observer

design problem and solution procedure is described. In Section 6.3, pipeline flow

without a leak dynamic model is studied followed by an example in Section 6.4. A

summary of the chapter in presented in Section 6.5.

6.2 Sensor Placement and Observer Design for Nonlinear

Dynamics

Consider the nonlinear system dynamics as follows.

ẋ = Ax+Bu+ g (x) , y = Cx. (6.1)
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where A ∈ Rn×n, B ∈ Rn×m, B ∈ Rn×n are system matrices, x ∈ Rn, u ∈ Rm, y ∈ Rn

denote the state vector, control input and the output vector of the system respec-

tively. The nonlinear function g (x) : Rn 7→ Rn is a Lipschitz nonlinear function

with a Lipschitz constant γ and is the nonlinear component of the dynamics. The

matrix C is a 0/1-diagonal output matrix, i.e., Cii ∈ {0, 1} and Cij = 0, ∀i ̸= j.

Here Cij is the element at the (i, j)th position in the matrix C. The domain of C

is denoted by DC . If Cii ̸= 0 implies that the output yi is measured, while Cii = 0

implies that the output yi is not measured. For a matrix X, the notation X ≽ (≻) 0

implies X is a positive semidefinite (definite) matrix and XT denotes the transpose

of matrix X. Sn denotes the space of n× n real symmetric matrices. The observer

(estimator) for the system (6.1) is,

˙̂x = Ax̂+Bu+ g (x̂) + L (y − Cx̂) , (6.2)

where x̂ is the estimate of x and L is the observer gain. The estimation error

dynamics is,

ė = (A− LC) e+ [g (x)− g (x̂)] , e = x− x̂. (6.3)

The objective of sensor placement is to place sensors such that the system (A,C)

is observable. The observer (gain) is designed such that the error dynamics (6.3) is

asymptotically stable. For nonlinear systems of type (6.1), the asymptotic stability

of the observer error dynamics is ensured by a result derived from Theorem 2 and

Theorem 5 from [144]. Let λi ({·}) be the ith eigenvalue of {·}, Re ({·}) be the

real part of {·} and |{·}| be the absolute value of {·}. Let (A− LC) = TΛT−1,

then K2 (T ) is the condition number of T . I be an identity matrix of appropriate
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dimension as required and j =
√
−1.

Proposition 6.2.1. Consider Lipschitz nonlinear dynamics (6.1) where g (x) is

a Lipschitz nonlinear function with Lipschitz constant γ and the pair (A,C) is

observable. Let (6.2) be the observer of (6.1). If the observer gain L is chosen such

that (A− LC) is Hurwitz and γ <
min

1≤i≤n

∣∣Re
(
λi(A−LC)

)∣∣
K2(T )

then the error dynamics in

(6.3) is asymptotically stable.

Proof. From Theorem 5 of [144], if γ <
min

1≤i≤n

∣∣Re
(
λi(A−LC)

)∣∣
K2(T )

then

min
ω≥0

λmin (A− LC − ωjI) > γ. From Theorem 2 of [144], if (A,C) is observable

and L is such that (A− LC) is Hurwitz and min
ω≥0

λmin (A− LC − ωjI) > γ then

the observer error dynamics (6.3) is asymptotically stable.

�

The Proposition 6.2.1 established a relation between sensor positions (C),

observer gain (L), Lipschitz constant (γ) and asymptotic stability of the observer

error dynamics. Computing minimum number of sensors such that a system is

observable is a NP-hard problem [145]. Hence, having an upper bound on the

number of sensors used is a practically useful solution. A heuristic procedure to

place sensors and design observer is presented next.

6.2.1 Sensor Placement and Observer Design Procedure

The conditions: (A,C) observable and placing eigenvalues of (A− LC) into

the far left half-plane, are not enough to ensure the asymptotic stability of the

error dynamics (6.3). Along with the aforementioned conditions, eigenvectors of
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(A− LC) also need to be well-conditioned.

