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The problem of stabilization of an inverted pendulum is a common experiment

in controls laboratories. The objective of the experiment is to balance a bar upright

by providing appropriate motion to its base, similar to balancing a tennis racket

upright on the palm of a human hand. The problem can be made more challenging

by trying to balance two serially-joined bars instead of one. In this thesis, such a

problem is considered. A mathematical model of the system is developed, and ideas

of swing-up and stabilization of the two serial bars (mechanical links) are explored.

A prototype is developed for validating the control system, and the details of the

hardware design are discussed.
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Chapter 1: Introduction

A double rotational inverted pendulum – also known as the double Furuta

pendulum – is a nonlinear dynamic system in which three serial mechanical links

are connected by three revolute joints. The first link is actuated by a motor with

a vertical axis of rotation, and the other two joints are not actuated. In other

words, the double rotational inverted pendulum is an inverted pendulum system

on a rotational cart instead of a linear cart. Initially, the second and third links

(pendulum segments) are suspended downwards. The goal is to swing these two

links up, and balance them at the upright position.

Inverted pendulums are common equipment in any controls lab. The advan-

tage of the rotational-type inverted pendulum over the linear pendulum is that they

do not have limits on the movement of the cart. Studying the control of such non-

linear unstable systems is beneficial in being able to apply the modeling and control

techniques in other similar systems such as humanoid robotics.

The objectives of this thesis were to develop a mathematical model of the

double Furuta pendulum, perform simulations with different system parameters,

and finally build a prototype that can be used to validate the control system.

The novel ideas and results that are presented in this thesis are:

1



Double Furuta Pendulum Linear Pendulum

Figure 1.1: Furuta vs Linear pendulum

1. A mathematical model of the double Furuta pendulum using an adaptation of

the Denavit-Hartenberg convention

2. A simple strategy for transitioning from the Up-Down configuration to the

Up-Up configuration

3. Swing-up performance comparison between different system designs

4. A physical prototype that uses wireless transmission of data from the joint

sensors

The thesis is organized as follows. First, the development of the mathematical

model is discussed, which details the kinematics and dynamics of the system. Next,

the control strategies for different system configurations are discussed. Then, the

simulation results of different system designs are presented and compared. Finally

the details of the physical prototype are discussed.
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Chapter 2: Literature Survey

The idea of the rotational inverted pendulum was conceived by Katsuhisa

Furuta et. al., and was presented in a paper in 1991 [1]. Several researchers have

since worked on it, investigating different swing-up and control strategies.

In the Furuta pendulum literature, the up-right balancing control has pre-

dominantly been based on the linear quadratic regulator (LQR) [1] [2] [3]. Other

implementations include the feedback linearization method [4], model predictive

control (MPC) [5], and neural networks [6] [7] [8] [9]. The LQR, feedback lineariza-

tion and MPC methods require an accurate model of the system, while the neural

network method does not. The neural network method however, requires training,

and much more computational power than the other control methods.

The swing-up strategy on the other hand, was initially based on a bang-bang

controller [1] [2]. In [1], the bang-bang controller was implemented on a single

pendulum by analyzing the phase plane of the states. In the paper by Yamakita

et al., [2], a learning control was proposed for a double pendulum that generates

an optimal pattern of bang-bang control input that minimizes the swing-up time.

In a paper by Wiklund et al. [4], a simple energy-based controller was proposed,

which was further investigated in a 1996 paper by Astrom and Furuta [10]. The
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latter paper extends the energy control strategy to a general mechanical system,

especially the double inverted pendulum, be it the linear-type or the rotational-

type. Another approach was proposed by Kobayashi et al. [11], in which a unified

control strategy is used for both swing-up and balancing, using a nonlinear state-

dependent Riccati equation. Yet another approach was proposed by Ismail and

Liu [12], in which optimal trajectories for the swing-up of a double pendulum are

derived using discrete mechanics and optimal control (DMOC). Out of the above

strategies, the energy-based control [10] is the simplest to implement, and is quite

intuitive.

In this thesis, the LQR method is used for balancing the pendulum segments

in the up-right position, and the energy-based control is used for their swing-up.

The effects of the pendulum design parameters, especially the pendulum lengths, on

the swing-up performance are analyzed.
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Chapter 3: System Model

In this chapter, the mathematical modeling of the double Furuta pendulum

system is discussed. The parameters of the model described in this section corre-

sponds to that of the reference design (where the first pendulum segment is 10%

shorter than the second).

Both the energy-based swing-up and the LQR-based balancing control require

the knowledge of the system model. The following approach was used to model the

system:

1. The kinematics model was derived using an adaptation of the Denavit-Hartenberg

(D-H) convention.

2. The nonlinear dynamics model was derived using the Euler-Lagrange formu-

lation, using the joint variables as generalized coordinates.

3. The nonlinear dynamics was written in the state-space form, and then lin-

earized about its unstable operating points using Taylor’s expansion.

The state of the system was chosen to be the three joint angles and their

velocities, i.e., x = [θ1, θ2, θ3, θ̇1, θ̇2, θ̇3]
T . The cart’s angle and angular velocity were

also included along with the pendulums’ states because otherwise, the cart is known

5



to drift [4].

The double Furuta pendulum has four configurations, but only three that

that are of interest here. The first one is the suspended configuration, where both

pendulum segments are hanging downwards (Down-Down configuration). This is

a stable equilibrium. The second is the configuration where the first pendulum is

upright and the second pendulum is either hanging downwards or oscillating about

the downward position (Up-Down configuration). This is an unstable equilibrium.

The third one is the configuration where both pendulum segments are upright (Up-

Up configuration). This is also an unstable equilibrium. These configurations are

illustrated in Figure 3.1.

The goal is to transfer the system from the Down-Down to the Up-Up config-

uration and maintain it at the latter. To do this, the intermediate Up-Down con-

figuration is a convenient interim point in the state space. Initially, the swing-up

control is used to drive the system from the Down-Down to the Up-Down configura-

tion. Then, the LQR is used to maintain the system at the Up-Down configuration

while the second pendulum segment swings up. When the second segment reaches

the neighborhood of the upright position, a different LQR scheme is used to balance

the system at the Up-Up configuration.

The Up-Down and Up-Up state make use of the LQR, which assumes a linear

system model. Hence, the pendulum system was linearized about these two oper-

ating points, i.e., OP1 = [0, 0, π, 0, 0, 0]T and OP2 = [0, 0, 0, 0, 0, 0]T respectively,

where the pendulum angles are zero when they are in the upright configuration.

6



Down-Down Up-UpUp-Down

Figure 3.1: Pendulum configurations

3.1 Kinematics

The double Furuta pendulum system is assumed to be a serial kinematic chain.

The kinematics of the double Furuta pendulum was modeled using an adaptation

of the Denavit-Hartenberg (D-H) convention. The D-H convention allows one to

reduce the number of parameters used to describe a kinematic chain from six (three

rotational and three translational), to four (twist, offset, link length and rotation)

[13]. These four parameters are represented by α, d, a, θ respectively. However, the

convention restricts one to perform coordinate transformations only in the x and z

axes. For the Furuta pendulum, a transformation in the y-axis is a necessity. Hence,

a slight modification was made in the convention to work around this issue. This

method is detailed in the following section.
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3.1.1 Coordinate Transformations

In order to use the standard D-H convention, one needs to perform coordinate

transformations only in the x and z axes. However, the Furuta pendulum requires

a transformation in the y-axis. To get around this issue, the Furuta pendulum was

treated as a four-joint system with the second joint being fixed (no associated degree

of freedom), i.e., a pseudo link with zero dimensions was added. The configuration

of the system was then drawn such that the transformations could be performed

only in the x and z axes (Figure 3.2), and the corresponding kinematic parameters

were derived for the link ends (Table 3.1) as well as the link center of masses (COM)

(Table 3.2). The pendulum lengths are represented by a2 and a3 for the first and

second segments respectively.

The transformation matrix for each row in the D-H Table is computed as

follows:

Ai =



cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi −cosθi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1


(3.1)

The coordinate frames of a kinematic chain are represented as a series of

coordinate transformations, starting from the first link to the last. Two sets of

coordinate frames are assigned – at link ends and at link COMs. For the double

Furuta pendulum, the coordinate transformations corresponding to link ends were

8



obtained as follows:

T1 = A1A2

T2 = T1A3

T3 = T2A4

and the transformations corresponding to the link COMs were obtained as follows:

Tc1 = Ac1Ac2

Tc2 = T1Ac3

Tc3 = T2Ac4

where Ai represents the transformation matrix corresponding to row i in Table 3.1

and Aci represents the transformation matrix corresponding to row i in Table 3.2.

It can be noticed that this is a slight deviation from the standard D-H convention

because of the multiplication of two A matrices instead of one, for T1 amd Tc1.

This additional transformation is done to account for the pseudo link. This method

was verified for correctness by developing another kinematic model which included

performing the coordinate transformations in the y-axis, and then comparing the

resulting matrix elements obtained using the two different methods. The verification

method is detailed in Appendix A.

3.1.2 Normalization

A characteristic length l is defined, which is the sum of the lengths of the

two pendulum segments, i.e., l = a2 + a3. The length of each pendulum segment

9
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{0}
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{O2}

d2
′, dc2
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Figure 3.2: D-H Diagram

i α a d θ
1 −π/2 0 0 θ1
2 0 0 d2 = 0.142m 0
3 0 a2 = 0.135m d2

′ = 0 θ2 − π/2
4 0 a3 = 0.165m d3 = 0.005m θ3

Table 3.1: Kinematic parameters for link ends

i α a d θ
1 −π/2 0 0 θ1
2 0 0 dc2 = 0.0647m 0
3 0 ac2 = 0.0675m dc2

′ = 0 θ2 − π/2
4 0 ac3 = 0.0832m dc3 = 0.005m θ3

Table 3.2: Kinematic parameters for link COMs
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Dimensionless Parameter Ratio Value
βa

d2
l

0.47
βp

a2
l

0.45
λa

m1

m
1.89

λp
m2

m
0.45

ν1
dc2
βal

0.45

ν2
ac2
βpl

0.5

ν3
ac3

(1−βp)l 0.5

Table 3.3: Dimensionless parameters for the reference design

is proportional to l, with a proportionality constant βp. The cart length is also

expressed as a fraction of the characteristic length, with a proportionality constant

βa. The distance between each link’s origin and its center of mass is expressed as

a fraction of the corresponding link’s length, with a proportionality constant νi for

link i. Hence, the link lengths as well as the link’s center of masses are expressed as

fractions of the characteristic length l.

Similarly, a characteristic mass m is defined, which is the sum of the masses

of the two pendulum segments, i.e., m = m2 + m3. The masses of the cart and

the two pendulum segments are expressed as a fraction of this characteristic mass.

The proportionality constants are λa, λp and (1 − λp) for the cart, first pendulum

segment and the second pendulum segments respectively.

These proportionality constants are dimensionless parameters that can be used

to scale the design and compare system performances. For the reference design,

l = 0.3m and m = 0.02kgs. The dimensionless parameters are shown in Table 3.3.
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3.1.3 Jacobians

The linear and angular velocities of the center of mass of each link were de-

scribed using Jacobians. Spong [13] provides a simple formula to compute the Jaco-

bians for serial manipulators when they are represented using the D-H convention.

Since all the joints in the system are revolute, the formula for the ith column of the

Jacobian of each link was expressed as:

Jvi = [zi−1 × (ocn − oi−1)]

Jωi = [zi−1]

where, Jvi and Jωi are the linear and angular velocity Jacobians respectively; zi−1

is the axis of rotation of the previous joint; ocn is the coordinates of the COM of

the link in consideration, and oi−1 is the coordinates of the origin of the i− 1th link,

all of which are expressed in the global coordinate frame. The coordinates of the

COMs were transformed from their local reference frames to the global coordinate

frame by serially multiplying the transformation matrices [13].

Since our model made use of an adapted version of the D-H convention, some

verification was performed to ensure that the above formula for the Jacobians holds

good for this system as well. The verification process is detailed in Appendix A.

