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Chapter 1 Introduction 

Problems and Motivations 

Modern medical diagnosis at the core consists of two stages, observation and 

deduction. Observation is to capture a set of measurable symptoms that are 

related to a certain illness. Whether a symptom is observable depends on the 

capability of the medical instruments, which convert and amplify the 

symptoms’ physics into what human observers could perceive. Sometimes a 

symptom can be observed by more than one type of instrument. For example, 

in the case of measuring heart rate, stethoscope amplifies the sound while 

photoplethysmography (PPG) measures and digitizes the volumetric change 

in the microvascular bed of the tissue [1]. More capable medical instrument 

would enable medical professionals to detect various symptoms more 

accurate. More affordable medical instruments would enable more patients to 

have access to the medical services. 

Deduction is to quantify the existence and severity of the illness by analyzing 

the observation data. Nowadays, deduction can be carried out (1) completely 

by a professional medical doctor, (2) completely by machine or (3) by the 

combination of the two. Till today, most of the medical diagnosis deductions 
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are still carried out completely by medical doctors; this procedure has been 

done for centuries and is well accepted by the population. In the recent ten 

years, many consumer electronics start to have software that is capable to 

carried out certain relatively simple deductions. For example, wearable fitness 

trackers nowadays are able to measure and detect heart disease [2]. In 

addition, many on-going researches are aiming to diagnose complex illness 

from a big-data approach completely based on machines, such as the research 

of using IBM Watson supercomputer to perform cancer diagnosis [3]. The 

marriage between traditional physician-based diagnosis and the latest 

machine-based diagnosis would be the most practical and realistic solution. It 

is called computer-aided diagnosis (CAD). First, CAD would reduce time and 

labor that medical professionals have to spent on simple and redundant portion 

of the diagnosis procedure. Secondly, CAD provides a diagnosis from the big 

data and statistic perspective while the physicians can provide a diagnosis 

from the traditional clinical practice. Together, human and machine could not 

only boost the final diagnosis accuracy but also could act as a fail-safe for 

each other. Last but not least, with medical professionals in the loop, patients 

would still have the inter-person bond and trust with a human physician, 

which is a critical element in health care that would affect many patients’ 
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decisions [4]. Computer software that contains sophisticated logistics, 

statistics and visualizations would be an invaluable tool for medical 

professionals to acquire secondary diagnostic output and visual insight from 

large sets of observation data. 

Accuracy, ease of conduct, accessibility and patients’ comfort are among the 

most crucial elements of modern medical diagnosis. Bioengineering is at the 

cross sections of biology, clinical technology, electrical engineering, 

computer science and many other domains. The translation of domain 

technologies to clinics is not only about accuracy and practicality of the 

technology. It should also take into account the accessibility (cost and 

portability), the comfort and ease of use for both patients and medical 

professionals and smoothness of technology translation for the medical 

professionals. This dissertation explored three projects that aims to translate 

and refine modern computation hardware, modern data analysis models, 

modern computer vision technologies from electrical engineering and 

computer science to adapt and solve clinical diagnosis problems. This 

dissertation will discuss how the translation and various tradeoffs and 

refinement of the technologies could bring a positive impact on the accuracy, 

ease of conduct, accessibility and patients’ comfort to those clinical 
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applications. The three projects are (1) designing and characterizing a portable 

near-infrared fluorescence imaging device, (2) designing a computer aided 

diagnosis software for chronical kidney disease based on optical coherence 

tomography and (3) augmenting optical coherence tomography data by 

imaging probe localization. 

Contributions 

The dissertation author is the major contributor, creator and project leader of 

all projects and content discussed in the dissertation.  

In designing and characterizing a portable near-infrared fluorescence imaging 

device, 

(1) the author designed, constructed and characterized a conventional NIRF 

imaging system as a reference of the industry-grade NIRF devices that are 

currently being used and sold on the market. 

(2) the author designed and fabricated a set of various fluorescent medical 

imaging phantoms in order to create a test bed of different NIRF imaging 

devices. 
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(3) the author designed, constructed and characterized a smart-phone-based 

portable NIRF imaging system and compared against the conventional NIRF 

imaging system. 

(4) the author performed animal-based testing for both systems in order to 

quantify the real-world usage of the systems. 

(5) the author’s work in this project was presented in Food and Drug 

Administration (FDA) ‘s student poster session, in IEEE-NIH conference on 

Healthcare Innovations and Point-of-Care Technologies and in SPIE BIOS 

conference [5]. 

In designing a computer aided diagnosis software for chronical kidney disease 

based on optical coherence tomography, 

(1) the author designed and developed a C++ Windows PC application with 

user interface that can locate and measure kidney disease symptoms on optical 

coherence tomography (OCT) kidney images at high accuracy. 

(2) the author used the aforementioned application to analyze ten-thousands 

high resolution OCT kidney images and performed statistics on the software’s 

analytic results. The statistics result indicates that software is able to detect 

and distinguish the severity level of the kidney disease. 
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(3) this work was published in Journal of Biomedical Optics [6]. 

In augmenting optical coherence tomography data by localization of imaging 

probe, 

(1) the author designed an augmented conventional handheld OCT imaging 

probe with a stereo-camera mounted to the probe body. 

(2) the author developed a C++ software application that localizes the 

handheld imaging probe using the stereo-camera and visualize the captured 

OCT 2D images in 3D virtual space. 

(3) the publication of this work is in pending. 

Thesis Organizations 

Each project is assigned to one chapter. Chapter 2 discusses the project of 

designing and characterizing a portable near-infrared fluorescence imaging 

device. Chapter 3 discusses the project of designing a computer aided 

diagnosis software for chronical kidney disease based on optical coherence 

tomography. Chapter 4 discusses the project of augmenting optical coherence 

tomography data by localization of imaging probe. Chapter 5 concludes the 

dissertation as a whole and discusses the possible future work in the light of 

this dissertation. 



 7 

  



 8 

Chapter 2 Portable Near Infrared Fluorescence Imaging 

System 

Introduction 

The revolution of smart phone platform in the recent ten years has changed 

many aspects of daily life. Many medical diagnosis applications, such as 

phone-based oximetry [7] and ophthalmoscope, have since been successfully 

ported to the mobile platform. Medical diagnosis applications are drawn to 

the smart phone platform for many reasons. Smart phones are gradually 

becoming a commodity as the average cost of a smart phone decreases every 

year. The increasing adoption rate of smart phones means medical diagnosis 

applications on this platform are widely accessible globally. With the 

continuous development of mobile phone processors, the computation 

capability of average smart phone now can rival that of desktop computers 

from 2 to 3 years ago but in a much smaller form factor. Such portability 

makes smart phones more suitable for point of care diagnosis in situations 

such as rural and global health, pandemic response, military and first-

responder and medical countermeasures. Last but not least, smart phones are 

equipped with various long-range communication capabilities, including 
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cellular network, Wi-Fi network, and various short-range communication 

capabilities, including Bluetooth and NFC (Near-field Communication). With 

various communication/networking capabilities, smart phones are capable to 

communicate the diagnosis result under various network connectivity 

environment. 

Fluorescence imaging is a medical imaging technique that has many clinical 

applications. In treatment, fluorescence imaging surgery guidance present 

fluorescence-labeled structures to surgeons to perform accurate resection [8]. 

In diagnosis, retinal angiography and lymphatic imaging are both derivatives 

of fluorescence imaging [9], [10]. Near-infrared fluorescence (NIRF) imaging 

is a subdivision of fluorescence imaging that is specifically suitable tissue-

based imaging. The 650 nm to 900 nm NIR biological window of tissue, 

allowing high penetration depth and minimal auto-fluorescence, make NIRF 

imaging suitable for application, such as ophthalmic imaging and 

intraoperative visualization of vessels/perfusion and lymph nodes (non-

specific) as well as tumors (targeted molecular imaging). Minimal research 

has been found on near-infrared fluorescence (NIRF) imaging on mobile 

phone platform. Traditional NIRF imaging requires expensive and desktop-

grade instrument. A smart phone based solution could lower the cost, increase 
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the accessibility and portability of NIRF imaging. The purpose of this research 

is to advance the mobile health technology for NIRF imaging. In addition, 

there has been no standardized methods to quantify the imaging qualities of 

NIRF devices. As part of the research for the Food and Drug Administration 

(FDA), this study also aims to provide a standardized performance 

quantification procedure of the NIRF devices. 

Design of NIRF Imaging Systems 

Fluorescence Contrast Agent and Indocyanine Green (ICG) 

Fluorescence dyes are usually used as contrast agent to create or enhance 

fluorescence image. To emit fluorescence light, a light source in a specific 

wavelength range is necessary in order to excite a dye. An excitation 

wavelength range and an emission wavelength range are associated with each 

fluorescence dye. Fluorescence occurs when an orbital electron got excited to 

a higher energy state then relaxes back to its original states (Figure 1). The 

emission photon energy is usually less than the excitation photon energy due 

the simultaneous generation of heat; the emission wavelength is in general 

slightly longer than the excitation wavelength. 
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Figure 1. the excitation and emission process of fluorescence 

For NIRF imaging for biological tissue, in order to achieve low loss of both 

excitation light and emission light, a suitable NIRF contrast agent should have 

both excitation and emission wavelengths within the 650 nm to 900 nm NIR 

biological window. In addition, it should be nontoxic and harmless for clinical 

usage. One of the very few fluorescence dyes that meets those requirement is 

indocyanine green (ICG). ICG is a well-established NIRF imaging contrast 

agent with wide clinical use, for example, in retinal angiography and 

intraoperative vascular imaging. The fluorescence properties of ICG in an 

aqueous solution with 2.5 µg/ml were characterized. Figure 2(a) shows the 

absorption spectrum of ICG measured with spectrometer. The figure shows 

that the peak absorption is at 780 nm. Figure 2(b) shows the excitation-

emission matrix measured using a high sensitivity spectrofluorometer 

(QuantaMaster, Photonic Technology International, New Jersey, United 
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States) with dual-monochrometers for excitation and emission. An excitation-

emission matrix (EEM) presents the emission intensity of a fluorophore at 

each excitation-emission wavelength pair. The result shows that the maximum 

emission intensity occurs at 780 nm excitation wavelength and 830 nm 

emission wavelength. The matrix also indicates that ICG has a broad emission 

spectrum ranging from 750 to 850 nm. Due to the wide clinical usage of ICG 

in NIRF imaging, we conducted the majority of the study specifically with 

ICG as the contrast agent. 

 

Figure 2. (a) ICG absorption spectrum (b) ICG excitation-emission matrix 

Development of Desktop-Grade NIRF Imaging System 

To create a reference point of the traditional industrial NIRF imaging system 

used in clinics, a professional desktop NIRF imaging system was built (Figure 
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3). In the system, a charge-coupled device (CCD) camera (Alta Series, Andor 

Technology, Belfast, Northern Ireland) is used for image capturing. This CCD 

camera has a resolution of 1600 x 1200 and 16-bit pixel depth. The lens of the 

camera and the distance of the camera to the imaging stage are adjusted (65 

cm) so the the camera has a 10 cm by 10 cm field of view of the imaging stage. 

NIR LED excitation light source centered at 780 nm is used to match the 

absorption spectrum of ICG. Beam expander is installed onto the LED and the 

distance from the LED to the imaging stage is adjusted to achieve a beam spot 

size of 10 cm in diameter at the imaging stage. Maximum beam power of 2 

mW/cm2 is achieved at the imaging stage. 800 nm short-pass light is installed 

to the light source and 825 nm long-pass filter is installed to the CCD in order 

to prevent excitation light from mixing with the fluorescence signal when 

reaching the camera. 
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Figure 3. Desktop NIRF Imaging System 

Development of Smart Phone Based NIRF Imaging System 

A smart phone CMOS camera is used to replace the expensive CCD camera 

from the previous system (Figure 4). CMOS camera is intrinsically capable to 

sense NIR signal. In consumer CMOS camera, NIR filters are added to the 

CMOS sensor in order to simulate the photo sensitivity spectrum of human 

eyes. To enable the NIR capability of the smart phone camera, the NIR filter 

on the CMOS camera is removed. This CMOS camera has a resolution of 

2448 x 3264. To isolate the fluorescence spectrum, the 825 nm long-pass filter 
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is installed on the camera. The mobile phone is placed 12 cm away from the 

imaging stage to achieve the same field of view as the CCD camera. 

 

Figure 4. NIR-Enabled Smart Phone 

Biomedical Imaging Phantom Design and Fabrication 

Imaging phantom is commonly used to evaluate certain performance of the 

biomedical imaging device. In order to characterize the two NIRF systems, 

multiple phantoms were designed and fabricated for different purposes. The 

objective is to create imaging phantoms that can become standardized tools to 

measure the performance of the NIRF imaging device. In addition, the 

imaging phantoms should be solid, reusable and stable for a long period of 

time in order to become part of the standardized performance quantification 

procedure. 

Uniform fluorescence phantom 
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A uniform fluorescence phantom was fabricated to use with a non-fluorescent 

resolution target in order to evaluate the sharpness of the imaging system 

(Figure 5(a)). The phantom is made of an epoxy resin matrix with ethanol as 

a solvent, ICG as the fluorophore and titanium dioxide (TiO2) as the scattering 

constituent. The scattering level was by design to be much higher than 

biological tissue in order to achieve a uniform fluorescence emission with 

minimal shading in bright regions of the acquired image. Epoxy resin as the 

solvent produces a solid and mechanically stable phantom. A glass resolution 

target chart with chrome bars and numbers (2” x 2” positive 1951 USAF, 

Edmunds Optics Inc., Barrington, NJ) was placed atop the phantom with the 

chrome surfaces adjacent to the Epoxy-ICG phantom and imaging was 

performed with both NIR methods (Figure 5(b)). 

Photo-bleaching of the uniform fluorescence phantom is characterized to 

determine the reusability of the phantom. Photo-bleaching occurs when the 

contrast agent is under excitation light exposure for long period of time. If 

photo-bleaching effect is substantial over a short period of time, the target is 

not reusable or suitable for long-time experiment. To measure the photo-

bleaching property of the phantom, aqueous ICG solution, as the reference, 

and ICG-resin phantom were exposed under 10 W/m2 of NIR excitation light 
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for 2 hours. Fluorescence emission intensity of both targets were measured 

repeatedly within the 2-hour experiment. The result showed that over the 

period of 2 hours, the emission power of ICG-resin mixture has reduced less 

than 5 percent of the original emission power while that of aqueous ICG 

solution has reduced more than 20 percent (Figure 5(c)). 

