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tri
al & Computer Engineering

It is of importan
e to study biologi
al 
olle
tives and apply the wisdom so

a

rued to modern day engineering problems. In this dissertation we attempt to

gain insight into 
olle
tive behavior where the main 
ontribution is twofold. First,

a `bottom-up' approa
h is employed to study individual level 
ontrol law synthesis

and emergen
e thereby of 
olle
tive behavior. Three di�erent problems, involv-

ing single and multiple agents, are studied by both analyti
al and experimental

means. These problems arise from either a pra
ti
al viewpoint or from attempts

at des
ribing biologi
ally plausible feedba
k me
hanisms. One result obtained in

this 
ontext for a double agent s
enario is that under a parti
ular 
onstant bearing

pursuit strategy, the problem exhibits 
ertain features 
ommon with the Kepler

two body problem. Laboratory demonstrations of the solutions to these problems

are presented. It is to be noted that these types of individual level 
ontrol prob-

lems 
an help understand and 
onstru
t building blo
ks for group level behaviors.

The se
ond approa
h is `top-down' in nature. It treats a 
olle
tive as a whole



and asks if its movement minimizes some kind of energy fun
tional. A key goal

of this work is to develop wave equations and their solutions for a natural 
lass

of optimal 
ontrol problems with whi
h one 
an analyze information transfer in

�o
ks. Controllability arguments in in�nite dimensional spa
es give strong sup-

port to 
onstru
t solutions for su
h optimal 
ontrol problems. Sin
e the optimal


ontrol problems are in�nite dimensional in the state spa
e and one 
annot simply

expe
t Pontryagin's Maximum Prin
iple (PMP) to apply in su
h a setting, the

work has required 
are and attention to fun
tional analyti
 
onsiderations. In this

work, it is shown that under a 
ertain assumption on �nite 
o-dimensionality of a

rea
hable set, PMP remains valid. This assumption is then shown to hold true for

the 
ase of a spe
i�
 ensemble of agents, ea
h with state spa
e as the Heisenberg

group H(3). Moreover, analysis of optimal 
ontrols demonstrates the existen
e

of traveling wave solutions in that setting. Syn
hronization results are obtained

in a high 
oupling limit where deviation from neighbors is too 
ostly for every

agent. The 
ombination of approa
hes based on PMP and 
al
ulus of variations

have been fruitful in developing a solid new understanding of wave phenomena in


olle
tives. We provide partial results along these lines for the 
ase of a 
ontinuum

of planar agents (SE(2) 
ase).

Finally, a di�erent top-down and data-driven approa
h to analyze 
olle
tive be-

havior is also put forward in this thesis. It is known that the total kineti
 energy

of a �o
k 
an be divided into several modes attributed to rigid-body translations,

rotations, volume 
hanges, et
. Flight re
ordings of multiple events of European



starling �o
ks yield time-signals of these di�erent energy modes. This approa
h

then seeks an explanation of kineti
 energy mode distributions (viewed as �o
k-

s
ale de
isions) by appealing to te
hniques from evolutionary game theory and

optimal 
ontrol theory. We propose the notion of 
ognitive 
ost that 
al
ulates

a suitably de�ned a
tion fun
tional and measures the 
ost to an event, resulting

from temporal variations of energy mode distributions.
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Ele
tri
 Resear
h Laboratory has been very helpful. I also 
ollaborated with Dr.

Eri
 Justh on a 
entral problem of my thesis and I thank him for all his feedba
k

and wise opinions.

Over the past �ve years, I have been fortunate to intera
t with my 
olleagues in

the Intelligent Servosystems Laboratory. I thank Ms. Vidya Raju, Dr. Biswadip

Dey, Dr. Yunlong Huang, Prof. Kevin Galloway, Mr. Brent S
hlotfeldt, and Mr.

Kenneth Miltenberger for all the stimulating dis
ussions we have had. I enjoyed

a lot while 
ollaborating with Dr. Biswadip Dey, Mr. Brent S
hlotfeldt, and Ms.

Vidya Raju at several stages of my PhD. Spe
ial thanks to Vidya who has been

iii



on a same boat as me from the start of my graduate study. I would also like to

thank my friends outside the lab without whose 
ompany and support my life as

a graduate student would have been in
omplete. Biswadip, Vidya, Dipankar, Sid-

dharth, Soham, Debdipta, Abhishek, Rajdeep, Ankit, Proloy, Soumyadip, Agniv,

Jiaul, Kushal and others � thank you all for making this journey a memorable

one.

Finally, I would like to thank my parents who have been a sour
e of 
onstant

inspiration and en
ouragement. I may not have a

omplished this without their

support.

This resear
h was supported by the Air For
e O�
e of S
ienti�
 Resear
h

under AFOSR Grant FA9550-10-1-0250, an AFOSR FY2012 DURIP Grant No.

FA2386-12-1-3002, the ARL/ARO MURI Program Grant No. W911NF-13-1-

0390, through the University of California Davis (as prime), the ARL/ARO Grant

No. W911NF-17-1-0156, through the Virginia Polyte
hni
 Institute and State

University (as prime), and by Northrop Grumman Corporation.

iv



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .viii

List of Abbreviations and Notations.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Mathemati
al Ba
kground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Self Steering Parti
le Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Experimental Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I Synthesis of Colle
tive Motion: Bottom-up Approa
hes 9

2 Feedba
k Laws for Colle
tive Motion .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Steering for Bea
on Pursuit under Limited Sensing . . . . . . . . . . . . . . . . . . . 11

2.2.1 Tra
king a Moving Bea
on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Dynami
s Restri
ted to the Invariant Manifold . . . . . . . . . . . . . . . 15

2.2.3 Spe
ial Case: α = π
2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 The Limited Field of View (FOV) Problem . . . . . . . . . . . . . . . . . . . 23

2.2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.6 Asso
iated Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Biomimeti
 Algorithms for Coordinated Motion . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Mutual Motion Camou�age (MMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 Topologi
al Velo
ity Alignment (TVA) . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Optimal Steering of Agents on a Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Optimal Steering of a Uni
y
le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Optimal Control Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Chara
terizing the Types of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.3 On Time-optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Optimal Control of a Colle
tive of Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Con
luding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

v



II Analysis of Colle
tive Motion: Top-down Approa
hes 65

4 Continuum Flo
king and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Motivation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 A Control System on a Loop Group.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Controllability.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Optimal Control Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1 Cal
ulus of Variations Approa
h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.2 Maximum Prin
iple Approa
h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Spe
ial Case : G = H(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.1 Controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.2 Equations of Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5.3 Behavior of Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5.4 Strong Coupling Limit, χ→∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 A Continuum of Agents on the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6.1 Equations of Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6.2 Strong Coupling Limit, χ→∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.6.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7 Dis
ussion and S
ope of Future Resear
h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5 Cognitive Cost of Flo
king: A Geometri
 and Hamiltonian Per-

spe
tive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

5.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Flo
king Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 Data Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3.1 A linear generative model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3.2 Data smoothing in the Eu
lidean setting . . . . . . . . . . . . . . . . . . . . . . 125

5.4 Energy Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5 Generative model on the 1-simplex and the data-smoothing problem131

5.6 Data Fitting Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.7 Dis
ussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Con
lusions and Dire
tions for Future Resear
h . . . . . . . . . . . . . . . . . .148

A An Optimal Control Problem in an In�nite Dimensional Setting152

A.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.2 Maximum Prin
iple .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Bibliography.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167

vi



List of Tables

5.1 Details of 
aptured �o
king events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Hamiltonian Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

vii



List of Figures

1.1 Mobile robot based experimental platform (Pioneer 3 DX) with

two-wheel di�erential and 
aster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Illustration of s
alar shape variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Phase portrait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Null
lines of (2.5) with u = 1, ν1 = 0.5, ν2 = 1. . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Robot (Pioneer 3 DX) with Kine
t mounted, and the orange 
one

used as the bea
on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Implementation results for the limited FOV problem .. . . . . . . . . . . . . . . . 29

2.6 Implementation results for MMC 
ontrol law. . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Implementation results for TVA 
ontrol law .. . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Interse
tion of Hamiltonian and Casimir surfa
es . . . . . . . . . . . . . . . . . . . . . 51

3.2 Sample traje
tories for di�erent values of c, η and s1, s2 . . . . . . . . . . . . . . 53

4.1 Numeri
al solution of (4.61) for experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Evolution of x3 for experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 Numeri
al solution of (4.61) for experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Evolution of x3 for experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Numeri
al solutions of (4.61) for experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6 Numeri
al solution of (4.99) and state evolution for experiment 1. . . 112

4.7 State evolution for experiment 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.8 State evolution for experiment 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.9 Numeri
al solution of (4.99) and state evolution for experiment 4. . . 116

4.10 Numeri
al solution of (4.99) and state evolution for experiment 5. . . 117

5.1 Hamiltonian signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2 Optimal energy allo
ation for event 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3 Optimal energy allo
ation for event 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4 Optimal energy allo
ation for event 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.5 Optimal energy allo
ation for event 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.6 Optimal energy allo
ation for event 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.7 Optimal energy allo
ation for event 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.8 Optimal energy allo
ation for event 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.9 Optimal energy allo
ation for event 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

viii



List of Abbreviations and Notations

ROS Robot Operating System

CB Constant Bearing pursuit

FOV Field-of-View

MMC Mutual Motion Camou�age

TVA Topologi
al Velo
ity Alignment

PMP Pontryagin's Maximum Prin
iple

ri Position of agent i
{xi,yi} (planar) Natural Frenet Frame for agent i
tr Tra
e (of a matrix)

1n n× n identity matrix

am z Amplitude z
sn z Ellipti
 sine z, Ja
obian ellipti
 fun
tion


n z Ellipti
 
osine z, Ja
obian ellipti
 fun
tion

dn z Delta amplitude z, Ja
obian ellipti
 fun
tion

TmM Tangent spa
e at m to manifoldM
G A matrix Lie group

g Lie algebra of G
S1

Cir
le group

G Loop group C∞(S1;G)
L Loop algebra C∞(S1; g)
H(3) Heisenberg group

SE(2) Spe
ial Eu
lidean group

h(3) Lie algebra of H(3)

se(2) Lie algebra of SE(2)

χ Coupling 
onstant

ix



Chapter 1

Introdu
tion

The last few de
ades have witnessed an in
rease in resear
h e�orts towards un-


overing me
hanisms behind 
olle
tive motion [Nagy et al., 2010; Ballerini et al.,

2008a; Cavagna et al., 2010; Inada and Kawa
hi, 2002℄ and pursuit behavior [Ol-

berg et al., 2000; Mizutani et al., 2003; Ghose et al., 2006; Chiu et al., 2010℄

in nature. Ranging from �sh s
hools to bird �o
ks, 
olle
tive behavior is seen

abundantly in nature. The 
on
ept of safety in numbers is used in a

omplishing

variety of goals, from foraging food to evading predators. Re
ent improvements

in data 
olle
tion and pro
essing te
hnology has enabled resear
hers to study

these natural �o
ks in more detail than ever before [Ballerini et al., 2008a,b℄.

The driving question then be
omes to answer how lo
al intera
tions between in-

dividual agents in the 
olle
tive give rise to group level 
ohesion and syn
hrony.

Although several attempts have been made to understand these behaviors [Cu
ker

and Smale, 2007; Mora and Bialek, 2011; Bialek et al., 2012; Young et al., 2013;

Attanasi et al., 2014℄, the individual level me
hanisms responsible for emergen
e

1



of 
olle
tive behavior remain mostly elusive to resear
hers. It is therefore a sig-

ni�
ant goal of this thesis to pursue su
h questions.

