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A method for studying extreme wave solutions of the 1+1D nonlinear Schrödinger

equation (NLSE) with periodic boundary conditions is presented in this work. The

existing methods for solving NLSE in the periodic case usually require informa-

tion about the full period. Obtaining that information may not always be possible,

when the experimental data is collected outside laboratory settings. In addition,

some NLSE solutions contain fine details and have extremely long periods. As such,

a very large mesh would be required in order to apply numerical methods to simulate

the propagation of the wave. Finally, as some solutions only experience exponential

growth once in their lifetime, the number of time steps necessary to numerically

recreate an extreme or Rogue wave may be significant.

The way to determine whether a solution is stable with respect to small per-

turbations or not (in Benjamin-Feir sense) is available in the literature. One relies



on representing a solution using Riemann theta functions that depend on a set of

parameters which, in particular, can be used to determine stability. An algorithm

for finding those parameters is developed and is based on wavelet representation.

The existence of wavelet families with compact support allows restricting the anal-

ysis of the solution to a given interval and this approach is found to work for the

incomplete sets of input data. The implementation of the algorithm requires the

evaluation of the integrals of wavelet triple products (triplets). A method to evalu-

ate the values of those triplets analytically is described, which allows one to avoid

the necessity of approximating the wavelets numerically. The triplet values could

be precomputed independently from the specific problem. This, in turn, allows the

implemented algorithm to run on desktop computers. To demonstrate the efficiency

of the method, various simulations have been performed by using data obtained

by the research group. The algorithm proved to be efficient and robust, correctly

processing the input data even with a small-to-moderate noise in the signal, unlike

curve-fitting methods that were found to fail in the presence of noise in the input.

The analytical basis and algorithms developed in this dissertation can be useful for

examining extreme or freak waves that arise in a number of contexts, as well as

solutions with localized features in space and time.
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Chapter 1: Introduction

1.1 Rogue waves

Up until recently the very existence of the extreme or freak or rogue waves in the

open seas capable of destroying ships in minutes was questioned by many and these

waves were considered a sailor’s myth. One could assume that among the reasons

for the lack of evidence was that the survival of a hit by such a freak wave was

nearly impossible for most seafaring vessels.

However, during the late twentieth century, naval researchers managed to ac-

cumulate a certain amount of data and first hand evidences that such waves exist.

The first ever rogue wave detected and measured by the instrument occurred at the

Draupner platform in the North Sea off the coast of Norway, on 1 January 1995.

Later the huge ocean waves were also captured through satellite imaging. Some of

the results obtained during MaxWave project of European Space Agency (ESA) can

be found in references [19], [37]. Recently, the analytically predicted rogue waves

were demonstrated experimentally in wave tanks ([12], [13]).

It is also worth noting that the phenomenon of rogue waves is not restricted

to the ocean surfaces. The waves experiencing exponential or nearly exponential

growth were also observed in fiber optics. Optical wave behavior in dispersive media
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as well as the interference between them was discussed in reference [2]. Further

work on the type of solutions known as Akhmediev Breathers was carried out by

Akhmediev, Soto-Crespo, and Ankiewicz (see [3], [4]). Since the models in both

cases are described by using the same equation (nonlinear Schrödinger equation),

the approach developed in this dissertation is applicable to those cases as well.

The conventional definition of rogue waves in the ocean is that they are waves

whose heights, from crest to trough, are more than about twice the significant wave

height, which is the average wave height of the largest one-third of nearby waves

[13]. Since such waves are extremely dangerous to seafaring vessels and stationary

platforms alike, various methods have been proposed for studying mechanisms un-

derlying the formation of rogue waves in an attempt to predict their appearance

and take necessary safety measures (see, for example, [21], [38], [34]). Among those

methods, there is one proposed by Osborne [31], and the analysis described here is

based upon this method.

Before describing the developed algorithm, the author will briefly discuss some

of the underlying principles that lead to rogue wave formation.

1.2 Model description

The model discussed here is for the deep water case; that is, with a water depth

greater than half of the wavelength, as opposed to the shallow water case for which

one used the model based on the Korteweg-de Vries (KdV) equation (for discussion

of nonlinear interactions between wave solutions of KdV see [6], [5]). A necessary
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Figure 1.1: Modulation of wave.

assumption here is that the wavetrain is slowly modulated. It can be described in

terms of the Stokes wavetrain as follows. Let the elevation of the free surface above

the sea level be defined by

η(x, t) = Re[A(X,T ) exp(i(k0x+ ω0t))]

Here k0 and ω0 denote the wavenumber and wave frequency of the carrier wave,

related via the dispersion relation ω = ω(k). For the Stokes wavetrain, the corre-

sponding dispersion relation has the form

ω(k) =
√
gk(1 + k20A

2
0). (1.1)
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A0 = A(0, 0) is the amplitude of the carrier wave. Let X = εx and T = εt with

ε = A0k0 � 1 be the slowly varying space and time variables, respectively. In

this situation, the envelope solution of a wave η(x, t) (see Fig. 1.1) in cross sea

states could be described by the nonlinear Schrödinger equation with the periodic

boundary conditions, which is obtained from the dispersion relation.

The Taylor series expansion about the wavenumber k = k0 and A = A0 ([36])

is given by:

ω = ω0 +
∂ω

∂k
(k − k0) +

1

2

∂2ω

∂k2
(k − k0)2 +

∂ω

∂|A|2
(|A|2 − |A0|2) (1.2)

Let Ω = ω − ω0 and K = k − k0. We notice from equation (1.1),

∂ω

∂k

∣∣∣∣
k=k0

= cg =
ω0

2k0
,

∂2ω

∂k2

∣∣∣∣
k=k0

= − ω0

8k20
,

∂ω

∂A2

∣∣∣∣
A0=0

=
1

2
ω0k

2
0

Then, from equation (1.2)

Ω = cgK −
ω0

16k20
K2 +

1

2
ω0k

2
0|A|2 (1.3)

The Fourier and inverse Fourier transforms of the envelope function are given by

A(K,Ω) = F [A(X,T )] =

∞∫
−∞

dXdT A(X,T ) exp[i(ΩT −KX)],

A(X,T ) = F−1[A(K,Ω)] =

(
1

2π

)2
∞∫

−∞

dKdΩ A(K,Ω) exp[−i(ΩT −KX)]

(1.4)
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Equations (1.4) imply

∂A

∂X
= iKF−1[A(K,Ω)],

∂A

∂T
= iΩF−1[A(K,Ω)]

(1.5)

where Ω and K are of order ε. Then, from equation (1.5),

K = −iε ∂
∂X

,

Ω = iε
∂

∂T

(1.6)

On substituting (1.6) into (1.3) and applying the resulting operator to the enve-

lope amplitude A leads to the nonlinear Schrödinger equation for the evolution of

the amplitude of the envelope of the wavetrain. Replacing the wavetrain parame-

ters A,X, T with ψ, x, t one can rewrite the Nonlinear Schrödinger Equation in its

traditional form:

i

(
∂ψ

∂t
+

ω0

2k0

∂ψ

∂x

)
− ω0

8k20

∂2ψ

∂x2
− 1

2
ω0k

2
0|ψ|2ψ = 0 (1.7)

with σ = 1 corresponding to the focusing case (as opposed to defocusing case σ =

−1 that has different properties and is not discussed here; see reference [39] for

theoretical details and [30] for numerical study). Here focusing should be understood

in terms of the energy and means that at certain times the L2-energy of the wavetrain

envelope is spatially localized or focused, as opposed to defocusing case (for more

information on defocusing case see, for example references [29], [30]). Both periodic

and spontaneous cases of that focusing have been extensively studied. The former

leads to the appearance of ”breather” solutions, that are named so because they tend

to be localized in space and oscillate in time thus resembling a breathing motion

(for more information on breather wave solutions see references [17], [18]). In the
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spontaneous case, it is possible for the rogue wave-type solution to only experience

the exponential growth once in the wave’s lifetime, which makes it hard to observe

this wave and could help explain why such a huge wave was considered to be non-

existent for a long time. In figures that follow, an example of a breather is shown

for the solution (Peregrine breather, u(X,T ) =
(

1− 4(1+4iT )
1+4X2+16T 2

)
e2iT , Fig. 1.2 )

and a few steps of the evolution of one-dimensional perturbed rogue wave solution

(see Fig 1.3). Graphs shown in Figure 1.3 were obtained via simulations by using

NLSEmagic library ([10]) with a db2 wavelet as an initial condition (the form of

”dbN” families of wavelets is given in [14]). Since this wavelet cannot be a solution

to the given equation (it is not two times differentiable everywhere), such an initial

condition may be viewed as a perturbed solution. The maximum amplitude of the

peak on the third graph reaches 0.12 nondimensional units with the average being

less than 0.05 at all times, therefore this wave qualifies to be considered a rogue

wave.

6



Figure 1.2: Peregrine breather solution.
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Figure 1.3: Rogue wave evolution. Same spatial period of the wave profile is shown

at different times T .