 

Figure 5. (a) uniform fluorescence phantom (b) NIRF image of glass resolution chart 

placed on top of the phantom (c) characterization of photo-bleaching effect 

3D Printed Channel Phantom 

Phantom with channels located at various depth was fabricated using photo-

polymerization 3D printing (Figure 6(a)). By temporarily injecting aqueous 

ICG solution into the channels, phantoms with 3D channels could be used to 

measure the penetration depth of the NIRF imaging systems. Penetration 

depth for NIRF imaging system is affected by the combination of excitation 

light spectrum, fluorescence contrast agent emission spectrum and the 

sensitivity of the image sensor. The phantoms were fabricated with photo-
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polymerization 3D printer Objet 30 (Stratasys Ltd.), which is capable to 

produce prints with fine and accurate structures. Extrusion deposition and 

photo-polymerization are the two major 3D printing technologies that are 

widely used nowadays. Extrusion deposition creates layers by depositing 

small beads of material, such as acrylonitrile butadiene styrene (ABS), to the 

surface, where the material solidifies immediately. Photo-polymerization 

forms layers by drawing a laser beam on the surface of liquid photopolymer, 

which hardens on light exposure. Our group’s previous study compared the 

printing quality between ABS-based extrusion deposition and photo-

polymerization for phantom development [11]. In ABS phantoms printed with 

extrusion deposition process, internal leakage showed up after fluid had been 

injected into the channels. In comparison, the photo-polymerization 

technology can print water-tight channels that can hold fluid, such as aqueous 

fluorescence solution. In addition, HTTP resin, the 3D printing material used 

during the photo-polymerization process, is proven to have absorption 

spectrum and scattering spectrum that are similar to biological tissue [12]. 

Fluorescence property of the 3D printing material was measured to ensure the 

bulk material (HTTP resin) does not fluoresce in the same spectrum as the 

ICG contrast agent. EEM of the HTTP resin is measured with 
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spectrofluorometer (Figure 6(b)). The absence of emission signal in the EEM 

indicates that the photopolymer material used in 3D printing does not have 

fluorescence excitation/emission spectrums that overlaps with that of the ICG. 

NIRF imaging phantoms made of HTTP resin photopolymer do not produce 

background fluorescence, which would otherwise decrease the contrast of the 

target image. 

 

Figure 6. (a) 3D printed phantom with channels at various depth (b) excitation-

emission matrix (EEM) of HTTP resin 

3D printed bio-mimic phantom 

The bio-mimic phantom (Figure 7) fabricated from our group’s previous study 

was also included as part of the study [13]. This bio-mimic phantom was 

printed using photo-polymerization process based on a 3D model derived 
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from human retina image. The phantom is 5cm x 5cm in dimension with 0.75 

mm diameter channel at 0.75 mm depth. 

 

Figure 7. bio-mimic phantom fabricated from a previous study [13]  

Characterizing Performance of NIRF Imaging Systems 

The performances of the two NIRF imaging systems were characterized using 

the fabricated phantom. The performance measures include sharpness, signal-

to-noise ratio (SNR) and penetration depth. In addition, the imaging result of 

the biomimetic phantom is compared to that of a real biological murine tissue 

to access the level of truthfulness of the biomimetic phantom to simulate or 

replace the animal testing in long term. 

Sharpness 

Sharpness is the ability of NIRF imaging system to resolve small details of 

the target object. Standard resolution test chart (USAF 1951, chrome on glass) 
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was set on top of a flat homogenous fluorescence phantom was imaged with 

both systems. USAF test chart is composed of groups of three bars with spatial 

distance between the bars gradually decreases. Contrast transfer function, 

depicting the relation of contrast and spatial frequency, can be quantified by 

analyzing the image of USAF chart. Figure 8 shows the USAF images 

captured by both system and the CTF curves of the two systems comparing 

side by side. Michelson contrast is used as the contrast measurement. 

 

Figure 8. (a) USAF NIRF Image from CCD (b) USAF NIRF Image from Smart Phone 

CMOS (c) CTF curve of the two systems 

Signal-to-Noise Ratio 

SNR of the two systems are measured using the uniform fluorescence 

phantom without the USAF target. In imaging system, SNR is defined as the 

mean of the signal divided by the variance of the signal. The uncertainty of 

the pixel values arises from the extrinsic photon noise and from the intrinsic 
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dark current noise of the sensor material and electronic noise from the circuit. 

The photon noise is independent of the sensing electronics and caused by the 

natural statistical variation of the photon arrival rate. The dark current noise 

is caused by the thermally generated electrons inside the sensor material. The 

electronic noise is caused by various electronics in the camera sensor, such as 

signal amplifiers and digitizers. However, SNR of the imaging system could 

also be adjusted by customizable settings of the system, such as exposure 

duration. To perform a fair comparison of the two systems, both systems are 

set to their default factory settings. Videos of the uniform fluorescence 

phantom were captured by both systems in a dark undisturbed environment 

with only excitation light turned on. The mean, variance and SNR of the 

fluorescence signal for each pixel over the time period of the video was 

determined. The SNR of the system is the average SNR computed from all 

the pixels. The SNR of the CCD system and the smart phone camera are 500 

and 61 respectively. The cost of the CCD system justifies its higher SNR. The 

CCD systems has its dedicated cooling system that lowers the temperature of 

the sensor material that in turn lowers the dark current noise. In addition, the 

CCD system has a 16-bit digitizer comparing to the 8-bit digitizer in the smart 

phone camera system. 
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Penetration Depth 

Aqueous ICG solution was injected into the phantom with channels located at 

various depth. The phantom was imaged with both systems. The CCD system 

produced a high contrast image with the contrast of the channel structures 

decreases as the channels reside deeper. In comparison, the CMOS camera on 

the phone produce lower contrast image. Channels at 3.2 mm and 3.7 mm 

depth is barely resolved. In addition, the auto focusing software of the phone 

camera constantly failed because of the low fluorescence light intensity the 

sensor can detect. The images and the quantification result are shown in 

Figure 9. 
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Figure 9. (a) CCD image of channel phantom (b) CMOS image of channel phantom (c) 

Contrast vs. channel depth for both systems 

Biomimetic Phantom and Animal Experiment 

While the NIRF imaging quality of the phone camera has been benchmarked 

being inferior than the CCD camera, the feasibility of the phone camera for 

biological NIRF imaging is still uncertain. In many cases of NIRF imaging 

for point of care diagnosis, such as cancer detection, achieving high resolution 

image of the structure is not necessary or even considered excess. If the phone-

camera-based NIRF imaging at point of care could provide an accurate binary 
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conclusion fast and at a low cost, it will still be a valuable solution. Two 

experiments, 3D biomimetic phantom NIRF imaging and an animal NIRF 

imaging, were conducted to evaluate the feasibility of phone camera based 

NIRF imaging of biological tissue. 

3D printed human retina vascular channel phantom was injected with ICG 

aqueous solution and imaged with both systems (Figure 9). CCD camera 

produces a high-quality image with all the vessels well-resolved; the smart 

phone camera was able to capture the major vascular channels while the 

smaller vascular structures cannot be resolved from the smart phone NIRF 

image. 

 

Figure 10. (a) human retina vessel phantom (b) CCD NIRF image (c) phone camera 

NIRF image 

In the animal experiment, ex vivo imaging was performed on a mouse with 

ICG (2.5 µg/ml) injected in the tail vein and femoral vein region. ICG 
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dispersal was limited to the region near the injection site due to the lack of 

perfusion. The animal target was imaged using both systems (Figure 11). The 

phone camera based imaging result can clearly show the locations where the 

ICG resided. 

 

Figure 11. (a) RGB image of the animal (b) CCD imaging result overlaid on RGB 

image (c) phone camera imaging result overlaid on RGB image 

Discussion 

The NIRF imaging performance of a conventional CCD system and a mobile 

phone camera was compared. While in many technical aspects, the mobile 

phone camera has inferior NIRF imaging performance than the conventional 

CCD system. The cost of the mobile phone based system is one tenth of the 

cost of the CCD system. The cost difference could increase further as the 

smart phone market becomes more competitive.  
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Cost and portability are two important factors to deliver effective and 

affordable healthcare to developing regions and countries. Many medical 

diagnosis technologies are developed in response to the needs of the patients 

and medical professionals in the developed countries. These systems typically 

require highly maintained environments and operators who need to go through 

expensive trainings. However, the majority of the world’s population only 

have access to poorly resourced health care facilities with minimum clinical 

laboratory infrastructure [14]. The goal of point of care diagnosis is to bring 

diagnosis systems and professionals who are capable to operate the systems 

to the patients, especially those who do not have access to well-equipped 

clinical facilities. As more patients have access to the diagnosis systems, the 

more likely they would receive diagnosis at early stage, resulting more 

effective treatment and prevention of the disease [15]. 

Although mobile phone camera based NIRF system is unable to produce 

NIRF image at the same high quality of traditional CCD based system, its 

cost-effectiveness and portability justifies that mobile phone camera based 

NIRF system is well suited for point of care diagnosis of many NIRF imaging 

applications.  
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For example, NIRF imaging is applied in non-invasive imaging of the 

lymphatic system. Abnormal lymphatic system may be associated with a wide 

spectrum of diseases, including cancer metastasis, venous disease and 

complications of wound healing. Abnormal lymphatic system can be detected 

by intradermal administration of ICG and observing the appearance of the 

lymphatics in the medial arm[7]. The mobile phone based system would be 

sufficed for such application because of the relative large structure of the 

lymphatics. 

Late-fluorescence mammography is another potential application of mobile 

phone based NIRF imaging. Due to the intravascular difference between 

normal breast tissue and carcinomas tissue, the fluorescence clearance 

capability of those tissues are different. After administrated ICG has been 

largely cleared from the blood by the liver, carcinomas tissue would produce 

a high contrast NIRF signal over the homogenous background[16]. To 

diagnose the potential existing carcinomas tissue at point of care, it is not 

necessary to capture the high definition NIRF mammography. Mobile phone 

camera based solution could potentially become a low-cost solution to 

increase the population to access mammography scanning. 

Chapter Conclusion 
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In this study, NIRF systems and medical imaging phantoms were designed 

and built in order to compare various optical characteristics of a conventional 

CCD-based NIRF system and a noble mobile phone camera based NIRF 

system. The study has shown that mobile phone camera based NIRF system 

is able to provide enough sensitivity at a much lower cost to perform NIRF 

based diagnosis in point of care applications. The possibility of performing 

NIRF based diagnosis and preventive scanning on a mobile phone device 

would enable more people, especially those at developing regions, to gain 

access to NIRF based diagnoses, such as NIRF mammography and abnormal 

lymphatic systems detection. 
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Chapter 3 Computer Aided Diagnosis of Chronical Kidney 

Disease 

Introduction 

Chronical kidney disease (CKD) is a medical condition characterized by the 

progressive loss of kidney’s function [17]. Nowadays, 26 million U.S. patients 

suffer from CKD condition while millions more are potentially at risk [18]. In 

estimate, more than half a million U.S. residents have end-stage renal disease 

(ESRD), which is associated with high mortality rates (163.8 deaths per 1,000 

patients per year) and a huge economic burdens (>$30 billion per year) [18]. 

CKD is classified into five stages of increasing severity [19]. ESRD is the last 

stage of CKD when dialysis or transplant is needed to stay alive. The stages 

of CKD or the progressive loss of kidney function are mainly based on 

measured or estimated glomerular filtration rate (eGFR) [20]. Estimated GFR 

(eGFR) is obtained by blood test including serum creatinine level, together 

with age, sex, and sometimes other information [20]. Pathology can provide 

additional information about the microstructure of declined kidney function 

by viewing tubular atrophy, glomerulosclerosis, and interstitial fibrosis. 
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However, there are significant artifacts associated with excision biopsies and 

immersion fixation procedures.  

Optical coherence tomography (OCT) [21]-[24] has the advantage to allow 

the analysis of the microscopic structure of kidney in a non-destructive 

manner. OCT has been used to image thermal tissue damage to the rat kidney 

resulting from laser ablation [25]. OCT’s capability to resolve renal 

corpuscles and uriniferous tubules was first demonstrated on rat kidney ex 

vivo using high-resolution time-domain OCT[24]. With the advent of high-

speed Fourier-domain OCT technology, 3D imaging of renal microanatomy 

in vivo was enabled [26]. The kidney microstructures prior to, during, and 

following exposure to renal ischemia can be observed in real time. In a recent 

study, Andrews et al. utilized OCT to visualize the characteristic 

histopathologic changes on aging rat kidneys in vivo [27]. With the onset of 

severe proteinuria at 10-12 months of age, OCT reveals tubular 

necrosis/atrophy, interstitial fibrosis, tubular dilation, and glomerulosclerosis 

[27]. With a further deterioration in kidney function at 16-18 months of age 

as indicated by rising creatinine levels, OCT reveals more extensive 

interstitial fibrosis and tubular atrophy, increased tubular dilation with cyst 

formation and more sclerotic glomeruli [27]. 
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Wierwille et al. investigated the feasibility of Doppler OCT (DOCT) to image 

kidney microcirculation, specifically, glomerular blood flow [28]. Normal 

blood flow as well as the effects of acute mannitol and angiotensin II infusion 

has been observed and quantified. Using ultrahigh-sensitive optical 

microangiography (OMAG), Zhi et al. demonstrated highly sensitive imaging 

of renal microcirculation in vivo [29]. Normal peritubular capillary 

microcirculation as well as the changes in response to renal ischemia and 

reperfusion can be monitored and quantified using this method.  