This thesis is distin
tively divided into two parts, where we take two di�er-

ent approa
hes to understand 
olle
tive behavior. The �rst approa
h is 
alled a

`bottom-up' approa
h, i.e. instead of studying the �o
k as a whole, we 
on
en-

trate on dynami
s of individual agents and analyze simple intera
tion laws among

small number of agents. Studying these intera
tions are important sin
e they 
an

be used as a building blo
k for group level motion. In a 1995 paper [Vi
sek et al.,

1995℄, a novel dis
rete time self-driven parti
le model was �rst introdu
ed to ad-

dress self-ordered motion in a system of parti
les. The 
on
ept of self-steering

parti
les was developed in the following de
ades [Justh and Krishnaprasad, 2004,

2006; Reddy et al., 2006; Mis
hiati and Krishnaprasad, 2010, 2012; Galloway

et al., 2013℄. We undertake the self-steering parti
le model under gyros
opi
 
on-

trol [Justh and Krishnaprasad, 2003, 2004℄ as the basi
 model for individuals in

the �o
k. This model des
ribes a traje
tory of an individual as a 
urve, des
ribed

by the natural Frenet frame equations [Bishop, 1975℄ in the Eu
lidean spa
e; and

the driving 
ontrols are given by speed and 
urvature of the 
urve. We show in

Chapter 2, 3 that even in the single agent or double agent 
ase, interesting mo-

tion patterns 
an be synthesized from 
arefully sele
ting these 
ontrol inputs. The


ontrol inputs 
an be generated from an underlying optimal 
ontrol problem or by

applying some biologi
ally plausible feedba
k strategies. Parallel to the quest of

2



mathemeti
al modeling, some groups in the roboti
s 
ommunity have performed

su

essful implementation of various 
ontrol strategies [Thurrowgood et al., 2014;

Vásárhelyi et al., 2014℄, and thereby demonstrated the power of a bio-inspired ap-

proa
h towards synthesizing 
olle
tive motion. Our work is similar in spirit, and

provides indoor demonstrations of problems raised in Chapter 2. Some of these

problems were 
on
eptualized from a pra
ti
al perspe
tive and 
arry engineering

value.

The other approa
h to study 
olle
tive behavior is what 
an be 
alled as `top-

down' view. Instead of spe
ifying agent level 
ontrol laws, the idea is to infer

those laws from solving a bigger problem that investigates the �o
k as a whole.

Existing literature employs several methods su
h as optimal 
ontrol [Justh and

Krishnaprasad, 2015b,a℄, statisti
al physi
s [Mora and Bialek, 2011; Bialek et al.,

2012℄ et
. It is the framework of optimal 
ontrol [Justh and Krishnaprasad, 2015b℄

that we undertake and extend in this thesis. It has been observed from empir-

i
al data [Ballerini et al., 2008a℄ that intera
tion among starlings in the �o
k is

lo
al, i.e. ea
h bird intera
t with six/seven neighbors during �ight. Taking in-

spiration from this idea, the 
entral 
on
ept of [Justh and Krishnaprasad, 2015b℄

is to set up an optimal 
ontrol problem whi
h penalizes 
ontrols of individual

agents 
oupled with mismat
h in 
ontrol with its `neighbors'. The neighbors are

determined by a previously de�ned intera
tion graph. We then let the number

of agents in the �o
k to go to in�nity in order to propose a 
ontinuum model for

3



�o
king. Various 
ontinuum models have been studied for 
olle
tives [Kudrolli

et al., 2008; Topaz et al., 2006; Zhang et al., 2010℄. These models study a set of

partial di�erential equations that des
ribe spatio-temporal evolution of the �o
k

density. Our approa
h is di�erent in the sense that the system dynami
s 
an be

seen as an ordinary di�erential equation in an appropriate in�nite dimensional

Lie group setting. The 
oupling between birds are introdu
ed through the mis-

mat
h term in the 
ost fun
tional. A natural question of 
ontrollability of su
h

a system is addressed by using a generalized Chow-Rashevsky theorem for in�-

nite dimensional systems. This enables us to formulate the underlying optimal


ontrol problem in an in�nite dimensional setting in whi
h the usual Pontryagin's

maximum prin
iple fails in general without further assumptions. In Chapter 4,

we invoke a maximum prin
iple 
atered for this spe
i�
 setting. A spe
i�
 ex-

ample of 
ontinuum of nonholonomi
 integrators is also studied in detail. This


an be viewed as a 
ontinuum version of single agent Heisenberg 
ase [Justh and

Krishnaprasad, 2016℄. It has been found that optimal 
ontrol solutions possess

a traveling wave 
hara
ter, whi
h might enable information transfer in the �o
k.

In addition to the Heisenberg 
ase, we provide optimal 
ontrol equations in the


ase of a 
ontinuum �o
k of planar agents. Syn
hronization results and numeri
al

simulations are presented for both the 
ases.

In Chapter 5, we present another `top-down' approa
h to the �o
king problem.

This approa
h is data-driven in nature. Kinemati
 energy modes of European

4



starling �o
ks are represented on a simplex whi
h is then subje
ted to des
ription

as traje
tory of some evolutionary game dynami
s. Solution of this data-�tting

problem on the simplex results in 
ontrol inputs that are interpreted as modulation

of �tness asso
iated with the energy modes. We note that in 
ontrast to Chapter

4, where the 
ontrol inputs were individual agent-level (or `low-level') 
ontrols,

the 
ontrols obtained by this data-driven approa
h are �o
k-level (or `high-level')


ontrols. The �o
k is 
on
eptualized to apply these 
ontrols to optimally allo
ate

its kineti
 energy among di�erent modes.

1.1 Mathemati
al Ba
kground

1.1.1 Self Steering Parti
le Model

We des
ribe the parti
le model that is the underlying generative model in all our

subsequent analysis throughout this thesis. The traje
tory of a single agent 
an

be des
ribed by a fun
tion r : [0, T ] → R3
, for some T > 0. We assume r(t) to

be a regular 
urve, i.e. ṙ(t) 6= 0, ∀t ∈ [0, T ]. Let s be the ar
 length parameter,

i.e. s(t) =
∫ t

0
‖ṙ(σ)‖ dσ. Under the regularity assumption, s(t) is monotoni
ally

in
reasing and invertible fun
tion of time. We 
an then reparametrize the 
urve

r(t) by the ar
 length parameter s and the evolution equations 
an be expressed

in terms of well known Fernet-Serret frames. However, this way of representation

requires thri
e di�erentiability of the 
urve and need the 
urvature of the 
urve to

be stri
tly positive. To over
ome these di�
ulties, we take an alternate approa
h

5



for framing the 
urve, known as the Natural Frenet frame [Bishop, 1975℄. This

approa
h requires only twi
e di�erentiability and is well de�ned even when the

se
ond derivative vanishes.

In 3D, to any point on the 
urve r(t), we atta
h an orthonormal moving frame

{x(t),y(t), z(t)}. The unit ve
tor x(t) is tangent to the 
urve and points toward

the heading of an individual. The unit ve
tors {y(t), z(t)} are 
hosen in the plane

normal to x(t). The evolution of these ve
tors are given by the frame equations,

ṙ(t) = ν(t)x(t)

ẋ(t) = ν(t)(u(t)y(t) + v(t)z(t))

ẏ(t) = −ν(t)u(t)x(t)

ṙ(t) = −ν(t)v(t)x(t),

(1.1)

where ν(t) is the speed (‖ṙ(t)‖) and (u(t), v(t)) are 
alled natural 
urvatures of

the traje
tory [Justh and Krishnaprasad, 2005℄. In a planar setting, we have the

frame {x(t),y(t)} and the evolution equations are written as,

ṙ(t) = ν(t)x(t)

ẋ(t) = ν(t)u(t)y(t)

ẏ(t) = −ν(t)u(t)x(t).

(1.2)

We 
an therefore treat ν and u variables as 
ontrol inputs to steer the individual

on the plane, ν as the velo
ity input and u as the 
urvature 
ontrol input.
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Figure 1.1: Mobile robot based experimental platform (Pioneer 3 DX) with two-

wheel di�erential and 
aster.

1.2 Experimental Setup

We provide a 
omprehensive des
ription of the laboratory set up in the Intelli-

gent Servosystems Lab, University of Maryland. All the laboratory experiments

presented in this thesis are done under this setup. Our experimental test-bed is


omprised of Pioneer 3 DX wheeled robots from Adept MobileRobots [Pioneer℄.

These 
ompa
t, di�erential-drive mobile robots are equipped with reversible DC

motors, high-resolution motion en
oders and 19
m wheels, and the onboard 
om-

putation is done via a 32-bit Renesas SH2-7144 RISC mi
ropro
essor, in
luding

the P3-SH mi
ro
ontroller with ARCOS. The sensors on the robot in
lude eight

forward-fa
ing ultrasoni
 (sonar) sensors. ARIA [ROS-ARIA℄ provides an inter-

fa
e for 
ontrolling and re
eiving data from the robot, and 
ommuni
ation with

the robot for sending 
ontrol 
ommands (forward velo
ity and turning rate) is

done via 802.11-b/g/n networking. The width of the robot is 380 mm and it has

a swing radius of 260 mm.
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Algorithm implementation (i.e, feedba
k law 
omputation) has been done in

C++ using ROS [ROS℄, along with ROS-ARIA [ROS-ARIA℄, as the interfa
ing

roboti
s middleware. The experiments have been 
arried out in a laboratory en-

vironment equipped with a sub-millimeter a

urate Vi
on motion 
apture system

[Vi
on℄. We use a Dell workstation to run ROS, and this 
omputer is 
onne
ted

to the Vi
on server via a dedi
ated Ethernet 
onne
tion.

The Vi
on system 
aptures the motion of the robots and sends out the position

and heading data to the 
omputer running ROS. The 
ontrol law program listens

to this data, and transmits the individual velo
ities and turning rates. Both of

these operations are 
arried out at a frequen
y of 25 Hz. The 
ontrol law program


omputes the 
ontrols a

ording to the strategy that is spe
i�
 to the problem


onsidered. The 
omputed velo
ity and 
urvature 
ontrol variables ν(t), u(t) 
an

be translated to the turning rate ω(t) (in degrees/se
) as:

ω(t) =

(

180

π

)

ν(t)u(t). (1.3)
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Part I

Synthesis of Colle
tive Motion:

Bottom-up Approa
hes
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Chapter 2

Feedba
k Laws for Colle
tive Motion

2.1 Introdu
tion

Colle
tive motion plays a 
ru
ial role in modern day roboti
s and engineering. It

is be
oming 
ommonpla
e for a group of unmanned, remote 
ontrolled vehi
les

to be deployed to a

omplish goals ranging from sear
h and res
ue to surveil-

lan
e. For the swarm of robots to fun
tion in a harmonious manner, it is very

important to 
ontrol them 
arefully. Natural 
olle
tives are indeed an inspira-

tion in this endeavor. On the other hand, a thorough study of those 
olle
tives

remain in
omplete without understanding agent level intera
tion laws. In this


hapter therefore, we will build models for 
olle
tive motion from `bottom-up',

i.e. from individual level 
ontrol strategy to �o
k level syn
hrony through in-

tera
tion among agents. This 
hapter presents a range of theoreti
al results as

well as laboratory demonstrations of 
ontrol laws that we propose or has been

proposed before. This 
hapter has two main 
ontributory se
tions, most of whi
h

10



are taken verbatim from their respe
tive publi
ations. We start with a problem

that studies a parti
ular dyadi
 intera
tion under the setting of a pursuit strategy


alled 
onstant bearing pursuit [Halder et al., 2016℄. We gain interesting insight

from this problem that 
onne
ts to the Kepler two body problem. The obtained

result of this problem is then used to solve a problem arising from a pra
ti
al robot

maneuvering s
enario. The last problem is purely experimental [Halder and Dey,

2015℄ whi
h demonstrate another dyadi
 intera
tion strategy potentially useful

for surveillan
e, and a �o
king strategy involving many agents.

