
ABSTRACT

Title of thesis: EXPANDING CONSTRAINED
KINODYNAMIC PATH PLANNING
SOLUTIONS THROUGH
RECURRENT NEURAL NETWORKS

Joshua Shaffer
Master of Science, 2019

Thesis directed by: Dr. Huan Xu
Department of Aerospace Engineering

Path planning for autonomous systems with the inclusion of environment and kine-

matic/dynamic constraints encompasses a broad range of methodologies, often providing

trade-offs between computation speed and variety/types of constraints satisfied. There-

fore, an approach that can incorporate full kinematics/dynamics and environment con-

straints alongside greater computation speeds is of great interest. This thesis explores a

methodology for using a slower-speed, robust kinematic/dynamic path planner for gen-

erating state path solutions, from which a recurrent neural network is trained upon. This

path planning recurrent neural network is then used to generate state paths that a path-

tracking controller can follow, trending the desired optimal solution. Improvements are

made to the use of a kinodynamic rapidly-exploring random tree and a whole-path re-

inforcement training scheme for use in the methodology. Applications to 3 scenarios,

including obstacle avoidance with 2D dynamics, 10-agent synchronized rendezvous with

2D dynamics, and a fully actuated double pendulum, illustrate the desired performance

of the methodology while also pointing out the need for stronger training and amounts of

training data. Last, a bounded set propagation algorithm is improved to provide the initial

steps for formally verifying state paths produced by the path planning recurrent neural

network.

EXPANDING CONSTRAINED KINODYNAMIC PATH PLANNING
SOLUTIONS THROUGH RECURRENT NEURAL NETWORKS

by

Joshua Shaffer

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2019

Advisory Committee:
Dr. Huan Xu, Chair/Advisor
Dr. Michael Otte
Dr. Derek Paley

c© Copyright by
Joshua Shaffer

2019

Acknowledgments

I would first like to acknowledge and thank my advisor, Dr. Huan Xu, in the Depart-

ment of Aerospace Engineering at the University of Maryland. Thanks to her support and

guidance, I was able to explore a broad range of interesting and important research top-

ics throughout my time with the Aerospace Engineering Department, all of which helped

build towards this body of work. I am greatly appreciative of her patience and knowl-

edge as I worked towards this thesis. Second, I would like to thank the staff and faculty

of the Aerospace Engineering Department for their provided resources and knowledge

throughout my two years at the University of Maryland. I am proud to have worked and

learned as part of such a strong graduate program. Last, I would like to thank my family

and friends throughout this experience. My parents specifically, Lisa and Jeffrey Shaffer,

have always strongly supported my work and endeavors, and I am grateful to be their son.

ii

Table of Contents

Acknowledgements ii

Table of Contents iii

List of Tables v

List of Figures vi

List of Abbreviations viii

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 4
1.3 Contributions . 8
1.4 Outline of Thesis . 9

2 Background 10
2.1 Path Planning . 10

2.1.1 Optimal Rapidly-exploring Random Trees (RRT*) 11
2.2 Machine Learning and Neural Networks 14

2.2.1 Recurrent Neural Networks . 16
2.2.2 Supervised Network Training 18
2.2.3 Reinforcement Learning . 19

2.3 Formal Verification and Bounded Set Propagation 20

3 Methodology and Problem Description 22
3.1 Methodology Overview . 22
3.2 Problem Formulations . 24

3.2.1 Path Planning under Kinematic/Dynamic and Environment Con-
straints . 24

3.2.2 Recurrent Neural Network and Training 25
3.2.3 Executed Controller . 26

4 Methodology Components 27
4.1 Kinodynamic Optimal Rapidly-exploring Random Tree with Chebyshev

Polynomial Collocation Optimization 27
4.2 Whole-path Reinforcement Training Scheme 32

iii

5 Problem Scenario 1: 2D Obstacle Avoidance 39
5.1 Implementation . 39

5.1.1 Problem Definition and Application Details 40
5.1.2 Contractive Autoencoding of Environment 41
5.1.3 Path-tracking Controller . 42

5.2 Results . 46

6 Problem Scenario 2: 2D Multi-agent Synchronized Rendezvous and Collision
Avoidance 54
6.1 Implementation . 54
6.2 Results . 57

7 Problem Scenario 3: Actuated Double Pendulum 66
7.1 Implementation . 66
7.2 Results . 68

8 Bounded Set Propagation of Recurrent Neural Networks 74

9 Conclusions 82

Bibliography 84

iv

List of Tables

5.1 RNN closed-loop (CL) RMSE results for Problem Scenario 1 with and
without autoencoded environment . 48

5.2 RNN closed-loop (CTRL) and control executed (CTRL) RMSE results
for Problem Scenario 1 utilizing full training scheme. 51

6.1 Closed-loop (CL) RMSE results for the centralized and decentralized
RNNs in Problem Scenario 2 . 58

6.2 Control executed (CTRL) RMSE results for centralized and decentralized
RNNs in Problem Scenario 2 . 61

7.1 RNN closed-loop (CL) RMSE values for Problem Scenario 3 70

v

List of Figures

2.1 Visual comparison between Elman and Jordan recurrent networks 16

3.1 Overview of path planning RNN methodology 23

4.1 Example run of the kinodynamic RRT* used to find an optimal path for a
dynamic system in a cluttered environment 33

4.2 RNN path prediction example for double pendulum with standard training 35
4.3 RNN path prediction example for double pendulum with whole-path re-

inforcement training . 38

5.1 Setup of localized potential function for executed controller in Problem
Scenario 1 . 45

5.2 RNN closed-loop (CL) examples of Problem Scenario 1 for training with
and without autoencoded environment 49

5.3 RNN closed-loop (CL) and control execution (CTRL) examples of Prob-
lem Scenario 1 for training with autoencoded environment and whole-
path reinforcement training . 50

5.4 Multiple validation examples of the obstacle avoidance RNN of Problem
Scenario 1 . 52

5.5 X-axis control values of results presented in Fig. 5.5 53

6.1 Training examples of closed-loop (CL) paths generated by centralized and
decentralized RNNs in Problem Scenario 2 59

6.2 Validation examples of closed-loop (CL) paths generated by centralized
and decentralized RNNs in Problem Scenario 2 60

6.3 Control executed (CTRL) training path examples of centralized and de-
centralized RNNs in Problem Scenario 2 62

6.4 Control signals associated with centralized and decentralized RNNs for
agent 1 from Fig. 6.3 . 63

6.5 Control executed (CTRL) validation path examples of centralized and de-
centralized RNNs in Problem Scenario 2 64

6.6 Control signals associated with centralized and decentralized RNNs for
agent 1 from Fig. 6.5 . 65

vi

7.1 Optimization solution example for double pendulum problem 69
7.2 Angles paths of RNN CL output and optimized solution for two training

data examples . 71
7.3 Cartesian representation of angle paths in Fig. 7.2 72
7.4 Angles paths of RNN CL output and optimized solution for two validation

data examples . 73

8.1 Exploding bounded set propagation over Problem Scenario 1 RNN CL
output . 78

8.2 Non-exploding bounded set propagation over Problem Scenario 1 RNN
CL output . 80

vii

List of Abbreviations

BPTT Backpropagation through time
BVP Boundary value problem

GRU Gated Recurrent Unit

LSTM Long Short-term Memory

ML Machine learning
MLP Multilayer perceptron

NARX Nonlinear Autoregressive Network with Exogenous Inputs
NLP Nonlinear programming
NN Neural network

RL Reinforcement learning
RMSE Root mean square error
RNN Recurrent neural network
RRT Rapidly-exploring Random Tree
RRT* Optimal Rapidly-exploring Random Tree

SGD Stochastic gradient descent
SQP Sequential quadratic programming

viii

Chapter 1: Introduction

1.1 Motivation

Path planning for general autonomous vehicles encompasses a broad range of method-

ologies, from which the resulting applications require varying degrees of accuracy and

computational speed for the solutions solved. The introduction of kinematic/dynamic

constraints alongside optimality conditions (often called motion or trajectory planning)

increases the difficulty in producing quick and feasible solutions [1]. As a result, faster

path planning methodologies tend to ignore or greatly reduce kinematic/dynamic and op-

timality constraints in favor of finding solutions to satisfy constraints tied to a varied

environment [2], [3]. Often times in these approaches when kinematics/dynamics and op-

timality conditions must be considered, they are abstracted to simpler models alongside

the use of heuristics, from which controllers must enforce in real-time [4]. Application

performance of such methods is greatly dependent upon how well the abstracted system

applies to the full dynamic model and controller utilized.

In the cases where the total solution must not only consider environmental con-

straints but also full dynamic/kinematic constraints alongside optimality conditions, for-

mulating the problem as a trajectory optimization problem and solving such numerically

can provide the desired results. Typically, though, direct optimization methods (which

1

discretize the state and control path as a function of time before optimizing) involve

higher computation times than path planning methods that ignore or reduce constraints

and optimality conditions [5]. This impacts the real-time performance of trajectory op-

timization schemes [4], from which increased performance typically requires some form

of problem relaxation [6]. Furthermore, increases in state space size only exacerbate the

issue [7], [1], [4].

Because of the accuracy and computation speed trade-off between these various

approaches to path planning with constraints, an encompassing solution that can incor-

porate kinematics/dynamics and greater environment constraints in its formulation along-

side the speed of methods that reduce these constraints to simpler or non-existent models

is of great interest. Decreasing the computation time associated with an algorithm that

achieves such a goal typically requires some approach of providing strong initial guesses

to speed up generalized methods [8], or re-planning from adequate (but quickly obtained)

initial guesses [9]. At the core of these examples is the notion that speeding up complex

path generation requires quick initial guesses that may or may not be the best solution

to the desired problem. This idea motivates this thesis’s exploration of machine learning

(specifically the use of neural networks (NNs)) in adapting specific optimization solutions

to generate solutions to a general workspace.

Supervised machine learning with recurrent neural networks (RNNs) provides a

platform from which unknown time-dependent processes can be form-fitted through train-

ing data in which the correct input and output sets are known. In general, RNNs differ

from the standard feedforward NNs in that states of the networks are maintained through-

out execution, resulting in outputs that are informed by previous inputs. This attribute

2

enables RNNs to better learn time-dependent processes, such as mapping disease de-

scriptions mentioned sequentially in text [10] or predicting radiation fluctuations due to

weather changes [11]. Various forms of RNNs exist, such as nonlinear autoregressive

with exogenous inputs (NARX), gated recurrent unit (GRUs), and long short-term mem-

ory (LSTM) NNs, of which no single network is best suited to learn any general time-

depended behavior [12]. In general, the benefits of RNNs (and NNs overall) are their

computational speed in providing results, ability to abstract complex systems, and ability

to generalize complex solutions for use with new inputs [13].

On the flip-side though, the use of NNs impose two major limitations. First, large

amounts of data are required to train networks for complex problems in a supervised

manner, an issue when considering the time required to generate sets of optimized solu-

tions to kinematic/dynamic path planning scenarios. Second, NNs create a major hurdle

with respect to obtaining verifiable results due to their often treatment as black box so-

lutions [13], a detriment in the areas of path planning and control of kinematic/dynamic

systems. Despite such, methods exist to verify NNs, and compose a growing field in

pursuit of verifying the use of NNs for safety critical applications [14], [15], [16].

The use of NNs, specifically RNNs, in learning optimized solutions to constrained

kinematic/dynamic path planning solutions is a relatively unexplored area of research (es-

pecially on continuous domains), in part due to the issues of verification. The benefits of

using RNNs (generalizing solutions to new environments and requiring extremely low

computation costs) provide enough motivation to explore their applications in path plan-

ning. Specifically, this thesis explores a generalized methodology for obtaining optimized

path planning results as training data, training RNNs to recreate such results, assessing

3

controlled paths over the generated paths. Additionally, a method of verifying RNN out-

puts for a large set of possible inputs is also explored.

1.2 Related Work

Various sources have explored the uses of NNs in controls and path planning of

kinematic/dynamic systems. This is a growing field of interest, primarily due to the ability

of NNs in generalizing solutions to new environments (beneficial to path planners) and

abstracting complex systems (beneficial to control systems).

In relation to controls, RNNs often find uses as controllers of complex systems, e.g.

in highly nonlinear systems [17], [18]. In some cases, the use of learning in controllers is

well defined in order to obtain greater understanding of their effects on system stability

and convergence [19]. Additional uses of machine learning in the controls community

are focused towards creating models of complex, unknown dynamics [20], [21]. These

various examples showcase the ability of various RNN architectures in abstracting and/or

identifying complex kinematic/dynamic system relationships, an important aspect with

respect to the aims of this thesis.

The use of machine learning directly in relation to path planning of kinematic/dynamic

systems is an expansive research topic, in part due to the opposing nature between the

need for constraint satisfaction in generated paths and the difficulty in formally verifying

machine learning outputs [22]. Despite such hurdles, various authors have investigated

the benefits of machine learning in aiding path planning, albeit from varying angles.

[23] demonstrates one of the earliest cases in using NNs to generate feasible paths

4

in an environment with dynamic obstacles. Specifically, a 2-dimensional region was de-

composed into discrete units from which each was represented by a neuron, with output

connections to adjacent neurons and an output to represent path feasibility. This ap-

proach, while fast in generating a path, primarily minimized the distance traveled and

simply avoided obstacles. Additionally, no dynamic constraints were considered, and an

abstraction of the state space had to be used. This approach was similarly used in [24].

Along the same vein, [25] utilized pulse-coupled NNs for determining the shortest path

in an unknown environment, similarly to [23]. Again, the state space was discretized, and

dynamics were enforced at lower levels. [25] also performed physical tests, though, and

moved towards validating the practical application of a NNs based approach.

[26] examined the specific application of using a 2-input, 2-output NN to pro-

vide controls to an interplanetary rover navigating a known terrain, tested in simulation.

Specifically, the 2 inputs represented x and y coordinates, with the outputs representing

control signals to the wheels. In this case, training was performed on a static environ-

ment, and the rover had to navigate from any point to a static final destination. This

work showcases the ability for a simpler network to accurately abstract the dynamics and

controls associated with using position feedback to drive a robot to a final destination,

a concept also successfully explored in [27]. Additionally, [28] achieved such an ap-

proach formulated in a local frame about the robot for easy integration with actual sensor

data, achieving practical application. As opposed to the controls-focused sources that ex-

plored the ability of NNs to abstract kinematic/dynamic systems, these NN applications

abstracted the kinematic/dynamic systems through environment feedback, i.e. NN out-

puts provided references to lower level controllers which modified the system state and,

5

in effect, the environment. As a result, the controllers (created to track a reference signal)

were abstracted into the environment for use by the NN.