Since OCT has deeper penetration depth than confocal microscopy, it is able 

to penetrate the renal capsule surrounding human kidneys thereby enabling 

the characterization of renal tubules, glomeruli, and cortical blood vessels in 

human kidneys [30]-[32]. Using image-processing algorithms, key 

microstructural parameters such as tubular lumen diameter can be 

automatically quantified [32]. In vivo imaging of human kidney has been 

reported during kidney transplantation procedures [33], and clinical studies 

have indicated that the openness of tubular lumens observed by OCT has a 

strong correlation with the post-transplant recovery of renal function [34]. 

These results suggest that OCT may be a useful tool in intra-operative 

monitoring and evaluation of transplant kidneys for predicting post-graft 
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function after ischemia-reperfusion injury. OCT has been applied to other 

clinical studies including assessing the morphological features of the 

endothelial and vascular injury induced by catheter-based renal nerve ablation 

(RNA) [35], and differentiating between normal renal parenchyma and renal 

cell carcinoma (RCC) [36], [37]. 

Computer aided diagnosis (CADx) systems can interpret medical images and 

provide an advisory diagnosis decision for medical doctors. Those systems 

aim to both decrease the diagnosis error rate and reduce decision making time 

[38]. A great amount of research in CADx systems has been conducted for 

different types of imaging modalities and imaging targets. CADx computation 

pipelines often include region proposing, feature extraction, and 

classification. Liu et al. [39] detected epidural masses on CT scans by region 

proposing with K-mean clustering, extracting a collection of texture features, 

and trained a support vector machine (SVM) classifier based on the texture 

features. Farag et al. [40] detected entire pancreas organ location in CT scans 

by region proposing with Simple Linear Iterative Clustering (SLIC) 

algorithm, extracted Dense Scale Invariant Feature Transform (dSIFT) 

features, and trained a random forest classifier based on dSIFT features. 

Jerebko et al. [41] detected colonic polyps in CT scans by region proposing 
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with manual seed selection, extracted 12 hand-coded features, such as area, 

sphericity, surface pixel intensity mean, and trained a neural network 

classifier based on these 12 features. For OCT-related CADx system, Wan et 

al. [42] detected and classified breast tissues in OCT scans using a sliding 

window technique for region proposing, extracted local binary pattern (LBP) 

texture, and trained a neural network classifier based on the LBP texture 

feature vector. Qi et al. [43] detected and classified dysplasia in Barrett’s 

esophagus in endoscopic OCT scans using a semi-automatic segmentation 

process based on global threshold, and extracted 6 texture features. They used 

principal component analysis (PCA) to obtain the top-2 significant feature 

spaces and found the classification threshold from the receiver operating 

characteristic (ROC) curve generated from 100 annotated training images. Qi 

et al. [44] detected colonic crypt morphology in en face image from OCT 3D 

scan using semi-automatic marker-based watershed segmentation, extracted 6 

region features, such as area, density, eccentricity, and used PCA to obtain the 

top-2 significant feature spaces. 

In recent years, deep convolutional neural network (ConvNet) has been 

increasingly adopted by CADx applications. With proper convolutional neural 

network architecture, the original computation pipeline of CADx, which 
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consists of region proposing, feature extraction, and classification, can be 

condensed into region proposing and ConvNet classification or even simply a 

ConvNet that is trained to calculate both the class and bounding box of the 

object. Roth et al. [45] detected lymph node from CT scan by using a 

preliminary software to generate 3D lymph node candidate segments and a 5-

layer ConvNet to classify the 3D segments based on 2D image generated from 

a random viewpoint of the 3D segments. Roth et al. [46] detected pancreas in 

CT scans by using SLIC algorithm for region proposing and deep 

convolutional neural network to classify the SLIC segmentation. Liu et al. 

[47] detected colitis in CT scans by using a “selective search” algorithm for 

region proposing, a pre-trained Alexnet on PASCAL 2007 dataset (natural 

images instead of medical images) for feature extraction, and an SVM for 

classification. Esteva et al. [48] classified 757 types of skin cancer captured 

on RGB camera using Google Inception Convolutional Neural Network 

architecture that was end-to-end trained on 1.4 million annotated skin-cancer 

images. 

In this study, we used OCT to evaluate CKD in a murine model induced by 

intravenous Adriamycin(ADR) injection into Munich-Wistar rats [49]. We 

present a CADx system based on convolutional neural network to 
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automatically detect and quantify tubular diameter and hypertrophic tubule 

population from OCT images at several post-Adriamycin induction time 

points.  

Background 

Optical Coherence Tomography 

Optical Coherence Tomography (OCT) is an established 3D tissue imaging 

technology that can acquire micrometer-resolution image for tissue structure 

located at as deep as 500 micrometers. The word “tomography” means 

visualizing the cross section of a solid object. OCT represents the cross section 

of an imaging target in terms of the reflectance of its composition materials at 

different depth location. In comparison to a pixel in traditional photography, 

an axial scan or in short A-scan is the fundamental imaging unit of OCT. The 

intensity of A-scan is proportional to the reflectance depth profile at the 

probed location. Multiple A-scans can be acquired by moving the imaging 

probe in a single direction with tiny step size. Combining these consecutive 

A-scans results a cross-sectional image called B-scan. Similarly, a 3D scan 

called C-scan can be acquired by combining consecutive B-scans. 
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The signal source of OCT commonly uses an optical source with a broad 

spectrum such as a broadband laser or super-luminescent diode. Infrared light 

sources centered at 1030nm are common for imaging tissue because tissue has 

low absorption (therefore better penetration) at infrared spectrum. Beam given 

off by the light source is directed into a Michelson interferometer where the it 

is split into two paths. On one path, the wave incidents vertically onto a mirror 

and reflects back into the interferometer. On the other path, the wave incidents 

on the imaging target. On target surfaces at each depth, a portion of the beam 

is reflected back into the interferometer. The power of each reflected beam 

depends on the reflectance at each depth. However, the reflection beams 

overlap into one beam and is indistinguishable from each other by itself. In 

OCT nomenclature, the optical path to the mirror is called the “reference arm” 

and the optical path to the imaging target is called the “sample arm.” The 

output of the interferometer is the interference beam between the reflection on 

the reference arm and the reflection on the sample arm. 

The core of OCT is to recover an A-scan 𝐼(𝑧) from the interference wave. In 

term of A-scan recover methods, OCT technology is further classified into 

time-domain OCT (TDOCT) and Fourier-domain OCT (FDOCT). 

Time-domain OCT 
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In TDOCT, an A-scan 𝐼(𝑧) is recovered from the time-domain interference 

signal. An optical power meter is placed at the output of the interferometer in 

order to record the signal. 

To understand how TDOCT works, the concept of “coherence” needs to be 

addressed. Interference occurs if and only if two waves are highly coherent. 

In general, the word “coherence” describes the likeness between two waves 

or between a wave and a delayed version of itself (self-coherence). Wave is a 

function of both time and space; coherence is further classified into temporal 

coherence and spatial coherence in terms of if the delay is caused by the 

difference in time or the difference in space. Two waves are “perfectly 

coherent” if they share the same frequency and a constant phase difference 

(proportional to delay). In practice, ideal coherent waves are impossible to 

generate separately; coherent waves are generated by sharing the same light 

source. In addition, even with the same optical source, waves can only be 

highly coherent within some maximum amount of delay. This maximum delay 

in time or space is called the “coherence length.” 

Coherence cannot be observed directly because electromagnetic wave 

oscillation in optical spectrum is too rapid to be registered by any optical 

instruments. Only optical power or optical spectrum is perceivable. However, 
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we can infer coherence through observing interference visibility because 

interference only occurs between coherent waves. For example, in Young’s 

double slits experiment, when the two slits are close to each other, highly 

distinguishable interference fringes can be seen on the screen. As the two slits 

are moved apart, the interference fringes become dimmer and eventually 

disappear. This example demonstrates the effect of coherence length on 

interference visibility. If the spatial delay between coherent waves exceeds 

the coherence length, the waves are no more coherent so that the interference 

fringes disappear. Same phenomenon can be observed in time domain. The 

optical wave from a broadband light source has a short coherence length. The 

wave is self-coherent only within a small-time delay. In the Michelson 

interferometer, only if the time difference between traveling through the two 

optical paths are small, interference occurs at the interferometer output. 

Interference visibility can be quantified with an optical power meter. When 

two non-interfering waves overlap, for example, two flashlights pointed to the 

same spot, the power of the overlapped beam is the summation of each beam 

power (Equation 1a). When two coherent waves overlap, the waves interfere 

either constructively or destructively. So, the power of the interference wave 

is the square of the added waves, where it has an extra term depending on the 
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two waves’ phase difference (Equation 1b). The exact OCT interference 

power function is only a slightly complicated version of the one showing here. 

 𝐼%&	(%)*+,*+*%-*	~	 𝐸0 1 + 𝐸1 1 (a) 

 𝐼(%)*+,*+*%-*	~	 𝐸0 + 𝐸1 1 = 𝐼%&	(%)*+,*+*%-* + 2𝐸0𝐸1cos	(𝛥𝜙) (b) 

Equation 1. Interference Equations 

In order to measure the reflectance at each depth, the power of each reflection 

needs to be known. However, the reflections from each depth of the imaging 

target are overlapped into one single sample arm beam. In order to decompose 

them, TDOCT applies the core idea that interference occurs only within the 

coherence length. TDOCT uses a broadband light source such that it has a 

short coherence length in time domain. With short coherent waves, only the 

reflection from the depth, where optical path difference between the reference 

arm and the sample arm is within the coherence length, would interfere with 

the reference arm beam. In brief, TDOCT can select which constituent of the 

sample arm reflection interferes with the reference arm reflection by changing 

the length of the reference arm. By first matching the reference arm length to 

the sample arm length referring from the sample surface, and then increasing 

the reference arm length by small step size, the power meter can record a 
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series of value in terms of reference arm displacement. The reference arm 

displacement corresponds to the sample depth. Equation 2 shows the power 

meter reading as a function of reference arm displacement 𝑧:. 

 𝑖 𝑧: 	~	𝑖<= + 𝑅:𝑅(𝑧)
?
@AB 𝑒D @ED@ FGHF cos(	2𝑘B 𝑧: − 𝑧 	).  

Equation 2. Reference arm optical power as a function of arm length 

In Equation 2, 𝑧 is the sample depth referred from the surface of the imaging 

target. The term 𝑘B is the central wavenumber and 𝛥𝑘 is the bandwidth of the 

light source in the unit of wavenumber. The term 𝑒D @ED@ FGHF represents the 

effect that interference visibility diminishes to zero if the delay between the 

reference arm beam and portion of the sample arm beam is larger than the 

coherence length. The term 𝑅: is the reflectivity of the reference arm mirror 

which should closely equal to 1. The term 𝑅(𝑧)  is the reflectivity of the 

imaging target at depth 𝑧. This function is the A-scan recovered by TDOCT. 

Fourier Domain OCT 

The moving mirror mechanism required in TDOCT bottlenecks the OCT 

image acquisition speed. FDOCT invented around the early 2000s recovers 

the A-scan through its Fourier domain signal, 𝐼(𝑘) , called spectral 

interferogram. A-scan is computed by applying inverse Fourier transform to 
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the spectral interferogram. FDOCT scans the frequency domain instead of the 

time domain. Therefore, it discards the needs of the moving mirror 

mechanism. As a result, the acquisition speed limit of OCT can increase 

dramatically. There are two methods to recover the Fourier domain signal that 

are different in term of frequency domain scanning mechanism. One is 

spectral domain OCT (SDOCT) that uses a spectrometer to capture the output 

of interferometer. One is sweep source OCT (SSOCT) that uses a swept 

source laser as the light source and an optical power meter at the 

interferometer output. Both setups can recover the same spectral 

interferogram shown in Equation 3. 
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Equation 3. Interferogram Equation 
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In the equation, 𝑆(𝑘) is the spectrum of the light source. Fourier domain 

considers the light source as a weighted combination of independent 

sinusoidal plane waves. In such perspective, each plane wave interferes not 

only with the reference arm beam (the cross-correlation term) but also with 

the reflection beam originated from other depths in the imaging target (the 

auto-correlation term.) The A-scan can be computed by conducting inverse 

Fourier transform on the interferogram (Equation 4). 
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Equation 4. A-scan computed from interferogram 

In the equation, function 𝛾 𝑧 , called coherence function, is the inverse 

Fourier transform of the light source spectrum 𝑆(𝑘). Comparing to TDOCT, 

A-scan recovered by FDOCT contains an extra auto-correlation term which 

brings artifacts into the image. There are a few techniques such as phase-shift 

interferometry that can minimize the effect from the artifacts. 

Chronical Kidney Disease 
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Chronic kidney disease (CKD) is a general description for kidney structure 

and function disorder caused by kidney injuries, high blood pressure, diabetes 

or family CKD history [19]. With more than 200 thousand cases each year in 

United States, CKD has become a common disease that requires a systematic 

approach for screening, early detection and supervision [50]. Furthermore, the 

number of people treated for end- stage renal disease (ESRD) is increasing 

worldwide [51]. The two general CKD diagnosis methods are (1) measuring 

kidney waste filtration capability and (2) observing the visual presence of 

kidney damage[52]. 

Glomerular filtration rate (GFR) score is the most commonly used scoring 

system to describe Kidney filtration capability. GFR score is calculated in 

terms of blood serum creatinine level test result, age, weight and gender. 

Serum creatinine is a chemical waste produced by the body that shall be 

filtered out by the kidneys. CKD is classified into five stages by GFR score. 

The most severe stage, stage five, called end-stage renal disease (ESRD), 

requires patient to go through dialysis or transplant in order to survive. For 

early stages CKD, there are effective prevention practices and treatments, 

including life style modification and pharmacological treatments that can slow 

down the progression of the disease. It is the most cost-effective option for 
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patients that CKD is detected and treated at early stages [51]. However, 

despite the widely use of GFR as the gold standard to estimate kidney 

function, study has suggested that it is not reliable to detect CKD at early 

stages. It has been shown that a significant change of serum creatinine 

concentration in blood does not occur until nearly 50% of the kidney is 

nonfunctional. The rest of the functional kidney can adapt and work harder in 

order to compensate the loss of filtration units [53]. 

