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This dissertation presents work done in the fabrication and characterization

of polymer-based electroadhesives to understand the underlying mechanisms of elec-

troadhesion with the inclusion of soft polymers as the functional surface material.

Electrostatic models for parallel plate and interdigitated electrodes provide insight

into the effect of design parameters on electric fields. However, little work has been

done to model how electrostatic force affect adhesion in soft electroadhesives while

accounting for their mechanical and material properties.

To this end, a basic friction model is presented to describe the critical shear

force for a single electrode electroadhesive. The effect of voltage, contact area, dielec-

tric thickness, and bulk thickness on shear adhesion is explored. It was shown that

within a range of design parameters the basic friction model could accurately predict

the critical shear force and with stiff dielectric layers higher compliance improved

adhesion. However, improved models are required to cover behavior over a larger

parameter space.

To move beyond friction-based modeling, the combined effect of polymer ad-

hesion and electrostatic force on conductive polymer layers is explored through per-

forming JKR tack tests. Tack tests can measure the intrinsic adhesive property of a



polymer, called the critical energy release rate. By performing JKR tack tests with

two different tack systems, a rigid probe contacting a soft elastic surface and a soft

probe contacting a rigid surface, it was shown that the combination of the two ad-

hesion mechanisms can be described as a superposition of the critical energy release

rate of the polymer and electrostatic force.

Using these findings, a design framework is developed to combine gecko adhe-

sives with electrostatics to increase the controllable adhesion range. Textured elec-

troadhesives with arrays of spherical bumps were fabricated and showed an increase in

adhesion up to 20x. The textured electroadhesives were also mounted onto 3D printed

mounts to pick up various objects weighing from 2 g to 60 g. The work presented here

provides a theoretical and design framework for future soft electroadhesives to build

upon for applications from climbing robots to pick and place manufacturing.
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Chapter 1

Introduction

Electroadhesives are capable of actively adjusting adhesion with voltage, enabling a

new method for creating tunable adhesives with applications from robotics to the

medical field. The focus of this dissertation addresses one of the main challenges

related to electroadhesives, namely modeling and characterizing electroadhesives that

use soft polymers as the functional surface. Understanding the effects of soft polymers

on the performance of electroadhesives will inform design and material selection for

future applications.

1.1 Adhesives

Glue, tape, permanent magnets are all common items that function to permanently

or temporarily bond surfaces together. There have been many types of adhesive

mechanisms developed for a wide variety of applications. There are mechanisms

based on vacuum suction [5, 6], magnetics [7–9], sticky viscoelastic polymers [10, 11],

and most recently, gecko-inspired adhesives that use van der Waals to stick [12–15].

Vacuum suction can be unwieldy and heavy, and electromagnets typically require

large power draw. On the other hand viscoelastic polymers, most commonly used

in tapes, and gecko adhesives require little to no power to achieve adhesion. A

common characteristic of tapes and gecko adhesives is that they have set adhesion
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strengths, defined as the force required to break contact, or tack force. The tack

force, particularly along the adhesive’s loading direction cannot be actively controlled

and is largely dependent on the material’s stiffness, the polymer’s surface properties,

functional surface design, and fibrillar design [16–19].

For applications in keeping two bodies permanently or temporarily attached,

modulating the adhesive’s strength is not as important as being sufficiently strong.

However, there are cases in which it is favorable to be able to actively adjust the

tack force. For climbing robots, if the payload exceeds its adhesion strength, a new

adhesive needs to be fabricated and installed on the robot to accommodate for the

larger payload. A tunable adhesive could be used to increase the tack force without

fabricating a new device. Underactuated walking robots could use tunable adhesives

at the interface of their feet and surface to improve walking efficiency or provide

directional movement [20]. Electroadhesives could also be used to replace medicinal

tapes. Medicinal tapes that hold IV lines to patients need significant force to remove

because they are required to securely bond to the skin. The force to remove these

tapes can be traumatic and cause scarring [10, 21]. Being able to actively turn ”off”

the tape’s adhesion could solve that problem. Electroadhesives have the opportunity

to capitalize on these shortcomings because they have the ability to adjust their

adhesion strength with an applied voltage.

Electroadhesives have been used for climbing robots [13, 14, 22, 23], clutches

for human gait assistance [24], and grasping [1, 25–27], Fig. 1.1. For climbing and

grasping the electroadhesive is typically made of a thin flexible plastic with embedded

electrodes, shown in Fig. 1.1B. The dielectric layer in these adhesives is on order
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Figure 1.1: Examples of electroadhesives. 1) Electroadhesive gripper made of soft
stretchable polymers from Shintake et al. [1]. 2) A electroadhesive gripper made
of thin flexible plastic with embedded metal from Grabit [2]. 3) A climbing robot
that uses interdigitated electrodes embedded into a plastic tread to adhere to verti-
cal surfaces, from SRI [3]. 4) A stretchable interdigitated electroadhesives made by
Germann et al. [4].

of tens of microns thick which requires applying several kilovolts to obtain sufficient

adhesion. While several kilovolts are needed to achieve adhesion, it is with low current,

so the power consumption is small. However, this can be difficult to implement

on centimeter-scale robots since high voltages require additional circuitry and high
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A B

Figure 1.2: Diagram of parallel plate (A) and interdigitated electrodes (B) for elec-
troadhesion. The plus and minus sign indicate the electrodes that are attached to the
voltage source and the light gray layer is the dielectric. The lines indicate the electric
fields generated by the voltage potential.

voltage converters. Most electroadhesives are built to sustain only shear forces since

the thin flexible material easily peels when a normal force is applied.

Two conductive surfaces separated by a dielectric is the most basic form of an

electroadhesive, shown in Fig. 1.2A. The adhesion force increases the normal load

between the plates, thereby increasing the frictional force needed to detach the plates

in shear. This has been used in some applications such as an electrostatic clutch or

for turning in small-legged robots [20, 24]. However the parallel plate configuration

requires connecting the attachment surface to the voltage source, which is impractical

for applications in climbing and grasping. Rather, the interdigitated electrode design,

shown in Fig. 1.2B, is more commonly used in electroadhesion. This design allows

for both electrodes to be fabricated within the same substrate. By applying a voltage

between the electrodes, the fringing fields induce charge on the attachment surface

which induces adhesion on both conductive and non-conductive surfaces.
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1.2 Soft Electroadhesives

Traditionally, electroadhesion was utilized in rigid electrostatic chucks to pick up sili-

con wafers [28] or flexible but non-stretchable plastic for climbing robots [13,14,22,23].

However, in recent years, researchers have taken insights from gecko-inspired adhe-

sives to develop flexible and stretchable devices. Low modulus polymers are used

because their compliant nature allows for better conformity to irregular and rough sur-

faces. Compliant elastomers embedded with a nickel-copper mesh were demonstrated

to adhere to a variety of surfaces including cloth and floor tiles [27]. Stretchable

elastomer-based electroadhesives were fabricated and were capable of shear adhesion

while under a pre-strain up to 120% [4]. The authors developed a polymer-based

electroadhesive with sub-micron dielectric thicknesses which obtained shear pressures

up to 80 kPa on glass at 200 V [29].

While work has been done to develop soft electroadhesives, they have not yet

been well characterized based on design parameters, and are rarely compared di-

rectly to theory. Ruffato et al. experimentally optimized the layout of interdigitated

electrodes and found that it qualitatively matched results from finite element simu-

lations [26]. Tellez investigated the relationship between shear adhesion to dielectric

thickness and voltage for their elastomer-based electroadhesive [30]. They compared

their results to the standard electrostatic force equation for parallel plates and found

that shear adhesion varied linearly with applied voltage, which is inconsistent with

the parallel plate equation, which states that force scales quadratically with voltage.

Developing a model will help identify how compliant materials affect shear adhesion

5



and estimate the tack force based on design parameters.

1.3 Energy release rate

Soft polymers have adhesive properties that originate from how their molecular inter-

face interacts with the attachment surface. Their intrinsic material properties (sur-

face energy, elastic modulus, and viscoelastic properties) greatly influence how the

interface fractures. To develop electroadhesives that use soft polymers, it is crucial

to understand how polymer adhesion and electrostatic force combine to affect frac-

ture. However, the combination of these two adhesive forces has not been thoroughly

investigated.

There have been devices that use both dry fibrillar adhesives (gecko adhesives)

and electroadhesion to stick [27, 31, 32]. In [27], it was found that the hybrid device

extended the range of materials and roughness that adhesion can be useful. Recently,

Izadi et al. found that electrostatic force potentially plays a larger role in gecko

adhesion than previously thought [33, 34]. Charge on gecko adhesives can build up

due to contact electrification. However, more work needs to be done to understand

how the combination of the two mechanisms affects adhesion, and the current practice

of measuring tack force is not sufficient for understanding the underlying contact

mechanics.

Tack force depends on the stress distribution of the peeling front. It does not

give the true driving force required to cause cracks to propagate. The driving force

for interfacial fracture, also called critical energy release rate (Gc), is a measure of
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how the molecular interface interacts with the attachment surface. It is independent

of experimental conditions therefore its interfacial strength can be generalized to all

systems. Performing tack tests will also provide important insight on the speed of

crack propagation and can be used to obtain the characteristic crack speed, v∗. The

characteristic crack speed and the critical energy release rate can be used to predict

deformation mechanisms and adhesion strength in different systems [35–38]. The

contact equation from Johnson, Kendall, and Roberts (JKR) is used to estimate the

energy release rate of soft polymers [39]. Describing electroadhesion in terms of its

effect on the energy release rate in a soft polymer system will give insights on how it

affects fracture mechanics.

1.4 Dry and Electroadhesives

Currently, gecko adhesives are limited by the fixed stickiness of their surface and

difficulty in scaling [40]. They have no ability to increase or decrease the adhesion

of their surface; once attached, they can only turn it ”off” through their detachment

mechanism. Their adhesion also does not scale easily in overall device size because

of difficulty in aligning fibrillar arrays and engaging all fibers during the preloading

stage [40].

Electroadhesion can be quickly adjusted by varying the applied voltage. Ad-

ditionally, electrostatic force can provide an electrical preload to improve contact,

which may help improve the scaling of dry adheisves. By combining dry and elec-

troadhesives, it is possible to increase the maximum adhesion force, improve contact,
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and give the ability to tune the stickiness of the device.

There has been some work done to combine the two adhesive mechanisms

[27, 32, 41–43]. In Ruffatto, their device has a fribillar layer for dry adhesion and

a backing layer with electrodes that apply electrostatic force [27,41]. Krahn also uses

a similar stacking method in their electroadhesive device [43]. These papers have

demonstrated that the electrostatic layer provides an additional electrical preload to

increase contact between the surface and the dry adhesive layer. Ruffatto demon-

strated that this increased the maximum load their device can hold on rough surfaces

by up to 5x greater. Though on smooth surfaces such as glass and metal, the benefit of

electroadhesion was not significant and improved adhesion up to 1.1x [27]. The work

done to integrate soft electroadhesives and dry adhesion resulted in applied voltages

in the thousands due to this stacking method. The dry adhesive layers are usually

tens of microns thick which subsequently requires thousands of volts to generate suf-

ficient force. To develop better soft electroadhesives with lower voltage requirements

and a higher range of controllable adhesion, changes in the fabrication and design of

the adhesive should be investigated.

1.5 Outline of Proposal

The proposal is divided into three chapters: a basic friction model for shear adhesion,

characterizing electroadhesion in terms of energy release rate, and developing a design

framework that combines dry and electroadhesion for a larger controllable adhesion

range.
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Chapter 2 presents a basic friction model to estimate the critical shear strength

of an all-polymer electroadhesives based on design parameters, and is largely based

on the work published in [44]. This chapter also discuss the effects of compliance on

the adhesion, which is not predicted by the friction model. Chapter 3 characterizes

electrostatic force in terms of energy release rate for two different probe tests. It also

hypothesizes that the energy release rate from polymer adhesion and electrostatic

force are independent, and that the total energy release rate, for a system where the

two mechanisms exists, is a superposition of the individual forces. Chapter 4 presents

a design framework to combine dry and electroadhesion while maximizing the range

of forces that can be actively controlled by electrostatics. Chapter 5 summarize the

results of this work.
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Chapter 2

Modeling non-patterned

2.1 Introduction

A majority of the work in this chapter is taken from “A comparison of critical shear

force in low-voltage, all-polymer electroadhesives to a basic friction model” [44].

The work presented in this chapter compares a basic friction model to the adhe-

sion of polymer-based electroadhesives due to electrostatic force. This chapter exam-

ines how adhesion in shear is affected by electrostatic parameters such as the applied

voltage, dielectric thickness, and contact area. It also explores how the complianace

of the soft polymer contributed to viscoelastic effects that influenced adhesion not

predicted by the friction model.

Electroadhesion uses an applied electric field to generate electrostatic force be-

tween surfaces, offering a simple method to control adhesion. However, electroadhe-

sives have not yet been well characterized based on design parameters and are rarely

compared directly to theory. Ruffato et al. experimentally optimized the layout of

interdigitated electrodes and found that it qualitatively matched results from finite

element simulations [26]. The same group separately compared the performance of

different electroadhesive shapes [26]. Tellez et al. compared the relationship between

shear adhesion to dielectric thickness and voltage for their polymer-based electroad-

hesive [30]. They found that shear adhesion varied linearly to applied voltage, which
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is not consistent with the standard electrostatic force equation that states that force

scales quadratically with voltage.

One challenge toward modeling polymer-based electroadhesives is that they are

often designed with interdigitated electrodes to adhere to non-conductive surfaces.

