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The ability to localize an RF emitter has emerged in both commercial and 

military technology, and is an important capability in modern cognitive radios to 

achieve spectral awareness. Of importance, is the accuracy of the geolocation of the 

RF emitter. In this thesis, we address the blind localization problem given a network 

of software-defined radio receivers that monitor the spectrum to determine the 

presence of an unknown emitter. We discuss the underlying challenges  and various 

approaches to the geolocation problem that can be utilized. In particular, two 

algorithms that are used extensively in literature are investigated: time-difference of 

arrival, and power-difference of arrival. In the first part of the thesis, the algorithms 

are presented, and the error performance is characterized analytically, and then 

conducted through simulation. A more robust method which implements the fusion of 

both algorithms for an improved estimation. In the second part, we conduct a small-

scale laboratory emulation of the geolocation algorithms on a network of radios to 



  

contrast the simulation results of the algorithms from the emulation results. The 

results provided insight to the shortcomings of each algorithm, and potential 

extensions for further accuracy improvement. 
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1.1   Overview 

 The geolocation of RF emitters is an important capability in modern spectrum 

situational awareness. Geolocation systems are seen in radar, where a radio wave is 

transmitted. When the wave hits a target, it is reflected back to the transmitter, where 

its time of return is determined. This is one example of time-of arrival being used as a 

way to track a target and estimate its position. Another example is the Global 

positioning system (GPS), which relies on satellites in space to triangulate the current 

position. One GPS receiver will receive a signal from multiple satellites to estimate 

its precise position. Being able to identify a target emitter has become useful in 

military and law-enforcement applications and even civilian use (automated museum 

guides or GPS). In this thesis research, we first explore the different types of 

localization methods and their applications in Chapter 1 and discuss which 

geolocation methods that are most practical to design a geolocation sensor network in 

an effort to track a target emitter. In Chapter 2, we detail the proposed geolocation 

methods to be used in this paper. In this case, we apply geolocation methods that rely 

on received signal strength indicator (RSSI) differences between sensors in the 

network, also known as Power-difference of arrival (PDOA) and difference between 

time arrival between sensors, or time-difference of arrival (TDOA). After the 

methods are detailed, they are analyzed with their performance both analytically and 

through iterative simulations in software. The PDOA analysis and TDOA conducted 

in Chapter 3. After the individual analysis, their observed performance motivates a 

proposed hybrid method that utilizes both TDOA and PDOA measurements, which is 

also presented in Chapter 4. With the methods laid out, Chapters 5-6 detail a testbed 
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to emulate the geolocation sensor network on software-defined radio (SDR) platforms 

through a channel emulator environment, vs. the logistical and time-consuming 

challenge of an actual field test. Chapter 7 details the actual emulation tests 

performed and details the results, also comparing them to the simulated results of the 

individual algorithms. Chapter 8 details conclusions and future extensions based on 

the results of this research. 

 

1.2   The Geolocation Problem 

 The way to solve the geolocation problem depends entirely on the devices 

available within the geolocation system, and the a priori information available. Two 

main types of target geolocation exist: active and passive geolocation. Active 

geolocation requires the use of nodes configured as both transmitters and receivers. 

One main example of active geolocation is in radar, where the geolocation radio is 

sending out its own pulse, and determining the time of arrival of the reflected pulse. 

Radar applications are readily known; however, not all other positioning systems 

have the ability to transmit pulses to determine the reflected signal, particularly 

involving low-power sensor networks, such as GPS. GPS is an example of passive 

sensing in that the GPS receiver inside a phone will receive a signal from satellites to 

estimate its own position. This research focuses exclusively on the passive 

geolocation problem.  There are three main passive geolocation methods: 

triangulation, trilateration, and multilateration. All of these methods involve one 

common property of the receivers being passive. That is, the receivers do not transmit 

any RF signal in an effort to locate a target.  
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The triangulation technique relies on the method of angles of arrival at the 

receiver from the incoming transmitter [5]. Typically, an array of directional antennas 

is needed to determine the angle of arrival of a signal. Fig. (1.1) shows how knowing 

the angle of arrival, the distance can be calculated as a law-of-sines and cosines 

problem. This method is explored in Angle of arrival (AoA) scenarios. [11] [12]. For 

example, in Fig. (1.1), we do not know a priori information about node 1 want to find 

the distance A and B. we can measure the angle of the received signal at node 3 and 

node 1 transmitted by 1. We then have knowledge of the angles. ∝, 𝛽, and 𝛾. The side 

lengths B and A can be solved for with the law of sines and cosines. This technique 

will not be applied in our research, since it requires the use of directional antennas. 

This research focuses on a more minimalist approach to the hardware requirements, 

so we assume a single omnidirectional receiver antenna on the sensors. 

 
Figure 1.1 - The triangulation technique, used to estimate the position when the general 

direction of the transmitter is known by at least three nodes 

 
 The trilateration technique uses either the RSSI of the transmitter or the time-of-

arrival of (ToA). For ToA, the receiver and transmitter must be synchronized. GPS is 

a good example of this, as the GPS receiver and satellite are well synchronized by 

atomic clocks with good resolution, where the synchronization drift is corrected 
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regularly. In knowing the ToA or RSSI, a distance to a node and any number of other 

nodes with known locations (anchors) can be estimated. From this, the node can 

either locate itself, if its position is not known using the locations of the anchor (GPS 

receiver utilizing satellites as anchors), or a node can use its ToA or RSSI 

measurements with the other anchor nodes measurements to estimate the position of 

an unknown emitter. In 2D space, the distance between a node and its anchor results 

in a circle (in 3D a sphere) [5][13]. A node must exist along the circle, where the 

radius of the circle is equal to the distance between the node and the anchor. When 

there are multiple distance measurements given, such as three or more measurements 

in 2D space, and four or more in 3D space, the circles will intersect, and the desired 

location can be estimated. This method is illustrated in Fig. (1.2). This methodology 

is seen in the PDOA technique, which utilizes the RSSI between sensor node pairs to 

calculate the power-difference between these pairs. This power-difference will be 

shown to geometrically represent the trilateration technique needed to solve the 

geolocation problem. ToA is not explored as the geolocation problem applied in this 

research involves a transmitter that is not assumed to be synchronized with the nodes 

in the sensor network. The trilateration technique consists of a minimum three sensors 

A, B, and C. The anchor node S is at a point (x0, y0). The distance between a particular 

sensor i and S is given in (1.1). By squaring this, the circles in Fig. (1.2) are generated 

and their intersections are determined.  

𝑑/ = $(𝑥/ − 𝑥3)* + (𝑦/ − 𝑦3)*   (1.1) 
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Figure 1.2: The trilateration technique, which the distances between a node and its anchors 

results in overlapping circles with common intersections 
  
The value di can be related to an RSSI using a particular path loss model. The 

distance can also be related to the time-of-arrival, assuming the anchor node and base 

stations are synchronized. Further use of this technique applied too this research is 

outlined in Chapter 2, when we utilize the power-difference between sensor 

measurements. 

 The multilateration technique makes use of multiple receivers that are 

synchronized, with known position. With synchronized receivers, it is possible to 

determine the time-difference of arrival between each pair of anchor nodes. With this, 

the geometry generated by the TDOA measurements become hyperbolae instead of 

circles. Maximum likelihood can be used to solve for the solution to this set of 

equations. This method is explored further in Chapter 2 when we introduce TDOA in 

conjunction with the PDOA trilateration technique in this research. The illustration of 

multilateration is shown in Fig. (1.3). The general method is using a total of N 

receivers, and computing the time-difference between receivers 2 to N and receiver 1 

as follows: 
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𝑐𝑡/8 = $(𝑥/ − 𝑥9)* + (𝑦/ − 𝑦9)* − $(𝑥8 − 𝑥9)* + (𝑦8 − 𝑦9)*  (1.2) 
 
where tij is the time difference between nodes i and j and (x0, y0) is the location of the  

emitter 

 
 

 

 
 

Figure 1.3: The multilateration technique, which the time-difference between nodes is used to 
estimate the position of an emitter 

 
 
For the application in this research, we assume a network of N nodes and an unknown 

emitter located in an arbitrary location as shown in Fig. (1.4) with unknown distances 

between a particular sensor i and the emitter as di. A-priori information is important 

in designing the network. Some known information may be the general direction of 

the transmitter; For example, in a coastal monitoring system in which we track ship 

radar, multilateration based TDOA will have two differing locations, one on one side 

of the network and another on the other side, where it can be assumed that the 

direction of the transmitter is off the coast and not inland. Other a-priori information 

known will be the type of waveform being sent, we know which channel and 

modulation the waveform is operating on. We know the position of each of the nodes 

in the network, as they have embedded GPS within their sensors. In addition, the 
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sensors will also be able to measure RSSI, and each sensor has similar noise power-

spectral density (PSD). The timing between the sensors is also synchronized, which 

will allow for the computation of accurate time differences between nodes. 