One possible explanation for the spontaneous growth phenomenon was pro-

posed in the work of Thomas Benjamin and Jim Feir (in references [8] and [7])
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and further studied by Harvey Segur et al. (see [38]) and Miguel Onorato [23],.

The Benjamin-Feir instability is a modulational instability in which a uniform train

of oscillatory waves of moderate amplitude lose energy to a small perturbation of

other waves with nearly the same frequency and direction. In particular, consider a

spatially constant solution of the nonlinear Schrödinger equation:

u0(t) = A0exp(−1

2
iω0k

2
0|A0|2t) (1.8)

Then, one can define u(x, t) = u0(t)(1 + δ(x, t)) with δ(x, t) being a perturba-

tion, which could be written in the following form:

δ(x, t) = A1exp[i(Ωt+Kx)] + A2exp[i(Ω∗t−Kx)]

Here A1 and A2 are complex-valued constants and parameters Ω and K remain to

be found. If one now substitutes u(x, t) into (1.7) and linearize around u0, only

keeping terms linear in δ, then this provides a way to find the above mentioned

parameters Ω and K. After solving the resulting linear homogeneous equations one

obtains:

Ω2 =
1

2

(
ω0K

2k0

)2(
k20a

2
0 −

K2

8k20

)
Then for real ω0, k0 and K, K2 > 8k40a

2
0 one has Ω being purely imaginary and

exp[i(Ωt)] being real. If, in addition, the imaginary part is negative, that leads to

the exponential growth and blowup of the solution.

9



1.3 Potential complications

There are potential complications related to the solution analysis. First of all, some

solutions to the nonlinear Schrödinger equation are stable under small perturbations,

which leads to the problem of classification of the solutions with respect to stability.

One of the possible approaches was discussed by Osborne in reference [31] and relies

on the idea of the representation of the solution as the quotient of two Riemann

theta functions.

It was shown in reference [31] that a solution of nonlinear Schrödinger equation

with periodic boundary conditions in one-dimensional case could be represented by

using Riemann theta functions in the following way. First, define a function:

θ±(x, t;A, λ, ε, δ±) =
∑
m1

· · ·
∑
mn

exp i[
∑
n

mnKnx+∑
n

mnΩnt+
∑
n

mnδ
±
n +

∑
n,k

mnτnkmk]. (1.9)

Here, K, Ω, and δ are constant vectors depending nonlinearly on the parameters

λ, ε, δ, and A. The index vector m = (m1,m2, . . . ,mn) and the summation is taken

over m1,m2, . . . ,mn ∈ Z. Then, for a certain set of parameters λ, ε, δ the quotient

u(X,T ) =
θ+(X,T ;A, λ, ε, δ+)

θ−(X,T ;A, λ, ε, δ−)
Ae2iT (1.10)

is a particular solution of a periodic nonlinear Schrödinger equation ([31]). The theta

ratio here determines the low frequency modulation of the carrier wave. The case

where θ+(X,T )
θ−(X,T )

= 1 would mean there’s no modulation at all and the wave solution

is a plane wave.
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There are two immediate benefits of using the Riemann theta functions ap-

proach for processing numerical data. First, since at least some solutions of nonlinear

Schrödinger equation are unstable with respect to various perturbations, both nu-

merical simulations and attempts to interpolate the data obtained from experiments

could fail in and around the localized areas of instability ([43], Chapter 4). Indeed,

since rogue waves experience exponential growth and often have sharp crests, sam-

pling of such input could require an unfeasibly large amount of points. Adaptive

methods (like the finite element method) are expected to face the same problem.

Another problem arises from the fact that the rogue waves are transient and

short-lived. It has been shown that while many nonlinear Schrödinger equation

solutions may experience such rapid exponential growth, it will often only happen

once in their lifespan and for a brief period of time ([34]). Due to this fact, a

propagation over very long timespan may be required to observe a rogue wave-like

growth for a given initial condition.

One of the biggest challenges in using Riemann theta functions representation

for stability analysis of the experimental data is that the nature of such representa-

tion is highly nonlinear with respect to λ, ε, and δ. Because of this, variational at-

tempts to find those parameters (like gradient descent or trust region quasi-Newton

methods) often fail to converge. In the author’s numerical experiments, wherein a

wave was first generated by using a predefined set of parameters and then various

methods were implemented in an attempt to recover those parameters, a conver-

gence only occurred for a few random starting points, thus making this approach

unfeasible.
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In reference [31], Osborne has discussed the extraction of parameters from the

given input signal (i.e., a solution sampled at the given fixed time T ) via the Fourier

Transform. However, this imposes another serious limitation on the input data: the

whole period needs to be available to process the signal. While it is possible to

obtain periodic data in laboratory conditions, this is not feasible for studying the

data from the oceans or lakes as the period is usually unknown. Moreover, even for

digitally simulated data, the full spatial period may be so large that the sampling

will lead to a huge increase in computing power necessary to process the data.

In references [11] and [27], Chabalko, Moitra and Balachandran describe a way

to create the map of eigenvalues for any given period L. This method allows one to

start with approximate values for λ, δ, and ε and then find the exact combination of

those parameters that would generate a solution for the given period. This approach,

while powerful, is computationally heavy and was originally performed by using

GPU computing on CUDA-enabled hardware. In addition, this approach requires

a good initial guess of the solution-generating parameters, which complicates the

processing of experimental data. In Chapter 3, the dissertation author will discuss

a method, that is sufficiently lightweight computationally and allows one to find

the approximate values of λ, ε and δ. Afterwards, if higher order of precision is

necessary, those approximate values can be used as input for the method used by

Moitra ([27]).

One final observation before proceeding to the formulation of the algorithm is

the possibility to simplify the equation one works with. By rescaling the variables

(for the details of the process see [44] and [31], Chapter 24) it is possible to rewrite

12



the nonlinear Schrödinger equation in the non-dimensionalized form:

iut + uxx + 2σ|u|2u = 0,

u(x, t) = u(x+ L, t).

(1.11)

From now on form (1.11) will be used for the computations.

1.4 Outline

The rest of the dissertation is organized in the following manner.

In Chapter 2, the author describes the existing methods of solving periodic

nonlinear Schrödinger equation as well as the way to represent the solutions in terms

of Riemann theta functions. A detailed explanation of the new method (wavelet

triplets method) presented by author is also given in that chapter. The last section

deals with the alternative applications of the method to the problem of finding rogue

wave solutions.

Chapter 3 contains the detailed algorithm for evaluating the wavelet triplets

(the integral products of three arbitrary wavelet or scaling functions) analytically.

That step is especially important, since the wavelets used in this dissertation (Daubechies

wavelets) do not have a closed form. The values of triplets are found by solving a

linear system and the theorem given in that chapter gives the conditions necessary

for such a system to have full rank.

Chapter 4, the author provides the results of numerical experiments and sim-

ulations, designed to verify the efficiency of the wavelet triplets method. Both data

13



without noise and noisy data are used as inputs to demonstrate the advantage of

the new method. Some numerical results for the alternative approach discussed in

chapter 2 are also provided in this chapter.

Chapter 5 contains closing comments on the discussion of the ways in which

one can improve the presented method, as well as the application of it to other

mathematical problems.
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Chapter 2: Application of wavelet triplets to interpolation of nonlin-

ear Schrödinger equation solutions

2.1 Solution representation in terms of theta functions

Before proceeding to the description of the application of the proposed wavelet

triplets method for finding the representation of nonlinear Schrödinger equation so-

lutions, a brief description of the solution form is necessary. To keep this description

concise only the necessary facts and formulae, relating these solutions to the specific

set of parameters λ, ε, and δ, are stated here. A description of the Inverse Scat-

tering Transform (IST) method that allows to solve nonlinear Schrödinger equation

exactly is given in reference [1]. Additional details can be found in reference [44].

Since slowly modulated wavetrains in the cross sea states discussed in the intro-

duction could be described using the solutions of the periodic nonlinear Schrödinger

equation ([33]):

iut + uxx + 2|u|2u = 0,

u(0, t) = u(L, t).

One way to study rogue waves is to analyze the solutions of this equation. In that

case, as was briefly discussed in the introduction, the solution could be represented

15



as a quotient of two Riemann theta functions

u(X,T ) =
θ+(X,T ;A, λ, ε, δ+)

θ−(X,T ;A, λ, ε, δ−)
Ae2iT (2.1)

Here,

θ±(x, t;A, λ, ε, δ±) =
∑
m1

· · ·
∑
mn

exp i[
∑
n

mnKnx+∑
n

mnΩnt+
∑
n

mnδ
±
n +

∑
n,k

mnτnkmk]. (2.2)

where N is the number of modes and N×N Riemann matrix τ contains information

about modes of the solution and nonlinear interactions between them [31].