Let V be the set of locations available for placing sensors, Cmax is the upper

bound on the number of sensors, S ⊂ V is a set of location of sensors. S contains

locations of diagonal C with value 1 i.e., Cii = 1 if and only if i ∈ S. Sini ⊂ V is

the initial set of locations of sensors such that (A,C ini) is observable. The objective

of sensor placement and observer design is to select C (i.e., S) and L such that

fS (S) =
min

1≤i≤n

∣∣Re
(
λi(A−LC)

)∣∣
K2(T )

> γ. To accommodate larger values of γ, the value of

fS should be as large as possible. A heuristic procedure to place sensors and design

observer is as follows.

1. Set n, V = {1, 2, 3, . . . , n}. Set j = 0, S0 = Sini = {1} or S0 = Sini = {n}.

2. e∗j = arg max
ej∈V \Sj−1

fS (S
j−1 ∪ {ej}), where fS (Sj−1 ∪ {ej}) =

min
1≤i≤2N−1

∣∣Re
(
λi(A−Lj

rC
j)
)∣∣

K2(T j)
.

Cj is constructed from Sj−1 ∪ {ej}. As,
(
AT , CjT

)
is controllable, Lj

r
T is

the LQR gain [143] computed using the ‘care’ function of MATLAB [61]

with Q = R = I where I is the identity matrix of appropriate dimension.

Sj = Sj−1∪{e∗j}. If j < Cmax−1, do j = j+1 and repeat Step 2 else SG = Sj

is the optimal sensor placement combination set and go to Step 3.

3. Construct C using SG from Step 2. L is computed form the following opti-
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mization problem.

max
L∈[L,L]

min
1≤i≤2N−1

∣∣Re
(
λi (A− LC)

)∣∣
K2 (T )

,

Subject to constraints,

Re
(
λi (A− LC)

)
< 0, i = 1, 2, . . . , 2N − 1,

(A− LC) = TΛT−1.

(6.4)

Problem (6.4) is solved using the ‘patternsearch’ function in MATLAB [61]

where initial solution L0 is the LQR gain computed as in Step 2.

Next, the sensor placement and observer design algorithm is applied to a pipeline

flow case study.

6.3 Case Study: Pipeline Flow

Figure 6.1 shows the model of a pipeline system. It is assumed that there are

no convective changes in velocity, the fluid has constant density and the pipeline

has constant cross-sectional area. The general dynamic equation for flow through a

pipeline without a leak is as follows [146, 147],

Figure 6.1: Pipeline model

∂q

∂t
+
Ar

ρ

∂p

∂z
+
frq|q|
2drAr

= 0,

∂p

∂t
+
ρb2

Ar

∂q

∂z
= 0,

(6.5)
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where p is pressure of the fluid, q is flow rate of the fluid, ρ is density of the fluid,

b is isothermic speed of sound, Ar is cross-section area of the pipeline, dr is inner

diameter of the pipeline, fr is friction coefficient between fluid and the pipeline, Lp

is length of the pipeline and z is spatial direction along the length of the pipeline

with z ∈ [0, Lp] , t ≥ 0. It is assumed that the pipeline is always parallel to the

ground so that gravitational effects are neglected. The term q|q| accounts for the

reverse flows. Neglecting reverse flow effects, the dynamic model is written as,

∂q

∂t
= −Ar

ρ

∂p

∂z
− frq

2

2drAr

,

∂p

∂t
= −ρb

2

Ar

∂q

∂z
.

(6.6)

If the pressure is represented by the pressure head h = p
ρg

, the dynamics (6.6) is

rewritten as,
∂q

∂t
= −k1

∂h

∂z
− k3q

2,

∂h

∂t
= −k2

∂q

∂z
,

(6.7)

where k1 = gAr, k2 = b2

gAr
, k3 = fr

2drAr
and g is the gravitational acceleration. The

dynamic model in (6.7) is discretized into N sections along the z-axis using a finite

difference method as follows [146, 147],

∂q

∂z
≈ qi+1 − qi

△zi
,

∂h

∂z
≈ hi+1 − hi

△zi
,

△zi = zi+1 − zi, Lp = zN+1 − z1.