 

 
Figure 1.4: An abstraction of a geolocation sensor network. Quantities shown in red are not 

known and must be estimated 
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Chapter 2:  Geolocation Algorithms 
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2.1  Power Difference of Arrival 

In a network scenario where the DSA assets are limited, it is helpful to optimize 

the limited information available to obtain a good estimate. For example, a network 

which only has radios that can detect a received signal’s power level or RSS (received 

signal strength), but require the ability to geolocate the source of the signal will find 

the power difference of arrival (PDOA) algorithm to be applicable.  

 We consider a number of transceivers distributed spatially over some  

geographic area as shown in Fig. (2.1), referred to as the area of operation (AO). The 

measurements gathered from the sensors include (𝑥/, 𝑦/) and received power 𝑃/. 

There exists a fusion node that pulls data from the RF sensors and triangulates the 

estimate position (𝑥<, 𝑦<) of the emitter that transmits at power level 𝑃<.  

 
Figure 2.1: An abstraction of a geolocation sensor network. Quantities shown in red are not 

known and must be estimated 
 

 The path loss model can be modeled as an exponential function of the distance 𝑑/ 

between the target emitter and the receiving sensor, where the received signal power 

is proportional to 𝑑/=>, where 𝛼 is path loss exponent that depends on the RF 
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environment. The parameter 𝛼 ranges between 2 and 4, where 2 represents free-space 

and 4 is for more lossy environments. This exponential model is known as the log-

distance path loss model which is defined in (2.1). The constant 𝐶A is known as the 

normalization constant. This constant accounts for system losses, such as transmitter 

and receiver gains. The constant 𝐶A is also unknown and generally varies in a 

particular RF environment. The path loss exponent and the normalization constant 

can be estimated by the sensors performing an initial test by measuring the received 

and transmitted powers between a known emitter, such as one of the radios, in order 

to accurately estimate these parameters.  

𝑃/ = 𝐶A − 10𝛼 log(𝑑/) + 𝑃<     (2.1) 

Given the metrics and the chosen path-loss model, the power-difference between 

sensors i and j is defined in (2.2).  

𝑃/ − 𝑃8 = 10𝛼 log E
"F
"G
H      (2.2) 

From this result, the power difference of arrival (PDOA) algorithm from [1] is 

described as follows. The equation in (2.2) is then rearranged to obtain the distance 

ratio in (2.3) 

𝑞/8 =
"G
"F
= 10=

JGKJF
LMN       (2.3) 

Since the transmitter of interest is at a point (x, y), the distance of a particular sensor 

to the emitter is given by (2.4) 

𝑑/* = (𝑥 − 𝑥/)* + (𝑦 − 𝑦/)*     (2.4) 

The relation in (4) represents a circle with a center (xi yi). Using (2.3) and (2.4), we 

obtain the ratio of two circle equations as shown in (2.5) 
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(O=OG)PQ(R=RG)P

SO=OFT
P
QSR=RFT

P = 𝑞/8*        (2.5) 

The equation (2.5) is expanded by completing the square to obtain another equation 

of a circle with the center and radius defined in (2.6) and (2.7) where 𝑪/8  is the center 

and 𝑅/8 is the radius. These equations are written in vector form for error analysis 

later in Chapter 3. 

𝑪/8 =
WGF
P 𝒙F=𝒙G
WGF
P =Y

         (2.6) 

𝑅/8 = 𝑞/8
Z𝒙𝒋=𝒙𝒊Z

]WGF
P =Y]

      (2.7) 

The power-difference between N sensors represents a series of circles. This results in 

a maximum of 𝑁(𝑁 − 1) circle intersections. In the event there is no exact 

intersection between a particular pair of circles, the closest midpoint between the two 

circles is determined as an intersection. Once all of the intersections have been 

computed, a proposed grid-density search algorithm is applied as described in [1].  

 For the grid density algorithm, all of the intersection points are used to create an 

area of operation (AO) by using the minimum and maximum x and y values from the 

set of intersection points. That is the geolocation dataspace is denoted by: 𝐿 =

{(𝑥a, 𝑦a)} e = 1…max(# of intersection points). The grid is partitioned into m x n grid 

cells of equal size. From there, the grid with the most intersections is chosen, and all 

intersection points within that grid cell are averaged and the result is the geolocation. 

This algorithm is visualized in Fig. (2.2). In that case, three sensors result in three 

different power difference measurements and three circles. The grid algorithm in [1] 
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is recursive and further divides each grid into 4x4 cells until a specific grid resolution 

is obtained. This is more computationally tedious. A modified less computationally 

complex method involves dividing the grid into equally spaced 4x4 grid cells where 

the cell with the most intersections is applied. In the event of a tie between two or 

more cells, the intersections in the adjacent cells are counted to break the tie. The cell 

with more intersection points in the adjacent cell will win the tie. In the unlikely even 

there is still a tie, the average of all intersections is chosen as the estimated position as 

a crude approximation. 

 

Figure 2.2: A visualization of the intersection grid density method 
 

The grid intersection method allows for ruling out intersections which are outliers, 

that would otherwise affect the accuracy of emitter location estimation if we simply 

find the midpoint of the intersection. As Fig. (1.2) shows, most of the intersection 

points tend to be centered around the true emitter position. This method of 

geolocation is referred to as triangulation, as the power-difference measurements 
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between receivers form a constraint along the set of points in a circle. This circle 

geometry of power-difference measurements is referred to as the circle of Apollonius 

[2].  

 In chapter 3, further analysis is done on the PDOA algorithm to determine the 

error of the estimation when subject to perturbations, such as noise and 

instrumentation errors. 

 

2.2  Time Difference of Arrival 

The TDOA algorithm locates an emitter source using the intersection of 

hyperbolic curves generated by cross-correlating IQ data from sensors. Unlike 

PDOA, which uses RSSI, the TDOA algorithm collects IQ samples from sensors and 

cross-correlates the IQ data for each pair of sensors to determine the time-difference 

between the arrival of the emitter signal at each sensor pair. The technique used in 

this research is an approximation of the maximum likelihood (ML) estimator 

described in [3]. Applications of the TDOA algorithm are beneficial for environments 

with high-noise and high-bandwidth emitters, such as radar.  

        The time-difference between the emitter and two sensors will generate a 

hyperbola and a third sensor will generate another hyperbola. The intersection 

between the hyperbolae is used as the estimated emitter position [3]. Using a network 

architecture similar to the one depicted in Fig. (3.1), the distance between the sensor 

and actual emitter is ri2 = (xi – x)2 + (yi – y)2 = Ki – 2xix – 2yyi + x2 + y2, for all i = 1, 

2, … M, where  
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                            Ki = xi2+ yi2    (2.8) 
 

        If c is the signal propagation speed (assumed to be equal to the speed of light) 

and one of the sensors is selected as a reference sensor (sensor 1) with coordinates 

(x1, y1) and di,1 is the time-difference between sensor i and the reference sensor, then 

 
                  ri,1 = cdi,1 = ri – r1                                       (2.9) 

 
        For the case of three sensors, a closed-form solution exists. With three sensors, x 

and y can be solved in terms of r1 in (2.10) as follows: 

 

   (2.10) 

 
        Inserting this intermediate result into (2.8) at i = 1 gives a quadratic in r1. 

Substitution of the positive root back into (2.10) produces the solution, which is used 

as the emitter estimate. In the event that there is more than one positive root, the 

ambiguity is resolved by restricting the emitter to a specific area of interest, such as a 

coastal monitoring system, where the general direction of the emitter is known. 

 
        For the case of four or more sensors, the system is over-determined as the 

number of measurements is greater than the number of unknowns. In the presence of 

noise, similar to the PDOA case, set of equations will not intersect at the same point. 

Let  be the unknown vector, where . The solution to the  

system involves imposing the known relationship (2.8) to the computed result via 

another LS computation, which is a two-step procedure and is an approximation of 

the true ML estimator for emitter localization. The ML estimate of za is as follows, 

x
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      (2.11) 

 
 
where G, h and are defined as follows. 
 

                 (2.12) 

 
        The expression in (2.11) is the generalized least-squares solution of (2.12). For 

this research, the source is assumed to be far-away so an approximation of (2.11) is 

found and expressed in (2.13), the explanation is described in [3]. 

 
             (2.13) 

 
 The elements of za can be expressed as follows, where e1, e2, and e3 are the 

estimation errors of za 

 
         (2.14) 

 
Subtracting the first two components by x1 and y1 and then squaring the elements 

leads to another set of equations. 

 
          (2.15) 
 

where h’, Ga’ and za’ are defined as follows. 
 