The electric field between the electrodes polarizes the non-conductive surfaces and

generates an electric field [45, 46]. While this architecture is more practical in appli-

cations, it also makes these surfaces more difficult to model. To simplify the devices

in this work, a single electrode with a dielectric was electrically connected to a con-

ductive surface to generate electrostatic force, shown in Fig. 2.1.

In this paper, fully conductive polymer strips are used so that a parallel plate

model can help elucidate the relationships between the critical shear force (defined as

the force at which the adhesive separates from the substrate) and design parameters

like applied voltage, dielectric thickness, and contact area. The adhesive’s thickness

is studied as well. Though it is not included in the parallel plate model, thickness

is relevant for compliant adhesives because it influences the viscoelastic dissipative

mechanism in interfacial fracture [47]. In addition, this paper builds on previous

work by the authors [29] and uses fabricated electroadhesives with thin polymer di-

electrics (< 2 µm) resulting in operating voltages below 100 V, an order of magnitude

lower than demonstrated in previous work. The consequences of using a thin, higher

modulus dielectric to lower voltage requirements are also examined. Finally, failure

mechanisms for these electroadhesives were studied using high speed video and are

discussed relative to the validity of the proposed frictional model.
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Figure 2.1: Basic operating principal for single electrode electroadhesion. A voltage
is applied between a conductive elastomer with a dielectric layer and the substrate.

2.2 Operating Principle

The critical shear force supported between an adhesive and the substrate can be

defined by friction or viscoelastic losses from deformations within the adhesive layer,

which depend on the shear stresses that the interface can support [48]. The model

presented and tested in this paper is a frictional model based on the force normal to the

substrate resulting from the applied voltage. In a parallel plate model, electrostatic

force exists between oppositely charged plates separated by a dielectric layer and air

gap, shown in Fig. 2.1. Air gaps exist because of surface roughness and stiffness in

the plates that prevent contact. The electrostatic force between the parallel plates

can be described with the following equation,

FN,EA =
1

2
ε0V

2

∫∫
1

(g(x, y) + d√
εr

)2
dx dy (2.1)

where FN,EA is the magnitude of the electrostatic force normal to the substrate,

ε0 and εr are the permittivity of free space and the relative dielectric constant respec-
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tively, V is the voltage applied, g(x, y) is the air gap between the dielectric and the

substrate at location (x, y), and d is the dielectric thickness.

In a limiting case, it can be assumed that the electroadhesive is compliant and

comes in close contact with the surface without any air gaps; the equation can then

be simplified as followed,

FN,EA =
1

2
ε0εrA

V 2

d2
. (2.2)

This equation also assumes that the apparent overlap area A is the true area

over which the plates overlap. Each of these assumptions will be examined in greater

detail below. In this paper, the critical shear force, the point which the electroadhesive

slips, is of interest. It can be defined as the following,

FS,EA = FN,EAµf (2.3)

where FS,EA is the critical shear force and µf is the coefficient of static friction

(COF). While µf can change with applied normal load for elastomer surfaces [49],

this work assumes a constant coefficient of static friction due to the fact that rela-

tively high loads are applied by the electrostatic force. To measure the COF for the

electroadhesives in this paper, a sliding friction test was performed on ITO glass four

times each for three different electroadhesives at three different normal loads (10 g,

20 g and 50 g). The measured COF over these trials was 2.2± 0.6.

Combining Eqn. 2.2 and Eqn. 2.3 suggests that the critical shear force is

proportional to the square of the applied electric field. Eqn. 2.4 shows that any

13



changes to the voltage or dielectric thickness should affect the critical shear force

quadratically while area and dielectric constant affect this force linearly. In addition,

a smaller dielectric thickness should require a proportionally smaller voltage to achieve

the same electric field and supported shear force.

FS,EA =
1

2
ε0εrA

V 2

d2
µf (2.4)

2.2.1 Air gaps and true contact area

A number of limits to the basic model (Eqn. 2.4) exist in practical use of elec-

troadhesives. Variable gaps can be introduced into the electrostatic model when the

electroadhesive does not conform to the substrate. All surfaces have micro and macro

roughness and uneven topography that introduce non-uniform air gaps, or surface de-

fects, which reduce the electrostatic force. Debris and particles can create air gaps in

the interface, or the adhesive themselves can be warped resulting in larger distances

between the surface.

The relative effect of these defects depends on the dielectric thickness and the

gaps. The area that encompasses these air gaps have insignificant contribution to

the electrostatic force when g(x, y) >> d√
εr

. For example, an electroadhesive with a

dielectric thickness of 1µm and a relative dielectric constant εr = 3.15 [50] will exhibit

a 9 % reduction in force if 10 % of the electroadhesive is separated from the substrate

by a 1 µm air gap. At distances past 1µm the force effectively scales linearly to the

fraction of area in direct contact. It is interesting to note that a larger dielectric
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Figure 2.2: View of the interface between the electroadhesive and an ITO-coated glass
slide. Portions of the electroadhesive are in close contact (dark gray) while others
are separated by air gaps (light gray) due to surface and edge defects. The dark gray
areas are defined as the true contact area, At. The dashed lines indicate the apparent
overlap area, Ap.

thickness implies that the same air gaps will affect the cumulative electrostatic force

less than smaller dielectric thicknesses. An electroadhesive with d = 10µm would

only see a 1 % reduction in force if 10 % of the electroadhesive is separated from the

substrate with a 1 µm air gap. However, the tradeoff for a thicker dielectric is that

higher voltages are required to achieve similar shear forces as illustrated by Eqn. 2.4.

Another way to consider the effect of variable air gaps and other anomalies on

electroadhesives is through apparent and true contact area. The apparent contact

area, Ap, is the geometric area of the electroadhesive that overlaps the substrate, but

there is no guarantee that this overlap area contributes to overall electrostatic force
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due to air gaps. In this work, the true contact area, At, is observed through a camera

pointed at the interface of the electroadhesive and substrate surface.

An example of contact between an electroadhesive and glass is illustrated in a

photograph of the overlap area, Fig. 2.2. Areas separated by large air gaps (light

gray) are distributed across the electroadhesive along with areas in close contact (dark

gray). The light gray area was considered to not be in close contact (i.e. does not

contribute to adhesion), because from experience it was observed that if the surface

did not have dark gray areas, then the electroadhesive could not support a measurable

shear force. Therefore, the dark gray areas were considered to be the true contact

area where adhesion occurs. Unless otherwise noted in the experimental results below,

results were gathered for electroadhesives that were visually confirmed with a camera

to be in close contact at the start of testing (as close as possible to 100 % dark gray).

2.2.2 Dielectric breakdown

Shear force is also limited by the maximum electric field that can be applied across the

dielectric layer. While the first contribution of this work is to characterize electroad-

hesion in comparison to theory, the second is to demonstrate electroadhesion at lower

voltages for simpler integration of electroadhesives for robotics and manufacturing.

Parylene C was chosen as a dielectric because conformal deposition of sub-micron

layers can be achieved at room temperature. Parylene C has a breakdown field of

220 V/µm [50] which is similar to other common materials used in electroadhesives

like Mylar C (245 V/µm with a thickness of 23µm [51]) and PDMS (250 V/µm at
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14µm thickness [52]). Most of the results in this work were gathered for applied

fields below breakdown. However, breakdown can still occur because the dielectric

layer thins as the device deforms when shear forces are applied. Experiments in which

breakdown occurred were rare and excluded from the results.

Given these practical limitations, the maximum critical shear force that the

electroadhesive can sustain is given in Eqn. 2.5 where Ebd is the breakdown field and

At is the true contact area.

FS,EA,max =
1

2
ε0εrAtE

2
bdµf (2.5)

2.3 Experimental setup

2.3.1 Fabrication

As shown in Fig. 2.1, the electroadhesives used in this study are made from a con-

ductive material and a surrounding dielectric. The conductive material used in this

work (cPDMS) was prepared by mixing Sylgard 184 polydimethylsiloxane (PDMS)

with a carbon black filler (Alfa Aesar, carbon black, acetylene, 50% compressed). To

mix the cPDMS, 10 wt% carbon black (relative to PDMS) was stirred with 70 wt%

hexane (relative to PDMS) to minimize agglomerations of carbon black. PDMS (10:1

weight ratio of base to curing agent) was then added to the carbon black/hexane

mixture and this final mixture was stirred for at least 1 hour using a magnetic stirrer

at room temperature.

Before curing the cPDMS on a glass slide, a monolayer of tricholoro(octadecyl)silane
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was deposited on the slide. The monolayer of silane was found to be important for

a smooth contact surface on the cPDMS and easy release. To deposit a monolayer

of silane on glass, the slide was cleaned with acetone, methanol, isopropanol, and

DI water. Then it was treated in 100 W O2 plasma (March Jupiter III O2 plasma

system) to promote adhesion. Finally, it was placed in a vacuum chamber with a few

drops of silane and pumped down to 30 kPa and held there for at least 3 h.

The cPDMS mixture was then poured onto the glass slide, squeegeed to a de-

fined thickness, and cured. Due to evaporation of the solvent, the choice of curing

temperature and time were critical to fabricate electroadhesives with minimal curling.

To make flat electroadhesives that were thicker than 500 µm, the cPDMS was cured in

an oven at 60 ◦C for 16 h. To make electroadhesives thinner than 500 µm the cPDMS

was cured at 120 ◦C for 15 min. These times and temperatures were experimentally

determined to minimize curling. Once fully cured, the samples were then cut with

a razor blade and coated with parylene C (SCS Parylene Deposition System Model

2010). Dielectric thicknesses were measured by profilometry (Tencor P-20) on a glass

slide used as a control during parylene deposition. A small section of each sample

was covered with a glass slide during the deposition to later interface with the voltage

source.

2.3.2 Test setup

A schematic of the test setup is shown in Fig. 2.3 and an image of the setup used is

shown in Fig. 2.4. For each experiment, the electroadhesive was placed on a glass slide
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coated with indium tin oxide (ITO) with an overlap area defined by the experiment

(nominally 50 mm2). Before beginning any tests, a PDMS strip was used to lift off

debris from the adhesive’s surface. A portion of the electroadhesive not in contact

with the glass slide was press fit into a polymer clamp along with a 44 AWG wire

used to apply voltage to the device. Shear loads were then applied to the sample by

moving the polymer clamp with a linear actuator from Thorlabs (PT1-Z8). Shear

forces were measured using an ATI Nano17 6-axis F/T transducer.

V

Substrate

Device Clamp
Initial Pre-load

FS,EA

Camera

θ

Figure 2.3: Schematic of the experimental setup to measure the critical shear force
of an electroadhesive. The substrate is fixed while the electroadhesive is pulled in
shear by a linear actuator. A high-speed camera records the changes in contact at
the interface during the experiment.

A 50 g weight was used to mechanically pre-load the electroadhesive (corre-

sponding to a normal pressure of approximately 10 kPa). A voltage was then applied

between the pad and the ITO-coated glass slide and an image of the interface was used

to confirm that the electroadhesive was in contact with the glass slide as illustrated

in Fig. 2.2.

Shear loads were applied to the electroadhesive by pulling the clamp at a speed

of 0.2 mm/s until either the adhesion failed or the devices broke due to forces exceeding
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Figure 2.4: A photograph of the experimental setup. The electroadhesive is attached
to the force sensor through a clamp and wire. The negative lead is connected to the
ITO glass and the positive lead goes to the electroadhesive. A motorized Thorlabs
stage is used to pull the electroadhesive in shear at a constant speed of 0.2 mm/s.

their mechanical strength. It was also important that the force applied was parallel

to the slide surface. The angle of attack, shown in Fig. 2.3 as θ, was set to zero.

Experimental data showing a typical force versus displacement curve during a

shear adhesion experiment is displayed in Fig. 2.5. A high speed camera (Photron

Fastcam Mini UX100) was placed beneath the slide and focused on the interface to

record contact and failure as depicted in Fig. 2.5. This curve defines the adhesive

compliance, similar to that described for bio-inspired dry adhesives [53]. For the

electroadhesives in this study, this compliance curve was typically not linear. A

higher slope was often seen at the beginning and delamination at the front edge of

the electroadhesive led to a lower slope until failure. All failures were sudden and
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complete in less than 60 ms.
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Figure 2.5: Force versus displacement data for a typical shear loading experiment.
The force was sampled at 10 Hz with a displacement speed of 0.2 mm/ sec. The bottom
insert shows how the true contact area (dark gray) changes at various points during
the experiment. Ap shows the section of the device that is nominally in contact with
the attachment substrate. The free section is not clamped or over the substrate so
it is free to displace, and the clamp section indicates the part of the electroadhesive
that is held by the clamp.

2.3.3 Experimental Error

The results below demonstrate that deviations in critical shear force from a single

experiment can be quite large; these deviations range from 0.2 N to 2 N. Several

factors influenced the performance of electroadhesives: surface defects, curling, and
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uneven loading. Surface defects consist of particles and indentations on the adhesive’s

surface. Dust can be trapped between the dielectric layer and the elastomer during

deposition of the dielectric. Indentations are generated from voids within the elas-

tomer when the solvent evaporates. Curling can also create gaps at the edges of the

adhesive’s interface. Fabricating cPDMS with hexane, a solvent, often caused curl-

ing in the device due to internal stress. Curling prevented the edges of the adhesive

from fully contacting the surface because in some cases the electrostatic force was

not strong enough to counteract the internal stress. Surface defects and curling low-

ered the true contact area of the adhesive and provided initial cracks for fractures to

propagate. Uneven loading caused by slight rotation of the clamp in the plane of the

electroadhesive can also lead to deviation in performance. Skewed devices unevenly

distributed the shear stress at the fracture front, which led to premature failure.