Interestingly, [26] , [27], and [28] represent path planning approaches related to a

more recently growing field in machine learning called deep reinforcement learning (RL).

Deep RL utilizes deep NNs as a policy that maps perception inputs to outputs, from which

the NN is trained to provide actions that maximize some reward. The benefit of such an

approach is that complex perception inputs (e.g. camera data) can provide action outputs,

such as camera data fed into a robot to produce velocity controls as shown in [28]. More

examples include the use of LIDAR data to drive local position commands in [29] and

the use of local visual data to force drone agents to produce flocking velocity commands

amongst a group of agents in [30]. In most deep RL applications, training is performed

utilizing agent outputs only (RL only) or agent outputs compared to desired strategies

or models (RL with supervised training). In the case of RL with supervised training,

no sources could be found in which the model for a path planning RNN consisted of

optimized trajectory data (i.e. training examples contained the sequence of actions that

produce the maximized reward used in reinforced learning for the NN). For this thesis,

the purpose of RL is to showcases how a sequence of results produced by a NN can

be improved through training the network utilizing these results. This idea is used in

improving the overall methodology performance presented in this thesis.

The authors in [8] and [31] present methodologies most similar to the one presented

in this thesis. In [8], regression learning is utilized to select previous path planner solu-

tions for a robotic manipulator as initial guesses for the optimization planner, resulting

in speed-ups of up to an order in magnitude. In [31], an RNN is utilized to learn from

6

shortest path solutions generated by an RRT between two points provided randomized

obstacles. Additionally, an environment autoencoder network is utilized to reduce the

state space size of the environment and robustly represent such constraints. The result is

an RNN that takes in any obstacle configuration and produces the shortest path between

a current location and the desired final location. The computational advantages were up

to an order of magnitude or more when compared to some of the fastest conventional

planners, and scaled well with larger state spaces.

Each of the aforementioned approaches represent varying ways of utilizing net-

works in path planning, with the foremost advantage of decreased computation costs in

execution. With respect to our work, [26], [27], and [28] showcased the ability of a

network to abstract dynamics of specific scenarios under environment inputs, and [8]

and [31] displayed the ability of a network to generate state paths with respect to a spe-

cific optimization parameter for highly varied environments. What is lacking from ex-

isting literature is an approach of utilizing known optimization solutions for generalized

kinematic/dynamic path planning and embedding the solution space directly into an RNN

to generate desired state paths through time. The methodology presented in this thesis

addresses this gap by integrating an RNN’s abilities of learning kinematic/dynamics and

generating optimized paths through reinforcement training upon previously optimized so-

lutions.

7

1.3 Contributions

The contributions of this thesis include three primary components, two of which are

integrated into the overall methodology presented. First, this thesis contributes a means of

utilizing non-differentially flat systems in optimal path planning with rapidly-expanding

random trees (RRT). This contribution is achieved by extending the formulation of a kino-

dynamic RRT from utilizing B-spline representations that require differentially flat sys-

tems to utilizing collocation methods that allow for generic nonlinear systems and control

solutions. This allows for a broader range of problem scenarios from which optimization

solutions can be obtained.

Second, this thesis contributes a means of improving closed-loop executions of

RNNs in predicting state paths for path planning purposes. This is achieved though

a multi-step training scheme that first utilizes supervised training of the RNN on de-

sired paths then incorporates reinforcement learning ideas to iteratively train the network

through its closed-loop outputs. This improvement reduces prediction errors of the RNN

as it generates the paths over time and allows it to better fit the optimization solution

space.

Third, this thesis contributes a means of speeding up and improving the accuracy

of bounded set propagation of RNN states for verification purposes. This is achieved

through a bisection algorithm over the propagated hyperrectangles, which produces more

accurate results than previously researched methods. Bounded set propagation is a vital

tool in reachability analysis, allowing for verification that RNN paths generated from

regions of initial conditions in set environments satisfy desired constraints.

8

Last, this thesis contributes a methodology for training an RNN to produce state

paths from optimized kinematic/dynamic formulations and building controller solutions

on top of such, the result of which is a computationally fast path planner and control ap-

proach. This is achieved through integration of the first and second contributions in order

to generate supervised data from which a path-planning RNN is trained upon. Applica-

tions of this methodology in this thesis provide outlooks on how path-tracking controllers

can be built on top of the generated paths. Compared to some of the bigger advances

of motion controls in the deep RL field, this methodology provides a more segmented

approach since the RNN only produces state paths in time, from which controls are con-

structed on top of. The aim of this approach is to provide an easier path towards formally

verifying the combined solutions, since separate verification methods exist for predicting

RNN outputs and for predicting state paths of formally defined control laws.

1.4 Outline of Thesis

The outline of the rest of this thesis is as follows. Chapter 2 introduces back-

ground material on the components of the methodology, including details pertaining path

planning, machine learning, and formal verification methods. Chapter 3 introduces the

methodology and formal problem description of its components. Chapter 4 provides de-

tails on the improvements to the RRT and training scheme used for the methodology.

Chapter 5, 6, and 7 each present an application of the methodology alongside results.

Chapter 8 presents the improvements on the bounded set propagation method, and Chap-

ter 9 concludes the thesis.

9

Chapter 2: Background

Chapter 2 introduces the base concepts explored and expanded upon in this thesis.

These include the use of RRTs in path and motion planning, the training and use of RNNs

in machine learning of time-dependent series, and bounded-set propagation for formal

verification.

2.1 Path Planning

Path planning subject to kinematic/dynamic constraints constitutes the objective of

creating a state and control trajectory from an initial state configuration to a final con-

figuration under added environment constraints and optimization metrics (composed of

functions on state, control, and time). Methods proposed across engineering disciplines

for solving path planning problems typically fall into categories based on the desired con-

straints to satisfy. As mentioned in Chapter 1.1 of this thesis, encompassing solutions that

include environment constraints (such as obstacles) alongside kinematic/dynamic con-

straints typically require greater computation times than methods focused on satisfying

just environments or just kinematics/dynamics. Furthermore, optimization approaches

that can solve for both sets of constraints typically require modifications to one set or

the other. For example, the satisfaction of logic constraints (e.g. preventing a state from

10

entering an arbitrarily shaped region) requires convex reshaping of such constraints for

uses in convex optimization formulations. This type of scenario showcases not only the

difficulties in obtaining path planning solutions for a broad set of environment and kine-

matic/dynamic constraints, but also obtaining such in reasonable time frames.

One set of approaches for obtaining optimal path planning solutions under arbitrary

environment constraints include sampling-based techniques. Sampling-based methods

utilize random state sampling to construct paths from an initial condition to an end condi-

tion, removing any possible paths that violate constraints. Further refinements over time

eventually build towards the optimal solution (with respect to the defined metric function).

The trade-off, though, is the time required to find the optimal solution, as most sampling-

methods are only complete in a probabilistic sense as the number of samples approaches

infinity. One of the most prevalent sampling methods is the optimal rapidly-exploring

random tree (RRT*), presented in the following section.

[Note: The introduction of kinematic/dynamic constraints alongside optimization

over functions of the path variables to path planning equates it to motion/trajectory plan-

ning, and references to any of the three terms in this thesis constitute the same idea.]

2.1.1 Optimal Rapidly-exploring Random Trees (RRT*)

Optimal rapidly-exploring random trees (RRT*) introduced in [32] present a method

of state sampling to build an optimal tree (shortest state path distance) from an initial con-

figuration to a final configuration. Provided an initial state xinit , logical constraint func-

tions Check constraint(path) over discrete values in a path, cost function Cost(x1,x2)

11

between two points, and graph G composed of state nodes V and edges E, RRT* operates

as described in Algorithm 1.

Algorithm 1: Optimal Rapidly-exploring Random Tree from [32]
1: procedure GENERATE PATH(xinit ,N) . Execute RRT* over N iterations
2: V ←{xinit}; E←60
3: for i = 1, ...,n do
4: xrand ← Sample state
5: xnearest ← argminv∈V ‖xrand− v‖
6: xnew← argmin‖z−xnearest‖≤η ‖z− xrand‖
7: if Check constraint(path(xnearest ,xnew)) then
8: Xnear←{v ∈V | ‖xnew− v‖ ≤ radius}
9: V ←V ∪{xnew}

10: xmin← xnearest ; cmin← ∑GCost(xnearest)+Cost(xnearest ,xnew)
11: for xnear ∈ Xnear do
12: if Check constraint(path(xnear,xnew)) ∧ ∑GCost(xnear) +

Cost(xnear,xnew)< cmin then . Determine minimum cost connection
13: xmin← xnear; cmin← ∑GCost(xnear)+Cost(xnear,xnew)

E← E ∪{(xmin,xnew)}
14: for xnear ∈ Xnear do
15: if Check constraint(path(xnew,xnear)) ∧ ∑GCost(xnew) +

Cost(xnew,xnear)< ∑GCost(xnear) then . Rewiring of the tree
16: xparent ← ParentG(xnear)
17: Replace (xparent ,xnear) in E with (xnew,xnear)

In general, RRT* functions by sampling random states xrand and inspecting the

nearest nodes of the current tree G to find the closest node xnearest . A new node xnew is

created existing on a line between the sampled node and the nearest node. If the discrete

path between xnew and xnearest passes the logical constraints defined in Check constraint,

then the algorithm proceeds by gathering all other nodes in G within a defined radius of

xnew, called Xnear. The edge to xnew is determined by calculating the nearest tree node

in Xnear that results in the lowest cumulative cost through the tree to xnew. This edge

and node xnew are added to the tree, after which the other nodes in Xnear are rewired by

examining if a connection as a child to xnew results in a lower cumulative sum in the tree

12

than their current cumulative sum.

After n number of iterations, a state tree will exist in which every leaf will the end

of a branch composed of the optimal path (according to the cumulative Cost function

between each node, i.e. ∑GCost(lea f)) over the preceding nodes, while satisfying the

Check constraint function. As n approaches infinity, each branch ending in a leaf will be

the globally optimal path from the root of the tree to the end node. Therefore, finding a

path from the tree root (i.e. the initial condition) to the desired final condition is as simple

as choosing the branch that ends within a radius of the final condition.

Of course, the optimal result is only possible in the infinite execution case. Fortu-

nately, large amounts of samples within a small amount of time can provide satisfactory

solutions for problems with limited constraint functions. In the cases where problems

constitute complex constraint functions (e.g. cluttered environments), optimal solutions

can take much longer. Furthermore, early cutoffs used to find solutions in a feasible time

frame will often produce state paths that are comparatively non-smooth and difficult to

implement in path planning that must satisfy kinematic/dynamic constraints (if such con-

straints were not included in the RRT* formulation).

To address the last issue mentioned, formulations of the RRT* algorithm with kine-

matic/dynamic constraints exist [33], [34], and can provide better solutions for imple-

menting actual controls over. As stated, though, these typically require longer run times

to provide solutions that approach the desired optimality conditions. For the simple static

obstacle avoidance examples in [34] and [33], computation times to produce the optimal

path took on the order of 10 seconds. Achieving these results often include smoothing

procedures over generated paths (typically composed as optimization problems), restrict-

13

ing the types of constraints that can be explored. Overall, RRT* is a robust algorithm that

can provide optimal results to a broad range of problems and constraints, but scaling and

the introduction of greater constraints generally hurt the computation speeds of finding

feasible solutions.

2.2 Machine Learning and Neural Networks

Machine learning encompasses a broad range of models and algorithms that uti-

lize inference of patterns to perform desired tasks, usually accomplished through the use

of training data. Classical machine learning is typically broken into two main schools,

supervised and unsupervised training. Supervised learning utilizes labeled data, where

correct input/output relationships are known. The most common examples of supervised

learning include classification (e.g. labeling objects through images) and regression (e.g.

prediction of values through learning input/output relationships). Unsupervised learning

must infer patterns from data without knowledge of the correct output forms. Common

examples include clustering algorithms and autoencoders. Both schools present major

underpinnings of current trends in machine learning approaches, especially with respect

to deep learning [35].

Perhaps one of the most recognizable tools in machine learning are artificial neural

networks (NNs) used in deep learning. Inspired by biological neural networks, NNs are

composed of numerous simple components assembled to form a complex system relating

inputs to outputs. The most common NNs, called feedforward multilayer perceptron

(MLP) networks, are composed of ”layers” in which the input vector to a layer (size N)

14

is multiplied by a matrix (size L×N), added to a bias (size L), from which each element

of the vector is then passed through a nonlinear activation function producing an output

vector (size L). Sequential layers process the previous layer output vector as its own input

vector. Therefore, the input and output of an entire NN is composed of the input to the first

layer and output to the last layer. This structure is a robust setup for modeling arbitrarily

complex systems.

NNs lend themselves well to supervised training problems, primarily through the

development of backpropagation as applied to NNs in the 70s and 80s [36]. Backprop-

agation is a method of calculating the derivatives of a network’s outputs with respect

to its inputs. In simpler terms, this provides a method for incrementally changing the

network weights and biases towards values that provide the desired correct output per

training input (i.e. matching known correct input/output samples). More recent advances

in parallized computing have enabled this type of training on far larger network models,

enabling the use of deep neural networks (consisting of multiple, large layers) on larger,

more complex problems.

NNs provide an attractive route for complex path planning purposes due to two pri-

mary reasons. First, NNs scale well to large input sets (such as direct camera feeds) and

can generalize solutions well over such inputs [13], [35]. Second, output computations

per input are limited primarily to the speed at which matrix computations and nonlinear

functions can be applied. In practical terms, the computation costs associated with obtain-

ing NN outputs are typically negligible, and can often be easily sped up further through

parallized computing For path planning, recurrent NNs (RNNs) provide a means of fitting

time-dependent behaviors through the use of memory.

15

Figure 2.1: A visual comparison between the Elman and Jordan recurrent networks show-
cases that recurrent states of the Elman network originate from the hidden network layers
while the recurrent states of the Jordan network are directly fed from the output to the
input.