A single mode (in case N = 2) is defined by using spectral parameters as

follows ([5]):

ε1 = ε0e
iθ, ε2 = ε∗1

σ1 = 1, σ2 = −1

λ1 = λR + iλI , λ2 = λ∗1

K1 = −2
√
A2 + λ21, K2 = −2

√
A2 + λ22

Ω1 = 2λ1K1, Ω2 = 2λ2K2

τ11 =
1

2
+
i

π
ln(

K2
1

ε1
), τ12 =

i

2π
ln

(
1 + λ1λ2 + 1

4
K1K2

1 + λ1λ2 − 1
4
K1K2

)
τ21 = τ12, τ22 =

1

2
+
i

π
ln

(
K2

2

ε2

)
δ+1 = π + i ln

(
λ1 −

1

2
K1

)
+ i ln

(
σ1λ1 +

1

2
K1

)
δ−1 = π + i ln

(
λ1 +

1

2
K1

)
+ i ln

(
σ1λ1 +

1

2
K1

)
δ+2 = π + i ln

(
λ2 −

1

2
K2

)
+ i ln

(
σ1λ2 −

1

2
K2

)
16



δ−2 = π + i ln

(
λ2 +

1

2
K2

)
+ i ln

(
σ1λ2 −

1

2
K2

)
Here ε1,2 and σ1,2 define expansion parameter and sign of Riemann sheet index

respectively, λ1,2 are the spectral eigenvalues, K1,2 are the spectral wavenumbers,

Ω1,2 are the spectral frequencies, τ is a period matrix and δ±1,2 are phases. The

eigenvalues λ1,2 are complex and these eigenvalues determine the general behavior

of the solution. The ways of finding them analytically are discussed in references

[20] and [41].

Furthermore, the position of the complex-valued parameter λ in the complex

plane determines whether such a mode is stable or unstable. From now on the short

notation θ±(x, t;A, λ, ε, δ±) ≡ θ±(x, t) will be used and the particular solution will

be written as u(x, t) = θ+(x,t)
θ−(x,t)

. The parameter λ used above is, in fact, the eigenvalue

from the Inverse Scattering Transform (IST) problem. The following result is also

due to Osborne [31]. Together the parameters λ and ε define a spine connecting

a pair of eigenvalues (as shown in Fig. 2.1). The stability of the corresponding

solution (mode) is then determined by whether the spine crosses the real axis or

not.

2.2 Wavelet representation

The proposed method of solution interpolation and analysis is based on using stable

multiscale representation (approximation) of Riemann theta functions in (1.10). Due

to the exponential nature of these functions the coefficients in the wavelet series

decomposition decay exponentially fast. hence a truncated series with relatively
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Figure 2.1: Eigenvalue map in complex plane (from Osborne, [31])
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few terms will still provide a very good approximation (which will be discussed

in Chapter 3 along with the numerical results). These approximations, combined

with the wavelet series representation of the input signal itself (observed solution

u(x, t)) allow one to write a system of equations, which is linear with respect to

the wavelet coefficients of (1.9) and (1.10). The linearity of this system is achieved

by using precomputed values of the triplets of wavelet basis functions. The latter

can be found exactly from the properties of the wavelet functions themselves and

is independent of the problem. The process of evaluating the wavelet triplets is

described in Chapter 3.

One begins by choosing a function ψ(x) (sometimes called a mother wavelet)

that satisfies certain admissibility conditions ([24]), the most important being
∫
ψ(x)dx =

0 (others being restrictions on smoothness and localization). The corresponding or-

thonormal wavelet basis B in L2(R) is then generated by integer translations and

dyadic dilations of ψ(x) as:

B =
{
ψjk(x) = 2j/2ψ

(
2jx− k

)}
j,k∈Z ,

where the basis elements ψjk(x) are indexed by the integer shift k and dilation j

(which can be also viewed as the wavelet level). In this manner any given f ∈ L2(R)

can be represented as

f(x) =
+∞∑
j=−∞

+∞∑
k=−∞

< f, ψjk > ψjk(x).

Here < f, ψjk > denotes a scalar product in L2(R) sense (for more details see

references [24] or [28]).
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If, in addition to the mother wavelet, there exists a scaling function ϕ(x) =

ϕ00(x) (not every orthonormal basis B admits a scaling function, see reference [24],

Ch. 7 for details), one can rewrite the previous representation as:

f(x) =
+∞∑
j=0

+∞∑
k=−∞

< f, ψjk > ψjk(x) +
+∞∑

k=−∞

< f, φ0k > φ0k(x)

Here, the scaling function ϕ(x) (sometimes called a father wavelet) allows one to

change the summation over j from j = −∞, . . . ,∞ to j = 0, . . . ,∞. Furthermore,

since one is dealing with a discrete signal here, the actual summation doesn’t have to

be infinite. In practice, a few levels of detailization would be sufficient (the number

of them depends on the length of the given signal). Finally, since one is dealing with

periodic signals, one may use periodized wavelet basis with O(2j) integer shifts at

each level of decomposition j. If one defines the highest level of detailization by M ,

then one gets the following finite representation of the signal:

f(x) =
M∑
j=0

Lj∑
k=0

< f, ψjk > ψjk(x) +
Ls∑
k=0

< f, φ0k > φ0k(x) (2.3)

For convenience of notation, one can formally append the scaling function part

Lj∑
k=0

< f, φ0k > φ0k(x)

to the first nested sum as j = −1-st level of decomposition (so that ψ−1k(x) :=

φ0k(x)):

f(x) =
M∑

j=−1

Lj∑
k=0

< f, ψjk > ψjk(x) (2.4)

For practical purposes it is assumed that the chosen mother wavelet has finite sup-

port and admits a father wavelet. Amongst the possibilities, one may consider the
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Daubechies wavelets ([14]), having the maximum amount of vanishing moments pos-

sible for a given support length. Such wavelet bases have been extensively used in

practice. In particular, in the case of compactly supported orthonormal wavelet

basis with a scaling function (such as Daubechies wavelets mentioned above) the

following scaling relations allow for a fast wavelet transform:

φ(x) =
N∑

k=−N+1

gkφ1k(x), (2.5)

ψ(x) =
N∑

k=−N+1

hkφ1k(x). (2.6)

Here g and h are the finite low pass and high pass filters of length at most 2N ,

respectively.

2.3 One-dimensional formulation

As discussed above, modulational part of the solutions of nonlinear Schrödinger

equation in the 1 + 1 case could be represented in the form θ+(x,t)
θ−(x,t)

where θ±(x, t) is

defined as in (1.9). This gives rise to the following idea: instead of approximating

the numerical solution as a single function, one can attempt to recover the Riemann

theta functions that generate it. Once it is done, one will be able obtain the in-

formation on stability and general behavior of such a solution without having to

numerically propagate it further in time. In addition, this approach allows one to

only store the parameters necessary to recreate that solution at any given point,

greatly simplifying the analysis and classification of numerically generated solutions

en masse.
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One starts with considering the orthogonal wavelet decomposition of each of

the three functions at the given time T :

u(x, T ) =
∑
j

∑
k

ujk(T )ψjk(x),

θ+(x, T ) =
∑
j

∑
k

θ+jk(T )ψjk(x),

θ−(x, T ) =
∑
j

∑
k

θ−jk(T )ψjk(x).

with the coefficients and indices as in (2.4). Since, by definition, the Riemann theta

function value is never zero for any argument, the ratio u(x, T ) = θ+(x,T )
θ−(x,T )

could

be rewritten as the product u(x, T )θ−(x, T ) = θ+(x, T ). One can then replace the

functions with their corresponding decompositions and write the equation as(∑
j

∑
k

ujk(T )ψjk(x)

)(∑
m

∑
n

θ−mn(T )ψmn(x)

)
=

(∑
j

∑
k

θ+jk(T )ψjk(x)

)
(2.7)

By consecutively multiplying equation (2.7) by each of the basis elements ψjk(x)

in L2 sense one can obtain a new system where the coefficients are constants with

respect to the x variable and hence are not involved in the integral evaluations:

∑
j,k

∑
m,n

ujk(T )θ−mn(T )
∫
ψjk(x)ψmn(x)ψ−1 0(x)dx = θ+−1 0(T ),

. . .∑
j,k

∑
m,n

ujk(T )θ−mn(T )
∫
ψjk(x)ψmn(x)ψ−1L−1(x)dx = θ+−1L−1

(T ),

∑
j,k

∑
m,n

ujk(T )θ−mn(T )
∫
ψjk(x)ψmn(x)ψ0 0(x)dx = θ+00(T ),

∑
j,k

∑
m,n

ujk(T )θ−mn(T )
∫
ψjk(x)ψmn(x)ψ0 1(x)dx = θ+01(T ),

. . .∑
j,k

∑
m,n

ujk(T )θ−mn(T )
∫
ψjk(x)ψmn(x)ψKLK (x)dx = θ+K LK

(T ).

(2.8)
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Here K - the maximum decomposition level and Lj - maximum shifts at j-th level

are determined by the length of the input signal. Coefficients ujk(T ) come from

the input data u(x, T ) and triple integral products CK =
∫
ψjk(x)ψmn(x)ψαβ(x)dx,

K = [j, k,m, n, α, β] are precomputed constant values, evaluated as described in

Chapter 3.