2.4 Results

To compare the performance of all-polymer electroadhesives with thin dielectrics to

the expected value from the frictional theory in Sec. 2.2, three parameters were

varied: the dielectric thickness, applied voltage, and contact area. The thickness of

the cPDMS was also varied to better understand how geometric parameters affect the

critical shear force.
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2.4.1 Voltage

As discussed in Sec. 2.2, the critical shear force supported by the electroadhesives

should vary quadratically with applied voltage. For this test, the electroadhesive

cPDMS thickness was nominally 600µm, the dielectric thickness was 0.8 µm, and the

overlap area was 50 mm2. Applied voltage was varied in 10 V increments from 10 V

to 60 V (corresponding to initial applied fields of 12.5 V/µm to 75 V/µm). Three

separate electroadhesives were tested three times each for voltages below 40 V, and

four different electroadhesives were tested once for voltages at 40 V and above. The

higher supported loads caused wrinkling in the dielectric layer resulting in lower

critical shear force upon reuse. Wrinkling will be discussed further in Sec. 2.5.
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Figure 2.6: Critical shear force measurements versus voltage. Electroadhesives un-
der test had an adhesive thickness and dielectric thickness of 600 µm and 0.8 µm,
respectively.

Critical shear force versus applied voltage is shown in Fig. 2.6, and the largest
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supported force was 9.2 N (corresponding to 180 kPa) at 60 V. The red ‘Theory’ line

was calculated from Eqn. 2.4 with A = 50 mm2, d = 0.8 µm, εr = 3.15 , and µf = 2.2.

Although there was variability in the results, it is clear that the critical force increases

quadratically with voltage as predicted. It was visually observed in these tests that at

voltages below 40 V the true contact area varied between 50 % to 70 % of the apparent

area. At 10 V for example, no contact was observed for some samples, yielding no

measurable adhesion. The variation in contact area can be attributed to surface

defects and the bending rigidity of the adhesives. At low voltages, the electrostatic

force could not overcome those factors which resulted in reduced contact.

2.4.2 Dielectric thickness

Critical shear force should also vary quadratically with the dielectric thickness ac-

cording to Eqn. 2.4. To study this scaling, electroadhesives with a cPDMS thickness

of 600 µm were tested with an applied voltage of 40 V. Dielectric thicknesses studied

ranged from 0.38µm to 1.4 µm resulting in applied fields varying from 105 V/µm to

29 V/µm, still well below breakdown for parylene. At least four electroadhesives were

tested once for each dielectric thickness.

For dielectric thickness greater than 0.7 µm, decreasing the thickness was shown

to increase shear forces quadratically as expected. However, dielectric thicknesses

below 0.7 µm did not follow theoretical predictions; the electroadhesives underper-

formed. One hypothesis is that the adhesives are prematurely failing because of a

lower effective modulus. An effective modulus for the tensile load can be calculated as
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Figure 2.7: Critical shear force as a function of dielectric thickness. These electroad-
hesives had an adhesive thickness of 600 µm and were tested at 40 V.

Eeff = (2Eptp +Ectc)/(2tp + tc) where Ep is the modulus of parylene (2.8 GPa) [50],

Ec is the modulus of the cPDMS electrode (approximately 1 MPa) [54], tp is the pary-

lene thickness, and tc is the cPDMS thickness (600µm). This effective modulus varies

from 4.5 MPa for the thinnest dielectric devices to 14 MPa for the thickest dielectrics.

Compared to higher modulus devices, lower modulus adhesives require larger strain

to obtain similar shear forces. This increases the Poisson’s effect, which contributes

to multi-direction shear forces at the delamination front, resulting in faster failure.

2.4.3 Area

The critical shear force should vary linearly with contact area, Eqn. 2.4. Experi-

ments were run using electroadhesives with an average adhesive thickness of 650 µm,
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Figure 2.8: Dependency of adhesion force on apparent contact area. The voltage
applied was large enough such that the true contact area was approximately equal
to the apparent contact area. These electroadhesives were tested at 40 V with an
adhesive thickness and dielectric thickness of 650 µm and 0.9 µm, respectively.

a dielectric thickness of 0.9 µm and an applied voltage of 40 V. A square contact area

was maintained for each experiment with contact areas ranging from 12.25 mm2 to

200 mm2. For each experiment it was visually confirmed that the adhesives were as

close as possible to full contact with the surface at the start of the experiment. It was

observed that the average true contact was (90± 4) % of the apparent area. Some

devices did not yield full contact because of warped edges or surface defects. Five

devices were tested once for each area.

It is shown in Fig. 2.8 that below 125 mm2 adhesion varies linearly to apparent

contact area. The trend, however, begins to deviate beyond 100 mm2, yielding critical

shear forces that are significantly larger than predicted. Higher critical forces are likely

enabled by a larger ratio of adhesive lateral dimension to thickness that can reduce

the likelihood of edge crack propagation as a method for failure [35]. This will be
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Figure 2.9: Critical shear force measurements versus cPDMS thickness. Electroadhe-
sives were tested at 25 V and had a dielectric thickness of 1.1 µm.

discussed further in Sec. 2.5.

2.4.4 Adhesive Thickness

Previous work on compliant adhesives has demonstrated that the critical shear force

varies with material and geometric properties, including parameters like thickness

and width. The thickness of the adhesive (or adhesive backing) can play a large

role in critical force, though it is not accounted for in Eqn. 2.4 [47, 55–58]. To

better explore this relationship, electroadhesives were fabricated with five different

cPDMS thicknesses ranging from 150 µm to 600 µm. The dielectric layer for all of

the electroadhesives was 1.1 µm and the overlap area was kept constant at 50 mm2.

For each thickness, at least four devices were tested once at 25 V. The tests were

conducted at 25 V because at higher voltages the thinner adhesives supported shear

loads that exceed their ultimate tensile strength.
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Figure 2.10: Critical shear force measurements for all samples versus expected elec-
trostatic force from the model in Eqn. 2.2. The dashed line represents a weighted
fit to the data that matched the model (black dots). Data marked in red represent
deviations from the model as identified in previous sections.

Fig. 2.9 demonstrates that thinner devices supported far larger critical shear

forces. The thinnest adhesives (150µm) supported shear forces up to 3.3 N, which

was 3 times greater than the forces obtained by the thickest adhesives (600 µm), 1 N.

Similar to the large area adhesives, higher critical forces are likely enabled by a larger

ratio of adhesive lateral dimension to thickness. This is discussed further in Sec. 2.5.

2.5 Discussion

2.5.1 Basic friction model validity

The results indicate that electroadhesives fabricated using a single cPDMS electrode

and parylene dielectric match the basic friction model in Eqn. 2.4 for samples tested

with dielectric thicknesses d > 0.7 µm, area A < 125 mm, and cPDMS thickness t '
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600µm. A weighted fit to this data shown in Fig. 2.10 results in a coefficient of friction

of approximately 2.1 which matches the measured coefficient of friction, 2.2± 0.6.

Deviations from this model as described in Sec. 2.4 are indicated by red x’s

in Fig. 2.10. Red x’s above the dashed line performed better than predicted by

the friction model. We hypothesize that this improved performance is due in part

to the geometry of the adhesive, specifically the ratio w/h where w is the adhesive

length and h is the adhesive thickness. Crosby et al. proposed that the geometric

confinement defined by this ratio would lead to different failure mechanisms [35].

Fig. 2.11 plots the inverse of the effective modulus multiplied by the adhesive length

1/(Eeff ∗ w) versus the w/h ratio, where h is taken as the cPDMS thickness. The

black dots are the devices that follow the friction model in Fig. 2.10 and the red x’s

represent the devices that deviated. There is a clear clustering of results in this plot

and electroadhesives that performed better than predicted by the model are shown

far out along the w/h axis.

Electroadhesive indicated by red x’s below the dashed line in Fig. 2.10 failed

before expected by the model. They are also represented in the red x’s above the

black dots in Fig. 2.11. These cases were defined by dielectric thicknesses < 0.7 µm.

The lower effective modulus in these devices result in larger displacements applied

by the test setup for the same shear force. These higher strains result in signifi-

cant deformation in the electroadhesive at the edge of the glass slide as shown in

Fig. 2.12(C). The contraction of the electroadhesive due to Poisson’s ratio provides

additional stresses at the interface leading to failure.

It should also be noted that these high strains also ultimately lead to failure in
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Figure 2.11: Clustering of experimental results based on geometry and effective mate-
rial modulus of the cPDMS/parylene composite. The error bars represent the uncer-
tainty in the measurement of the parylene and cPDMS thickness, 0.02 µm and 25 µm,
respectively.

all electroadhesives that deviate from the basic friction model (Fig. 2.12(A/C/E)).

This figure compares the electroadhesive interface in its initial state, under load,

and just prior to failure. These images from the captured high speed video were

used to determine how true contact area changed as higher shear loads were applied

to the electroadhesive. Columns A and B are electroadhesives with a 200 µm and

600µm cPDMS layer respectively. The 600 µm thick device shows obvious edge crack

propagation at failure while the 200µm thick device in column B shows significant

deformation due to large applied strain and a different failure mechanism. This

electroadhesive example exhibited healing cracks and detachment waves, similar to

Schallamach waves [59,60] indicated by the red arrows. Columns D and E show failure

in a 75 mm and 200 mm electroadhesive respectively. Electroadhesives with smaller
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apparent contact areas that matched the model showed the edge crack propagation

while the larger area devices showed detachment waves. The waves, a form of sliding

friction phenomenon seen in carbon-filled rubbers, were observed at high strains and

have been attributed to increasing shear loads [60, 61]. Sliding friction is a form of

viscoelastic dissipative mechanism that reduces the energy to propagate the crack

front. This allows the interface to sustain larger shear loads [48, 62]. Sliding friction

was also seen in the thin dielectric example d = 0.42 µm in Column C because it

experienced high strains.

2.5.2 Repeatability

One drawback to decreasing the dielectric thickness and use of parylene as a dielectric

material is reduced mechanical robustness. Thinner layers are more susceptible to

wrinkling and small particles penetrating the surface. Wrinkling occurred because

of a large differential in strain deformation between the parylene and cPDMS layer,

the former plastically deforms and the latter elastically deforms. Parylene has a

tensile modulus of 2.8 GPa and a yield strength of 55 MPa. cPDMS has a tensile

modulus of 1 MPa. After 2 % strain, parylene will begin to plastically deform [50];

cPDMS can return to its relaxed state without significant permanent deformation

for strains up to 80 % strain. Electroadhesives typically experience strains above

20 % strain before failure. When the applied stress is relaxed, the cPDMS will relax

to its original state causing the thin parylene layer to compress and wrinkle on the

surface. This wrinkling is shown in Fig. 2.13. The wrinkled parylene layer increases
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roughness on the cPDMS surface, preventing close contact upon reuse, which can

result in decreased performance. If large sections of the contact area are wrinkled,

subsequent shear adhesion suffers due to lower contact.

Replacing the dielectric with a more compliant material, such as PDMS, could

improve robustness in the future. As mentioned earlier, at 14µm thick PDMS has

a breakdown voltage of 250 V/µm, which is similar to parylene C. However, using

PDMS would increase the voltage requirement because it is difficult to achieve sub-

micron thick layers. Lower thicknesses can be obtained with PDMS [63]; however,

there may be pinholes. In addition, use of PDMS will also result in large adhesive

forces when no voltage is applied. If a large adhesion differential is desired, other

materials might be preferred.

Future electroadhesives may also take advantage of the work in Bartlett et al.

that used fabrics to prevent significant extension or contraction in the adhesive plane

while maintaining compliance in the direction normal to the adhesive interface [16].

This approach could also solve the problem of large stresses orthogonal to the direction

of shear force due to Poisson’s effect.

2.5.3 Application

In this work, adhesion is achieved by applying a voltage between a single cPDMS elec-

trode and a conductive surface. This simple setup is limited to applications where the

surface is conductive and can be tethered to the voltage source. However, the results

from this paper show that electroadhesion can be a versatile mechanism that allow
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users to easily tailor the maximum critical shear force the adhesive can achieve by

adjusting design parameters such as dielectric thickness, contact area, and adhesive

thickness. Use of variable applied electrostatic force also provides users the option to

actively tune adhesion over large ranges by adjusting the voltage. A device with a

contact area of 50 mm2 and dielectric thickness of 1µm, can theoretically obtain crit-

ical shear forces from 0 N to 75 N (or 0 kPa to 1500 kPa) for voltages between 0 V and

220 V, given Parylene’s dielectric strength of 220 V/µm. While gecko adhesives do not

require any external power to operate, they cannot easily change adhesion strength.

Tunable adhesives can be advantageous in applications such as climbing, turning for

small legged robots or pick and place in manufacturing [20,22,23,64].

It is important to note that dielectric thicknesses used in this paper are small

relative to previous work [4,26,30]. Most electroadhesives require kiloVolts to obtain

similar shear pressures shown in this paper because their dielectrics are tens of mi-

crons thick. Sub-micron dielectrics can be used to reduce electrical components for

high voltage converters by lowering the voltage requirement for adhesion. However,

in the electroadhesives designed for this work, the benefits of sub-micron dielectric

diminish as the thickness decreases past 0.7 µm. Below 0.7 µm the increase in adhe-

sion was marginal and thinner dielectrics reduced the robustness and repeatability of

electroadhesives.