3.2 Dynamics

The dynamics of the system was derived from the kinematics using the La-

grangian formulation. The Lagrangian formulation requires the specification of a set

12



of generalized coordinates, which is the minimum set of variables that completely

describe the dynamics of a system. Since the dynamics equations are derived from

the kinematics, and the joint variables describe the system using minimum vari-

ables, the joint variables itself serve as the generalized coordinates. The Lagrangian

formulation is then written as:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= τ (3.2)

where L is called the Lagrangian, which is the difference between the total kinetic

energy and the total potential energy of the system; q is the set of generalized

coordinates ([θ1, θ2, θ3]
T ); and τ which is the generalized force (torque) applied at

each joint ([τ, 0, 0]T );. After performing the above differentiation and simplifying,

the dynamics equations were expressed as:

D(q)q̈ + C(q, q̇)q̇ +G(q) = τ (3.3)

In Equation 3.3, D is a 3×3 matrix, called the mass matrix. The mass matrix

for the double Furuta pendulum was obtained from the following equation:

D = m1J
T
v1Jv1 +m2J

T
v2Jv2 +m3J

T
v3Jv3 + JTω1R1I1R

T
1 Jω1+J

T
ω2R2I2R

T
2 Jω2

+ JTω3R3I3R
T
3 Jω3 (3.4)

where, m1,m2,m3 are the link masses; Jv1, Jv2, Jv3 are the linear velocity Jacobians;

Jω1, Jω2, Jω3 are the angular velocity Jacobians; R1, R2, R3 are the rotation matrices

that transform the local coordinates of the link COMs to the global coordinate

frame; and I1, I2, I3 are the inertia tensor of each link.
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C is the Centripetal/Coriolis matrix which contains the Christoffel symbols.

The elements of this matrix were derived using the formula:

cij =
n∑
i=1

1

2

{
∂dkj
∂qi

+
∂dkj
∂qj
− ∂dij
∂qk

}
(3.5)

where dijk are the corresponding elements from the mass matrix D.

The total potential energy of the system is the sum of the potential energies

of the individual links:

P = m2g
Toc2 +m3g

Toc3 (3.6)

where g is the gravitational acceleration vector (g = [0, 0, −9.81]); oc2, oc3 are the

coordinates of the link COMs expressed in the global coordinate frame. The gravity

terms in G were then derived from the total potential energy by performing the

following differentiation:

gi =
∂P

∂q
(3.7)

The individual mass terms in the dynamics equations can be replaced by ratios

of the characteristic mass, as detailed in Section 3.1.2. The resultant D, C and G

matrix elements, expressed in terms of the dimensionless parameters, are listed in

Appendix B.

For designing the linear quadratic regulator, the system must be expressed

in the linearized state-space form. The dynamics of the system that was obtained

by Lagrangian formulation is nonlinear. Hence, it was linearized around desired

operating points (Up-Down and Up-Up configurations).

Since there are three generalized coordinates, the state of the system is defined

by six variables: 3 joint angles and 3 joint velocities, i.e., x = [θ1, θ2, θ3, θ̇1, θ̇2, θ̇3]
T .
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The nonlinear state-space form is as follows:

ẋ = f(x,u) (3.8)

where x is the 6× 1 state vector; u = τ is the input to the system, which is a scalar

because there is only one actuator that provides torque input to the system.

The expression for the angular acceleration, q̈ = [θ̈1, θ̈2, θ̈3]
T , was obtained by

solving for q̈ in Equation 3.3:

q̈ = D−1 [τ − C(q, q̇)q̇ −G(q)] (3.9)

Equation 3.9 is of the form ẋ = f(x,u). The term ẋ is a 3× 1 matrix, which

contains nonlinear elements. This forms the last three elements of ẋ in Equation

3.8 [14]. The first three elements of ẋ are just the last three elements of x. To

linearize the last three elements about an operating point vector (OP), Taylor’s

expansion is used:

δẋ(t) =

(
∂f(x, u)

∂x

)
x=OP,u=0

δx(t) +

(
∂f(x, u)

∂u

)
x=OP,u=0

δu(t) (3.10)

where x is the state vector, δx(t) is a small deviation of the states from the operating

point. The coefficients of δx(t) and δu(t), termed A and B respectively, are evaluated

at the operating point. Thus, the linearized state-space form for the double Furuta

pendulum system becomes:

ẋ = Ax +Bu (3.11)
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where x is the deviation of the state vector, x, from the desired operating point, i.e.,

x = x−OP. For the reference design, at the upright operating point, the following

linearized coefficients were obtained:

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 216.5 −24.4 0 0 0

0 383.4 −138.9 0 0 0

0 −473.4 367.3 0 0 0



, B =



0

0

0

8714.0

11730.0

−14450.0



(3.12)

where mass is expressed in kilograms, length in meters, time in seconds and angle

in radians.
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Chapter 4: Control System

This chapter discusses the control strategy used to achieve the task of balancing

the double Furuta pendulum system at its upright configuration. This consists of

swinging up the pendulum segments from their suspended state to the upright state,

and then balancing the segments at the latter configuration. Hence, the control

strategy is broadly broken down into swing-up control and balancing control.

The approach taken was to swing up the first pendulum segment until the

system reached the Up-Down state, and then swing up the second segment until the

second segment comes close to the upright configuration. At this point, the controller

is switched to the balancing control using the linear quadratic regulator. The Up-

Down configuration is a useful intermediate control point because it is unlikely that

both pendulum segments approach the near-upright position at the end of the swing-

up. Hence, it is easier to balance the first segment and then swing up the second

segment. The higher-level control switching was implemented as a state machine

using the Stateflow tool in MATLAB.

The control strategies make use of the linear quadratic regulator (LQR), which

is an optimal controller that minimizes the following quadratic objective function:

J =

∫ ∞
0

(
xTQx+ uTRu

)
(4.1)
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where Q is a matrix that specifies the relative importance of maintaining each system

state, x, at its operating point; and R is the cost of providing control input to the

system. For the double Furuta pendulum system, Q is a diagonal 6×6 matrix where

the diagonal elements represent the relative importance of each state, and R is a

scalar value since there is only one input to the system, which is the control torque.

The control law that minimizes the objective function in Equation 4.1 is given

by:

u = −K · x (4.2)

where K is the optimal control gain.

Fortunately, MATLAB includes an lqr() command that takes in the linearized

system parameters A and B, the objective function parameters Q and R, and

outputs the optimal control gain, K.

4.1 Down-Down to Up-Down

This section describes the method that was used to swing up the first pendulum

segment to the upright position. The energy control method proposed in [4] was

implemented.

The total energy of the pendulum segments was considered:

TE = K + P (4.3)

where, the kinetic energy, K = 1
2
q̇T ·D · q̇, and potential energy, P , is obtained from

Equation 3.6. Since the cart’s energy is ignored, q1 and q̇1 are substituted as zeros.

The reference total energy, TEref , was computed at the Up-Up state (θ2, θ3 = 0◦)
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for different designs. The resulting equations for the total energy and the reference

energy are provided in Appendix B. The error signal at every time step is computed

as:

e = TEref − TE (4.4)

The control signal (input torque) is then obtained as follows:

u = k · e · sgn(θ̇2 cos θ2) (4.5)

where k is a proportional gain, called swing-up constant.

The pendulum can be swung up with a single swing of the cart if k is larger

than a threshold value, which depends on the system design. If k is less than this

threshold value, the control law generates multiple swings. The ‘sgn’ function is

used to determine the direction of torque that is to be applied at that particular

time step. In [4], it is shown that with this control law, the total energy of the

system increases when θ̇2 cos θ2 is positive, and decreases when it is negative, thus

controlling the total energy of the system. In the reference design, k is chosen to be

10 and TEref = 0.02951 joules.

It can be noticed that the control input is zero when the first segment is

stationary (θ̇2 = 0) or when it is at the horizontal position (cos θ2 = 0). For the

former situation, a constant torque of u = 0.2Nm is applied, and for the latter

situation, the following “arm correction” control is provided:

u = α(θ1 − θ1d)− γθ̇1 (4.6)

where α and γ are proportionality constants, and θ1d is a reference value.

19



Parameter Parameter Value
Q (diagonal) [1, 400000, 0, 0, 10000, 0]
R 1
K [-1.00, 679.96, -0.67, -4.44, 102.94, -1.49]

Table 4.1: Up-Down LQR Parameters

As mentioned previously, it is convenient to perform the swing-up and balance

the first pendulum segment before swinging up the second. To balance the first

segment upright, the system is linearized about its Up-Down state (θ2 = 0 and

θ3 = π), and an LQR scheme is used that is designed to stabilize θ2 and θ̇2. Since

the velocity of the first pendulum segment would be high during the initial swing-up,

it requires a very tight control to stabilize it. Hence, the weights corresponding to

θ2 and θ̇2 in the Q matrix of the LQR objective function, were given high values.

The states corresponding to the second segment, i.e., θ3 and θ̇3 are inconsequential

for this control scheme, hence the corresponding weights in Q are given as zeros.

The LQR parameters and resulting control gain K are shown in Table 4.1.

4.2 Up-Down to Up-Up

After the swing-up of the first segment, the second segment has sufficient

energy to oscillate about its downward position. The first pendulum segment can

be kept close to the upright configuration, while delicately imparting motion to

the pivot of the second segment, thus increasing the amplitude of its oscillation.

Eventually, the second segment swings up to its near-upright configuration. Even

with the tight control scheme described in Section 4.1, slight movement of the pivot

exists that provides oscillation to the second segment.
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Figure 4.1: Motion of the second segment’s pivot

Parameter Parameter Value
Q (diagonal) [1, 800, 0, 0, 10, 10]
R 1
K [-1.00, 38.87, -41.41, -1.06, 5.28, 0.66]

Table 4.2: Mild Up-Down LQR Parameters

In order to speed up the swing-up of the second segment; or if the initial angu-

lar velocity of the second segment after the first segment’s swing-up is insufficient,

the movement of the first segment about its upright position is increased to provide

wider motion to the pivot of the second segment. This is achieved by switching to

a milder LQR control at the Up-Down configuration, where the weights for θ2 and

θ̇2 are relatively smaller. The milder LQR parameters and resulting control gain K

for the reference design is shown in Table 4.2.

4.3 Balancing Control

The balancing control was achieved using the linear quadratic regulator, where

the system was linearized about the Up-Up configuration. The linearized system
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Parameter Parameter Value
Q (diagonal) [10, 400000, 4000, 1000, 10000, 1000]
R 1
K [3.16, -1349.33, -4290.75, 33.55, -321.43, -325.72]

Table 4.3: Up-Up LQR Parameters

parameters are shown in Section 3.2. Suitable values were chosen for the objective

function parameters, Q and R.

The angles and angular velocities of the two pendulum segments need to con-

verge to zero in order to successfully balance them at the upright configuration.

Hence, the second, third, fifth and sixth diagonal elements of Q were given high

values. The position of the cart is less important, but cannot be ignored completely,

because otherwise it is known to drift. Hence, the weight corresponding to the

position of the cart, i.e., the first diagonal element of Q was given a small value.

This ensures that the cart homes into its initial position upon balancing the two

pendulum segments upright. The values of Q need to be altered for different pen-

dulum designs in order to successfully balance them in the upright configuration.

The balancing control is considered to be successful when the pendulum angles, θ2

and θ3 are within 1◦ of the upright configuration. For the reference design, the LQR

parameters and the resulting control gain K are shown in Table 4.3.

4.4 State Machine

The higher-level control selection was achieved by implementing a state ma-

chine using the Stateflow tool in MATLAB. A state machine is a representation of a

system in terms of a finite number of states, where the system can exist only in one
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state at a given time, and can transition from one state to another state depending

on specific “guard” conditions.

The state machine implemented for the double Furuta pendulum system uses

the state vector, x, as an input to decide which controller state it should be in.

The controller state is the name given to a higher-level state that the system exists

in. For example “SwingUp” is a controller state in which the system performs the

swing up of the first pendulum segment. Depending on the controller state, an

appropriate control law is applied. The transitions between the controller states

depend on the state vector values, i.e., the guard conditions are specified in terms

of x. The controller states are represented as nodes, and the guard conditions as

edges in a state machine diagram (SMD), as shown in Figure 4.3. The description

of each state in the SMD is provided in Table 4.4, and the guard conditions for state

transitions are shown in Table 4.5.

The overall control system implemented in Simulink is shown in Figure 4.2.

The control design in Simulink was built upon the work done by Gaurav Nair [15].

The “Control State Machine” block outputs the controller state (represented by

Controller ID in Table 4.4) at every time step. The “Controller” block, which is

a MATLAB Function block, then decides which control law to apply to the plant,

based on the controller state in that time step. The “Controller” block outputs the

desired torque value based on the control law, which is then applied to the motor

residing within the “Plant” subsystem. The “Plant” subsystem outputs the state

vector, x, which is fed back into the controller state machine for the next time step.