2.2 Steering for Bea
on Pursuit under Limited Sens-

ing

In this se
tion, we will try to understand simple dyadi
 pursuit strategies (i.e.

strategies based on pairwise intera
tions), and exploit them as building blo
ks

for synthesis of 
omplex motion patterns for 
olle
tives. In [Galloway et al.,

2009, 2013℄, using symmetry prin
iples and nonlinear dynami
s, a spe
i�
 strat-

egy, known as 
onstant bearing 
y
li
 pursuit, is shown to produ
e a ri
h variety

of behaviors for appropriate 
hoi
es of parameters (bearing angles). In [Justh

and Krishnaprasad, 2006℄ a biologi
ally plausible feedba
k 
ontrol law is inves-

tigated that exe
utes motion 
amou�age, a type of stealthy pursuit asso
iated

with visually-guided �ight in inse
ts (e.g. hover�ies and dragon�ies). Stealth

arises from nulling opti
 �ow in the visual �eld of the target of pursuit, thereby

11



in
reasing the 
han
e of su

ess in prey 
apture or territorial battle against a 
on-

spe
i�
. This type of dyadi
 intera
tion is also exploitable in 
oordinated motion,

for instan
e see [Mis
hiati and Krishnaprasad, 2010℄.

The present work is similar to [Justh and Krishnaprasad, 2004℄ in motivation.

We 
onsider a problem of two agents moving in a plane with 
onstant (not ne
-

essarily identi
al) speeds and, one of them is free i.e. it assumes any open loop

steering (
urvature) 
ontrol, while the other pursues it. The free agent may be


onstrued as a bea
on and the pursuer's task is to rea
h a safe vi
inity of the

bea
on and 
ir
ulate around it. In the interesting 
ase when the bea
on is sta-

tionary, but the pursuer has a sensor with limited �eld of view (FOV) to dete
t

the bea
on, the 
ir
ling law proposed in [Justh and Krishnaprasad, 2004℄ may be

foiled. One goal of this work is to devise a prin
ipled approa
h (
ontrol algorithm)

for this problem that 
opes with sensor limitation. We do this via a two-step pro-


ess. We �rst analyze a slightly di�erent problem of tra
king a (slowly) moving

bea
on assuming that: (a) the bea
on tra
k is of 
onstant 
urvature (i.e. on a

straight line or on a 
ir
le); and (b) the sensor on-board the pursuer has no FOV

limitation. For the 
hoi
e of a 
onstant bearing pursuit feedba
k 
ontrol law, one

obtains a ri
h dynami
s. The phase portrait in turn suggests the se
ond step � a

feedba
k law modi�
ation that is appli
able to the setting of stationary bea
on,

and limited FOV. In this 
ase, one needs an additional ingredient � an estimator

using odometry to tra
k the bea
on when it has fallen out of the FOV. The idea

here is to use the odometry-based estimate in the feedba
k law as if it is exa
t

12
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Figure 2.1: Illustration of s
alar shape variables (ρ, κ1, κ2) used to parametrize

the shape spa
e.

(a type of 
ertainty equivalen
e) and use dire
t observation of the bea
on when

it is re-
aptured in the FOV. Su
h an estimator is used in an implementation of

bea
on tra
king in a laboratory test-bed with a range 
amera (Kine
t [Kine
t℄) as

the sensor mounted on a mobile ground robot. A high pre
ision (marker-based)

motion 
apture system (Vi
on [Vi
on℄) is used to determine ground truth and

analyze the performan
e. In addition, the un
onstrained tra
king of the moving

bea
on problem is revisited and it is shown that the resulting dynami
s 
an be

identi�ed with motion of a 
harged parti
le in an ele
tromagneti
 �eld. Moreover,

at a parti
ular value of the bea
on 
urvature, the 
ombined dynami
s is exa
tly

same as the Kepler problem of two bodies.

2.2.1 Tra
king a Moving Bea
on

Let us 
onsider two agents moving on a plane, ea
h abiding the self steering par-

ti
le equations of motion. We assume that both their speeds ν1, ν2 are 
onstants.

It is possible to represent the dynami
s of the system of two agents by the help
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of s
alar shape variables ρ, κ1, κ2 (Fig. 2.1) as

ρ̇ = −ν1 cosκ1 − ν2 cosκ2

κ̇1 = −ν1u1 +
1

ρ
(ν1 sin κ1 + ν2 sin κ2)

κ̇2 = −ν2u2 +
1

ρ
(ν1 sin κ1 + ν2 sin κ2).

(2.1)

This is rather a straightforward 
al
ulation. We view agent 1 as a slowly moving

bea
on to whi
h agent 2 pays attention. Let us make the following assumption.

A-1: The speed of agent 1 is less than the speed of agent 2, i.e. ν1 < ν2.

We pi
k the feedba
k 
ontrol law for agent 2 as follows:

u2 = −µ̃
(

R(α)y2 ·
r21

|r21|

)

− 1

ν2|r21|

(

r21

|r21|
· ṙ⊥21

)

, (2.2)

for some µ̃ > 0. Here we denote a⊥ = R(π/2)a, for any ve
tor a in the plane of

motion, R(·) is the planar rotation matrix. Note that this 
ontrol law is a standard


onstant bearing (CB) pursuit law [Galloway et al., 2013℄ with parameter α. The

feedba
k 
ontrol law 
an be expressed in terms of the s
alar shape variables as

u2 = µ̃ sin(κ2 − α) +
1

ν2ρ
(ν1 sin κ1 + ν2 sin κ2)

The 
losed loop dynami
s of (2.1) then takes the form

ρ̇ = −ν1 cosκ1 − ν2 cos κ2

κ̇1 = −ν1u1 +
1

ρ
(ν1 sin κ1 + ν2 sin κ2)

κ̇2 = −µ̃ν2 sin(κ2 − α).

(2.3)

A fundamental result [Galloway et al., 2013℄ for the CB strategy tells us that

under the a
tion of the 
ontrol law (2.2), the manifold

Mα
CB = {(ρ, κ1, κ2) ∈ R

+ × S1 × S1 : κ2 = α}
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is an attra
tive invariant manifold for all initial 
onditions ex
ept κ2(0) = α +

π. The invarian
e follows dire
tly from the 
losed loop dynami
s (2.3). The

attra
tiveness 
an be proved by de�ning Λ(t) = − cos(κ2(t)− α). Thus Λ(0) 6= 1

implies Λ(t)→ −1 as t→∞ or equivalently κ2 
onverges to α.

2.2.2 Dynami
s Restri
ted to the Invariant Manifold

At this stage, we are ready to make another assumption:

A-2: We 
onsider the 
urvature of the bea
on to be 
onstant, i.e. u1 = u, for

some u ∈ R 
onstant.

Now we fo
us our analysis on the dynami
s on the invariant manifold (
alled

MShape = R+ × S1
) whi
h may be expressed as

ρ̇ = −ν1 cos κ1 − ν2 cosα

κ̇1 = −ν1u+
1

ρ
(ν1 sin κ1 + ν2 sinα).

(2.4)

It is of interest to 
hara
terize the solutions of the restri
ted dynami
s (2.4) on

the invariant manifold. Note that given ν1, ν2, u and α, (2.4) might have at most

two equilibrium points (ρ∗, κ∗1), with cosκ∗1 = − cosα
ν

and ρ∗ =
ν sinκ∗

1+sinα

νu
, where

we denote ν = ν1
ν2
< 1. Existen
e of su
h equilibrium points is guaranteed if ν ≥

| cosα| and (ν sin κ∗1 + sinα)u > 0. Linearizing (2.4) around su
h an equilibrium

point gives the Ja
obian matrix

ν2









0 ν sin κ∗1

−νu
ρ∗
− cosα

ρ∗









,
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with asso
iated Eigenvalues

λ = ν2

(

− cosα±
√

cos2 α− 4ν2ρ∗u sinκ∗1
2ρ∗

)

.

Depending on α, following 
ases will arise

I. α ∈ (−π,−π/2) ∪ (π/2, π]

In this region, cosα < 0, whi
h makes the equilibrium points unstable. So

all traje
tories tend to blow up in (ρ, κ1) plane.

II. α ∈ (−π/2, π/2)

Here, cosα > 0, then (lo
ally) stable equilibrium exists if u sin κ∗1 > 0,

otherwise (ρ∗, κ∗1) is unstable whi
h leads to eventual 
ollision. We note

that [Davis, 1962℄ (pages 119-125) studies the same problem with α = 0.

For the α = 0 
ase, the existen
e 
onditions of equilibrium read ν ≥ 1 and

u sinκ∗1 > 0, whi
h in turn means we will have a stable equilibrium only

when ν ≥ 1. The 
urrent problem 
an be viewed as a generalization of that


onsidered in [Davis, 1962℄.

III. α ∈ {π/2,−π/2}

In this 
ase, however, the dynami
s (2.4) produ
es a ri
h behavior whi
h we

analyze next. We only provide the analysis for α = π/2 
ase, the other 
ase

being analogous.
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2.2.3 Spe
ial Case: α = π

2

We rewrite (2.4) in this parti
ular 
ase,

ρ̇ = −ν1 cosκ1

κ̇1 = −ν1u+
1

ρ
(ν2 + ν1 sin κ1).

(2.5)

All the traje
tories of (2.5) are 
losed and we will prove this in the same way as

exploited in [Mis
hiati and Krishnaprasad, 2012℄. We �rst introdu
e the following

de�nitions and a theorem due to Birkho�.

De�nition 2.1 (Involution). A di�eomorphism F : M → M from a manifold

M onto itself is said to be an involution if F 6= idM , the identity di�eomorphism

and F 2 = idM , i.e. F (F (m)) = m, ∀m ∈M .

De�nition 2.2 (F-reversibility). A ve
tor �eld X de�ned over a manifold M

is said to be F-reversible if there exists an involution F su
h that F∗(X) = −X,

i.e. F maps orbits of X to orbits of X , reversing the time parametrization. Here

(F∗(X))(m) = (DF )F−1(m)X(F−1(m)), ∀m ∈ M is the push-forward of F . We


all F the reverser of X .

Theorem 2.2.1 (G.D. Birkho�, [Birkho�, 1915℄). Let X be a F-reversible ve
tor

�eld on M and ΣF the �xed-point set of the reverser F . If an orbit of X through

a point of ΣF interse
ts ΣF at another point, then it is periodi
.

See [Mis
hiati and Krishnaprasad, 2012℄ for a detailed proof of this theorem.

Based on these de�nitions and the theorem, we propose the following.
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Figure 2.2: Phase portrait (polar plot) of the system dynami
s restri
ted to the

invariant manifold (2.5) with di�erent values of u, keeping ν1 = 0.5, ν2 = 1 �xed

for all three 
ases.

Theorem 2.2.2. (i) The quantity,

E(ρ, κ1) = ρ(ν2 + ν1 sin κ1)−
1

2
ν1uρ

2 = E(ρ(0), κ1(0)) (2.6)

is 
onserved along any traje
tory of (2.5).

(ii) Every solution of (2.5) is periodi
.

Proof. (i) Denote, χ = ρ(ν2 + ν1 sin κ1), then

dχ

dt
= ρ̇(ν2 + ν1 sin κ1) + (ρν1 cosκ1)κ̇1

= ν1uρ
dρ

dt

=⇒ χ(t) =
1

2
ν1uρ

2(t) + c,

where c = χ(0)− ν1uρ2(0)/2 = 
onstant, whi
h, in turn implies

E(ρ, κ1) = ρ(ν2 + ν1 sin κ1)−
1

2
ν1uρ

2 = E(ρ(0), κ1(0)).
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(ii) Step-1: Ve
tor �eld de�ned by (2.5) is F-reversible with reverser F (ρ, κ1) =

(ρ, π − κ1).