(6.8)

The discretized flow dynamics are,

q̇i = a1 (hi − hi+1)− k3q
2
i , i = 1, 2, 3, . . . , N,

ḣi+1 = a2 (qi − qi+1) , i = 1, 2, 3, . . . , N − 1,

(6.9)
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where a1 = k1
△zi

, a2 = k2
△zi

,△zi = Lp

N
. The dynamic model in (6.9) is nonlinear.

The inlet and outlet pressure heads are h1 and hN+1 respectively. The input to the

dynamic system in (6.9) is u =

(
h1 hN+1

)T

. The state variables for the system

are pressure head and flow rate variables at discretization points i = 1, 2, 3, . . . , N .

The state vector x ∈ R2N−1 is written as,

x =

(
q1 h2 q2 h3 . . . hN qN

)T

. (6.10)

At steady state, ∂q
∂t

= 0, qi = q, the steady state pressure head as,

hi = h1 −
k3q

2

k1
zi. (6.11)

For a given q, the values of h1 and hN+1 can be appropriately selected. It should be

noted that N sections of the pipeline lead to N +1 discretization points and 2N −1

state variables. The pipeline flow dynamics is easily transformed as in (6.1). For

example when N = 3,

x =

(
q1 h2 q2 h3 q3

)T

,

A =



0 −a1 0 0 0

a2 0 −a2 0 0

0 a1 0 −a1 0

0 0 a2 0 −a2

0 0 0 a1 0


, g (x) =



−k3q21

0

−k3q22

0

−k3q23


.

(6.12)

For the pipeline flow dynamics as C is a diagonal matrix, the output consists of flow

rate and pressure measurements. State variable q1 is the inlet flow rate and qN is

the outlet flow rate. Next lemma shows that a sensor at the inlet or outlet makes

the system (A,C) observable.
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Lemma 6.3.1. Let Ci be a diagonal matrix with 1 at the ith diagonal position and

rest all elements are zeros. Then for the pipeline flow dynamics (6.9) represented as

a system in (6.1), the pair (A,Ci) is observable when i = 1 or i = 2N − 1.

Proof. As, Ci has only one non-zero element, it is treated as a row vector which

will result in a observability matrix OM ∈ R2N−1×2N−1 [12] as,

OM =



Ci

CiA

...

CiA
2N−2


. (6.13)

For the case i = 1, the matrix Ci is taken as a 2N − 1 length row vector with 1 as

the 1st element. Constructing OM results in a lower triangular matrix under the

diagonal joining (1, 1) and (2N − 1, 2N − 1). The diagonal is given by,

OM11 = 1, OM11 = −a1,

OMii =


−a2OMi−1,i−1 for i ≥ 3 and i is odd,

−a1OMi−1,i−1 for i ≥ 4 and i is even.

(6.14)

OM is a lower triangular matrix with independent columns. For the case when

i = 2N −1, OM is a lower triangular matrix below the diagonal joining (1, 2N − 1)

and (2N − 1, 1) and independent columns. In both cases, rank (OM) = 2N − 1 as

a1 ̸= 0 and a2 ̸= 0. Hence, the pair (A,Ci) is observable when i = 1 or i = 2N − 1.

�

As a bounded input is applied to the pipeline system and no reverse flows

are assumed, the discretized nonlinear dynamics (6.9) has a bounded operating
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region. Hence the states are bounded. Next corollary shows how Proposition 6.2.1

is applicable to the pipeline system.

Corollary 6.3.1. Consider the pipeline flow dynamics (6.9) and its representation

(6.1) with qmax as the maximum allowable flow rate in the pipeline. If C,L can be

computed such that (A,C) is observable and 2k3qmax ≤
min

1≤i≤2N−1

∣∣Re
(
λi(A−LC)

)∣∣
K2(T )

then

the observer error dynamics in (6.3) is asymptotically stable.

Proof. As the operating region for the pipeline system is bounded, it is easily ob-

served that the nonlinear function g (x) is locally Lipschitz with γ = 2k3qmax. Rest

of result follows now.