While this model was able to predict the critical shear force for an electroad-

hesive device, it was limited to a small range of design parameters. Furthermore it

was demonstrated that compliance affects adhesion however the basic friction model

does not predict or explain why compliance affects adhesion. To develop a more
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general model to predict the effect of electrostatic force in soft electroadhesives while

accounting for compliance, a different approach will be taken in the next chapters.
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Figure 2.12: Comparison of true contact area during testing for devices with different
adhesive thickness, dielectric thickness, and apparent contact area. The row labeled
eFS,EA

is the engineering strain at the critical shear force. (A-B) are devices with
adhesive thicknesses of 200 µm and 600 µm, respectively. C) has a thin dielectric of
0.42µm. (D-E) have apparent contact areas of 75 mm2 and 200 mm2, respectively.
The images for (D-E) have been digitally scaled down to have the same dimensions
as (A-C). The first row is the initial state of the device’s contact area (dark areas)
before loading. The second row is the image of the device under load, and the third
row is the image of the contact area at the critical shear force. The red arrows indicate
areas where interfacial sliding was observed.

35



 A B

40 µm1 mm1 mm

C

Figure 2.13: A) SEM image of a sample with no wrinkling. B) A SEM image of a
sample with significant wrinkling after being plastically deformed. C) Close-up of the
wrinkling. Image credit: Aaron Gerratt.
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Chapter 3

Modeling Electrostatic Force with Energy Release Rate

Controllable adhesives have material properties that allow them to easily bond and

debond to surfaces with an external stimulus. They have been developed for dis-

assembly and repair of bonded components, painless removal of medical tapes on

wounds, and sutureless adhesive films in surgery. [65–68]

There are many types of controllable adhesives, some use temperature to break

the polymer structures for debonding, others use polymers that react to pH or UV

light to bond and debond [66–68]. Another method to control adhesion is electroad-

hesion (EA) in which electrostatic force is used to increase adhesion of soft conductive

polymers. Electroadhesives have been demonstrated for adhesion on multiple types of

substrates, gripping in soft actuators, and turning in small legged robots. [1,4,20,27]

The basic principle of electroadhesion relies on using an applied electric field

to generate electrostatic force between the adhesive and the surface. The increased

normal load also increases the holding force of the adhesive. The strength of the

electrostatic force depends on contact area, applied electric field, and polarizability of

the attachment surface [26, 30, 44]. Soft EAs are typically made of elastomers so the

behavior of their adhesion without an applied voltage can be described by Johnson-

Kendall-Roberts (JKR) theory, which relates the material property and compliance of

the polymer to adhesion. [36,38,39] Therefore, it is important to understand the con-
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tribution of both electrostatic force and the polymer’s material properties to adhesion

and delamination of soft EAs.

The effects of compliance, material properties of the polymer, and chemical

bonds at the interface have been well characterized using JKR theory, however, little

work has been done to examine the added effect of introducing electrostatic force.

Hays looked at how charged plastic particles adhere to surfaces due to electrostat-

ics and van der Waals [69]. However, they had difficulty parsing out the effect of

electrostatics in adhesion of their particles, in part, because of contact electrification,

where the surface charge of the particles change after contact with the surface. Tian

modeled electrostatic force on a particle as a Hertzian load and incorporated it into

the JKR equation. [70] They modeled the electrostatic force using the method of

image charges, where particles of radii around 100µm were treated as point charges

with the force acting at the center of the particle. This can be used for spheres with

sufficiently small radii and contact radii, however for this paper we are interested in

contact with spheres that are orders of magnitude larger and with finite contact areas

where the method of image charge is not valid. [71]

Here, we set out to develop an analytical model for soft electroadhesives by

investigating the combined effect of electrostatic force and polymer adhesion in con-

ductive elastomers. We first describe electrostatic force in terms of critical energy

release rate to more easily incorporate this effect into JKR theory. Then we inves-

tigate the contribution of electrostatics to adhesion in conductive elastomers. Sec.

4.1 will lay out how electrostatic force is introduced into the JKR framework and its

consequence. Sec. 3.2 describes the experimental setup for the electrostatic tack tests
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and Sec. 3.3 analyzes the results of the tack tests and includes a discussion of their

implications.

3.1 Theory

3.1.1 Rigid sphere, elastic half-space

Critical energy release rate (Gc) is a measure of the driving force required to break the

bonds (chemical or mechanical) responsible for interfacial adhesion. Linear fracture

analysis can be used to calculate the driving force for fracture for a rigid sphere in

contact with an elastic half-space; assuming a linear elastic response, the driving force

for crack propagation is given by

G =
(P ′ − P )2

4πR

dC

da
(3.1)

where G is the energy release rate, P ′ the Hertzian load, P the measured load, a

the contact radius, R the radius of the sphere, and C the compliance of the elastic

half-space, shown in Fig. 3.1A. [36] Assuming there is no friction at the interface

(i.e. no lateral stresses at the edge of contact) the compliance of the elastic half-space

becomes [36]

C0 =
1

2E∗a
(3.2)
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Figure 3.1: A) Schematic of a tack system where a rigid sphere contacts a elastic
half-space. R is the radius of the sphere, P is the measured load on the probe, and
a is the contact radius. B) Schematic of the tack system for a rigid probe contacting
an elastic half-space, with the added option to apply a voltage. The rigid probe is
a hollow aluminum sphere with a radius, R, of 6.35 mm and a dielectric coating, d,
1.5 µm thick. A voltage, V , can be applied between the conductive probe and ITO
glass.

where E∗ is the effective modulus of the half-space which is related to Young’s mod-

ulus, E, through

E∗ =
E

(1− ν2)
(3.3)

and ν is the Poisson’s ratio which is assumed to be 0.5 for the elastomers used in this

paper. By combining Eqn. 3.1 and Eqn. 3.2 for the case where the contact radius

is significantly smaller than the probe radius (a/R → 0), energy release rate can be
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expressed as

G =
(4E∗a3/R− P )2

8πE∗a3
(3.4)

The critical energy release rate at fracture can be described as

Gc =
2PC
3πR

(3.5)

where Pc is the load at which adhesive failure occurs [36].

The electrostatic force between a conductive plane and sphere is typically de-

rived using the method of image charges. The sphere is reduced to a point charge

with a force acting at the center and the conductive plane is replaced with an image

charge with the same but opposite charge as the original sphere. This is valid for

when the sphere is sufficiently far away from the plane and small enough such that

it can be treated as a point charge without any consideration of geometry. Tian

used this method to describe the electrostatic force on the adhesion of small plastic

particles to surfaces [70]. This assumption is not valid in our system because the

spherical indenters that were used are orders of magnitude larger than the distance

it is away from the conductive plane, in which case, geometry and contact area can-

not be ignored. Crowley derived the electrostatic force for a conductive sphere and

plane, at close contact (d/R → 0), shown in Fig. 3.1B. [71] The change in electric

field due to the geometry of the sphere was taken into account, and the force can be

approximated by the following equation
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Pv =
επV 2

ζ + ζ2
(3.6)

where ε = ε0εr and ε0 and εr are the permittivity of free space and the dielectric

constant of the insulating layer, respectively, V is the applied voltage between the

conducting sphere and plane, and ζ = d/R, where R is the radius of the sphere and d

is the distance between the sphere and plane, and in the case of contact, the dielectric

thickness. Eqn. 3.6 can be further simplified for when R >> d, since ζ2 approaches

zero, such that the equation can be simplified to

Pv =
επRV 2

d
(3.7)

In a tack system where both the indenter and elastic surface are made of rigid ma-

terials, adhesion forces due to surface energy and van der Waals are extremely low,

and in our system, adhesion could not be detected at the force ranges of mNs. An

applied electrostatic force in this system dwarfed any adhesive force from surface en-

ergy or van der Waals, so the tack force, when voltage was turned on, was assumed

to be solely due to electrostatics. And in a traction free system this tack force can

be predicted by the electrostatic force given by Eqn. 3.7, such that Pc = Pv.

The adhesive force due to electrostatics can then be described in terms of crit-

ical energy release rate by combining Eqn. 3.5 and Eqn. 3.7, giving the following

expression,

Gv =
2εV 2

3d
(3.8)
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Figure 3.2: A) Schematic of the tack system where a rigid sphere contacts a compliant
layer made of cPDMS with a thin PDMS acting as the dielectric layer. The glass
probes with radii of 3, 4 and 5 mm were used to contact cPDMS layers with thicknesses
of 0.8 mm and 2.1 mm. The dielectric layer was 7 µm thick and a voltage was applied
to the glass probe and ITO glass slide. There was no need to apply the voltage directly
to the cPDMS layer because the cPDMS was electrically connected to the ITO slide
through contact. B) Schematic of the second tack system to test the superposition
theory, Eqn. 4.1. A compliant probe made of cPDMS with a radius of 4 mm was
brought into contact with an ITO glass slide with a 7 µm thick PDMS dielectric. The
height of the probe was 4 mm.

showing that Gv scales with applied voltage squared and the inverse dielectric thick-

ness.
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3.1.2 Rigid sphere, compliant layer

To introduce polymer adhesion into the system, a compliant layer with a finite thick-

ness replaced the rigid elastic half-space, the schematic is shown in Fig. 3.2A. With

a rigid indenter contacting soft elastomer layer, adhesion at the interface due to van

der Waals forces and viscoelastic dissipation can be measured. It was assumed that

viscoelastic dissipation occurred only near the crack tip and that there were no bulk

viscoelastic effects. When contacting compliant layers, finite size effects will change

the compliance of the system based on the ratio of the contact radius to the thickness

of the polymer layer (a/h) [37]. In addition, contact between the probe and polymer

layer will have lateral stresses at the interface, so including a full friction boundary

condition is a closer approximation to the real system. By taking into account finite

size effects, the compliance of the polymer layer can be approximated by the following

expression:

C =
1− ν2

2Ea

(
1 +

(
0.75

a/h+ (a/h)3
+

2.8(1− 2ν2)

a/h

)−1)−1
(3.9)

Combining Eqn. 3.1 and Eqn. 3.9 and assuming ν = 0.5, the driving force for fracture

can be calculated for every point during the JKR tack test with the following equation

G =
0.022(P ′ − P )2

Ea3

[
0.75 + 2(a/h) + 4(a/h)3

(0.75 + a/h+ (a/h)3)2

]
(3.10)
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where P ′ is the modified Hertzian load with a full friction boundary condition,

P ′ =
16Ea3

9R
(1 + 0.33(a/h)3) (3.11)

When the crack actually propagates through the interface, energy is expended by

creating new surfaces and through viscoelastic loss near the crack tip. The lower

limit of G during an advancing crack is set by the thermodynamic work of adhesion,

w = γA + γB − γAB. The surface energy of the probe and surface is γA and γB,

respectively, and γAB is the free energy of the AB interface. At very low crack

velocities, where viscoelastic dissipation can be ignored, G approaches w. However, at

crack velocities where viscoelastic losses at the crack tip will contribute to the driving

force for fracture, the energy to propagate crack growth can increase significantly.

These viscoelastic losses are dependent on the crack velocity, v, where v = −da/dt.

The rate of crack propagation is determined by a material dependence of G and v,

which can be expressed by the following empirical relationship,

G = Gc

(
1 +

( v
v∗

)n)
(3.12)

where v∗ is the characteristic crack speed and n is a material dependent parameter.

For receding cracks (i.e. increasing contact radius) the upper limit of G is the

thermodynamic work of adhesion. Viscoelastic dissipation also contributes to the

energy release rate of a receding crack, Ga, such that it can be expressed as [38]
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Ga = w(1 + Φ(a, v)) (3.13)

Where Φ(a, v) is the viscoelastic dissipation which is dependent on the contact radius,

a, and crack velocity, v.

Electrostatic force operates at a different length scale compared to van der

Waals or chemical bonds that make polymers adhere to surfaces. Therefore, it is

assumed that electrostatic force is independent of the mechanisms that govern the

adhesive property of the polymer. Consequently, the driving force for fracture of the

polymer, Gc|0V = Go at zero voltage, is unaffected by electrostatics; furthermore, in

a tack system with electrostatic force, the critical energy release rate of the system is

hypothesized to be a superposition of the polymer’s and electrostatic’s critical energy

release rate, such that

Gc = G0 +Gv (3.14)

where Gc, Go, and Gv are the critical energy release rate of the system, polymer, and

electrostatic force, respectively. Combining Eqn. 4.1 and Eqn. 3.7 together, reveals

how an applied voltage is hypothesized to affect Gc

Gc = G0 +
2εV 2

3d
(3.15)
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3.2 Experimental Setup

Standard JKR tack tests were conducted with spherical indenters made of differ-

ent materials: hollow aluminum balls, glass hemispheres, and conductive elastomers

hemispheres. For all the probes, the tack test procedures were the same. The inden-

ters were attached to the end of a laser-cut acrylic cantilever beam that was mounted

to a 6-axis ATI nano17 force sensor, shown in Fig. 3.3. The tack force experienced

by the probe was measured as a moment by the force sensor. For all experiments,

the linear stage PT1-Z8 from Thorlabs was used to bring the probe into contact with

the surface (i.e. ITO glass slide from Sigma Aldrich or a conductive polymer layer)

at a speed of 6.0 µm/s. A 10 mN mechanical preload was reached before unloading at

6.0 µm/s. Due to unreliable readings from the linear stage, the displacement of the

probe was not measured. There was an approximate 2 s wait time between loading

and unloading the probe, this was due to backlash in the linear stage. To apply elec-

trostatic force, a voltage was applied between the probe and the contacting surface

using a Keithley 2410 sourcemeter before loading and kept on until unloading was

complete.

