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Extensive research on accelerating Magnetic Resonance Imaging (MRI) has

been done along two fronts: (i) hardware acceleration, and (ii) image post processing.

We present the results of our work on image post processing, where the inputs are

sparsely sampled volumetric images, and our deep-learning-based models seek to

output the original, densely sampled images. Specifically, we propose two different

methods for accelerating MRI, corresponding to two different aspects of the MR

acquisition process.

First, We propose a marginal super-resolution (MSR) approach based on 2D

convolutional neural networks (CNNs) for interpolating an anisotropic brain mag-

netic resonance scan along the highly under-sampled direction. Previous methods

for slice interpolation only consider data from pairs of adjacent 2D slices. The pos-

sibility of fusing information from the direction orthogonal to the 2D slices remains

unexplored. Our approach performs MSR in both sagittal and coronal directions,

which provides an initial estimate for slice interpolation. The interpolated slices

are then fused and refined in the axial direction for improved consistency. Since



MSR consists of only 2D operations, it is more feasible in terms of GPU mem-

ory consumption and requires fewer training samples compared to 3D CNNs. Our

experiments demonstrate that the proposed method outperforms traditional linear

interpolation and baseline 2D/3D CNN-based approaches. We conclude by showcas-

ing the method’s practical utility in estimating brain volumes from under-sampled

brain MR scans through semantic segmentation.

Secondly, although undersampled MR image recovery has been widely studied

for accelerated MR acquisition, it has been mostly studied under a single sequence

scenario, despite the fact that multi-sequence MR scan is common in practice. We

aim to optimize multi-sequence MR image recovery from undersampled k-space data

under an overall time constraint while considering the difference in acquisition time

for various sequences. We first formulate it as a constrained optimization problem

and then show that finding the optimal sampling strategy for all sequences and

the best recovery model at the same time is combinatorial and hence computation-

ally prohibitive. To solve this problem, we propose a blind recovery model that

simultaneously recovers multiple sequences, and an efficient approach to find the

near-optimal combination of sampling strategy and recovery model. Our experi-

ments demonstrate that the proposed method not only outperforms sequence-wise

recovery, but also sheds light on how to optimally undersample the k-space for each

sequence within an overall time budget.
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Chapter 1: Introduction

Magnetic Resonance Imaging (MRI) is a medical imaging technique. Its fun-

damental principle is based on Nuclear Magnetic Resonance (NMR), a property of

atom first observed by Bloch [1] and Purcell [2]. In general, the MRI process can

be concisely explained in the following steps (for a more comprehensible review of

MRI principles, please refer to the survey by Wright [3]):

• First, a strong magnetic field, denoted as B0, is generated within the MRI

machine, allowing all the atoms to be aligned to a uniform direction. The

time required for all atoms to align is typically referred to as the longitudinal

relaxation time.

• Secondly, Radio Frequency (RF) pulses, denoted as B1, are sent by the ma-

chine, giving the atoms energy and knocking them off the axis induced by B0.

The specific amount that the atoms are knocked off from their original axis is

depended on the resonance between the atoms and the designed B1.

• Lastly, after the RF pulses are stopped, the atoms realign with B0, in the

meantime emitting energy provided by B1 as RF signals. The time for atoms

to re-align to B0 is typically referred to as the transverse relaxation time.
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• The emitted RF signals are captured by sensors within the machine, and

contain information about the nature of the atoms. These signals are mapped

to the k-space, which can be thought of as a measurement of the Fourier

Transform of the MR image. The k-space is then used to create the image by

performing inverse Fourier Transform. The result in image space highlights

the contrasts between human tissues.

As a lot of diseases manifest themselves as an increase of water (e.g. inflam-

mation) or fat (e.g. tumors) in certain regions, MRI can choose specific atom to

target and match the resonance of its RF pulse, thus creating disease-specific im-

ages to aid doctors for diagnostics. As the result, the resolution and contrast of the

images generated by MRI is often considerably better than those generated by other

imaging techniques (e.g. Ultrasound). Furthermore, sending magnetic fields, which

is similar in nature to RF signals sent by mobile phones, through patients posts

no significant health risks. In comparison, X-Ray and Computational Tomography,

which are other forms of popular medical imaging techniques, expose patients to

ionizing radiation, which may be hazardous to human health.

Due to the stated advantages, MRI is widely used in the medical domain.

MRI also has a few drawbacks. The MR machines, as well as the maintenance of

them, are very expensive. This is the result of the high demand of power, quality

of material, and quality of engineering needed to create and maintain strong and

consistent magnetic fields, requiring coils to perform as close to superconductors as

possible. Additionally, the speed of MRI acquisition is physically constrained by
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the longitudinal and transverse relaxation time, as explained previously. Depending

on the type of targeted atom, a session of MRI acquisition can take much longer

than X-Ray or CT. This not only limits patients’ access to MRI machines, but

also introduces technical difficulties such as motion blur and limitations in dynamic,

real-time imaging.

Consequently, MRI acquisition acceleration has been an active research area.

On the hardware side, efforts have been made to introduce redundancy by adding

multiple receiver coil [4] to detect the RF signals. On the image processing front,

there is a long history of recovery undersampled MR images, from applying the

theory of compressed sensing [5], to the more data-driven dictionary learning [6].

With the advent of deep learning, recently many new methods have been proposed

by using deep convolutional neural networks (DCNN) [7–9].

Although these previous works have made great strides in recovering under-

sampled MR images, there still are major areas that remain relatively unexplored.