Clearly, F is an involution sin
e F 2(ρ, κ1) = (ρ, κ1). Next,

(F∗(X))(ρ, κ1) = (DF )F−1(ρ,κ1)X(F−1(ρ, κ1))

=









1 0

0 −1









X(ρ, π − κ1)

= −X(ρ, κ1).

Hen
e, X is F-reversible.

Step-2: Fixed point set of F is given by ΣF = {(ρ, κ1) : ρ > 0, κ1 = ±π
2
}. So

every orbit of (2.5) 
rossing κ1 = ±π
2
line twi
e is periodi
. Now, depending on

the value of u, di�erent 
ases will arise.

(a) u ≤ 0 : In this 
ase, we note that the assumption ν2 > ν1 is su�
ient

to guarantee monotoni
ity of κ̇1, in parti
ular κ̇1 > 0 for all time. Hen
e, any

traje
tory originating from any point on the κ1 = ±π/2 line (ex
luding the origin)

will travel 
ounter 
lo
kwise until it hits the line again when κ1 gets in
remented

by an amount of π radian (see Fig. 2.2a, 2.2b). Note that the 
onserved energy, E

prohibits any traje
tory that starts with positive energy to go to the origin (with

zero energy).

(b) u > 0 : Be
ause κ̇1 
an assume any sign under this 
ase, we need a more

serious argument for this 
ase. To determine the null
line κ̇1 = 0, we 
ompute
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Figure 2.3: Null
lines of (2.5) with u = 1, ν1 = 0.5, ν2 = 1.

ρ = ν2+ν1 sinκ1

ν1u
and ν2 > ν1 ensures existen
e of a valid ρ for ea
h value of κ1. The

ρ̇ null
line is simply the κ1 = ±π/2 line. This is illustrated in Fig. 2.3. It is

immediate that in this 
ase we have two equilibrium points, A =
(

ν2+ν1
ν1u

,+π
2

)

and

B =
(

ν2−ν1
ν1u

,−π
2

)

. The traje
tories starting from either of those points are 
learly

periodi
.

Depending on the null
lines, the whole spa
e 
an be divided into four regions as

shown in Fig. 2.3 and those regions are 
hara
terized as

Region I : ρ̇ < 0, κ̇1 < 0, Region III : ρ̇ > 0, κ̇1 > 0,

Region II : ρ̇ > 0, κ̇1 < 0, Region IV : ρ̇ < 0, κ̇1 > 0.

Now imagine traje
tories starting on the line segment OA, ex
luding both

points. Sin
e κ̇1 < 0, they will move into region III, whi
h 
an produ
e two

out
omes:

(b1) It hits the OB line (ex
luding both points).
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(b2) It exits region III through NK and goes into region II. Now the 
onstan
y

of E gives the following observation, if a traje
tory of (2.5) 
rosses NK at

a 
ertain angle κ
(1)
1 , then it must 
ross it again at a di�erent angle κ

(2)
1 and

these angles are symmetri
 about κ1 = π/2. This means traje
tories must

not enter region III from region II. This leads all the traje
tories in region

II to hit the κ1 = +π/2 line beyond point A.

Next, 
onsider traje
tories starting at the boundary of region I and II with

κ1 = π/2. κ̇1 < 0 gives rise to 
lo
kwise motion into region I. Again, we need to

analyze two s
enarios:

(b3) The traje
tories rea
h boundary between region I and II with κ1 = −π/2.

(b4) They enter region IV through NK. Similar argument as in 
ase (b2) 
an

be employed to prove they must rea
h boundary between region III and IV

with κ1 = π/2.

Now, traje
tories starting on OB line (ex
luding both points) must move in

region IV and hen
e must hit OA line (ex
luding both points).

Finally, traje
tories starting on the boundary between region I and II with

κ1 = −π/2 must go into region II and must eventually hit the boundary between

region I and II with κ1 = π/2 following a 
lo
kwise path (and without entering

region III).

This 
ompletes the proof. �

Remark 2.1. In a spe
ial 
ase u = 0, (2.6) reads exa
tly as the polar equation of

an ellipse

1
ρ
= c̃(1 + ν cos θ), where the origin is pla
ed at one fo
us of the ellipse,
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the angle θ is measured from the origin with respe
t to the major axis of the ellipse

and ν = ν1
ν2

is the e

entri
ity of the ellipse (re
all A-1). It is of interest to note

that the same ellipti
 equation 
omes from the analysis of the Kepler two-body

problem [Goldstein et al., 2001℄.

A result of the dynami
s (2.5) regarding time period is immediate in the light

of Proposition 2.2.2.

Corollary 2.2.1. Every orbit of (2.4) has a period

T = 2

∫ ρmax

ρmin

dρ
√

ν21 − (1
2
ν1uρ+

E0

ρ
− ν2)2

, (2.7)

where ρmin and ρmax are solutions of the pair of equations

ρ(ν2 ± ν1)−
1

2
ν1uρ

2 = E(ρ(0), κ1(0)) =: E0 (2.8)

In parti
ular, for the 
ase u = 0, the time period be
omes, T = 2πν2E0

(ν22−ν21 )
3
2
.

Remark 2.2. Note that for an �admissible� value of E0, the pair of equations

(2.8) has only two solutions. For the spe
ial 
ase, u = 0, we know the 
losed loop

traje
tories are des
ribed by the ellipses ρ = E0/(ν2 + ν1 sin κ1) with semi-major

axis, a = 1
2
(ρmin + ρmax) = E0

2

(

1
ν2+ν1

+ 1
ν2−ν1

)

= E0ν2
ν22−ν21

. Then, from Corollary

2.2.1, we �nd T 2 =
(

4π2

ν2E0

)

a3.

Remark 2.3. The 
ondition ν2 > ν1 is ne
essary for the existen
e of periodi


orbits for the 
ase u = 0 while it is merely a su�
ient 
ondition for other values

of u.
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2.2.4 The Limited Field of View (FOV) Problem

In this se
tion, we will des
ribe the problem of tra
king a stationary bea
on by

a 
ontrolled agent equipped with a sensor (e.g. a depth 
amera like Kine
t) with

limited �eld of view. As opposed to the problem dis
ussed in the previous se
tion,

this problem is inspired by an implementation point of view. The ba
kbone model

(2.1) of the system stays the same. Agent 2 is supposed to sense the position of

the bea
on relative to its own position and use the sensed quantities to determine

the 
ontrol a
tion. Using the shape variables, it has a

ess to the pair (ρ, κ2) (refer

to Fig. 2.1), with the limitation that |κ2| ≤ κmax < π/2, whi
h we 
all the �eld of

view 
onstraint. Although various feedba
k 
ontrol laws have been proposed (for

e.g. [Justh and Krishnaprasad, 2004℄) to en
ir
le a stationary bea
on, permanent

loss of the target (bea
on) from the �eld of view 
annot be avoided by those laws.

More pre
isely, the limited FOV problem boils down to en
ir
ling the bea
on while

being able to sense it (at least) periodi
ally.

Putting bea
on speed, ν1 = 0 in (2.1) and ignoring κ1 dynami
s, the equivalent

shape spa
e equations 
an be redu
ed to

ρ̇ = −ν2 cosκ2

κ̇2 = −ν2u2 +
1

ρ
ν2 sin κ2.

(2.9)

Remark 2.4. From (2.9), it is guaranteed that under the �eld of view 
onstraint,

the attempt of en
ir
ling the bea
on would eventually make the bea
on perma-

nently invisible (as long as a 
ir
ular orbit around the bea
on is 
onsidered).

Moreover, from ρ dynami
s, meeting the 
onstraint |κ2| ≤ κmax < π/2 for all time
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will lead to de�nite 
ollision.

On
e the bea
on goes out of the FOV, the only 
hoi
e for the vehi
le would be

to e�
iently estimate the position of the bea
on and apply the 
ontrol based on

those estimates. A

epting the fa
t mentioned in remark 2.4, one 
an only try to

design the 
ontrol u2 in su
h a way that the 
ontrol law provides some promise to

bring the bea
on ba
k in the �eld of view after losing it. The following proposition

is meant to serve that purpose.

Proposition 2.2.1. The feedba
k 
ontrol law given by

uFOV
2 = u0 −

µ

ρν2
, u0 ≤ 0, µ > ν2, (2.10)

guarantees the periodi
 return of the bea
on to the �eld of view under ideal esti-

mates.

Proof. With the feedba
k 
ontrol (2.10), the 
losed loop system be
omes,

ρ̇ = −ν2 cosκ2

κ̇2 = −ν2u0 +
1

ρ
(µ+ ν2 sin κ2).

(2.11)

Noti
ing that (2.11) is equivalent to (2.5), the 
laim follows dire
tly from Theorem

2.2.2. From the polar phase portrait (Fig. 2.2), we see that the 
ondition u0 ≤ 0

is required for the angle variable κ2 to go through a full 360◦ rotation whi
h is

essential in order to bring the bea
on ba
k in the FOV. �

As we will dis
over next, the 
ondition on the parameter u0 
an be relaxed

to in
lude positive values as well. From Theorem 2.2.2, the 
ondition µ > ν2 is
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only su�
ient for any value of u0. It be
omes ne
essary for the parti
ular 
ase of

u0 = 0.

Although the feedba
k 
ontrol law (2.10) produ
es all periodi
 orbits and it

inherently takes 
are of 
ollision avoidan
e problem (see Fig. 2.2), it la
ks in the

freedom of driving the vehi
le to a parti
ular desired orbit (
f. the 
ir
ular orbits

with desired radius as in [Justh and Krishnaprasad, 2004℄). Moreover, the periodi


orbits are not orbitally asymptoti
ally stable whi
h makes them sus
eptible to

disturban
es. To over
ome these short
omings, we propose the following.

Proposition 2.2.2. Let Ed denote the admissible value of the desired energy, i.e.

there exists a periodi
 orbit with E(ρ, κ2) = Ed. Here E(ρ, κ2) is as in (2.6) with

the pair (ν1, ν2) interpreted as (ν2, µ) in present 
ontext. Then the 
ontrol law

u2 = uFOV
2 + uAD

2 = u0 −
µ

ρν2
+ kd(E(ρ, κ2)−Ed) cosκ2, (2.12)

with kd > 0 makes the orbit with energy Ed asymptoti
ally stable with region of

attra
tion given by MShape \ {(ρ, κ2) : cosκ2 = 0, ρ = (µ+ν2 sinκ2)
ν2u0

, u0 > 0}, where

MShape = R+ × S1
.

Proof. Note that the traje
tories of (2.9) with 
ontrol (2.12) will no longer be peri-

odi
 be
ause of the in
lusion of the extra uAD
2 term. Sin
e E(ρ, κ2) is a 
ontinuous

fun
tion of both ρ and κ2, it su�
es to prove that the quantity (E(ρ, κ2) − Ed)
2

is monotoni
ally de
reasing. We obtain,

d

dt
(E(ρ, κ2)−Ed)

2 = −2kdρν22(E(ρ, κ2)− Ed)
2 cos2 κ2.
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Clearly, with kd > 0, d(E(ρ, κ2)−Ed)
2/dt ≤ 0, for all (ρ, κ2) su
h that ρ > 0. The

largest invariant subset of {(ρ, κ2) : d(E(ρ, κ2)−Ed)
2/dt = 0} is indeed {(ρ, κ2) :

E(ρ, κ2) = Ed}, whi
h, in turn establishes the statement of the proposition. �

In the light of Theorem 2.2.2, we see that the restri
tion u0 ≤ 0 in Proposition

2.2.1 
an be relaxed. In parti
ular, for u0 > 0, one only has to 
hoose Ed su
h

that k2 
ompletes full 360◦ rotation (for e.g. one might pi
k Ed = E(ρ,−π/2),

with ρ > µ−ν2
ν2u0

, see Fig. 2.2(
)).