2.2.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of NNs in which input components

to any number of layers are comprised of outputs from a subsequent layer. RNNs pro-

vide the added benefit of memory to input/output relationships, i.e. previous input/output

relationships impact subsequent relationships. This implies that RNNs are well suited

to learning input/output relationships that are dependent on time, a primary component

to path planning. Two of the simplest RNN forms are the Elman network and the Jor-

dan network (visually represented in Fig. 2.1). Mathematically, the Elman network is

represented by Eq. (2.1) and the Jordan network is represented by Eq. (2.2),

h(t) = σh(Ws,hxt +Wi,hht−1 +bh)

y(t) = σy(Ws,yht +by),

(2.1)

16

h(t) = σh(Ws,hxt +Wi,hyt−1 +bh)

y(t) = σy(Ws,yht +by),

(2.2)

where xt is the input, ht is the hidden layer output, yt is the network output, Ws, Wi, and b

are parameter matrices and vectors, and t refers to the time step.

Both networks serve as the basis for larger and more complex RNN structures, in-

cluding Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks.

This thesis focuses on the use of networks extended from the Jordan network form, specif-

ically the Nonlinear autoregressive exogenous (NARX) network, of the form described in

Eq. (2.3),

xt = Φ(xt−1,ut),

where Φ(·) = σ1 ◦σ2 ◦ ...σL(·),

with the form σl(·) = σl(Wlhl +bl).

(2.3)

NARX networks lend themselves well to time-dependent state training sets due to their

explicit recurrent layer, i.e. only network outputs of the last layer directly feed back

into the network inputs alongside environment inputs. As a result, training can easily

utilize many training schemes without the use of backpropagation through time (BPTT)

[37], necessary for training RNNs with internal recurrent layers. BPTT introduces added

complexities due to gradients dependent upon previous layer outputs, amplifying the issue

of error gradients vanishing (which reduces the ability to train the network). Additionally,

internal recurrent layers add further complexities to the use of bounded set propagation

for RNNs, another topic of this thesis. Due to these two points, NARX networks maintain

the easiest approach for this thesis’s purposes.

17

2.2.2 Supervised Network Training

Multiple training schemes exist to train sets of NN inputs, Xin, over desired output

sets, Yout . At the heart of these algorithms is the idea of optimizing the NN with respect

to a loss function over the produced output Ynn = Φ(Xin) and truth output Yout . A com-

mon loss function for optimizing the NN with respect to is the Euclidean distance, i.e.

E = 1
2 ‖Φ(Xin,i)−Yout,i)‖2, where the index i refers to individual data points in each set.

In most training schemes, derivatives of the NN with respect to its weights and biases are

calculated with respect to these loss functions (e.g. ∂E
∂w , ∂E

∂b) and used to incrementally

modify the NN weights and biases as to move towards a setup that minimizes the loss

function across all inputs. The exact methods used in these approaches are beyond the

scope of this thesis, and numerous sources exist to provide detailed overviews [38]. Com-

mon training schemes include Stochastic Gradient Descent (SGD) [39] and ADAM [40],

each offering varying performances for any given problem.

With respect to NARX RNNs fitted to time-dependent series, training data is com-

prised of sequential input, and output pairs. This means that a sample input/output pair

containing the variables xi/xi+1 is followed by another sample input/output pair contain-

ing xi+1/xi+2. In regards to training, the previously discussed types of training schemes

offer adequate performance with respect to the provided data points. This means that

closed-loop performance of an RNN (vital to a path planning RNN) producing the same

time-dependent sequence of states as the training data (initialized with an input contain-

ing x0 to produce a predicted state x1 which is fed back into the network, recursively) is

highly dependent on the prediction quality of each individual data point. What results is

18

that accumulated errors can quickly and easily result in a generated sequence of states

that diverge from the desired path. In general, supervised training alone is not enough

to produce a NARX RNN that can reasonable predict desired time-dependent series, and

other ideas in training NNs must be introduced.

2.2.3 Reinforcement Learning

For inspiration to improving the ability of a NARX RNN to predict a desired state

sequence, this thesis examines concepts behind reinforcement learning (RL). In general

RL [41], an agent (such as an NN) is formulated as a policy that maps an environment

of perception inputs to action outputs. From such, given an environment, an agent is al-

lowed to produce an action and is trained to improve the action’s result in the environment

through the use of a reward function. RL with deep neural networks has found large suc-

cesses in recent years, resulting in the ability of such constructs to play video games [42],

drive simulated cars [43], control nonlinear systems [44] and more. RL without an ex-

plicit model differs inherently from supervised learning in that no correct input/output

pairs are known and trained against. Instead training is performed to drive the NN to

produce actions that maximize the reward function over an infinite time horizon (com-

posed of sequences of action outputs produced by the agent, resulting state changes due

to the action, and followed by new perception inputs for the next time step). While deep

RL proposes an exciting and developing research topic, it also poses a difficult model for

study since the more common model-less RL treats the trained NN as a black box, which

presents greater difficulties in verification.

19

2.3 Formal Verification and Bounded Set Propagation

Formal verification is the approach of automatically verifying desired properties of

systems (involving hardware and/or software) through the use of formal methods. Formal

methods consist of numerous mathematical and computer science techniques for defining

properties and systems, proving or disproving properties of systems, and synthesizing

systems from properties. [45] provides a fairly large scale overview of this field.

Formal verification of NN properties is a rapidly growing field, primarily due to

the fact that supervised training of NNs is built on the concept of using verified results to

create a system that can generalize to new input/output pairs. This notion is at contrast

with the complexity of NNs and the difficulty in accounting for all possible input/output

relationships. As previously mentioned in Chapter 1.1, numerous sources have made

strides towards methods of verifying numerous types of NNs for various problems. With

respect to NARX RNNs, property verification is typically concerned with examining the

sets of sequences of recurrent states under environment inputs. As a result, the concept of

bounded set propagation lends itself well to calculating all possible recurrent states for a

given set of inputs.

Bounded set propagation is composed of the following problem. Provided an input

boundary set H = {η ∈ Rn|
¯
η ≤ η ≤ η} and input/output system ζ = Φ(η) (e.g. a NN),

what is the resulting output bounded set Z = {ζ ∈ Rm|
¯
ζ ≤ ζ ≤ ζ}? Bounded set prop-

agation is an important tool in reachability analysis and collision detection of systems,

as observed especially for dynamical systems under external noises [46]. This tool is an

important step in property verification of systems that contain complex input/output re-

20

lationships, and provides an important piece of future formal method suites for verifying

NNs.

21

Chapter 3: Methodology and Problem Description

Chapter 3 focuses on the methodology presented in this thesis and the formal prob-

lem descriptions for each step.

3.1 Methodology Overview

The methodology presented in this paper is built around a framework for generating

RNN path planners for system states from initial configurations to end configurations

under a broad range of environment and kinematic/dynamic constraints and optimization

metrics. The state path generated by the RNN is to be used in a path tracking controller,

of which the resulting control signals trend that of the desired optimal control signal. This

methodology is visualized in Fig. 3.1.

The driving goal of this methodology is to create a versatile, computationally fast

path planner for generically defined kinematic/dynamic systems that is capable of provid-

ing feasible solutions to varied environments while still maintaining optimization of the

desired metric. The greatest strength in this approach is that the use of RNNs in learning

the solution space of an optimization problem results in order of magnitude reductions

in the computation costs of generating paths. For comparison, the generation of feasible

paths from a kinodynamic RRT* may require up to 10 seconds, while sequential RNN

22

Figure 3.1: Overview diagram of the three main components of the methodology ex-
plored. For part 1, a kinodynamic path planner solution generator is used offline to gen-
erate large quantities of optimized solutions under varied environments. From such data,
a recurrent neural network (RNN) is trained in part 2 to recreate the state paths of the
optimized solutions, with the ability to generalize the solutions to new environments. For
the online portion of part 3, the RNN is utilized to generate the state path of the optimal
solution, from which a path tracking controller is used to follow. Control signals of the
path tracking controller will trend that of the optimized solution.

23

computations will take on the order of tens of milliseconds. The primary hurdle, though,

is accurately teaching the RNN to consistently produce feasible results.

The following sections outline the formal problem formulations of each step in the

methodology.

3.2 Problem Formulations

The three components of the methodology, Path Planning, RNN Training, and Con-

troller Execution, are formulated as individual problems to be discussed and solved in

Chapter 4 of this thesis.

3.2.1 Path Planning under Kinematic/Dynamic and Environment Con-

straints

The generalized path planning problem is formulated as the optimal control prob-

lem presented in the following way:

minimize
u(t),t f

∫ t f

0
W (t,x(t),u(t))dt +L (x(0), t f ,x(t f)), (3.1a)

subject to ẋ = f(x(t),u(t)), (3.1b)

x(0) = x0, (3.1c)

x(t f) = x f , (3.1d)

C(x(t),u(t),P)≤ 0. (3.1e)

Here, x(t)∈RN is the system state, u(t)∈RM is the control signal, and t is time. Eq.

24

(3.1a) is an optimization metric (consisting of both an integrated scalar function W and

non-integrated scalar function L) for the provided kinematic/dynamic system defined by

Eq. (3.1b), in which f(x(t),u(t)) ∈ RN . Eq. (3.1c) and (3.1d) represent desired initial

and final conditions on the state, respectively, and Eq. (3.1e) (with C(x(t),u(t),P) ∈RQ)

contains all desired nonlinear constraints on the system states and control signals. The

vector P∈RO represents all possible static variables in the constraints. A control solution

to the above optimization formulation and its corresponding state path is represented as

G(t) ∈ RN+M.

3.2.2 Recurrent Neural Network and Training

Provided a domain for the initial and final conditions, x0,min ≤ x0 ≤ x0,max and

x f ,min ≤ x f ≤ x f ,max, and a constraint domain of Pmin ≤ P ≤ Pmax, individual optimized

solutions G(t) exist as outputs to the optimization solution when using these variables.

Provided sets X0, X f , and Pset of sample points from these domains, a set of solutions Gset

exists, composed of the solutions to the optimization problem described in the previous

section using these variables.

Given Gset , an RNN must be formed and trained upon the provided data, operating

under fixed time-step tk. The RNN is represented generally as the form,

x(tk +1) = Φ(x(tk), tk,xi,x f ,P), (3.2)

where tk represents sampled time. For all given time steps and for all solutions G(t) ∈

Gset , the RNN output must be trained to minimize a loss function (typically the Euclidean

25

distance squared) composed of the term,

Φ(Gx(tk), tk,xi,x f ,P)−Gx(tk +1), (3.3)

where Gx(t) is the state component of a given solution vector G(t).

3.2.3 Executed Controller

Provided a state path σ(tk) : T −→ RN generated by closed-loop execution of the

RNN under set values of xi, x f , and P with ‖xi−σ(0)‖ ≤ δ , where δ is an arbitrar-

ily small number, a controller ue(t,x(t),σ(tk)) must be formulated such that the error

norm ‖x(t)−σ(tk)‖ is minimized while all constraints C(x(t),u(t),P) ≤ 0 are satisfied.

Additionally, the control signal ue should mimic that of the true control signal Gu(t), min-

imizing the error between the optimized control signal and the executed control signal.

26

Chapter 4: Methodology Components

Chapter 4 outlines the solutions utilized to solve the problem formulations pre-

sented in Chapter 3.2.1 and 3.2.2, the path planning and network training problems.

4.1 Kinodynamic Optimal Rapidly-exploring Random Tree with Cheby-

shev Polynomial Collocation Optimization

Originally explored in [33] for linear systems and extended to differentially flat sys-

tems in [34], kinodynamic formulations of RRT* follow a similar format as the original

RRT*. The primary differences between the two formulations typically include the Cost

function computation (a function of the state, control, and time for kinodynamic RRT*)

and the method for computing optimal state and control solutions between tree nodes and

random samples (solving optimal control problems with respect to the cost function). Al-

gorithm 2 provides the general kinodynamic RRT* formulation, where the contribution of

this thesis is the extension of solving the nonlinear problem formulations between nodes

by using Chebyshev collocation approaches.

In Algorithm 2, Cost() represents Eq.(3.1a) evaluated over a branch and BV P() is

the solution to the boundary value problem solved as an optimization problem between

two states using Eq. (3.1a)-(3.1d). Notice that solutions solved between two individual

27

states do not require nonlinear constraint formulations of Eq. (3.1e). The primary diffi-

culty in implementing the kinodynamic RRT* formulation is the method in which BV P()

is calculated between two state nodes.

Algorithm 2: Kinodynamic RRT*
1: procedure GENERATE PATH(xinit ,N) . Execute RRT* over N iterations
2: V ←{xinit}; E←60
3: xprev← xinit
4: for i = 1, ...,n do
5: Attempt e← BV P(xprev,x f)
6: if Cost(e)< costconnect then
7: V ←V ∪ x f ; E← E ∪ e

8: xrand ← Sample state from regions that don’t violate constraints
9: xnearest ← argminv∈VCost(BV P(v,xrand))

10: xnew← xrand
11: if Check constraint(BV P(xnearest ,xnew)) then
12: Xnear←{v ∈V | Cost(BV P(v,xnew))≤ costradius}
13: V ←V ∪{xnew}
14: xmin← xnearest ; cmin← ∑GCost(xnearest)+Cost(BV P(xnearest ,xnew))
15: for xnear ∈ Xnear do
16: if Check constraint(BV P(xnear,xnew)) ∧ ∑GCost(xnear) +

Cost(BV P(xnear,xnew))< cmin then . Determine minimum cost connection
17: xmin← xnear; cmin← ∑GCost(xnear)+Cost(BV P(xnear,xnew))

E← E ∪{BV P(xmin,xnew)}
18: for xnear ∈ Xnear do
19: if Check constraint(BV P(xnew,xnear)) ∧ ∑GCost(xnew) +

Cost(BV P(xnew,xnear))< ∑GCost(xnear) then . Rewiring of the tree
20: xparent ← ParentG(xnear)
21: Replace BV P(xparent ,xnear) in E with BV P(xnew,xnear)

22: xprev← xnew

The methods used in BV P() have varied between the kinodynamic RRT* formula-

tions. For linear systems, [33] exploited classical control theory to determine the weighted

controllability Gramian of the linear system used in computing the optimal control policy

from an initial state to a final state over fixed time. From here, this optimal control policy

substituted into the cost function allowed for an analytical derivation of the cost function’s

28

derivative with respect to time. By using this derivative to minimize the cost with respect

to time, [33] found an analytical form of the optimal control history that minimized the

cost function with respect to time. The primary limitations of this method is the required

linearity of the defined system and a cost function solely defined as
∫ t f

0 (1+u(t)T u(t)dt)

(where u is the control signal and t f is final time).