Firstly, most of the literature focuses on recovering undersampled 2D images. In

reality, due to the lack of assurance on the quality of the recovery, doctors and tech-

nicians still fully sample the entire 2D k-space for diagnostics, and attempt to cut

time by reducing the number of slices taken. For example, Figure 1.1 shows a brain

MR scan which is sparsely sampled along the axial direction. As a result, image

quality suffers when viewing from Coronal and Sagittal directions.

It is desirable to have a consistent resolution across all dimensions, both for

visualization and for medical analysis tasks such as brain volume estimation. Com-

pared to the traditional perspective on accelerating MRI, the ability to upsample 3D

3



Figure 1.1: The axial, coronal, and sagittal views of an anisotropic MR volume

are fitted to isotropic resolution through (Left) linear interpolation and (Right) our

proposed slice-interpolation method.

MR images provides another, perhaps more realistic, way to speed up acquisition.

Another interesting area that is relatively less explored is the consideration

of multiple MR sequences instead of one. Most patients take multiple sequences

at a time, each of which targets and suppresses the signals of specific atoms. For

instance, brain tumor patients can take more than three different sequences at a

time, each of which gives different clues about the locations of the tumors and

the area that is affected by them. While diagnostically desirable, taking multiple

sequences drastically increase the overall acquisition time. There is much shared

information across them, and in general to the best strategy to sample the most

important information is not known, given the limited time.

This thesis attempts to solve these two problems. In short summary, the

contributions that we make can be summarized as follows:

For increasing the resolution of 3D MR images,
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• We propose a novel marginal super-resolution approach to break down the 3D

slice interpolation problem into several 2D problems, which is more feasible

in terms of GPU memory consumption and the amount of data available for

training.

• We propose a two-view fusion approach to incorporate the 3D anatomical

structure. The interpolated slices after fusion achieve high structural consis-

tency. The final refinement further recovers fine details.

• We perform extensive evaluations on a large-scale MR data set, and show that

the proposed method outperforms all the competing CNN models, including

3D CNNs, in terms of quantitative measurement, visual quality, and brain

matter segmentation.

For analyzing multi-sequence super-resolution and the strategy for sampling

them,

• We formulate a constrained optimization problem, where given a limited ac-

quisition time, we seek to find the best strategy to undersample the k-spaces

of multiple sequences to achieve the best overall recovery;

• We propose a novel CNN-based blind recovery model that extrapolates the

shared information across different sequences and simultaneously recover them,

as well as an efficient approach to find the near-optimal combination of sam-

pling strategy and recovery model;

• We perform extensive evaluation on a large amount of simulated k-space data,
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which shows that the proposed model outperforms the method of recovering

each sequence on its own and sheds light on how to near-optimally undersample

the k-spaces of multiple sequences.
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Chapter 2: Background

2.1 Traditional slice interpolation methods.

Early work on interpolating volumetric medical data dates back to 1992, when

Goshtasby et al. [10] proposed to leverage the small and gradual anatomic differences

between consecutive slices, and find correspondence between pixels by searching

through small neighborhoods. A slew of methods were proposed in the subsequent

years, focusing on finding more accurate deformation fields, including shape-based

methods [11], morphology-based methods [12], registration-based methods [13], etc.

Linear interpolation can be regarded as a special example, which essentially assumes

no deformation between slices.

An important assumption made in the above-mentioned methods is that adja-

cent slices contain similar anatomical structures, i.e., the changes in the structures

have to be sufficiently small such that a dense correspondence can be found between

two slices. This assumption largely limits the applicability of slice interpolation

methods especially when slices are sparsely sampled. Furthermore, these methods

did not utilize the information outside the two adjacent slices.
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2.2 Learning based super-resolution methods.

Slice interpolation can be viewed as a special case of 3D super-resolution.

Here we review the literature of 2D Single Image Super-Resolution (SISR), espe-

cially those approaches based on CNNs. Dong et al. [14] first proposed SRCNN,

for learning a mapping that optimally transforms low-resolution (LR) images to

high-resolution (HR) images. Many subsequent studies explored strategies to im-

prove SISR by using deeper architectures and weight-sharing [15–17]. However,

these methods require bilinear upsampling as a pre-processing step, which drasti-

cally increases computational complexity [18]. To address this issue, Dong et al. [18]

proposed to apply deconvolution layers for the LR image to be directly upsampled

to finer resolution. Furthermore, many studies have shown that residual learning

provided better performance in SISR [19–21]. Specifically, Zhang et al. [21] incorpo-

rated both residual learning and dense blocks [22], and introduced Residual Dense

Blocks (RDB) to allow for all layers of features to be seen directly by other layers,

achieving state-of-the-art performance.

Generative Adversarial Networks (GAN) [23] have also been incorporated in

SISR to improve the visual quality of the generated images. Ledig et al. pointed

out that training SISR networks solely by L1 or L2 loss intrinsically leads to blurry

estimations, and proposed SRGAN [20], which generated much sharper and realistic

images compared to other approaches, despite having lower peak signal to noise

ratios.

Though available computation capacity has been increasing, 3D CNNs are still
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limited by memory capacity due to a considerable increase in the size of network

parameters and input data. A common compromise is to extract small patches

from 3D volume to reduce the input size [24]; however, this also limits the effective

receptive field of the network. In practice, 3D CNNs are also limited by the amount

of available training data to ensure generalization.