Notice that, since the values of those integrals do not depend on the values

of the input signal, it is possible to precompute all of them for the chosen wavelet

family ψjk(x)j,k∈Z . As such, the only input necessary to form the linear system

above with θ+jk(T ) and θ−jk(T ) as unknowns, are the wavelet coefficients of the given

data ujk(T ).

Since only a finite amount of decomposition levels is considered and the amount

of linear shifts is bounded by the interval on which the function values are given, the

number of decomposition coefficients is also finite. To simplify the notation, those

coefficients could be rearranged as follows:

ũ = {u−10, u−11 . . . u−1L0 , u00, u01, . . . u1L1 , . . . uM0, . . . , uMLM} (2.9)

where Lj is the number of coefficients at j-th level of decomposition and M is the

maximum level.

At this point the system has twice as many variables as equations (since in

general the representation u(x)/v(x) is only unique up to the common non-zero

multiplier c(x), as

u(x)

v(x)
=
u(x)c(x)

v(x)c(x)
.

The next step, therefore, would be to either add more equations based on the
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fact that the numerator and denominator are the Riemann theta functions generated

by the same set of parameters or to solve it variationally with respect to the param-

eters of the Riemann theta functions by minimizing the difference MΘ−−Θ+. The

choice of the norm with respect to which the difference is minimized is discussed in

Chapter 4. Here Θ± are the vectors of the wavelet coefficients of the corresponding

theta functions and M is the constant matrix defined by the equations (2.8); that is,

Mjk =
∑
m

um(T )
∫
ψm(x)ψj(x)ψk(x)dx with wavelet basis elements and correspond-

ing coefficients enumerated through a single index as in (2.9).

Remark. It is worth noting that values of triplets n1n2n3 for dbN families

of wavelets (here N refers to the number of vanishing moments) tend to decrease

rapidly as the distance between n1, n2 and/or n3 increases. If, in addition, the

wavelet coefficients decrease fast enough as the level of decomposition increases (as

discussed in Section 2.6), the resulting matrix M will have sparse, banded form. Due

to these facts, it may be more computationally efficient to use variational algorithms

to find the parameters λ, ε, and δ, since adding equations related to the Riemann

theta function properties will destroy this banded structure. The number of bands

in the matrix M and their width depends on the length of the support of basis

wavelet functions and follows from the fact that if suppψj(x)∩ suppψk(x) = ∅ then

Mjk ≡ 0.

24



2.4 Periodicity and boundary artifacts

The key difference between the proposed method and the existing spectral analysis

methods based on the Fourier transform ([31], [32]) is that the wavelet triplets

method does not require the full period as the input. The significance of this fact

is demonstrated below (in particular, in Fig. 2.2 and 2.3).

First, to demonstrate how the Fourier coefficients may vary depending on

whether the period is given correctly, one can consider the plane wave in its simplest

form: f(x) = ei2x. The corresponding Fourier coefficients on the interval [0, π] are

given by

cn =
1

π

π∫
0

e2ixe−i2nxdx =
1

π

π∫
0

e2ix(1−n)dx =
1

2iπ(1− n)
(e2iπ(1−n))− 1 = 0

for all n 6= 1 and

c1 =
1

π

π∫
0

e0dx = 1

However, in case the period is not chosen properly, the situation changes. On

the interval [0, P ] for P 6= π one has

cPn =
1

P

P∫
0

e2ix(1−
πn
P

)dx =
1

2i(P − nπ)
(e2i(P−nπ) − 1)

So, in general cn 6≡ cPn .

Now assume that one has only a certain amount of samples of the function

which one is trying to identify. In the left graph of the Fig. 2.2, the author shows
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256 samples of the Riemann theta function generated with parameters

A = 1,

σ1,2 = ±1

λ = 1.011082099384033 + 1.393843047785932i

ε = 0.0049990

θ = 1.321204107

over the interval [−0.5, 0.5]. The first 128 samples are marked with asterisks. Then

the Fast Fourier Transform is applied to both sample sets and the imaginary parts

of the first 32 coefficients are shown on the right. The discrepancy between two sets

is clearly significant.

Figure 2.2: Original signal (left) and imaginary part of FFT of that signal (solid

line). Fourier coefficients of full signal and half signal (shown with stars) differ

significantly.

The same Riemann theta function is then processed by Discrete Wavelet Trans-
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form (DWT) with db4 wavelet family as the basis of choice. In Figure 2.3 the author

shows the coefficients of the scaling and wavelet parts for the full set of samples and

for the half of it. As follows from the graphs, the wavelet coefficients of the subsig-

nal coincide perfectly with those of the full signal in the corresponding places. The

same will be true for any wavelet family with compact support.

Figure 2.3: Scaling (left) and wavelet (right) coefficients of same signal.

Finally, consider two Riemann theta functions generated with parameters

λ, ε, δ±, A such that u(X,T ) = θ+(X,T ;A,λ,ε,δ+)
θ−(X,T ;A,λ,ε,δ−)

Ae2iT (as in (1.10)) and suppose one is

to recover the parameters by means of solving (2.8). Let u1 be the set of the 256

values sampled uniformly on [−0.5, 0.5] and u2 be the set of the first 128 samples

of u1. The ratio of the Fourier coefficients of the Riemann theta functions for both

is shown on the Figure 2.4, left. The same ratio for scaling function coefficients is

shown on the right.

In practice, this means that the method could be applied to any known part
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Figure 2.4: Fourier series (left) and scaling (right) coefficients of u(X,T ).

of the solution and the recovered parameters would be identical to those recovered

from the complete periodic solution. Let M be the matrix of constant coefficients

of the size N ×N as in (2.8) and T± - corresponding vectors such that MT− = T+.

Let K be an arbitrary integer such that K < N . Then for the matrix Ms of the

size K ×K consisting of the first K rows and columns of M and for T±s consisting

of the first K elements of T± it is true that MsT
−
s = T+

s . This conclusion follows

from the fact that for any functions f(x) and fs(x) such that f(x) ≡ fs(x) on the

interval [a, b]

fjk =

∫
supp(ψjk(x))

f(x)ψjk(x)dx =

∫
supp(ψjk(x))

fs(x)ψjk(x)dx = fsjk

as long as supp(ψjk(x)) ⊂ [a, b]. Due to this property, any amount of samples ob-

served in the experiment could be processed using the system (2.8). Added samples

could increase the precision of the outcome (as discussed in Chapter 3) but it is not

28



necessary to provide the whole spatial period of the solution u(x, T ) for the method

to work and adding samples will not require reevaluation of the existing values of

M . Methods based on Fourier Transform, on the other hand, require the input to

be periodic (i.e., the whole spatial period of the solution has to be known and sam-

pled). Such a condition is hard or impossible to satisfy dealing with experimental

data from the natural water bodies.

The only limitation in terms of the size of the matrix M comes from the

way wavelet coefficients are evaluated. Suppose that suppφ, suppψ ⊆ [0, L] (father

and mother wavelets correspondingly). Then, consider an arbitrary function f ∈

L2[0, X] and its respective decomposition on this interval. The wavelet support at

j-th level is given by

suppψj,k = {x : 0 ≤ 2jx− k ≤ L} =

{
x :

k

2j
≤ x ≤ L+ k

2j

}

A coefficient fjk = 〈f, φj,k〉 influences the wavelet decomposition of the function f

on the interval [0, X] if and only if [0, X] ∩ int(suppφj,k) 6= ∅ (same is true for ψ).

Therefore, with any choice of the boundary conditions, the number of the wavelet

coefficients affected by the values close to the boundary point X is at most L (or

L−1, depending on whether X has the form 2J−1 or is an arbitrary real number). In

this manner, whichever boundary condition (extension type) for the discrete wavelet

transform one chooses, one has a fixed number of wavelet coefficients affiliated with

this boundary at every decomposition level. They are easy to identify and can be

explicitly excluded from the optimization routine at the variational stage of the

procedure.
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If the Discrete Wavelet Transform is performed with periodic boundary con-

ditions (which are chosen just for convenience and have no relation to the actual

period of the considered function, see more in reference [24]) and the wavelet and

scaling filters having length at most L + 1, one can ignore the modes (j, k) with

k ≤ dL+1
2
e and k ≥ 2jA− dL+1

2
e.

In the case when the wavelets from the chosen family have both compact sup-

port and finite generating filters (for example, any of the Daubechies wavelets),

the scaling function coefficient u−1k could alternatively be evaluated as the con-

volution of the generating filter g and the sample vector UN (the wavelet func-

tion coefficients could be evaluated using h, see (2.5)). Suppose the values of

the solution u(x, T ) are known on the interval [a, b] and are sampled uniformly

(for more information on sampling of the continuous signal see [40]), so we have

UN = [u(a, T ), u(a + b−a
N
, T ) . . . , u(b, T )] = [UN

0 , U
N
1 , . . . , U

N
N ]. Denote UN

−1 =

u(u(a − b−a
N
, T )) and, in general, UN

k = u(u(a + k b−a
N
, T )) for all k ∈ Z. Here it

is not assumed that the function is periodic on [a, b] and therefore, one does not

have any information about UN
k for k < 0 and k > N . Then, the decomposition

coefficient u−1k is given by

u−1k =
∑
j

gjU
N
k+j

and the filter indexing is usually centered at 0, i.e. k = −dL
2
e+ 1, . . . , dL

2
e. Let the

L be the length of the filter (which depends on the wavelet family chosen above).