A “Saturation” block is used to simulate a motor’s torque limit.
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Figure 4.2: Control system implemented in Simulink

State Name Controller
ID

Description

DecisionState - This is an initial decision gate where the state
machine decides which control mode to enter

SwingUp 1 The system performs the swing-up operation
discussed in Section 4.1

ArmCorrection 1.5 The system performs the arm-correction
control discussed in Section 4.1

UpDown 2 The system tightly controls the first pendulum
segment at the upright position as discussed in
Section 4.1

Mild 2.5 The controller provides more movement to the
first segment about the vertical position as
discussed in Section 4.2

Balance 3 The system controls both the pendulum
segments in the up-right position

UpRight 3.5 This state indicates a successful balancing
control, and is achieved when the pendulum
segments are within 1◦ of the up-right position

Table 4.4: Description of system states in the state machine diagram
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Transition Guard Condition Logic

a |θ2|≥ 20◦

b |θ2|< 20◦

c |θ2|≤ 15◦ ∧ |θ3|≤ 15◦

d |θ2|≥ 89◦ ∧ |θ2|≤ 91◦

e |θ2|≥ 120◦ ∨ |θ2|≤ 60◦

f |θ2|≤ 20◦

g |θ2|> 20◦

h |θ2|≤ 5.7◦ ∧ |θ̇2|≤ 23◦s−1 ∧ |θ3|≥ 170◦ ∧ |θ̇3|≤ 1432◦s−1

i |θ2|≥ 35◦ ∨ |θ̇2|> 1146◦

j |θ3|≤ 20◦ ∧ |θ̇2|≤ 114◦s−1 ∧ |θ̇3|≤ 401◦s−1

k |θ3|≤ 20◦ ∧ |θ̇2|≤ 114◦s−1 ∧ |θ̇3|≤ 401◦s−1

l |θ2|≤ 1◦ ∧ |θ3|≤ 1◦ ∧ |θ̇2|≤ 10◦s−1

m |θ2|> 20◦

Table 4.5: Guard conditions in the state machine diagram
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Figure 4.3: Controller state machine diagram
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Chapter 5: Simulation

In this chapter, the details about the simulation of the reference design are

discussed. A 3D CAD model of the reference design was made using SolidWorks

(see Figure 5.1), which was then exported to Simulink using the SimMechanics

Link tool. The mass properties of the design such as mass of each link, the inertia

tensors and the distance to the COMs, etc., were recorded and substituted in the

nonlinear system dynamics to obtain the energy equation. The nonlinear dynamics

was then linearized about desired operating points and the optimal control gains

corresponding to those operating points were obtained using MATLAB. The mass

properties of the reference design as recorded from SolidWorks is shown in Table 5.1.

In SolidWorks, the inertia tensor is displayed with respect to the global coordinate

system. Similarity transformations were required to transform the inertia tensors

into their local coordinate frames. The following similarity transformations were

performed to obtain the inertia tensors about the link’s COM:

I1 = RT
x,−90◦I1Rx,−90◦

I2 = RT
x,−90◦R

T
y,−90◦I2Ry,−90◦Rx,−90◦

I3 = RT
x,−90◦R

T
y,−90◦I3Ry,−90◦Rx,−90◦
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Figure 5.1: SolidWorks model of the reference design

where Ii is the the inertia tensor of the ith link about the SolidWorks’ global co-

ordinate frame, as shown in Table 5.1; R is the appropriate rotation matrix, and

I1, I2, I3 are the inertia tensors about the corresponding links’ COM. The following

simulations were performed using ‘ode45’, variable time-step settings in Simulink.

The simulation generates on the order of 6 × 105 data points per second on an

average.

5.1 Reference Design Simulation (βp = 0.45)

Figure 5.2 shows the system states as a function of time. The graphs of X1,

X2 and X3 correspond to θ1, θ2 and θ3, and the graphs of X4, X5 and X6 correspond

to θ̇1, θ̇2 and θ̇3 respectively. It can be observed that at the beginning of the graph,

θ̇2 increases and θ2 decreases, indicating the first segment’s swing-up. At about

t = 0.5 second, θ2 and θ̇2 converge to zero, indicating the transition to the Up-Down

state. At this point, θ3 starts to oscillate about its downward position. At about
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Link 1 Link 2 Link 3

Material
6061
Aluminum
Alloy

6061
Aluminum
Alloy

6061
Aluminum
Alloy

Density
(kg/cm3)

0.0027 0.0027 0.0027

Length
(cm)

14 13.5 16.5

Mass
(kg)

0.0378 0.0093 0.0110

Inertia
(kg-cm2)

0.62 0 0
0 0.62 0
0 0 0

 0.15 0 0
0 0.15 0
0 0 0

 0.25 0 0
0 0.25 0
0 0 0


Table 5.1: Reference design mass properties (βp = 0.45)

t = 1 second, θ3 and θ̇3 converge to zero, indicating the transition to the balancing

control. At around t = 1.5 seconds, all the states converge to zero, and the total

pendulum energy converges to the reference energy – indicating a successful swing-

up and balancing control. The state transitions can be seen in Figure 5.3. The

controller states in this figure indicate the Controller ID in Table 4.4. It is observed

that the first pendulum segment is swung up in a single swing of the cart. This is

indicated by a steady increase in θ2 from −π to 0 in Figure 5.2. It is also indicated

by a direct transition of the controller state from ‘1’ to ‘2’ without any intermediate

controller states (see Figure 5.3). The torque input to the motor saturates during

the Up-Down and Balancing configurations. This is due to the large weights given

to the LQR parameters, which results in a large value for the input torque. The

minimum swing-up constant in order to swing up the first pendulum segment in a

single swing was k = 7.
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Figure 5.2: System States (βp = 0.45)
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Figure 5.3: Control State, Total Energy and Motor Torque (βp = 0.45)
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Link 1 Link 2 Link 3

Material
6061
Aluminum
Alloy

6061
Aluminum
Alloy

6061
Aluminum
Alloy

Density
(kg/cm3)

0.0027 0.0027 0.0027

Length
(cm)

14 12 18

Mass
(kg)

0.0378 0.0083 0.0120

Inertia
(kg-cm2)

0.62 0 0
0 0.62 0
0 0 0

 0.1 0 0
0 0.1 0
0 0 0

 0.32 0 0
0 0.32 0
0 0 0


Table 5.2: Alternate design mass properties (βp = 0.40)

5.2 Alternate Design Simulation (βp = 0.40)

The results for this design are not very different from that of βp = 0.45. The

first pendulum segment is again swung up with only one swing. The minimum

swing-up constant in this case was k = 11. The motor torque starts to saturate

after the swing-up, at about t = 0.5 seconds. The balancing is complete at about

t = 1.75 seconds. The results for this simulation are shown in Figure 5.4 and Figure

5.5.

5.3 Alternate Design Simulation (βp = 0.35)

In this design, the first pendulum segment could not be swung up in a single

swing, irrespective of the magnitude of the swing-up constant. This is due to the

dynamic effect of the second segment on the first segment. The minimum swing-up

constant that succeeded in swinging up the first segment after multiple swings was
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Figure 5.4: System States (βp = 0.40)
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Figure 5.5: Control State, Total Energy and Motor Torque (βp = 0.40)
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Link 1 Link 2 Link 3

Material
6061
Aluminum
Alloy

6061
Aluminum
Alloy

6061
Aluminum
Alloy

Density
(kg/cm3)

0.0027 0.0027 0.0027

Length
(cm)

14 10.5 19.5

Mass
(kg)

0.0378 0.0073 0.0131

Inertia
(kg-cm2)

0.62 0 0
0 0.62 0
0 0 0

 0.07 0 0
0 0.07 0
0 0 0

 0.4 0 0
0 0.4 0
0 0 0


Table 5.3: Alternate design mass properties (βp = 0.35)

k = 17. It can be seen in Figure 5.6 that θ2 increases from −π to about 0.5 radians,

quickly drops to −π radians and then oscillates a couple of times before reaching

steady state in the upright configuration. Figure 5.7 indicates that the first two

attempts at balancing the first segment upright were unsuccessful. The controller

then transitions to state ‘3’ (balancing control) after a fraction of a second in state

‘2’ (Up-Down control) at around t = 2.5 seconds. It is again observed that the

torque saturates during the balancing control.

5.4 Alternate Design Simulation (βp = 0.30)

Similar to the previous design, the first pendulum segment could not be swung

up in a single swing, irrespective of the magnitude of the swing-up constant. The

minimum swing-up constant that succeeded in swinging up the first segment after

multiple swings was k = 8. It can be observed in Figure 5.8 that the first segment

oscillates about the downward position a couple of times before reaching the Up-
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Figure 5.6: System States (βp = 0.35)
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Figure 5.7: Control State, Total Energy and Motor Torque (βp = 0.35)
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Link 1 Link 2 Link 3

Material
6061
Aluminum
Alloy

6061
Aluminum
Alloy

6061
Aluminum
Alloy

Density
(kg/cm3)

0.0027 0.0027 0.0027

Length
(cm)

14 9 21

Mass
(kg)

0.0378 0.0063 0.0141

Inertia
(kg-cm2)

0.62 0 0
0 0.62 0
0 0 0

 0.04 0 0
0 0.04 0
0 0 0

 0.5 0 0
0 0.5 0
0 0 0


Table 5.4: Alternate design mass properties (βp = 0.30)

Down state. The system reaches the Up-Down state at around t = 0.8 seconds, and

the balancing control state at around t = 1.2 seconds. Again, it is observed that

the torque saturates in the Up-Down and balancing control states due to the effect

of the second segment.

5.5 Prototype Design Simulation (βp = 0.45)

The prototype design was simulated using a fixed step-size solver, ‘ode3’, in

Simulink, with a step size of 0.01 seconds, in order to emulate the real system,

in which the sensor provides data at an approximate frequency of 100 Hz. The

simulation shows that the prototype design was successfully swung-up in a single

swing, and balanced upright. Figure 5.11 shows the system states as a function

of time, and Figure 5.12 shows the controller states, total energy of the pendulum

segments and the motor torque at each time step.
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Figure 5.8: System States (βp = 0.30)

Link 1 Link 2 Link 3

Material
6061
Aluminum
Alloy

6061
Aluminum
Alloy

6061
Aluminum
Alloy

Density
(kg/cm3)

0.0027 0.0027 0.0027

Length
(cm)

14 14 16

Mass
(kg)

0.201 0.060 0.044

Inertia
(kg-cm2)

8.7 0 0
0 3.37 2.46
0 2.46 5.53

 2 0 0
0 2 0.2
0 0.2 0.1

 1.35 0 0
0 1.26 0.2
0 0.2 0.1


Table 5.5: Prototype design mass properties

39



Figure 5.9: Control State, Total Energy and Motor Torque (βp = 0.30)

Figure 5.10: SolidWorks model of the prototype design
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Figure 5.11: System States (prototype)
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Figure 5.12: Control State, Total Energy and Motor Torque (prototype)
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βp k No. of Swings
0.45 7 Single-swing
0.40 11 Single-swing
0.35 17 Multi-swing
0.30 8 Multi-swing

Table 5.6: Swing-up constant for different values of βp

5.6 Analysis

It is intuitive that decreasing the relative length of the first pendulum segment

makes the swing-up more challenging due to the dynamic effect of the second seg-

ment, caused by its larger moment of inertia relative to the first segment. In this

study, the effect of the change in relative pendulum lengths (changes in βp) on a

swing-up parameter – the swing-up constant, k – was analyzed. It is observed that

the first segment can be swung up in a single swing only till a certain limit of βp. In

this case, designs with βp < 0.4 could not be swung up in a single swing. The rest

of the control parameters were the same across all the designs. Figure 5.13 shows

the variation in k for different values of βp. The markers in red indicate designs

that needed multiple swings. The swing-up constant, k, seemingly increases with

decrease in βp until a threshold value (in this case 0.4), beyond which k becomes

arbitrary. Based on the simulation results, the reference design with βp = 0.45

performed the best in terms of least chattering in the control input.
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Figure 5.13: Swing-up constant for different values of βp
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Chapter 6: Prototype Design

This prototype of the double Furuta pendulum system was developed for the

validation of the control strategies that are discussed in this thesis. The prototype

consists of an electro-mechanical subsystem, a sensor subsystem and a software

subsystem. The sensor subsystem communicates with the software subsystem, which

in turn communicates with the electro-mechanical subsystem. The specifics of each

subsystem, and their communications are detailed in this chapter.