For differentially flat systems (in which a flat output y = h(x,u, u̇, ...u(k)) exists

for system ẋ = f (x,u) resulting in the existence of functions x = g(y, ẏ, ...,y(j)) and u =

g′(y, ẏ, ...,y(j))), [34] utilized B-splines [47] to represent state trajectories between tree

nodes and sampled points. The use of B-splines allowed the optimal control problem to

be formulated as a nonlinear programming (NLP) problem, from which nonlinear opti-

mizers could be used to solve for. Optimized state trajectories utilizing B-splines require

differentially flat systems, resulting in non-explicit formulations of the states separated

from the controls. This results in a state and control representation that are tied directly

together (through the supposed function g), not easily allowing for optimal solutions that

may contain controls spikes separate from the optimal state path. For example, bang-

bang control solutions are present in low-thrust spacecraft trajectory optimization, but

optimization through assumptions of the system as differentially flat do not easily allow

for representations that produce a discontinuous control signal alongside explicit control

constraints. Circumventing the issue of assuming differentially flat system definitions re-

quired the use of analytic homotopic approaches as auxillary control solutions in [48], for

example.

This thesis explores the use of Chebyshev polynomial representations in solving

the optimization problem for BV P() through collocation (also referred as psuedospectral

29

methods) as explored in [49] and [50], which do not require explicitly defined differen-

tially flat systems. In this approach, Chebyshev polynomials of the form

CN = cos
(
Nt cos−1 (τ)

)
, (4.1)

where Nt + 1 represents the number of collocation nodes and τ ∈ {−1,1}, serve as rep-

resentations of the state over the optimization horizon. At discrete Nt + 1 nodes of the

polynomial, formulated from the chosen values of τ as

τk =−cos
(

πk
Nt

)
k = {0,1, ...,Nt}, (4.2)

the polynomial’s time derivative is constrained to equal that of the state’s dynamics. Un-

der this discretization of the state path as a Chebyshev polynomial, the optimization prob-

lem for BV P() is reformulated as the following:

minimize
Ud ,Xd ,tNt

Nt

∑
k=0

(wkW (τk,x(τk),u(τk)))+L (x(0), tNt ,x(τNt)), (4.3a)

subject to DXd−F = 0, (4.3b)

x(0) = x0, (4.3c)

x(τNt) = x f (4.3d)

In the above equations, Nt + 1 is the number of discrete nodes. Xd ∈ R(Nt+1)×N , Ud ∈

R(Nt+1)×M, and F ∈ R(Nt+1)×N are matrix representations of the discrete nodes of the

Chebyshev polynomial and the corresponding state derivative and constraint evaluations

30

at each, explicitly written as:

Xd =

x1(0) x2(0) . . . xN(0)

x1(τ1) x2(τ1) . . . xN(τ1)

...
...

x1(τNt) x2(τNt) . . . xN(τNt)

, (4.4a)

Ud =

u1(0) u2(0) . . . uM(0)

u1(τ1) u2(τ1) . . . uM(τ1)

...
...

u1(τNt) u2(τNt) . . . uM(τNt)

, (4.4b)

F =
tNt

2

f1(x(0),u(0)) . . . fN(x(0),u(0))

f1(x(τ1),u(τ1)) . . . fN(x(τ1),u(τ1))

...

f1(x(τNt),u(τNt)) . . . fN(x(τNt),u(τNt))

, (4.4c)

where the scaling term tNt/2 in the state derivative is introduced due to state’s transforma-

tion onto the time domain expressed in Eq. (4.2). The matrix D ∈ R(Nt+1)×(Nt+1) is the

differentiation matrix of the Chebyshev polynomial, explicitly written as,

Di,k =

ak(−1)k+i

ai(τk−τi)
if k 6= i

− τk
2(1−τ2

k)
if 1≤ k = i≤ Nt−1

2N2
t +1
6 if k = i = 0

−2N2
t +1
6 if k = i = Nt−1,

(4.5)

where ak,i = 2 if k, i = {0,Nt} and ak,i = 1 otherwise. The quadrature weights wk are

used in approximating the integral of a function evaluation on a Chebyshev polynomial,

31

formulated as,

wk =
ck

Nt

(
1−

Nt/2

∑
j=1

b j

4 j2−1
cos(2 jτk)

)
, (4.6)

where b j = 2 if j = Nt and b j = 1 otherwise. The variable ck = 1 if k = {0,Nt} and

ck = 2 otherwise. Under the presented formulation, the discrete values in Ud , Xd and tNt

make up the free parameters for an NLP program, alongside the provided constraints and

optimization function.

This formulation described does not require differentially flat systems and allows

for control solutions separated from state paths, where these control solutions may closer

represent possible discontinuities. Common NLP solvers, such as ones utilizing sequen-

tial quadratic programming (SQP), are typically well suited for solving these types of

formulations. Fig. 4.1 provides an example of the kinodynamic RRT* finding a solution

for a path planning problem (utilizing F = ma dynamics) in a cluttered environment.

The use of the Chebyshev collocation optimization in the kinodynamic RRT* al-

lows for the generation of large amounts of optimized solutions for a given problem

scenario. The generation of these data sets leads into the development of a method for

training the path planning RNN on the optimized solutions, discussed in the following

section.

4.2 Whole-path Reinforcement Training Scheme

The second component of the methodology presented in this thesis requires training

the RNNs to learn the state solution space of the solutions generated by the kinodynamic

RRT*. Supervised training of RNNs to predict time-dependent state sequences produces

32

Figure 4.1: The results of a kinodynamic RRT* run after 5 iterations. The path planning
problem consists of obstacle avoidance in a cluttered environment for a 2D point mass
dictated by F = ma dynamics, starting at the red dot and ending at the green dot. The
black branches represent sampled paths of the RRT*, while the red branch is the first
feasible solution found. This solution was used as an initial guess to an NLP solver to
create a smoothed solution, represented by the blue line.

33

networks that drift from the desired output over time when in closed-loop execution. This

is primarily due to the accumulation of errors in the state outputs over time. For example,

suppose a double pendulum is simulated from an initial condition to create a sequence of

state paths (including joint orientations and velocities) over a fixed time. A simple RNN

is created as the form xi+1 = Φ(xi), where Φ represents a simple feedforward network. In

a supervised training scheme, the training data set would be constructed as {(xi,xi+1)} for

i = {1,2, ...N−1}, where the states xi are sampled at discrete points in time. Training the

RNN under a typical supervised fashion (such as with the use of SGD), results in Fig. 4.2.

Initial errors in the state prediction quickly lead to a breakdown in the ability to provide a

reasonable prediction of the state paths over the execution.

The provided example illustrates that an improved training scheme is required for

producing RNNs that can reliably predict state paths of complex systems. To achieve this

goal, RL concepts can help provide guidance. In RL, outputs of NNs are fed into systems

which impact the inputs for the NN. This feedback loop can be exploited to train the net-

work based on the results its actions have on the environment. In many RL applications,

the training is approached through the maximization of a reward function, where schemes

are set up to train NN weights in the direction that produces actions which increase the

reward. For RNN predictions of time-dependent paths, the closed-loop execution of the

RNN can be exploited to force the resulting outputs back towards the desired path. This

insight led to the contribution of Algorithm 3.

Algorithm 3 takes in a set Gset of optimized state path solutions of Eq. (3.1a) - (3.1b)

and constructs the time-dependent training data (Xin,Yout). A normal supervised training

procedure is first employed to prime the RNN in fitting the desired paths. Through mul-

34

Figure 4.2: Under standard training schemes, errors in the predicted states of an RNN ac-
cumulate over time, leading to worse path predictions. The figure showcases the starting
configuration and path of a double pendulum alongside the predicted path from the RNN.
Transparency of the pendulum increases forward in time. Pendulum masses of 4 kg and
lengths of 2 m were used in modeling the system.

35

Algorithm 3: Whole-path Reinforcement Training
1: procedure TRAIN RNN(Gset) . Train RNN from set of optimized solutions
2: Train RNN over (Xin,Yout)⊆ (Gset(tk),Gset(tk +1)) for all k . Utilizing any

common training scheme
3: (Xin,Yout)original ← (Xin,Yout)
4: MSEbest ← inf
5: for 1 to Training Iterations do
6: for i← 1 : lenhorizon : Nt f do
7: Generate σ(tk) from k = 0 to k = i for all xi, x f , and P sets
8: Create training data (Xhorizon,Yhorizon) = (σ(tk),Gset(tk + 1)) from k = 0

to k = i
9: (Xin,Yout)← (Xhorizon,Yhorizon)∪ (Xin,Yout)

10: Train RNN over (Xin,Yout)

11: Generate σ(tk) from k = 0 to k = Nt f for all xi, x f , and P sets
12: MSEr←mean square error of RNN output w.r.t Gset(tk+1) given σ(tk) input

set
13: if MSEr < MSEbest then
14: MSEbest ←MSEr
15: RNNbest ← RNN

tiple training iterations, closed-loop execution of the RNN is used to produce the set of

state paths σ(tk) over finite time horizon. An augmented training set (Xhorizon,Yhorizon)

is constructed of the state paths σ(tk) produced by the RNN and the desired path set

Gset(tk + 1) at the next time step for all tk. This set is appended to the total training set,

and the RNN is trained over the total training set again. After the longest time horizon is

reached, the quality of the RNN at the current iteration is assessed through comparison

of its closed-loop execution with respect to the desired path outputs. This is performed

through the loss function comparison, which is assumed to be the mean square error of

the path predictions against the desired path outputs. If the loss calculation is less than the

best value, the RNN is saved as RNNbest alongside the current mean square error value.

From here, the process repeats for the desired number of Training Iterations.

The results of the proposed algorithm are improved path predictions across the data

36

set provided. To be clear, though, this form of learning does not produce RNNs that

learn underlying dynamics, since individual states at each time step are corrected to fol-

low a desired path output. The RNN instead learns a path structure from the data set.

For the purposes of the methodology discussed in this paper, such an outcome is de-

sired. The RNN is supposed to learn optimal solutions per environment input. Because

only one optimal solution exists per environment, strict enforcement of path learning for

each optimized solution helps to extend the RNN’s capabilities in generalizing across new

permutations in the environment, instead of across different states for individual environ-

ments. The improvements that Algorithm 3 can produce are shown in the application to

the pendulum problem previously discussed, shown in Fig. 4.3. This level of improve-

ment helps improve the RNNs path planning capabilities, a necessary component in the

overall methodology.

37

Figure 4.3: Under the whole-path reinforcement training scheme of Algorithm 3, errors
in the predicted states of an RNN do not accumulate nearly as much over time. In many
cases, recent errors may not impact future predictions since the RNN learned the path
structure through the entire time duration of this scenario. The figure showcases the
starting configuration and path of a double pendulum alongside the predicted path from
the RNN. Transparency of the pendulum increases forward in time. Pendulum masses of
4 kg and lengths of 2 m were used in modeling the system.

38

Chapter 5: Problem Scenario 1: 2D Obstacle Avoidance

To examine the effectiveness of the methodology proposed in this thesis with re-

spect to highly constrained environments, a cluttered static obstacle avoidance problem

with 2D dynamics is examined. The problem formulation and application of the method-

ology with respect to it is further described in the following sections.

5.1 Implementation

Path planning between two locations in a cluttered environment without kinematic-

/dynamic considerations presents a difficult problem to solve, one further complicated by

the introduction of kinematic/dynamic constraints and optimality conditions. Introduced

previously in Chapter 4.1, a kinodynamic RRT* can provide suboptimal solutions quickly

(order of 0.25 seconds in [34]) and provide optimal solutions under longer computation

times (order of 10 seconds in [34]). The capability to provide a feasible solution rela-

tively close to the desired optimal solution in an order of magnitude less time than even

the suboptimal solution is of great interest, a primary result this thesis’s methodology is

aimed to create. To explore such, the problem formulation (described in respect to the

optimization formulation in Chapter 3) and implementation details are provided.

39

5.1.1 Problem Definition and Application Details

For this 2D point-to-point problem with obstacle avoidance and dynamics, the fol-

lowing model utilized is,

ẋ = v (5.1)

v̇ = uem, (5.2)

where m = 1. The state boundary is (−6,−8) ≤ (x,y) ≤ (6,8) and (−2.5,−2.5) ≤

(vx,vy) ≤ (2.5,2.5), with control constraints of (−10,−10) ≤ (ux,uy) ≤ (10,10). The

environment consists of 7 rectangular obstacles randomly placed within the state domain,

each formulated as,

(−6,−8,0.5,0.5)≤ Pi = (xp,yp,hp,wp)≤ (6,8,5,5), (5.3)

where xp and yp are position coordinates of the rectangle’s center and hp and wp are

heights and widths, respectively. Initial and final state positions (with zero velocity) are

sampled randomly within the state domain and outside of obstacles. The optimization

function to minimize for a path is,

∫ t f

0
‖ue‖dt + t f . (5.4)

With respect to the first step of the methodology, the kinodynamic RRT* utilizing

the Chebyshev collocation optimization scheme was used in obtaining training data for

an RNN learning the solution space to this problem. Approximately 5,000 solutions were

generated for training and validation (70/30 split), consisting of 10 final positions x f

40

per 10 initial positions xi per 50 random object sets Pi. The solver SNOPT [51] was

utilized for solving each branch of the kinodynamic RRT* and performing the smoothing

procedure for each solution. For the cluttered environment described, this data gathering

process took on the order of 3 days run-time with a 2.5 GHz processor.

The creation and training of an RNN over this data set utilized the Keras [52] and

TensorFlow [53] libraries in Python. The network architecture consisted of an input layer

(consisting of state and environment variables), 4 hidden layers (sizes 70/50/50/50) with

hyperbolic arctan activations, and a linearly activated output layer for the state. The sam-

pling time of the RNN was 0.1 seconds (i.e. tk = 0.0, 0.1, 0.2,...). Network training

over any data set utilized the ADAM optimization scheme with Nesterov momentum

integrated [54] and a learning rate of 0.002. In addition to the standard environment rep-

resentation using the vector Pi as input, an autoencoded representation for the obstacles

was also explored to assess how varied environment representations may improve training

performance.