2.2.5 Implementation

In this laboratory implementation, we 
hose to use the newest Kine
t model,

whi
h was 
reated for Mi
rosoft's Xbox One. The Kine
t primarily fun
tions as

a motion-sensing input devi
e, enabling players to intera
t with video games in

ex
iting ways. To a

omplish this, the devi
e is equipped with several sensors

in
luding an RGB sensor, 3D Depth Sensor, as well as Multi-array Mi
rophones.

The Kine
t's RGB sensor has a 70.6 degree horizontal �eld of view, and a 60

degree verti
al �eld of view (see Fig. 2.4). The Kine
t operates at a rate of 30

Hz, and has an e�e
tive range between 0.5 meters, and 4.5 meters where a

ura
y

is reliable. Despite it's original use 
ase as a video game 
ontroller, the Kine
t

has been studied re
ently as a sensor for many roboti
s appli
ations, in
luding

autonomous vehi
les [Oliver et al., 2012℄ and health
are [Nghiem et al., 2012℄.

In this experiment, the Kine
t RGB 
amera a
ts as a primary sensor for de-

termining the distan
e and relative heading of the bea
on (i.e. ρ, κ2), whi
h in
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Figure 2.4: Robot (Pioneer 3 DX) with Kine
t mounted, and the orange 
one

used as the bea
on.

our experiment was an orange 
one. OpenCV [OpenCV℄ is used to perform a

simple blob dete
tion algorithm that 
al
ulates the 
entroid of the 
one in pixel


oordinates, and then uses the Kine
t's 
oordinate mapping feature to transform

the result into physi
al, or 
amera spa
e. To take advantage of these API features,

we mount a laptop running the Windows operating system onto the robot, and

utilize a 
ustom TCP/IP server to stream the 
oordinates ba
k to the robot 
on-

trol station. The 
ontrol station is a Dell 
omputer running ROS [ROS℄, and the

algorithm implementation is done using the MATLAB ROS toolbox [MATLAB℄.

Finally, the Vi
on motion 
apture system [Vi
on℄ is used to tra
k the motion of

the robot and bea
on in the lab 
oordinate spa
e to obtain ground truth results

of the implementation.

2.2.5.1 Estimation

In order to su

essfully implement the proposed 
ontrol law, the robot has to be

able to e�
iently determine the bea
on position relative to its own position during
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the periods of time when the bea
on is not in FOV. Equivalently, the estimation

problem then is to integrate the 
losed loop shape dynami
s ((2.9) with 
ontrol

(2.12)) given some initial 
ondition, whi
h in this 
ase would be the last known

(ρ, κ2) value before the robot loses sight of the bea
on. Sin
e there is a 
onserved

quantity asso
iated with (2.11) (Proposition 2.2.2), a mid-point based update

rule performs better than the naive Euler rule [Austin et al., 1993℄. Denoting the

estimate of (ρ, κ2) by (ρ̂, κ̂2) and the dis
rete time step by ∆t, the update rule

may be impli
itly expressed as follows:

ρ̂n+1 − ρ̂n
∆t

= −ν2 cos
(

κ̂n2 + κ̂n+1
2

2

)

κ̂n+1
2 − κ̂n2
∆t

= −ν2un2 +
2ν2

ρ̂n+1 + ρ̂n
sin

(

κ̂n2 + κ̂n+1
2

2

)

,

(2.13)

where un2 = u2(ρ̂
n, κ̂n2 ) as in (2.12) and (ρ̂0, κ̂02) is the last su

essful measurement

of the bea
on position. We then solve the nonlinear equations (2.13) numeri
ally

(using MATLAB's fsolve) to produ
e the ne
essary estimates whenever the bea
on

is not in the �eld of view of the sensor. This pro
edure 
an be summarized in

Algorithm 1.

2.2.5.2 Experimental Results

To demonstrate our solution to the limited �eld of view problem, we 
onstru
ted

an experiment for whi
h the robot sees the orange 
one and attempts to en
ir-


le it using the des
ribed 
ontrol me
hanisms. The result is a traje
tory that

periodi
ally brings the 
one ba
k in its FOV so that the robot 
an ful�ll its net
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Algorithm 1: Steering Law Computation for Limited FOV Problem

Data: ρ : measured distan
e to bea
on, κ2 : measured angle to bea
on;

ρ̂ : estimate of ρ, κ̂2 : estimate of κ2

Parameters: u0, µ, kd, Ed

begin

while not stopped do

if bea
on visible then

Compute u2 = u2(ρ, κ2) using equation (2.12)

else

Initialize: (ρ̂0, κ̂02)←− (ρlast, κlast2 )

Cal
ulate (ρ̂, κ̂2) from (2.13)

Determine u2 = u2 (ρ̂, κ̂2) using (2.12)
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en
ir
ling of the bea
on. The ground truth data was obtained using Vi
on. We

ran the experiment using a robot speed ν2 = 200 mm/se
, and the parameters

were u0 = 0 mm

−1
, µ = 5ν2 = 1000 mm/se
, kd = 5 × 10−9

mm

−3
se
 and Ed

was taken to be energy 
orresponding to the orbit whi
h maintains the minimum

distan
e of 1200 mm from the bea
on, in other words Ed = 1.44× 106 mm

2
/se
.

Implementation results are shown in Fig. 2.5. The ground truth polar plot


an be seen in 
omparison to the desired ellipse (sin
e u0 was taken to be 0) in

Fig. 2.5b. The mid-point rule estimation method results in a robust 
ontroller

that a
hieves the desired traje
tory although it is slightly 
loser to the bea
on

than the theory predi
ts. The error between these two orbits is observed (∼ 200

mm) to be within the size of the robot (∼ 400 mm).

2.2.6 Asso
iated Lagrangian

Here we will re-visit the problem of tra
king a moving bea
on as 
onsidered in

Se
tion 2.2.1. It is of spe
i�
 interest to ask whether the system dynami
s admits

some Lagrangian formulation. Without loss of generality, at this stage we take

ν2 = 1 and denote ν1 = ν (note that A-1 translates to ν < 1). Writing r = r1−r2,

we see that on the invariant manifold, the feedba
k 
ontrol law (2.2) takes the

form

u2 = −
r · ṙ⊥
|r|2 .
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Now it is a straightforward exer
ise to see that the baseline ve
tor satis�es the

following se
ond order ODE:

r̈ = ν2uy1 − u2y2

= ν2uy1 +

(

r · ṙ⊥
|r|2

)(

r

|r|

)

. (2.14)

Note that here we used the fa
t that on the invariant manifold the bearing angle

of the se
ond agent to the bea
on, κ2 = π/2 and hen
e the y2 ve
tor is aligned

with the baseline ve
tor r, or in other words y2 =
(

r

|r|

)

.

Proposition 2.2.3. On every level set of E, (E(ρ, κ1) = E0, as in (2.6)) the

two dimensional system (2.14) is a
tually the Euler-Lagrange equation of the La-

grangian fun
tion (of the type kineti
 energy−potential energy)

L(r, ṙ) = K(r, ṙ)− V (r, ṙ)

=
1

2
|ṙ|2 −

(

−E0

|r| −
1

2
νu|r| − A(r) · ṙ

)

, (2.15)

where A is de�ned as A(r) := −1
2
νur⊥.

Proof. Note that the quantity, E0 = ρ(1 + ν sin κ) − 1
2
νuρ2 is 
onserved and

r · ṙ⊥ = −ρ(1 + ν sin κ). From here, we 
an rewrite (2.14) as

r̈ = νu(νy1 − y2) +

(

− E0

|r|2 +
1

2
νu

)(

r

|r|

)

= (ṙ×B)−∇
(

−E0

|r| −
1

2
νu|r|

)

= (ṙ×B) + E(r), (2.16)

where we introdu
e B := −νuẑ, a stati
 �magneti
 �eld� in the dire
tion per-

pendi
ular to the plane of motion of the agents, ẑ being the unit ve
tor in
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that dire
tion. Also, we 
all E(r) := −∇Φ(r), the �ele
tri
 �eld� and Φ(r) :=

−
(

E0

|r| +
1
2
νu|r|

)

, the 
orresponding ele
trostati
 potential.

Now, the equation (2.16) resembles with that of the equation of motion of a


harged parti
le in an ele
tromagneti
 �eld and one 
an �nd obvious similarity

of the right hand side with that of Lorentz for
e law. Then a standard result

[Goldstein et al., 2001℄ in the theory of ele
tromagnetism gives the Lagrangian

formulation of (2.16). Sin
e ∇ · B = 0, B 
an be written as 
url of a �magneti


ve
tor potential� A(t, r), i.e. B = ∇×A. Also, the ele
tri
 �eld E 
an be writ-

ten as E = −∇Φ(r) − ∂A
∂t
. Mat
hing this with (2.16), we 
an see that A is a

ve
tor valued fun
tion of r only. It is a straightforward exer
ise to show that

A = −1
2
(r × B) = −1

2
νur⊥ satis�es B = ∇ × A. Then the Lagrangian whi
h

generates (2.16) is given by

L(r, ṙ) = K(r, ṙ)− V (r, ṙ)

=
1

2
|ṙ|2 − (Φ(r)−A(r) · ṙ)

=
1

2
|ṙ|2 + E0

|r| +
1

2
νu|r| − 1

2
νur⊥ · ṙ

�

Remark 2.5. In essen
e, Proposition 2.2.3 reveals that with open loop 
onstant


urvature 
ontrol of one agent and with feedba
k 
ontrol (2.2), namely 
onstant

bearing pursuit law with parameter α = π/2, of the other, (on every level set

of an invariant manifold) the 
oupled system behaves exa
tly the same way as a


harged parti
le in a stati
 ele
tromagneti
 �eld. Moreover, the magneti
 �eld, B

is dependent on the 
onstant 
urvature (u) of the �rst agent. Thus u = 0 implies
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the absen
e of the magneti
 �eld and the agents are subje
t to the ele
trostati


�eld only. The �eld E has familiar inverse square form and hen
e the results

for the spe
ial 
ase u = 0 agree with Kepler's laws whi
h are obtained from a

two-body problem subje
t to Newtonian gravitational for
e.

2.3 Biomimeti
 Algorithms for Coordinated Mo-

tion

In this se
tion, we will report implementation of two feedba
k 
ontrol strategies

on our laboratory test-bed. The �rst of these two strategies is 
alled mutual mo-

tion 
amou�age (MMC) [Mis
hiati and Krishnaprasad, 2012℄. Existing literature

on dragon�ies [Corbet, 1999℄ provides qualitative analysis of territorial battles,

wherein the traje
tories display spiraling motion 
onsistent with the theoreti
al

predi
tions [Mis
hiati and Krishnaprasad, 2011℄. This parti
ular bio-inspired 
on-

trol algorithm inherits an appealing 
overage property through the me
hanism of

spa
e �lling 
urves, and our implementations are able to reprodu
e 
overage pat-

terns similar to the predi
ted ones.

Although there has been a long history of 
ontrol algorithms for �o
king, al-

most every model of 
olle
tive motion predi
ts di�usive transport of information.

But, 
ontrary to the existing models, re
ent �ndings [Attanasi et al., 2014℄ from

starling �o
ks suggest that dire
tional information within a �o
k propagates with

an almost 
onstant speed, and this linear growth of information 
an be explained
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by models with wave-like aspe
ts. In [Dey, 2015; Halder and Dey, 2015℄ a 
on-

trol strategy 
alled topologi
al velo
ity alignment (TVA) was introdu
ed, whi
h


onforms to this 
riterion and 
an explain how information about lo
al neighbors


an in�uen
e the agents in a �o
k to align their headings in a single 
ommon

dire
tion. Hen
e it seems reasonable to use TVA strategy for 
olle
tive motion

synthesis. Furthermore, our implementation results in real robots have shown

that redu
tion in neighborhood size and external perturbation (similar to preda-

tor atta
k) 
an split a �o
k into smaller subgroups.