Then for all N − dL
2
e < k ≤ N coefficients u−1k will contain the unknown values

UN
j , j > N and therefore must be discarded. Recall that the elements of matrix M
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are defined as Mjk =
∑
m,n

uk(T )
∫
ψk(x)ψmn(x)ψj(x)dx. Therefore one has to ignore

the columns corresponding to boundary coefficients (following the linear reindexing

(2.9)). The corresponding elements from vectors T± in (2.8) have to be ignored

as well and that is achieved by also ignoring rows. In addition to that, first dL
2
e

coefficients will have to be removed as well.

Figure 2.5: Example of wavelet decomposition with affected coefficients shown.

In Figure 2.5, the author illustrates the location of the boundary-affected co-

efficients for the case with the amount of samples N = 64 for ’db2’ wavelet family

(so the length of the support L = 4).

2.5 Two-dimensional formulation

It is also possible to reformulate equations (2.8) defining the matrix M in terms

of two-dimensional wavelets while preserving the structure and properties described

above.

An orthonormal wavelet basis in L2(R2) is constructed by using products of
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one-dimensional scaling functions φk and wavelets ψk as follows:

φ(x, y) = φ(x)φ(y)

ψ1(x, y) = φ(x)ψ(y)

ψ2(x, y) = ψ(x)φ(y)

ψ3(x, y) = ψ(x)ψ(y)

The shifts and dilations are then defined as:

ψkj,n = 2jψk(2jx− n1, 2
jy − n2)

Here, n = [n1, n2] is a vector from R2 (for more details see ([24], Theorem 7.25)).

In practical applications, the coefficients corresponding to φ(x, y) are called approx-

imation coefficients (and the matrix of those coefficients is usually defined as A),

while the coefficients corresponding to ψ1(x, y), ψ2(x, y), ψ3(x, y) are called hori-

zontal, vertical, and diagonal detail coefficients (and their matrices are denoted H,

V, D). The triplets of two-dimensional wavelets (with shifts given as vectors) could

then be evaluated as follows:

∫ ∫
ψ1
jk(x, y)ψ2(x, y)mnψ

3
uv(x, y)dxdy =

=

∫ ∫
φjk1(x)ψjk2(y)ψmn1(x)φmn2(y)ψuv1(x)ψuv2(y)dxdy =

=

∫
φjk1(x)ψmn1(x)ψuv1(x)

(∫
ψjk2(y)φmn2(y)ψuv2(y)dy

)
dx =

= CK2

∫
φjk1(x)ψmn1(x)ψuv1(x)dx = CK1CK2 (2.10)
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Here K1 = [j, k1,m, n1, u, v1] and K2 = [j, k2,m, n2, u, v2] are multi-indices

and CKj is the value of the one-dimensional triplet. The triplets for the remaining

combinations of ψkj,n are defined in the same way.

Wavelet decompositions of the solution and the corresponding theta functions

on the rectangle x ∈ [a, b], T ∈ [c, d] become

u(x, T ) =
∑
j

∑
n∈R2

ujnψ
k
jn(x, T ),

θ+(x, T ) =
∑
j

∑
n∈R2

θ+jnψ
k
jn(x, T ),

θ−(x, T ) =
∑
j

∑
n∈R2

θ−jnψ
k
jn(x, T ),

for k = 1, 2, 3. Here, the decomposition coefficients no longer depend on T and

become constants. Finally, the system (2.8) becomes:

∑
j,m∈Z

∑
k,n∈R2

ujkθ
−
mn

∫
ψ1
jk(x, y)ψ1

mn(x, y)ψ1
−1 [0,0](x, y)dxdy = θ+−1 [0,0],

. . .∑
j,m∈Z

∑
k,n∈R2

ujkθ
−
mn

∫
ψ1
jk(x, y)ψ1

mn(x, y)ψ1
−1 [L−1,L−1]

(x, y)dxdy = θ+−1 [L−1,L−1]
,

∑
j,m∈Z

∑
k,n∈R2

ujkθ
−
mn

∫
ψ1
jk(x, y)ψ1

mn(x, y)ψ2
0 [0,0](x, y)dxdy = θ+0 [0,0],∑

j,m∈Z

∑
k,n∈R2

ujkθ
−
mn

∫
ψ1
jk(x, y)ψ1

mn(x, y)ψ2
0 [0,1](x, y)dxdy = θ+0 [0,1],

. . .∑
j,m∈Z

∑
k,n∈R2

ujkθ
−
mn

∫
ψ3
jk(x, y)ψ3

mn(x, y)ψ3
K[LK ,LK ](x, y)dxdy = θ+K [LK ,LK ].

(2.11)

with two-dimensional triplets evaluated by using (2.10).

The two-dimensional approach allows one to incorporate all of the available

data into the system of equations MΘ− = Θ+ instead of restricting the model to
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the single moment of time T . Also, in the case where the denoising of the input

signal is desired before processing the information, two-dimensional denoising could

be performed in a more accurate way, retaining the key information. However, it

also means that the boundaries are expanded (now being intervals instead of points,

as in one-dimensional case). For the case when one is dealing with only a part of a

period, it may increase the amount of boundary artifacts and will require removal

of coefficients (and corresponding equations) along boundaries in both dimensions

similar to what was described in section 2.4.

2.6 Theta function wavelet decomposition and error estimates

Finally, a few estimates are provided to show the feasibility of the proposed method.

Lemma 2.6.1 The wavelet coefficients of a complex-valued exponential function

decay at least exponentially fast.

Proof. Assuming ψ(t) ∈ L1(R)

∫ ∞
−∞

eikt2j/2ψ(2jt− d)dt = 2−j/2
∫ ∞
−∞

eik
d

2j ψ̂(τ)dτ = 2−j/2eik
d

2j ψ̂(− k

2π2j
)

Since any wavelet has a zero mean, ψ̂(0) =
∫∞
−∞ ψ(t)dt = 0. If ψ̂ is continuous,

it means that ψ̂(− k
2π2j

)→ 0 as j →∞. Let f(t) = eikt. Then

fjd =

∫ ∞
−∞

eikt2j/2ψ(2jt− d)dt = 2−j/2eik
d

2j ψ̂(− k

2π2j
)

Here, |eik
d

2j | = 1, ψ̂(− k
2π2j

)→ 0, so fjd < 2
−j
2 .
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If {0} /∈ suppψ̂, then there exists δ > 0 such that suppψ̂ ∩ [−δ, δ] = ∅.

Therefore, for any k ∈ R there exists j0 ∈ N such that for all j ≥ j0 the coefficients

of the wavelet decomposition of eikt at level j are 0:
∫
eikt2j/2ψ(2jt− d)dt = 0.

Therefore, any function of the form

Υ(t) =
N∑

k=−N

ηke
ikt

has a finite wavelet representation on the real line, which may be rewritten in the

periodic form

Υ(t) =
∑
k

〈Υ, φ0,k〉φ0,k(t) +

j0∑
j=0

∑
k

〈Υ, ψj,k〉ψj,k(t)

where the maximum level of decomposition is determined by N . �

To illustrate this result, let us consider a Riemann theta function generated

with parameters:

A = 1,

σ1,2 = ±1

λ = 1.241543863508741 + 1.611082758156263i

ε = 0.006833503861974

θ = 1.11439302210131

All parameters used for illustrations in this chapter are chosen so that the cor-

responding Riemann theta functions would generate rogue wave solutions when

plugged into (1.10). The graph of the absolute value of the function θ(X,T ) on

the rectangle [−0.1, 0.1] × [−0.1, 0.1] is shown on the Figure 2.6 and the real part

of its two-dimensional single-level wavelet decomposition - on the Figure 2.7 (imag-

inary part of the decomposition has the same order of magnitude of coefficients and
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is omitted here). Since the function in question is not periodic on the chosen rect-

angle the boundary artifacts appear along the boundary and are clearly visible. As

expected, even at the first level the order of the detail coefficients (H,V,D) is several

magnitudes lower than the approximation coefficients.

Figure 2.6: Real part of Riemann theta function on [−0.1, 0.1]× [−0.1, 0.1].
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Figure 2.7: Two-dimensional single-level wavelet decomposition. Left to right, top

down: A, H, V, D coefficients given in the form of N ×N matrices (color represents

the values of the matrix elements). Here N = 128 is the amount of samples in the

input signal. As follows from the legend, most of the wavelet (H, V, D) coefficients

are close to zero.