5.1.2 Contractive Autoencoding of Environment

Contractive autoencoders [55] are feedforward neural networks that encode high

density information to lower density outputs. These models are trained in an unsuper-

vised fashion, where a feedforward network is used to encode the information to a lower

density form, from which this output is fed into the inverse of the network used to en-

code such. Utilizing the resulting output, the encoding-decoding network combination is

trained to replicate the input exactly with its output. The resulting encoding network acts

41

as a compression system, from which decompression is performed through the decoding

network form.

With respect to the obstacle avoidance problem at hand, obstacles normally rep-

resented as 4 dimensions (location, height, width) can instead be represented by point

clouds. An autoencoder acting on the high-dimension point cloud can be used to create

a reduced representation of this environment for use by the RNN. This reduced environ-

ment presents a more robust representation, since separate training data sets that normally

utilize the same obstacles (across different initial and final state conditions) will instead

use encoded representations that differ slightly between each other. This results in a more

robust training sequence since a larger set of environment representations are observed.

The motion planner in [31] reported significant training improvements when utilizing this

scheme for representing the environment. For the results of this Problem Scenario, assess-

ments are made on how well the autoencoding of the environment can improve results.

5.1.3 Path-tracking Controller

Last, a path-tracking controller was formulated to fulfill the final part of the method-

ology: online execution. This controller was constructed after examining preliminary re-

sults in order to mitigate common errors observed in the RNN path planner. In general, de-

sign of a controller to track the generated path σ(t) of the RNN is a problem-specific task

tied to the kinematics/dynamics of the prescribed system. The ability to track an arbitrary

path provided a system and control definition is dependent upon the controllability of the

system and realizability of a reference track [56]. Fortunately, the generated path, assum-

42

ing minimal errors produced by the RNN, is already derived from a dynamic/kinematic

formulation, with considerations to controllability enforced in the optimization. Under

such, a control signal must exist that can track the system path accurately.

For this problem scenario, a simple feedback control loop is more than adequate

for following the produced RNN state history. For this simple mechanical system, the

velocity feedback portion of the control signal constitutes the error in desired velocity of

the state with that of the RNN path, and the position feedback portion constitutes the error

between the current state position and the desired position of the RNN path. This control

signal is formulated as,

u f , f (x(t),σ(tk)) =−Kp(xp(t)−σp(tk))−Kv(xv(t)−σv(tk)), (5.5)

where t is continuous time, tk is sampled time per the RNN time interval, xp is the position

vector of the state, σp is the position vector of the RNN output path, xv is the velocity

vector of the state, σv is the velocity vector of the RNN output path, Kp is the position

gain matrix, and Kv is the velocity gain matrix.

While the above controller design can maintain path tracking, no guarantees are

provided with respect to constraint satisfaction if the RNN output path fails such. Prelim-

inary results observed the RNN generated path as producing minor constraint violations

over the training and validation solution sets. In order to combat this issue for real-time

execution, localized potential functions are used about the current position state, derived

from [57].

Provided local bounds xp,min,local and xp,max,local on the system position state at any

43

given time, potential functions of the form,

U(xp(t),xp,s) =

−c

Ns‖xp(t)−xp,s‖ Eq. (3.1e) 6≤ 0

0 otherwise

(5.6)

are placed at uniform sample points xp,s of resolution r<
(
xp,max,local−xp,min,local

)
about

xp(t). Fig. 5.1 provides a visualization of these functions with respect to an obstacle. In

Eq. (5.6), Ns is a factor to mitigate the scaling issue when using multiple sample points,

and c is a gain used for the controller. The condition of Eq. (3.1e) 6≤ 0 utilizes xp,s instead

of xp. The derivative of the repulsive potential functions results in the combined forces

shown as,

F =
Ns

∑
s

−c(xp(t)−xp,s)

Ns
∥∥xp(t)−xp,s

∥∥2 . (5.7)

The purpose of these potential functions is to provide local constraint satisfaction,

not global satisfaction. As a result, egregious errors in the RNN path are not mitigated

by the use of these functions. They simply serve as a means of preventing constraint

violations on position in real-time and in a manner that could be employed locally about

the agent.

As a result of the feedback controller and potential function forces, the executed

controller results in the form,

ue = F(tk)+u f , f (x(t),σ(tk)), (5.8)

where the term F(tk) is calculated by Eq. (5.7) at each sampled time tk. For application,

gains of c = 25, Kp = 40, and Kv = 40 were used.

44

Figure 5.1: The use of localized potential functions can mitigate minor constraint errors
of the state path produced by the RNN. Local potential nodes exist relative to the agent,
which are activated when their position enters an object. Forces produced by the activated
potential functions push the agent off from the reference trajectory to avoid constraint
violations. The force produced by the reference trajectory prevents the local forces from
driving the agent completely off the desired path.

45

5.2 Results

The performance of the methodology in a scenario is primarily dependent upon the

closed-loop execution and σ(tk) path creation of the RNN (CL) compared against optimal

paths and the controller execution over that path (CTRL) also compared to the optimal

paths. Assessments for multiple training schemes were performed with visual compar-

isons and the root mean square error (RMSE) of a generated path compared against the

optimized paths. The RMSE represents the square root of the loss function (mean square

error) used in training and provides a metric for the average error between a generated

path σ(tk) and an optimized path G(tk). The closer an RMSE value is to 0, the more

accurate a prediction the RNN will produce for the given problem scenario.

Problem Scenario 1 provides a means of assessing this methodology’s ability to

produce near optimal paths (with respect to the optimization function in Eq. (5.4)) in

cluttered environments. Results are produced to examine how well the RNN can recre-

ate the desired optimal paths for training and validation data sets, as well as examining

the use of the path-tracking controller on such. Three training schemes are utilized to

judge the results with respect to normal training (no whole-path reinforcement training or

autoencoder), training with the autoencoder, and training including both the autoencoder

and the whole-path reinforcement training.

Training the RNN over the optimization sets Gsets without the autoencoder to rep-

resent the environment or the whole-path reinforcement training scheme produces fairly

undesirable CL and CTRL results across both the training data sets and the validation data

sets. This is obvious from the RMSE values provided in Table 5.1, which showcases high

46

error values in the position state with respect to the size of the domain explored (order

of 10 meters). Velocity RMSE values are also high with respect to their domain values.

An example CL output is displayed in Fig. 5.2 (left image) to provide the reader a sense

of how the CL outputs under this training scheme behave with respect to the optimized

solutions.

Inclusion of the autoencoder to compress point cloud representations of the obsta-

cles increases the robustness of the represented environment, allowing for better training

over the same set of data. The results of the autoencoder inclusion on the RMSE errors

are also presented in Table 5.1. Comparing these values to those of the RNN trained in the

normal training scheme showcase a marked improvement in the CL performance on the

training data and on the validation data (approximately 30% reduction in training RMSE

values and 35% reduction in validation RMSE values). The CL output as compared to

the non-autoencoded RNN is shown in the right image in Fig. 5.2. While the path inter-

sects the obstacle, the CL output better fits the optimized solution, an important step in

improving training.

Finally, the use of whole-path reinforcement training further improves the results.

Table 5.2 provides CL output training and validation RMSEs for the RNN training with

the autoencoder and whole-path reinforcement training. For the training sets, the CL

performance of the RNN under whole-path reinforcement training results in significant

reductions to the position and velocity RMSE compared to just the use of the autoen-

coded environment (up to 60% further reductions). The left image of Fig 5.3 provides

the resulting CL path under this training scheme of the scenario shown in Fig. 5.2. Un-

fortunately, these improvements do not extend as well to the validation set RMSE values.

47

No autoencoded env. Training data Validation data

RNN CL position (m) RMSE 2.59 3.80

RNN CL velocity (m/s) RMSE 1.16 1.40

Autoencoded env. Training data Validation data

RNN CL position (m) RMSE 1.76 2.34

RNN CL velocity (m/s) RMSE 0.81 0.98

Table 5.1: RMSE path values of RNN in closed-loop (CL) execution over both training
and validation data sets for training scheme without autoencoded environ. RMSE values
are provided in the units used for the property stated. The closer an RNN’s RMSE value
is to zero, the more accurate its ability is to track the desired optimal solution. The normal
training scheme provides poor results when comparing the RMSE magnitudes to that of
the domain the pos

Comparatively, the use of just the autoencoded environment provides validation RMSEs

on the same order as the combined training, if not slightly better. A primary reason for this

result is the increased amount of training performed on just the training data sets when

utilizing the whole-path reinforcement training. As a result, information pertaining to a

select amount of optimized solutions is repeatedly observed, leading to overfitting of the

RNN to these sets. Larger training and validation data sets can help alleviate this issue,

but further research is required to determine how to better extend the patterns learned in

the whole-path reinforcement training to the validation training sets.

A further assessment of this methodology’s application to the obstacle avoidance

scenario includes examination of the path-tracking control’s output path (CTRL output)

and control signals as compared to the optimal control solution. The controller’s perfor-

mance on the RNN CL path is a vital component to the assessment of this methodology

as it represents the end product, since the online execution informs how well the RNN CL

48

Figure 5.2: Example of the RNN closed-loop (CL) path compared against the opti-
mized solution from the training set with no autoencoded environment (left) and with
autoencoded environment (right). The normal training scheme without an autoencoded
environment produces larger errors with respect to the desired state path than compared
to the RNN result using the autoencoded environment. While the autoencoded version
intersects the obstacle compared to the non-autoencoded version, the form of the desired
optimal solution is better understood, an important step for improving training.

paths can actually be utilized and what adjustments may need to be made. The CTRL po-

sition, velocity and control signal RMSE values are provided in Table 5.2. As observed,

the RMSE values of the CTRL paths nearly match identically those of the CL paths. This

indicates the ability of the path-tracking controller to maintain the desired output path in

time. An example of the CTRL path is provided in the right image in Fig. 5.3, which

showcases a stronger fit to the desired optimal solution than the CL path in part due to

the constraint violation mitigations through the potential function controller. Additional

examples of CTRL results on validation data sets are provided in Fig. 5.4. These valida-

tion examples represent the RNN’s ability to extend the solution space. From the images,

assessments can be made (detailed in the Fig. 5.4) that the RNN learned the solution

space fairly well, but not enough so that controller mitigations of constraint violations

49

Figure 5.3: Training example RNN CL output utilizing full training scheme (autoencoder
+ whole-path reinforcement). As compared to the figures in Fig. 5.2, the CL output path
more closely fits the form of the desired optimal solution. Minor constraint violations are
still present, though, but less severe than the result from the use of just the autoencoded
environment.

are uncommon. These path violations from the RNN CL output impact the performance

of not only the CTRL paths, but also the CTRL control signals in respect to the desired

optimal control signals.

The CTRL control signal RMSE values are much greater in comparison to their

respective domain magnitudes (order of 10 N) than those of the CTRL position and ve-

locity values. Fig. 5.5 provides a comparison of the x-axis control signals with respect

to the optimized control signals for the validation examples in Fig. 5.4, from which a

few assessments can be made. Control spikes in the top left and bottom right images

correspond to activations of the local potential functions. Higher density potential grids

would smooth out such spikes. In general, the control signals from the CTRL paths begin

with a large offset followed by a trending behavior towards the optimal control signal.

This large offset is due to the common initial error prediction by the RNN at initialization

of the paths. Improvements to the CL paths generated by the RNN would lead to more

50

Training data Validation data

RNN CL position (m) RMSE 0.53 2.52

RNN CL velocity (m/s) RMSE 0.36 1.00

CTRL position (m) RMSE 0.48 2.54

CTRL velocity (m/s) RMSE 0.40 0.98

CTRL control signal (N) RMSE 8.30 13.98

CTRL optimization metric (Ave. |% Error|) 84% 85%

Table 5.2: RMSE path values of RNN in closed-loop (CL) execution over both training
and validation data sets for training scheme without autoencoded environ. RMSE values
are provided in the units used for the property stated. The closer an RNN’s RMSE value
is to zero, the more accurate its ability is to track the desired optimal solution. The normal
training scheme provides poor results when comparing the RMSE magnitudes to that of
the domain the pos

accurate control signals. Furthermore, the average percent error of the optimization met-

ric is also provided in Table 6.2. Again, further path improvements by the RNN would

decrease this error.

The above results showcase the ability of an RNN to learn the solution space of an

optimization problem for a simple dynamic system maneuvering a cluttered environment.

The inclusion of an autoencoder for the environment and whole-path reinforcement train-

ing greatly improve the CL results of the RNN on the training data, while generating less

of an improvement on the validation data. For all of the produced CL paths, RNN gener-

ation only required on the order of 10’s of milliseconds, orders of magnitude less than the

time required to generate a single optimal solution from the kinodynamic RRT*. Prob-

lem Scenario 1 highlights the methodologies capabilities in satisfying varied environment

constraints well showcasing clear areas for improvement.

51

Figure 5.4: Validation data set examples of resulting CTRL path over the generated RNN
CL paths. The top left and bottom left images represent desired results, while the top right
and bottom right images represent undesired results. Top left showcases the RNN gener-
alizing solutions, with the controller mitigated only minor constraint violations. Bottom
left showcases a standard result operating outside of the obstacle environment. Top right
showcases strong generalization in avoiding obstacle collisions while not meeting the end
condition. Bottom right showcases major constraint violation, requiring the executed con-
troller to mitigate the such. The oscillating path is due to a sparse potential function grid
about the agent updating at a lower frequency than the feedback controller signal (10 Hz
vs 100 Hz).

52

Figure 5.5: X-axis control signals corresponding to the validation examples provided
in Fig. 5.4 compared against the optimal control signals. Control spikes in the top left
and bottom right images correspond to activations of the local potential functions. Higher
density potential grids would smooth out such spikes. In general, the control signals from
CTRL paths begin with a large offset followed by a trending behavior towards the optimal
control signal. This large offset is due to the common initial error prediction by the RNN
at initialization of the paths. Improvements to the CL paths generated by the RNN would
lead to more accurate control signals.