6.1 Electro-Mechanical Subsystem

The mechanical design of the prototype was based on the reference design

shown in Section 5.1, with βp = 0.45. The first step was to select a motor that

was powerful enough for this application. The motor requirements were derived

by surveying the graphs of the motor torque and the angular velocity of the cart

across all the simulations discussed in Chapter 5. The maximum torque utilized was

observed to be 0.5 Nm and the maximum angular velocity achieved by the cart was

observed to be 35 rad/sec ( 335 RPM). Considering a factor of safety (FOS) of 2,

the primary actuation requirements were derived as:

1. The motor shall have a rated torque ≥ 1 Nm
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2. The motor shall have a rated speed ≥ 670 RPM

The secondary requirements were:

1. The motor drive shall have a torque control mode

2. The motor drive shall be controllable using readily-available microcontrollers

3. The motor and drive shall be cost effective

The Teknic ClearPath MCVC 3432P-RLN brushless DC motor satisfied the above

requirements [16], and was hence chosen as the actuator. The specifications of the

motor are:

1. Rated torque: 1.5 Nm

2. Rated speed at 24V: 740 RPM

3. Peak torque: 4.9 Nm

4. Operating voltage: 24V - 75V DC

The design of the mechanical parts was done using SolidWorks. The drawings

for the machined parts along with assembly notes are shown in Appendix C. The

custom designed parts along with commercial off-the-shelf (COTS) components were

put together to realize the electro-mechanical subsystem. The bill of materials for

the COTS components are shown in Table E.1.
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6.1.1 Joint Design

It is important to consider practicalities while doing CAD and selecting ap-

propriate components. Ideally while doing CAD, there is no clearance between a

shaft and its bearing. However, in reality there is always a small clearance between

a shaft and its bearing, which results in some amount of play in the link attached to

the shaft. This has to be accounted for in the design to avoid collision between the

two pendulum segments. The amount of play in the link is directly proportional to

the link length and the clearance between the shaft and its bearing, and is inversely

proportional to the width of the bearing, i.e.,

x = l
c

w
(6.1)

where x is the play in the link, l is the link length, c is the clearance between the shaft

and the bearing, and w is the width of the bearing. This is illustrated in Figure 6.1.

It is thus important to chose a bearing that can not only bear the dynamic loads,

but that also has sufficient width to limit the play in the link. The play can also

be limited by reducing the clearance between the shaft and the bearing by choosing

an appropriate tolerance value for the machining of the shaft. In the prototype, the

clearance, c = 0.01mm, and the bearing width, w = 6mm. A needle roller bearing

was used as opposed to a ball bearing because a ball bearing has angular play in

the inner ring due to a point contact between the ball and the ball-race. Also, for

a given shaft diameter, a needle roller bearing has more width than that of a ball

bearing, thus reducing the play in the link.
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Figure 6.1: Joint design

Figure 6.2: Prototype

48



i α a d θ
1 −π/2 0 0 θ1
2 0 0 d2 = 0.14m 0
3 0 a2 = 0.14m d2

′ = 0.0165m θ2 − π/2
4 0 a3 = 0.16m d3 = 0.0165m θ3

Table 6.1: Kinematic parameters for link ends of the prototype

i α a d θ
1 −π/2 0 0 θ1
2 0 0 dc2 = 0.029m 0
3 0 ac2 = 0.07m dc2

′ = 0.004m θ2 − π/2
4 0 ac3 = 0.05m dc3 = 0.004m θ3

Table 6.2: Kinematic parameters for link COMs of the prototype

6.2 Sensor Subsystem

The sensor subsystem mainly consists of an absolute rotary encoder and a

wireless module which transmits the encoder data to the main controller. The

wireless module is used in order to facilitate free rotation of the mechanical links

without wires coming in the way. The bill of materials for the sensor subsystem is

shown in Table E.2.

The encoder operates between 4.5V - 5.5V [17], whereas the wireless transmit-

ter operates between 1.7V - 3.3V. A single on-board 3.7V battery is used to power

both the encoder and the wireless transmitter. This is done by providing a 3.3V

linear voltage regulator between the battery and the wireless transmitter, while a

step-up regulator is used to boost the voltage to 5V to power the encoder. Bidirec-

tional logic level converter circuits [18] are used for the two-way conversion (5V ↔

3.3V) of the Serial Peripheral Interface (SPI) communication signals between the

encoder and the wireless transmitter. The Wi-Fi module, ESP8266 12E, is a RISC
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microcontroller by itself, and uses the Universal Asynchronous Receiver-Transmitter

(UART) protocol to communicate with a host PC. Arduino programs can be flashed

onto the ESP8266 12E through a host PC.

A custom printed circuit board (PCB) was designed to make the sensor sub-

system compact. The architecture of the sensor subsystem is shown in Figure 6.4.

The schematic of the PCB is shown in Figure 6.5, and the corresponding board

design in Figure 6.6. The realized board design is shown in Figure 6.7.

Each encoder was connected to a wireless module (custom PCB) to transmit

the sensor data to the microcontroller over the Wi-Fi network. An Arduino pro-

gram was written to obtain the raw data from the encoder, process the data to

obtain the angular position in radians, differentiate the angular position to obtain

angular velocity and finally transmit the angular position and angular velocity as

a string of characters over the Wi-Fi network. The network diagram is shown in

Figure 6.3. The wireless receiver is a similar wireless module with a ESP8266 12E

microcontroller, which receives the angular position and angular velocity from each

of the wireless modules at approximately 100 Hz. Each wireless module has a fixed

IP address assigned to it, which is used by the receiver to determine from which

module the data is arriving. In every loop, the receiver concatenates the sensor

data it receives from the three wireless modules into a comma-delimited string that

represents the system’s state vector x. This comma-delimited string is then sent

to the microcontroller using the UART protocol at 115200 bauds per second. The

source code for the wireless module is shown in Section D.1 and that for the receiver

is shown in Section D.2 of Appendix D.
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Figure 6.3: Sensor subsystem network diagram

Figure 6.4: Sensor subsystem architecture
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Figure 6.5: Wireless module PCB schematic
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Figure 6.6: Wireless module board design

Figure 6.7: Realized wireless module
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6.3 Software Subsystem

The software subsystem consists of the elements that receive the sensor data,

process the data and provide an appropriate control input to the electro-mechanical

subsystem.

At the heart of the software subsystem is the LAUNCHXL-F28379D Launch-

Pad from Texas Instruments, which has the F28379D 200 MHz dual-core micro-

controller along with a host of additional peripheral components. In every loop,

the microcontroller receives the sensor data from the wireless receiver through the

UART protocol, determines the control law to be applied, and then generates a

PWM signal with a duty cycle that is proportional to the computed control input.

The PWM signal is sent to the motor drive, which then applies a torque that is pro-

portional to the PWM duty cycle. In essence, the microcontroller performs exactly

the same function as that of the ‘Control State Machine’ and ‘Controller’ blocks in

the Simulink simulation as shown in Figure 4.2.

The LaunchPad was programmed using C [19] [20], in the Code Composer

Studio v18 environment. A high-level flowchart (activity diagram) of the software is

shown in Figure 6.8. External interrupts using tactile switches were used to provide

emergency-stop functionality for the motor, disable the PWM signal and to reset

the controller state. The source code for the microcontroller program is shown in

Section D.3 of Appendix D.

The ‘doublefuruta.c’ program contains the main() function, and is responsi-

ble for configuring the registers corresponding to the PWM, UART and the exter-
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Figure 6.8: Software flowchart

nal interrupts. The program runs an infinite loop in which it receives the system

state vector from the wireless receiver, and then calls the action() function, which

is contained in the ‘action.c’ program. The ‘action.c’ program in turn calls the

statemachine() function contained in the ‘statemachine.c’ program, which returns

the controller state. Depending on the controller state, the action() function com-

putes the appropriate control input in that iteration, and then sets the PWM duty

cycle to a value that is proportional to the computed control input.
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Chapter 7: Conclusion and Future Work

In this thesis, a detailed mathematical model in terms of dimensionless pa-

rameters of a double Furuta pendulum was developed. The mathematical model

was used to design control laws for the swing-up and balancing of the two pendu-

lum segments. A combination of energy control and LQR technique was used for

the swing-up, and a separate LQR was designed for the balancing control. A state

machine model was developed that chose the appropriate control law at different

system states.

The effectiveness of the overall control system was verified by performing

simulations over different relative pendulum lengths. The simulation results were

recorded and analyzed. Finally, the details of the hardware design for the validation

of the control system were discussed.

Future work would include improvements in the mechanical design and the

sensor subsystem. The pendulum joints could be made more sturdy by using a

tighter fit between the shaft and the bearing, and using a bearing with more width.

The sensor subsystem could be improved by using faster communication protocols

between the wireless modules and the wireless receiver, and between the wireless

receiver and the microcontroller.
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Appendix A: Model Verification

In order to verify that the kinematics model derived from an adaptation of the

D-H Parameters was correct, the model was compared with another kinematic model

that was derived from elementary transformations, which included transformations

in the y-axis. Built-in functions from Peter Corke’s Robotics Toolbox for MATLAB

[21] was used to perform these elementary transformations.

A custom function named dhtrans() was defined in MATLAB that performed

the serial transformations according to the D-H convention. The resulting final

transformation matrices from both methods were subtracted to find the difference

in each matrix element. It was observed that the difference was zero, meaning that

the resulting matrices were identical.

A.1 Function dhtrans()

function T = dhtrans(alpha,d,a,theta)

T = trotz(theta)*transl(0,0,d)*transl(a,0,0)*trotx(alpha);

end

A.2 Program verify dh.m

syms theta1 theta2 theta3;

syms a2 a3 d2 d3;

syms ac2 ac3 dc2 dc3;
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Transformations NOT using D-H convention

T1 = trotz(theta1)*transl(0,d2,0)*trotx(-sym(pi)/2);

T2 = T1*trotz(theta2-(sym(pi)/2))*transl(a2,0,0);

T3 = T2*trotz(theta3)*transl(0,0,d3)*transl(a3,0,0);

Tc1 = trotz(theta1)*transl(0,dc2,0)*trotx(-sym(pi)/2);

Tc2 = T1*trotz(theta2-(sym(pi)/2))*transl(ac2,0,0);

Tc3 = T2*trotz(theta3)*transl(0,0,dc3)*transl(ac3,0,0);

Transformations using adapted D-H convention

T1_dh = dhtrans(-sym(pi)/2,0,0,theta1)*dhtrans(0,d2,0,0);

T2_dh = T1_dh*dhtrans(0,0,a2,theta2-(sym(pi)/2));

T3_dh = T2_dh*dhtrans(0,d3,a3,theta3);

Tc1_dh = dhtrans(-sym(pi)/2,0,0,theta1)*dhtrans(0,dc2,0,0);

Tc2_dh = T1_dh*dhtrans(0,0,ac2,theta2-(sym(pi)/2));

Tc3_dh = T2_dh*dhtrans(0,dc3,ac3,theta3);

Compare and display results

Tc1_diff = simplify(Tc1_dh - Tc1);

Tc2_diff = simplify(Tc2_dh - Tc2);

Tc3_diff = simplify(Tc3_dh - Tc3);

display(Tc1_diff);

display(Tc2_diff);

display(Tc3_diff);

Output

Tc1_diff =

[ 0, 0, 0, 0]

[ 0, 0, 0, 0]

[ 0, 0, 0, 0]

[ 0, 0, 0, 0]

Tc2_diff =

[ 0, 0, 0, 0]

[ 0, 0, 0, 0]

[ 0, 0, 0, 0]
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[ 0, 0, 0, 0]

Tc3_diff =

[ 0, 0, 0, 0]

[ 0, 0, 0, 0]

[ 0, 0, 0, 0]

[ 0, 0, 0, 0]

A.3 Jacobian Verification

To verify the correctness of the Jacobians, the total energy equation is consid-

ered. We know that the total energy equals:

TE =
1

2
q̇T ·D · q̇ + P (A.1)

where q̇ is the joint velocity vector, D is the mass matrix and P is the potential

energy.

The mass matrix, D contains the Jacobian terms. When expanded, this non-

linear energy equation is in terms of the system’s state space, x, and can hence be

measured using Simulink.

We also know that the input energy to the system is:

TE =

∫
τω (A.2)

where τ is the input torque to the motor, and ω is the angular velocity of the motor.

Assuming no loss of energy, the above two equations should provide the same

graph when plotted over a certain time period, provided that the measured energy

59



equation is correct. If the graphs are identical, it indicates that the energy equation,

A.1, is correct, which in turn shows that the Jacobians are correct, because no

intermediate simplifications or approximations are made.

The above test was conducted in Simulink using different patterns of torque

input. The corresponding Simulink block diagram is shown in Figure A.3. In the

block diagram, the “Measured Energy” block is a MATLAB Function block, which

takes the system’s state vector as input, and outputs the total energy according

to Equation A.1. The “Input Energy” and the “Measured Energy” signals were

outputted to the workspace and then plotted. The plots are shown in Figure A.3.

It can be observed that the “Measured Energy” graph follows the “Input Energy”

graph. Thus, the nonlinear model is verified.