2.3 2D MRI Recovery

There has been a long history of research focused on methods to undersample

MR k-space data while maintaining image quality, in the hope of accelerating ac-

quisition. Since undersampling in the Fourier domain leads to aliasing in the image

domain, the problem is typically described as de-aliasing. Lustig et al. [5] first pro-

posed to use Compressed Sensing in MRI (CSMRI), assuming that the undersampled

MR images have a sparse representation in some transform domain, where noise can

be discarded through minimizing the L0 norm of the representation. This method

was shown to yield much better results than zero-filling the missing k-space samples

(ZF); however, presuming a fixed sparse transform for every MR image often leads

to secondary artifacts and limits recovery performance in practice. Extending on

CSMRI, Ravishankar et al. [6] applied more adaptive sparse modelling through Dic-

tionary Learning (DLMRI), where the transformation is optimized through specific

sets of data, resulting in improved sparsity encoding. To further explore redundancy

within the MR data, Huang et al. [25] found the anatomical similarity between T1

and T2-weighted MR images by considering the group sparsity, while Hirabayashi et
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al. [26] attempted to extrapolate the redundancy from adjacent slices.

Recently, Convolutional Neural Network (CNN) have been shown to obtain

superior performance in many computer vision tasks due to its ability to generate

efficient hierarchical features. This has inspired further research in applying CNN

in the domain of MR reconstruction. Schlemper et al. [7] proposed a cascade of

CNNs that incorporates data consistency layers to de-noise MRI in image domain

while maintaining consistency in the k-space, and showed that the results are signif-

icantly better than produced by DLMRI. Yang et al. [8] proposed DAGAN, which

recovers undersampled MR images through a U-Net structure with perceptual and

adversarial loss in addition to L1 loss in image space and frequency space. Quan et

al. [9] proposed RefineGAN, which performs reconstruction and refinement through

two different networks, and enforces an image space/frequency space cyclic loss.

Although all the above mentioned CNN-based methods have obtained impres-

sive results, they focus on single sequence reconstruction. Few studies have been

on exploring the multi-sequence scenario, which is common in practice. Xiang et

al. [27] showed that a highly undersampled T2 sequence, given a fully sampled T1

sequence, can still be well-recovered through a Dense U-Net that takes two images

as inputs and outputs the recovered T2 image. Despite this work, there has not

been a quantitative study done with regard to the best strategy at undersampling

k-spaces over a range of sequences for image recovery.
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Chapter 3: Problem Formulation

3.1 Slice Interpolation

Let I(x, y, z) ∈ RN×N×N denote an isotropic MR volume. By convention, we

refer the x axis as the “sagittal” axis, the y axis as the “coronal” axis, and the z

axis as the “axial” axis. Accordingly, there are three types of slices:

• the sagittal slice for a given x: Ix(y, z) = I(x, y, z),∀x;

• the coronal slice for a given y: Iy(x, z) = I(x, y, z),∀y;

• the axial slice for a given z: Iz(x, y) = I(x, y, z),∀z.

We also define a slab of s slices, say along the x axis, as

Ix,s =

{
Ix+l(y, z)

∣∣∣∣l = −s− 1

2
, . . . , 0, . . . ,

s− 1

2

}
. (3.1)

Iy,s and Iz,s are defined similarly. Without loss of generality, in this work we con-

sider slice interpolation along the axial axis. From I(x, y, z), the corresponding

anisotropic MR volume is defined as

I↓k(x, y, z) = I(x, y, k · z), (3.2)
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where k is the sparsity factor. The goal of slice interpolation is to find a transfor-

mation T : RN×N×N
k → RN×N×N that can optimally transform I↓k(x, y, z) back to

I(x, y, z).

There are two possible baseline realizations of T using CNNs:

• 2D CNN. More in line with traditional methods, a 2D CNN takes two

adjacent slices Iz↓k(x, y) and Iz+1
↓k (x, y) as inputs, and directly estimates the

in-between missing slices. One major drawback of this approach is that a

simple 2D CNN has limited capabilities of modeling the variations in highly

anisotropic volumes.

• 3D CNN. A 3D CNN is learned as a mapping from the sparsely sampled

volume I↓k(x, y, z) to a fully sampled volume I(x, y, z). This straightforward

approach, however, suffers from training memory issue and insufficient training

data.

In this thesis, we present our proposed algorithm that retains the advantages of the

baseline CNN models discussed above while mitigating their disadvantages.

3.2 Multi-sequence MR Recovery

We first note that the most popular MR k-space sampling method is through

Cartesian trajectory, where a series of acquisition is performed along equally-spaced

parallel lines, which is conventionally called phase encoding lines. This leads to

a natural implementation for MR undersampling, where the technicians can drop

certain phase encoding lines from the sampling grid [5]. In this chapter, we focus
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on undersampling with 1D masks along the phase encoding direction, which is the

method that Xiang et al [27] used.

Consider multiple MR sequences with full k-space spectra {Fs}Ss=1, with each

spectrum sampled by N phase encoding lines. For each Fs, the unit time for

sampling a phase encoding line is denoted by ts. We define 1D sampling masks

Ms ∈ {0, 1}N which selects a subset of encoding lines Ms � Fs for faster acquisi-

tion. By applying the inverse Fourier transform F−1, an undersampled MR image

for sequence s is reconstructed as

IMs = F−1(Ms � Fs). (3.3)

When fully sampled, the MR image is reconstructed by Is = F−1(Fs). If we denote

the number of selected encoding lines by |Ms|, the total time needed to acquire all

the sequences is

T =
S∑
s=1

ts × |Ms|. (3.4)

Although undersampled MR is shorter to acquire, it exhibits degraded quality com-

pared to fully sampled MR. In this work, we aim to search for an optimal sampling

strategy {Ms}Ss=1 and a deep neural network fθ that optimally recovers fully sampled

{Is}Ss=1 from {IMs} with a time constraint T ≤ Tmax. This constrained optimization

problem can be formulated as follows:

min
θ,{Ms}

S∑
s=1

EIs∼p(Is)
[∥∥fθ(IMs)− Is

∥∥
1

]
s.t.