53

Chapter 6: Problem Scenario 2: 2D Multi-agent Synchronized Rendezvous

and Collision Avoidance

To examine the effectiveness of the methodology proposed in this thesis with re-

spect to higher dimension systems, a multi-agent synchronized rendezvous and collision

avoidance problem is examined. The problem formulation and application of the method-

ology with respect to it is further described in the following sections.

6.1 Implementation

The optimization formulation of Chapter 3 presented in the methodology places no

restrictions on the number of agents. With respect to problems involving multiple agents,

this formulation equates to a centralized planner. To account for multi-agent systems, the

54

optimization formulation was modified to produce the following scheme:

minimize
u(t),t f

∫ t f

0

(
Na

∑
i=1

W (t,xi(t),ui(t))

)
dt+

Na

∑
i=1

L (xi(0), t f ,xi(t f))

, (6.1a)

subject to

∀i ∈ {1, ...,Na}
ẋi = f(xi(t),ui(t)), (6.1b)

xi(0) = xi,0, (6.1c)

xi(t f) = xi, f , (6.1d)

Ci(x(t),u(t),Pi)≤ 0. (6.1e)

In this formulation, the index i corresponds to an individual agent and its respective pa-

rameters. As stated before, this format represents a centralized planner among all agents.

Because of such, two RNN architectures were of particular interest for study, a central-

ized and a decentralized version. The centralized version corresponds to a single RNN

accounting for all agents, while the decentralized RNN is constructed for each individual

RNN with limited knowledge on the rest of the agents. Investigation of the two ap-

proaches used the following problem formulation.

Each agent is modeled as a point mass subject to linear dynamics,

ẋi = vi (6.2)

v̇i = uim, (6.3)

where m = 1. The state boundary is (−6,−8) ≤ (x,y) ≤ (6,8) and (−2.5,−2.5) ≤

(vx,vy) ≤ (2.5,2.5), with control constraints of (−10,−10) ≤ (ux,uy) ≤ (10,10). The

55

environment consists of collision avoidance between all agents, with Ci formulated as,

0.3−
∥∥xp,i−xp, j

∥∥ ∀ j ∈ {i, ...,Na}, (6.4)

where xp represents the position of an agent. The desired final time is fixed at 20 seconds.

Initial state positions (with zero velocity) are sampled randomly within the state domain,

while final state positions (with zero velocity) are set at equal intervals along the x axis,

fixed for each agent. The optimization function to minimize is,

∫ t f=20

0

Na

∑
i=1
‖ui‖dt. (6.5)

The above formulation allowed for direct solutions using the NLP solver and ignor-

ing the kinodynamic RRT*. Utilizing 10 agents (Na = 10), approximately 5,000 solutions

were generated for training and validation (70/30 split), each consisting of randomized

initial conditions for each agent. The solver SNOPT [51] was utilized for solving the op-

timization problem formulated as an NLP problem in each configuration. The centralized

RNN was constructed with 5 hidden layers (sizes 300, 200, 150, 100, and 80) utilizing

the hyperbolic tangent activation function and an output layer utilizing a linear activation.

The decentralized RNNs were constructed with 4 hidden layers (sizes 150, 110, 70, 20,

and 4) utilizing the hyperbolic tangent activation function and output layers utilizing the

linear activations, too. Keras [52] with the TensorFlow [53] backend were utilized for

network construction and training through the Nesterov Adam optimization scheme [54]

(learning rate of 0.002 and schedule delay of 0.01). The path-tracking controller for each

agent consisted of a simple feedback control law (Eq. (5.5)) over the reference track.

Controller execution utilized gains Kp = Kv = 25 for all agents.

56

6.2 Results

The multi-agent problem scenario is designed to assess the performance of both

the centralized and decentralized RNN forms in recreating synchronized optimal paths

with collision avoidance constraints. In the centralized form, all agent states are known

to all other agents states within the network. In the decentralized form, only initial global

information (the initial positions of all agents) is provided to each RNN. The performance

of both RNNs is assessed on their ability to recreate the optimal state paths over training

and validation solutions. Furthermore, the agent controllers are executed over each path to

assess the performance in following the desired path and recreating the optimized control

signal, tied directly to the optimization metric defined for the problem.

The root mean square error (RMSE) of an RNN’s state output (σ(tk)) in closed-

loop (CL) form against the training and validation data is used in assessing the overall

performance of both networks. Table 6.1 provides a comprehensive overview of both the

centralized and decentralized RNN RMSE performances on the training and validation

sets. Note that the RMSE value of the decentralized RNN is calculated across all agents.

Fig. 6.1 and Fig. 6.2 provide training and validation examples (respectively) of the

CL RNN outputs as compared to the optimal paths. When examining both the RMSE

values and example plots, it becomes obvious that the decentralized RNN outperforms

that of the centralized RNN. This is observable in Fig. 6.1 and Fig. 6.2 in not only the

greater drift present in the CL paths of the centralized controller but also the unaligned

nodes of the produced path (representing evenly space points in time).

Interestingly, though, while the decentralized RNN may outperform that of the cen-

57

Training data Validation data

Cent. RNN CL position (m) RMSE 0.520 0.694

Cent. RNN CL velocity (m/s) RMSE 0.384 0.537

Decent. RNN CL position (m) RMSE 0.310 0.557

Decent. RNN CL velocity (m/s) RMSE 0.278 0.491

Table 6.1: RMSE path values of centralized and decentralized RNNs in closed-loop (CL)
execution over both training and validation data sets. RMSE values are provided in the
units used for the property stated. The closer an RNN’s RMSE value is to zero, the more
accurate its ability is to track the desired optimal solution. Comparatively, the decentral-
ized RNN outperformed that of the centralized RNN.

tralized version in the overall path accuracy, both sets were consistent in ending at the

desired final locations within the execution time of 20 seconds. Adversely, while the

whole-path reinforcement training scheme does well in aligning the state paths overall,

it did tend to produce initial path sequences that diverged before aligning back with the

optimized path, a point observed in the Results section of Chapter 5. This notion along

with the networks’ ability to consistently hit the desired final location indicate that the

network is able to generalize the optimization problem through time and needs further

training improvements to increase the CL path accuracy.

The validation sets for both networks showcases the ability of them to generalize

over new agent configurations. When comparing the decentralized RMSE values to the

centralized RMSE values on the validation set, though, we observe a less obvious im-

provement. This indicates that both RNN setups may be generalizing the solution space

in a more similar manner, one that may become more apparent with a larger data set.

Controller executions were performed over all closed-loop RNN paths for compar-

58

Figure 6.1: Training example of the centralized and decentralized closed-loop (CL) state
outputs compared against the optimized path. Nodes are added at equal intervals (2 secs)
to represent fixed-interval points in time. Diamond nodes represent CL paths and circle
nodes represent the optimized path. X’s represent the initial conditions of all agents, and
squares represent the end conditions. Generally, the decentralized RNN produces more
accurate paths than the centralized version, while both consistently end at the desired final
condition.

ison against the optimal state and control signals. Table 6.2 displays the RMSE executed

control (CTRL) values of the resulting state paths, control signals, and evaluation of the

optimization metric.

Fig. 6.3 and Fig. 6.5 provide training and validation examples of the resulting

state paths from the controller execution. Fig. 6.4 and Fig. 6.6 provide the controller

signals association with the training and validation examples of Fig. 6.3 and Fig. 6.5.

The paths followed by all agents in the controller executed form tend to follow that of the

closed-loop paths produced by the RNNs themselves, resulting in the same comparisons

between the centralized and decentralized RNNs. Greater RMSE values are present in

the CTRL cases as compared to the CL cases. This appears influenced by the greater

59

Figure 6.2: Validation example of the centralized and decentralized closed-loop (CL)
state outputs compared against the optimized path. Nodes are added at equal intervals
(2 secs) to represent fixed-interval points in time. Diamond nodes represent CL paths
and circle nodes represent the optimized path. X’s represent the initial conditions of
all agents, and squares represent the end conditions. Generally, the decentralized RNN
produces more accurate paths than the centralized version, while both consistently end at
the desired final condition.

initial lag introduced by the greater initial errors present within the CL paths. The path-

tracking controller of an agent spends more time around the initial condition before being

yanked along the path, resulting in a greater general error between the CTRL path and the

optimized path.

Unfortunately, this translates to less than favorable control signals observed in Fig.

6.4 and Fig. 6.6 and the produced RMSE values in Table 6.2. While the control signals

trend the same path, the resulting integration of the optimization metric (i.e. the control

norm) results in more excessive mean errors when compared to the optimal solutions.

Observable in both graphs is the common control spike present around the 0.1 second

mark. This is tied to the higher error in the initial closed-loop state output of the RNNs

60

Training data Validation data

Cent. CTRL position (m) RMSE 0.777 0.912

Cent. CTRL velocity (m/s) RMSE 0.577 0.587

Cent. CTRL control (N) RMSE 0.862 0.883

Cent. CTRL integrated control (Ave. |% Error|) 61.3 62.3

Decent. CTRL position (m) RMSE 0.637 0.760

Decent. CTRL velocity (m/s) RMSE 0.554 0.567

Decent. CTRL control (N) RMSE 0.819 0.850

Decent CTRL integrated control (Ave. |% Error|) 61.4 62.4

Table 6.2: RMSE path and control values of executed control (CTRL) over the centralized
and decentralized RNNs for both training and validation data sets. RMSE values are
provided in the units used for the property stated. The closer an RNN’s RMSE value is to
zero, the more accurate its ability is to track the desired optimal solution. Comparatively,
the decentralized RNN outperformed that of the centralized RNN.

observed in the closed-loop graphs. With better training, this initial error can be reduced,

producing smoother closed-loop state paths and better resulting control trends.

Problem Scenario 2 showcases the methodology’s application to a higher dimen-

sionality problem involving multiple agents. CL path performance utilizing the whole-

path reinforcement scheme performed similarly to the results of Chapter 5 involving the

obstacle avoidance problem. Similarly, results indicate that improvements to the whole-

path training scheme as well as better extension to validation data will improve the CTRL

performance. For this specific application, decentralizing the RNNs helped improve re-

sults, showcasing the extension of the solution space formed in a centralized manner to a

decentralized application. Further research is required to assess this methodology’s per-

61

Figure 6.3: Training example of the centralized and decentralized executed control
(CTRL) state outputs compared against the optimized path. Nodes are added at equal in-
tervals (2 secs) to represent fixed-interval points in time. Diamond nodes represent CTRL
paths and circle nodes represent the optimized path. X’s represent the initial conditions
of all agents, and squares represent the end conditions. Generally, the decentralized RNN
produces more accurate paths than the centralized version, while both consistently end at
the desired final condition.

formance in even higher dimensionality systems, approaching that of swarms. Currently,

the prohibiting factors appear to be the use of the kinodynamic RRT* and NLP optimiza-

tion for generating centralized optimization data, which does not scale well.

62

Figure 6.4: Control signal outputs for agent 1 when following state paths produced by the
centralized and decentralized RNNs on the training example. In the ideal performance,
the path-tracking control trends that of the optimal control. Initial errors in the CL paths
produce the initial spikes in the control signals.

63

Figure 6.5: Validation example of the centralized and decentralized executed control
(CTRL) state outputs compared against the optimized path. Nodes are added at equal in-
tervals (2 secs) to represent fixed-interval points in time. Diamond nodes represent CTRL
paths and circle nodes represent the optimized path. X’s represent the initial conditions
of all agents, and squares represent the end conditions. Generally, the decentralized RNN
produces more accurate paths than the centralized version, while both consistently end at
the desired final condition.

64

Figure 6.6: Control signal outputs for agent 1 when following state paths produced by the
centralized and decentralized RNNs on the validation example. In the ideal performance,
the path-tracking control trends that of the optimal control. Initial errors in the CL paths
produce the initial spikes in the control signals.

65

Chapter 7: Problem Scenario 3: Actuated Double Pendulum

To examine the effectiveness of the methodology proposed in this thesis with re-

spect to highly nonlinear systems, an actuated double pendulum problem is examined.

The problem formulation and application of the methodology with respect to it is further

described in the following sections.

7.1 Implementation

The previous two scenarios each explored linear dynamical systems, focusing on

issues related to environment definitions and state space size. Problem Scenario 3 inves-

tigates the methodology’s capabilities in regards to complex nonlinear system solutions,

specifically in regards to the capabilities of an RNN to fit optimized solutions of a nonlin-

ear system.

The dynamics of an actuated double pendulum system, with joint angles θ1 and θ2,

joint velocities θ̇1 and θ̇2, lengths l1 and l2, and endpoint masses m1 and m2, are,

66

Mθ̈ +Cθ̇ +G = τ, (7.1)

M =

 (m1 +m2)l2
1 m2l1l2 cos(θ1−θ2)

m2l1l2 cos(θ1−θ2) m2l2
2

 , (7.2)

C =

 0 m2l1l2 sin(θ1−θ2)

−m2l1l2 sin(θ1−θ2) 0

 , (7.3)

G =

 l1(m1 +m2)gsin(θ1)

l2m2gsin(θ2)

 , (7.4)

where g is standard gravity.

For the scenario explored, m1 =m2 = 4kg and l1 = l2 = 2m. The path planning prob-

lem in this scenario involves actuating the double pendulum from a zero angle rest con-

figuration (i.e. θ = 0 and θ̇ = 0) to a final end-effector rest position x = 0 and 0 < y < 3.5.

This final end-effector position (x,y) corresponds to an angle configuration (for l1 = l2)

of θ f =
(

π− arccos(y
2l2

),π + arccos(y
2l2

)
)

and θ̇ f = (0,0). Therefore, no explicit envi-

ronment is defined besides the final state value, represented as x f = θ f in the optimization

formulation. Furthermore, the states were restricted as (0.0,0.0,−π/2,−π/2)≤ (θ , θ̇)≤

(3π/2,3π/2,π/2,π/2). The chosen optimization function to minimize was the mechan-

ical energy,

∫ t f

0
(τ · θ̇)2dt. (7.5)

Similar to the previous scenarios, the kinodynamic RRT* was utilized for gener-

ating over 500 solutions (80/20 split between training/validation) for varied final end-

67

effector heights. The RNN architecture consisted of 5 hidden layers (sizes 100/80/60/60)

with the hyperbolic tangent activation function and a linear output layer. ADAM was

again used for training with a learning rate of 0.001. No path-tracking controller was ex-

plored, and instead the closed-loop performance of the RNN on the training and validation

sets was primarily examined.