�

For the pipeline system, the diagonal output matrix C represents the positions

of the flow rate and pressure sensors. Thus, the algorithm in Section 6.2.1 not

only computes where to place the sensor but also informs the designer what type of

sensor to use. In general, placing poles and having a well-conditioned eigenstructure

for (A− LC) is a challenging task. Hence, the algorithm in Section 6.2.1 tries

to compute a value of
min

1≤i≤2N−1

∣∣Re
(
λi(A−LC)

)∣∣
K2(T )

close to 2k3qmax. Next, an example

is presented to demonstrate the proposed sensor placement and observer design

approach.
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6.4 Example

Consider an oil pipeline system with the parameters stated below.

Lp = 10 km = 10000m, ρ = 870
kg

m3
g = 9.81

m

s2
, b = 1400

m

s
,

fr = 0.027, dr = 1m, Ar =
πd2r
4
, hin = 104.55m, hout = 100m,

q = 0.45
m3

s
= 245, 000

barrels

day
, qmax = 0.5

m3

s
= 272, 000

barrels

day
,

N = 10, n = 2N − 1 = 19, Cmax = 5,

− 10 ≤ Lij ≤ 10, 1 ≤ i ≤ n, 1 ≤ j ≤ Cmax.

(6.15)

The pipeline system stated in (6.15) has N = 10 sections, N +1 = 11 discretization

points and n = 2N − 1 = 19 state variables. The dynamics were constructed as in

(6.9) and (6.1). The sensor placement and observer design was done as stated in

Section 6.2.1 with S0 = Sini = {1}. Sensor placement is also done by linearizing the

dynamics and using greedy procedure [141] with observability grammian [12] as an

optimization metric. The observer gain Lgreedy is computed as the LQR gain as in

Step 2 of the procedure in Section 6.2.1. The optimal sensor placement arrangements

for the nonlinear and linearized cases are tabulated in Table 6.1. The initial state for

the system (6.9) was taken to be 0 for the flow rate variables and hout for the pressure

variables. The initial state for the observer (for both nonlinear and linearized cases)

was a 0 vector. The evolution of the Frobenius norm [18] of the estimation error

for the linearized and the nonlinear cases is shown in Figure 6.2. The simulation is

performed using MATLAB [61] in the time interval [0, 30] seconds. The output of

procedure in Section 6.2.1 leads to: K2 (T ) = 258, min
1≤i≤2N−1

∣∣Re
(
λi (A0 − LC)

)∣∣ =
142



Point 1 2 3 4 5 6 7 8 9 10

ST-Nonlinear F — — — P P F — — F

ST-Linearized F — — — P P P — — F

Table 6.1: Type of sensor at each discretization point for nonlinear and linearized

cases. ST: Sensor Type, P: Pressure head sensor, F: Flow rate sensor.

0 15 30
0

400

800
Nonlinear
Linearized

Figure 6.2: Evolution of estimation error with time for nonlinear and linearized

cases
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0.095 and
min

1≤i≤2N−1

∣∣Re
(
λi(A0−LC)

)∣∣
K2(T )

= 0.00038. The Lipschitz constant 2k3qmax =

0.0172 > 0.00038 which violates Corollary 6.3.1 in Section 6.2, but the estimation

error converges to zero as observed in Figure 6.2. The maximum magnitude of the

gain matrix element is 10. For the linearized case, the maximum magnitude of the

LQR observer gain matrix element is 190. The estimation error for the linearized

case also converges to zero but the maximum gain component magnitude for the

linearized case is 19 times that of the nonlinear case.

6.5 Summary

In this chapter, a heuristic procedure is proposed to place sensors and design

observer for a class of Lipschitz nonlinear dynamic systems. The synthesis procedure

is based on a relation between sensor locations, observer gain, Lipschitz constant

and asymptotic stability of the observer error dynamics. The proposed procedure

was applied to a pipeline line flow without a leak dynamic model to compute the

optimal sensor locations/types and observer gain. The developed procedure was

demonstrated for an oil pipeline example.
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Chapter 7: Conclusions, Contributions and Future Research

Directions

In this chapter, conclusions and contributions of this dissertation are discussed

along with future directions for further research.

7.1 Conclusions

This dissertation tried to address an important engineering problem related

to design of dynamical systems. The advent of cyber physical systems (CPS) and

depletion of traditional energy resources has led to the development of engineering

systems like smart buildings, smart structures, smart grids, smart (electric) cars etc.