S∑
s=1

ts|Ms| ≤ Tmax. (3.5)

In (3.5), we use the L1 loss; however, other loss functions can be used too.

The problem defined in (3.5) is combinatorial in nature. First, the set {Ms}Ss=1

has a total of 2NS possible combinations. Secondly, the best recovery model depends

13



on the choice of sampling strategy. As a result, the optimal solution to (3.5) is in

general difficult to find. As a preliminary attempt, we assume a fixed candidate set

C ∈ {m1, . . . ,mF} for eachMs. The number of possible sampling strategies becomes

F S instead. However, even with the simplification, a straightforward approach to

(3.5), which is

min
M1:S∈CS

(
min
θ

S∑
s=1

EIs∼p(Is)
[∥∥fθ(IMs)− Is

∥∥
1

])
s.t.

S∑
s=1

ts|Ms| ≤ Tmax, (3.6)

still requires training F S models and then choosing the one with minimum loss.

In this thesis, we propose an efficient approach that finds a reasonable (θ, {Ms}Ss=1)

while circumventing the computational cost in training excessive number of models.

Conceptually, we propose to first train a Blind Recovery Model (BRM), which takes

randomly undersampled MR sequences as inputs, and recovers them to fully sam-

pled MR sequences. The trained BRM can then be used as an MR sequence quality

estimator to search for the optimal Sampling Strategy (SS) {M∗
s}Ss=1. Finally, with

{M∗
s}Ss=1, we can proceed to solve (3.6) by fine-tuning on the existing BRM. In total,

the proposed method only requires training one CNN, which significantly reduces

the computational cost.
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Chapter 4: Proposed Algorithms

4.1 Deep Slice Interpolation

We propose to break down the 3D slice interpolation problem into a series of

2D tasks, and interpolate the contextual information from all three anatomical views

to achieve structurally consistent reconstruction and improved memory efficiency.

The two stages are as follows:

• Marginal super-resolution (MSR), where we provide high-quality estimates of

the interpolated slices by extrapolating context from sagittal and coronal axes.

• Two-view Fusion and Refinement (TFR), where we fuse the estimations and

further refine with information from the axial axis.

Figure 4.1: Marginal Super-Resolution Pipeline.
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4.1.1 Marginal Super-Resolution

Fig. 4.4 demonstrates the pipeline of MSR. Given I↓k(x, y, z), we view it as

a sequence of 2D sagittal slices Ix↓k(y, z) marginally from the sagittal axis. The

same volume can also be treated as Iy↓k(x, z) from the coronal axes. We observe

that super-resolving Ix↓k(y, z) to Ix(y, z) and Iy↓k(x, z) to Iy(x, z) are equivalent to

applying a sequence of 2D super-resolution along the x axis and y axis, respectively.

Therefore, we apply a residual dense network (RDN) [21]Mθ to upsample Ix↓k(y, z)

and Iy↓k(x, z) as follows:

Ixsag(y, z) =Mθ(Ix,s↓k (y, z)), Iycor(x, z) =Mθ(Iy,s↓k (x, z)). (4.1)

Notice that instead of super-resolving 2D slices independently, we propose to take a

slab of s slices as input and estimate a single SR output. Using a larger s allows more

context to be modelled. The MSR process is repeated for all x and y. Finally, the

super-resolved slices can be reformatted as sagittally and coronally super-resolved

volumes, Isag(x, y, z) and Icor(x, y, z), respectively. We apply the following L1 loss

to train the RDN:

LMSR = ‖Mθ(Ix,s↓k )− Ixgt‖1 + ‖Mθ(Iy,s↓k )− Iygt‖1, (4.2)

where Ixgt = Ix(y, z) and Iygt = Iy(x, z) in the isotropic MR volume.

From the axial perspective, Isag(x, y, z) and Icor(x, y, z) provide line-by-line

estimates for the missing axial slices. However, since no constraint is enforced on

the estimated axial slices, inconsistent interpolations lead to noticeable artifacts (See

Section 5.2.5). We resolve this problem in the second TFR stage of the proposed
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Figure 4.2: Two-view Fusion Pipeline.

pipeline.

4.1.2 Two-View Fusion and Refinement

The TFR stage is the counterpart of MSR which further improves the quality

of slice interpolation by learning the structural variations along the axial direction.

As shown in Fig. 4.2, we first resample the sagittally and coronally super-

resovled volumes Isag(x, y, z) and Icor(x, y, z) from the axial direction to obtain

Izsag(x, y) and Izcor(x, y), respectively. A fusion network Fφ takes the two slices as

inputs and combines information from the two views. The objective function for

training the fusion network is:

Lfuse = ‖Izfuse(x, y)− Izgt‖1, (4.3)

where Izfuse(x, y) = Fφ(Izsag, I
z
cor) is the output of the fusion network, and Izgt =

Iz(x, y) in the isotropic MR volume. After training, the fusion network is applied

to all the interpolated slices {Izsag | (z mod k) 6= 0} and {Izcor | (z mod k) 6= 0},

yielding an MR volume Ifuse(x, y, z).

After fusion, the interpolated slices already have visually pleasing qualities.
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Figure 4.3: Refinement Pipeline.