2.3.1 Mutual Motion Camou�age (MMC)

Here we 
onsider the mutual intera
tion between two agents ea
h applying the

same pursuit law, while per
eiving the other one as a target. As the dynami
s of

MMC in a planar setting has been studied earlier [Mis
hiati and Krishnaprasad,

2012℄, we just reiterate some key results in order to have a 
omprehensive frame-

work. Allowing di�erent speeds for the agents, we begin with the following sym-

metry:

u1ν1 = u2ν2 = u. (2.17)

Then the dynami
s of the relative motion ve
tors, namely r = r1 − r2, g = ṙ =

ν1x1 − ν2x2 and h = g⊥ = ṙ⊥, 
an be expressed as

ṙ = g

ġ = uh

ḣ = −ug.

(2.18)
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Now we introdu
e three s
alar shape variables de�ned as ρ = |r|, γ = (r · g)/|r|

and λ = (r ·h)/|r|. Then, a

ording to [Justh and Krishnaprasad, 2006℄, we have

u = −µ
(

r

|r| · ṙ
⊥
)

= −µ
(

r

|r| · h
)

= −µλ, (2.19)

where, µ > 0 denotes the feedba
k gain. As shown earlier, the dynami
s of relative

motion (2.18) 
an be redu
ed to yield a se
ond order dynami
s given by

ρ̇ = γ

γ̇ = (1/ρ− µ)
(

δ2 − γ2
)

,

(2.20)

where, δ = |g| = |h| is 
onserved along any traje
tory of (2.18). As detailed in the

original work [Mis
hiati and Krishnaprasad, 2012℄, individual traje
tories 
an be

re
onstru
ted from the solutions of (2.20). Moreover, the solutions of the redu
ed

dynami
s (2.20) 
onstitute level sets for another 
onserved quantity, de�ned as

E(ρ, γ) = ρ2(δ2 − γ2)e−2µρ = E(ρ0, γ0). (2.21)

However, the absen
e of damping in the redu
ed dynami
s (2.20) has poten-

tial to deteriorate the performan
e of the original MMC law (2.19). A modi�ed

feedba
k law, with an added dissipative term to neutralize any deviation from the

predi
ted traje
tories, 
an be expressed as

utot = u+ udis = −µλ+ kdλγ
(

E(ρ, γ)−Ed

)

, (2.22)

where Ed is set as the initial value of the 
onserved quantity E(ρ, γ), i.e. Ed =

E(ρ0, γ0). Previous work [Mis
hiati and Krishnaprasad, 2010℄ has shown that this

modi�ed 
ontrol law (2.22) with kd > 0 makes the periodi
 orbit (with energy Ed)
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orbitally asymptoti
ally stable, and the 
orresponding domain of attra
tion is


hara
terized by {(ρ, γ) : ρ > 0,−δ < γ < δ, (ρ, γ) 6= (1/µ, 0)}.

2.3.2 Topologi
al Velo
ity Alignment (TVA)

Here we formalize the strategy of topologi
al velo
ity alignment (TVA) [Halder

and Dey, 2015; Dey, 2015℄, and assume that ea
h member in a group of n-agents

uses this strategy to move together while keeping its heading parallel to the neigh-

borhood 
enter of mass velo
ity. Letting Ni denote the neighborhood of the i-th

agent, the 
enter of mass (COM) velo
ity of this neighborhood is given by

v
COM

=
1

|Ni|
∑

j∈Ni

νjxj, (2.23)

where |Ni| represents the number of neighbors in�uen
ing the i-th agent. Next,

by assuming that v
COM

does not vanish to zero, we de�ne the dire
tion of the


enter of mass motion as

xNi
=

v
COM

|v
COM
| . (2.24)

It should be noted that xNi
is not well-de�ned over a thin set in the state spa
e.

As the 
han
e of getting into the thin set is very small, we 
an overlook this

situation for all pra
ti
al purposes. Now we introdu
e a 
ontrast fun
tion

Θi =
1

2
(xNi

− xi) · (xNi
− xi) = 1− xi · xNi

, (2.25)

as a quantitative measure for the misalignment between the heading of an agent

and the dire
tion of motion of its neighborhood 
enter of mass. Clearly, this


ontrast fun
tion (Θi) assumes its minimum value (= 0) whenever the i-th agent's
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velo
ity is aligned with its neighborhood 
enter of mass velo
ity, and in
reases

monotoni
ally with in
rease in the misalignment between them. Thus, Θi 
an be

interpreted as a measure of departure from our goal of a
hieving alignment.

Next, by assuming a non-zero velo
ity for the neighborhood 
enter of mass

(v
COM
6= 0), the TVA law is given by [Dey, 2015℄

ui = µ

(

xNi
· yi

νi

)

, (2.26)

where µ > 0 denotes a positive gain, and yi 
arries its usual meaning. Alterna-

tively, lateral a

eleration for this 
hoi
e of 
ontrol laws (2.26) 
an be expressed

as

a

lat
i = µνi

(

xNi
−
[

xNi
· xi

]

xi

)

, (2.27)

and this provides a physi
al intuition behind (2.26) as the lateral a

eleration

is proportional to the proje
tion of the normalized velo
ity of its neighborhood


enter of mass onto the transverse of its own dire
tion of motion.

Remark 2.6. Earlier works [Justh and Krishnaprasad, 2003, 2004℄ have 
onsid-

ered a very similar form of this 
ontrol law with three 
omponents for attra
-

tion (while the agents are far away), repulsion (to avoid 
ollision) and velo
ity

alignment. However, the TVA 
ontrol law 
onsiders only velo
ity alignment, but

extends the s
ope from a planar setting to a three dimensional environment. More-

over it relaxes the assumption on uniform speed of the 
olle
tive by allowing the

agents non-uniform and time-varying speed pro�les. This relaxation plays an im-

portant role in the 
ontext of applying this 
ontrol law to a group of heterogeneous

agents.
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It was shown in [Halder and Dey, 2015; Dey, 2015℄, for a two agent system it

is possible to show that the TVA strategy (2.26) aligns the velo
ity of the agents,

only if their velo
ity ve
tors were not exa
tly opposite to ea
h other initially. [Dey,

2015℄ also provides further analyti
al results for a general n agent system with a


y
li
 intera
tion s
enario. As analysis of an n-agent system with neighborhood

de�ned as the set of K-nearest neighbors poses hard 
hallenges, we propose an

algorithmi
 way (Algorithm 2) to implement TVA in a real system. We bring in

an additional neighbor into 
onsideration whenever v
COM

be
omes zero. Clearly,

this provides a way to avoid ill-posedness asso
iated with v
COM

being zero be
ause

non-zero speeds of individual agents ensure that 
onsidering an extra neighbor will

make an otherwise zero v
COM

non-zero.

2.3.3 Implementation Results

We present the implementation results of the two 
ontrol laws in our roboti
 test-

bed. In this se
tion, we are presenting results for whi
h the speeds of all the

individual agents are same, i.e. νi = νj , ∀i, j. Though it should be noted that

both 
ontrol laws 
an be implemented with di�erent speeds.

2.3.3.1 Implementation of MMC

Here we will show some implementation results for MMC, and demonstrate the

e�e
tiveness of using a dissipative 
ontrol term (2.22). Our analysis also in
ludes

a 
omparison between the observed traje
tories and traje
tories obtained from
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Algorithm 2: Topologi
al Velo
ity Alignment

Data: Initial Time - tinitial; Final Time - tfinal; Sampling Interval - ∆;

Number of Agents - n; Initial Position and Orientation - {gi}ni=1;

Neighborhood Size - K

begin

Initialize: tcurrent ←− tinitial ;

for i = 1 to n do

Initialize: State - Xi ←− gi ;

while tcurrent ≤ tfinal do

for i = 1 to n do

De�ne: Ni - the set of K-nearest neighbors ;

Compute: Neighborhood 
enter of mass velo
ity - v
COM

;

if v
COM

= 0 then

De�ne: Ni - the set of K + 1-nearest neighbors ;

Compute: Neighborhood 
enter of mass velo
ity - v
COM

;

Compute: Steering 
ontrol - ui;

Implement: Steering Control - {ui}ni=1 ;

Update: State - {Xi}ni=1 ;

Update: Time - tcurrent ←− tcurrent +∆ ;

theoreti
al predi
tions, obtained via integrating the redu
ed system dynami
s

(2.20). Considering the prersen
e of a 
onserved quantity (2.6) in the system,

we used the method des
ribed in [Austin et al., 1993℄ for integration instead of

general ODE solver, whi
h otherwise would not be able to keep the quantity

E(ρ, γ) 
onstant to its initial value. Then, from the updated values of ρk and γk,

we re
onstru
t the traje
tories along with their frame ve
tors, i.e. ri
k
, xi

k
, yi

k
,

with i = 1, 2 and k denoting the time indi
es. At ea
h time instan
e tk, the error
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Figure 2.6: Performan
e of the system signi�
antly improved upon addition of

the dissipative 
ontrol term (with µ = 0.001 mm

−1
, ν1 = ν2 = 200 mm/se
 and

kd = 1× 10−15
mm

−6
se


3
)

(eki ) is 
omputed as: eki = |rki,expt − rki,ideal|.

The plots of a sample run using the modi�ed MMC feedba
k law (2.22) are

shown in Fig 2.6. This modi�ed 
ontrol law has been applied with kd = 1 ×

10−15
mm

−6
se


3
, and the parameters µ, ν1 and ν2 are sele
ted as 0.001 mm

−1
,

200 mm/se
 and 200 mm/se
, respe
tively. The resulting performan
e is quite

satisfa
tory as shown in Fig 2.6a (refer [YouTube℄ for implementation video). We

have also observed that the error is bounded (∼ 250 mm) within the size of the

robots (∼ 400 mm).

2.3.3.2 Implementation of TVA

We implemented the TVA 
ontrol law (2.26) in a 2 dimensional setting (i.e. vi(t) is

ignored). As the implementation is in dis
rete time, we followed Algorithm 2 in our

implementation in order to avoid the singular 
ase of |v
COM
| = 0. To demonstrate

the performan
e of TVA 
ontrol law, we designed three di�erent experiments (refer
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Figure 2.7: Robot traje
tories and 
ontrast fun
tions of TVA for (i) Experiment

1 [Fig (a),(d)℄ with 8 agents, demonstrates �o
king behavior (K = 3); (ii) Ex-

periment 2 [Fig (b),(e)℄ with 8 agents, des
ribes the splitting behavior due to low

neighborhood size (K = 1), and (iii) Experiment 3 [Fig (
),(f)℄ with 6 agents,

shows that perturbation 
an 
ause a swarm to split, the traje
tory of the per-

turbing agent is not shown. (µ = 1 Hz and νi = 60 mm/se
 is kept �xed for all

experiments.)

[YouTube℄ for implementation videos). In these experiments, the sonar sensors

on the robots were a
tivated to sense any obsta
le in the dire
tion of motion of

the robots and if any robot 
an sense su
h an obsta
le, it will simply apply a

maximum turning rate (ωsat
) to avoid 
ollision. The sonars are programmed to
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dete
t an obsta
le only in 
lose proximity (∼ 300 mm) of the robots. In all our

experiments ωsat
is taken to be 50 rad/se
, forward speeds of all of the robots

are kept 
onstant at 60 mm/se
 and the value of the parameter µ is 
hosen to

be 1 Hz. A system with eight agents is 
onsidered and we apply same TVA law

to all of them. The neighborhood size is taken to be three (i.e. K = 3). The

robots are initially pla
ed in arbitrary positions and dire
tions. The footprints of

the robots and the 
orresponding 
ontrast fun
tion, Θ(t) =
∑

i Θi(t) is plotted

against time in Fig 2.7a, 2.7d. The initial and �nal dire
tions of the robots

are shown using arrows and the �nal positions of the robots are denoted using

dots. It 
an be seen from Fig 2.7d that the 
ontrast fun
tion de
ays to zero very

qui
kly whi
h indi
ates perfe
t velo
ity alignment within the swarm. Next we

de
reased the neighborhood size and made it one (K = 1), so that every robot

only `
ommuni
ates' with its 
losest neighbor. We 
hose the initial positions in

su
h a way that they may form sub-
lusters instead of moving as a single swarm.