The basic function unit of the kidney is a nephron. A nephron is a tube-shaped 

object that extracts wastes from the body’s cardiovascular system. The start 

of a nephron is called the glomerulus. The glomerulus consists of many 

capillaries where small particles such as nutrients as well as wastes can filter 

through and enter the nephron’s proximal tubule. Proximal tubule reabsorbs 

nutrients back into the cardiovascular system and sends the wastes into the 

urinal system. 

Examine the morphology of the kidney structure mentioned above with 

kidney histology images is a more direct and accurate way to detect CKD. If 

a nephron loses its filtration capability due to injury or diseases, the proximal 

tubule of the nephron would shrink and cause nephron atrophy. The rest of 

the functional nephron would expand and cause nephron hypertrophy in order 
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to compensate the loss of functional nephrons [53]. The correlation between 

proximal tubule morphology and CKD progression and nephron function has 

been discussed extensively and been proved with histology images in many 

literatures [49], [53]-[57]. Although observing kidney morphology is an 

effective way to detect CKD in early stages, the current procedure requires 

biopsy with a slice of kidney sample for histology. Kidney biopsy or invasive 

imaging procedures are usually only applied to patients in whom a definitive 

diagnosis would result in a change in either treatment or prognosis [52]. In 

addition, kidney biopsy process is a demanding and time-consuming task; it 

includes (1) delicate surgery procedure to acquire the sample, (2) careful 

sample preservation with correct storage temperature and solutions, (3) 

applying different types of stain onto the sample for microscopy imaging and 

(4) meticulous assessment of the sample image by two experienced 

histopathologists in order to reduce the error during the assessment 

{Williams:2002ws}. 

Artificial Neural Network for Images Classification 

In a linear regression problem, linear model 𝑦 = 𝑎𝑥 + 𝑏 is fitted to a series of 

experimental data point (𝑥(, 𝑦() in order to find the unknown coefficients 𝑎 

and 𝑏 . In other words, the linear model is trained with training examples 
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𝑥( ∈ 𝑅, 𝑦( 	 ∈ 𝑅 . After the coefficients are found, we can use this linear 

model to estimate the output 𝑦′ for a given input value 𝑥′. The estimation 

should be accurate given that the test input is generated under the same 

condition as the training examples.  

In comparison to a linear regression problem whose function model is 

predetermined, artificial neural network (ANN) is a universal function 

approximator. An untrained ANN is essentially a function with numerous 

unknown coefficients. They are called weights in ANN terminology. The 

number of weights depends on the network architecture, such as layer number 

and layer size. In order to find the weight values, an ANN is fitted to a series 

of training example (𝑥(, 𝑦() until the it is able to compute 𝑦(  given 𝑥(  with 

very small error rate. This stage is called learning. After learning stage, an 

ANN is a function with known parameters. Given an input value 𝑥′ , the 

network can estimate the unknown output 𝑦′. This is called inference. 

ANN Learning Model 

Finding the right set of weights to minimize the output error rate is an 

optimization problem. An optimization problem is solved by either maximize 

or minimize a certain loss function, depending on the problem. The loss 
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function for ANN describes the difference between the actual output and the 

inferred output, which we would like to minimize. There are many types loss 

function, for example square loss function (Equation 5). 

 𝐶 𝑤 =
1
2𝑁

	𝑓 𝑥% 𝑊 = 𝑤 − 𝑦%	 1.
j

%A0

  

Equation 5. Square loss function 

In Equation 5, 𝑁 is the population of training examples; 𝑓 𝑥% 𝑊 = 𝑤  is the 

output of ANN giving input 𝑥% and the set of weight 𝑊 = 𝑤; 𝑦% is the true 

value given by the training example. The cost function is a function of 

weights. It measures the mean squared error that the ANN, given the current 

set of weights, made on the training dataset. The best set of weights shall 

minimize this cost function. Analytic solution for a large number of weights 

is impossible to compute. Instead, it is solved by an iterative algorithm called 

the gradient descent.  

The core concept of the gradient descent algorithm is first published in the 

1960s for solving least squares estimation problem [58]. For a cost function 

with weight vector 𝑤 of size 𝑀, at each iteration, the 𝑀-dimentional gradient 

vector of the cost function ∇𝐶|nAo  is calculated. In the direction of the 
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gradient vector, the cost function value varies the fastest. In order to reduce 

the cost function, the weights vector is updated by moving in the opposite 

direction of the gradient vector by a small step size 𝜂 (Equation 6). 

 𝑤 ∶= 𝑤 − 𝜂 ∗ ∇𝐶|nAo .  

Equation 6. Update the weights with gradient descent 

The weight vector will be updated in the same manner each iteration until the 

difference of cost functions between the two consecutive iterations is less than 

a threshold. In this way, the weight vector, initialized randomly, is guaranteed 

moving to a 𝑀-dimensional location corresponding to a local minimum. The 

step size 𝜂, called the learning rate, controls the rate of gradient descent. A 

large learning rate allows the cost function to reach minimum with less 

iterations. A small learning rate allows a finer update so that the cost function 

is more likely to reach the actual local minimum.  

However, calculate the gradient of the cost function for an ANN is slightly 

more complicated because its function model 𝑓 𝑥% 𝑊 = 𝑤  is not 

predetermined. The gradient of cost function cannot be found by taking 

derivatives of the function with respect of each weight.  

Calculate Gradient of Artificial Neural Network 
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The previous section describes ANN at an abstracted-level. It has been shown 

that ANN can learn using the method called gradient descent. This section 

discusses the back-propagation algorithm that can calculate the gradient of 

the ANN. A miniature ANN architecture will be used as an example. 

First, we formulate the perceptron model. A perceptron has multiple inputs 

and a single output. For the 𝑗th perceptron located at 𝑙th network layer, each 

input is associated with a weight 𝑤Ht . The subscript 𝑘  notates that this 

perceptron input is connected to the 𝑘th perceptron output in the previous (𝑙 −

1) th layer. The total weighted input to the 𝑗th perceptron at 𝑙th layer is 𝑧tu =

𝑤Htu ∗ 𝑎HuD0 + 𝑏tuH , where 𝑏tu is the bias associated with this perceptron. The 

output of a perceptron is called activation and notated by letter 𝑎 . The 

activation is a function of the weighted input 𝑎tu = 𝜎 𝑧tu , where the function 

𝜎  is called the activation function. The following table summarizes the 

notations. An illustration of the perceptron model is shown in Figure 12. 

Layer Index 𝑙 
Perceptron Index 𝑗	𝑜𝑟	𝑘 

Input Weight 𝑤 
Perceptron Total Input 𝑧 

Perceptron Activation (output) 𝑎 
Activation Function 𝜎(	) 
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Figure 12 Perceptron model 

 

Figure 13 A miniature artificial neural network 

With the perceptron model defined, a miniature ANN model is constructed 

(Figure 13). This specific type of ANN architecture is called feedforward 

neural network because the activation of each perceptron only affects those in 

the next layer.  The layers used in this ANN is called fully-connected layer 

because each perceptron activation is connected to every perceptron input in 

the next layers. The number of weights and bias in this case is 15 weights 
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(number of solid lines) and 5 biases (number of white circles). In total, there 

are already 20 parameters in this relatively small ANN.  

The learning procedure starts with initializing the ANN with a set of random 

weights and biases. Then the ANN is presented with a pair of training example 

(𝑥0, 𝑦0). The ANN would compute a result 𝑎0, which is a vector contains 

activations of the last layer (layer 1). Since all the weights and biases are all 

random, 𝑎0  would be different from 𝑦0 . The cost function of this single 

training example can be calculated (Equation 7). Notice both 𝑎0 and 𝑦0 are 

vectors of size 2 in this case. 

 𝐶 =
1
2

𝑦t0 − 𝑎t0
1

t

  

Equation 7. Square loss of the ANN given j training examples 

Backpropagation algorithm computes the cost function gradient in the 

following steps [59]. First, an intermediate variable 𝛿tu called “error” for each 

perceptron is computed (Equation 8). 

 𝛿tu =
𝜕𝐶
𝜕𝑧tu

.  

Equation 8. Perceptron error 
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Knowing the 𝛿tu error of each perceptron, the gradient of the cost function y=
yoz{

|  

and y=
y}z

| can be represented by error and activation (Equation 9). 

 
𝜕𝐶
𝜕𝑤tHu

= 	𝑎HuD0𝛿tH				; 						
𝜕𝐶
𝜕𝑏tu

= 𝛿tH.  

Equation 9. Cost function gradients in term of weights and biases 

The process of calculating 𝛿tu of each perceptron involves: 

(1) computes the perceptron errors in the very last layer (Equation 10), 

 
𝛿t0 = 	

𝜕𝐶
𝜕𝑧t0

= 	
𝜕𝐶
𝜕𝑎t0

𝜕𝑎t0

𝜕𝑧t0
= 	

𝜕𝐶
𝜕𝑎t0

𝜎� 𝑧t0

= 𝑎t0 − 𝑦t0 𝜎� 𝑧t0 			"𝐸𝑟𝑟𝑜𝑟𝑠	𝑜𝑓	𝐿𝑎𝑠𝑡	𝐿𝑎𝑦𝑒𝑟" 

 

Equation 10. Perceptron error in the last layer of the neural network 

 (2) back-propagates the errors to each of the previous layer (Equation 11). 
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𝑧Hu�0 = 𝑤Htu�0 ∗ 𝑎Hu + 𝑏tu�0

H

= 𝑤Htu�0 ∗ 𝜎(𝑧tu) + 𝑏tu�0

H

 

𝜕𝑧Hu�0

𝜕𝑧tu
= 	𝑤Htu�0 ∗ 𝜎′(𝑧tu) 

𝛿tu =
𝜕𝐶
𝜕𝑧tu

=
𝜕𝐶
𝜕𝑧Hu�0

𝜕𝑧Hu�0

𝜕𝑧tuH

= 	 𝛿Hu�0
𝜕𝑧Hu�0

𝜕𝑧tuH

= 𝜎� 𝑧tu ∗ 𝛿Hu�0𝑤Htu�0

H

 

 

Equation 11. Back-propagate the perceptron error to the preceding layers 

The learning process of ANN with N layers can be generalized as the 

following steps: 

1. Initialize weights and biases with a random number generator. 

2. Given a new training example (𝑥(, 𝑦(), input x into the ANN. 

3. Feed forward the input. For each perceptron, calculate 𝑧tu , 𝜎 𝑧tu  and 

𝜎′ 𝑧tu . 

4. Calculate output of the ANN and register the difference between the ANN 

output and the training example output. 

5. Calculate the error 𝛿tAj of the last layer N. 
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6. Back propagate the error. Calculate the error 𝛿tAjD0  of the layer N-1. 

Repeat until the error 𝛿0 of the first layer is calculated. 

7. Calculate the gradient of the cost function for training example (𝑥(, 𝑦(). 

8. Repeat step 2-7 for all training examples. 

9. Calculate the average gradient of all training examples. 

10. Update weights and biases in the direction of the average gradient with 

learning rate 𝜂. Repeat step 2-10. 

Image Classification and Convolutional Neural Network 

Image classification or image identification, a subject of computer vision, has 

always been a popular topic due to its large range of applications. Early image 

classification methods extract pre-defined features from the image and 

perform the classification by comparing those feature values to the threshold. 

Such features can be colors, textures, morphologies, etc. [60] The idea of 

feature extraction is to compress an image, which has hundreds or thousands 

of pixels, into a feature vector in a much smaller size. However, there are a 

few drawbacks with those feature extraction methods. (1) It could be difficult 

to formulate features that can effectively differentiate visually-similar classes, 

for example, a green apple and a tennis ball. (2) Many features are variant to 
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scale, rotation and affine transform (distortion), which means the features can 

work in one viewpoint but fail in another. It causes the image classification 

system to be fragile and error prone. (3) It is not a generalized image 

classification method to use hard coded features. For a different computer 

vision problem, a new set of features have to be invented, programmed and 

tested. Furthermore, such process could repeat several times until the system 

meets the expected precision. Many feature models have since published that 

can overcome those issues. For example, “Eigen-faces” and “Fisher-faces” 

use principal component analysis to decompose a set of training face images 

into several linearly uncorrelated major component images, called “Eigen-

face.” A face image can be represented as a linear composition of those Eigen-

faces. The set of linear coefficients can be used as the feature vector of the 

image [61], [62]. Another example is the scale-invariant feature transform 

(SIFT) algorithm. SIFT algorithm intends to extract a set of local features 

called SIFT key points that is scale invariant, for example, corners in the 

image. Each key point is then assigned with a 128-dimensional descriptor that 

carries the information of the gradient orientation around the key points in 

each direction. Image classification can be performed by matching the SIFT 

key points between test image and training image [63]. These algorithms all 
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strive for generating features that are universal, highly generalized and 

independent of vision problem. Similar to the aforementioned algorithms, 

artificial neural network automatically extracts the major class features from 

training images. It is a general image classification system that is independent 

of the classification problems. Furthermore, trained with images captured 

under different conditions, such as different viewpoints and illumination, a 

learning-based classification system is more robust to classify images 

captured under various different conditions. 

Neural network was first applied to classify images by considering images as 

single-dimension numerical arrays. An image is expanded into 1D input 

vector either in rows or in columns. However, this process removes the spatial 

information embedded in the image data. In addition, image input requires a 

large fully connected neural network with many weights. For example, a 

32x32x3 RGB image has more than 3000 inputs. A fully connected ANN 

would need more than 3000 weights in the first layer just to read the input.  

Convolutional neural network (ConvNet) is an adaptation of artificial neural 

network that specializes for image classification. Its architecture preserves the 

spatial information in 2D dataset. In addition, its architecture, which will be 

discussed later, requires less weights and biases for the image input. One of 
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the early successful application of ConvNet is the optical character 

recognition (OCR) system that is trained to recognize handwritten digits[64]. 