Finally, to improve between-slice consistency along the axial axis, a refinement net-

work Rψ takes a slab of k+1 slices Iz,k+1
fuse as input and generates a consistent output

slab Iz,k+1
refine. The size is selected as k + 1 to make sure the refinement network has

information from one or two observed slices. The pipeline is illustrated in Fig. 4.3.

The loss function used in the network is given by:

Lrefine = ‖Iz,k+1
refine − Iz,k+1

gt ‖1. (4.4)

4.2 Multi-sequence Recovery

4.2.1 Blind recovery model

A blind recovery model (BRM) is a CNN fθ which recovers Is by fusing infor-

mation from different undersampled MR sequences {IMs}Ss=1,Ms ∈ C. We adopt a

data augmentation approach, which randomly selects sampling masks from C, under

the following unconstrained optimization problem:

θ∗ =θ

S∑
s=1

EIs∼p(Is),Ms∼p(C)
[∥∥fθ(IMs)− Is

∥∥
1

]
. (4.5)

Our intuition is that for MR sequences, the more structural information discarded

through harsh undersampling, the more difficult it is for a CNN to recover I from

Im, which leads to larger reconstruction loss. Therefore, the reconstruction loss of
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an MR sequence can be used as a quality measure.

4.2.2 Sampling strategy searching

Given a trained BRM fθ∗ , we propose to search for the optimal sampling

strategy by finding the one with minimum loss:

M∗
1:S =M1:S

S∑
s=1

EIs∼p(Is)
[∥∥fθ∗(IMs)− Is

∥∥
1

]
s.t.

S∑
s=1

ts|Ms| ≤ Tmax. (4.6)

The exhaustive search requires F S forward passes, which is significantly less com-

putationally demanding than training F S CNNs. The solution θ∗ can be further

improved by learning a refined model specific to M∗
s:

θ̂ =θ

S∑
s=1

EIs∼p(Is)
[∥∥fθ(IM∗

s
)− Is

∥∥
1

]
. (4.7)

4.2.3 An optimization point-of-view

In this section, we show that the proposed approach can be understood as a

projected optimization method. For a general constrained optimization problem:

min
x
f(x) s.t. x ∈ C, (4.8)

the projected gradient descent first updates the candidate solution xt by

yt+1 = xt − η · ∇f(xt), (4.9)

yt+1 is then projected back to the feasible set C by

xt+1 =x∈C ‖x− yt+1‖. (4.10)
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When training BRM using (4.5), we are effectively performing a coordinate descent

for (3.5) with respect to θ. In the subsequent sampling strategy searching, the

solution is projected back onto the feasible set using (4.6) and (4.7).

4.2.4 Single-sequence Training vs Multi-sequence Training

Since the BRM takes multiple images from different sequences as inputs, one

has the option of training (a) multiple SISO (single input single output) CNNs, with

one per sequence, or (b) one monolithic MIMO (multiple input multiple output)

CNN for all sequences. We believes that the latter option holds several advantages

over the former. First, option (a) does not consider the complementary information

across different sequences. As both Xiang et al. [27] and Huang et al. [25] have

shown, there exists strong correlation between sequences on the same patient, as

they share the underlying anatomic structures. If a particular sequence is severely

undersampled, leading to the loss of some anatomic detail, such information may

be present in other less severely undersampled sequences. Secondly, option (b) only

requires training one model, while option (a) requires S models. As all the models

attempt to eliminate distortions due to undersampling, they should learn similar

features. Consequentially, the models in option (a) either share mostly similar fea-

tures, leading to inefficiency, or learn features that are tuned to particular sequences,

leading to less generality in features.
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Figure 4.4: Multi-sequence recovery pipeline with the masks Ms randomly selected.

4.2.5 Network Architecture

Our multi-sequence simultaneous recovery approach is shown in Fig 4.4. The

approach is based on Residual Dense Block (RDB) [21], which incorporates the idea

of residual learning and Dense Block [22], allowing all layers of features to be seen

directly by other layers. It has been shown that RDB achieves state-of-the-art per-

formance in the domain of Super-Resolution. Since MR recovery aims at eliminating

noise caused by undersampling, we believe that an RDB-based framework can be

effective.

During learning, each raw k-space data Fs first gets undersampled through a

randomly generated mask Ms. The results are then transformed from k-space to

image space, and concatenated before fed to the recovery network, which outputs

IR1:S. The loss function is defined as follows:

L = ‖IR1:S − I1:S‖1. (4.11)
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Chapter 5: Experimentation

5.1 Settings

5.1.1 Implementation Details

We implement the proposed frameworks using PyTorch1. The RDN [21] ar-

chitecture with two RDBs are used as the basic unit for our networks. For fusion,

refinement, and baseline 2D CNN models, where the inputs and outputs have the

same image size, we replace the upsampling network in RDN with one convolutional

layer. The input to the MSR network has s = 3. Note that due to memory con-

straints, 3D CNN only uses one RDB. We train the models with Adam optimization,

with a momentum of 0.5 and a learning rate of 0.0001, until they reach convergence.

5.2 Deep Slice Interpolation

5.2.1 Data sets

We employ 120 T1 MR brain scans from the publicly available Alzheimer’s

Disease Neuroimaging Initiative (ADNI) data sets. The MR scans are isotropically

1https://pytorch.org
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sampled at 1 mm × 1 mm × 1 mm, and zero-padded to 256 × 256 × 256 pixels,

ending up with 30,720 slices in each of sagittal, coronal, and axial directions. We

further down-sample the isotropic volumes by factors of k = 4 and k = 8, yielding

I↓k(x, y, z) of sizes 256× 256× 64 and 256× 256× 32, respectively. The data is split

into training/validation/testing sets with 95/5/20 samples. Note that during test

time, we only select slices that contain mostly brain tissue; the number of samples

for each sparsity are presented in Table 5.3.