Mallat in his work (”A wavelet tour of signal processing, The Sparse Way”

theorem 9.4, section 9.1.3) provides the following fact. Assuming that one uses

periodic wavelet basis on a finite interval [0, A] , the wavelet has one vanishing
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moment (due to the periodization construction), so for any f ∈ C∞[0, A]

∞∑
j=0

22αj
∑
k

|〈f, ψj,k〉|2 < +∞

for any 0 < α < 1

(in case of the specially constructed boundary wavelets (Mallat 7.5.3) the number

of vanishing moments is preserved and the constant α must be between 0 and q,

where q is the number of vanishing moments of ψ ).

General estimate of coefficient decay for C∞ functions on an interval with peri-

odic boundary conditions could be found in ”Nonlinear Approximation” by DeVore

[16] and in ”Wavelets and Operators” by Meyer [26].

2.7 Feature analysis

The wavelet triplets method allows one to extract all the parameters from the input

profile, which are necessary to determine whether the solution containing that profile

is stable or not, but the question of obtaining that input still remains. A few research

groups have managed to recreate the rogue wave in the water tank in laboratory

conditions (see reference [12]) and it is currently too risky to attempt observing and

sampling a rogue wave in the open sea. The recent progress in satellite imaging and

using unmanned aerial vehicles (UAV) for observation purposes might change that,

however, for now most of the studies remain theoretical.

To deal with the lack of experimental data, the method can also be applied

in the opposite way. Instead of trying to approximate a given known part of the

solution, it is possible to start with an arbitrary profile and attempt to find a solution
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that contains a shape resembling it to a given degree of tolerance. The tolerance in

that case could be applied either uniformly to all decomposition coefficients, or in

a weighted fashion. In the case when variational methods are used for finding the

solutions, one may achieve different levels of matching by varying the penalty along

different scales. The described situation is illustrated by Figure 2.8

Figure 2.8: Effect of noise at different decomposition levels.

Since the nonlinear Schrödinger equation solutions in general and, particularly,

rogue waves usually have a very distinctive shape, such feature analysis makes it

possible to search for specific solutions without having any information beforehand.

Some results obtained by using this approach are further discussed in Chapter 4.
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Chapter 3: Algorithm for wavelet triplets evaluation

In this chapter the author discusses a detailed process of evaluating wavelet triplets;

that is, integrals of the products of three arbitrary wavelets belonging to the same

family.

3.1 Wavelet basis notation

To consider signals on a finite periodic domain (the solutions described in Chapter

2), say, [0, 1], one can use periodization of a wavelet basis. Namely, one can apply

the operation of the periodization to the wavelet basis function. In this case, each

j-th level of decomposition contains exactly twice as many wavelet modes as the

(j − 1)-st level. In other words, periodic boundary conditions provide that the next

finer level of decomposition contains twice as many coefficients as the one preceding

it. The number of approximation coefficients (corresponding to function φ(x)) is

equal to the number of detail coefficients (corresponding to function ψ(x)) at the

coarsest, zeroth level. It will be explicitly stated later in the text where one can use

the periodized wavelet basis (wavelet transform).

Consider an orthonormal wavelet ψ that has a corresponding scaling func-

tion φ. Denote φj,k = 2j/2φ(2jx − k), ψj,k = 2j/2ψ(2jx − k). Then {φ0,k}k∈Z ∪
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{ψj,k}j=0,1,...,k∈Z is an orthonormal basis in L2(R), so for any f ∈ L2(R)

f(x) =
∑
k∈Z

a0,kφ0,k(x) +
∞∑
j=0

∑
k∈Z

cj,kψj,k(x).

Let the scaling relations that guarantee the multiscale structure of the wavelet

decomposition and the corresponding multiresolution analysis (MRA) be as follows:

φ(x) =
∑
k

gkφ1,k(x)

ψ(x) =
∑
k

hkφ1,k(x)

A multiresolution analysis of the Lebesgue space L2(R) consists of a sequence

of nested subspaces

. . . V0 ⊂ V1 ⊂ V2 . . . ⊂ L2(R)

spanned by the dilations and translations of the scaling functions.

Consider the basis

B = {φ0,0, . . . , φ0,A−1, ψ0,0, . . . , ψ0,A−1, ψ1,0, . . . , ψ1,2A−1, . . . , ψJ,0, . . . , ψ0,2JA−1}

spanning the same subspace VJ+1 as the basis B0 = {φJ,0, . . . , φJ,2J+1A−1}. Then, the

discrete wavelet transform of depth J for a signal fsig = [f0, . . . , fN−1], N = A2J+1

implements the change of basis from B0 to B, namely, one can identify the signal

fsig with the function f(x):

f(x) =
N−1∑
k=0

fkφJ+1,k(x) =
A−1∑
k=0

a0,kφ0,k(x) +
J∑
j=0

2jA−1∑
k=0

cj,kψj,k(x).

This is a typical discrete representation/interpretation of a function in the context of

the discrete wavelet transform (see reference [24], Section 7.3.1). Since {φj,0}∞j=0 is a
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delta sequence, the coefficients/discrete values fk represent local weighted averages

of the function f(x), and fk = aJ+1,k = 〈f, φJ+1,k〉 → f(x) as J →∞ and k
2J+1 → x

(almost everywhere with respect to the Lebesgue measure provided f ∈ L2(R)).

In addition, from Theorem 9.6 of reference [24] provides estimates for Lipschitz

regular functions (in some cases it may be more appropriate for signals that were

symmetrically reflected prior to processing).

The following properties of the filters and the scaling function are instrumental

for calculating the triplets:

∑
k∈Z

φ(x− k) = 1 for a.e. x. (3.1)

∫
φ(x)dx = 1 (3.2)

∑
k

gk = 1 (3.3)

it follows from the fact that φ̂(0) = 1 that

∑
k

|gk|2 = 1 (3.4)

(since ‖φ‖L2 = 1, from Parseval identity applied to the orthonormal basis {φ1,k} of

V1 ) ∑
k

gkgk−m = 0 (3.5)

The table of all triplets of the basis functions in B is generated from the table

of triplets of the functions in B0. The latter is found from the system of linear

equations that is described below.
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3.2 Linear system with triplet values as variables

First, let one identify the variables sufficient to define all triplets of the form
∫
φ(x−

n1)φ(x − n2)φ(x − n3)dx, or, in other words, all distinct triplets of this form. In

order to do that, one needs to exclude coinciding integrals as well as to restrict the

translations/indices to the triplets that are non-zero (due to the compact support

of φ). From basic integral properties one can see that∫
φ(x− n1)φ(x− n2)φ(x− n3)dx =

∫
φ(x)φ(x− k2)φ(x− k3)dx, (3.6)

where k2 ≤ k3 are the values of the nonzero differences of ni and their minimum,

sorted in the non-decreasing order. Moreover, if the length of the support of φ is

equal to S ∈ N, ∫
φ(x)φ(x− k2)φ(x− k3)dx = 0

whenever k3 ≥ S. Therefore, for Daubechies wavelets with filter length L and

support length S = L − 1, the number of unique triplets of the basis functions

from V0, that is, the number of pairs (k2, k3) with 0 ≤ k2 ≤ k3 < S = L − 1 is

Nt = (L2 − L)/2. To recover those triple integral values as a vector solving a linear

system one can introduce linear indexing
∫
φ(x)φ(x − k2)φ(x − k3)dx = pi with

i = 1
2

[(L+ 1)(L+ 2) + (k2)(k2 + 1)].

Possible choice of indices:

0 ≤ k2 ≤ k3, 0 ≤ k3 ≤ S − 1. (3.7)

The system whose solution is the vector of values that has been described

above is derived from the equalities following immediately from the scaling relation
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φ(x) =
∑L−1

k=0 gkφ1,k(x):

∫
φ(x)φ(x− k2)φ(x− k3)dx =

=

∫ L−1∑
k=0

gkφ1,k(x)
L−1∑
m=0

gmφ1,m(x− k2)
L−1∑
l=0

glφ1,l(x− k3) =

after changing the variables 2x 7→ x

=
√

2
L−1∑
k=0

L−1∑
m=0

L−1∑
l=0

gkgmgl

∫
φ(x− k)φ(x− 2m− k2)φ(x− 2l − k3)dx (3.8)

rewritten in terms of the respective variables pi.

Notice that the system (3.8) has the form ~p =
√

2B~p. Here the matrix I−
√

2B

cannot have full rank as that would mean that only zero solution to this homogeneous

system exists, which would imply that all triplets are zeros, which is false. However,

rank(I −
√

2B) = Nt− 1 and rankB = Nt. Some explanations are provided below.

Lemma 3.2.1 rankB = Nt

Proof. One can represent the matrix B as a product of two matrices: B = H ·R>.