The basic building blocks of ConvNet include convolutional layer, pooling 

layer, rectified linear unit (RELU) layer and fully connected layer. A 

convolutional layer consists of 𝑁 kernels. The input to the convolutional layer 

is a matrix of size 𝐻×𝑊×𝐶. Each kernel is a matrix of size 𝐿×𝐿×𝐶. The 

kernel depth notated by 𝐶 is by design always the same as the depth of the 

input. The total number of weights in such a convolutional layer is 

𝑁×𝐿×𝐿×𝐶. The convolutional layer convolves the input of the layer with its 

kernels. Each kernel produces one 2D matrix; the output of the convolutional 

layer is a matrix of size 𝐻′	×	𝑊′	×	𝑁 . The terms 𝐻′  and 𝑊′  are always 

smaller than those of the input. The exact size of them depends on the pre-

defined convolution stride size and whether zero paddings are applied. A 

pooling layer is usually connected right after a convolutional layer. The job 

of a pooling layer is to subsample the convolutional layer output so the rest of 

the network can use less weights to feedforward the input. Depending on the 

pooling size, which is usually 2 by 2, the pooling layer can either pick the 

maximum value (max pooling) or take the average of the values (average 

pooling) in the 2 by 2 block. There are no weights to train in the pooling layer. 
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In addition, it is optional to include pooling layer. RELU is another layer 

without weights. The function of an RELU layer is to set all the negative 

numbers in the convolutional layer output to zero. RELU layer brings non-

linearity into the network and improves the training result[65]. Still, it is 

optional to include RELU layers. A fully connected layer is usually connected 

to the end of the ConvNet after several layers of convolutional layer. Each 

output of the last convolutional layer connected to input of each perceptron in 

the fully connected layer. From this point, the rest of the ConvNet is structured 

the same as an ANN. The fully connected layer performs the classification 

based on the filtered and down-sampled output of the convolutional layers. 

“AlexNet” is one of the state-of-the-art ConvNet architecture for image 

classification [66]. It has five convolutional layers. Each layer on average has 

more than 200 kernels. Each convolutional layer is followed with a max-

pooling layer. Two fully connected layers are connected to the end of the 

network for classification. “AlexNet” has in total 11 layers and 60 million 

weights to learn. This type of ConvNet, due to its large structure, is called 

“Deep Learning Neural Network.” 

Training Database 
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A neural network learns from training examples. This section will discuss two 

topics associated with training a neural network. The first topic is about how 

to determine the minimum number of training examples; the relation between 

the training database size and the network size will be discussed. The second 

topic is about how to generate training datasets. 

The minimum number of training examples required depends on the size of 

the ANN. Overfitting occurs when a function is given too few training 

examples. For example, a polynomial function with five coefficients will 

always fit to five data points perfectly. In such case, the function captures the 

random noise in those five instances that would not present in the actual data. 

As a result, overfitting leads to poor prediction on actual data. As a rule of 

thumb, an ANN needs about 7 to 10 times as many training examples as the 

number of weights to avoid overfitting. Underfitting occurs if a function with 

only few weights is fitted to a complicated dataset. For example, linear 

regression with two coefficients would not be able to fit well to a dataset 

modeled by a polynomial function of high degree. Under-fitting also leads to 

poor prediction. However, it is usually hard to quantify the complication of a 

problem. A heuristic approach is usually used to gradually increase the layer 

size and layer number as the performance of the ANN is monitored. 
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The most common way to create training examples is to collect, crop and label 

images for different classes. For example, MNIST handwritten digit database 

[64], CIFAR-10-class, CIFAR-100-class natural image database [67], 

imageNet [68], etc. are large well-labeled image dataset built manually in such 

way. However, creating a clean and accurate training set from scratch is a very 

demanding task[68]. An alternative method is to first manually create a small 

dataset and then artificially grow the dataset by randomly shifting, rotating, 

adding noise and distorting the image. Artificially boosting the size can 

expand the image data set by nearly 10-fold [66]. 

Transfer Learning 

Transfer learning originates from the fact that human learners have the ability 

to share knowledges between different tasks {Yang:2013wx}. It has been 

observed that convolutional neural networks trained for recognition from 

scratch on natural images share a similar first-layer weights, which are similar 

to Gabor filters and color blobs [69]. This observation implies that ConvNet 

layers closest to the input are most likely to be shareable among different 

applications; the layers further away from the input layer are less likely to be 

shareable and are more specifically bounded by training examples. In transfer 

learning, instead of training ConvNets from ground up with randomly weights 
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and biases, the weighs and biases can be initialized with those from a pre-

trained network. The network can then be trained for the new classes by either 

(1) fine-tuning all layers or (2) retrain only the layers closer to the output while 

the rests are shared. Fine-tuning all layers improves the generalization 

capability of the ConvNet [69]. However, it still requires the same amount of 

training examples to avoid overfitting. Layer sharing works the best if the pre-

trained network learns from a dataset that is similar in visual features, for 

example, use a pre-trained network trained to recognize cats to recognizing 

lions. However, layer sharing can still work among many applications because 

almost all the recognition problems seek for low-level features such as corners 

and edges. In general, imaging recognition problems that are visually similar 

can share more layers. There is a trade-off between the number of shared layer 

and the number of training examples. On average, the classification precision 

drops as more layers are shared [69]. However, as fewer layers need to be 

trained, smaller training set is required. 

Visualize a Trained Convolutional Neural Network 

Visualizing the ConvNet helps to verify if the network is actually trained to 

use the correct visual information in images for recognition. In addition, 

visualizing the weights and the response of the network can unveil 
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architecture issues, such as overfit and underfit. This section discusses four 

methods to visually inspect a trained network. They are weight map, 

activation map, occlusion map and maximum-activation-image map. 

Weight maps display the weights at each network layer as images. A well-

trained ConvNet should have a smooth weight map with identifiable patterns. 

A noisy weight map can be an indicator of overfitting or short training period. 

As an example, the weight maps of the first convolution layer and part of the 

second convolution layer in “LeNet” for handwritten digit recognition are 

plotted below (Figure 14). 
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Figure 14 Weight maps of the 1st and 2nd convolutional layer in LeNet 

Activation maps show the activated neurons in the network for each given 

input image. Activation map helps to discover neurons that are not responsive 

to any input. Unresponsive neurons indicate that learning rate is set too high 

during the training. As an example, the activation maps of inputs handwritten 

“7” and handwritten “0” of “LeNet” is shown below (Figure 15). The image 

show that different neurons are activated (bright pixels) for different image 

input. 
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Figure 15 Activations of each LeNet layer given different input image 

Occlusion map is created by recording the inference class score while a 

portion of the input image is occluded [70]. It is an intuitive method to 

pinpoint the portion of spatial information in the image that “excites” the 

network to make the correct inference. Image below shows an example of the 

occlusion map of handwritten digit “0” (Figure 16). The blue region are the 

occluded regions that could cause the network to output low class inference 

scores (wrong inference). Having low-score occlusion regions that are not 

covering the actual recognizable object indicates that the neural network has 

not been yet fully trained. 
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Figure 16 Occlusion map generated by blocking part of the input image with a gray 

patch each time 

Maximum-neuron-activation-image map plots the image that mostly activated 

a certain neuron [70]. It helps to visualize what type of image a certain neuron 

is trained to recognize. As an example, the maximum-activation-image maps 

of the fully connected layer and the output layer of “LeNet” are plotted (Figure 

17). The maps show that the work to recognize digits are distributed to 

different neurons in each layer. Each neuron in the output layer is optimized 

to max activate on or recognize exact one of the total ten digits. 
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Figure 17 Maximum-neuron-activation-image of two of the layers in LeNet 

Machine Learning and Computer-aided Diagnosis 

With the development of convolutional neural network for visual recognition, 

artificial neural network has been adopted increasingly in computer-aided 

diagnosis with medical images. However, there are still many CAD 

applications that have not yet adopted ANN because of the large number of 

different pathologies, different diagnosis approaches and different imaging 

modalities. In addition, there are many issues remained to solve for CAD with 

medical images. First, artificial neural networks have to learn each 
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combination of different imaging modality and different pathological feature. 

For example, an ANN trained with x-ray images may not be able to recognize 

MRI images. Second, it is difficult to build or acquire large training database 

for emerging imaging modalities; fewer clinical images are captured with the 

new technologies because of the low device adoption rate at early stage. In 

addition, due to the nature of supervised learning, training images have to be 

annotated by professionals of the specific pathology in a coherent, explicit and 

digital manner. It could take years for recently-developed imaging modalities 

to build up large and publicly available training database like those for 

matured imaging modalities, such as x-ray, MRI, ultrasound and microscopy 

[71], [72]. To overcome those issues, in general, it is beneficial to publish pre-

trained neural network for proceeding research to refer to or to use for transfer 

learning; it is beneficial to release professionally-labeled database; last but not 

least, it is critical to discover better computational models for machine to learn 

with fewer training examples. Solving those issues would push artificial 

neural network toward becoming a general medication tool that can be 

adopted by clinical professionals. 

Method 

Animal Models and Experimental Protocols 
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The animal protocol has been approved by the committee on animal care and 

use at the University of Maryland College Park. A murine model of CKD was 

induced by injection of Adriamycin (1.5mg/kg) into the tail vein of Munich-

Wistar rats [49]. Once a week during the entire study protocol of 8 weeks, rats 

were weighed. 24-h urine volumes were collected in metabolic cages. Fresh 

urine samples were tested for albuminuria (Albustix), and blood samples 

taken from the tail vein were analyzed for serum creatinine and BUN values 

(Beckman Coulter Creatinine & BUN Analyzers). In each week for the 8-

week period, two rats were anesthetized with isoflurane/O2 (4% induction, 

1.5% during operation, O2 1 L/min). The abdominal cavity was opened 

through a midline incision, and the left kidney was exposed and imaged using 

OCT. Following in vivo OCT evaluation, the kidneys were fixed in situ by 

flushing with warm (i.e., 37 oC) oxygenated saline, followed immediately by 

phosphate buffered 2% paraformaldehyde and 0.1% glutaraldehyde. The 

fixed kidneys were excised and the rat euthanized by intracardiac injection of 

pentobarbital sodium to induce cardiac arrest. Blocks of fixed kidneys were 

embedded in paraffin, sectioned, and stained with hematoxylin and eosin 

(H&E).  

Optical Coherence Tomography (OCT) 
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A custom-built Fourier-domain OCT system was used in this study (Figure 

18) [73]-[76]. This system uses a swept-source laser operating at 1310 nm 

center wavelength with 100 nm bandwidth. The axial and lateral resolutions 

of the system are 12 μm and 6 μm, respectively. OCT image dimensions are 

1024 pixels (X=1.4 mm) in lateral direction and 512 pixels (Z=2.0 mm) in 

axial direction. The sensitivity of the system is 90 dB. The A-scan acquisition 

speed is 16 kHz. 2D image acquisition speed is 16 frames per second. For 

each experiment, 3D OCT volumes were acquired from 5-10 kidney locations. 

Each volume consists of 475 consecutive 2D images. 
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Figure 18. The schematic diagram of the custom-built OCT system used in this study. 

Inset image shows the abdominal cavity of a Munich-Wistar rat opened through a 

midline incision, and the exposed left kidney for OCT imaging. 

Computer-Aided Diagnosis Software 

About 3000 to 5000 OCT kidney images have been acquired each week for 

eight weeks. In order to determine CKD condition from the massive image 

dataset, an OCT image analysis software is developed to automatically detect 

and measure features that is related to CKD progression. In our application, 

possible features can be the proximal tubule morphology, such as tubular 

diameter and atrophy/hypertrophy [53]. The image analysis software is 
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consisted of four sections: image preprocessing, feature region proposing, 

feature region classification, and feature region measurement. 

Image Preprocessing 

Gaussian blur is used to reduce the speckle noise of the OCT image. Gaussian 

blur is performed by convoluting the original OCT image with a 2D Gaussian 

kernel. As a low-pass filter, Gaussian kernel removes high frequency noise as 

well as useful high frequency information such as edges. A small Gaussian 

kernel (sigma = 2) is used to limit the blur effect and retain small and fast-

varying features as much as possible. 

Feature Region Proposing 

To recognize multiple objects in the image, regions of interest (ROIs) have to 

be proposed to an image classifier. One of the easiest ways to propose ROIs 

is the sliding window algorithm. Specifying the range of window size and the 

stride size, the window slides from the edge of the image and proposes each 

window patch as an ROI. This method has been used widely and successfully 

in applications such as face recognition [77]. However, as a greedy search 

method, it proposes a large number of proposed regions and suffers from 
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“curse of dimensionality” [78]. Sliding window method has to be combined 

with a very fast image classifier for speed-critical applications. 

Another region proposing method is segmentation. Segmentation divides 

image into sub-images based on low-level image properties, such as pixel 

intensity and texture. For OCT images, image intensity-based segmentation 

with a global threshold cannot recall tubule lumens with high accuracy due to 

the non-uniform image brightness. A way to overcome this issue is to remove 

the effect of illumination in preprocessing, such as by the Retinex theory [79]. 

However, in practice, those enhancement algorithms are very slow. In 

addition, the illumination effect may not be removed perfectly. Another way 

is to use dynamic local intensity thresholding. “Bradley” adaptive 

thresholding technique uses computationally-efficient integral image 

algorithm to determine the local threshold value for each sub-image window 

[80]. In comparison to other dynamic thresholding algorithm, “Bradley” 

adaptive thresholding is robust and less computationally expensive [81]. A 

representative result of OCT image segmented by “Bradley” adaptive 

thresholding is shown in Figure 19a. 
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Superpixel is another region proposing method that groups similar pixels into 

a “superpixel.” Those superpixels can then be proposed as ROIs. The state-

of-the-art superpixel methods include graph-based algorithm [82], gradient-

ascent-based algorithm [83] and simple linear iterative clustering (SLIC) 

algorithm [84]. A representative result of OCT image processed by SLIC 

superpixel method is shown in Figure 19b. The principle of SLIC superpixel 

algorithm is the following: (1) First N equally spaced pixels are initialized as 

cluster centers; (2) Each pixel is then associate itself with the most similar 

neighboring cluster centers; (3) The cluster centers are updated to be the 

average pixel location of all its associated pixels; (4) Repeat step 1 to step 3 

until the new cluster center and the old cluster center converges. The number 

of cluster centers N controls the granularity of superpixels or the total number 

of proposed regions. 
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Figure 19. Same OCT image processed by (a) dynamic local intensity thresholding and 

(b) SLIC superpixel. 

Ideally, the region proposing algorithm should have a 100% recall rate. Recall 

rate is defined as the percentage of total tubule lumens being proposed. 