These novel systems are expected to have higher degree of autonomy, robustness,

energy efficiency with guarantees on stability which can be achieved by a system

optimal design. As co-design involves the optimization of interdependent (physical)

design and control (including observer) variables, it leads to the system optimal

design. In co-design, the physical design variables can be the physical parameters

of the system or the actuator/sensor locations or the controller structure/sparsity.

In Chapter 2, the co-design problem was formulated as a nonlinear, non-convex

optimization problem with an ARE constraint for a class of LTI systems. These LTI
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systems have design variables in the systems matrices in linear form and are con-

trolled by LQR control. The goal of co-design was to optimize the design objective

and input energy using the interplay between design and control variables. The

optimization aimed to yield a stable co-designed system. By the use of SDP dual-

ity, the co-design problem was reformulated as a BMI optimization problem. This

BMI optimization problem was shown to conform with the GBD structure. An

iterative solution procedure consisting of GBD and GPM was proposed. The pro-

cedure converged to a solution in a finite number of iterations which is with in a

tolerance bound from the nearest local/global minimum. The tolerance bound was

proved to be a function of the number of design variables, design bound and user

defined optimality tolerance criterion. The convergence of the GBD+GPM iterative

procedure in a finite iterations was also proved. Tests to examine the stationarity

and local minimum nature of the convergence point were formulated using the KKT

conditions. A condition establishing convexity of the co-design problem leading to

a global solution was also established. The proposed formulation was successfully

applied to a numerical example to demonstrate the GBD+GPM solution procedure.

The formulation was also applied to two engineering examples from the literature.

The results justified the utility of the proposed formulation and solution procedure.

In Chapter 3, the SSOF design problem was shown to conform with the co-

design BMI optimization formulation. The objective of the SSOF co-design was

to design a controller with predefined structure such that optimal controller stabi-

lizes the system and consumes less input energy. The constraints on the controller

structure played the role of design variable constraints. The GBD+GPM solution
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procedure with certain modifications was proposed to solve the SSOF optimization

problem. Tests based on the KKT conditions to test the stationarity and local min-

imum nature of the computed solution were derived. The proposed formulation and

solution procedure was applied to design a SSOF controller for a L-1011 aircraft.

Exhaustive search of the design space indicated that the SSOF controller solution

computed by the GBD+GPM procedure is a near global solution.

In Chapter 4, the sparse feedback design problem was solved as a mixed

H2/H∞ co-design optimization problem. The purpose of sparse feedback design

was to make the controller less complex, make the system consume less input energy

(good performance) and satisfy a given robustness criterion towards disturbances

and uncertainties. The sparsity requirement on the controller structure acted as a

design objective function. The given robustness level appeared as a constraint in

the optimization problem. A scalable solution procedure based on ADMM which

was used to design H2 sparse controllers was adapted to optimize the sparse mixed

H2/H∞ controllers. The proposed formulation was applied to a class of second

order systems which are widely applied in real world namely: structural systems

and linearized power system/network swing equation. Based on the results in the

literature for the class of second order systems, a method to select robustness level

and initial stabilizing controller was also presented.

In Chapter 5, the optimal actuator placement problem was formulated as a

co-design optimization problem. The aim of optimal actuator placement was to

place limited number of actuators such that the system consumes minimum input

energy. The locations of the actuators represented by 0/1−integer variables were
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taken as design variables. The problem was formulated for both Hurwitz and non-

Hurwitz LTI systems. The original problem consisted of ARE constraints which were

reformulated into BMI constraints by using SDP duality. By the use of McCormick’s

relaxation, the BMI optimization problem was again reformulated into an equivalent

0/1−MISDP. This 0/1−MISDP was solved using the branch-and-bound procedure.

The proposed formulation was applied to place actuators in a system consisting of a

chain of integrators which let to a global minimum solution confirmed by exhaustive

search of the design domain.