The first matrix in that product, H is the matrix of the redundant version of the

system with variables including all triplets appearing on the right-hand side of (3.8),

therefore, including all triplets of the form
∫
φ(x−m1)φ(x−m2)φ(x−m3)dx with

0 ≤ m1 ≤ L− 1 (L is the length of the filter), 0 ≤ m2 ≤ 3L− 3, 0 ≤ m3 ≤ 3L− 3

(thus the row length of H is L(3L− 2)2). Allowing the indices k2, k3 to range over

the set corresponding to non-redundant triplet variable choice (3.7) one can get Nt

rows each of which is a circular shift of the first row. The linear indexing formula

for the redundant triplet variables (and the corresponding columns of matrix H) is
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r = (3L − 2)2m1 + (3L − 2)m2 + m3. Notice that in this set-up the rows of the

matrix contain either zeros or entries of the form gkgmgl corresponding to the triplets∫
φ(x− k)φ(x−m− 2k2)φ(x− l− 2k3)dx. Consider two matrix rows corresponding

to the ’linear system form’ of the right-hand side of (3.8) - suppose they arise

from expansions for
∫
φ(x)φ(x − k2)φ(x − k3)dx and

∫
φ(x)φ(x − k̃2)φ(x − k̃3)dx.

Then, the corresponding rows consist of the values gkgmgl found at the positions

r = (3L− 2)2k + (3L− 2)(m+ 2k2) + (l+ 2k3) and r̃ = (3L− 2)2k + (3L− 2)(m+

2k̃2)+(l+2k̃3), 0 ≤ k,m, l ≤ L−1 and zeros everywhere else. The reindexing formula

(2.9) indicates that in the case whenever the vectors representing the described rows

have intersecting supports their dot product can be written as
∑

k,m gkgm
∑
glgl+s,

s ∈ Z (s 6= 0 in case of the distinct rows), which is equal to 0 due to the properties

of the scaling filter g. Thus, all rows of matrix H are orthogonal.

The second matrix in the product is the transpose of the matrix R that can be

effectively described as a matrix specifying and facilitating the summing up of all

the terms that correspond to the same triplet variable as explained by (3.6): every

i−th row of this matrix contains entries equal to 1 at the positions corresponding to

the products equal to the i−th variable from the list in (3.7) and zeros everywhere

else. Thus, it consists of Nt rows, each row containing at least one entry equal to 1

(corresponding to the first appearance of the triplet
∫
φ(x− k)φ(x−m− 2k2)φ(x−

l − 2k3)dx, 0 ≤ k2 ≤ k3 in the variable list) at the position where entries of every

other row are equal to 0. �

A unique linear combination of the rows of B with coefficients ~p produces

the identity ~p =
√

2B~p. The existence of such linear combination follows from the

45



properties (3.1) and (3.2) leading to the identity∫
φ(x)

(∑
m

φ(x−m)

)2

dx = 1.

Remark. An easy numerical justification of rankB = Nt − 1 is the fact that

adding the equation ”[1 0 0 0 ..0] · ~p =
∫
φ3(x)dx, where the right-hand side integral

is a numerically computed value makes the system full rank.

The equation that completes the above system to full rank can be obtained

from property (3.1). Namely, one can choose to apply this identity as follows

1 =

∫
φ2(x)dx =

∫
φ2(x)

∑
k∈Z

φ(x− k)dx

Here the summation is restricted to indices where the respective function supports

intersect, then the appropriate reindexing is used and rewriting in terms of the

chosen variables pi similarly generated equations

0 =

∫
φ(x)φ(x−m)dx =

∫
φ(x)φ(x−m)

∑
k∈Z

φ(x− k)dx

Put together∫
φ(x)φ(x−m)dx =

∫
φ(x)φ(x−m)

∑
k∈Z

φ(x− k)dx = δ0,m (3.9)

for m 6= 0 leads to the desired conclusion. Thus, the following theorem has

been proved.

Theorem 3.2.1 All triplets of the form
∫
φ(x − n1)φ(x − n2)φ(x − n3)dx can be

found exactly by solving a full rank system of linear equations, with the coefficients
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generated only from the scaling filter. The wavelet or the scaling function does not

have to have a closed form, as long as the system one considers is an orthonormal

basis with finite wavelet and scaling filters.

3.3 Analytic evaluation of triplet values

Finding all triplets in the basis B using the values of triplets of {φ(x−k)} (pi) could

be performed using the results from theorem 3.2.

Notice that triplets of the wavelet functions from the basis B0 coincide with

the values pi up to a multiple. Indeed, one may first use the change of variables∫
φJ,k1(x)φJ,k2(x)φJ,k3(x)dx = 2−J/2

∫
φ0,k1(x)φ0,k2(x)φ0,k3(x)dx (3.10)

and then apply (3.6) and identify the appropriate triplet value, thus expressing the

needed triplet in the form 2−J/2pi.

Functions in the basis B can be expressed as linear combinations of the func-

tions from B0 via the scaling relations:

φj−1,m(x) =
∑
k

gkφj,k+2m(x)

ψj−1,m(x) =
∑
k

hkφj,k+2m(x)

Therefore, the triplets of functions from B can be obtained from the respective

triplets of the functions from B0 - by applying the above relations iteratively, until

the right-hand side contains only products of the filter coefficients and functions

φJ,k.
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Numerically this can be implemented via the following procedure. Let bi de-

note the i− th function in the basis B, then its coefficients of decomposition in the

basis B0 can be obtained by the inverse discrete wavelet transform:

bi(x) =
N∑
k=0

αikφJ,k(x), where ~αi = DWT−1~ei,

and ~ei denotes the i-th vector in the canonical basis in RN .

Then

∫
bi(x)bm(x)br(x) =

∫ ∑
k

αikφJ,k(x)
∑
n

αmn φJ,n(x)
∑
p

αrpφJ,p(x)dx =

=
∑
k,n,p

αikα
m
n α

r
p

∫
φJ,k(x)φJ,n(x)φJ,p(x)dx = 2−J/2

∑
k,n,p

αikα
m
n α

r
p

∫
φ0,k(x)φ0,n(x)φ0,p(x)dx

Alternatively, one may use a cascade-like algorithm. Starting from the vector

of triplets of elements from VJ (as in (3.10)) one can apply the discrete wavelet

transform and compute the triplets of the form

∫
φJ,k1(x)φJ,k2(x)φJ−1,m3(x)dx and

∫
φJ,k1(x)φJ,k2(x)ψJ−1,m3(x)dx

Applying the scaling and wavelet filters again one can further obtain∫
φJ,k1(x)φJ,k2(x)φJ−2,m3(x)dx,

∫
φJ,k1(x)φJ,k2(x)ψJ−2,m3(x)dx, and so on until one

obtains all triplets of the form
∫
φJ,k1(x)φJ,k2(x)bi(x)dx for all functions bi ∈ B. In

the same inductive/cascade manner one can obtain products of the form∫
φJ,k1(x)bm(x)(x)bi(x)dx and then all products

∫
bp(x)bm(x)(x)bi(x)dx.

To verify the results of the method, a series of evaluations has been performed

and the aggregated results are shown on Figure 3.1. For numerical computations,

the triplets of scaling functions φj(x) (previously referred to ~p) were indexed as

48



following:

K = [{0, 0, 0}, . . . , {0, 0, L}, {0, 1, 1}, . . . , {0, 1, L}, . . . , {0, L, L− 1}, {0, L, L}]

and for Kj = {0, u, v} the triplet CKj =
∫
φ(x)φu(x)φv(x)dx. For db4 family of

wavelets L = 7 and there was a total of 36 integrals compared. Integrals with shifts

equal L are zero by definition since the intersection of supports of the scaling func-

tions is a single point in that case. Such integrals are only included in comparison

for the sake of completeness. For numerical computations, first the scaling function

values were approximated with a given amount of iterations, then the integral of

the product was found by using the trapezoidal rule.
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Figure 3.1: Difference between triplets evaluated numerically (with wavelet ap-

proximations generated with different amount of iterations) and analytically. Left

to right, top down: 1, 3, 6 and 9 iterations; x-axis represents triplet indices in the

vector of unique triplet values.

The graphs in Figure 3.1 demonstrate that the analytically evaluated results

are getting closer to the numerically evaluated ones as the numerical approximation

of the wavelet functions gets closer to their actual values.
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Chapter 4: Numerical results and discussion

4.1 Evaluation settings

In this chapter, the application of the wavelet triplets method to rogue wave detec-

tion via both interpolating and extrapolating approaches is discussed. For the sake

of brevity and unless stated otherwise the solutions discussed in this chapter are con-

sidered to be solutions of nonlinear Schrödinger equation in the non-dimensionalized

form

iut + uxx + 2|u|2u = 0,

u(0, t) = u(L, t). (4.1)

Shown on the graphs are the modulational parts of the solutions, that is, A(x, t)

such that u(x, t) = A(x, t)ei(kx+ωt). The x-axis represents the amount of samples

used to represent the solution in question.

First, the author discusses the results of determining the analytical represen-

tation of the solution by applying the wavelet triplets method to the given amount

of wave samples (obtained through either simulation or observation).