5.2.2 Evaluation metrics

We compare different slice interpolation approaches using two types of quan-

titative metrics. First, we use Peak Signal-to-Noise Ratio (PSNR) and Structured

Similarity Index (SSIM) to measure low-level image quality. Second, we evaluate

the quality of the interpolated slices through gray/white-matter segmentation. The

segmentation network has a U-Net architecture, which is one of the winning models

in MRBrainS challenge [28], and is trained on the OASIS data sets [29]. Dice Co-

efficient (DICE) and Hausdorff Distance (HD)2 between the segmentation maps of

ground truth slices and generated slices are calculated. Due to the memory limita-

tion of 3D CNNs, we can at most super-resolve a limited region of 144× 144× 256

pixels during evaluation. For fair comparisons, the evaluation metrics are calculated

over the same region across all methods.

2To reduce the effect of outliers, HD is calculated on the 90th percentile displacement.
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5.2.3 Quantitative Evaluations

In this section, we evaluate the performance of our method and baseline ap-

proaches. Quantitative comparisons are presented in Table 5.3. We observe that all

the three CNN-based methods have higher PSNR and SSIM than the widely used

linear interpolation. The 3D CNN-based method slightly outperforms 2D CNN in

4x sparsity, but performs worse in 8x sparsity. Among the three CNN methods, our

method consistently outperforms 2D CNN and 3D CNN baselines.

The performance gain in accurately segmenting gray and white matters is large

from linear interpolation to baseline CNN-based methods. However, at 8x sparsity,

the HD scores of linear interpolation are comparable with 2D CNN and 3D CNN,

while our method outperforms these approaches by at least 10%. This demonstrates

the robustness of our method even at very high sparsity.

5.2.4 Visual Comparisons

In Fig. 5.1, we present the observed slices Iz↓k and Iz+1
↓k along with the interpo-

lated slices produced by different methods. Specifically we demonstrate the second

of three interpolated MR slices for 4x sparsity, and the third of seven interpolated

slices for 8x sparsity. We highlight the region where the anatomical structures sig-

nificantly change compared to the observed slices Iz↓k and Iz+1
↓k . We observe that

although 2D CNN has comparable performance in terms of PSNR and SSIM, it

tends to produce false anatomical structures in the zoomed regions. 3D CNN is

able to resolve more accurate details. However, the improvement is quite limited,
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Sparsity Method PSNR(dB) SSIM DICE HD(90th pct.)

GM/WM GM/WM

4

LI 26.39 0.8317 0.7716/0.7296 3.607/7.965

2D CNN 31.24 0.9313 0.8813/0.8334 3.176/12.36

3D CNN 31.34 0.9292 0.8536/0.8265 2.898/7.373

Ours 32.22 0.9441 0.9021/0.8593 2.494/6.240

8

LI 23.45 0.7165 0.6611/0.6105 4.487/10.59

2D CNN 27.88 0.8444 0.7783/0.7425 4.322/12.84

3D CNN 27.38 0.8390 0.7684/0.7468 4.583/9.017

Ours 28.87 0.8808 0.8189/0.7828 3.960/8.127

Table 5.1: Quantitative evaluations for different slice interpolation approaches. For

DICE and HD performance metrics, we present results on gray matter (GM)/white

matter (WM) segmentation. The best results are in bold and the second best are

underlined.

which we attribute to the fact that 3D CNN requires more training MR volumes

in order to generalize and has smaller receptive field due to patch-based training.

Our method benefits from the large receptive field of 2D CNN and two-view fu-

sion, which not only produces sharper images, but also correctly estimates the brain

anatomy. The sharp and accurate estimation is crucial in clinical applications such

as diagnosing Alzheimer’s Disease by brain volume estimation.

In Fig. 5.2, we demonstrate the advantage of the proposed method in brain
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Figure 5.1: Visual comparisons of slice interpolation approaches. For 4x sparsity,

the second of three interpolated MR slices is presented. For 8x sparsity, the third

of seven interpolated slices is presented.

matter segmentation. It is clear that although 2D and 3D CNN-based methods

generate visually plausible interpolation as presented in Fig. 5.1, the brain matters

are easily misclassified due to incorrect anatomical structures and blurred details.

5.2.5 Ablation study

In this section, based on 4x sparsity, we evaluate the effectiveness of each

proposed components. The following settings are considered:

• MSRn
sag: Slice interpolation based on only sagittal view MSR. We consider

number of input slices n = 1, 3.
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Figure 5.2: Visual comparison of gray matter (Green)/white matter (Blue) segmen-

tation over different methods, with respective DICE scores listed under the images.

• MSRn
cor: Slice interpolation based on only coronal view MSR. We consider

number of input slices n = 1, 3.

• Fused: Slice interpolation with fusion network. Inputs to the network are

MSR3
sag and MSR3

cor.

• Refined: The proposed full pipeline.

From Table 5.2, it is clear that each proposed component improves the quality

of slice interpolation. Notice that even without fusion and refinement, the axial slices

interpolated by MSR3
sag and MSR3

cor are already better than the baseline 2D/3D

CNNs.
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Stage PSNR (dB) SSIM

baseline 2D CNN 31.24 0.9313

baseline 3D CNN 31.34 0.9292

MSR1
sag 30.28 0.9129

MSR1
cor 30.56 0.9178

MSR3
sag 31.43 0.9314

MSR3
cor 31.61 0.9339

Fused 32.02 0.9413

Refined 32.22 0.9441

Table 5.2: Quantitative ablation study. Baseline numbers are also included for

comparison. The best results are in bold and the second best are underlined.