3.2.1 Rigid sphere, elastic half-space

To verify Eqn. 3.7 and describe electrostatic force in terms of critical energy re-

lease rate, two rigid materials were used so the only measureable adhesive force was

from electrostatics, Fig. 3.1B. Hollow aluminum balls with a radius of 6.35 mm from

McMaster-Carr were used as the rigid indenters and a 2 mm thick ITO glass slide
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Figure 3.3: Schematic of the experimental setup. A conductive probe, in this example,
a sphere, is attached to the end of a cantilever beam. The beam is attached to a 6-
axis force sensor that measures the torque exerted on the beam. The force sensor is
connected to a linear motor (not shown) that moves the sensor and cantilever beam
vertically to bring the probe in and out of contact with the ITO glass.

from Sigma Aldrich was the elastic half-space.

Parylene C, a dielectric, was used to insulate the indenter when contacting

the ITO slide. Parylene C was selected since it did not exhibit any measureable

adhesion when in contact with glass. It also has a tensile modulus of 69 MPa which

is significantly stiffer than any typical elastomer, therefore, deformation of the layer

was ignored in the measurements [50]. To promote adhesion of the dielectric layer

to the metal balls, the metal balls were submerged in a 100:100:3 volume ratio of

DI water, IPA, and A-174 silane from Sigma Aldrich for 30 min, before coating with

Parylene. Afterwards, the spheres were air dried using N2 gas and placed inside of a

SMS Parylene coater and coated with a layer of dielectric. A dielectric thickness of

1.5 µm was measured on a test glass slide that was placed in the chamber with the

probes. There was an uncertainty of approximately 0.1 µm in dielectric thickness due

to the deposition process. This was based on profilometry measurements at various

points on the test glass slide using a P-20 profilometer from Tencor.
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The finished probes were then attached to the cantilever beam and adhesion

was measured by pressing the aluminum probe into the ITO glass slide. At least

three trials were taken for voltages ranging from 0 V to 140 V at 20 V increments.

This was done with two separate probes fabricated in the manner described.

3.2.2 Rigid sphere, compliant layer

Eqn. 4.1 was tested by conducting JKR tack tests on two different adhesive systems,

one with a rigid probe contacting a soft polymer layer and the other a compliant

probe contacting an elastic half-space. For the first system, a rigid probe contacting

a compliant layer was used to measure the combined effect of electrostatic and polymer

adhesion, shown in Fig. 3.2A. Glass half-ball lenses from Edmund optics were used

as indenters to contact a layer of conductive polymer. Glass hemispheres were used

so that the contact area could be recorded with a Nikon D7100 camera body with

a MX-6 lens on the InfiniMax from Edmund optics. The video was processed using

Matlab code to extract the contact radius during each trial. The probes had radii of

3, 4 and 5 mm. The glass probes were coated with a conductive transparent layer of

ZnO2 so that they could be electrically connected to the voltage source. The contact

area was viewed from its flat side. To prepare the glass for atomic layer deposition

(ALD), it was cleaned with acetone, methanol, and isopropanol, then rinsed with DI

water and air dried with N2 gas. The TFS 500 ALD coater from Beneq was used to

deposit approximately 20 nm of ZnO2 at 150 ◦C. A multimeter was used to verify its

conductivity; the oxide layer had a resistance of approximately 2 kΩ.
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The conductive polymer layer (cPDMS) was prepared by mixing Sylgard 184,

a type of polydimethylsiloxane (PDMS), with a carbon black filler from Alfa Aesar,

(carbon black, acetylene, 50 % compressed). To mix the cPDMS, 7.5 wt % carbon

black (relative to PDMS) was mixed with PDMS (10:1 weight ratio of base to curing

agent) using the Thinky mixer. Before curing the cPDMS on a glass slide, a layer

of tricholoro(octadecyl)silane from Sigma Aldrich was deposited on the slide. The

layer of silane was found to be important for a smooth contact surface on the cPDMS

and for easy release. To deposit a layer of silane on glass, the slide was cleaned

with acetone, methanol, isopropanol, and DI water. Then it was treated in 50 W O2

plasma using the March Jupiter III O2 plasma system to promote adhesion. Finally,

it was placed in a vacuum chamber with a few drops of silane and pumped down to

30 kPa and held there for at least 30 min. The cPDMS mixture was then poured into

a mold on a the glass slide, squeegeed to a defined thickness, and cured at 60 ◦C for

16 h. Samples were made with thicknesses of 0.8 mm and 2.1 mm.

Once fully cured, the samples were then plasma bonded to a 7 µm thick layer of

PDMS. This layer of non-conductive PDMS acted as a dielectric, electrically insulat-

ing the cPDMS from the conductive glass indenter. Plasma treatment was conducted

in the Plasmod chamber at 30 W for 1 min. The thin layer of PDMS (10:1 ratio)

was prepared by mixing it with hexane from Sigma Aldrich (1:1 weight ratio) using

the Thinky mixer. It was then spin coated onto a glass slide that had previously

been treated with silane using the same procedure described above. The spin cycle

was first set to 400 RPM for 30 s to allow the solution to evenly spread over the

whole slide then ramped up to 6000 RPM for 90 s. Then it was cured in an oven
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at 60 ◦C for 16 h. This yielded a 7 µm layer of PDMS which was measured using an

optical interferometer, the TMS-1200 from Polytec.

The cPDMS/PDMS layer was placed on an ITO glass slide and a voltage was

applied to the ITO slide and the glass probe to generate electrostatic force, shown in

Fig. 3.2. Note that the cPDMS layer is electrically connected to the ITO slide through

contact so the distance between the positive and negative terminal is separated by

the 7µm thick dielectric. Tack tests, described in Sec. 3.2.1, were conducted with

the glass probes contacting the soft layer. At least four trials were taken for voltages

ranging from 0 V to 450 V at 150 V increments.

3.2.3 Compliant sphere, elastic half-space

The second tack system that was used to verify Eqn. 4.1 was composed of a compliant

hemispherical indenter contacting an elastic half-space. The compliant probe was a

cPDMS hemisphere with a radius of 4 mm and the elastic half-space was an ITO glass

slide with a 7µm thick PDMS dielectric for electric insulation. The cPDMS probe

was made with the same recipe for the compliant layer discussed in Sec. 3.2.2. A

negative mold made of PDMS was casted around a 4 mm glass half-ball lens from

Edmund optics with a layer of silane for easy demolding. The mold was cured at

60 ◦C for 16 h, the glass hemisphere removed, and a layer of silane was deposited on

the mold using the same procedure described in Sec. 3.2.2. Uncured cPDMS was

pressed into the PDMS mold, degassed to remove air bubbles, and cured at 60 ◦C for

16 h. Then it was demolded and plasma bonded to a ITO glass slide and mounted
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onto the end of a cantilever beam. The contacting surface (ITO glass) was electrically

insulated by spin coating a 7µm thick layer of PDMS on top of the ITO, using the

same spin recipe described in Sec. 3.2.2.

3.3 Results and Discussion

3.3.1 Rigid sphere, elastic half-space

Fig. 3.4 shows the load versus time of a tack test for an aluminum sphere contacting

an ITO glass slide. Within the force resolution of mNs, without an applied voltage,

adhesion could not be detected between the rigid surfaces, Fig. 3.4A. With an applied

voltage adhesion can be detected, showing that the tack force measured in this system

is dependent only on electrostatics. The tack force (Pc), at point C in Fig. 3.4B, can

be plotted as a function of applied voltage squared, shown in Fig. 3.5. It is clear

that Pc scales with V 2 and can be predicted by Eqn. 3.7. This demonstrates that

Eqn. 3.7, which is for the non-contact, long range electrostatic force, can be used to

estimate the adhesive force due to electrostatics, such that, Pc = Pv.

For an elastic half-space where R >> a only the tack force and probe radius

is necessary to calculate the driving force for fracture, Eqn. 3.5. Fig. 3.5 can be

replotted in terms of the driving force for fracture, displayed in Fig. 3.6. The figure

shows that Gc scales with V 2, and this relationship can be predicted by Eqn. 3.8.
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Figure 3.4: A) Example of the force experienced by the rigid aluminum probe over
time. A) Shows the force over time of a JKR tack test without an applied voltage.
The loading phase (a) is when the probe approaches the glass slide at 10µm/s until
contact and a mechanical preload (b) of 6.0 mN. The probe is then unloaded at
the same speed until contact is broken (c). The force recorded when contact is
broken is attributed to the adhesive force due to electrostatics, in this case, zero. B)
Demonstrates the force experienced when 100 V was applied to the probe. Here an
initial increase in force before contact is due to electrostatics. The peak, Pc, observed
at (c) is considered to be the tack force due to an applied voltage.
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Figure 3.5: Tack force plotted against the applied voltage squared for a conductive
sphere contacting a rigid ITO glass slide. The theory line is based on Eqn. 3.7 and
the shaded area is the error due to a 0.1 µm uncertainty in the dielectric thickness.
This an average of data taken from two identical spheres tested at least three times
at each applied voltage.

3.3.2 Charging and dielectric breakdown

When using electrostatic force, the magnitude of the applied electric field and the

dielectric material’s propensity to store trapped charges can cause a buildup of charge

in the dielectric layer. Charging will reduce electrostatic force through a secondary

opposing electric field and thereby, lower the measured tack force. Consecutive trials

with an applied voltage of 100 V were carried out to test if charging effects were

present in this system. As seen in Fig. 3.7, with 16 consecutive trials without any

break between each, the tack force did not reduce. Additional precautions were taken

to prevent charging by randomizing the order of the applied voltage; this prevented

charging from becoming a systematic error.
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plotted as a function of the applied voltage squared. The theory line is based on
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Figure 3.7: Repeated tack tests with a metal probe at 100 V with a dielectric thickness
of 1.5 µm. There was no wait time between each trial
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Figure 3.8: Example of a JKR tack test without an applied voltage.

With electrostatic force, the range of Gc can be actively tuned by varying the

applied voltage. The lower limit of Gc (i.e. V = 0 V) is set by the adhesive property of

the compliant layer and the upper limit, on the breakdown voltage of the dielectric.

At breakdown voltage, electrical insulation fails and a current passes through the

dielectric between the conductive surfaces, without a voltage difference, electrostatic

force disappears.

3.3.3 Validity of linear elastic assumption

Fig. 3.8 shows the loading and unloading cycle of a JKR tack test without an ap-

plied voltage for a rigid glass probe contacting a conductive elastomer layer. It was

observed that the slope of the loading cycle is linear, indicating that the linear elastic

assumption necessary for the JKR theory was valid for this adhesive system.
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The elastic modulus of the compliant layer can be estimated with Eqn. 3.16,

which assumes that during loading, adhesive forces are turned “off”, and the relation-

ship between the measured load and contact radius cubed can be described by the

Hertz equation for contact between a sphere and elastic half-space.

P =
16Ea3

9R
(3.16)

The elastic modulus is obtained by adjusting the modulus to get the best fit between

Eqn. 3.16 and the loading curve. An average elastic modulus of 3.6 MPa was obtained.

With the estimated modulus at 0 V and the measured load and contact radius,

the energy release rate can be calculated with Eqn. 3.10 for all points during the

tack test. The energy release rate is plotted against the contact radius in Fig. 3.9.

During the loading cycle, G is constant and then begins to rise as unloading starts.

It reaches the critical energy release rate at which the crack begins to propagate and

the contact radius decreases. G continues to increase as the crack propagates due to

viscoelastic dissipation at the crack tip. The constant Ga during the loading phase

for tack tests without an applied voltage is approximately 0.004 N/m.

3.3.4 Driving force for interfacial fracture

The tack tests for different applied voltages are shown in Fig. 3.10. Applying an

electrostatic force into the system increases the contact radius before fracture occurs;

a maximum increase of 80 µm in contact radius was observed. The force experienced

by the probe at the beginning of loading is tensile due to electrostatic attraction.
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Figure 3.9: Example of a JKR tack test plotted in terms of energy release rate versus
contact radius without an applied voltage. G during loading is constant while for
unloading it increases due to viscoelastic dissipation.

Despite increasing initial tensile force between the surfaces prior to contact, all tests

reached the same mechanical preload of 10 mN. The slope of the loading curve also

increased with voltage, this corresponds to a lower estimated elastic modulus. This

will be addressed later in Sec. 3.3.6.

Gc was determined for tack tests with different probe radii and compliant layer

thicknesses at different applied voltages. Fig. 3.11 shows that Gc scales with V 2

for different probe radii on a 2.1 mm thick compliant layer. The driving force for

fracture due to the polymer’s adhesive properties, Go, is approximately 0.02 N/m.

By applying an electrostatic force, the driving force for fracture of the whole system,

Gc, which includes the effect of polymer adhesion, increased to 0.2 N/m at 450 V,

a 10x improvement. A higher Gc could be achieved with larger applied voltages,
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Figure 3.10: Example of JKR tack tests different applied voltages with a 5 mm radius
probe on a 2.1 mm thick compliant layer. The color bands indicate the standard
deviation of at least 4 trials at each applied voltage. The initial force at the start of
the tack test shifts towards tensile force (negative) with increasing voltage because of
electrostatic attraction. Before contact, there is electrostatic attraction between the
probe and substrate which pulls on the cantilever beam, registering a initial tensile
force at contact. A mechanical or compressive preload of 10µN is kept the same for
all the experiments, regardless of the initial tensile force.

however, voltages larger than 450 V had a higher rate of dielectric breakdown.