In Chapter 6, the sensor placement and observer design problem for a class of

Lipschitz nonlinear systems was framed as a co-design optimization problem. The

motivation behind sensor placement and observer design is to estimate the complete

state accurately using limited number of output sensor measurements and nonlinear

observer with linear gain matrix. The location of the sensors were represented in

the system by 0/1−integer variables and are the design variables. The class of

nonlinear system have Lischitz continuous nonlinearity. Using existing results, a

relation between Lipschitz constant, sensor positions, observer gain and asymptotic

estimation was derived and used as an optimization metric. A heuristic solution

procedure was devised to compute sensor locations and linear gain of the observer.

The proposed formulation was applied on a Lipschitz nonlinear pipeline flow without

a leak system.

Next, the contributions of the dissertation are listed.
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7.2 Contributions of the Dissertation

In this section, the contribution made by the dissertation towards each of the

topics discussed in Section 1.2 are briefly stated.

1. Co-design Modeling and Optimization: The co-design problem is mod-

eled as a BMI optimization problem. An iterative solution procedure based

on GBD and GPM is developed to compute a solution within a provable tol-

erance bound from the nearest local/global minimum in a finite number of

iterations. Condition on the convexity of the co-design problem is likewise

derived. (Chapter 2.)

2. Sparse and Structured Feedback Design: The SSOF design problem is

formulated as a BMI optimization problem. An iterative procedure based on

GBD and GPM is developed to synthesize the SSOF controller. The ADMM

procedure is adapted to solve the sparse feedback design problem with a given

robustness constraint. A detailed study of designing sparse controllers for

a class of second systems which includes practically applied structural sys-

tems and linearized power system/network swing equation is also carried out.

(Chapter 3 and Chapter 4.)

3. Optimal Actuator Placement: The optimal actuator placement problem

is first formulated as a 0/1−MINLP. By using relaxation methods, the MINLP

is then reformulated as a novel equivalent 0/1−MISDP problem. The MISDP

is now solved using the branch-and-bound procedure. (Chapter 5.)
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4. Sensor Placement and Observer Design: An optimization metric depen-

dent the relation between Lipschitz constant, sensor positions, observer gain

and asymptotic estimation is proposed to compute sensor locations and de-

sign observer. A heuristic procedure to place sensors and design observer is

developed. (Chapter 6.)

Some insights regarding further research are discussed next.

7.3 Future Directions for Further Research

Although the exploration of the research problems in this dissertation has

been fruitful, some issues if addressed will enhance the utility of the work in the

dissertation. These unanswered issues are listed as future directions for further

research stated next according to the topics in Section 1.2.

1. Co-design Modeling and Optimization: In this dissertation, LQR type

of controller is used for stabilization with independent design and control op-

timization objective functions. The natural extension will be to extend the

developed co-design formulation to general controllers without the assump-

tion of stabilizability and detectability. The case of co-design with design

variables appearing as nonlinear functions in the system matrices and having

optimization objective as a mixed function of design and control variables can

be considered. The inclusion of the practically important constraint of control

input saturation in the developed co-design optimization framework can also

be explored.
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2. Sparse and Structured Feedback Design: In this dissertation, the sparse

and structured feedback design is done without taking into account the effect

of physical design variables. The study of the effect of physical design param-

eters on the controller sparsity can be interesting. In addition, extending or

modifying the scalable ADMM based sparse feedback design method to include

robustness level as an optimization variable is also open for exploration. The

inclusion of “feedthrough” from exogenous inputs to the performance output

with noise in sensor measurements can also be considered.

3. Optimal Actuator Placement: In this dissertation, the 0/1−MISDP op-

timal actuator placement problem is solved using the branch-and-bound ap-

proach which has poor scalability. Hence, using a scalable relaxation based

solution procedure to solve the 0/1−MISDP optimal actuator placement prob-

lem and provide guarantees on the computed solution can be considered. The

study of the effect of actuator locations on the robustness level of the system

is also a possible extension.

4. Sensor Placement and Observer Design: In this dissertation, a heuristic

sensor placement and observer design procedure is proposed and applied on a

pipeline without a leak system case study. Hence, to develop a deterministic

methodology for sensor placement and observer design along with guarantees

on the computed solution can be considered. From the perspective of the

pipeline case study, leak detection and localization using the proposed sensor

placement and observer design procedure can be an interesting investigation.
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For this a leak can be considered as an additional nonlinearity.
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