 
 
 
 (2.16) 
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The overall solution and position estimate is obtained from za’ and is defined as 

follows. The correct solution is the solution that lies within the particular area of 

interest. 

 or        (2.17) 
where, 
 

𝑧de ≈ (𝐺de<𝐵e=Y𝐺d<𝑄=Y𝐺d𝐵e=Y𝐺de )=Y(𝐺de<𝐵e=Y𝐺d<𝑄=Y𝐺d𝐵e=Y)ℎe  (2.18) 
 

where, 
 

𝐵e = 𝑑𝑖𝑎𝑔(𝑥9 − 𝑥Y, 		𝑦9 − 𝑦Y, 𝑟Y9)      (2.19) 
 
For B’, x0 and y0 can be approximated by the values found in (2.13). 
 

 

2.3  Other Techniques in Literature 

We will explore other techniques that use PDOA and TDOA estimates in 

literature, and why they were not used in this research. For PDOA, other techniques 

are outlined in [14] such as Non-linear least-squares and linear least squares method. 

For non-linear least squares, a function Q(x, y) is determined as follows: 

𝑄(𝑥, 𝑦) = ∑ q𝑃rs − 5𝛼 log E
(O=Ou)PQ(R=Ru)P

(O=Ov)PQ(R=Rv)P
Hw
*

rxs   (2.20) 

A grid is defined and each point along the grid is plugged into this function until 

a minimum is determined. This method can be very computationally expensive and 

there is a tradeoff in the resolution between each point to plug into Q(x, y), and there 

may be multiple minimum values, which may lead to ambiguity. 
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The non-linear least squares method can be linearized as follows: Given the equation 

for power-difference between sensor k and l: 

𝑃rs = 5𝛼 log E (O=Ou)
PQ(R=Ru)P

(O=Ov)PQ(R=Rv)P
H , 1 ≤ 𝑘 < 𝑙 ≤ 𝑁   (2.21) 

A constant is defined as follows: 

𝛽rs = 10
Jvu
}N      (2.22) 

Therefore, (2.21) can be rewritten as: 

(𝑥 − 𝑥s)* + (𝑦 − 𝑦s)* = 𝛽rs[(𝑥 − 𝑥r)* + (𝑦 − 𝑦r)*]     (2.23) 

or,  

(1 − 𝛽rs)𝑐 − 2(𝑥s − 𝛽rs𝑥r)𝑥 − 2(𝑦s − 𝛽rs𝑦r)𝑦 = 𝑤rs				1 ≤ 𝑘 < 𝑙 ≤ 𝑁    (2.24) 

 

where 𝑤rs = 𝛽rs𝑟r* − 𝑟Y* and c = (x2+y2) is introduced and is treated as independent 

of x and y and r12 =x12+y12 and rk2=xk2+yk2. Thus x and y can be solved as: 

 

(𝑐, 𝑥, 𝑦)< = (𝐴<𝐴)=Y𝐴<𝑏     (2.25) 

This method wasn’t utilized due to its limited accuracy with a small number of 

sensors. 
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For TDOA, other methods to solve the time-difference equations also exist. One 

common technique is the Taylor-Series method [15]. The equations of time-

difference are linearized and the following equation (2.26) is solved iteratively. 

�∆𝑥∆𝑦� = (𝐺�<𝑄=Y𝐺�)=Y𝐺Y<𝑄=Y𝒉𝒕    (2.26) 

To solve this, we choose an initial guess (x0, y0) and add the result of (2.26) to the 

initial estimate until ∆𝑥 and ∆𝑦 converge. While this algorithm is accurate in even 

with high noise variance, the drawback here is the computational complexity, and the 

dependency on the initial guess. If the initial guess is far away from the actual 

solution, it may take a while to converge. Also, there may be cases where it doesn’t 

even converge.  
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Chapter 3:  Geolocation Error Analysis 
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3.1  Overview and Model Geometry 

In this chapter, we further evaluate the performance of the PDOA and TDOA 

algorithm by using mathematical analysis to determine the constraints on the 

accuracy under particular RF environment conditions. From Chapter 2, the PDOA 

algorithm uses the RSSI of sensors and takes the difference between pairs of sensors, 

where TDOA utilizes difference between the time-of-arrival of a signal at two 

different receivers. 

The power-difference is used to generate Apollonian circles and then determine the 

total number of intersections and perform a grid-search to determine the most likely 

location where the emitter lies. This process is non-linear, and has significant short-

comings regarding accuracy and noise amplification. Environmental effects such as 

multipath and fading break the assumption of an invertible function relating the 

received power to the distance between the emitter and sensor.  

 We consider the network sensor situation shown in Fig. (3.1). A group of sensors 

are used to determine the location of a transmitter of unknown power at an unknown 

location xtarget. Sensor I is located at xi and there exists a point in space xcm which is 

much like the center of mass (average of sensor locations), but this point need not be 

a center of mass exactly, but the following relation should hold: 

|𝑫| ≫ |𝒅/|, ∀𝑖        (3.1) 

This relation states the condition that the target emitter is located far away from the 

sensor area of operation (AO). The distance between the emitter and the reference 

point xcm is much larger than the distance between a sensor and xcm.  



 

 

22 
 

 

Figure 3.1: A diagram of model geometry 
 

 

3.2  PDOA Error Analysis 

 For the error analysis, we apply a Gaussian white noise term to the vector 

represented by the location of sensor I or xi as in (3.2), where 𝜺𝒊 is the Gaussian noise 

term added to the vector xi. This noise term represents measurement error 

accumulated through PDOA. Placing the noise term here allows for more feasible 

theoretical error analysis of important PDOA parameters. 

𝒙�/ = 𝒙/ + 𝜀/      (3.2) 
 

We define a perturbation parameter in (3.3) to quantify how large these errors 

become. 

𝛾 = �dOG|𝒅G|
|𝑫|

≪ 1       (3.3) 
 

The PDOA algorithm involves the determination of Apollonian circles for each pair 

of sensors. On a 2D plane, the target lies somewhere on the circle (with center Cij and 

Rij) of every pair of sensors. If there is no measurement error (|𝛆𝐢| = 0 for all i), then 

the fusion center’s estimates of the circle radii and center would be correct; however, 
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the errors yield estimated parameters 𝑪�/8  and 𝑅�/8 that are corrupted by noise. The 

equation of the circle centers and radii defined by the algorithm were shown in (2.6) 

and (2.7). We now plug into these equations 𝒙�/ and 𝒙�8, the location of sensors I and J 

into the equations to obtain the resulting equations in (3.4) and (3.5) 

 

 

 

Let us express the error terms on the right-hand side of (3.4) and (3.5) in terms of the 

perturbation parameter. We do this by expressing the distance ratio for a pair of 

sensors by explicitly separating out the part that is of order 𝜸𝟐. Letting  and 

 for unit-vectors  and , we have, 

 

 

Putting this simplification into our expression for the distance ratio qij from (2.3), we 

have, 

 

 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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where  is a function of the distances relative to the reference point 

xcm. Note that |H| << 1 as a consequence of (3.1). In terms of these new variables, the 

circle parameter estimates in (3.4) and (3.5) can be rewritten as follows. 

 

 

 

From (3.8) and (3.9), the terms such as 1/H and 1/H2 dominate. So what should be 

expected is for the error for most of the circle terms to increase with respect to the 

change in H. 

        Given the expression for the circle center in (3.8), we can rearrange the equation 

by taking the magnitude of both sides, since the error is associated with the 

magnitude (distance from the actual circle center to the estimated circle center). We 

then take the expected value of both sides so that we obtain a linear equation shown 

in (3.10), which is dependent on the expected value of   and  with a slope that is 

dependent on H, which varies with the distance of the emitter from the sensor 

network. Thus, we can show that the variance of the error will increase by a factor 

inversely proportional to H2. 

 

 

 

 

 

 
 

(3.8) 

(3.9) 

(3.10) 
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Similarly, the expected value of the circle radius error is shown in (3.11). 

 

Rearranging the equations into this form allows us to verify the relations using a 

sufficiently large sample size for a simulation to calculate the expected value and 

variance of error. 

        To find the intersection between circles, we use a coordinate independent system 

by letting two circles be represented by  for i = 0, 1 where i represents a 

particular circle. We define  and . The intersection points can be 

written in the form as shown in (3.12).  

 

The equation for s and t are shown in (3.13) and (3.14). 

 
 
 
 

 

 

Expanding these equations to obtain the first-order term plus the error is difficult, 

so rather than using the same method for the center and radii, we inspect the terms 

according to their orders of magnitude. Looking at s, both the numerator and 

denominator are on the order of 1/H2, which means s is close to unity. Similarly, t is 

also close to unity. From (3.12) it is clear that the error in X is on the order of 1/H, so 

we should expect to see the expected value of error increase linearly. 

 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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3.3  TDOA Error Analysis 

 The error analysis for TDOA is conducted along a similar line to the PDOA error 

analysis, by adding white Gaussian noise to the parameters needed in the TDOA 

algorithm. In this case, we add the noise to the TDOA measurements. We then 

determine the effects on how the size of the variance in noise increases the error of 

the TDOA measurement, and for the overall estimator. We analyze the error for both 

the three-sensor case and cases with four or more sensors. The error performance is 

then compared with the theoretical MSE of the TDOA algorithm to compare the 

empirical results to the expected algorithm performance. 