Figure A.1: Simulink simulation for testing energy equation
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Appendix B: Nonlinear Model

B.1 Mass Matrix (D3×3)

d11 =
((

2 l2m (βp − 1)2 (λp − 1) ν3
2 − 2 I3 xx + 2 I3 zz

)
(cos (θ3))

2

+
(
−4 I3 zx sin (θ3)− 2 l2βpmν3 (λp − 1) (βp − 1)

)
cos (θ3)

− l2
(
(βp − 1)2 (λp − 1) ν3

2 + βp
2
(
ν2

2λp − λp + 1
))
m+ I3 xx − I3 zz − I2 xx

+ I2 zz

)
(cos (θ2))

2

−2
(
2 I3 zx (cos (θ3))

2+sin (θ3)
(
l2m (βp−1)2 (λp−1) ν3

2−I3 xx +I3 zz

)
cos (θ3)

− l2βpmν3 (λp − 1) (βp − 1) sin (θ3)− I3 zx + I2 zx

)
sin (θ2) cos (θ2)

+
(
−l2m (βp − 1)2 (λp − 1) ν3

2 + I3 xx − I3 zz

)
(cos (θ3))

2

+
(
2 I3 zx sin (θ3) + 2 l2βpmν3 (λp − 1) (βp − 1)

)
cos (θ3)

+
((
βp

2
(
ν2

2λp − λp + 1
)

+ βa
2
)
l2 − 2 βadc3 (λp − 1) l − dc3

2 (λp − 1)
)
m

+ I3 zz + I1 zz + I2 xx

d12 =
((
−βamν3 (λp − 1) (βp − 1) l2 −mdc3ν3 (λp − 1) (βp − 1) l + I3 yz

)
cos (θ3)

− sin (θ3) I3 yx − (1 + (ν2 − 1)λp) βpmβal
2 + βpmdc3 (λp − 1) l + I2 yz

)
cos (θ2)

+ sin (θ2)
(
−I3 yx cos (θ3)

+
(
βamν3 (λp−1) (βp−1) l2 +mdc3ν3 (λp−1) (βp−1) l− I3 yz

)
sin (θ3)− I2 yx

)
d13 = ((−lm (λp − 1) (βp − 1) (βal + dc3) ν3 + I3 yz ) cos (θ3)− sin (θ3) I3 yx ) cos (θ2)

+ (−I3 yx cos (θ3) + sin (θ3) (lm (λp − 1) (βp − 1) (βal + dc3) ν3 − I3 yz )) sin (θ2)

d21 =
((
−βamν3 (λp − 1) (βp − 1) l2 −mdc3ν3 (λp − 1) (βp − 1) l + I3 yz

)
cos (θ3)

− sin (θ3) I3 yx − (1 + (ν2 − 1)λp) βpmβal
2 + βpmdc3 (λp − 1) l + I2 yz

)
cos (θ2)

+ sin (θ2)
(
−I3 yx cos (θ3)

+
(
βamν3 (λp−1) (βp−1) l2 +mdc3ν3 (λp−1) (βp−1) l− I3 yz

)
sin (θ3)− I2 yx

)
d22 = 2 l2mν3βp (λp − 1) (βp − 1) cos (θ3)

+m
((

(1− λp) ν32 + ν2
2λp − λp + 1

)
βp

2 + 2 ν3
2 (λp − 1) βp − ν32 (λp − 1)

)
l2

+ I3 yy + I2 yy

d23 = l2mν3βp (λp − 1) (βp − 1) cos (θ3)− l2m (βp − 1)2 (λp − 1) ν3
2 + I3 yy

d31 = ((−lm (λp − 1) (βp − 1) (βal + dc3) ν3 + I3 yz ) cos (θ3)− sin (θ3) I3 yx ) cos (θ2)

+ (−I3 yx cos (θ3) + sin (θ3) (lm (λp − 1) (βp − 1) (βal + dc3) ν3 − I3 yz )) sin (θ2)
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d32 = l2mν3βp (λp − 1) (βp − 1) cos (θ3)− l2m (βp − 1)2 (λp − 1) ν3
2 + I3 yy

d33 = −l2m (βp − 1)2 (λp − 1) ν3
2 + I3 yy

B.2 Coriolis/Centrifugal Matrix (C3×3)

c11
= 0.5

(
−2

((
2 l2m (βp − 1)2 (λp − 1) ν3

2 − 2 I3 xx + 2 I3 zz

)
(cos (θ3))

2

+
(
−4 I3 zx sin (θ3)− 2 l2βpmν3 (λp − 1) (βp − 1)

)
cos (θ3)

− l2
(
(βp − 1)2 (λp − 1) ν3

2 + βp
2
(
ν2

2λp − λp + 1
))
m+ I3 xx − I3 zz − I2 xx

+ I2 zz

)
cos (θ2) sin (θ2)

− 2
(
2 I3 zx (cos (θ3))

2 + sin (θ3)
(
l2m (βp− 1)2 (λp− 1) ν3

2− I3 xx + I3 zz

)
cos (θ3)

− l2βpmν3 (λp − 1) (βp − 1) sin (θ3)− I3 zx + I2 zx

)
(cos (θ2))

2

+ 2
(
2 I3 zx (cos (θ3))

2 + sin (θ3)
(
l2m (βp− 1)2 (λp− 1) ν3

2− I3 xx + I3 zz

)
cos (θ3)

− l2βpmν3 (λp − 1) (βp − 1) sin (θ3)− I3 zx + I2 zx

)
(sin (θ2))

2) θ̇2
+ 0.5

((
−2

(
2 l2m (βp − 1)2 (λp − 1) ν3

2 − 2 I3 xx + 2 I3 zz

)
cos (θ3) sin (θ3)

− 4 I3 zx (cos (θ3))
2

−
(
−4 I3 zx sin (θ3)− 2 l2βpmν3 (λp − 1) (βp − 1)

)
sin (θ3)

)
(cos (θ2))

2

−2
(
−4 I3 zx sin (θ3) cos (θ3)+(cos (θ3))

2 (l2m (βp−1)2 (λp−1) ν3
2−I3 xx +I3 zz

)
− (sin (θ3))

2 (l2m (βp − 1)2 (λp − 1) ν3
2 − I3 xx + I3 zz

)
− l2mν3βp (λp − 1) (βp − 1) cos (θ3)

)
sin (θ2) cos (θ2)

− 2
(
−l2m (βp − 1)2 (λp − 1) ν3

2 + I3 xx − I3 zz

)
cos (θ3) sin (θ3)

+ 2 I3 zx (cos (θ3))
2 −

(
2 I3 zx sin (θ3) + 2 l2βpmν3 (λp − 1) (βp − 1)

)
sin (θ3)

)
θ̇3
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c12 = 0.5
(
−2

((
2 l2m (βp − 1)2 (λp − 1) ν3

2 − 2 I3 xx + 2 I3 zz

)
(cos (θ3))

2

+
(
−4 I3 zx sin (θ3)− 2 l2βpmν3 (λp − 1) (βp − 1)

)
cos (θ3)

− l2
(
(βp − 1)2 (λp − 1) ν3

2 + βp
2
(
ν2

2λp − λp + 1
))
m+ I3 xx − I3 zz − I2 xx

+ I2 zz

)
cos (θ2) sin (θ2)

− 2
(
2 I3 zx (cos (θ3))

2 + sin (θ3)
(
l2m (βp − 1)2 (λp − 1) ν3

2 − I3 xx + I3 zz

)
cos (θ3)

− l2βpmν3 (λp − 1) (βp − 1) sin (θ3)− I3 zx + I2 zx

)
(cos (θ2))

2

+ 2
(
2 I3 zx (cos (θ3))

2 + sin (θ3)
(
l2m (βp − 1)2 (λp − 1) ν3

2 − I3 xx + I3 zz

)
cos (θ3)

− l2βpmν3 (λp − 1) (βp − 1) sin (θ3)− I3 zx + I2 zx

)
(sin (θ2))

2) θ̇1
+ θ̇2

((
−1.0 I3 yx cos (θ2)

+
((
lmν3 (βal+dc3)λp−1.0 l2mβaν3−1.0 lmdc3ν3

)
βp+

(
−1.0 l2mβaν3−1.0 lmdc3ν3

)
λp+l

2mβaν3+lmdc3ν3−1.0 I3 yz

)
sin (θ2)

)
cos (θ3)

+
(((

lmν3 (βal+dc3)λp−1.0 l2mβaν3−1.0 lmdc3ν3
)
βp+

(
−1.0 l2mβaν3−1.0 lmdc3ν3

)
λp+l

2mβaν3+lmdc3ν3−1.0 I3 yz

)
cos (θ2)

+ I3 yx sin (θ2)
)

sin (θ3)− 1.0 I2 yx cos (θ2)

+
(((

(ν2 − 1.0) βaml
2 − 1.0mdc3l

)
λp + lm (βal + dc3)

)
βp − 1.0 I2 yz

)
sin (θ2)

)
+ θ̇3

((
−1.0 I3 yx cos (θ3)

+
((((

l2βp−1.0 l2
)
ν3λp+

(
−1.0 l2βp+l

2
)
ν3
)
βa+(βpl−1.0 l) ν3dc3λp+(−1.0 βpl+l) ν3dc3

)
m−1.0 I3 yz

)
sin (θ3)

)
cos (θ2)

+
(((((

l2βp−1.0 l2
)
ν3λp+

(
−1.0 l2βp+l

2
)
ν3
)
βa+(βpl−1.0 l) ν3dc3λp+(−1.0 βpl+l) ν3dc3

)
m−1.0 I3 yz

)
cos (θ3)

+ sin (θ3) I3 yx

)
sin (θ2)

)
c13 = 0.5

((
−2

(
2 l2m (βp − 1)2 (λp − 1) ν3

2 − 2 I3 xx + 2 I3 zz

)
cos (θ3) sin (θ3)

− 4 I3 zx (cos (θ3))
2

−
(
−4 I3 zx sin (θ3)− 2 l2βpmν3 (λp − 1) (βp − 1)

)
sin (θ3)

)
(cos (θ2))

2

− 2
(
−4 I3 zx sin (θ3) cos (θ3) + (cos (θ3))

2 (l2m (βp− 1)2 (λp− 1) ν3
2− I3 xx + I3 zz

)
− (sin (θ3))

2 (l2m (βp − 1)2 (λp − 1) ν3
2 − I3 xx + I3 zz

)
− l2mν3βp (λp − 1) (βp − 1) cos (θ3)

)
sin (θ2) cos (θ2)

− 2
(
−l2m (βp − 1)2 (λp − 1) ν3

2 + I3 xx − I3 zz

)
cos (θ3) sin (θ3) + 2 I3 zx (cos (θ3))

2

−
(
2 I3 zx sin (θ3) + 2 l2βpmν3 (λp− 1) (βp− 1)

)
sin (θ3)

)
θ̇1 + θ̇2

((
−1.0 I3 yx cos (θ2)

+
(
((mν3βaλp−1.0 βamν3) βp−1.0mν3βaλp+βamν3) l

2+((mdc3ν3λp−1.0mdc3ν3) βp−1.0mdc3ν3λp+mdc3ν3) l−1.0 I3 yz

)
sin (θ2)

)
cos (θ3)

+
((

((mν3βaλp−1.0 βamν3) βp−1.0mν3βaλp+βamν3) l
2+((mdc3ν3λp−1.0mdc3ν3) βp−1.0mdc3ν3λp+mdc3ν3) l−1.0 I3 yz

)
cos (θ2)

+ I3 yx sin (θ2)
)

sin (θ3)
)

+ θ̇3
((
−1.0 I3 yx cos (θ2)

+
(
((mν3λp−1.0mν3) βp−1.0mν3λp+mν3) βal

2+((mdc3ν3λp−1.0mdc3ν3) βp−1.0mdc3ν3λp+mdc3ν3) l−1.0 I3 yz

)
sin (θ2)

)
cos (θ3)

+
((

((mν3λp−1.0mν3) βp−1.0mν3λp+mν3) βal
2+((mdc3ν3λp−1.0mdc3ν3) βp−1.0mdc3ν3λp+mdc3ν3) l−1.0 I3 yz

)
cos (θ2)

+ I3 yx sin (θ2)
)

sin (θ3)
)
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c21 = 1.0
((

2.0 I3 zx (cos (θ3))
2

+
((

(−1.0+1.0λp) βp
2+(2.0−2.0λp) βp−1.0+1.0λp

)
ml2ν3

2−1.0 I3 xx +1.0 I3 zz

)
sin (θ3) cos (θ3)

+
(
(1.0− 1.0λp) βp

2 + (−1.0 + 1.0λp) βp
)
ν3ml

2 sin (θ3) + 1.0 I2 zx

− 1.0 I3 zx

)
(cos (θ2))

2

+
(((

(2.0λp−2.0) βp
2+(−4.0λp+4.0) βp+2.0λp−2.0

)
ν3

2ml2−2.0 I3 xx +2.0 I3 zz

)
(cos (θ3))

2

+
(
−4.0 I3 zx sin (θ3) +

(
(2.0− 2.0λp) βp

2 + (2.0λp − 2.0) βp
)
ν3ml

2
)

cos (θ3)