A linear fit of the experimental data, using Go =0.02 N/m as a constant, shows

that Eqn. 3.15 can be used to predict the driving force for fracture with a non-

dimensional fitting parameter, c1 = 0.38, modifying Gv. This fitting parameter,

however, is not specific to this set of experimental data. Instead of varying the probe

radius, a 4 mm glass probe was used to contact compliant layers with a thicknesses of

0.8 mm and 2.1 mm, shown in Fig. 3.12. A second tack system with a 4 mm compliant

probe contacting an ITO glass slide is also plotted in the same figure, green stars. A
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Figure 3.11: Critical energy release rate as a function of applied voltage squared for
varying probe radius on a 2.1 mm thick cPDMS layer. The PDMS dielectric was
7 µm thick. The green dash line is a linear fit of the experimental data with Go as
the average Gc|V=0 =0.03 N/m, i.e. the driving force for fracture due to polymer
adhesion.

linear fit of the experimental data with a constant Go =0.02 N/m in Eqn. 4.1 yields

the same fitting factor of c1 = 0.37.

The superposition of electrostatic and polymer adhesion on critical energy re-

lease rate was demonstrated with different probe radii, compliant layer thicknesses,

and a secondary tack system. And the contribution of electrostatic to the driving

force for fracture in elastomers can be predicted by Gv ∗ c1 where c1 = 0.38.

3.3.5 Driving force for receding cracks

Electrostatic force does not just affect the driving force for interfacial fracture; it can

be observed from Fig. 3.14 that electrostatics also affect the energy release rate for
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Figure 3.12: Critical energy release rate as a function of applied voltage squared for
varying compliant layer thicknesses with 4 mm radius glass probes, circular dots. The
green stars are experimental data from a 4 mm radius cPDMS probe contacting an
ITO glass slide with a 7µm thick PDMS dielectric. The green dash line is a linear fit
of the experimental data with Go as the average Gc|V=0 =0.03 N/m.

a receding crack (loading cycle). A constant Ga can be calculated from Fig. 3.14 by

averaging G during the mechanical loading portion of the cycle. It is assumed that the

thermodynamic work of adhesion and viscoelastic dissipation during a receding crack

remain constant for different applied voltages, called Gw = Ga|V=0V . Previously, it

was shown that the contribution of electrostatic force to the critical energy release rate

can be expressed as a superposition of the different adhesive mechanisms, implying

that electrostatic force is independent of polymer adhesion. Ga, then, may also be

a superposition of Gw and Gv. Fig. 3.14 plots the relationship between Ga and V 2.
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Figure 3.13: Example of a JKR tack test plotted in terms of energy release rate
versus contact radius without an applied voltage. G during loading is constant while
for unloading it increases due to viscoelastic dissipation.

Gw was measured to be 0.02 N/m. Plotting the modified Eqn. 4.1 such that

Ga = Gw +Gvc1 (3.17)

where Go is replaced with Gw and Gc with Ga, the theory line is a good match with

the experimental data. This shows that the effect of electrostatic force on energy

release rate is constant during a JKR tack test and can be quantified by Eqn. 3.8.

3.3.6 Elastic modulus

Earlier it was noted that the slope of the JKR loading curve, Fig. 3.10, changes with

voltage. A modulus based on that slope can be obtained using Eqn. 3.11 and plotted

against voltage, black points. Eqn. 3.11 assumes that adhesive forces are turned off
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Figure 3.14: Relationship between the energy release rate for a receding crack and the
applied voltage squared. The red dashed line is the linear fit based on the experimental
data in Fig. 3.12 with a fitting factor, c1, of 0.38. The green dashed line is the linear
fit based on the average Ga during the loading phase with a fitting factor, c2, of 0.34.

and clearly, as shown earlier, electrostatics affects the energy release rate during the

loading cycle. However, since the effects of electrostatic are constant during a receding

crack and can be quantified by Eqn. 3.8 then its contribution can be eliminated by

subtraction and the energy release rate due to polymer adhesion can be recovered.

The following expression is used to isolate the energy release rate due to polymer

adhesion, assuming a constant Ga:

Gw = Ga −Gvc1 (3.18)

Gw can then be inserted into a rearranged version of Eqn. 3.10 to calculate the

load for when no electrostatic force is present.
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Figure 3.15: Effect of electrostatic force on the loading curve described with the
estimated elastic modulus as a function of applied voltage. The black circles are the
estimated elastic modulus based on the experimental data without any modifications.
The red circles are the adjusted modulus from the calculated the load which was based
on the energy release rate data with the contribution of electrostatic force subtracted.

P = P ′ −
[

(G−Gv)Ea
3B−1

0.022

]1/2
(3.19)

where B = 0.75+2(a/h)+4(a/h)3

(0.75+a/h+(a/h)3)2
. The elastic modulus at 0 V is used and the contact

radius used to calculate G was kept the same. Loading portion of the JKR tack

test without an applied voltage can be recovered, and the newly estimated elastic

modulus of the estimated P and a3 plot is shown in Fig. 3.15 as red dots. The

change in modulus is due to electrostatic force and not a change in the material

property of the compliant layer.
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Figure 3.16: Effect of electrostatic force on the relationship between energy release
rate and crack velocity, for a 5 mm radius glass probe contacting a 2.1 mm thick
compliant layer. The dashed black lines are the predicted curves using Eqn. 3.12
with n = 0.8 and varying to v∗ to obtain the best fit curve with linear regression.

3.3.7 Energy release rate for advancing cracks

The change in energy release rate during crack propagation is affected by viscoelastic

dissipation at the crack tip, which is velocity dependent. The energy release rate can

be plotted against the speed at which the crack propagates during stable fracture, Fig.

3.16. Gc is the value of G right before fracture begins. While Eqn. 3.8 can explain

the increase in Gc due to an applied voltage, it does not account for the change in

slope of the energy release rate compared to crack velocity.

The effect of electrostatics on the kinetics of crack propagation can be examined

by fitting Eqn. 3.12 to the experimental data in Fig. 3.16. The best fit for the material

parameter, n, at 0 V was 0.8. To fit the experimental data with an applied voltage,
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Figure 3.17: Effect of electrostatic force on the relationship between the character-
istic velocity and applied voltage squared. This contains data from 4 mm radius
glass probes contacting compliant layers with 0.8 mm and 2.1 mm thicknesses and a
4 mm radius cPDMS probe contacting an ITO glass slide.

n = 0.8 was kept constant and the characteristic velocity, v∗, was varied to obtain

the best fit for the relationship between energy release rate and crack velocity, shown

as the dashed lines in Fig. 3.16.

Fig. 3.17 reveals that the characteristic velocity scales with V 2. For small scale

viscoelasticity, where viscoelastic effects are present only near the crack front, v∗ is

a function of the characteristic stress relaxation time (t∗) of the compliant layer and

the length of the cohesive zone (z), expressed as v∗ = z/t∗. The characteristic stress

relaxation time can be calculated by measuring the time it takes the polymer to reach

63.5% of the steady state stress in a creep test with a constant strain. A constant

strain creep test was conducted on a cPDMS ASTM 412 dogbone sample scaled down

by a factor of 4. The characteristic stress relaxation time was 3.6 s over 3 trials. The
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Figure 3.18: Effect of electrostatic force on the cohesive zone with a characteristic
relaxation time of 3.6 sec.This contains data from 4 mm radius glass probes contacting
compliant layers with 0.8 mm and 2.1 mm thicknesses and a 4 mm radius cPDMS
probe contacting an ITO glass slide.

cohesive zone can be plotted against V 2, Fig. 3.18, showing that electrostatic force

expands the effective cohesive zone around the contact area, requiring more energy

to propagate fracture.

These results prove the hypothesis that critical energy release rate of a polymer-

based electroadhesive can be described as the superposition of polymer adhesion and

electrostatics. Additionally, the effect of electrostatic force on the characteristic crack

velocity can be attributed to the expansion of the cohesive zone, and its relationship

with voltage can be characterized by experimental data. The mechanics of adhesion

and detachment for spherical electroadhesives can be fully predicted by using Eqn.

3.15 and Eqn. 3.12 for any voltages. These models will be useful for understanding
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the deformation behavior of electroadhesives; however, additional work is necessary

to translate these findings into real world applications.
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Chapter 4

Textured Electroadhesives

Polymer-based electroadhesion and gecko adhesion have been developed over the years

to address similar applications, such as, pick and place, climbing robots, and grasping

[1, 12, 14, 27]. Gecko adhesives, also called dry adhesives, use the inherent stickiness

of a polymer to attach to surfaces, and often times use fribrillar features to improve

compliance to surfaces and enhance adhesion [12,17,40].

Soft electroadhesives use stretchable conductive polymers to adhere to surfaces

through electrostatic force [4,20,26]. The adhesives are made of soft elastic polymers

because their compliance can help obtain close contact with surfaces in order to ensure

a high electrostatic force. Because soft electroadhesives are made of polymers, the

inherent stickiness of the material contributes to the total adhesion of the electroad-

hesive. This naturally leads to ideas of combining dry adhesives with electrostatics.

While dry adhesives have shown that they are able to achieve high adhesive force

for small contact areas and are robust in real world applications, they are limited by

the fixed stickiness of their surface. They have no ability to increase or decrease

the adhesion of their surface; once attached, they can only turn it ”off” through

their detachment mechanism. Their adhesion also does not scale easily in overall

device size because of difficulty in aligning fibrillar arrays and engaging all fibers

during the preloading stage [40]. Electroadhesion can be instantaneously adjusted by
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varying the applied voltage. And electrostatic force can provide additional electrical

preload to improve contact, which may help improve the scaling of dry adheisves. By

combining dry and electroadhesives, it is possible to increase the maximum adhesion

force, improve contact, and give the ability to tune the stickiness of the device.

There has been some work done to combine the two adhesive mechanisms [27,

41–43,72]. In Ruffatto, their device has a fribillar layer for dry adhesion and a backing

layer with electrodes that apply electrostatic force [27,41]. Krahn also uses a similar

stacking method in their EDA device [43]. These papers have demonstrated that the

electrostatic layer provides an additional electrical preload to increase contact between

the surface and the dry adhesive layer. Ruffatto demonstrated that this increased the

maximum load their device can hold on a variety of surfaces by up to 5x greater

on some surfaces. These work done to integrate soft EA and dry adhesion resulted

in applied voltages in the thousands due to this stacking method. The dry adhesive

layers are usually tens of microns thick which subsequently requires thousands of volts

to generate sufficient electrostatic force.

Here, we present a simple fabrication process and design framework which create

electroadhesives that can operate at hundreds of volts instead of thousands while

increasing the range of controllable adhesion through textured surfaces and multi-

tiered contact areas. We were able to achieve an increase of adhesion up to 20x.

We also attach textured electroadhesives to a Kuka iiwa robot arm to demonstrate

the potential for pick and place applications. Sec. 4.1 lays out the equations used to

calculate electrostatic force and its relation to contact splitting. Sec. 4.2 describes

the fabrication process and experimental setup and Sec. 4.3 goes over the results of
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the tack tests and discuss their implications. Application of the soft electroadhesives

are shown in Sec. 4.3.4.

4.1 Theory

4.1.1 Spherical Probe

It was shown in Chapter 4 that electrostatic force and polymer adhesion act as inde-

pendent adhesive forces which can be described by the following equation:

Pc = Po + Pv (4.1)

where Pc, measured in a tack test, can be separated into two force terms: Po, the nom-

inal tack force where there is no electrostatic force present, and Pv, the electrostatic

force. Tack force is not an intrinsic property and can change based on experimental

parameters, such as but not limited to, unloading speed, type of contacting surface,

preload, and radius of the probe. While tack force is not a parameter that can be

directly compared between different tack systems, it can give an estimate of the real

force an adhesive can withstand.

For a polymeric spherical probe contacting an elastic half space, Fig. 4.1A, where

the contact radius is significantly smaller than the probe’s thickness (a/h → 0), the

tack force can be calculated based on the following JKR equation,

Po =
3

2
πRGo (4.2)

71



d

d
V

V

2a

cPDMS

A

B

ITO
glass

ITO
glass

R

P

R

P

PDMS
dielectric

cPDMS

PDMS
dielectric

h

h

2a
c

c

Figure 4.1: Schematic of a textured electroadhesive contacting a conductive surface.
A) R is the radius of the sphere, P is the measured load on the probe, a is the contact
radius, h is the height of the probe, and d is the diameter of the probe. B) The bumps
are sections of a larger sphere where R is the radius of curvature, c is the chord length,
h is the height, and d the dielectric thickness.
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where R is the radius of the sphere and Go is the critical energy release rate of the

polymer.

The electrostatic force between a conductive sphere and conductive plate, as

described by Crowley [71], can be approximated as

Pv =
επRV 2

d
(4.3)

where ε = ε0εr and ε0 and εr are the permittivity of free space and the dielectric

constant of the insulating layer, respectively, v is the applied voltage, and d is the

distance between the sphere and plane, and in the case of contact, the dielectric

thickness.

The total tack force of a conductive sphere contacting an elastic half space can

be written as a combination of Eqn. 4.2 and Eqn. 4.3 to get the following,

Pc =
3

2
πRGo +

επRV 2

d
(4.4)

Eqn. 4.4 shows that the total tack force is a function of the spherical probe’s radius,

and increasing the radius will increase electrostatic force. A range of tack forces can

be obtained by controlling for the applied voltage, with the floor being Po and the

ceiling, Pvmax + Po, where the electrostatic force Pvmax depends on the maximum

voltage that can be applied without dielectric breakdown. A ratio can be used to

evaluate the adhesion range of a particular electoradhesive by dividing the maximum

electrostatic force with the nominal tack force, Pvmax/Po. This gives a measure of
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how high the ceiling is for the controllable adhesion range relative to the floor.