 The perturbation analysis used to estimate the theoretical error in PDOA is not 

necessary with this TDOA algorithm, as this is an approximation of the maximum 

likelihood estimator. To calculate this theoretical MSE, we first determine the 

covariance of the position estimate, zp calculated in (2.17). The method for 

determining this is laid out in [3]. First, the solution is expressed in the form x = x0 + 

ex and y = y0 + ey. as a result of the definition of za’ in (2.16), it follows that: 

𝑧d,Ye − (𝑥9 − 𝑥Y)* = 2(𝑥 − 𝑥Y)𝑒O + 𝑒O*           (3.15) 

𝑧d,*e − (𝑦9 − 𝑦Y)* = 2(𝑦 − 𝑦)𝑒R + 𝑒R*           (3.16) 

From (4.1) and (4.2), the errors ex and ey are relatively small compared to x0 and y0. 

Therefore, these can be ignored.  

Thus, the covariance matrix of zp is defined as follows: 

𝚽 = 𝑐𝑜𝑣S𝒛𝒑T =
Y
 
𝐵ee=Y𝑐𝑜𝑣(𝒛𝒂e )𝐵ee=Y   (3.17) 

where,  
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𝐵ee = �
(𝑥9 − 𝑥Y) 0

0 (𝑦9 − 𝑦Y)
�         (3.18) 

And the covariance matrix of za’ is found by taking the expectation of za’ and za’za’T 

as follows: 

𝑐𝑜𝑣(𝒛𝒂e ) = (𝐺de<Ψe=Y𝐺de )=Y   (3.19) 

The theoretical MSE is found by summing the elements in the diagonal of 𝚽. This 

theoretical MSE is compared with the actual algorithm result. 
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Chapter 4:  Error Performance Simulation and Hybrid 
Geolocation Method 
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4.1  PDOA Error Simulation Results 

To verify the analytical results of the PDOA error analysis, MATLABTM was 

used to simulate the error for the circle centers, radii, intersections, and overall error 

in target estimation as the emitter is moved further outside the area of sensor 

operation. The locations of the sensors were arbitrarily chosen and the center of mas 

of the sensors was chosen as the reference point for the model geometry. At each 

emitter location, the ratio of the distance of the emitter and the furthest sensor from 

the center of mas was taken and at each of these points, the PDOA algorithm was 

performed at a given emitter location for n = 1000 iterations with   and  changing 

each time. Of the data (center and radii) generated by each iteration, the expected 

value and variance of the result is taken. The variance in terms of   and  , ranges 

from 1 to 10. Three locations of the emitter were chosen at 10, 20 and 30 kilometers 

from the network reference point respectively. 

        The corresponding figures show the results of the expected value of error of 

circle radii and centers as well as intersections and overall location estimation error 

over the entire emitter path moving further from the sensor area of operation. In 

addition to the plot of experimental error, the slope of each line was calculated 

according to the formula for H. The equation for H can be rewritten as follows. 

 
 
 

From (4.1), it follows that H is dependent on the distance of the emitter from 

the sensor network, where the sensors distance from the reference point are fixed. The 

(4.1) 
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values of H were calculated for each of the three distances and the slopes were 

calculated from (3.10) and (3.11) to give the theoretical slope. 

        The plots shown in Fig. (4.1) illustrate the slope of the line with theoretical data 

(solid line) compared to that of the experimental data (box-plot). From Fig. (4.1a) and 

Fig. (4.1b), the experimental mean or expected value of error for both the center and 

radii of an Apollonian circle generated by a pair of sensors is close to that of the 

theoretical expected value using the equation derived from the previous section. This 

shows that the simulated graphical results and the analytical equations derived are 

consistent with each other. Similarly, it is shown from the box-plot that an increase in 

expected value of error will also correspond to an increase in the variance of the error 

of the Apollonian circle terms. 
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Fig. 4.1 — (a) Expected value of circle center error as a function of expected value of sensor noise. (b) Expected 
value of circle radii error as a function of expected value of sensor noise. (c) Expected value of error in Apollonian 

circle centers and radii as a function of distance of the emitter from the sensor network (d) Expected value of 
overall location error as a function of distance from the network   

 
 
        In addition to verifying the analytical Apollonian circle perturbation equations, 

the effect of distance of the emitter from the sensor network on the accuracy of the 

algorithm was also simulated. A range of emitter distances was chosen ranging from 

1 kilometer to 45 kilometers away from the reference point.  At each distance, the 

average error over n = 1000 iterations of PDOA algorithm was calculated. At each 

distance for circle centers, radii, and intersections. The overall expected error of the 

estimated emitter location was also computed to demonstrate that errors in the 
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Apollonian circle parameters accumulate, leading to an overall effect on the accuracy 

of the algorithm. Fig. (4.1c) shows the expected value of error for circle radii and 

centers. As expected, since the error in the center increases on the order of 1/H, the 

relationship should be linear and for the radii, the relationship should be quadratic as 

the error increases on the order of 1/H2. 

        The plot in Fig. (4.1d) shows the expected error for circle intersections and the 

overall location estimation. While it is difficult to mathematically analyze the error in 

overall location like what was done for the center and radii, it is expected to be linear 

since it should correspond to error in the intersections, which also increases on the 

order of 1/H. 

        From these results, it is clear that the variance and expected value of error is 

amplified for all of the terms (centers, radii, and intersections) and the overall 

estimation error, the further the emitter is moved away from the area with respect to 

the center of mass of the sensors. These results support the finding of the analytical 

expressions of the linearity of noise amplification in all of the terms with respect to H. 

An important finding is that the analytical results do not support intuition that in a 

noisy environment, the noise should help to improve accuracy in some instances. The 

reason for the significant dominance of error in the algorithm arises from the noise 

terms being collected in the non-linear expressions for the circle centers and radii. 
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4.2  TDOA Error Simulation Results 

The error analysis test is conducted similar to PDOA, by running the algorithm 

with n=1000 iterations. The MSE is computed by taking the expected value of the 

distance between the estimated emitter position vs. the actual emitter position and 

then squaring it to obtain the MSE. This MSE is averaged over all of the iterations. 

The experiment utilizes 3 to 5 nodes designated as sensors and the MSE is calculated 

as a function of three different control variables: noise variance, distance from the 

network AOI, and the number of active sensors. For the TDOA algorithm, in 

determining the TDOA covariance matrix, the assumption that each receiver has 

similar noise power spectral densities will result in diagonal elements with 𝜎"* and the 

rest of the elements being 0.5𝜎"*, where 𝜎"* is the noise power. This noise is zero 

mean white Gaussian noise that is added to the TDOA measurements as follows, 

where rij0 is the noise-free time-difference measurement between sensors i and j: 

𝑟/8 = 𝑟/89 + 𝑁(0, 𝜎"*)      (4.2) 

 The first error analysis test is sweeping the noise variance while holding the other 

control parameters (distance, number of sensors) constant. For this test, the emitter 

located 5km from the sensor network AOI, and 4 sensor nodes are active. The MSE 

as a function of the noise variance is plotted in Fig. (4.2) below. As is expected, the 

error does increase with the noise variance. In the presence of no variance, the error 

would be zero. For comparison, the dashed line shows the theoretical MSE. Also 

expected is the deviation in experimental MSE from the theoretical MSE since the 

noise variance increases, this is to be expected. 
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Figure 4.2: Geolocation MSE vs. noise variance for TDOA scenario with four nodes, and an emitter 5 km away 
from the network 

 
 The next error analysis involves sweeping through different emitter-network 

separation distances. The emitter starting location is inside the sensor AOI, and is 

then moved up to 10 km away from the sensor area. The noise variance is held 

constant at a value of 𝜎" = $0.00001/𝑐*. As expected in the plot shown in Fig. 

(4.3), the error does increase exponentially. This is to be expected as in any path loss 

environment, there is an exponential decay in the signal power due to distance alone. 

This results in a poor SNR, and even the small noise variance has a greater effect on 

the MSE of the geolocation estimation. This MSE performance demonstrates this 

particular version of TDOA algorithm’s strength as a far-source estimator than that of 

PDOA. While both perform better within the sensor AOI, this algorithm clearly 

performs better than PDOA at larger distances from the emitter in a low-noise 

environment. However, when the TDOA estimates are inaccurate, this error can 

increase significantly. Without proper hardware or multipath environments, this low-
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noise is difficult to achieve, and the estimation may break down with far-source 

scenarios. 

 

 

Figure 4.3: Geolocation MSE vs. distance from sensor network for TDOA scenario with four nodes, and noise 
variance of 𝜎" = $0.00001/𝑐*. 