+
((

(1.0−1.0λp) βp
2+(2.0λp−2.0) βp+1.0−1.0λp

)
ν3

2+
(
−1.0+1.0λp−1.0 ν2

2λp
)
βp

2
)
ml2

− 1.0 I2 xx + 1.0 I2 zz + 1.0 I3 xx − 1.0 I3 zz

)
sin (θ2) cos (θ2) +

(
−2.0 I3 zx (cos (θ3))

2

+
((

(1.0−1.0λp) βp
2+(2.0λp−2.0) βp+1.0−1.0λp

)
ν3

2ml2+1.0 I3 xx−1.0 I3 zz

)
sin (θ3) cos (θ3)

+
(
(−1.0 + 1.0λp) βp

2 + (1.0− 1.0λp) βp
)
ν3ml

2 sin (θ3)− 1.0 I2 zx

+ 1.0 I3 zx

)
(sin (θ2))

2) θ̇1
c22 = −1.0 l2βpmν3 (λp − 1) (βp − 1) sin (θ3) θ̇3

c23 = −1.0 l2βp sin (θ3)m
(((

1.0 θ̇2 + 1.0 θ̇3

)
λp − 1.0 θ̇2 − 1.0 θ̇3

)
βp

+
(
−1.0 θ̇2 − 1.0 θ̇3

)
λp + 1.0 θ̇2 + 1.0 θ̇3

)
ν3

c31 = 2.0
((
−1.0 (sin (θ3))

2 I3 zx

+
(((

(−1.0+1.0λp) βp
2+(2.0−2.0λp) βp−1.0+1.0λp

)
ml2ν3

2−1.0 I3 xx +1.0 I3 zz

)
cos (θ3)+

(
(−0.5λp+0.5) βp

2+(0.5λp−0.5) βp
)
ml2ν3

)
sin (θ3)

+ 1.0 I3 zx (cos (θ3))
2) (cos (θ2))

2

+
(((

(−0.5λp+0.5) βp
2+(−1.0+1.0λp) βp−0.5λp+0.5

)
ml2ν3

2+0.5 I3 xx−0.5 I3 zz

)
sin (θ2) (sin (θ3))

2

− 2.0 cos (θ3) sin (θ3) sin (θ2) I3 zx

+
((

(0.5λp−0.5) βp
2+(1.0−1.0λp) βp+0.5λp−0.5

)
ml2ν3

2−0.5 I3 xx +0.5 I3 zz

)
sin (θ2) (cos (θ3))

2

+
(
(−0.5λp + 0.5) βp

2 + (0.5λp − 0.5) βp
)
ml2ν3 sin (θ2) cos (θ3)

)
cos (θ2)

+ 0.5 (sin (θ3))
2 I3 zx

+
(((

(−0.5λp+0.5) βp
2+(−1.0+1.0λp) βp−0.5λp+0.5

)
ml2ν3

2+0.5 I3 xx−0.5 I3 zz

)
cos (θ3)

+
(
(0.5λp − 0.5) βp

2 + (−0.5λp + 0.5) βp
)
ml2ν3

)
sin (θ3)− 0.5 I3 zx (cos (θ3))

2) θ̇1
c32 = l2βpmν3 sin (θ3) θ̇2 (1.0λpβp − 1.0 βp − 1.0λp + 1.0)
c33 = 0

B.3 Gravitational Acceleration Matrix (G3×1)

g1 = 0
g2 = −9.81λpmν2βpl sin (θ2) + 9.81 (1− λp)m (− sin (θ2) ν3 (1− βp) l cos (θ3)

− cos (θ2) ν3 (1− βp) l sin (θ3)− βpl sin (θ2))

g3 = 9.81 (1− λp)m (− cos (θ2) ν3 (1− βp) l sin (θ3)− sin (θ2) ν3 (1− βp) l cos (θ3))
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B.4 Total Energy Equation (TE)

TE = 9.81λpmν2βpl cos (θ2) + 9.81 (1− λp)m (cos (θ2) ν3 (1− βp) l cos (θ3)

− sin (θ2) ν3 (1− βp) l sin (θ3) + βpl cos (θ2))

+
(

1/2 θ̇2
(
2 l2mν3βp (λp−1) (βp−1) cos (θ3)+

((
(1−λp) ν32+ν2

2λp−λp+1
)
βp

2+2 ν3
2 (λp−1) βp−ν32 (λp−1)

)
ml2+I3 yy +I2 yy

)
+1/2 θ̇3

(
l2mν3βp (λp−1) (βp−1) cos (θ3)− l2m (βp−1)2 (λp−1) ν3

2+I3 yy

))
θ̇2

+
(

1/2 θ̇2
(
l2mν3βp (λp−1) (βp−1) cos (θ3)−l2m (βp−1)2 (λp−1) ν3

2+I3 yy

)
+1/2 θ̇3

(
−l2m (βp−1)2 (λp−1) ν3

2+I3 yy

))
θ̇3

TEref = 9.81λpmν2βpl + 9.81 (1− λp)m (ν3 (1− βp) l + βpl)

B.5 Variables Dictionary

Symbols Description
I1 ij, I2 ij, I3 ij Inertia tensor elements of links 1, 2 and 3 respectively
m Characteristic mass (refer Section 3.1.2)
l Characteristic length (refer Section 3.1.2)
λa, λp, βa, βp, νi Dimensionless parameters (refer Section 3.1.2)
dc3 Offset between links 2 and 3 (refer Table 3.2)
TE Total energy of the pendulum segments
TEref Reference total energy of the pendulum segments

at the upright position
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Appendix C: Computer-Aided Design Notes

This appendix shows the CAD drawings of the custom-designed components,

and describes how the assembly is done. All the dimensions shown in the CAD

drawings are in millimeters. Table C.1 shows the materials used for the components

referenced in the CAD drawings and the method of manufacturing of the parts.

C.1 Assembly

Two of the ‘mount-sides’ parts are mounted on the ‘base’ using M5 screws.

The motor is attached to the ‘mount-motor’ using M5 screws and then the ‘mount-

motor’ part is mounted on the ‘mount-sides’ using M5 screws such that the motor

shaft faces upwards. The 8mm to 1/2in coupling is clamped to the motor shaft and

the smaller diameter shaft on each end, and then the ‘mount-top’ part is mounted on

the ‘mount-sides’ using M5 screws, such that the 8mm counter-bore faces upwards.

The 8mm bearing is inserted into the counter-bore. The ‘encoder-mount-1’ part is

attached to ‘mount-top’ using M3 screws, and one of the encoders is attached to the

‘encoder-mount-1’ using M2.5 screws.

The 8mm set collar is attached to the 8mm shaft and one end of ‘link-1’ part is

attached to the set collar using M5 screws. The 3mm needle roller bearing is press-fit
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into the ‘bearing-mount-roller’ part, and then the ‘bearing-mount-roller’ is attached

to the other end of ‘link-1’. The 3mm step of the ‘pin-2’ part is inserted into the

3mm needle roller bearing, and then an encoder is mounted on the shaft. The base

of the encoder is fixed to the ‘bearing-mount-roller’ part. The ‘link-2-roller’ part is

attached to the other end of ‘pin-2’ using M3 screws. The ‘link-3’ part is similarly

joined to the ‘link-2-roller’ part.

Part Name Material Manufacturing Method
base Aluminium 6061 CNC Milling
mount-sides Aluminium 6061 CNC Milling
mount-motor Aluminium 6061 CNC Milling
mount-top Aluminium 6061 CNC Milling
shaft-1 Aluminium 6061 Lathe Turning
encoder-mount-1 Polylactic acid 3D printing
link-1 Aluminium 6061 CNC Milling
bearing-mount-roller Aluminium 6061 CNC Milling
link-2-roller Aluminium 6061 CNC Milling
link-2 Aluminium 6061 CNC Milling
pin-2 Steel Lathe Turning

Table C.1: Manufacturing method of mechanical components
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Appendix D: Software Programs

D.1 ESP8266 12E Wireless Module Source Code

#include <ESP8266WiFi.h>

#include <WiFiUdp.h>

#include <SPI.h>

#define baudRate 2000000

#define timoutLimit 100

#define nop 0x00 //no operation

#define rd_pos 0x10 //read position\

char ssid[] = "FurutaCentral";

char pass[] = "furutapendulum";

IPAddress serverIP(192, 168, 1, 100);

WiFiUDP Udp;

unsigned int serverUdpPort = 1100; // local port to listen on

char sendPacket[25]; // a reply string to send back

//set the chip select pin for the AMT20

const int CS = 16;

const int LED = 2;

uint8_t data; //this will hold our returned data from the AMT20

uint8_t timeoutCounter; //our timeout incrementer

uint16_t currentPosition; //this 16 bit variable

//will hold our 12-bit position

float curr_pos = 0;

float prev_pos = 0;

double curr_vel = 0;

unsigned long t;

unsigned long t_prev = 0;

unsigned long dt;
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const double pi = 3.1415;

//Arduino uses a setup function for all program initializations

void setup()

{

//Initialize the UART serial connection

Serial.begin(baudRate);

//Set I/O mode of all SPI pins.

pinMode(CS, OUTPUT);

SPI.begin();

SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE0));

digitalWrite(CS, HIGH);

digitalWrite(LED, HIGH);

WiFi.begin(ssid, pass);

while (WiFi.status() != WL_CONNECTED)

{

delay(100);

yield();

}

t_prev = millis();

}

void loop()

{

ESP.wdtFeed();

sendPacket[0] = ’\0’;

timeoutCounter = 0;

ESP.wdtFeed();

data = SPIWrite(rd_pos);
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yield();

while (data != rd_pos && timeoutCounter++ < timoutLimit)

{

data = SPIWrite(nop);

yield();

}

if (timeoutCounter < timoutLimit) //rd_pos echo received

{

ESP.wdtFeed();

currentPosition = (SPIWrite(nop) & 0x0F) << 8;

currentPosition |= SPIWrite(nop);

t = millis();

dt = t - t_prev;

t_prev = t;

yield();

}

else //timeout reached

{

while (true)

{

ESP.wdtFeed();

delay(20);

yield();

}

}

ESP.wdtFeed();

curr_pos = (float)currentPosition;

curr_pos = (curr_pos/4096.0)*2*pi;

if (curr_pos >= pi)

{

curr_pos = (curr_pos - (2*pi));

}

curr_pos = -curr_pos; //for 2nd and 3rd encoder, the readings

//should be reversed. This line is

//commented out for the first encoder

curr_vel = (double)(((curr_pos - prev_pos)/dt)*1000);
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ESP.wdtFeed();

sprintf(sendPacket,"%.3f,%0.3f\n",curr_pos,curr_vel);

yield();

Udp.beginPacket(serverIP, serverUdpPort);

Udp.write(sendPacket);

Udp.endPacket();

yield();

prev_pos = curr_pos;

delay(8);

yield();

}

uint8_t SPIWrite(uint8_t sendByte)

{

//holder for the received over SPI

uint8_t data;

//the AMT20 requires the release of the CS line after each byte

digitalWrite(CS, LOW);

data = SPI.transfer(sendByte);

digitalWrite(CS, HIGH);

//we will delay here to prevent the AMT20 from having to

//prioritize SPI over obtaining our position

delayMicroseconds(10);

yield();

return data;

}

D.2 ESP8266 12E Wireless Receiver Source Code

#include <ESP8266WiFi.h>

#include <WiFiUdp.h>
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//#define baudRate 2000000

#define baudRate 115200

#define timoutLimit 100

char ssid[] = "FurutaCentral";

char pass[] = "furutapendulum";

WiFiUDP Udp;

unsigned int localport = 1100;

char packetBuffer[UDP_TX_PACKET_MAX_SIZE];

char serialSend[35];

char *token;

char delimiter[2] = ",";

int flag_1 = 0, flag_2 = 0, flag_3 = 0;

int packetSize = 0;

int rec_ip, i = 0, j;

float x[6] = {0};

IPAddress remote;

void setup()

{

// put your setup code here, to run once:

Serial.begin(baudRate);

WiFi.begin(ssid, pass);

//Serial.print("Connecting");

while (WiFi.status() != WL_CONNECTED)

{

delay(100);

yield();

//Serial.print(".");

}

//Serial.print("Connected, IP address: ");

//Serial.println(WiFi.localIP());

Udp.begin(localport);
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for (i = 0; i <= 5; i++)

{

x[i] = 5;

yield();

}

}

void loop()

{

ESP.wdtFeed();

// put your main code here, to run repeatedly:

packetSize = Udp.parsePacket();

yield();

if (packetSize)

{

ESP.wdtFeed();

remote = Udp.remoteIP();

yield();

Udp.read(packetBuffer, UDP_TX_PACKET_MAX_SIZE);

rec_ip = remote[3];

ESP.wdtFeed();

if (rec_ip == 101)

{

ESP.wdtFeed();

flag_1 = 1;

token = strtok(packetBuffer, delimiter);

j = 0;

while(token != NULL)

{

x[j] = atof(token);

token = strtok(NULL, delimiter);

j = j + 3;

yield();

}

}

else if (rec_ip == 102)

{

ESP.wdtFeed();
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flag_2 = 1;

token = strtok(packetBuffer, delimiter);

j = 1;

while(token != NULL)

{

x[j] = atof(token);

token = strtok(NULL, delimiter);

j = j + 3;

yield();

}

}

else if (rec_ip == 103)

{

ESP.wdtFeed();

flag_3 = 1;

token = strtok(packetBuffer, delimiter);

j = 2;

while(token != NULL)

{

x[j] = atof(token);

token = strtok(NULL, delimiter);

j = j + 3;

yield();

}

}

else

{

ESP.wdtFeed();

Serial.println("Invalid IP");

}

yield();

if (flag_1 && flag_2 && flag_3)

{

ESP.wdtFeed();

flag_1 = 0;

flag_2 = 0;

flag_3 = 0;

yield();

sprintf(serialSend, "%.3f,%.3f,%.3f,%.3f,%.3f,%.3f\n", ...