This behavior is 
alled `splitting ' in a swarm. From Fig 2.7b, we 
an 
learly see

that the swarm of eight robots gradually split from ea
h other and form three

di�erent 
lusters. It is to be noted that even if all the agents are not going in

the same dire
tion, the 
ontrast fun
tion still 
onverges to zero (Fig 2.7e). This

happens be
ause ea
h of the robots are aligned with their nearest neighbors and

hen
e ea
h of the individual 
ontrast fun
tions (Θi(t)) are zero. This experiment

may explain the splitting phenomenon observable in nature. Lastly, we 
ombined

the above two experiments, and 
ondu
ted an experiment using six robots in a
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swarm and another robot as a predator. A separate 
omputer was used for manual


ontrol of the `predator' robot.

At the beginning, neighborhood size is kept at K = 3, su
h that the `
om-

muni
ation' graph among the robots stays 
onne
ted and they move as an entire

swarm in a 
ommon dire
tion. When the swarm 
omes 
lose to the predator, the

neighborhood size is de
reased to one. As we are not using any onboard visual

sensing and the sonar sensing is done only in very 
lose region (∼ 300 mm), the


hange in neighborhood size is made manually. From Fig 2.7f, we 
an see that

the 
hange in neighborhood size takes pla
e at around 20 se
onds and we 
an

also see a tiny jump in the 
ontrast fun
tion at that time. The predator then

slowly approa
hes to one of the agents in the swarm, whi
h abiding to its 
ollision

avoidan
e rule, turns to avoid the predator. In Fig 2.7
, the traje
tories of the

agents are drawn in dashed lines before the o

urren
e of this event and in solid

lines afterwards. The traje
tory of the predator robot in not shown in the �g-

ure. After 
reating the initial perturbation, the predator is slowly moved through

the swarm 
ausing some subsequent disturban
es. These perturbations 
reate a

noti
eable impa
t in the swarm. As the atta
ked agent turns, its neighbor also

tries to align itself with that agent and so does its neighbor. This goes on until

the 
ommuni
ation graph be
omes dis
onne
ted and a split in the swarm is then

observed [YouTube℄ just like in Experiment 2. As we 
an see in Fig 2.7
, the

swarm is divided in two groups after the atta
k of the predator. The jumps in

plot of the 
ontrast fun
tion in Fig 2.7f symbolize the perturbations 
aused by
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the external agent. The 
ontrast fun
tion eventually 
onverges to zero after the

members are aligned with their neighbors within ea
h subgroup.
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Chapter 3

Optimal Steering of Agents on a Plane

3.1 Introdu
tion

The kinemati
 uni
y
le model is often used in path-planning for ground vehi
les,

sin
e the 
on�guration of a ground vehi
le 
an often be represented by a point

in a plane that is 
onstrained to move in the dire
tion of the 
urrent heading

[Bellaï
he et al., 1998; LaValle, 2006℄. The state of this system 
an be represented

as an element of the spe
ial Eu
lidean group SE(2), where the 
ontrol inputs are

a 
urvature input whi
h 
ontrols the rate of 
hange of the heading angle, and a

velo
ity input whi
h 
ontrols the rate of 
hange of the uni
y
le position in the

dire
tion of the heading angle.

Given the 
urrent 
on�guration of the uni
y
le and a desired future 
on�g-

uration, an admissible path for moving the uni
y
le from an initial to a �nal


on�guration 
an be determined via the minimization of some 
ost fun
tional.

There 
an be many variations to this problem depending on the 
hosen 
ost fun
-
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tional. A mu
h 
elebrated problem is the problem of Euler's elasti
a [Euler, 1744℄

where the minimum 
urvature path joining two given 
on�gurations on the plane

is 
onsidered. Parti
ularly elegant and other well-known variations in
lude the

minimum-time solutions of [Dubins, 1957℄ and [Reeds and Shepp, 1990℄. Optimal

paths of the minimum-time problem 
onsist only of straight-line and 
ir
ular-ar


segments whi
h, when pat
hed together, 
reate dis
ontinuities in the path 
ur-

vature and 
ause potential di�
ulty in implementation sin
e abrupt 
hanges in


urvature are hard to tra
k. Proposed modi�
ations that alleviate this problem

enfor
e that the 
urvature stay 
ontinuous, e.g., [Frai
hard and S
heuer, 2004℄,

yet it is also possible to penalize the total 
urvature along the path in the expe
-

tation that the optimal 
urvature will be 
ontinuous. [Halder and Kalabi
, 2017℄

takes the latter approa
h, 
onsidering the minimization of the 
urvature along a

path 
onne
ting initial and �nal uni
y
le 
on�gurations with free �nal time.

In this 
hapter, we will present a problem that penalizes both the 
urvature

and speed 
ontrols in maneuvering a uni
y
le from initial to desired �nal 
on�g-

uration. This helps both the 
urvature and speed 
ontrols to be smooth along an

optimal traje
tory. These optimal traje
tories 
losely resemble to those obtained

in [Halder and Kalabi
, 2017℄. Our solution is obtained using geometri
 optimal


ontrol, where the ne
essary 
onditions for optimality are obtained via the Pon-

tryagin Maximum Prin
iple (PMP), and Lie-Poisson redu
tion [Krishnaprasad,

1993; Ohsawa, 2013℄. Using geometri
 optimal 
ontrol on SE(2) to �nd solutions

to path-planning problems has also been 
onsidered by [Sussmann and Tang, 1991;
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Krishnaprasad, 1993; Agra
hev and Sa
hkov, 2004; Dey and Krishnaprasad, 2014;

Justh and Krishnaprasad, 2015b℄.

Studying a uni
y
le on the plane is important sin
e often a 
olle
tive of N

agents exhibits single agent behavior under syn
hronization. In the later part of

this 
hapter, we will present a framework for analyzing su
h a 
olle
tive. This

framework is based on [Justh and Krishnaprasad, 2015b℄, where every agent was

assumed to have 
onstant speed. Here we will, however, 
onsider a 
ost fun
tion

that penalizes both speed and 
urvature 
ontrols. In addition to the individual


ontrol 
osts, there is one 
ost that is attributed to the `mismat
h in 
ontrol' of

an agent with its `neighbors'. The neighbors of any agent is di
tated by a �xed

graph of intera
tion. The strength of su
h intera
tion is 
aptured by a 
oupling

parameter. It is shown that in extreme 
ases (no 
oupling and high 
oupling)

the optimal 
olle
tive 
ontrols are dire
tly asso
iated with optimal 
ontrols for a

single agent problem. This framework is what we use in the later 
hapters of this

thesis where we 
onsider optimal 
ontrol problems for a 
ontinuum of agents.

3.2 Optimal Steering of a Uni
y
le

In this se
tion, we 
onsider minimizing the 
urvature and speed 
ontrol 
osts of

a path in SE(2) 
onne
ting an initial uni
y
le 
on�guration g0 with its desired

�nal 
on�guration gT at time T . We formulate this optimization as a geometri


optimal 
ontrol problem and derive the ne
essary 
onditions using PMP and Lie-

Poisson redu
tion. From the ne
essary 
onditions, we show that there are two

47




onstants of motion: the Hamiltonian and the Casimir. We show that there are

three possible families of solutions depending on the values of Casimir and the

Hamiltonian. In the �rst 
ase, the motion 
onsists of segments of a U-turn; in

the se
ond 
ase, the motion 
onsists of segments of parallel parking traje
tories;

in the third 
ase, the motion 
onsists of straight lines or asymptoti
 approa
hes

thereto.

Consider the uni
y
le kinemati
 equations,

ẋ(t) = v(t) cos θ(t), (3.1a)

ẏ(t) = v(t) sin θ(t), (3.1b)

θ̇(t) = u(t), (3.1
)

where (x(t), y(t)) ∈ R
2
is the position of the uni
y
le on the Cartesian plane,

θ(t) ∈ S1
is the heading of the uni
y
le, v(t) is the uni
y
le speed 
ontrol, and

u(t) is the steering 
ontrol, equal to the rate of 
hange of the heading θ(t).

The 
on�guration of the uni
y
le 
an be represented as an element of the

matrix Lie group SE(2). Let g(t) ∈ SE(2) where,

g(t) =

















cos θ(t) − sin θ(t) x(t)

sin θ(t) cos θ(t) y(t)

0 0 1

















. (3.2)

Then the equations (3.1) 
an be written in left-invariant form,

ġ(t) = g(t)ξ(u(t), v(t)), (3.3)

where,

ξ(u(t), v(t)) = u(t)X1 + v(t)X2, (3.4)
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and,

X1 =

















0 −1 0

1 0 0

0 0 0

















, X2 =

















0 0 1

0 0 0

0 0 0

















. (3.5)

The matri
es X1 and X2 are elements of the Lie algebra se(2). Together with

X3 = [X1, X2] = X1X2 −X2X1, X1 and X2 form a basis for se(2).

Without loss of generality, we 
an assume that g0 = I3, sin
e g(t) 
an always

be rede�ned a

ording to g(t) := g−1
0 g(t). Given a �nal time T > 0 and a �nal

state gT , 
ost fun
tion to be minimized is,

1

2

∫ T

0

(

u(t)2 + v(t)2
)

dt. (3.6)

3.2.1 Optimal Control Solution

In order to solve the problem we form the pre-Hamiltonian,

H = 〈p, gξ(u, v)〉 − 1

2
(u2 + v2), (3.7)

where p(t) ∈ SE(2)∗ is the adjoint variable. To simplify the Hamiltonian, we

perform Lie-Poisson redu
tion, introdu
ing the variable µ(t) ∈ se(2)∗ satisfying

the translation to identity,

〈µ, ξ(u, v)〉 = 〈p, gξ(u, v)〉.

As an element of the dual spa
e, µ(t) 
an be represented as µ(t) = µ1X
♭
1+µ2X

♭
2+

µ3X
♭
3, where {X♭

1, X
♭
2, X

♭
3} are the basis ve
tors dual to {X1, X2, X3}.
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The pre-Hamiltonian therefore be
omes,

H(µ, u, v) = 〈µ, ξ(u, v)〉 − 1

2
(u2 + v2),

= 〈µ1X
♭
1 + µ2X

♭
2 + µ3X

♭
3, uX1 + vX2〉

− 1

2
(u2 + v2),

= µ1u+ µ2v −
1

2
(u2 + v2).