 

 The final analysis conducted is varying the number of sensors, while keeping the 

variance and distance parameters constant. The noise variance is again held at 𝜎" =

$0.00001/𝑐*, with an emitter placed 5 km away from the network. This data is 

recorded in tabular form in Table 4.1, and the trend, as expected, is an improvement 

in the MSE accuracy depending on the number of sensors, with three sensors 

performing the worst. The computation involving three sensors is not a good method 

to use, since the amount of noise variance can result in some causes of ambiguity, 

where there are no positive roots to the quadratic equation that results. This is not 

seen in the computation involving 4 or more sensors, since this method actually uses 

the noise variance in its calculation.  
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Table 4.1 – MSE for different number of sensor nodes 

 

 

4.3  Motivation for a Hybrid Method 

From the previous chapters, both the PDOA and the TDOA algorithms were 

presented and their error performance analyzed. Each algorithm has its advantages 

and disadvantages. The power-difference of arrival algorithm has the advantage of 

hardware simplicity. The accurate synchronization between receivers is not necessary 

to obtain accurate RSSI values from the receivers. The algorithm also works well 

when the target emitter is close to the sensors, since the SNR of the emitter is higher, 

and the Apollonian circle intersections will be more exact. However, the PDOA 

algorithm has significant shortcomings. When the SNR decreases and noise variance 

increases, this results in greater ambiguity in the geometric intersections of the 

circles, resulting in error increasing linearly with distance from the sensor network’s 

perimeter.  

 The TDOA algorithm has shown similar trends when the distance between the 

sensor network and the emitter is increased; however, in most cases the TDOA 

algorithm generally outperforms PDOA algorithm. With well-synchronized clocks 

and relatively accurate time differences, even for far-away sources, the TDOA 

algorithm will often outperform PDOA as seen from the simulation results. However, 

having well-synchronized sensors with good resolution is difficult to achieve. The 
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software-defined radios that will be used to verify the geolocation algorithm are 

limited in sampling resolution and often cannot attain single nanosecond resolution, 

even with well-synchronized clocks. At greater distances, the noisy time-difference 

measurements will exacerbate the error even more than noisy PDOA measurements. 

In addition, multipath can have an impact on the time-difference measurements, such 

that if one sensor is obstructed compared to the other sensors, taking the time-

difference will not cancel the effect of multipath on the time-of-arrival for the sensor. 

This kind of multipath is common in NLOS applications. Another necessity for 

accurate geolocation is the characteristics of the transmitter waveform. To properly 

compute a time-difference, signals with good correlation properties are necessary. 

Ideal characteristics of the emitter signal are outlined in [6]. Unmodulated carriers 

and narrowband signals are more difficult to compute TDOA due to ambiguity in the 

cross-correlation of the signal and its delayed version. 

With these disadvantages in both algorithms, it is useful to evaluate the 

effectiveness of using both measurements to improve the accuracy of geolocation. 

The proposed hybrid geolocation method will involve obtaining measurements 

needed for both PDOA and TDOA and to use the estimated location of PDOA to 

determine the validity of the time-difference measurements and vice-versa. The 

following section details the proposed hybrid PDOA/TDOA geolocation algorithm. 

4.4  PDOA/TDOA Hybrid Method 

In other literature, utilizing both TDOA and PDOA involves setting a power 

threshold. In one experiment detailed in [7], the PDOA and TDOA location is 
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computed and only one of them is used depending on whether the power is below or 

above a set threshold. In the mentioned experiment, if the RSSI of the furthest sensors 

is below a threshold, then the TDOA estimate is used. If the RSSI is above a 

threshold then the PDOA estimate is used. The drawback of this method is that it does 

not consider how noisy TDOA estimates at larger distances will significantly affect 

the accuracy to an even larger margin than TDOA. In this research, we apply the 

following algorithm as detailed s follows: 

Algorithm: 

Input: PDOA Estimate, Pwr Threshold, TDOA measurements, RSSI measurements 

Output: Estimated emitter location 

If RSSI > threshold 

 - Apply PDOA to obtain general direction of signal 
 - Apply TDOA 
 
If RSSI < threshold 

- Apply PDOA and use location estimate to determine TDOA measurements 
 
 - If TDOA obtained from PDOA is within +/- 40 ns of actual TDOA 
  - Compute TDOA with improved TDOA estimate 
 
 - ELSE 

  - Use original TDOA estimate 

- Repeat for each TDOA measurement 

- Update TDOA noise variance vector 

 

Within the sensor AOI, TDOA generally has a high noise tolerance and can estimate 

the emitter more accurately than the PDOA measurements subject to similar noise. 



 

 

39 
 

Outside the AOI, a large error in the TDOA measurement (> 10 ns error) will 

exacerbate the emitter position estimate error, sometimes more than PDOA. PDOA 

results are computed to obtain the general direction of the signal. Recall from Chapter 

2 that there are two possible solutions for the final estimate of TDOA. This ambiguity 

is resolved in standalone TDOA by having a priori information about the general 

direction of the signal. The PDOA algorithm will not have this ambiguity, and 

comparing the two TDOA solutions to the PDOA solution can be used to filter out the 

extraneous TDOA solution. This hybrid method is proposed to both solve the 

ambiguous TDOA solution problem and to correct for the exacerbation in TDOA 

error estimates at larger distances due to insufficient time-resolution.  

 Since we sometimes use the PDOA location estimate to determine the time-

differences, the resulting TDOA noise variance is not understood without evaluating 

it over time. To properly address the TDOA variance from the PDOA estimate, we 

need to determine the variance of the TDOA values associated with it. After 

performing each location estimate, the measured time-difference is added to an 

observation a vector, this vector is 10 samples long and contains the time-difference 

measurements used in the algorithm for a given sensor. The oldest time-difference 

measurements are deleted for a particular sensor after the vector exceeds 10 values. 

With these 10 values, we measure the variance of those values to update the time-

difference noise matrix Q used in the TDOA algorithm. 

 The hybrid method will inevitably have some drawbacks at these larger distances 

in a multipath environment. In such an environment, the RSSI is not immune to 

multipath effects such as shadowing and fading. In this case, both estimates would be 
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unreliable, and there is no guarantee that the range estimates from the PDOA location 

result would improve the location accuracy in the TDOA algorithm at a far distance. 

 In the following chapters, we outline the method for creating an emulation 

environment to verify the performance of the PDOA and TDOA simulations, and to 

evaluate the effectiveness of the hybrid TDOA/PDOA method. We will discuss the 

RF laboratory testbed layout, devices used in the testbed, and how the geolocation 

algorithms were implemented on the radios. 
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Chapter 5:  Emulation Testbed Environment 
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5.1  Overview 

As previously shown in Chapter 2, the overall network architecture consists of at 

least three sensors plus a central fusion node where the sensor data collected from the 

radios are sent to for processing and triangulation. This was shown in Fig. (2.1). In 

this chapter, the laboratory testbed environment in which the proposed network will 

be emulated is detailed, as well as each of the components of the testbed. In any 

emulation environment, it is useful to observe environmental effects on the RF 

network in a controlled laboratory environment. Being able to control the channel 

properties, with realism similar to a field test, is one useful aspect of emulation over 

field-testing. Advantages to emulation include repeatability, realism, and cost saving. 

The RF wireless network environment emulator (RFWNEE) at US Naval Research 

Laboratory has the capability to emulate various RF radio networks, and the 

environment is used toward emulating and integrating the geolocation sensor system 

in this thesis as an extension of the MATLAB simulations shown in earlier sections. 

Previous applications of the RFWNEE at NRL are documented in [4]. 

 

5.2  RF Channel Emulator 

Central to the RFWNEE is the channel emulator device used. The testbed is integrated 

with a RFNest D512 series channel emulator [18], produced by Intelligent Automation Inc 

(IAI). Some key specifications of the RFNest are shown in Table 5.1. The controllable 

channel effects in the RFNest consist of channel channel attenuation, propagation delay, and 

doppler shift. The emulator also supports a variety of network configurations such as SISO, 

MIMO, MISO, SIMO, and full mesh. The RFNest is interfaced with the RFWNEE as shown 
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in Fig. (5.1), where the radio under test (RUT) is interfaced with the D512 through the RF 

daughterboard (RFDB). The RFDB converts the RF to IF bands for transmitted and received 

signals between the RF front end and the internal circuitry of the RFNest. The digital 

daughterboard (DDB) interfaces with the RFDB and the main FPGA board, and consists of 

high speed ADCs and DACs. Each DDB has a mid-size FPGA, which is used for signal 

multiplexing in order to maximize the transmission capacity between the DDB and main 

FPGA. The main FPGA contains the RF channel emulation engine.  