Another key parameter is the total number of proposed regions. For example, 

sliding window algorithm with a small stride size and a large range of scale 

would have a near 100% recall rate because it can theoretically capture all 

tubule lumens in different scales and at different locations. However, its total 

number of proposed regions is massive, which is impractical for many 

applications. 

We compared the ROI recall rate and the total number of proposed regions 

between “Bradley” segmentation and SLIC superpixel. To determine the 

recall rate, tubule cross-sectional regions in test images are manually labeled 
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(Figure 20a). A tubule region is correctly recalled if more than 60% of the 

recall region overlaps with the manually labeled region (Figure 20b). The 

number of proposed regions can be altered by changing the threshold level 

and window size for “Bradley” adaptive threshold algorithm or the initial 

number of cluster centers for SLIC superpixel algorithm. The recall rate 

versus the number of proposed regions for each algorithm was measured 

(Figure 20c). From the results, “Bradley” adaptive thresholding with a 

window size of 30 pixels is able to recall more than 80% of the tubule regions 

with under 500 proposed regions. SLIC superpixel algorithm underperforms 

“Bradley” adaptive thresholding for this application. Therefore, we choose 

“Bradley” adaptive thresholding with a window size of 30 pixels in this study. 
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Figure 20. (a) Manually labeled tubule lumens (green regions). (b) Overlaps between 

proposed regions (white) and manually-labeled true regions (green). (c) Recall rate vs. 

number of proposed regions for different algorithms. 

After candidate regions for proximal convolutional tubule lumens are chosen, 

rectangular image patches containing the candidate regions are cropped for 

further image classification. It is unavoidable that the set of proposed images 

would include many false positive regions, such as defects in the OCT image. 

From the perspective of adaptive threshold, they are similar to tubule cross-

sections, which has a relative darker center than the surrounding regions. 
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Examples of the region-proposed images are shown in Figure 21. To 

differentiate them, an image classifier is necessary to distinguish the true 

tubule cross-sections (Figure 21 top row) from the falsely proposed regions 

(Figure 21 bottom row). 

 

Figure 21. Examples of proposed region images. Images at the top row are tubule 

lumens. Images at the bottom row are OCT image artifacts and speckle noises. The 

brightness of some images has been increased for the ease of viewing. Sizes of the 

proposed region images range from 5 pixels to 60 pixels in width. 

Feature Region Classification: Convolutional Neural Network Image 

Classifier 

There are many image classifier models. Some of the well-known classifiers 

include hard-coded classifier, Eigen features classifier [85], and artificial 

neural network [86], etc. A classifier generated through learning tends to be 
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more accurate due to the amount of prior information gained through the 

training process. In our study, OCT images contain large variations in tubule 

morphology, kidney condition, image quality, etc. Convolutional neural 

networks (ConvNet) [66] is eventually chosen as the image classifier due to 

its larger learning capacity.  

ConvNet training requires thousands to millions of labeled images per 

detection class depending on the complexity of the network structure. A large 

and complex network, with more layers and more weights per layer, is capable 

to learn classifying more complicated visual features. However, a large 

network also requires a larger training sample sets. Overfitting happens if a 

large network is trained with a small sample set. Over-fitted neural network 

would quickly minimize the cost function of the training set, where the 

weights would no-longer be further fine-tuned. However, over-fitted neural 

network would have a very low classification accuracy in validation. There is 

a trade-off between learning capacity (neural network size) and training 

database size. In summary, to train a neural network to solve a more 

complicated problem would requires more annotated training samples of the 

problems. 
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In the case of training neural network to classify natural scenery and objects, 

for example, trees, cars, animals, etc., the impact of this trade-off is not 

significant because these classification problems are hard for neural network 

but easy for human; providing a large amount of annotated training samples 

for a large neural network can be done through crowd-sourcing [87]. In 

contrast, in the case of training neural network to classify medical images, the 

impact of this trade-off is much more significant because these classification 

problems are difficult both for neural network and for human. Crowdsourcing 

is only possible within a relative small crowd because only individuals that 

have the right medical background or individuals that go through training are 

qualified to annotate the medical images in order to create the training sample 

set. In practice, despite that sufficient image data is usually available, the labor 

cost for annotating the thousands to millions of medical images is a prohibitive 

task. While there are many advanced deep convolutional neural network, such 

as Alexnet [66], GoogLenet [88] that can classify visually complicated 

images, and region-based convolutional neural network (R-CNN) [89] that 

can perform both region purposing and classification, few medical imaging 

applications can apply those architectures because of the limitation on training 

dataset size. For those reasons, in our application, we used a hand-coded 
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region proposed algorithm and trained the smaller LeNet [86] to perform the 

classification. 

For our application, we built a training database with two classes, tubule class 

and non-tubule class. To crop and collect training images, we first created a 

less-accurate image classifier based on hard-coded features. Bootstrapping 

from this classifier, we were able to collect sufficient images per class quickly 

but with significant false classification rate. The incorrectly classified images 

in both classes were manually removed from the database by human 

inspection. To keep the manual inspection time minimal, we deliberately 

collected only 2000 training images per each class. However, 2000 images 

per class are far from enough to train a network that has thousands of weights 

and biases without overfitting. In order to increase the database size and 

variety, each of the original images was duplicated N times. Then the 

duplicated images went through random translation, rotation, scaling, and 

noise addition (Figure 22). The database size was artificially increased by N 

times. In our case, N equals to 10 and the final database size is 20,000 images 

per class. 
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Figure 22. Multiple training images generated by manipulating the original tubule 

cross-section image (first on the left). All images are resized to 32 x 32 pixels for 

ConvNets training. 

Two different ConvNets were trained with the database. The first network has 

a small structure size (less than the overfitting limit of the database) as shown 

in Figure 23a. The second network is the LeNet [86] (Figure 23b). LeNet is 

chosen because it is originally designed for recognizing single channel grey-

scale handwritten-digit images (MNIST dataset), which is in the similar color 

space as OCT images. Many latest ConvNet architectures, such as AlexNet, 

are originally designed for RGB image classification. The smaller-sized 

network was trained end to end from the first layer to the last layer with each 

layer initialized randomly. LeNet was trained with transfer learning; instead 

of end-to-end training, it started from a pre-trained LeNet for handwritten digit 

recognition. Only the fully connected layers were fine-tuned using our 

training database. Transfer learning enables a large network to be trained on 

a smaller dataset without overfitting. The performance of the two networks 

were benchmarked with a separate testing database; the testing database 
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contains OCT images randomly chosen from all CKD stages. Locations of the 

tubules in the testing database were manually labeled. The bench test result 

showed a better tubule recognition rate (90%) from LeNET with transfer 

learning. It is worth noting that whether transfer learning is a good option can 

be speculated based on the degree of visual differences between the original 

application of the pre-trained network and the current application [69]. The 

ConvNet training was performed using MatConvNet [90] on MATLAB using 

an Nvidia GTX660 GPU. Once the network was trained, the network weights 

were saved. Image classification based on the weights could be performed on 

machines without Nvidia GPU support. In this study, the image classification 

based on the trained ConvNet was programmed in C++, with multi-threading 

parallelism using OpenMP, and ran on an Intel 8-core Xeon Processor. The 

processing speed is about 10 frames per second. 
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Figure 23  (a) An end-to-end trained small convolutional neural network. (b) LeNet 

with only the fully connected layer being trained while the rest (gray) layers inherited 

from the pre-trained network trained on MNIST database.  

Feature Region Measurement 

CKD is defined as the progressive loss of kidney filtration function in time. 

Nephrons are the basic filtration unit in kidney. Histology study of a rat CKD 

model has shown that when nephrons lose their filtration capability, the 

proximal convolutional tubules of those nephrons shrink and close [56]. The 

rest of the functional nephrons in kidney would compensate the dysfunctional 



 85 

ones. The proximal convolutional tubules of the functional nephrons enlarge 

and become hypertrophic. Histology study has shown that the average 

convolutional tubular diameter increases as CKD condition progresses [49]. 

For each tubule’s cross-sectional region, the circularity of the region was first 

measured. Since a 2D cross-sectional OCT image could cut the proximal 

tubule in any random plane, the circularity of the region indicates whether the 

tubule cross-section is a perpendicular cut. Only the diameters of tubule 

regions with high circularity (greater than 0.8) are chosen for diameter 

analysis. The procedure to measure the circularity and diameter of a lumen is 

the following. (1) Locate the contour pixels of the region. The circumference 

of the region (L) is the total number of contour pixels. (2) Locate all the pixels 

belong to the region. The area of the region (A) is the total number of pixels 

in the region. (3) Circularity of the region is calculated by dividing the 

circumference square of the region by 4π times of region area, i.e., L2/(4πA).  

A perfect circle would have a circularity equal to 1. (4) Locate the region 

center by averaging the coordinates of each pixel inside the region. (5) 

Distances from the region center to each contour pixel are measured. The 

diameter of the region is 2 times the mean of the distances. Figure 24 depicts 
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the process of determine the circularity and diameter of tubule cross-sectional 

region. 

 

Figure 24. Illustration of definitions used in region measurements. 

Results 

Software Overview 

The CKD CAD software is implemented on Windows PC with Visual C++ 

for backend logic and QT for frontend user interface. At the time of 

development, third-party libraries for convolutional neural network forward 

feeding, such as TensorFlow, is not well supported on Windows PC. We 

developed our own program in Visual C++ to process the pre-trained ConvNet 

and compute the output of the ConvNet given an image. Since both the 

architecture and weights of the ConvNet will be evolve overtime given more 

training datasets become available in the future, the software provides an 

interface to swap in different ConvNet file to perform the classification 
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(Figure 25b). As the user, he or she can customize which pre-trained ConvNet 

to use to process the images. 

In the user interface for medical professionals, the software provides different 

ways to load in batches of images, displays the detections and measurements 

in real time and compute and displays the statistics in real time (Figure 25a). 

Through the interface, medical professionals can choose whether to analyze 

large bundle of images at once or review individual images one at a time by 

clicking the arrow keys. We believe having a professional and friendly user 

interface is a critical step to push the technology to clinics because it would 

help the medical professionals to see the potentials to include the technology 

into their day-to-day workflow. 

 

Figure 25. (a) CKD CAD software interface with real time detection, statistics displays 

(b) software supports ConvNet swaps and multiple ConvNet filtering 
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Comparing Different Tubule Classifiers 

Three different tubule image classifiers were developed during the software 

development period. They are (1) a handcraft classifier based on segmented 

tubule morphology including contour curvature, circularity and eccentricity, 

(2) principal component based (PCA) linear discriminant analysis (LDA) 

classifier and (3) convolutional neural network model based on LeNet 

architecture. 

Ground truth tubule segmentation of the OCT images is generated by 

manually labeled a set of images that are not used during the training or tuning 

of those classifiers. The same set of images are also gone through each 

classifier. The human labeled images and machine labeled images are 

compared. If the overlapped area between the two segmentations is greater 

than 85% of the total segmentation area, it counted as a successful detection; 

otherwise it is a false detection (Figure 26). 
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Figure 26. Comparing human labeled detection with machine labeled detection 

 The receiver operating characteristic (ROC) curve of those classifiers have 

been computed (Figure 27). From the result, we could see that while all three 

classifiers have the capability to identify tubule images above 80% accuracy. 

The convolutional neural network based method has major advantage of 

rejecting false positive tubule images comparing to other classifiers. While 

the morphologies of the tubules are not much different from one to another, it 

is the image artifacts and various longitudinal cut of the tubules that are widely 

different from locations to locations. With much higher learning capacity, 

convolutional neural network is much better at learning different appearance 

of the false positive images and rejects them comparing to other techniques. 
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Figure 27. ROC curve of three different tubule image classifier 

Robustness of the neural network model under different blurring 

effect 

To test the robustness of the neural network model, positive image samples 

are blurred repeatedly with a growing Gaussian kernel. The output scores of 

the positive samples with various levels of blur effect are recorded and 

averaged (Figure 28). The confidence score gets below 50% when the 

Gaussian kernel sigma is larger than 9.5. 
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Figure 28. Prediction robustness of the neural network at different blur level 

Robustness of the neural network with adversarial noise 

The other way to test the robustness of the neural network is to perturb the 

image by adding adversarial noise to the image. Different noise level of white 

noise is add-on to a set of positive images that are not part of the training data. 

At each noise level, we generate the noise repeatedly and measure the 

likelihood that the neural network can make a correct prediction at this noise 

level (Figure 29). At Gaussian noise with variance of 2, the image is so noisy 

that it is difficult to recognize the tubule in the center of the image even for 

human. 
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Figure 29. Prediction robustness of the neural network at different adversarial noise 

level 

OCT Imaging of CKD Rats 

Visual differences between normal kidneys and CKD kidneys can be 

perceived from OCT images of rat kidneys. Images in Figure 30 are collected 

from both healthy rats and rats with mid- to late stage CKD conditions. In 

healthy kidneys, the proximal tubule lumens are similar in size and distributed 

uniformly with a homogeneous distribution pattern (Figure 30A-C). In 

kidneys with late-stage ADR-induced CKD (Figure 30G-I), some proximal 

tubules either appear reduced in size or become indiscernible to OCT, i.e., 

atrophic. At the same time, the rest of the proximal tubules appear increased 
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in size, i.e., hypertrophic. This is consistent with the published histology study 

in dysfunctional nephrons [49]. These are the two most extreme cases in CKD 

kidney morphology. In the mid-stage CKD (week 2-6), the observed kidney 

images (Figure 30D-F) can be a mixture of these two extreme cases, where 

the hypertrophic tubules are smaller than those at late-stage and atrophic 

tubules are more discernible than those at late-stage.  

 

Figure 30. (A)-(C) are images captured from healthy kidney, where proximal tubules 

are uniform in size; (D)-(F) are images captured from mid-stage CKD kidney, where 

certain percentages of proximal tubules appear shrunk and certain percentages of 

proximal tubules appear enlarged; (G)-(I) are images captured from late-stage CKD 

kidney, where proximal tubules in some cross-sections appear further enlarged and in 

some other cross sections disappeared due to shrunk to extreme small sizes. 