7.2 Results

Problem Scenario 3 is presented to assess the capabilities of an RNN in learning op-

timized solutions for highly nonlinear systems, specifically actuating a double pendulum

from rest up to a final resting configuration. This scenario presents a particularly difficult

optimization solution due to the initial “wiggle” of the pendulum before swinging up into

the final configuration, showcased in an optimal solution example of Fig. 7.1.

The CL performance of the RNN is presented for a training scheme without whole-

path reinforcement training and that with it. The RMSE values of the RNN CL output for

both training and validation data sets are displayed in Table 7.1.

Readily apparent is the significant impact that whole-path reinforcement learning

has on the CL output for the training data sets. The CL output RMSE is reduced by a

factor of 70% for the angular position and by 60% for the angular velocity on the training

data. This reduction is not as significant for the validation data sets, which barely ap-

proach 20% reductions in either the angle or angular velocity. As previously mentioned

in the results of Chapter 5 and 6, the whole-path training scheme provides strong improve-

ments to training examples and their CL executions, but further modifications are required

68

Figure 7.1: Example optimization solution for pendulum swinging from initial zero con-
dition to a final configuration in which the the end effector is at rest at (x,y) = (0,2.3).
Opaqueness increases in time. Optimization of the mechanical energy results in a “wig-
gle” pattern at the start, which flicks the lower pendulum upwards before the entire system
swings up. This initial behavior provides a difficult optimization pattern to learn.

to extend this learning to the validation data sets. In this case involving a highly nonlinear

system, this plays a significant hurdle in the effectiveness of using these generated paths

for path-tracking control of the pendulum to the desired final condition.

Fig. 7.2 provides a visual of the whole-path reinforcement training’s impact on

the RNNs ability to learn the training sets. Provided are an ideal case (top images) and

a less than ideal case (bottom images). In both cases, the angular values arrive at the

desired final angle, approaching in the correct manner. Fig. 7.3 showcases the Cartesian

position CL paths of the pendulum arm with respect to the optimal paths through time.

Fig. 7.4 showcases validation examples of the CL angular paths in time. As mentioned,

the path disparities between the CL paths and optimal solutions showcases the whole-path

reinforcement training’s weakness in extending its capabilities to the validation set.

69

No reinforcement training Training data Validation data

RNN CL angle (rad) RMSE 1.21 1.24

RNN CL angular rate (rad/s) RMSE 1.64 1.68

Reinforcement training Training data Validation data

RNN CL angle (rad) RMSE 0.37 1.00

RNN CL angular rate (rad/s) RMSE 0.65 1.33

Table 7.1: RMSE values are provided for the RNN CL output against the optimized solu-
tions for the training data set and the validation sets when using the whole-path reinforce-
ment training and when not using it. For this nonlinear system, the whole-path reinforce-
ment training provides significant CL performance increases on the training data, but not
as significant increases on the validation data.

The application of the first two steps in the methodology to a highly nonlinear sys-

tem and optimization solution space showcase the required improvements needed to the

whole-path reinforcement training scheme, specifically with respect to its generalization

for validation data sets. Otherwise, improvements of the CL output for the training data

were apparent, showcasing the ability of the RNN to learn the desired solution structure.

70

Figure 7.2: The two sets of images showcase a training data example of a strong CL
output (top image) and a weaker one (bottom image) as compared to the optimal solution
paths. The left images correspond to the first angle θ1, and the right images correspond
to the second angle θ2. Both output sets showcase strong pattern matching of the end of
the path, common across most training examples.

71

Figure 7.3: The top and bottom images correspond to the top and bottom images of Fig.
7.2, respectively. These showcase the Cartesian pendulum paths of the optimal solution
and the fitted RNN CL output. Opaqueness of the pendulum rods increases with time.

72

Figure 7.4: The two sets of images showcase a validation data examples of the CL
output compared to the optimal paths. The left images correspond to the first angle θ1,
and the right images correspond to the second angle θ2. The validation examples trend
the optimal solutions, but do not accurately match such.

73

Chapter 8: Bounded Set Propagation of Recurrent Neural Networks

Bounded set propagation (a type of reachability analysis) of the recurrent states in

path planning RNNs provides a means for bounding the total set of possible outputs for

a given set of inputs to an RNN. Propagating these sets through the entire execution of

a path planning RNN allows for analysis on the entire reachable sets of states that the

RNN can produce. While not integrated into the methodology directly, the contents of

this chapter explore improvements to the formulations provided in [58], primarily due to

an observed explosion of the bounded sets when applied to Problem Scenario 1. These

improvements include tighter approximations and faster computations.

xt = Φ(xt−1,ut),

where Φ(·) = σL ◦σL−1 ◦ ...σ1(·),

with the form σl(·) = σl(Wlhl +bl)

(8.1)

The bounded set propagation formulation begins with the NARX RNN form de-

fined in Eq. (8.1), where Wl and bl are network weights and biases per layer, h1 is the

network input composed of recurrent state xt−1 ∈ RN and environment input ut ∈ RO+2N

(consisting of environment P, initial state x0, and final state x f), and σL corresponds to

output xt ∈ RN . Next, the input set Xt−1 for propagation is defined by Eq. (8.2), where

74

¯
xt−1 and xt−1 are upper and lower bounds defining the hyperrectangle of states to propa-

gate. The environment ut is broken into the static vectors P and x f and the set X0 defined

in Eq. (8.3), since path planning with the RNN occurs over static environments to static

final conditions from a set of possible initial conditions. Under the definitions of Φ(·),

Xt−1, and ut , a method must be devised to approximate bounds
¯
xt and xt for the output set

Xt defined in Eq. (8.4).

Xt−1 = {x ∈ RN |
¯
xt−1 ≤ x≤ xt−1} (8.2)

X0 = {x ∈ RN |
¯
x0 ≤ x≤ x0} (8.3)

Xt = {x ∈ RN |
¯
xt ≤ x≤ xt} (8.4)

To determine the bounds
¯
xt and xt , [58] proposes a layer-wise propagation formu-

lated from a proof centered on the single layer expression of ζ = φ(Wη +θ), where φ is

the activation function, W is the weight matrix, θ is the bias matrix, and η and ζ are the

input and output vectors. Provided an input set H bounded by upper and lower bounds

η j and
¯
η j for j ∈ {1, ...,nη}, where nη is the size of the input vector η , the upper and

lower bounds of the propagated set for the output vector Z, composed of the upper and

lower bounds ζ i and
¯
ζi for i ∈ {1, ...,nζ} with nζ as the size of the output vector, can be

determined by

¯
ζi = minη∈Hφ

(
nη

∑
j=1

ωi, jη j +θi

)
(8.5)

ζ i = maxη∈Hφ

(
nη

∑
j=1

ωi, jη j +θi

)
. (8.6)

75

As pointed out in [58], the use of monotonic activation functions (common in NNs) results

in Eq. (8.5) and Eq. (8.6) being satisfied by the η solutions to

¯
ζi = φ

(
minη∈H

nη

∑
j=1

ωi, jη j +θi

)
(8.7)

ζ i = φ

(
maxη∈H

nη

∑
j=1

ωi, jη j +θi

)
. (8.8)

To further simplify the problem, the min/max problems proposed in Eq. (8.7) and Eq.

(8.8) are solved as

¯
ζi = φ

(
nη

∑
j=1 ¯

gi, j

)
(8.9)

ζ i = φ

(
nη

∑
j=1

gi, j

)
, (8.10)

where
¯
gi, j and gi, j are defined as

¯
gi, j =

ωi, j

¯
η j +θi, ωi, j ≥ 0

ωi, jη j +θi, ωi, j < 0
(8.11)

gi, j =

ωi, jη j +θi, ωi, j ≥ 0

ωi, j
¯
η j +θi, ωi, j < 0.

(8.12)

For a given layer, the bounding set Z is defined by the resulting values of the upper and

lower bounds ζ i and
¯
ζi for i ∈ {1, ...,nζ} where nζ is the size of the output vector. This

bounding set is then formulated as the input bounding set to the next layer of the network

and the process continues until the output bounding set of the last layer is found.

The larger the difference is between upper and lower bounds on an input set H, the

larger the observed difference is in the propagated set. To combat this issue, [58] proposes

the use of segmented sets to propagate larger regions. These regions result in upper and

76

lower bound pairs that are adjacent to other regions, e.g. η1 of set 1 serves as
¯
η1 of its

adjacent region. Graphically speaking, this corresponds to a grid of regions extended to

multiple dimensions. The following definition provides a stronger view of these regions.

Formally (in the context of the NARX RNN structure), provided upper and lower

bounds x0 and
¯
x0 for the input set X0 and upper and lower bounds xt−1 and

¯
xt−1 for the

input set Xt−1, the intervals X0,i = [
¯
x0,i,x0,i] for i ∈ {1, ...,N} and Xt−1,i = [

¯
xt−1,i,xt−1,i]

for i ∈ {1, ...,N} are each partitioned into Mi segments. These are defined as X0,i,1 =

[x0,i,0,x0,i,1], X0,i,2 = [x0,i,1,x0,i,2], . . . , X0,i,M = [x0,i,m−1,x0,i,m], where x0,i,m for m ∈

{0,1, ...,Mi} are defined as,

x0,i,m =
¯
x0,i +

m(x0,i− ¯
x0,i)

Mi
. (8.13)

Similarly, Xt−1,i,1 = [xt−1,i,0,xt−1,i,1], Xt−1,i,2 = [xt−1,i,1,xt−1,i,2], . . . , Xt−1,i,M =

[xt−1,i,m−1,xt−1,i,m], where xt−1,i,m for m ∈ {0,1, ...,Mi} are defined as,

xt−1,i,m =
¯
xt−1,i +

m(xt−1,i− ¯
xt−1,i)

Mi
. (8.14)

The segmented regions are then constructed as

Pi = X0,1,m1× ...×X0,N,mn×Xt−1,1,mn+1× ...×Xt−1,N,mn+n, i ∈ {1,2, ...,
N

∏
s=1

Ms

N

∏
s=1

Ms}

(8.15)

where {m1, ...,mn,mn+1, ...mn+n} ∈ {1, ...,M1}× ...× {1, ...,MN}× {1, ...,M1}× ...× -

{1, ...,MN}.

Application of this segmentation approach to propagate an initial state boundary

from the Problem Scenario 1 application in Chapter 5, under high segmentation counts of

Mi = 50 for all state dimensions, was applied with
¯
x0 = [−5.5, 6.0, −0.001, −0.001],

77

x0 = [−4.5, 7.0, 0.001, 0.001],
¯
xt=0 = [−5.5, 6.0, −0.1, −0.1], and xt=0 =

[−4.5, 7.0, 0.1, 0.1]. Generation of the bounded sets took on the order of 300 seconds.

The results, shown in Fig. 8.1, display a rapid explosion in the bounded sets (shown as

the blue boxes) over the course of the RNN CL path, while sample paths generated from

initial conditions contained within the initial bounding sets do not exhibit any explod-

ing behaviors. The discrepancy between the bounding set and that of the sampled paths

provides motivation for the following revisions created for this thesis.

Figure 8.1: The left image (overview) and right image (close up of initial propagation
steps) showcase the use of the bounded set propagation presented in [58] with Mi divisions
equal to 50 on a whole-path trained RNN from Problem Scenario 1. The blue rectangle
outlines represent sequential bounded set propagation, while the red paths are sampled
initial conditions from the initial bounded set propagated through the RNN. As shown in
both images, the sets explode quickly through time, showcasing the compounding over
approximations. Total propagation time took approximately 300 seconds.

Generation of an algorithm to increase the accuracy of the bounded set propagation

and speed of execution began with two primary assumptions. First, provided the seg-

mented regions of P constituting a bounding set input for propagation, the bounds of the

output region Xt constructed from the assembly of each Pi propagation are formed solely

78

by the edge regions in P . Edge regions of the initial input set are any region that contain

bound values of the ultimate bounding values of x0,
¯
x0, xt−1, or

¯
xt−1. Second, under Mi

segment numbers, the edge regions that correspond to resulting upper and lower bounds

xt and
¯
xt of the propagated output region contain the regions that correspond to the upper

and lower output bounds for higher Mi segment numbers. The first assumption implies

that as Mi approaches infinity, the output boundary values correspond to singular points

along the edge of the initial bounded set sent through the NN. The second assumption

implies that these points can be isolated by starting with rough segmentation of the input

set, isolating the edge regions that correspond to the boundary values on the output set,

and further segmenting those regions and finding the regions within those that correspond

to boundary values on the output set. Repeated execution quickly converges to the desired

input points that produce the boundaries on the output set. This algorithm is outlined in

Algorithm 4.

Algorithm 4: Modified Bounded Set Propagation
1: procedure COMPUTE OUTPUT BOUNDED SET Xt(Φ, X0, Xt−1, Mi, R) . Propagate

current bounded state set Xt−1 forward in time to step t
2: Compute P from X0, Xt−1, and Mi
3: H ← Edges(P)
4: Propagate regions of H forward
5: Determine xt,i and

¯
xt,i from propagated H

6: Determine Hi ∈H that produced xt,i and
¯
xt,i

7: for j in {1, ...,R} do
8: Segment all Hi into Mi subregions, creating subregion set Hsub
9: Propagate regions of Hsub forward

10: Determine xt,i and
¯
xt,i from propagated Hsub

11: Determine Hi ∈Hsub that produced xt,i and
¯
xt,i

This algorithm was tested on the same scenario presented in Fig. 8.1 with Mi = 7

and R = 20, and the results produced are shown in Fig. 8.2. As shown, the bounded sets

79

do not explode, and all sampled paths are contained in the bounded sets. Additionally,

only 130 seconds were required to compute these propagated sets in total. Repeated

experiments produced the same resulting behavior.

Figure 8.2: The left image (overview) and right image (close up of initial propagation
steps) showcase the use of the modified bounded set propagation presented in Algorithm
4 (Mi = 7 and R = 20) on a poorly whole-path trained RNN from Problem Scenario 1.
The blue rectangle outlines represent sequential bounded set propagation, while the red
paths are sampled initial conditions from the initial bounded set propagated through the
RNN. As shown in both images, sets maintain much tighter approximations even on a
poorly trained result while containing all sampled paths as desired. Computation time
took approximately 130 seconds.