The RFNest is controlled through a software module which controls scenario 

generation, channel modeling, and node operation among the radios. Because of the 

geolocation aspects of this thesis research, GPS simulators are also integrated, as depicted in 

Fig. (5.1). USB realtime spectrum analyzers (RSA) are also provided for spectrum 

monitoring and management purposes. A network of computers is integrated to execute 

emulations for scenarios. As shown in Fig. (5.1), a controller computer contains the software 

for controlling the RFNest, it is also capable of supporting virtual radios through the EMANE 

environment, but that capability is beyond the scope of this research. Slave servers are 

integrated for controlling external peripherals such as the radios or RSAs. Everything is 

interfaced through an ethernet switch for communication. 

Table 5.1 – RFNest D512 series key specifications 

 



 

 

45 
 

 
Fig. 5.1 — RFWNEE testbed architecture  

 
 

5.3  Software Defined Radios 

The radios used as the sensors are universal software radio peripherals (USRP), an 

software-defined radio, with embedded programmable FPGAs that interface with GNU radio, 

an open-source software development toolkit that provides the signal processing blocks to be 

implemented on the USRPs. The USRP model used in this test is the USRP N210, where the 

specs are detailed in Table 5.2 [19]. Some of the key features of the N210 include two RF 

ports. One port configured for both RX/TX (RF1) and the other port exclusively for RX 

(RF2). The USRP contains a GPS disciplined oscillator (GPSDO), which can be used for 

synchronization purposes. In a lab setting, a PPS (pulse per second) and 10 MHz reference 

input also exists to obtain time synchronization necessary to obtain accurate TDOA 

measurements. The internal architecture of the USRP N210 is shown in Fig. (5.2). The 
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USRPs are interfaced with a host PC via ethernet cable, where the main FPGA can 

programmed using GNU radio or python scripts. The USRP uses the CBX daughtercard, 

where the key specs are included in Table 5.2. 

 
 

Fig. 5.2 — USRP N210 block architecture 
 

Table 5.2 –  USRP N210 w/CBX daughtercard key specifications 
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5.4  LoRaWAN Modem 

In order to isolate the need for the USRPs to switch between transmit and receive modes, 

the objective is to use the USRPs as sensors, so we use another communication backhaul that 

allows for the transmission of sensor data acquisitions from the USRP to the central fusion 

processor. The priority when choosing this backhaul was longer range. Where WiFi has a 

higher data rate, it does not cover the long distances needed for a radar coastal monitoring 

system that could extend multiple miles. LoRaWAN technology offers this longer range at 

the expense of lower data rate and maximum packet sizes. For each sensor, a LoRaWAN 

modem is used, that is embedded with a RN2903 produced by Microchip. The advantage 

offers low-power and long range communications between each modem and its key specs are 

shown in Table 5.3 [20]. The antenna is configured to both transmit and receive from other 

LoRaWAN modems, where its figure is depicted in Fig. (5.3). 

 

Table 5.3 – LoRaWAN modem embedded with RN2903 microchip key specs 
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Fig. 5.3 — LoRaWAN RN2903 modem 
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Chapter 6:  Emulation Implementation of Geolocation 
Algorithms 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

50 
 

6.1  PDOA Implementation on SDRs 

 From Chapter 5, the USRP is being used as the sensors in the network used for 

geolocation. The effort is to configure the USRP to sense across a specific part of the 

spectrum in order to obtain an RSSI measurement on the USRP. The GNU Radio 

software was used to create the signal processing blocks to implement the software 

radios. We first create a USRP source, which is the first block of any receiver 

configuration on radios. The source detects any incoming signal. The source is 

configured with a sampling rate of 25 MHz. This is actually the maximum sampling 

rate of the radios due to limitation of the analog to digital conversion as shown in 

Table 5.2. The center frequency was set to 903 MHz, so that it operates in the ISM 

band. With this configuration, we start the top block of the USRP. The connections 

are detailed in Fig. (6.1). The skip-head block will skip the recording of initial 

samples due to a tune-up delay in the radio. This is approximately the first tenth of a 

second after the top block is created. We create a header block that does the sampling 

necessary to perform a 400 point FFT. Because of the sampling rate being limited to 

25 MHz, we perform a total of four sweeps to obtain a total range of 100 MHz in 

frequency spectrum. With each sweep, a frequency bin is generated with the hertz per 

bin equal to the sampling rate divided by the FFT length, which in this case is 62500 

Hz. With this, we have a sufficient set of the frequency spectrum to analyze. 
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Fig. 6.1 — GNU Radio blocks used to measure RSSI on the USRPs 
 

 After collecting the samples, we stream the data to vector format for FFT 

computation. After the FFT is computed, which results in a complex vector that is 

converted to a magnitude. This magnitude is then sent to a message sink, where it can 

then be processed by the host PC connected to the radio. Because we want to view 

100 MHz of the spectrum, the top block shown in Fig. (6.1) is created and then 

deleted at the end of each 25 MHz sweep. Before using the recorded RSSI, the FFT 

magnitudes are assessed compared to existing calibration tables to the USRP. 

Insertion losses due to cables are also accounted for in adjusting the measured power 

output. Since each USRP is different, they each had their own calibration tables with 

lists of received powers at certain gain levels. Interpolation is then applied by 

comparing the raw RSSI with the calibration table RSSIs. Adjusting the raw data 

based off the calibration tables results in smoother RSSI data, which is necessary to 

optimize the RSSI stability for PDOA. 

 The timing between the receivers are synchronized by the internal GPSDO (GPS 

disciplined oscillator) clock, that is driven by an external GPS signal. This allows 
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synchronization within the nanosecond range, which is more than sufficient for 

PDOA. More detail on the synchronization of the USRPs is described in 6.2. 

 

6.2  TDOA Implementation on SDRs 

6.2.1  Synchronization of radios 

 Measuring the time-difference of a particular signal at two different receivers 

requires the two receivers to share a common clock. The USRPs have the ability to be 

synchronized by a common clock. Because of the USRP crystal oscillator, the clocks 

will drift overtime. The USRP contains a GPS disciplined oscillator (GPSDO) that 

allows for an external GPS connection, and also contains ports for other external 

references of 10 MHz and 1 PPS pulses if a GPS signal is not available [8]. Using 

GPS as a synchronization technique will deliver more accuracy over other common 

synchronization schemes [9]. The clock in each satellite is continuously calibrated 

based off a uniform world time standard, this can deliver synchronization 

performance to the nanosecond range, required for accuracy in TDOA. In a laboratory 

environment, obtaining a signal directly from GPS is not feasible, so we rely on 

supplying an external 10 MHz reference signal and a 1 PPS (Pulse per second) signal 

to achieve synchronization similar to GPS. Obtaining synchronization in a laboratory 

environment is an easier task vs over-the-air (OTA) because of the ability to connect 

devices via cable, which gives the ability to use an external 10 MHz reference and 

PPS over cable. Both are generated using the output from GPS emulator and the time 

standard used to configure the USRP time is Unix time. 
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 When using the reference for synchronization, we wait for a lock into the 

reference signal. Once the reference is locked, we then wait for the pulse per second 

to change, and then wait to determine the Unix time where the PPS edge occurs, and 

will then set the USRP time to the Unix time. This Unix time is determined on the 

host PC connected to each radio via an NTP server.  

 Even with synchronized clocks, a certain amount of offset and clock skew is 

expected. The accuracy of the GPS drift was evaluated in [9]. Given the reference 

time set to C(t) = t, the clock function of a radio i is given in (6.1). 

𝐶/(𝑡) = ∆𝑓/𝑡 + ∆𝜃/       (6.1) 

where ∆𝑓/ and ∆𝜃/ are the clock skew and the initial offset respectively. The relative 

offset ad relative skew between two radios i and j are ∆𝐶/8 = 𝐶/(𝑡) − 𝐶8(𝑡) and 

∆𝑓/8 = ∆𝑓/ − ∆𝑓8 respectively. IF perfectly synchronized, these offsets are zero. For 

GPS time, if was found in [9], that the offset was on average 200 ns of drift. Using 

the NTP server time with the 10 MHz reference and 1 PPS signal connected to the 

radios by cable, this drift can be corrected for over time, and on each sampling 

iteration, we correct for this by resetting the USRP time to the UNIX time when the 

last at the PPS edge. This synchronization setup resulted in synchronization accuracy, 

well within the sampling resolution of the USRPs. 

 

6.2.2  Estimating the time-difference 

 We now outline general method of computing TDOA requires the streaming of 

time-domain samples at each receiver. After a sufficient number of samples has been 

collected by the sensors, they are processed to determine the time-difference between 
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them. Since we are tracking one particular emitter, ideally the two receivers will see 

the same signal but shifted in time relative to each other. We outline the generalized 

cross-correlation problem used to compute the time difference given in [10]. The 

block diagram for the problem is shown in Fig. (6.2).  