... x[0], x[1], x[2], x[3], x[4], x[5]);
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ESP.wdtFeed();

Serial.print(serialSend);

//Serial.print(’\n’);

yield();

for (i = 0; i <= 5; i++)

{

x[i] = 5;

yield();

}

yield();

}

yield();

}

ESP.wdtFeed();

}

D.3 F28379D Microcontroller Source Code

D.3.1 doublefuruta.c

#include "F28x_Project.h"

#include "globals.h"

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#define buflen 50

#define DUTY_CYCLE_DEFAULT 0

#define SCI_SELECT 2

const int EPWM1_TIMER_TBPRD = 2000;

const float MAX_TORQUE = 0.75;

//

// Globals

//

Uint16 LoopCount;

double x[6] = {0.0};
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State state;

int pwm_active = 1;

int motor_active = 0;

//

// Function Prototypes

//

void InitEPwm1(void);

void InitEPwm11(void);

void scia_echoback_init(void);

void scia_fifo_init(void);

void scia_xmit(int a);

void scia_msg(char *msg);

void scib_echoback_init(void);

void scib_fifo_init(void);

void scib_xmit(int a);

void scib_msg(char *msg);

interrupt void xint1_isr(void);

interrupt void xint2_isr(void);

interrupt void xint3_isr(void);

//

// Main

//

void main(void)

{

char recv[buflen];

char *token;

char delimiter[2] = ",";

//

// Step 1. Initialize System Control:

// PLL, WatchDog, enable Peripheral Clocks

// This example function is found in the F2837xD_SysCtrl.c file.

//

InitSysCtrl();

//

// Step 2. Initialize GPIO:

// This example function is found in the F2837xD_Gpio.c file and

// illustrates how to set the GPIO to it’s default state.

//

InitGpio();
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GPIO_SetupPinMux(2, GPIO_MUX_CPU1, 0); // motor enable pin

GPIO_SetupPinOptions(2, GPIO_OUTPUT, GPIO_PUSHPULL);

GPIO_SetupPinMux(3, GPIO_MUX_CPU1, 0); // motor direction pin

GPIO_SetupPinOptions(3, GPIO_OUTPUT, GPIO_PUSHPULL);

GPIO_SetupPinMux(4, GPIO_MUX_CPU1, 0); // pwm enable pin

GPIO_SetupPinOptions(4, GPIO_OUTPUT, GPIO_PUSHPULL);

GPIO_SetupPinMux(43, GPIO_MUX_CPU1, 15); // scia pins

GPIO_SetupPinOptions(43, GPIO_INPUT, GPIO_PUSHPULL);

GPIO_SetupPinMux(42, GPIO_MUX_CPU1, 15);

GPIO_SetupPinOptions(42, GPIO_OUTPUT, GPIO_ASYNC);

GPIO_SetupPinMux(19, GPIO_MUX_CPU1, 2); // scib pins

GPIO_SetupPinOptions(19, GPIO_INPUT, GPIO_PUSHPULL);

GPIO_SetupPinMux(18, GPIO_MUX_CPU1, 2);

GPIO_SetupPinOptions(18, GPIO_OUTPUT, GPIO_ASYNC);

GPIO_SetupPinMux(31, GPIO_MUX_CPU1, 0); // led pin

GPIO_SetupPinOptions(31, GPIO_OUTPUT, GPIO_PUSHPULL);

GPIO_SetupPinMux(34, GPIO_MUX_CPU1, 0); // led pin

GPIO_SetupPinOptions(34, GPIO_OUTPUT, GPIO_PUSHPULL);

GPIO_WritePin(31, 1); // turn off led 31

GPIO_WritePin(34, 0); // turn on led 34

GPIO_WritePin(2, 0); // disable motor

CpuSysRegs.PCLKCR2.bit.EPWM1=1;

InitEPwm1Gpio();

//

// Step 3. Clear all __interrupts and initialize PIE vector table:

// Disable CPU __interrupts

//

DINT;

//

// Initialize PIE control registers to their default state.

// The default state is all PIE __interrupts disabled and flags

// are cleared.
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// This function is found in the F2837xD_PieCtrl.c file.

//

InitPieCtrl();

//

// Disable CPU __interrupts and clear all CPU __interrupt flags:

//

IER = 0x0000;

IFR = 0x0000;

//

// Initialize the PIE vector table with pointers to the shell

// Interrupt Service Routines (ISR).

// This will populate the entire table, even if the __interrupt

// is not used in this example. This is useful for debug purposes.

// The shell ISR routines are found in F2837xD_DefaultIsr.c.

// This function is found in F2837xD_PieVect.c.

//

InitPieVectTable();

InitEPwm1();

EALLOW;

CpuSysRegs.PCLKCR0.bit.TBCLKSYNC = 1;

EDIS;

EALLOW; // This is needed to write to EALLOW protected registers

PieVectTable.XINT1_INT = &xint1_isr;

PieVectTable.XINT2_INT = &xint2_isr;

PieVectTable.XINT3_INT = &xint3_isr;

EDIS;

PieCtrlRegs.PIECTRL.bit.ENPIE = 1; // Enable the PIE block

PieCtrlRegs.PIEIER1.bit.INTx4 = 1; // Enable PIE Group 1 INT4

PieCtrlRegs.PIEIER1.bit.INTx5 = 1; // Enable PIE Group 1 INT5

IER |= M_INT1; // Enable CPU INT1

EINT; // Enable Global Interrupts

EALLOW;

GpioCtrlRegs.GPAMUX1.bit.GPIO1 = 0; // GPIO

GpioCtrlRegs.GPADIR.bit.GPIO1 = 0; // input

GpioCtrlRegs.GPAPUD.bit.GPIO1 = 0;

GpioCtrlRegs.GPAQSEL1.bit.GPIO1 = 2;

GpioCtrlRegs.GPAMUX1.bit.GPIO4 = 0; // GPIO
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GpioCtrlRegs.GPADIR.bit.GPIO4 = 0; // input

GpioCtrlRegs.GPAPUD.bit.GPIO4 = 0;

GpioCtrlRegs.GPAQSEL1.bit.GPIO4 = 2;

GpioCtrlRegs.GPAMUX1.bit.GPIO5 = 0; // GPIO

GpioCtrlRegs.GPADIR.bit.GPIO5 = 0; // input

GpioCtrlRegs.GPAPUD.bit.GPIO5 = 0;

GpioCtrlRegs.GPAQSEL1.bit.GPIO5 = 2;

GpioCtrlRegs.GPACTRL.bit.QUALPRD0 = 0xFF;

EDIS;

GPIO_SetupXINT1Gpio(1);

GPIO_SetupXINT2Gpio(4);

GPIO_SetupXINT3Gpio(5);

XintRegs.XINT1CR.bit.POLARITY = 0;

XintRegs.XINT2CR.bit.POLARITY = 0;

XintRegs.XINT3CR.bit.POLARITY = 0;

XintRegs.XINT1CR.bit.ENABLE = 1;

XintRegs.XINT2CR.bit.ENABLE = 1;

XintRegs.XINT3CR.bit.ENABLE = 1;

//

// Step 4. User specific code:

//

LoopCount = 0;

scia_fifo_init(); // Initialize the SCI FIFO

scia_echoback_init(); // Initialize SCI for echoback

scib_fifo_init(); // Initialize the SCI FIFO

scib_echoback_init(); // Initialize SCI for echoback

int i = 0;

int j = 0;

int k = 0;

for(;;)

{

if(SCI_SELECT == 1)

{

while(SciaRegs.SCIFFRX.bit.RXFFST == 0) { }

while(SciaRegs.SCIFFRX.bit.RXFFST > 0)
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{

recv[i] = SciaRegs.SCIRXBUF.all;

if(recv[i] == ’\n’)

{

scia_msg(recv);

token = strtok(recv,delimiter);

k = 0;

while(token != NULL)

{

x[k] = atof(token);

token = strtok(NULL,delimiter);

k++;

}

action();

for(j = 0; j <= buflen; j++)

recv[j] = ’\0’;

i = 0;

}

else i++;

}

}

else

{

while(ScibRegs.SCIFFRX.bit.RXFFST == 0) { }

while(ScibRegs.SCIFFRX.bit.RXFFST > 0)

{

recv[i] = ScibRegs.SCIRXBUF.all;

if(recv[i] == ’\n’)

{

scia_msg(recv);

token = strtok(recv,delimiter);

k = 0;

while(token != NULL)

{

x[k] = atof(token);

token = strtok(NULL,delimiter);

k++;

}

action();
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for(j = 0; j <= buflen; j++)

recv[j] = ’\0’;

i = 0;

}

else i++;

}

}

}

}

interrupt void xint1_isr(void)

{

GpioDataRegs.GPATOGGLE.bit.GPIO31 = 1; // toggle led state

GpioDataRegs.GPATOGGLE.bit.GPIO2 = 1; // toggle motor enable pin

motor_active = !motor_active;

//

// Acknowledge this interrupt to get more from group 1

//

PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

}

interrupt void xint2_isr(void)

{

GpioDataRegs.GPBTOGGLE.bit.GPIO34 = 1; // toggle led state

pwm_active = !pwm_active;

PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

}

interrupt void xint3_isr(void)

{

state = startup;

PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

}

void scia_echoback_init()

{

//

// Note: Clocks were turned on to the SCIA peripheral

// in the InitSysCtrl() function

//
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SciaRegs.SCICCR.all = 0x0007; // 1 stop bit, No loopback

// No parity,8 char bits,

// async mode, idle-line protocol

SciaRegs.SCICTL1.all = 0x0003; // enable TX, RX, internal SCICLK,

// Disable RX ERR, SLEEP, TXWAKE

SciaRegs.SCICTL2.all = 0x0003;

SciaRegs.SCICTL2.bit.TXINTENA = 1;

SciaRegs.SCICTL2.bit.RXBKINTENA = 1;

//

// SCIA at 9600 baud

// @LSPCLK = 50 MHz (200 MHz SYSCLK) HBAUD = 0x02 and LBAUD = 0x8B.

// @LSPCLK = 30 MHz (120 MHz SYSCLK) HBAUD = 0x01 and LBAUD = 0x86.

// Baud rate = LSPCLK/((BRR+1)*8)

SciaRegs.SCIHBAUD.all = 0x0000;

//SciaRegs.SCILBAUD.all = 0x0002; //2000000

ScibRegs.SCILBAUD.all = 0x0002; //115200

SciaRegs.SCICTL1.all = 0x0023; // Relinquish SCI from Reset

}

void scib_echoback_init()

{

//

// Note: Clocks were turned on to the SCIA peripheral

// in the InitSysCtrl() function

//

ScibRegs.SCICCR.all = 0x0007; // 1 stop bit, No loopback

// No parity,8 char bits,

// async mode, idle-line protocol

ScibRegs.SCICTL1.all = 0x0003; // enable TX, RX, internal SCICLK,

// Disable RX ERR, SLEEP, TXWAKE

ScibRegs.SCICTL2.all = 0x0003;

ScibRegs.SCICTL2.bit.TXINTENA = 1;

ScibRegs.SCICTL2.bit.RXBKINTENA = 1;

//

// SCIA at 9600 baud

// @LSPCLK = 50 MHz (200 MHz SYSCLK) HBAUD = 0x02 and LBAUD = 0x8B.

// @LSPCLK = 30 MHz (120 MHz SYSCLK) HBAUD = 0x01 and LBAUD = 0x86.