Experimental results alone do not prove that the algorithm is correct but instead im-

ply that a proof may exist, and further work is required to find such. A formal proof would

involve validating the two assumptions that edge segments in the input set correspond to

the bounding output segments and that such edge segments also contain the bounding in-

put segments for larger values of Mi. If proven correct, this bounded set algorithm will not

only cut down on the time required to compute the reachable sets of a path planning RNN,

but it will also provide much more accurate results. Reachability analysis through these

bounded set propagations will help enable RNN verification over sets of initial conditions

80

for static environments, ensuring that no constraints are violated by the RNN. Future work

should also investigate utilizing the structure of the propagated bounded sets in informing

whole-path network training to better avoid constraint violations.

81

Chapter 9: Conclusions

This thesis provides contributions in the form of: expanding a kinodynamic RRT*

to use Chebyshev collocation optimization; creating a whole-path reinforcement train-

ing scheme for RNNs learning state path solutions; making improvements to a bounded

set propagation algorithm to improve accuracy and speed of computation; and creating a

methodology which uses data generated from optimal kinematic/dynamic path planning

solutions to train an RNN to reproduce state paths for use in a path-tracking controller.

The end result of the methodology is an RNN path planner that can generate sub-optimal

solutions orders of magnitudes faster than the optimization method used to generate them.

As it stands, uses of this methodology must consider trade-offs between the speed of so-

lutions obtained and quality of solutions. Furthermore, the improvements to the bounded

set propagation algorithm enabled the feasible use of such in the problem scenarios ex-

amined, providing a crucial step towards building a formal methods framework for au-

tomating the verification of the RNN outputs with respect to desired constraints.

Future work involves a few avenues. First, the proof of the bounded set algorithm

must be finished to validate its use. Experimental results indicate that a proof exists, but

do not guarantee such. Second, improvements to the whole-path reinforcement training

scheme are required to improve the methodology’s performance as a whole. As it cur-

82

rently stands, the whole-path scheme greatly improves closed-loop outputs with respect to

training data, but not validation data. Incorporation of policy optimization schemes, such

as those shown in [59] and [60], may provide the avenues for better training the network

to minimize its error on the desired path over the whole path, helping to better improve

learning of the entirety of the path structure. Last, the methodology may be improved

by examining the use of the RNN in generating initial guesses for the kinematic/dynamic

path planner used. This can speed up the generation of optimal solutions, which then

can provide training data faster to the RNN. This feedback loop would create another

reinforcement learning layer in which the RNN could be trained to provide solutions that

minimized the time that the robust, slower path planner took to find solutions.

83

Bibliography

[1] Farah Kamil and Khaksar W Zulkifli N. A review on motion planning and ob-
stacle avoidance approaches in dynamic environments. Advances in Robotics &
Automation, 04, 01 2015.

[2] A. Valero-Gomez, J. V. Gomez, S. Garrido, and L. Moreno. The path to efficiency:
Fast marching method for safer, more efficient mobile robot trajectories. IEEE
Robotics Automation Magazine, 20(4):111–120, Dec 2013.

[3] D. Connell and H. M. La. Dynamic path planning and replanning for mobile robots
using rrt. In 2017 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), pages 1429–1434, Oct 2017.

[4] Dina Youakim and Pere Ridao. Motion planning survey for autonomous mobile ma-
nipulators underwater manipulator case study. Robotics and Autonomous Systems,
107:20 – 44, 2018.

[5] M. Kelly. An introduction to trajectory optimization: How to do your own direct
collocation. SIAM Review, 59(4):849–904, 2017.

[6] Changliu Liu and Masayoshi Tomizuka. Real time trajectory optimization for non-
linear robotic systems: Relaxation and convexification. Systems & Control Letters,
108:56 – 63, 2017.

[7] M.G. Mohanan and Ambuja Salgoankar. A survey of robotic motion planning in
dynamic environments. Robotics and Autonomous Systems, 100:171 – 185, 2018.

[8] Nikolay Jetchev and Marc Toussaint. Fast motion planning from experience: tra-
jectory prediction for speeding up movement generation. Autonomous Robots,
34(1):111–127, Jan 2013.

[9] Hong mei Zhang and Ming long Li. Rapid path planning algorithm for mo-
bile robot in dynamic environment. Advances in Mechanical Engineering,
9(12):1687814017747400, 2017.

84

[10] Elena Tutubalina, Zulfat Miftahutdinov, Sergey Nikolenko, and Valentin Ma-
lykh. Sequence Learning with RNNs for Medical Concept Normalization in User-
Generated Texts. arXiv e-prints, page arXiv:1811.11523, Nov 2018.

[11] Zheng Liu and Clair J. Sullivan. Prediction of weather induced background radia-
tion fluctuation with recurrent neural networks. Radiation Physics and Chemistry,
155:275 – 280, 2019. IRRMA-10.

[12] Filippo Maria Bianchi, Enrico Maiorino, Michael C. Kampffmeyer, Antonello Rizzi,
and Robert Jenssen. An overview and comparative analysis of recurrent neural net-
works for short term load forecasting. CoRR, abs/1705.04378, 2017.

[13] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa
Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyengar. A survey on deep learn-
ing: Algorithms, techniques, and applications. ACM Comput. Surv., 51(5):92:1–
92:36, September 2018.

[14] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification
of deep neural networks. CoRR, abs/1610.06940, 2016.

[15] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochender-
fer. Reluplex: An efficient SMT solver for verifying deep neural networks. CoRR,
abs/1702.01135, 2017.

[16] Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-
forward relu neural networks. CoRR, abs/1706.07351, 2017.

[17] Mounir Ben Nasr and Mohamed Chtourou. Neural network control of nonlinear
dynamic systems using hybrid algorithm. Applied Soft Computing, 24:423 – 431,
2014.

[18] S. L. Brunton and B. R. Noack. Closed-Loop Turbulence Control: Progress and
Challenges. Applied Mechanics Reviews, 67(5):050801, August 2015.

[19] H.P. Singh and N. Sukavanam. Simulation and stability analysis of neural network
based control scheme for switched linear systems. ISA Transactions, 51(1):105 –
110, 2012.

[20] Olalekan P. Ogunmolu, Xuejun Gu, Steve B. Jiang, and Nicholas R. Gans. Nonlinear
systems identification using deep dynamic neural networks. CoRR, abs/1610.01439,
2016.

[21] E. De la Rosa, W. Yu, and X. Li. Nonlinear system modeling with deep neural
networks and autoencoders algorithm. In 2016 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pages 002157–002162, Oct 2016.

[22] Francesco Leofante, Nina Narodytska, Luca Pulina, and Armando Tacchella. Au-
tomated verification of neural networks: Advances, challenges and perspectives.
CoRR, abs/1805.09938, 2018.

85

[23] Ulrich Roth, Marc Walker, Arne Hilmann, and Heinrich Klar. Dynamic path plan-
ning with spiking neural networks. In José Mira, Roberto Moreno-Dı́az, and Joan
Cabestany, editors, Biological and Artificial Computation: From Neuroscience to
Technology, pages 1355–1363, Berlin, Heidelberg, 1997. Springer Berlin Heidel-
berg.

[24] Simon X Yang and Max Meng. An efficient neural network approach to dynamic
robot motion planning. Neural Networks, 13(2):143 – 148, 2000.

[25] Y. Chen and W. Chiu. Optimal robot path planning system by using a neural
network-based approach. In 2015 International Automatic Control Conference
(CACS), pages 85–90, Nov 2015.

[26] Youssef Bassil. Neural network model for path-planning of robotic rover systems.
CoRR, abs/1204.0183, 2012.

[27] Mukesh Kumar Singh and Dayal Parhi. Intelligent neuro-controller for naviga-
tion of mobile robot. Proceedings of the International Conference on Advances
in Computing, Communication and Control, ICAC3’09, 01 2009.

[28] M. Al-Sagban and R. Dhaouadi. Neural-based navigation of a differential-drive mo-
bile robot. In 2012 12th International Conference on Control Automation Robotics
Vision (ICARCV), pages 353–358, Dec 2012.

[29] Xiaoyun Lei, Zhian Zhang, and Peifang Dong. Dynamic path planning of unknown
environment based on deep reinforcement learning. J. Robotics, 2018:5781591:1–
5781591:10, 2018.

[30] Fabian Schilling, Julien Lecoeur, Fabrizio Schiano, and Dario Floreano. Learning
vision-based cohesive flight in drone swarms. CoRR, abs/1809.00543, 2018.

[31] Ahmed H. Qureshi, Mayur J. Bency, and Michael C. Yip. Motion planning net-
works. CoRR, abs/1806.05767, 2018.

[32] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal mo-
tion planning. CoRR, abs/1105.1186, 2011.

[33] Dustin J. Webb and Jur van den Berg. Kinodynamic rrt*: Optimal motion planning
for systems with linear differential constraints. CoRR, abs/1205.5088, 2012.

[34] S. Stoneman and R. Lampariello. Embedding nonlinear optimization in rrt* for
optimal kinodynamic planning. In 53rd IEEE Conference on Decision and Control,
pages 3737–3744, Dec 2014.

[35] Jrgen Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85 – 117, 2015.

[36] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Neurocomputing:
Foundations of research. chapter Learning Representations by Back-propagating
Errors, pages 696–699. MIT Press, Cambridge, MA, USA, 1988.

86

[37] P. J. Werbos. Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560, Oct 1990.

[38] Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR,
abs/1609.04747, 2016.

[39] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In
Yves Lechevallier and Gilbert Saporta, editors, Proceedings of COMPSTAT’2010,
pages 177–186, Heidelberg, 2010. Physica-Verlag HD.

[40] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2015.

[41] Leslie Pack Kaelbling, Michael L. Littman, and Andrew P. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[42] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep Rein-
forcement Learning. arXiv e-prints, page arXiv:1312.5602, Dec 2013.

[43] Sen Wang, Daoyuan Jia, and Xinshuo Weng. Deep Reinforcement Learning for
Autonomous Driving. arXiv e-prints, page arXiv:1811.11329, Nov 2018.

[44] Marcin Szuster and Zenon Hendzel. Reinforcement Learning in the Control of
Nonlinear Continuous Systems, pages 255–297. Springer International Publishing,
Cham, 2018.

[45] José Bacelar Almeida, Maria João Frade, Jorge Sousa Pinto, and Simão Melo de
Sousa. An Overview of Formal Methods Tools andTechniques, pages 15–44.
Springer London, London, 2011.

[46] Luca Bortolussi and Guido Sanguinetti. A statistical approach for computing reach-
ability of non-linear and stochastic dynamical systems. In Gethin Norman and
William Sanders, editors, Quantitative Evaluation of Systems, pages 41–56, Cham,
2014. Springer International Publishing.

[47] Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bezier and B-Spline
Techniques. Springer-Verlag, Berlin, Heidelberg, 2002.

[48] Wei-wei Cai, Le-ping Yang, and Yan-wei Zhu. Bang-bang optimal control for differ-
entially flat systems using mapped pseudospectral method and analytic homotopic
approach. Optimal Control Applications and Methods, 37(6):1217–1235.

[49] Fariba Fahroo and I. Michael Ross. Direct trajectory optimization by a chebyshev
pseudospectral method. Journal of Guidance, Control, and Dynamics, 25(1):160–
166, Jan 2002.

[50] Daniel R. Herber. Basic implementation of multiple-interval pseudospectral meth-
ods to solve optimal control problems. Technical report, UIUC-ESDL-2015-01,
June 2015.

87

[51] Philip E. Gill, Walter Murray, and Michael A. Saunders. Snopt: An sqp algorithm
for large-scale constrained optimization. SIAM Rev., 47(1):99–131, January 2005.

[52] François Chollet et al. Keras. https://github.com/fchollet/keras,
2015.

[53] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-
lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[54] Timothy Dozat. Incorporating nesterov momentum into adam. 2015.

[55] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio.
Contractive auto-encoders: Explicit invariance during feature extraction. In ICML,
2011.

[56] Jakob Löber. Optimal trajectory tracking. arXiv e-prints, page arXiv:1601.03249,
Dec 2015.

[57] Giuseppe Fedele, Luigi D’Alfonso, Francesco Chiaravalloti, and Gaetano D’Aquila.
Obstacles avoidance based on switching potential functions. Journal of Intelligent
& Robotic Systems, 90(3):387–405, Jun 2018.

[58] Weiming Xiang and Taylor T. Johnson. Reachability analysis and safety verification
for neural network control systems. CoRR, abs/1805.09944, 2018.

[59] Ruiyi Zhang, Changyou Chen, Chunyuan Li, and Lawrence Carin. Policy opti-
mization as Wasserstein gradient flows. In Jennifer Dy and Andreas Krause, edi-
tors, Proceedings of the 35th International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research, pages 5737–5746, Stock-
holmsmssan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[60] Timothy P. Lillicrap, Jonathan J. Hunt, Alexand er Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv e-prints, page arXiv:1509.02971, Sep 2015.

88

https://github.com/fchollet/keras

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Related Work
	Contributions
	Outline of Thesis

	Background
	Path Planning
	Optimal Rapidly-exploring Random Trees (RRT*)

	Machine Learning and Neural Networks
	Recurrent Neural Networks
	Supervised Network Training
	Reinforcement Learning

	Formal Verification and Bounded Set Propagation

	Methodology and Problem Description
	Methodology Overview
	Problem Formulations
	Path Planning under Kinematic/Dynamic and Environment Constraints
	Recurrent Neural Network and Training
	Executed Controller

	Methodology Components
	Kinodynamic Optimal Rapidly-exploring Random Tree with Chebyshev Polynomial Collocation Optimization
	Whole-path Reinforcement Training Scheme

	Problem Scenario 1: 2D Obstacle Avoidance
	Implementation
	Problem Definition and Application Details
	Contractive Autoencoding of Environment
	Path-tracking Controller

	Results

	Problem Scenario 2: 2D Multi-agent Synchronized Rendezvous and Collision Avoidance
	Implementation
	Results

	Problem Scenario 3: Actuated Double Pendulum
	Implementation
	Results

	Bounded Set Propagation of Recurrent Neural Networks
	Conclusions
	Bibliography