Given an emitter defined as 𝑠(𝑡), the signals seen at two receivers is as follows: 

𝑥Y(𝑡) = 𝐴Y𝑠(𝑡 − 𝜏Y) + 𝜂Y(𝑡)        (6.2) 

𝑥*(𝑡) = 𝐴*𝑠(𝑡 − 𝜏*) + 𝜂*(𝑡)        (6.3) 

where 𝜏 = 𝜏* − 𝜏Y is the desired time-difference between the two sensors. From (6.2) 

and (6.3), the cross-correlation between the two received signals x1 and x2 is as 

follows: 

𝑅OYO* = 𝑅33(𝑡 − 𝜏) + 𝑅¨Y¨*(𝑡)         (6.4) 

If we assume that the noise is white-Gaussian and uncorrelated, then Rn1n2(t) is zero. 

Then the it becomes:  

𝑅OYO*(𝜏) = ∫ 𝑠(𝑡)𝑠(𝑡 − 𝜏)𝑑𝑡<
�       (6.5) 

The discrete formula for autocorrelation is obtained as follows: 

𝑅ªOYO*(𝑚) =
Y
¬
∑ 𝑠(𝑚)𝑠(𝑛 +𝑚)¬=Y
9         (6.6) 

 
Fig. 6.2 — Block diagram for generalized cross-correlation of two receiver signals 
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Taking the Fourier transform, we obtain: 
 

𝐺RYR* = 𝐻Y(𝑓)𝐻*∗(𝑓)𝐺OYO*(𝑓)      (6.7) 
 

where Gx1x2(f) is the Fourier transform of the cross-correlation between x1 and x2.    
 
 

The multiplication of H1(f) and H2*(f) comprises of the general frequency weighting. 

For generalized cross-correlation this is simply equal to 1. Other weighting functions 

are outlined in [10] and are useful when there exists multipath and other noise outside 

of white Gaussian noise. Choosing filters allows for more efficient separation of 

delays due to multipath that could affect the ambiguity of the peak detector of the 

correlation of the output of the filters. Since we are not exploring multipath mitigation 

techniques in this research, we do not apply these filters in our time-difference 

computation. 

After the cross-correlation is found, the result is squared to get rid of negative 

values, and the maximum value of the square cross-correlation is found to be the 

estimated time-difference between the sensors. The resulting time-difference will 

have the peak at a particular sample number n. When sampling with the USRP N210, 

the limit of 25 MHz sampling rate restricts the time-resolution to 40 nanoseconds per 

sample. The implications of this limitation is seen in the emulation results in Chapter 

7. 
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6.3  Emulation Integration 

  

6.3.1  Waveform Selection 

The selection of the waveform is important for the accuracy of TDOA 

estimation. Because the cross-correlation is taken, the signal must have good 

correlation properties. If a continuous sine-wave is used, the time-difference cannot 

be calculated because there will be phase ambiguity. This means the signal must be a 

modulated waveform. To meet this requirement, we use an FM signal with a 

modulation index larger than 0.5 for the emitter, which is an implementation of 

wideband FM. We use a sine-wave as the modulating signal. We use metrics similar 

to a broadcast FM system with a frequency deviation of 75 kHz and a maximum 

modulation frequency of 15 kHz. This signal will have sufficient bandwidth to 

minimize phase ambiguity. 

 

6.3.2  Hardware Configuration 

 For the emulation, we had a total of four radio assets on that fit the specifications 

of the experiment. Each USRP is connected to a host PC via ethernet cable. The GNU 

Radio blocks created to collect spectral and raw IQ data is sent by the radio to the 

host PC where the host PC then processes that info accordingly. All of the data 

needed for the geolocation is then sent over-the-air by the LoRa modems connected 

to each PC. As detailed in Chapter 5, this communications protocol is used as a 

backhaul so the radios would only receive sensing data, and not have their sensing 
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interrupted by a transmit period. The LoRa modems send the sensor data to a LoRa 

router connected to a host PC allocated specifically for the fusion of the sensor data. 

This PC will organize the sensor data, perform the cross-correlation on the TDOA 

data, and then perform the necessary geolocation algorithm. The signal generator 

used as the emitter is applied on one of the RFNest input ports. The hardware 

connections for the emulation of the radios over the RFWNEE are shown in Fig. 

(6.3). Next, we will describe how the geolocation scenarios are emulated in software. 

 

Fig. 6.3 — Hardware schematic for the laboratory emulation of the geolocation network 
 

6.3.3  Software Emulation Tools 

 The RFView emulator is a software GUI tool that is used to configure the RFnest 

for a given emulation scenario. A screenshot of the GUI is shown in Fig. (6.4). In the 

figure, a platform with a set location is set up. This platform can either be airborne, or 

ground-based. For this research, everything was ground-based. The host-PC has 

access to online maps repository and when placing the platforms into RFview, the 
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real-world latitudes and longitudes can be adjusted accordingly. When the platforms 

have been created, the individual radios are configured and assigned to an associated 

port on the RFNest. As mentioned in Chapter 5, there are a total of twelve IO ports 

allowing for a total of 12 devices in half-duplex mode [4].  

 

Fig. 6.4 — A screenshot of the RFView GUI used to configure the RFNest emulator 
 

The radios can be assigned to different groups with different channel parameters. 

For this research, all radios are operating in the same channel environment. Since the 

path-loss model used in the PDOA estimation equations was log-normal, this is the 

channel model used to control the path-loss, delay, and doppler shift. Since we are not 

concerned with the doppler effect, only the path-loss and delay effects are important. 

As shown in Fig. (6.5), the channel model is shown. Even though the emitter is set to 

a carrier frequency of 903 MHz, the actual frequency of the channel is set to 890 

MHz. This separation between the waveform frequency and channel frequency is 
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important as the RFNest generates a local oscillator frequency [4], which can 

interfere with any radios transmitting or receiving at that same frequency. 

 

Fig. 6.4 — The radios assigned to a group and the channel properties of the group of radios is configured in this 
window 

 

There is also the capability to control the emulated transmit power of the emitter, 

using the transmit power offset adjustment. For this test, we transmit at 30 dBm to 

cover the range of 2 km for RSSIs that are above the noise floor of USRPs. With the 

emulation environment and all hardware and tools addressed for the evaluation of the 

radios addressed, we proceed to define the specific emulation scenarios and show the 

geolocation performance results obtained in the emulation in Chapter 7. 
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Chapter 7:  Geolocation Emulation Results 
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7.1  Emulation Scenarios 

 The objective was to emulate the PDOA, TDOA, and hybrid algorithms on the 

RFNest to demonstrate the differences in error performance between the algorithms 

under particular environmental conditions, including the distance of the emitter 

relative to the network, and noisy measurements. It is also useful to explore the effect 

of the sensor network geometry on the error in location estimation. Two different 

sensor topologies are explored in these emulations: an arbitrary topology, as shown in 

Fig. (7.1) where the sensors are placed in any random location within a specific area.  

 

Fig. 7.1 — Arbitrary (non-linear) sensor topology emitter path is indicated by a red arrow, will move 2 km out of 
the sensor network AO by the end of the run. Dimensions of AO of sensors shown. Sensors are the blue icons. 

Yellow question mark icon is the emitter starting position 
 

The second topology is linear as shown in Fig. (7.2) where all of the sensors are 

placed in a straight line. In theory, a linear topology will result in more ambiguity in 

predicting the direction of the emitter relative to the sensors and it would result in a 

larger error as a result. 
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Fig. 7.2 — Linear sensor topology emitter path is indicated by a red arrow, will move 2 km out of the sensor 
network AO by the end of the run. Dimensions of AO of sensors shown. Sensors are the blue icons. Yellow 

question mark icon is the emitter starting position 
 

For the first set of tests, we will place the emitter in the middle of the sensor network 

(the common midpoint of all the sensors), and will move the emitter further out of the 

network with a resolution of 200 m, until it is 2 kilometers away from the network. 