4.1.2 Multiple Spheres

A single probe cannot hold much force even with electrostatics and a large radius.

However, the range can be further improved by adding more spherical contacts, re-

ferred to as bumps, shown in Fig. 4.1B. Gecko adhesives have long used arrays of

pillars to improve adhesion and contact for uneven surfaces; and it has been shown

that for arrays with spherical contacts, the tack force increases at a n1/2 rate [17]. For

this paper, the array of bumps are sections of larger spheres, where the bumps have

the same radius of curvature, R, of the spheres, so that Eqn. 4.4 can still be used.

Since, electrostatic force is independent of polymer adhesion and assuming the

distance between the bumps are large enough that the electric fields at each bump

are independent of each other, it is hypothesized that the electrostatic force increases

linearly with the number of bumps. The total tack force for an array of bumps can

then be written as,

Pc = n1/2Po + nPv (4.5)

Eqn. 4.5 shows that even though the nominal adhesion will increase with the bump

array, electroadhesion will increase at faster rate. The controllable adhesion range

can be written as the following,

Pvmax
Po

≈ εV 2

Gc

n1/2 (4.6)
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Figure 4.2: Schematic of a multi-tiered textured electroadhesive contacting a conduc-
tive surface. The first tier area is the spherical bump, highlighted in blue. The second
tier area is the area around the bump, highlighted in red.

which reveals that the range can be extended by simply increasing n.

4.1.3 Pull-in effect

Another electroadhesive design that can increase the range of forces is by fabricating

devices with multi-tiered contact areas. This can be achieved by using the same

textured structures shown previously, but adjusting the height between the 1st and

2nd tier areas, Fig. 4.2. Adhesion for the 1st tier is governed by the array of bumps

and can be predicted by Eqn. 4.5. However, as the electrostatic force increases and

the distance between the 2nd tier area and the contacting surface shrinks, there is a

voltage threshold where instability occurs and the gap closes. This effect is commonly

called the pull-in effect and is often observed in electrostatic gap actuators.

Once the 2nd tier pulls-in and contacts the surface, the contact area is no

75



longer in the form of an array of circular areas and Eqn. 4.5 cannot be used to predict

electroadhesion. The electrostatic equation depends on the design of the 2nd tier

area. The area could be a second array of spherical bumps or flat pillars. However,

in this paper, the 2nd tier area is the area around the array of bumps; so once pulled-

in, the contact can be approximated as a parallel planes in contact, separated by

a dielectric. The electrostatic equation for parallel plates can then be be used to

estimate the force, written as

Pv =
εAV 2

2d2
(4.7)

where A is the contact area of the 2nd tier and d is the dielectric thickness.

4.2 Fabrication and Experimental Setup

4.2.1 Fabrication

Two electroadhesive designs were fabricated: a single bump device with varying ra-

dius of curvatures and an array of spherical bumps. Both devices were made from

acrylic molds. Casted acrylic sheets, quarter inch in thickness, were purchased from

McMaster-Carr and milled using the Roland MDX-540 Mill, Fig. 4.3. It was im-

portant to use sharp ball-end mills specialized for milling acrylic and to set the tool

path intervals and cut-in amount to 10 µm to ensure a smooth mold. After milling

the molds, they were vapor polished with acetone. Vapor polishing was done by

evaporating acetone on a hot plate in a closed glass container with the mold inside.
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The same process detailed below was used to fabricate both electroadhesive

designs, shown in Fig. 4.3. The conductive polymer, cPDMS, was made according to

the recipe described in Chapter 3.2.2, then mixed with hexane at a 1:2 weight ratio.

The polymer-solvent solution was mixed in the Thinky 310 for 1 min at 2200 RPM.

The solution was then pipetted into the acrylic molds and degassed. The cPDMS was

mixed with a solvent in order to reduce the viscosity of the polymer so that air bubbles

would not form in the cured device or near the surface of the mold. This was an issue

for electroadhesives that had a large bump array, since the small bumps would trap

air bubbles when the cPDMS was too viscous. After degassing, the polymer-solvent

solution was cured in the oven at 80 ◦C for at least 10 min to evaporate the solvent

and cure the cPDMS. The solvent added volume to the polymer mixture, but after it

evaporated the amount of polymer left in the mold did not fully fill it. So a second

layer of uncured cPDMS, without any solvent, was spread on top of the partially filled

mold and sandwiched with a silanized glass slide. It was then cured in the oven at

80 ◦C for at least 30 min.

After curing, the electroadhesive was released from the mold and a PDMS di-

electric layer was spin-coated on top. The PDMS was made with a 10:1 base to curing

agent ratio and then mixed with hexane at a 1:1 weight ratio. The polymer-solvent

solution was poured on top of the electroadhesive and spun in the WS-400BZ spin

coater by Laurell. A two-step spin cycle was used; first, it was spun at 400 RPM for

30 sec to spread the PDMS/hexane across the entire surface of the electroadhesive,

then spun at 6000 RPM for 1 min to obtain a thin layer of PDMS. The device was

then cured in the oven at 80 ◦C for 12 hr. A 6 µm thick PDMS was measured on a
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Figure 4.3: Fabrication process for a textured electroadhesive. A) The acrylic mold
was milled in the Roland MDX-540. B) Then mold was vapor polished with ace-
tone and the cPDMS/hexane mixture was poured into the molds. C) The mixture
was degassed and cured at 80 ◦C. D) Another layer of cPDMS without solvent was
spread on top of the partially filled molds and sandwiched with a silanized glass slide
and cured at 80 ◦C. E) The textured device was then removed and a thin layer of
PDMS/hexane was spin coated on top of the device and cured at 80 ◦C for at least
16 h.
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curved bump using the confocal microscope, the LSM 800 by Zeiss.

4.2.2 Experimental Setup

To evaluate the effect of different curvatures and number of bumps on adhesion, the

same tack test setup described in Chapter 3 was used. The electroadhesives were

mounted onto an ITO glass slide, attached to the end of an acrylic cantilever beam

with a moment arm of 35 mm. Since the electroadhesives were manually placed on the

ITO, the actual position of the force applied along the moment arm shifted. Therefore,

before every experiment, known weights were placed on top of the electroadhesive

to calculate the true length of the moment arm. The single bump devices were

mechanically loaded to 10 mN at 3 µm/sec and unloaded at 6µm/sec. A slower loading

speed was used so that the preload force would not significantly exceed 10 mN. The

loading speeds were the same for the bump arrays, however, the preload was varied

such that it was 10 mN times the number of bumps in the array, e.g. a 3x3 array had

a 90 mN preload. Tack tests were done at least 3 times for each voltage from 0 V to

400 V at a 100 V increments for both the single bumps and bump arrays. After every

set of voltage tests, the sample was discharged using the Staticmaster 2U500 from

Thomas Scientific.

Aligning the textured EA to be parallel to the contacting ITO slide was impor-

tant to obtain accurate measurement of the tack force. Misalignment caused the force

to be unevenly distributed across the array, so that certain bumps were in contact

while others were not. A yaw-pitch stage from Thorlab was used to manually adjust
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Figure 4.4: Schematic of the experimental setup. An electroadhesive is attached to
an ITO glass slide on the end of an acrylic cantilever beam. The beam is attached to
a 6-axis force sensor that measures the torque exerted. The force sensor is connected
to a linear motor that moves the sensor and cantilever beam vertically to bring the
electroadhesive in and out of contact with the ITO glass. The linear stage is connected
to a yaw/pitch stage that is manually adjusted so that the surface of the textured
device is parallel to the ITO glass slide.
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Figure 4.5: Example of the force experienced by a electroadhesive over time. A) The
plot shows the force over time of a JKR tack test without an applied voltage. The
loading phase (a) is when the probe approaches the glass slide at 6µm until contact
and a mechanical preload (b) of 10 mN. The probe is then unloaded until contact
is broken at the tack force (c). B) The plot shows the force over time of a creep
test where the electroadhesive is held at a force of 10 mN for at least 1 min. The
electroadhesive is loaded at a speed of 3 µm/sec (a) to a set preload (b) and then
immediately unloaded at 3 µm/sec to the set holding force (c). The small dips in
force during the creep test is due to the linear stage displacing in order to keep a
constant force.
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the sample so that visually all bumps were in contact and had approximately the

same contact radius at a given preload. For the devices with only a single bump,

alignment was not as crucial since the surface had the same radius of curvature and

some misalignment did not cause the contact area to be significantly different.

Textured EAs that were tested for the pull-in effect were plasma bonded to the

ITO glass slide to prevent the bottom side from delaminating during the tack test.

The plasma wand, Corona SB from Elveflow, was used to treat the bottom surface of

the electroadhesive and the ITO glass slide. The two surfaces were pressed together

and heated on a hot plate at 90 ◦C for at least 2 min. For all other experiments, the

samples were pressed onto the ITO slide without plasma bonding.

Creep tests were conducted to obtain the holding force of the electroadhesives.

The preloads were the same as in the tack tests, and the loading speed was 3µm/sec

and the unloading speed was 3 µm/sec. A feedback loop was used on the linear stages

to maintain a constant force by changing displacement until adhesion failed. If the

electroadhesive was able to maintain contact for a minimum of 1 min before failure,

then that force was considered to be the maximum holding force, Ph. This was

conducted at voltages ranging from 0 V to 400 V at a 100 V increments.

The potential use of textured EAs for pick and place applications was demon-

strated by mounting them onto 3D printed parts and picking up various objects.

The 3D printed parts were made by the Objet30 Pro for manual handling and for

mounting the device to a robotic arm, Fig. 4.6.

The 3x3 textured EAs were used to pick up objects with weights from 2 g to

60 g. A 4x4 bump array was attached to the Kuka LBR iiwa through 3D printed
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Figure 4.6: Image of a Kuka arm with a textured electroadhesive mounted onto a 3D
printed part.

parts. It was mounted on a ball joint in order to allow the textured device to easily

align its surface to the knife without having to adjust the angle of the robot arm.

The weight of the knife was 60 g.

4.3 Results and Discussion

4.3.1 Single Bump

To show that Eqn. 4.3 can predict the contribution of electrostatics to tack force,

tack tests were performed on bumps with three radius of curvatures: 7, 11, and

30 mm. Fig. 4.7 shows the electrostatic contribution to tack force plotted against

voltage squared, for bumps with different radius of curvatures. The nominal tack

force at zero voltage, Po, was subtracted out of the total tack force, Pc, to obtain the
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Figure 4.7: Electrostatic tack force plotted against the applied voltage squared for
conductive polymeric spherical surfaces contacting a rigid ITO glass slide. The theory
line is based on Eqn. 4.3, the solid markers indicate the electrostatic contribution to
tack force, and the hollow markers, the holding force.

electrostatic force, Pv, solid colored markers. This was similarly done with the creep

tests that measured the holding force, indicated by the unfilled markers. Eqn. 4.3,

plotted as solid lines, predicts the electrostatic force between a sphere, with a radius

of curvature, R, separated by a distance, d, from a conductive plate. In Fig. 4.1

the distance, d, was replaced by the dielectric thickness of the PDMS, 6 µm, and the

measured radius and applied voltage was used for R and V , respectively. Constants

were not used to modify the theoretical force. The tack forces, filled markers, were

an average of at least 3 tack tests done at each applied voltage. The holding forces,

unfilled markers, were the maximum forces that could be maintained for at least 1 min

for each applied voltage.
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Fig. 4.7 demonstrates that Eqn. 4.3 can predict the electrostatic contribution to

tack force and the holding force of spherical bumps with radii lower than 10 mm. This

will help inform the design of bump arrays and how it affects the controllable adhesion

range of electroadhesive devices. As the radius of curvature increased beyond 10 mm,

the holding force did not increase at the same rate. For the bump with a radius

of 30 mm, the holding force was lower than the tack force by an average of 30%

across all the applied voltages. The large discrepancy may be due to the spherical

bump not having a uniform curvature. This variation in the curvature, caused by the

fabrication process, creates an irregular stress distribution and can cause failure to

occur earlier than predicted. Non-uniformity in the curvature was a result of using

a milling machine to make the molds. External sources of error, such as, vibration

of the acrylic plate during milling, quality of the end mills, the cutting path used by

the program, contributed to discrepancies in the desired and actual dimensions.

4.3.2 Bump Array

Fig. 4.8 shows the electrostatic force plotted against voltage squared for textured

electroadhesives. The nominal tack force at zero voltage was subtracted from the

total tack force to obtain the electrostatic force. Four different arrays were tested: 1,

4, 9, 16, and 25 bumps. The distance between each bump was fixed at 3 mm so as the

number of bumps increased so did the size of the device, from 36 mm2 to 225 mm2.

Tack tests were conducted with voltages from 0 V to 300 V in 100 V increments. The

markers indicate an average of at least 3 trials done at each voltage. The loading and
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Figure 4.8: Electrostatic tack force plotted against the applied voltage squared for
textured electroadhesives contacting a rigid ITO glass slide. The theory line is based
on Eqn. 4.5 and the radius of curvature was 8 mm.

unloading speeds were the same as in the single bump tack tests.

The preload applied to the arrays depended on the number of bumps. It was

set so that a 10 mN preload was applied for each bump in the array, e.g. a 3x3 bump

array had a preload of 90 mN. The solid lines indicate the predicted electrostatic force

based on Eqn. 4.5. The radius of curvature was 8 mm, dielectric thickness, 6 µm, and

the dielectric constant, 2.5. The arrays with 16 or less bumps performed as predicted

with Eqn. 4.5. However, for the textured device with 25 bumps, green triangles, it

performed worst than the 16 bump textured device.