// Baud rate = LSPCLK/((BRR+1)*8)

ScibRegs.SCIHBAUD.all = 0x0000;
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//ScibRegs.SCILBAUD.all = 0x0002; //2000000

ScibRegs.SCILBAUD.all = 0x0035; //115200

ScibRegs.SCICTL1.all = 0x0023; // Relinquish SCI from Reset

}

//

// scia_xmit - Transmit a character from the SCI

//

void scia_xmit(int a)

{

while (SciaRegs.SCIFFTX.bit.TXFFST != 0) {}

SciaRegs.SCITXBUF.all =a;

}

void scib_xmit(int a)

{

while (ScibRegs.SCIFFTX.bit.TXFFST != 0) {}

ScibRegs.SCITXBUF.all =a;

}

//

// scia_msg - Transmit message via SCIA

//

void scia_msg(char * msg)

{

int i;

i = 0;

while(msg[i] != ’\0’)

{

scia_xmit(msg[i]);

i++;

}

}

void scib_msg(char * msg)

{

int i;

i = 0;

while(msg[i] != ’\0’)

{

scib_xmit(msg[i]);

i++;

}
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}

//

// scia_fifo_init - Initialize the SCI FIFO

//

void scia_fifo_init()

{

SciaRegs.SCIFFTX.all = 0xE040;

SciaRegs.SCIFFRX.all = 0x2044;

SciaRegs.SCIFFCT.all = 0x0;

}

void scib_fifo_init()

{

ScibRegs.SCIFFTX.all = 0xE040;

ScibRegs.SCIFFRX.all = 0x2044;

ScibRegs.SCIFFCT.all = 0x0;

}

//

// End of file

//

void InitEPwm1()

{

//

// Setup TBCLK

//

EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up

EPwm1Regs.TBPRD = EPWM1_TIMER_TBPRD; // Set timer period

EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading

EPwm1Regs.TBPHS.bit.TBPHS = 0x0000; // Phase is 0

EPwm1Regs.TBCTR = 0x0000; // Clear counter

EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV2; // Clock ratio to SYSCLKOUT

EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV2;

//

// Setup shadow register load on ZERO

//

EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;

EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;

EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;

EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
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//

// Set Compare values

//

EPwm1Regs.CMPA.bit.CMPA = DUTY_CYCLE_DEFAULT; // Set compare A value

//

// Set actions

//

EPwm1Regs.AQCTLA.bit.ZRO = AQ_SET; // Set PWM1A on Zero

EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR; // Clear PWM1A on event A,

// up count

}

D.3.2 statemachine.c

#include "F2837xD_device.h"

#include "F2837xD_Examples.h"

#include "globals.h"

extern double x[6];

extern State state;

State statemachine()

{

int cond1 = 0, cond2 = 0, cond3 = 0; // initialize guard conditions

State next_state = state;

switch(state)

{

case startup:

cond1 = (fabs(x[1]) > deg2rad(20));

cond2 = (fabs(x[1]) <= deg2rad(20));

cond3 = (fabs(x[1]) <= deg2rad(15)) && ...

...(fabs(x[2]) <= deg2rad(10));

if(cond1)

next_state = swing_up;

else if(cond2)

next_state = up_down;

else if(cond3)

next_state = balance;

break;
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case swing_up:

cond1 = (fabs(x[1]) <= deg2rad(20));

cond2 = (fabs(x[1]) >= deg2rad(89)) &&

...(fabs(x[1]) <= deg2rad(91));

cond3 = (fabs(x[1]) <= deg2rad(15)) && ...

...(fabs(x[2]) <= deg2rad(10));

if(cond1)

next_state = up_down;

else if(cond2)

next_state = arm_correction;

else if(cond3)

next_state = balance;

break;

case up_down:

cond1 = (fabs(x[2]) <= deg2rad(10)) && ...

...(fabs(x[4]) <= 2) && (fabs(x[5]) <= 7);

cond2 = (fabs(x[1]) > deg2rad(20));

cond3 = (fabs(x[1]) <= 0.1) && (fabs(x[4]) <= 0.4)...

...&& (fabs(x[2]) >= deg2rad(170)) && (fabs(x[5]) <= 10);

if(cond1)

next_state = balance;

else if(cond2)

next_state = swing_up;

else if(cond3)

next_state = mild;

break;

case balance:

cond1 = (fabs(x[1]) > deg2rad(20));

cond2 = (fabs(x[1]) <= deg2rad(1)) && ...

...(fabs(x[2]) <= deg2rad(1)) && (fabs(x[3]) <= deg2rad(10));

cond3 = fabs(x[1]) < deg2rad(20) && fabs(x[2]) > deg2rad(15);

if(cond1)

next_state = swing_up;

else if(cond2)

next_state = up_right;

else if(cond3)

next_state = up_down;

break;

case arm_correction:

cond1 = (fabs(x[1]) <= deg2rad(15)) && ...

...(fabs(x[2]) <= deg2rad(10));

cond2 = (fabs(x[1]) < deg2rad(60)) || ...

...(fabs(x[1]) > deg2rad(120));

if(cond1)

next_state = balance;
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else if(cond2)

next_state = swing_up;

break;

case mild:

cond1 = (fabs(x[1]) > deg2rad(35)) || (fabs(x[4]) > 20);

if(cond1)

next_state = up_down;

break;

default:

next_state = startup;

}

return next_state;

}

double deg2rad(double deg)

{

double rad = (deg/180)*3.14;

return rad;

}

double rad2deg(double rad)

{

double deg = (rad/3.14)*180;

return deg;

}

D.3.3 action.c

#include "F2837xD_device.h"

#include "F2837xD_Examples.h"

#include "globals.h"

float K_balance[6] = {0.03, -14.28, -43.48, 0.34, -3.60, -3.94};

float K_updown[6] = {-1.00, 678.66, -0.39, -4.57, 103.06, -0.88};

float K_mild[6] = {-1.00, 40.07, -32.56, -1.11, 6.10, 1.09};

extern double x[6];

double u = 0;

double sw_const = 20;

extern State state;

Uint16 duty_cycle;

extern const int EPWM1_TIMER_TBPRD;
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extern const float MAX_TORQUE;

extern int pwm_active;

float alpha = 0.001, beta = 0.001;

int motor_dir = 1;

double action()

{

u = 0;

float u_sat = 0;

state = statemachine();

double TE_ref = 0.1236;

double TE = 0.1020e0 * cos(x[1]) + 0.2158e-1 * cos(x[1]) * ...

...cos(x[2]) - 0.2158e-1 * sin(x[1]) * sin(x[2]) + ...

...(x[4] * (0.1594e-2 + 0.6160e-3 * cos(x[2])) / ...

...0.2e1 + x[5] * (0.3080e-3 * cos(x[2]) + 0.2362e-3) ...

.../ 0.2e1) * x[4] + (x[4] * (0.3080e-3 * cos(x[2])...

... + 0.2362e-3) / 0.2e1 + 0.1181e-3 * x[5]) * x[5];

double error = TE_ref - TE;

int i = 0;

switch(state)

{

case swing_up:

if(x[4] != 0.0)

u = sw_const * error * sign(x[4] * cos(x[1]));

else

u = 0.05;

break;

case balance:

for(i = 0; i < 6; i++)

{

u += -K_balance[i]*x[i];

}

break;

case up_down:

for(i = 0; i < 6; i++)

{

u += -K_updown[i]*x[i];

}

break;

case mild:

for(i = 0; i < 6; i++)

{

u += -K_mild[i]*x[i];

}
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break;

case arm_correction:

u = alpha*x[0] - beta*x[3];

break;

default:

u = 0;

}

u_sat = u;

if(u_sat > MAX_TORQUE)

u_sat = MAX_TORQUE;

if(u_sat < -MAX_TORQUE)

u_sat = -MAX_TORQUE;

if(u < 0)

{

motor_dir = 0;

GPIO_WritePin(3, 1);

}

else

{

motor_dir = 1;

GPIO_WritePin(3, 0);

}

duty_cycle = lround((fabs(u_sat)/MAX_TORQUE)*EPWM1_TIMER_TBPRD);

// 100% duty cycle is interpreted by the motor as 0 torque

// hence, full duty cycle is reduced to 95%

if(duty_cycle == EPWM1_TIMER_TBPRD)

duty_cycle *= 0.95;

if(pwm_active)

EPwm1Regs.CMPA.bit.CMPA = duty_cycle;

else

EPwm1Regs.CMPA.bit.CMPA = 0;

return u;

}

double sign(double a)

{

101



if(a < 0)

return -1;

else if(a > 0)

return 1;

else

return 0;

}

D.3.4 globals.h

#include "math.h"

#ifndef GLOBALS_H_

#define GLOBALS_H_

typedef enum

{

startup,

swing_up,

arm_correction,

up_down,

mild,

balance,

up_right

} State;

State statemachine(void);

double action(void);

double deg2rad(double);

double rad2deg(double);

double sign(double);

#endif /* GLOBALS_H_ */
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Appendix E: Bill of Materials

Sl.
No.

Product Part No. Qty Particulars Manufacturer Purpose

1 Encoder AMT203-V 3 12-bit
Absolute
Encoder

CUI Inc. To obtain
angular
position of
the links

2 Wi-Fi
Module

ESP8266
12-E

4 - AI-
THINKER

To
transmit
the
encoder
data
through
Wi-Fi

3 On-board
Battery

- 3 3.7V
150mAh
Li-Po
battery

Noiposi To power
the sensor
subsystem

4 Linear
Voltage
Regulator

AP7363-
33D-13

3 Low
Drop-out
Voltage
Regulator

Diodes In-
corporated

To provide
regulated
power to
the Wi-Fi
module

5 N-Channel
MOSFET

BSS138 12 50V
220mA

ON Semi-
conductors

Logic level
shifter
circuit

6 Resistors RT0603-
DRD-
0710KL

36 10kΩ 0603
SMD
resistors

Yageo -

7 Capacitors C0603-
C106M8-
PACTU

6 10µF 0603
SMD
capacitors

KEMET To stabilize
the voltage
regulator
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8 Switches RS-
187R05A2-
DS MT
RT

6 SPST-NO
SMD
tactime
switch

C & K To reset
and change
boot mode
of the
Wi-Fi
module

9 Female
headers

LPPB-
072CFFN-
RC

2 0.05” pitch
2 row, 14
contact
female
headers

Sullins To connect
the PCB
to the
encoder
vertically

10 Female
headers

853-87-008-
20-001101

1 0.05” pitch
2 row, 8
contact
female
headers

Preci-Dip To connect
the PCB
to the
encoder
horizon-
tally

11 Male
headers

HDR100IMP40M-
G-V-TH

1 0.1” pitch
male
headers

Chip Quik
Inc.

To power
the PCB
and
connect it
to a host
PC

12 Step-Up
Voltage
Regulator

U3V12F5 3 5V
Step-Up
DC-DC
Voltage
Regulator

Pololu To supply
power to
the
encoder

13 Wi-Fi
Router

N301 1 300 MBPS
Wi-Fi
N-channel
router

Tenda To
wirelessly
route the
sensor data
to the
receiver

Table E.2: Bill of Materials for the sensor subsystem
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Sl.
No.

Product Part No. Qty Particulars Manufacturer Purpose

1 Coupling MJC-
30CS-RD

1 8mm to
1/2inch
clamp-style
coupling

NBK To couple
the motor
shaft to a
smaller
diameter
shaft on
which the
encoder
can be
mounted

2 8mm Ball
Bearing

- 1 8x22x7mm
ball
bearing

- To bear
the
dynamic
radial load
on the
8mm shaft
by the cart

3 8mm Set
Collar

NSCS-8-
15-CP2

1 8mm ID
and 15mm
width set
collar

NBK To attach
the cart to
the 8mm
shaft

4 3mm
Roller
Bearing

HK0306TN 2 3x6.5x6mm
needle
roller
bearing

Boca
Bearings

To bear
the
dynamic
radial load
of the
pendulum
segment(s)
on the
joints

5 3mm Set
Collar

NSCS-3-8-
C

2 3mm ID
and 8mm
width set
collar

NBK To prevent
axial
motion at
the joints

6 Switching
Mode
Power
Supply

- 1 24V 15A
DC power
supply

Newstyle To supply
power to
the DC
motor

7 Assorted
screws set

- 1 M2 to M5
screws and
nuts

- To fasten
compo-
nents
together

Table E.1: Bill of Materials for the electro-mechanical subsystem

105



Bibliography

[1] K. Furuta, M. Yamakita, and S. Kobayashi. Swing up control of inverted
pendulum. In Proc. IECON ’91. Conf. Int Industrial Electronics, Control and
Instrumentation, pages 2193–2198 vol.3, October 1991.

[2] M. Yamakita, K. Nonaka, and K. Furuta. Swing up control of a double pendu-
lum. In Proc. American Control Conf, pages 2229–2233, June 1993.
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