Visual comparisons are shown in Fig. 5.3, where we select a challenging slice

with abundant anatomical details. From Fig. 5.3, it is clear that marginally super-

resolving axial slices from coronal and sagittal views leads to noticeable horizontal

(MSRn
sag) and vertical (MSRn

cor) artifacts. Furthermore, some small details are bet-

ter resolved by MSR3
sag, while others are better resolved by MSR3

cor. The fusion

network combines the features from MSR3
sag and MSR3

cor, which effectively reduces

inconsistency. With additional axial information, the fused slice is then further

improved by the refinement network.

In addition to L1 loss, we also experiment on GAN loss at refinement stage.

However, we find that GAN tends to generate fake anatomical details, which is
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Figure 5.3: Visual comparison for the proposed components.

undesirable in medical applications.

5.3 Multi-Sequence Recovery

5.3.1 Data sets

We employ two datasets. The first one is a privately collected, k-space raw data

of three sequences (T1, T2, FLAIR) from 20 patients, with each sequence containing

18 slices. The sequences are co-registered and taken with an MRI machine with

8 channels; in order to augment training, we treat each channel as an individual

image to result in a total of 2,880 three-sequence images, which are divided into a

ratio of 17:1:2 for training, validation, and testing. We refer to this dataset as “real

data”. In order to further validate our research, we also employ the Brain Tumor

Image Segmentation (BraTS) dataset [30, 31], which contains T1, T2, and FLAIR.
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The sequence are co-registered to the same anatomical template, skull-stripped, and

interpolated to the same resolution. We divide the selected 167 cases into a ratio

of 140:10:17 for training, validation, and testing. From every case, we select the

middle 60 slices that contain most of the anatomical details. Because BraTS does

not provide raw k-space data, we follow common practices [8,27] to simulate k-space

data. We refer to this dataset as “simulated data”. Below, our insights are first

demonstrated with experiments on real data and are further validated on simulated

data.

5.3.2 Acquisition time and undersampling settings

In general, T2 and FLAIR have longer repetition time (TR) than T1; however,

the acquisition time of each sequence also depends on the number of excitations. A

larger number of excitations helps better resolve sequences but take a longer time;

therefore, the acquisition time of each sequence is rather machine-dependent. Here

we consider three experimental settings: tT1 :tT2 :tflair= (1) 1:1:1, (2) 1:4:6, and (3)

2:3:6.

We experiment on both low-pass sampling [27] and random sampling [8]. We

found that random sampling works better on real data but worse on simulated data.

As our approach is agnostic of sampling strategy, we choose the better performing

sampling strategy for each dataset.

It is worth noting that during training of BRM, the masksM1:S are generated

based on a random λs ∈ [1, k], where k is the maximum undersampling factor that we
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Figure 5.4: Quantitative recovery performance comparison. The Pearson correlation

coefficient between Dedicated and MIMO vs between Dedicated and ZF is 0.85 vs

-0.33 in the selected range

empirically set to 8. This means that BRM, after training, can handle a continuous

set of undersampling factors on every sequence.

5.3.3 Evaluation metrics

We utilize two metrics to gauge image quality: PSNR (peak signal-to-noise

ratio) and SSIM (structural similarity). Since we mainly focus on three sequences,

calculation of these metrics on three-sequence outputs is the same as on RGB images.

This is easily extensible with a larger number of sequences. MRI images do not have

a fixed dynamic range, as a consequence PSNR values should be regarded in terms

of relative improvements. For example, a T2 image tends to have a lower PSNR as

it has the highest peak out of all three sequences.
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5.3.4 Results

We evaluate the effectiveness of BRM in order to empirically demonstrate that

a properly trained network fθ performs well regardless of the choices of M1:S, and

serves as a good estimator of best sampling strategy. Furthermore, we want to show

that MIMO BRM performs better than SISO BRM.

The study is done by training (i) one MIMO BRM, (ii) three SISO BRM

for three sequences, and (iii) many models that are dedicated for specific sampling

ratios. All the models follow the same structure as shown in Fig. 4.4. The proposed

training scheme for continuous λs ∈ [1, k] allows us to efficiently investigate the

performance of different undersampling strategies. For each acquisition time setting

{ts}Ss=1, we search through possible {λs}Ss=1 on the following simplex:
∑S

s=1
ts
λs

=

Tmax, which maximally utilizes the budgeted time Tmax. We select hundreds of

{λs}Ss=1 under the 1:1:1 time setting, and set Tmax = T
4
, or 75% reduction in time.

We run the trained models on the test set, and plot the reconstruction performances

in Fig. 5.4. The top-three performing sampling strategies for different acquisition

time setting are shown in Table 5.3.