Individual Image Inspection 
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While it is possible to determine whether CKD exists, it is difficult to quantify 

the severity of the disease. To quantify the progression, we developed a CADx 

software to analyze the OCT images and measure the size of the proximal 

tubules. The CADx software was first tested on individual OCT images 

captured from different animals at different stages of CKD (Figure 31). The 

software can detect and measure the tubular morphology and present the 

statistics instantly as the user navigates through images. In addition, the 

software highlights the detection using color-coded bounding boxes, where 

yellow, blue, and green indicate normal-size tubules, hypertrophic tubules 

(diameter > 50 µm), and atrophic tubules (diameter < 15 µm) respectively. 

Figure 9 shows two images examined by the software. Figure 31(a) and (b) 

are from a healthy kidney and a late-stage CKD (8 weeks after ADR injection) 

kidney respectively. Visually, it is apparent that tubule lumens in Figure 31(b) 

are larger than those from Figure 31(a). The software measures the tubule 

lumen diameters and the results from the software show that tubules from 

healthy kidneys are mostly within the normal ranges, which is 20 - 30 µm. 

While the tubules from late-stage CKD kidneys are either in the hypertrophic 

range (diameter > 50 µm) or in the high end of normal ranges. The result is 

consistent with previous reports that the diameters of the hypertrophy tubules 
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can be 50% larger in mice and nearly 100% larger in human than the diameters 

of the normal tubules [49], [53]. These results verify that the CADx software 

is able to detect and measure tubule cross-sections accurately, which can be 

used to differentiate healthy and non-healthy kidneys. 

 

Figure 31. Individual image analysis shows significant tubular morphological 

differences between (a) healthy kidneys and (b) late-stage CKD kidneys. 

Automatic Batch Analysis 

In addition to individual image inspection, the software is able to analyze the 

entire batch of image dataset automatically. The processing speed is about 10 

images per second. It takes in total 10 minutes to process, measure, and 

generate statistics of a dataset containing 5000 images. The software records 

the information of each detected tubule, including diameter and circularity. 

The OCT image dataset can be quickly analyzed by the software without 

supervision of the user.  
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The complete OCT image dataset of rat kidneys was analyzed by the software. 

The dataset consists of 18 animals in total: 2 animals per week group for 8 

post-ADR-injection weeks in total and 2 healthy animals for control. 3000-

5000 2D OCT images were collected per rat. In total, the complete dataset 

contains more than 70,000 images. The CADx software measures and records 

tubule diameters and generates the statistics, including tubular diameter, 

percentage of hypertrophic tubules, tubule density, and tubule diameter range 

for each week. 

Tubule diameters are measured directly by the software after the tubule being 

detected. Percentage of hypertrophic tubules is derived by recording the 

number of detected tubules whose diameters are larger than 50 µm. Tubule 

diameter range is the difference of the tubule diameter at 95 percentiles and 

that at 5 percentiles. Tubule density is computed by determining number of 

tubules per unit tissue area. 

Figure 32 shows representative OCT images for the control and CKD-induced 

rat. For the healthy animal, most of the tubule diameters are within normal 

range (yellow). One week after injection, fewer tubules are visible and more 

atrophic tubules are present. During the mid-stages (week 2-6), number of 
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both atrophic tubules and hypertrophic tubules increases. This is probably due 

to the fact that functional nephrons overwork in order to compensate the loss 

of atrophic tubules (green). At the late stages (week 7-8), more hypertrophic 

tubules (blue) are visible.  

Figure 33 shows the statistical results from the analysis of the complete 

dataset. The statistics indicates a general trend of increase for average tubule 

diameter, diameter range, and percentage of hypertrophic tubules. The 

statistics also shows a fluctuation in these parameters during the mid-stages 

(week 2-6). We hypothesize it could be due to either variation of different 

rat’s reaction to ADR injection, sampling bias, or the recovery of the organ 

before late-stage CKD (week 7-8). Previous studies have observed renal 

function recovery in drug-induced acute kidney injury [91]. Tubular density 

shows an initial increase (week 2-4) compared to normal, followed by a 

decrease in week 5-7. This could be explained by the closure of some atrophic 

tubules. 
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Figure 32. Sample kidney OCT Images from healthy control rats and from CKD rats 

at each week after ADR-injection. Bounding box color indicates the condition of the 

tubule; yellow color indicates normal tubule; green color indicates atrophy tubule; 

blue color indicates hypertrophy tubule. 
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Figure 33. The trends of mean tubule diameter, percentage of hypertrophic tubules, 

tubule diameter range, and tubule density as CKD progression. Matrix of t-test between 

each week is attached to the upper right corner of each plot. The adjusted p test matrix 

using Bonferroni correction for multiple comparison for each plot is beneath each 

unscented p-test matrix. The dark regions indicate the t-tests between two weeks 

produce p value above 0.05 (insignificant); the bright regions indicate t-tests between 

two weeks produce p value below 0.05 (significant). 
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Discussion 

It is crucial that CKD is detected and treated at early stages [51]. Currently, 

measuring glomerular filtration rate (GFR) score and observing the visual 

presence of kidney damage are the two commonly established CKD diagnosis 

methods in clinical nephrology [52].  

GFR score is a scoring system that describes kidney filtration capability. GFR 

score is calculated in terms of blood serum creatinine level test in addition to 

patient’s age, weight and gender. Serum creatinine is a chemical waste 

produced by the body that is mainly filtered out by the kidneys. However, 

despite the wide use of GFR as the gold standard to estimate kidney function, 

studies have suggested that it is not sensitive to early-stage CKD. It has been 

shown that a significant change of serum creatinine concentration in blood 

does not occur until nearly 50% of the kidney is nonfunctional. It is because 

the rest of the functional nephrons can adapt and compensate the loss of 

filtration units [53]. 

Examining the morphology of the kidney structures, including glomerulus and 

proximal convoluted tubules, using histology images is a more direct and 

accurate way to detect CKD. The correlation among nephron tubule 
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morphology, nephron function, and CKD progression has been discussed 

extensively and been corroborated with histology images in literature [49], 

[53]-[57]. If a nephron loses its filtration capability due to injury or diseases, 

its tubules would appear reduced in size. Meanwhile, remaining functional 

nephrons become enlarged in order to compensate the loss of filtration 

capability [53]. Although observing kidney morphology is an effective way 

to detect CKD in early stages, the current procedure requires biopsy in order 

to acquire a slice of renal tissue for histology. Such procedure has many 

disadvantages. (1) It requires the removal of certain amount of kidney tissues. 

Due to its invasiveness, only a small percentage of CKD patients receive 

diagnosis based on morphology images. (2) The histology sample size is 

restricted because of the limit amount of kidney tissue that can be sampled. 

The morphology observed with such technique is highly localized. Therefore, 

the observed condition may not accurately represent the condition of the entire 

organ. (3) It is a demanding and time-consuming task to acquire and prepare 

kidney biopsy samples. Such process includes delicate surgery procedure to 

acquire the sample, careful sample preservation with correct storage 

temperature and solutions and sample staining for microscopy imaging. (4) 

Similar to many imaging-based diagnosis procedures, histology image 
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assessment is a meticulous and time-consuming task that requires two 

experienced histopathologists in order to reduce the diagnosis errors. 

OCT imaging can observe nephron tubular morphology without the needs of 

acquiring tissue sample. This imaging method can examine the kidney 

structure in a similar fashion as histology while reduces the invasiveness of 

such procedure. In addition, since it does not require tissues to be removed 

from the organ for observation, OCT imaging is able to image multiple 

locations in the kidney or even a full surface scan without altering the 

condition of the organ. Being able to image multiple locations in the kidney 

can provide a much more comprehensive view of the overall health condition 

of the organ compared to biopsy/histology, which uses a very small 

percentage of the organ tissue to assess the condition of the entire organ. 

A detailed multi-location imaging of the kidney drastically increases number 

of images to inspect per patient for a more accurate diagnosis. Being able to 

process such large quantity of information on time has a significant impact on 

the diagnosis workflow. The presented computer-aided diagnosis software 

showcases how to detect, measure, and statistically quantify kidney function 

based on OCT images. The software is not developed with the goal to replace 
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the role of medical doctors; instead, it is developed as a useful tool for medical 

doctors to quickly scan through the large image database and compare their 

results with the statistics report generated by the software. The ultimate goal 

for such software is to decrease diagnosis time span, decrease diagnosis error 

rate, and improve the day-to-day workflow efficiency of medical doctors. 

The current methods have limitations and room for improvement in several 

areas. (1) The animal experiment design to observe the progression of CKD 

can be improved. The current method can observe a single animal only once 

because it is very difficult to perform surgery on the same rat repeatedly for 

consecutive weeks. Therefore, the statistical results derived from this 

experiment design cannot avoid the biological variation between animals. 

Continuous monitoring of the kidney morphology of the same animal would 

definitely present a better picture of the morphology development with the 

CKD progression, especially at week 2-6. This will require an abdominal 

window [92]. (2) The selection of imaging locations on kidney can be biased 

by the operator. The bias induced by imaging location selection could also 

have an impact on the accuracy of the statistical results. The OCT instrument 

in use is a stationary microscope that performed scanning in a predefined 

rectangular region. Despite that multiple locations (rectangular regions) have 
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been scanned per each kidney, a scan covering the entire organ surface will 

provide the most unbiased description of the kidney condition. (3) The OCT 

probe needs to be held closely to the kidney surface in order to image the 

subsurface structures of the organ. To reduce the invasiveness of such 

procedure, laparoscope- or needle-based OCT probe would produce much 

smaller incision size and shorten the recovery period post-surgery [93]. 

Chapter Conclusion 

We demonstrated that OCT is able to evaluate living kidney microstructure 

and function in chronic kidney disease (CKD) models of Munich-Wistar rats. 

The preliminary results show that OCT can provide more information beyond 

proteinurea and serum creatinine. In addition, we presented a computer-aided 

diagnosis software that can automatically detect, measure, and quantify 

features in the kidney images that are related to CKD progression. The 

software is necessary to process a large number of OCT images in a short 

period of time. Our ability of discern pathological changes in rat models of 

CKD is important in view of our recent studies showing that OCT can be used 

to evaluate the status of human kidneys in the operating room and its potential 
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use in conjunction with renal biopsies to evaluate kidney histopathology in 

patients. 
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Chapter 4 OCT Hand-held Probe Indoor Localization 

Introduction 

OCT imaging instrument is currently undergoing the transition from 

traditional desktop scanners to portable hand-held scanners. The portable 

hand-held scanners are easier for medical professionals to handle due to its 

light weight; it can be adopted to more applications due to its 6 degrees of 

freedom comparing to the 2 degrees of freedom of the traditional desktop 

scanners. Hand-held OCT scanners would very likely become the major OCT 

instruments for clinical applications in the next few years. 

In the previous chapter, the kidney images of murine model and human model 

are collected using different types of handheld OCT scanners. During 

analyzing the medical image statistic result, we found that the lack of scanning 

location information of the organ could potentially bias the statistic result. 

During a clinical OCT imaging sessions, medical professionals holds up the 

scanners and traverse it around the entire exposed regions of the organ for 

several times while the 2D cross section images are captured and stored 

continuously. Medical professionals tend to hold the scanners above regions 

on the organ that displays interesting biological features for a long period of 
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time and briefly scans through the rest of the organs that are normal or do not 

have distinctive features. The result is that the collected data would consist of 

a large number of images from organ regions that have abnormal features and 

only a small number of images from the organ regions that are healthy. While 

such human-in-the-loop process is completely natural and normal for medical 

professionals, the collected data is biased and is not a true reflection of the 

health status of the real organ. For example, we have seen medical 

professionals captured an image database that consists mostly images of 

regions with hypertrophy tubule while hypertrophy tubules actually only 

present in a small section of the entire organ. Statistical analysis of such 

database would produce a diagnosis that indicates the kidney is at late-stage 

chronic disease even most parts of the organ are healthy. 

While it is possible to instruct the medical professionals to perform the scan 

in a certain way that images from the entire organ are evenly distributed, it 

has few difficulties. First, a human-in-the-loop process would always have a 

fair amount of errors; the integrity of the captured image database cannot be 

guaranteed. Second, considering the amount of stress and many tasks that 

keep the attention of the medical professionals during the clinical sessions, 

adding one more task to the list is hard to justify and would give the 
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impression that the instrument is too complicated to adopt. We propose the 

solution that the OCT handheld scanner should be able to independently 

associate a location data to each 2D cross section images it captured. This 

solution requires to perform indoor localization of the OCT handheld probe. 

Background 

There are many ways to perform indoor localization. It includes inertial based 

solution, radio based solution and camera based solution. This section would 

provide a background overview of various indoor localization techniques. It 

would also discuss the advantages and disadvantages to apply those 

techniques in our application. 

Inertial based Indoor Localization 

Inertial based indoor localization has its long history and was first appeared 

in digital devices such as the pedometer. Inertial measurement is mostly 

carried out by an inertial measurement unit (IMU). Modern IMU includes 

three microelectro-mechanic systems (MEMS) devices, an accelerometer, a 

gyroscope and a magnetometer. The accelerometer measures the change of 

velocity in three dimensions; the gyroscope measures the angular velocity in 

pitch, roll and yaw; the magnetometer measures the heading of the unit with 
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reference to the earth magnetic north. The advantage of inertial based indoor 

localization is that the solution is a complete independent solution by itself 

that can be mounted to the tracking object. The disadvantage of inertial based 

indoor localization is its lack of correction mechanisms.  

It is currently impossible to use IMU alone to acquire high precision 

localization for more than a few seconds [94]. The small acceleration 

measurement error accumulates in the accelerometer would accumulate 

cubically in terms of time in positioning because distance is the double 

integration of acceleration. The angular positioning error accumulates in a 

similar way as well. In addition, the heading measurement from the 

magnetometer is very likely to be disturbed by the magnetic field from the 

surrounding environment, especially in the case of a clinical environment 

where many medical instruments are within close range. A prior knowledge 

of the kinetic model of the object could provide a correction mechanism for 

IMU to zero the accumulated error and improve the tracking accuracy. 