Given the transmitter power is at 30 dBm, this distance is sufficient such that the 

RSSIs at 2 km are still above the receiver sensitivity of the USRPs, which is around -

85 dBm. In the second set of tests, more noise is added on top of the baseline noise 

that already exists due to instrumentation errors and thermal noise. We inject 

additional noise variance to the RSSI measurements observe if the effects are 

consistent with the simulations when adding variance. No additional variance is 

added to the TDOA measurements due to the already poor sampling resolution. 
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7.2  Results 

7.2.1  Arbitrary Topology 

 For each distance, we compute the RMSE of the location estimate, which is the 

distance in meters from the actual emitter to the estimated position. At each position, 

the average o 50 runs was computed as the error for that particular distance. The 

results are shown in Fig. (7.3). On average over all the distances, the PDOA error was 

293 m, the TDOA error was 700 m, and the hybrid error was 200 m. Initially, TDOA 

is the most accurate when the emitter is within the sensor AO. At the initial emitter 

point, TDOA’s average error is 6 meters, and PDOA is 30 meters. Overall, within the 

network, both algorithms have consistent performance. As the emitter moves outside 

the network AO, the error increases noticeably similar to the MATLAB error 

analysis, with a roughly linear trend. The TDOA performance is degraded 

significantly. While both TDOA and PDOA error have the same trend, due to the 

poor resolution of TDOA measurement, the TDOA accuracy is degraded more 

significantly. The hybrid algorithm’s overall error average is a significant 

improvement from the individual algorithms. 
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Fig. 7.3 — RMSE for the PDOA (square), TDOA(diamond), and hybrid (circle) algorithms as a function of 

distance of emitter from center of network for an arbitrary sensor topology 
 

7.2.2  Linear Topology 

 Fig. (7.5) shows the RMSE results for the linear topology over various 

emitter/sensor network distances. In this scenario, the hybrid was modified based off 

the topology to not use the RSSI to determine whether it perform the conventional 

TDOA or use the time-of-arrivals based off the PDOA estimate, since there is little 

time the emitter spends within a sensor network AO, due to the linear sensor 

geometry. Instead, it would always compute the PDOA time-difference estimates and 

compare them to the actual measured time estimates. The average error for PDOA 

was 1000 m, for TDOA it was 786 m, and for the hybrid it was 461 m. This is 

because there is ambiguity in the direction of the emitter for the PDOA estimate. An 

illustration of how this ambiguity is created by the circle intersections is shown in 

Fig. (7.4). Without noise, there are two possible locations and only one can be 

chosen. With noise, the larger amount of intersections will alternate to one side over 

the other randomly. This means that half the time, the estimate will be on the wrong, 

side of the sensors where the other half, the estimate will be on the right side.  The 
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reason this ambiguity doesn’t exist in TDOA results is because the emitter was 

consistently moved in one particular direction and only one of the solutions in (2.17) 

was chosen, and it was the correct one. If the emitter was moved in the opposite 

direction, the error would’ve been double, due to the wrong solution from (2.17) 

being used. The hybrid also performs significantly better because even though there is 

ambiguity among the most optimal intersection from PDOA’s grid density algorithm, 

the relative RSSIs and the erroneous PDOA estimate which lies on the opposite side 

of the sensor network still has the correct ranges.  

 

Fig. 7.4 — Circle intersections for a linear topology. When noise-free, there are two possible intersections, 
resulting in an ambiguous solution 

 

In some practical scenarios, we may know the relative direction of the emitter, and 

PDOA results will be improved. For example, in the case of a coastal monitoring 

network tracking ships, we may know the general direction of the emitter. This 

scenario was run again where the PDOA algorithm was modified to filter out 

intersections that were found to be on the wrong side were suppressed from the grid-
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density filter. Fig. (7.6) shows the results, which include PDOA now outperforming 

TDOA with an average of 547 m. Overall, the error for this topology in every 

algorithm is worse than the arbitrary topology, as expected due to the shorter duration 

where the emitter is within a sensor AO. 

 

 
Fig. 7.5 — RMSE for the PDOA (square), TDOA(diamond), and hybrid (circle) algorithms as a function of 

distance of emitter from center of network for a linear sensor topology 
 

 
Fig. 7.6 — RMSE for the PDOA (square), TDOA(diamond), and hybrid (circle) algorithms as a function of 

distance of emitter from center of network for a linear sensor topology with a priori info about the direction of the 
emitter 
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7.2.3  Noise Variance Effects 

 It was useful to observe adding more noise variance to the PDOA in addition to 

the existing noise already present. The noise variance was swept between – and 4, 

with increments of 0.5. The average error at each noise variance was taken based off 

of the results of 50 runs at each noise variance. The results are shown in Fig. (7.7). 

What was observed was an increase in the PDOA results. Since no additional noise 

was added to the time-difference, this was held constant. The average error for PDOA 

was 315 m, the TDOA error was 369 m, and the hybrid error was 295 m. What was 

observed was that when TDOA’s noise error was larger than PDOA, the hybrid 

algorithm’s error converged to TDOA’s error. This is because the TDOA calculated 

from the PDOA location estimate was outside the 40 nanosecond bound, so it was 

able to recognize that the RSSI by PDOA was not reliable, so the original time-

difference measurements were used to estimate the emitter location. 

 
 

 
Fig. 7.7 — RMSE for the PDOA (square), TDOA(diamond), and hybrid (circle) algorithms as a function of noise 
variance in RSSI. Here, we use the arbitrary topology in the first emulation scenario with the emitter held at 1 km 

from the center of the network 
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7.3  Discussion 

 From the emulation scenarios run, the error trend was generally consistent with 

the MATLAB error performance analysis of the algorithms. The more unintuitive 

result was that TDOA performed worse on average than PDOA when the emitter was 

outside the sensor network. This was due to the poor sampling resolution of the 

radios. However, this kind of TDOA accuracy can be expected due to other factors 

such as shadowing and other multipath effects, leading to lower accuracy. In these 

cases, the RSSI measurement was more reliable than TDOA, so the hybrid was 

applied where the conventional TDOA algorithm was used when the relative RSSI 

difference between the left sensors were approximately equal to the right sensors. The 

topology was exploited here and the hybrid used the TDOA measurements entirely 

over the first 400 meters. Once the emitter moved outside the sensor network, the 

hybrid recognized the RSSI imbalance between the left and right sensors and started 

computing time-differences based off the estimate attained from PDOA. These 

estimates would be used in the TDOA computation if the time-difference was within 

+/- 40 nanoseconds of the TDOA estimate. If this was not the case, then the RSSI 

information could not be relied on, and the original TDOA value would be used. This 

adjustment led to generally better results overall. In the linear topology, we saw that 

the PDOA result was worse without a priori information given about the direction of 

the emitter. When given a priori information, its error performance relative to TDOA 

and the hybrid was generally consistent with the arbitrary topology. In the noise 

variance analysis, the decision-making process of the hybrid algorithm was tested, as 

the PDOA error eventually surpassed the TDOA error. The hybrid algorithm found 
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the PDOA time-difference estimates to be out of range of the TDOA result. This 

analysis can be extended further to further studying the correlation between 

increasing the noise floor of the radios to determine its overall effect on the time-

difference accuracy. In this event, the noise added for the RSSI would not be 

independent of the noise in TDOA, although TDOA is generally more resilient to the 

thermal noise found in RSSI. The noise due to multipath effects can lead to more 

unpredictable measurement results and more error for both TSOA and PDOA. 
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Chapter 8:  Conclusion and Future Work 
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In this research, the effort was to implement a practical distributed sensor 

network of software-defined radios with the goal of estimating the position of an 

unknown emitter with no a priori information about the emitter relative to the group 

of sensors other than the type of waveform and frequency channel. To effectively 

geolocate an emitter, two main methods, PDOA and TDOA were investigated. With 

PDOA, the strategy was to use the difference in RSSI for multiple pairs of sensors. 

The power-difference results in multiple circles intersecting, with the majority of the 

points converging around the actual location. A grid-density algorithm was used to 

determine where this occurs. For TDOA, the time-difference was determined from 

taking the time-difference between receiver pairs that are synchronized. Due to the 

hardware limitations, this precision was limited to 40 nanosecond resolution. The 

algorithm utilized a two-step process where the linear least squares was computed, 

and then the result was used in an approximate maximum likelihood estimate to 

determine the location estimate. Error analysis was conducted for both algorithms and 

simulations run in MATLAB in which noise variance and emitter/network relative 

distance were varied, and the overall MSE was observed over several iterations, 

which matched the theoretical analysis of the performance of algorithms. A hybrid 

method was developed in which the measured time-difference and the PDOA time-

difference estimate was computed, and determination was made which measurement 

to use for a particular sensor pair. The sensor network was implemented in a 

laboratory environment using the RFnest channel emulator to closely match a field-

test environment. The algorithms were tested on the emulator to study the error 

performance of the geolocation on the actual radios, and there was correspondence in 
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the error performance for both MATLAB and laboratory emulation for the defined 

scenarios. In addition, the choice of network topology (linear or arbitrary) was 

investigated. It was also found that the hybrid algorithm outperforms the standalone 

TDOA and PDOA algorithms on average. 

The complexity of the sensor network and channel environment should be 

explored further, such as adding more radios to the network. It is also worth 

investigating a large-Muscale network over a vast area. Some new challenges over a 

large area of coverage would include inconsistencies in the terrain, and as a result, the 

channel model. Methods of channel equalization should be explored to improve 

PDOA algorithms. It is also important to analyze shadowing effects and multipath on 

the algorithm accuracy and appropriate mitigation techniques, such being able to 

recognize inconsistent measurements. The hybrid algorithm’s recognition of poor 

PDOA data is promising in finding a path forward on various mitigation techniques. 

Furthermore, another layer of complexity is the effect of mobility of the emitter. Fast-

moving emitters will have the doppler-effect, which could affect the time and 

frequency measurements. In this case, it may be important to implement frequency-

difference of arrival (FDOA) to consider these effects [16]. Other combinations of 

geolocation algorithms such as FDOA and AoA (triangulation), should also be 

assessed, compared to the two main range- based algorithms of PDOA and TDOA. 
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