The starting point for the iterative part of the algorithm consists of four pa-

rameters: λR, λI , εR and εI (R and I standing for real and imaginary parts of
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complex parameters λ and ε). While the fifth parameter, A is also necessary as

discussed in Chapter 2, it is possible to rescale the model so that A = 1 without loss

of generality. Since it is assumed that no information is available about the wave in

question, the starting points are to be chosen randomly following those observations:

1. The eigenvalue map (corresponding to the parameter λ = λR+iλI) is symmet-

ric with respect to the real and imaginary axes ([11]), therefore, it is sufficient

to consider the randomized starting points from first quadrant only.

2. Most of the eigenvalues corresponding to solutions of the nonlinear Schrödinger

equation (4.1) are located near real and complex axes ([11]), therefore, it is

sufficient to pick starting points relatively close to the axes.

3. Solutions with λI � A and λR � A tend to be stable and therefore are of no

interest to this work ([31]).

The number of terms in the finite sum representing the Riemann theta function

as well as the error estimates for various cases (like summation over the hypersphere

or hypercube) are given in reference ([31], Chapter 22). The details are omitted here.

Here it is assumed that the finite summation is chosen with respect to the given

constraints and each sum is taken over at most N terms.

To determine the efficiency of the method, the same randomized starting points

were used in an attempt to solve the original non-transformed nonlinear system.

Theta functions were approximated by using the same amount of terms, however,

instead of performing the wavelet transform and forming a matrix of coefficients as
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described in Chapter 2, the direct relation

u(X,T ) =
θ+(X,T ;A, λ, ε, δ+)

θ−(X,T ;A, λ, ε, δ−)
Ae2iT

is used, where T is fixed and X = [x1, x2, . . . , xN ] are the sampled points at which

the solution is measured. The attempt is then made to find such set of parameters

λR, λI , εR, and εI that would minimize (with a given tolerance) the difference

u(X,T ) − θ+(X,T ;A,λR+iλI ,εR+iεI ,δ
+)

θ−(X,T ;A,λR+iλI ,εR+iεI ,δ−)
Ae2iT in L1(X) sense. The reason for choosing

the L1(X) norm over L2(X), even though the functions are supposed to be square

integrable, is to reduce floating point errors, as many terms of the approximated

theta functions (as well as the observed wave elevations) could be small in absolute

value.

In both cases, the numerical realization was carried out with Matlab’s fsolve()

function by using the Levenberg-Marquardt Method ([22], [25]).

4.2 Method Efficiency

Depending on the tolerance set in the variational part of the method it is possible

that more than one matching solution will be found. In Figure 4.1 this situation is

illustrated. The initial curve was generated as a part of the solution with parameters

A = 1,

σ1,2 = ±1

λ = 1.241543863508741 + 1.611082758156263i

ε = 0.003011678322231 + 0.006134049943962i
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at time T = 0 on the interval [−0.01, 0.01] with 64 samples. The solution in question

is nearly polynomial governed around zero and therefore has a relatively generic

shape that could be found in other solutions as well. Two different sets of parameters

from the batch of the results found by the algorithm are shown in Figure 4.1:

A = 1,

σ1,2 = ±1

λ = 1.241560403834918 + 1.611084940756430i

ε = 0.003011459828859 + 0.006133912883988i

for the first of the two approximated solutions and

A = 1,

σ1,2 = ±1

λ = −0.381719837792799 + 1.103584312222403i

ε = 0.486834793454241− 0.594645237755848i

for the second one. Here, the parameter ε is related to the parameter ε from Chapter

2 as ε = ε exp(iθ). Comparing the graphs in Figure 4.1, one can see that one of

the solutions matches the producing parameters almost exactly, while the other one

simply resembles the curve. The required degree of resemblance could be given in

absolute terms.
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Figure 4.1: Reconstructed shapes

The obtained solutions are close at T = 0 as required by the set tolerance.

However, it is possible that at other times the difference may grow, since even small

changes in parameters λ, ε, and δ can lead to significant changes in corresponding

solutions.
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Figure 4.2: One reconstructed solution.
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Figure 4.3: Another reconstructed solution, close to the first one at T = 0 in L2

sense.

Furthermore, since the experimentally obtained data will inevitably contain a

certain amount of noise, the proposed algorithm was tested against the point-based

one (i.e., where the system, nonlinear with respect to the parameters λ, ε and δ, was

formed by directly plugging in the X and T values into the nonlinear Schrödinger

equation). The exact solution was generated with a preselected set of parameters.

The random noise was then generated and added to the solution. The strength of

noise was measured in decibels using the following formula.

SNR =
Psignal
Pnoise

=

(
Asignal
Anoise

)2
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SNRdb = 10 log10(SNR)

Here, P is the power of a signal, A is root mean square (RMS) amplitude. Finally,

200 random starting points were chosen for which curve fitting was performed using

both methods in attempt to find the parameters λ, ε and δ. The results are shown

in the Table 4.1.

Table 4.1: Comparison of the results of the wavelet triplets method and the pointwise

algorithm: the number of random starting points that converged with tolerance 0.1

in absolute value

Noise, db # found, wvt # found, pt

90 169 168

70 155 93

60 128 0

The two methods (wavelet- and point-based) are found to have approximately

the same initial start as long as no noise is added (i.e., the input data are numerically

exact and obtained via evaluation of the solution with a given set of parameters).

However, as follows from the table, adding even small amounts of noise changes the

convergence rate. The number of starting points for which the algorithm converged

to the correct parameters dwindled quickly for the point-based algorithm, while

the wavelet-based algorithm proved to be robust enough to different levels of noise.

In Figure 4.4 a particular case of noised input data (70db) reconstructed by the

algorithm is shown.
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Figure 4.4: Original signal (a), noisy input (b) and reconstructed solution (c).
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4.3 Feature Analysis

An alternative approach to studying rogue waves is based on studying general shapes

instead of profiles obtained via experimental observation or numerical simulation.

To do this, one starts by selecting a shape of interest and then running it through

the algorithm in an attempt to find a set of parameters that would generate a

solution containing such a shape. In Figure 4.5, the author shows the ”initial guess”

profile given as f(x) = [−(10x+ 0.01)2 + 0.25] + [−(x+ 0.02)3 + 0.25] i and the

profiles generated by using two different sets of parameters that were found by the

algorithm. The test polynomial was chosen arbitrary; the reason for choosing the

negative sign for leading coefficient and for shifting up both real and imaginary parts

up was to make it resemble the crest of the wave. In Figure 4.6, the corresponding

reconstructed solutions are given.

A = 1,

σ1,2 = ±1

λ = 0.336833714071583− 1.195070474885872i

ε = 0.744576484196063− 0.328498329013848i
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Figure 4.5: Initial guess (red) and the approximated solution matching the shape

at T=0 (blue).
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Figure 4.6: Matching solution, space-time graph.
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Chapter 5: Concluding remarks

The author has developed a wavelet based approach for analysis of extreme waves,

which are relevant to a number of areas, including ocean waves, fiber optics, and

micro-wave applications. This developed method allows one to robustly extract

the parameters from the input data for localized events, even in presence of low to

moderate noise. In the case when the noise is so severe that the algorithm cannot be

used to process the data, various wavelet-based techniques are readily available to

denoise the input before processing it [9]. In addition, the implemented algorithm

does not require any specific hardware and works fast on desktop computers (i.e.,

less than a minute to find the parameters and reconstruct the data from the vector of

128 or 256 samples with 2 to 4 level depth of wavelet decomposition), as compared to

the previously available theoretical results that were too computationally heavy to

implement without relying on High Performance Computing (in particular because

of the necessity to store and evaluate all the sample points of the period).

One obvious direction for improvements lies in the model itself. While the

variational method used for solving the system of wavelet coefficients works as is,

the performance in terms of both precision and computing time could be improved.

It could be done by adding more equations to reflect the fact that numerator and
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denominator are both Riemann theta functions with most of the parameters (except

for δ±) being identical. The only drawback here is the fact that such an improvement

is only possible in 1 + 1 dimensional case where the corresponding Riemann theta

functions representation exists. Alternatively, the numerical method of choice could

be improved by considering the manifold of all model predictions in data space (as

proposed in reference [42]).

Another future venue for the work is to pursue a deeper study of the properties

of the matrix M (introduced in (2.8)) in order to take advantage of them for solving

system (2.8). With minor assumptions regarding the solution in question it could

be shown that this matrix is diagonally dominated, which allows one to use results

from compressed sensing for in depth studies of both matrix and the vectors of the

wavelet coefficients of Riemann theta functions T±.

Finally, extending the method to 2 + 1 case, constructing a library of the

most frequent shapes (with respect to their wavelet coefficients) and building a

self-learning neural network on top of it may create an automated system for con-

stantly monitoring the sea states with the goal of issuing the rogue wave warnings

to seafaring vessels, which could be beneficial for safety at sea.

The studies conducted here on localized solutions in space and time may also

be useful for analyses of nonlinear waves such as Peakons (see references [35], [15] )

that are solutions of certain classes of nonlinear partial differential equations.
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