Fig. 5.4 shows a clear performance gap between MIMO and SISO. Overall, the

reconstruction performance of ZF images is the good indicator of the performances of

BRMs; however, the correlation fluctuates often, and two sets of ZF that are similar

in PSNR can swing for more than 1dB after going through BRM. To limit the

number of dedicated models we need to train, we select a range of sampling factors

of which ZF performance does not correlate well with MIMO/SISO performance,
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and train 30 dedicated models to see how well BRM predicts the performance of

dedicated models. As we observe from the right image in Fig. 5.4, our BRM, both

tT1 :tT2 :tflair λT1 , λT2 , λflair ZF SISO MIMO MIMO (tuned)

1 : 1 : 1 6.6, 2.1, 8.0 33.48/0.918 38.57/0.980 39.24/0.984 40.00/0.987

Real 8.00, 2.11, 6.63 33.43/0.920 38.36/0.979 39.16/0.984 40.07/0.987

7.25, 2.11, 7.25 33.39/0.918 38.50/0.980 39.15/0.984 40.07/0.986

1 : 4 : 6 2.90, 2.44, 7.82 33.81/0.926 38.85/0.983 39.33/0.985 40.28/0.988

Real 3.01, 2.44, 7.69 33.60/0.924 38.83/0.983 39.32/0.985 40.37/0.987

3.93, 2.44, 6.99 33.58/0.925 38.81/0.983 39.31/0.986 40.13/0.987

1 : 1 : 1 5.66, 3.14, 3.93 32.21/0.887 37.69/0.974 38.32/0.978 38.99/0.980

Simulated 5.27, 3.41, 3.74 32.31/0.889 37.88/0.975 38.31/0.979 38.98/0.980

6.10, 3.14, 3.74 32.21/0.887 37.51/0.973 38.31/0.978 38.99/0.980

2 : 3 : 6 2.61, 3.74, 5.16 32.87/0.899 38.01/0.976 38.67/0.980 39.37/0.982

Simulated 2.44, 3.74, 5.40 32.84/0.899 37.87/0.975 38.66/0.980 39.35/0.982

2.61, 3.41, 5.66 32.82/0.899 37.80/0.975 38.65/0.980 39.33/0.982

Table 5.3: Quantitative evaluations for the top performing λ1:S under different ac-

quisition time assumption. The performance numbers presented here are PSNR

(dB) and SSIM.

from MIMO and SISO settings, predicts the performance of dedicated models with

a high correlation. We further choose the best three {λs}Ss=1, and perform the last

stage of fine-tuning accordingly to (4.7). A visual evaluation on real data is shown
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in Fig. 5.5, 5.6, 5.7, 5.8, 5.9.

Base on the best performing {λs}Ss=1, we perceive that among T1, T2, and

FLAIR, the results are best when T2 is sampled the most. We suggest that this makes

intuitive sense as T2 images provide the best contrast out of the three sequences,

which can compensate for the details lost in other images. The same observation

can be made on the simulated data, where both T2 and FLAIR show good contrast.

When the time setting is changed to non-uniformity, we can see that our search for

the best sampling strategy reflects the change. T1 is sampled more as a result of

faster acquisition time, while T2 is still sufficiently sampled.

Figure 5.5: Visual comparison of different recovery methods on real data, with

PSNR and SSIM values listed under the images. After successful recovery, the

images become sharper with more visible details.
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Figure 5.6: Additional visual comparison of different recovery methods on real data.
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Figure 5.7: Additional visual comparison of different recovery methods on real data,

with a different time setting.

Figure 5.8: Visual comparison of different recovery methods on simulated data.

Note that BraTS sequences are interpolated for registration; therefore the image

quality is not as good as the real data.
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Figure 5.9: Visual comparison of different recovery methods on simulated data, with

a different time setting.
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Chapter 6: Conclusion

6.1 Deep Slice Interpolation

We proposed a multi-stage 2D CNN approach called deep slice interpolation

which allows us to recover missing slices with high quality, even when the distance

between observed slices are sparsely sampled. We evaluated our approach on a

large ADNI data sets, demonstrating that our method outperforms possible 2D/3D

CNN baselines both visually and quantitatively. Furthermore, we have illustrated

that the MR slices estimated by the proposed method have superior segmentation

accuracy. In the future, we plan to investigate the potential application of the

proposed framework on real screening MRI images which often have a very low slice

density.

6.2 Multi-sequence Recovery

We formulated multi-sequence MR recovery as a constrained optimization

problem, and explored possible methods to solve such a problem. We proposed

a CNN-based approach that has been experimentally proven to be degradation-

agnostic, and an optimization scheme that helps us to find the best combination
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of sampling strategy and recovery model on input sequences. We evaluated our

approach on the BraTS data sets, demonstrating that our method finds the sam-

pling strategy that agrees with the k-space energy distribution of each sequences,

and that it outperforms single sequence recovery methods in recovery quality as

well as in time and space complexity. While this work is a preliminary study on a

complex problem, we believe that it builds the foundation for further researches in

multi-sequence MR recovery. In the future, we plan to investigate questions that

have arisen in this work, including finding the optimal sampling pattern for all se-

quences and the performance of a blind recovery model against noise introduced by

randomized sampling pattern.

6.3 Future Work

In the thesis, we introduced two novel methods in two different, but practical

scenarios often encountered in accelerating MRI acquisition. Deep Slice Interpola-

tion provides a great framework in generating realistic slices; however, in its current

form, it still relatively inhibited by the input size and cannot upsample to arbitrary

output size without repetitive retraining or lower output quality. Further research,

whether it is in knowledge distilling or network memorization, is needed to make this

possible. Multi-sequence Recovery, on the other hand, is inhibited by the fact that

there exist little public multi-sequence data sets to be tested with this method. Fur-

thermore, current multi-sequence data sets do not take consistent number of slices

and spatial locations into account, which creates difficulty in applying our method.
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As a result, a very practical extension of this work will be to create a method that

can create spatially registered, slice-wise consistent volumes. From this perspective,

Deep Slice Interpolation can be thought of as the part that helps reach slice-wise

consistency.
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