NavShoe is a pedestrian tracking product that performs pedestrian localization 

using a single IMU mounted inside the shoes. It detects the stationary stance 

walking phase and applies zero-velocity updates to Extended Kalman Filter 

(EKF) that filtering the output of the IMU [95]. Yuan el al. showed pedestrian 
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tracking using 3 IMUs that mounted at waist, upper leg and lower leg of the 

tracking person. With the knowledge of human lower body movement kinetic 

model during walking, the output of the IMU is fused with the velocity 

estimation from the human body kinematics through a EKF in order to achieve 

a more precise estimation of the pedestrian location [96].  

Radio based Indoor Localization 

The most well-known radio based localization method is the global 

positioning system (GPS). Since radio based localization method is based on 

time-of-flight measurements, which requires the line of sight between the 

emitter and receiver, GPS based localization methods cannot be used indoor. 

Radio based indoor localization methods are essentially replacing GPS 

satellites with indoor radio emitters and it shares many fundamentals with the 

GPS technology. 

A radio-based indoor localization solution consists of radio base stations and 

a radio receiver that mounted to the tracking object. A radio base station 

constantly broadcasts its current clock and its positions. For the radio receiver 

to compute its 3D location (3 unknown variables), it has to receive from at 

least three base stations at line of sight. Upon receiving the clocks and 

positions of the base stations, the receiver compares the clock difference with 
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its own clock, computes the distances from each base station and uses 

triangulation to fix its location. Not receiving the base station broadcast at line 

of sight (multi-path) would cause the receiver to compute a distance longer 

than the actual physical distance, which in turn introduces errors in the 

localization. 

Wi-Fi based indoor localization solution is one of the most popular and 

researched solution in recent years most because of the wide adoption of Wi-

Fi based station both in private and public areas. Wi-Fi base stations 

broadcasts its signal strength and MAC address to the environment; a database 

storing the location of each MAC address can be accessed by the tracker in 

order to compute its location based on the received MAC addresses. The 

distance between the receiver and the base station could be inferred from the 

signal strength decaying (instead of clock difference). The localization error 

of Wi-Fi based solution is about 6-8 meters because of the existence of distinct 

locations with similar Wi-Fi signatures (similar to multipath problem in the 

case of GPS) [97]. Recent study shows leveraging the relative locations of 

other receiver units nearby could reduce the localization error of Wi-Fi based 

solution to 1-2 meters [97]. However, it would further increase the level of 

dependency of the infrastructure. 
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Ultra-wideband (UWB) radio based indoor localization solution can reduces 

the localization error of radio based solution down to 5-10 cm. UWB radio 

signal comparing to Wi-Fi radio signal has a wider spectrum and a narrower 

pulse width in time domain. The narrower pulse in time domain increases the 

precision of the time of flight measurement of the pulse, which is a better 

source for distance estimation than the signal strength decay [98]. However, 

since most Wi-Fi base station does not use UWB radio due to its lower data 

rate. Most UWB indoor localization solution relies on special hardware that 

needs to be installed to the environment, which are very expensive till today. 

The advantage of radio based indoor localization solution in general is that it 

is a much more accurate solution than the IMU based solutions. The 

disadvantage of the radio based solution is that it relies on the existence of 

infrastructure hardware built into the environment. For a complicated 

environment with many occlusions, multiple radio base stations are necessary 

to ensure the line of sight coverage. The more precise of the system, the 

costlier is the environment setup. Radio based indoor localization solution is 

much practical for applications that tracks multiple objects indoor so that the 

tracking cost per device can go down tremendously. For OCT handheld probe 

tracking, such scenario does not apply most of the time. The cost for using 
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radio based probe tracking would be too high for this technology to be widely 

adopted. 

Camera based Indoor Localization 

Visual odometry and visual simultaneous mapping and localization (visual 

SLAM) are two closely related areas that aims to localize the 6 DOF camera 

pose only based on the video captured by itself. In recent years, with the trend 

of augmented reality and virtual reality entertainment, a large amount of 

research has been conducted in visual odometry and visual SLAM to localize 

the mixed reality helmet indoor in real time with low cost hardware that is 

affordable by the consumer market. 

Visual odometry is the process of estimating the motion of the camera through 

a sequence of monocular or stereo camera images. Visual odometry system 

matches the visual features that are observed by the camera from various 

locations and compute the motion of the camera from the perspective changes 

of those visual features. Visual odometry could be carried out either by 

monocular cameras, RGBD cameras or stereo cameras. The difference is that 

monocular camera based visual odometry can only produce odometry 

measurement in an arbitrary scale; RGBD camera and stereo camera could 

produce odometry measurement in metric scale because these cameras have 
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range measurement for each pixel of the image. The first visual odometry 

system is purposed by Nister et al. where the location of the ground vehicle is 

estimated using the images captured by the monocular and the stereo cameras 

mounted on the vehicle [99]. The advantage of visual odometry system is that 

it is a compact, low-cost, independent and real-time system that can be used 

both for indoor and outdoor applications. The disadvantage of such system is 

that similar to many camera based solution, the environment requires to have 

constantly good lighting and the scene captured by the camera should have 

enough unique visual features that are long-term static. For example, visual 

odometry system would fail to track the camera if the full camera scene is a 

white wall. In addition, visual odometry system works the best when the 

movement of the camera is smooth. Sudden camera motion could cause the 

visual odemetry system to lose tracking because of the motion blur and the 

minimal visual features that overlap between the frames during the sudden 

camera pose change. Visual SLAM not only estimates the location of the 

camera using various type of visual odometry, it also creates a map of the 

environment by estimating the location of the environment features relative to 

the camera location. SLAM in general can be implemented using various 

types of range measurement sensors, such as infrared sensors[100], 
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sonars[101] or LASERs[102]. Visual based SLAM is more popular in general 

because CMOS cameras can provide a large amount of information at a 

relative low cost. 

Discussion 

In consideration of the ease of use, accessibility and accuracy, the optimal 

solution for an imaging probe tracking device should produce a tracking 

accuracy within 1-10 cm; the cost of the system should be relatively low for 

a high adoption rate; the tracking device should be relatively compact that it 

would not impact the ease of use of the imaging probe; the tracking system 

should be as independent of the environment and infrastructure as possible; 

no modification to the environment should be required for the add-on tracking 

capability. Last but not least, minimal training should be required for the 

medical professionals to use such device and the add-on of such device should 

not change the workflow of medical professionals. 

In consideration of all the requirement for the optimal solution, tracking the 

motion of the probe using visual odometry stands out among other solutions. 

Since the indoor clinical environment is constantly under good lighting, 

minimal modification of the environment is required to adopt this solution. In 

our application, stereo camera based visual odometry is chosen over 
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monocular camera based visual odometry. Monocular camera based visual 

odometry usually requires an initialization process because the first image 

only of the sequence could not provide depth information [103], [104]; the 

initialization process can be either pointing the camera to a structure with 

known depth or moving camera from side to side pointing to a planar surface. 

The initialization process is impractical for a system for clinical usage because 

surgical time is valuable. Furthermore, fail to initialize the system would 

cause the rest of the visual odoemtry data become erroneous. In addition, 

stereo camera based visual odometry can provide odometry measurement with 

accurate scale in comparison to the arbitrary scale from the monocular camera 

based visual odometry. 

OCT Probe Localization using Visual Odometry 

Hardware Add-on 

A commercial stereo camera (ZED camera, Stereolabs Inc. San Francisco, 

CA) is mounted to the OCT handheld probe (Figure 34). This specific camera 

has a depth range from 0.5 - 20 meters and a stereo baseline (distance between 

the two cameras) of 1.2 cm. The viewing angle of the camera is set to point 

90 degrees upwards from the direction of the OCT scanner. In real world 
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usage, the viewing angle of the camera would not have an effect on the quality 

of the visual odometry as long as the viewing angle offset is fixed and known 

and there are enough visual features within the depth range of the camera. The 

camera is set to recording VGA footage of the environment during the OCT 

scanning session. The visual odometry data can be computed either in real-

time during the scanning session or in post process. However, since there is 

no incentives and benefits to provide visual odometry data to the medical 

professionals during the scanning session. Only VGA footages from the two 

cameras are recorded together with the OCT images during the session. The 

probe locations for each OCT images are computed in post processing. It is 

worth to mention that the commercial stereo camera does come with a 

software development kit that providing visual odometry capability. 

However, the visual odometry capability in the software development kit is 

rudimentary and dependent on NVidia GPUs, which is not always available 

in a clinical setup. As a result, only the RGB images from the left and right 

cameras on the commercial stereo camera are used in this project. The 

functionalities provided in the software development kit are not used in this 

project. 
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Figure 34. Augmented OCT handheld scanner with stereo camera 

Visual Odometry Software 

The visual odometry post processing software is based on ORB SLAM 

algorithm [105] in C++. ORB SLAM is a visual SLAM system that consists 

of visual odometry tracking, mapping and loop closing. 

The fundamental visual feature descriptor of the ORB SLAM system is the 

oriented FAST and rotated BREIF (ORB) feature descriptor [106]. The ORB 

feature is both scaled and orientation invariant that it provides high likelihood 

of feature points matching between images captured from different view port 
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(Figure 35c). With stereo camera, the depth information of each pixel can be 

computed from the disparity map of the stereo pair (Figure 35b). With depth 

information, each ORB feature point is a 3D point referring to the current 

camera pose. As the camera pose is computed through visual odometry in real 

time, a 3D map consisting of ORB feature points can be generated in real time 

(Figure 35d). Visual odometry, similar to many other odometry algorithm, is 

computed based on the prior sequence of measurements; small estimation 

errors in the previous measurements accumulate and cause the visual 

odometry measurement drift from the ground truth especially for long term 

sessions. Loop closing uses bag of words with ORB features to detect places 

that the camera has captured before, comparing the visual odometry 

measurement difference between the two frames and perform global bundle 

adjustment to correct the visual odometry measurements in the previous 

frames [107], [108]. However, visual odometry with loop closing is no longer 

real time because the corrected visual odometry measurement in the current 

frame is dependent on the measurement in the future frame. However, in our 

application, visual odometry with loop closing further improves the 

localization of the imaging probe in post video processing. 
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The raw stereo images are pre-processed before input to the SLAM system 

(Figure 35c). The image is first converted from RGB space to Lab color space 

[109]. Then contrast limited adaptive histogram equalization (CLAHE) is 

performed on the L channel to reduce the light differences and increase the 

contrast of the under-exposure and over-exposure image regions [110]. This 

process is to make sure more static visual features are picked out even in 

regions in the images that are not well represented due to lighting. Finally, a 

Gaussian blur with a small 5x5 kernel is applied to the image in order to 

reduce tiny artifacts caused by the CLAHE algorithm. 

To visualize the quality of the mapping, 3D ORB feature points are plotted, 

which depicts the room shape of the environment (Figure 35d). In Figure 36, 

the trace of the OCT handheld scanner is plotted together with the 

environment mapping to show the relative scale of the movement of the 

handheld probe comparing to the environment. The localization accuracy of 

the software is characterized by comparing the algorithm output with the 

actual physical displacement of the imaging probe measured with linear 

translation stage, for multiple times. While the uncertainty of the localization 

measurement is gradually increasing with the displacement, the mean of the 
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localization measurement grows linearly with the physical displacement of 

the imaging probe (Figure 35e). 

 

Figure 35. (a) RGB image from the left camera (b) depth image computed from the 

stereo image pair (c) ORB feature points overlaid on pre-processed RGB left image (d) 

3D Map of the environment generated from the 3D ORB points (e) Characterization of 

the linearity of the localization algorithm 
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Figure 36. (a) Trace of the OCT scanner plotted with the environment map (b) trace of 

OCT handheld scanner in close 

Visualize OCT Images in 3D 

Since RGB images of the stereo camera and the OCT images are captured 

simultaneously, the imaging location of each OCT image can be computed 

from the RGB images captured at the same time stamp. In addition to save the 

imaging location of each OCT image, we added an extra layer of software to 

visualize the 2D OCT images in 3D virtual space (Figure 37). This software 

enables users, such as medical professionals to query and visualize the 

location of each frame (Figure 37a-b). We believe this visualization tool 

would be helpful for medical professionals to review OCT scan record. The 

software is implemented in C++ using OpenGL, OpenCV and Point Cloud 

Library. 
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Figure 37. (a-b) the visualization tool enables user to query and visual the relative 

location of each OCT image (c) the whole scanning session and the location of each 

frame plotted in one image 
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Chapter Conclusion 

In this chapter, we implemented a software that could compute and visualize 

the location of the OCT imaging probe in post processing. The design and 

implementation of such system is practical in terms of the cost, ease of use 

and accuracy. We have demonstrated that our hardware and software 

implementation is able to track OCT imaging probe location at high accuracy 

and provide a simple to use visualization tool to review OCT 2D scan images 

in 3D. We believe that the extra probing location information of each OCT 

2D scan provided by the system would give the medical professionals a better 

understanding and visuals of the organ health status. 
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Chapter 5 Conclusion and Future Work 

This dissertation showcases three projects I have worked during my doctoral 

research. Portable near infrared fluorescence imaging project aims to provide 

a low cost and portable NIRF imaging device that is more accessible for 

patients in the under-developed regions. The result shows the that although 

imaging quality produced by the device is inferior than the desktop 

counterpart. Many clinical applications are still able to adopt this technology 

and become more widely available to the community. Computer-aided 

diagnosis of chronical kidney disease using OCT and machine learning 

explores the possibility of providing more advanced diagnosis tools for the 

medical doctors with software that integrated the latest image analysis 

technology. We hope the software, including the user interface at the front and 

the computational model behind the scene, would prompt the medical 

professional community to think more about integrating machine learning and 

big data powered tools to their day-to-day workflow. The indoor localization 

of OCT project showcases that by integrating latest technology from the 

AR/VR industry to medical instruments, more layers of data is able to be 

extracted from the same procedure without modify the workflow of the 

medical professional. The extra layers of data and the visualization it brings 



 126 

can provide more meaningful insights to the data for the medical doctors 

during the record review process, which would lead to more accurate 

diagnosis. These three projects are great demonstrations of successfully apply, 

refine and transfer the latest technologies from electrical and computer 

engineering to bio-medical clinical applications. 
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