The holding force of the textured devices was also tested from 0 V to 300 V

in 100 V increments, as shown in Fig. 4.9. The solid line is Eqn. 4.5 subtracted by

the nominal tack force plotted as a function of voltage squared. For arrays with 16
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Figure 4.9: Electrostatic holding force plotted against the applied voltage squared
in textured electroadhesives. The theory line is based on Eqn. 4.5 and the radius of
curvature was 8 mm.

bumps or less, the tack force and holding force due to electrostatic matched well with

the theory. However, similarly in the Fig. 4.8, the 25 bump array, green triangles,

performed worst than the 16 bump array. This was due to imprecision in the milling

process which resulted in certain bumps that did not have the same height as the

majority. This caused the shorter bumps to have a smaller contact radius for a fixed

preload and, therefore, a lower contribution to tack force.

Fig. 4.10 shows an array of 25 bumps at various points during the unloading

phase. It can be seen that a section of bumps in the middle of the device were not

as in contact with the surface as the rest of the bumps. And these bumps actually

detached earlier in the unloading phase before the tack force was reached. Additional

error can also occur due to misalignment of the contacting surfaces. Misalignment
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Figure 4.10: Example of a tack test for the textured electroadhesive with n = 25. The
inserted image shows that the middle bumps where not as in contact as the others
and that they detached earlier during the unloading phase, before reaching the tack
force.

causes certain sides of the array to be in more contact than the opposite side, resulting

in a lower tack force than if the surfaces were perfectly aligned.

Despite some limitations in fabrications, it can be seen from Fig. 4.8 and Fig. 4.9

that the controllable adhesion range increases linearly with the number of bumps in

a textured device. And given that the nominal adhesion of bump arrays increases at

a rate of n1/2, the normalized adhesion range can be increased by simply adding more

bumps. However, to continue the increase for larger arrays it is necessary to improved

the fabrication process so that the mold’s dimensions do not vary as much. Another
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conclusion is that while the radius of curvature may affect the maximum adhesion,

it does not affect the adhesion range based on Eqn. 4.6. Bumps with smaller radius

of curvature could then be used to densely pack an area, while achieving a larger

adhesion range.

4.3.3 Multi-tiered areas

Another method of increasing the adhesion range is to design multi-tiered contact

areas, which are separated by height, where for different applied loads different contact

areas are reached. Fig. 4.2 shows a schematic of a two tiered device, where the first

tier is a bump that first comes into contact with the surface, and the second tier is

the plane around the bump which will contact the surface if enough load is applied

to the device. This load can be mechanically or electrostatically applied. By having

contact areas at different heights, the controllable adhesion range can be changed

based on the contact area of the first and second tier. Fig. 4.11 demonstrates the

performance of a multi-tiered 3x3 bump array, where the first tier was a set of 9

bumps and the second tier was the area around the bumps, totaling 72 mm2. The

radius of curvature and height of the bumps was 8 mm and 15µm. With only the first

tier area in contact, shown in the insert of Fig. 4.11, the device performed like the

textured devices in Fig. 4.8, following Eqn. 4.5. The device’s performance however,

jumps dramatically when the second tier area is engaged at voltages above 160 V.

The maximum electrostatic force that was observed was 2.8 N at 300 V. The theory

line was calculated using the electrostatic parllel plate model, Eqn. 4.7 modified by a
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constant c = 0.5.

Each point is a tack test performed with an applied voltage, and the red x

markers at 0 V indicate the nominal tack force for when the second tier area is in

contact with a preload of 600 mN. The jump in tack forces in-between 150 V and 160 V

was due to the second tier area pulling in and contacting the attachment surface. The

large change in Pc is due to an incomplete pull-in of the area with only a portion in

contact. This partial contact is due to the second tier having an uneven surface, such

that, the electrostatic force is not as strong in certain areas. However with a large

enough voltage, in this case, larger than 160 V, the second tier area can be brought

into nearly full contact with the attachment surface, and the increase in tack force

stablizes and follows the trend described by the parallel plate model.

The pull-in voltage depends on the amount of mechanical preload that is applied,

the higher the preload, the lower the pull-in voltage. At higher preloads the gap

between the contacting surface and the second tier area is smaller, and thus, requires

less electrostatic force to close the gap. However, if the preload is too small, pull-in

will not occur since the gap is too large for the electrostatic force to close.

During pull-in, air bubbles may be trapped between the two interfaces, as shown

in the insert in Fig. 4.12. This is due to an uneven and random collapse of the gaps

between the surface and adhesive. Surface roughness and misalignment can cause

varying gaps between the interfaces. The collapsed bumps also deform the surface

around them which prevent contact from occuring. While the jump between the

electroadhesion range, 0 mN to 0.1 mN and 2 N to 3 N, is large, this jump can be

easily adjusted by changing the range of the first tier through varying the numbers
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Figure 4.11: Electrostatic tack force plotted against applied voltage squared for a
3x3 textured device with a preload of 225 mN. The black theory line in the insert
is based on Eqn. 4.5, and shows that the electrostatic tack force matches well. The
trend line in the main figure is the electrostatic force for parallel plates, Eqn. 4.7,
with a constant c = 0.5 to fit the tack forces. The pull-in voltage was approximately
160 V.
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of bumps or changing the area of the second tier. The second tier area could be

modified by adjusting the overall dimensions of the device or replacing it with flat

pillars in between each bump. Flat pillars with defined contact areas as the second

tier can reduce the presence of air bubbles by limiting the effect of the stress from

the compressed bumps, and can be easily used to control the total 2nd tier area.

4.3.3.1 Adhesion hystersis

In addition to varying the voltage between experiments, the benefit of using electro-

static force is the ability to freely adjust adhesion during an experiment. Fig. 4.12

shows a 3x3 textured device being stepped between 0 V and 400 V at 10 V increments

over time. For Fig. 4.12A the device was first preloaded to 10 mN and allowed to relax

for at least 2 min. There was approximately a 6 sec wait between each voltage step to

allow the polymer to relax. The change in electrostatic force at higher voltages was

larger than at lower voltages because electrostatic force is related to voltage squared.

This active change in adhesion can be cycled multiple times without degradation in

the adhesive force, as shown in Fig. 4.13.

In Fig. 4.12B, the device was preloaded to 100 mN and allowed to relax for at

least 2 min, then an applied voltage was stepped from 0 V to 400 V and back down at

10 V increments. Pull-in occurred at 350 V, however, as the voltage was stepped back

down, the pulled-in area did not detach. This is because the mechanically stored force

in the cantilever beam was not large enough to overcome the nominal adhesion of the

second tier area. This adhesive hysteresis is one main drawback to this specific design
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Figure 4.12: Electroadhesion experienced by a 3x3 textured device plotted against
time. Each step in load corresponded to a 10 V step in applied voltage; the voltage was
stepped from 0 V to 400 V and back down, with approximately 6 sec in between each
step. A) The device was preloaded to 10 mN and allowed to relax for at least 2 min
before stepping the voltage. B) The device was preloaded to 100 mN and allowed
to relax for at least 2 min before stepping the voltage. The textured electroadhesive
pulled-in at 350 V, as shown by the large increase in load.
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Figure 4.13: Electroadhesion experienced by a 3x3 textured device plotted against
time, demonstrating the ability to step up and down voltage multiple times. The
device was preloaded to 10 mN before beginning the experiment. The voltage was
stepped from 0 V to 400 V in 50 V increments and back down, with approximately
15 sec in between each step.

since once the second tier area is in contact it requires a large detachment force to

remove the sample from the attachment surface and cannot be cycled like in Fig. 4.13.

Fig. 4.13 shows a 3x3 textured device with a preload of 10 mN being stepped up to

400 V and back down to 0 V at 50 V increments. There was a 15 sec wait inbetween

each voltage step. With only the first tier area in contact, the textured electroadhesive

can be cycled between 0 V and 400 V without any degradation in adhesion.

4.3.4 Applications

To demonstrate the application of textured electroadhesives in pick and place, the

devices were mounted onto 3D printed devices and used to pick up various everyday
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Figure 4.14: Images of a 3x3 textured electroadhesive picking up a knife using a
Kuka arm with 300 V. The Si wafer and steel washer was manually picked up with
an applied voltage of 120 V and 200 V, respectively.

objects. Four objects with varying weights and surface roughness were used: razor

blades, a steel washer, silicon wafer, and kitchen knife. All of the objects were metallic

and had a metal wire connected to their surface to apply a voltage between them

and the textured electroadhesive. The mass of the objects ranged from 2 g to 60 g.

These objects were manually picked up by hand and required different preloads in

order to pick them up. For the razor blades, steel washer, and silicon wafer the

preload was the weight of the 3D printed handle and the textured device. This was

so that only the first tiered area was in contact when the voltage was applied. This

is necessary since if the second tier area was in contact then the objects would not

detach after the electroadhesion was turned off. This is because the nominal holding
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force of the second tier area was approximately 0.3 N (30 g), which means any lighter

objects would permanently stay attached to the device even without electrostatic

force. For the knife, the textured device had to be pressed into the object with

force to ensure that pull-in occurs, such that, the second tier area was engaged. The

nominal holding force was less than the weight of the heavier objects but by applying

300 V the electroadhesion was large enough to be able to hold the knife.

After turning off the voltage, the objects did not immediately detach, it took

them on average 2-5 secs. This is because it takes some time for the crack to propagate

through the contact area and there is some residual charge left between the interfaces.

A robotic arm from Kuka was used to demonstrate pick and place for a 4x4

bump array picking up a knife that weighs 60 g, shown in Fig. 4.14. The robot arm

was position controlled and had no force feedback. The position was manually picked

so that it could provide a sufficient preload such that without a voltage the knife

would not stick to the electroadhesive, but with an applied voltage it would stick.

The surface was a pink foam to prevent damaging the knife during testing. A ball

joint was necessary to help the electroadhesive passively align its surface to the knife’s

metal surface. Without a passive method of aligning the two surfaces, it would be

difficult and time consuming to actively control the angle of the robot arm so that

the two surfaces were parallel. The electroadhesive was manually positioned so that

it would press down on the center of mass of the knife to pick it up.

In real world applications a target object for picking up will not be electrically

connected to the electroadhesive. Instead interdigitated electroades would be used

to pick up conductive and non-conductive objects. While this work does not explore
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interdigitated electrode design, the design framework and fabrication process put

forth in this paper can be easily adapted to interdigitated designs.
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Chapter 5

Conclusion

5.1 Contributions

This work in electroadhesion has led to a basic friction model that can estimate the

critical shear adhesion of an all-polymer electroadhesive, an adaptation to the JKR

theory to include the effect of electrostatic force on crack propagation, and a design

framework that combines dry and electroadhesives while lowering the required voltage

and increasing the range of controllable adhesion. The primary contributions of this

work are summarized as follows:

• Basic friction model that estimates the critical shear strength of an all-polymer

electroadhesive

• Stiff dielectric layers improve adhesion due to dissipating energy from crack

propagation

• Theory and experiments that characterize electrostatic force in terms of critical

energy release rate

• Critical energy release rate can be described as a superposition of the polymer’s

inherent stickiness and electrostatic force

• The characteristic crack speed increases with applied voltage because the cohe-
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sive zone increases with electrostatic force

• Fabrication technique that can easily create a large array of spherical bumps

and deposit a thin 6µm PDMS dielectric

• Electrostatic force exerted by a textured electroadhesive increases linearly with

the number of spherical bumps

• Multi-tiered electroadhesive that can increase adhesion by up to 20x

• Demonstration of a Kuka arm picking up a metal knife with a textured elec-

troadhesive

5.2 Published papers

• Abraham Simpson Chen, Alexi Charalambides, and Sarah Bergbreiter. High

strength low voltage microfabricated electroadhesives on nonconductive sur-

faces. In Hilton Head Solid-State Sensors, Actuators, and Microsystems Work-

shop, Hilton Head Island, SC, June 2014.

• Abraham Simpson Chen and Sarah Bergbreiter. Electroadhesive feet for turn-

ing control in legged robots. In Robotics and Automation (ICRA),2016 IEEE

International Conference on (pp. 3806-3812). IEEE, May 2016.

• Abraham Simpson Chen and Sarah Bergbreiter. A comparison of critical shear

force in low-voltage, all-polymer electroadhesives to a basic friction model.

Smart Materials and Structures, 26(2):025028, 2017.
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5.3 Planned papers

• Simpson Abraham Chen, Christopher Barney, Alfred J. Crosby, and Sarah Berg-

breiter. Characterizing the combined effect of electrostatic force and polymer

adhesion in conductive elastomers.

• Simpson Abraham Chen, Christopher Barney, Alfred J. Crosby, and Sarah Berg-

breiter. Textured electroadhesives that uses van der Waals and electrostatic

force at low voltages to achieve large controllable adhesion.

5.4 Future work

Future work in this field will involve continual development in refining the fabrication

method to improve consistency in dimensions for multi-tiered devices. Different multi-

tiered patterns and shapes will be explored to understand how they affect the tack and

holding force. Simulations will also be done to explore how these textured surfaces

will affect the electric fields in interdigitated electrodes and to identify the optimal

textured and interdigitated patterns. Future work will also focus on theoretical work

in contact mechanics. JKR equations have been modified for different probe and

contact shapes, such as, flat punches and cylinders in contact. Electrostatic force will

be adapted into those JKR equations and verified.
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