A

ording to the PMP, the optimal 
ontrol (u∗, v∗) satis�es,

H(µ∗, u∗, v∗) = max
(u,v)∈R2

H(µ∗, u, v). (3.8)

Therefore the optimal 
ontrols are given by,

u∗1 = µ1, (3.9)

u∗2 = µ2, (3.10)

The redu
ed Hamiltonian is therefore,

H = H(µ, u∗1, u
∗
2) =

1

2

(

µ2
1 + µ2

2

)

, (3.11)

and the dynami
s of the µi variables are given by [Krishnaprasad, 1993℄,

















µ̇1

µ̇2

µ̇3

















=

















0 −µ3 µ2

µ3 0 0

−µ2 0 0

















∂h

∂(µ1, µ2, µ3)
, (3.12)

µ̇1 = −µ2µ3, (3.13a)

µ̇2 = µ1µ3, (3.13b)

µ̇3 = −µ1µ2. (3.13
)
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(a) c = 0.5 (b) c = 1.5 (
) c = 1

Figure 3.1: M (bla
k) plotted as an interse
tion of C (red) and H (blue) for h = 1

and three values of the Casimir c

Let,

c = µ2
2 + µ2

3. (3.14)

This variable is 
alled the Casimir and it is a 
onstant of motion, implying that

the variables µ2 and µ3 evolve on 
ir
le of radius

√
c. Along with the Casimir,

the Hamiltonian (3.11) is also a 
onserved quantity of motion. For 
onvenien
e of

subsequent 
al
ulations, we will work with the following s
aled Hamiltonian,

h = 2H = µ2
1 + µ2

2. (3.15)

3.2.2 Chara
terizing the Types of Motion

A

ording to (3.14) and (3.15), the dynami
s (3.13) evolve on the manifold M

where,

M = C ∩ H,

C = {(µ1, µ2, µ3) ∈ R
3 : c = µ2

2 + µ2
3},

H = {(µ1, µ2, µ3) ∈ R
3 : h = µ2

1 + µ2
2}.

(3.16)
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The manifoldM is one-dimensional and equal to the interse
tion of the 
ylinders

C and H. The shape ofM is determined by the Casimir c, while the shape of H

is determined by h. The motion of µ evolves on M. Due to 
ontinuity, it must

evolve on a 
onne
ted 
omponent ofM, so it is important to 
onsider the types

of possible interse
tions, of whi
h there are three 
orresponding to three di�erent


ases: in Case 1, C is stri
tly smaller than H; in Case 2, C is stri
tly larger than

H; in Case 3, C is equal in size to H. To perform a 
ase-by-
ase 
ategorization of

M, we note that, a

ording to (3.14), the variable µ2 is restri
ted to ±√c and,

a

ording to (3.15), µ2 is restri
ted to ±
√
h. In Case 1, c < h, so |µ2| ≤

√
c <
√
h.

Therefore the motion evolves on a 
onne
ted 
omponent ofM where µ1 does not


hange sign sin
e µ2
1 = h − µ2

2 ≥ h − c > 0. Similarly, in Case 2, c > h, so

|µ2| ≤
√
h <
√
c. The motion evolves on a 
onne
ted 
omponent ofM where µ3

does not 
hange sign sin
e µ2
3 = c − µ2

2 ≥ c − h > 0. In Case 2, c = h, so the

two 
onstraints agree at the extremes. Instead of having M as a one 
onne
ted


omponent, it a
tually has four dis
onne
ted 
omponents. These 
omponents

meet ea
h other asymptoti
ally at the extremes µ1 = µ3 = 0, µ2 = ±
√
h. See

Fig. 3.1 for a visualization of the three 
ases. In the following, we study the three

types of motion in further detail.

Case 1: 0 < c < h

The equations (3.13) admit the following expli
it solutions by means of Ja
obian
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(a) c = 0.5 (solid bla
k) and 0.75

(dot-dashed red)
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(b) c = 1.5 (solid bla
k) and 2

(dot-dashed red)
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0
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(
) c = 1

Figure 3.2: Extremal traje
tories for di�erent 
ases (solid bla
k) � in
reasing c

produ
es the dot-dashed red 
urve; in
reasing η produ
es the solid blue 
urve;


hanging s1 or s2 produ
es the dashed green 
urve. h = 1 for all three 
ases.

ellipti
 fun
tions [Davis, 1962; Byrd and Friedman, 1971℄,

µ1 = s1
√
h dn

(√
h(t+ η), k

)

, (3.17a)

µ2 = s1
√
c sn

(√
h(t+ η), k

)

, (3.17b)

µ3 =
√
c 
n

(√
h(t+ η), k

)

, (3.17
)

where the modulus k of the ellipti
 fun
tions is given by k2 = c
h
. The parameters

s1 ∈ {1,−1} and η ∈ R do not depend on c and h, but on the endpoint 
onstraints.

Note that these solutions are periodi
 with the period given by T1 :=
4K(k)√

h
, where

K(k) denotes the 
omplete ellipti
 integral of the �rst kind.

Proposition 3.2.1. Let 0 < c < h. Assume η = 0, then any extremal traje
tory
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is given by,

x(t) =
s1
k

(

1− dn

(√
ht, k

))

(3.18a)

y(t) =
1

k

(√
ht− E

(

am

(√
ht, k

)

, k
))

(3.18b)

θ(t) = s1 · am
(√

ht, k
)

= s1 cos
−1
(


n

(√
ht, k

))

= s1 sin
−1
(

sn

(√
ht, k

))

,

(3.18
)

where E(·, ·) denotes the in
omplete ellipti
 integral of the se
ond kind.

Proof. We have from (3.9) and (3.17a),

u1 = µ1 = s1
√
h dn

(√
ht, k

)

.

Integrating the equation θ̇ = u1 gives

θ(t) = s1 · am
(√

ht, k
)

= s1 cos
−1
(


n

(√
ht, k

))

= s1 sin
−1
(

sn

(√
ht, k

))

.

Sin
e the optimal speed 
ontrol is given by (3.10) and (3.17b),

u2 = µ2 = s1
√
c sn

(√
ht, k

)

,

we may now integrate x and y dynami
s to obtain position variables as fun
tions

of time. We have,

x(t) =

∫ t

0

u2 cos(θ(t))dt

=

∫ t

0

s1
√
c sn

(√
ht, k

)


n

(√
ht, k

)

dt

= −s1
√
c√
h
· 1
k2

[

dn

(√
ht, k

)]t

t=0

=
s1
k

(

1− dn

(√
ht, k

))

(3.19)
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Similarly,

y(t) =

∫ t

0

u2 sin(θ(t))dt

=

∫ t

0

√
c sn2

(√
ht, k

)

dt

=

√
c√
h
· 1
k2

[√
ht− E

(

am

(√
ht, k

)

, k
)]t

t=0

=
1

k

(√
ht−E

(

am

(√
ht, k

)

, k
))

(3.20)

�

Studying the extremal traje
tories in η = 0 
ase is important sin
e any other

traje
tory 
an be expressed by means of these traje
tories after a suitable trans-

lation and rotation. This is demonstrated in the following proposition.

Proposition 3.2.2. Assume 0 ≤ c < h. Let us denote an extremal traje
tory

belonging to η = 0 
ase by (x0(t), y0(t), θ0(t)) a

ording to (3.18). Then any

extremal traje
tory generated by (3.17) 
an be expressed as,









x(t)

y(t)









= R(−ψ)

















x0(t+ η)

y0(t+ η)









−









x0(η)

y0(η)

















, (3.21)

θ(t) = θ0(t + η)− θ0(η), (3.22)

where R(·) is the planar rotation matrix and ψ is de�ned as,

ψ := s · am
(√

h η
)

= θ0(η). (3.23)
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Proof. Indeed, equation (3.22) is readily a
hieved by integrating (3.17a). Further,

noti
e that

ẋ(t) = s1
√
c sn

(√
h(t+ η), k

)

cos
(

s1 · am
(√

h(t+ η), k
)

− ψ
)

=
√
c
(

s1 · cos(ψ) · sn
(√

h(t+ η), k
)


n

(√
h(t+ η), k

)

+ sin(ψ) · sn2
(√

h(t + η), k
))

,

and,

ẏ(t) = s1
√
c sn

(√
h(t + η), k

)

sin
(

s1 · am
(√

h(t+ η), k
)

− ψ
)

=
√
c
(

−s1 · sin(ψ) · sn
(√

h(t+ η), k
)


n

(√
h(t + η), k

)

+cos(ψ) · sn2
(√

h(t+ η), k
))

.

Compa
tly, we have









ẋ(t)

ẏ(t)









=









cos(ψ) sin(ψ)

− sin(ψ) cos(ψ)









·









ẋ0(t + η)

ẏ0(t + η)









. (3.24)

Integration of (3.24) yields (3.21). �

Case 2: c > h

This 
ase admits solutions analogous to those of Case 1 and we will pro
eed in a

similar way. To start, we write down solutions to (3.13) as,

µ1 =
√
h 
n

(√
c(t+ η), k

)

, (3.25a)

µ2 = s2
√
h sn

(√
c(t + η), k

)

, (3.25b)

µ3 = s2
√
c dn

(√
c(t+ η), k

)

, (3.25
)
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with the modulus k2 = h
c
. s2 ∈ {1,−1} and η ∈ R are similar parameters as in


ase 1. These solutions are periodi
 as well, with period given by T2 :=
4K(k)√

c
.

Proposition 3.2.3. Let h > 0 and c > h. Assume η = 0, then any extremal

traje
tory is given by,

x(t) = s2 · k
(

1− 
n

(√
c t, k

))

(3.26a)

y(t) = s2
(√

c t− E
(

am

(√
c t, k

)

, k
))

(3.26b)

θ(t) = cos−1
(

dn

(√
c t, k

))

= sin−1
(

k sn

(√
c t, k

))

, (3.26
)

where E(·, ·) denotes the in
omplete ellipti
 integral of the se
ond kind.

Proof. The proof is similar to that of Proposition 3.2.1 and uses elementary inte-

grals of Ja
obi ellipti
 fun
tions. �

Analogous to Proposition 3.2.2, we have the following result.

Proposition 3.2.4. Assume h > 0 and c > h. Let us denote an extremal traje
-

tory belonging to η = 0 
ase by (x0(t), y0(t), θ0(t)) a

ording to (3.26). Then any

extremal traje
tory generated by (3.17) 
an be expressed as,









x(t)

y(t)









= R(−ψ)

















x0(t+ η)

y0(t+ η)









−









x0(η)

y0(η)

















, (3.27)

θ(t) = θ0(t + η)− θ0(η), (3.28)

where R(·) is the planar rotation matrix and ψ is de�ned as,

ψ := cos−1
(

dn

(√
c η, k

))

= sin−1
(

k sn

(√
c η, k

))

= θ0(η). (3.29)
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Proof. The proof is essentially the same to that of Proposition 3.2.2. Note the

di�erent de�nition of ψ in (3.29) �

Case 3: c = h

This 
ase is transitional between 
ase 1 and 
ase 2. Putting the modulus k2 =

c
h
= 1 in either of the equations (3.17) or (3.25), we get the following solutions

µ1 = s1
√
c se
h

(√
c(t + η)

)

, (3.30a)

µ2 = s2
√
c tanh

(√
c(t + η)

)

, (3.30b)

µ3 = s3
√
c se
h

(√
c(t + η)

)

, (3.30
)

with s1, s2, s3 ∈ {1,−1} and η ∈ R. We readily obtain the following result.

Proposition 3.2.5. Let c = h > 0. Assume η = 0, then any extremal traje
tory

is given by,

x(t) = s2
(

1− se
h

(√
c t
))

, (3.31a)

y(t) = s1s2
(√

c t− tanh
(√

c t
))

, (3.31b)

θ(t) = s1 tan
−1
(

sinh
(√

c t
))

. (3.31
)

Proof. Indeed, integrating θ̇ = u1 = µ1 yields (3.31
). Sin
e u1 = µ2, we get

ẋ = s2
√
c se
h

(√
c t
)

tanh
(√

c t
)

,

ẏ = s1s2
√
c tanh2

(√
c t
)

,

whi
h in turn gives (3.31a)�(3.31b) after integration. �
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In the same spirit as before, we write any general extremal traje
tories in terms

of these traje
tories.

Proposition 3.2.6. Assume c = h > 0. Let us denote an extremal traje
tory

belonging to η = 0 
ase by (x0(t), y0(t), θ0(t)) a

ording to (3.31). Then any

extremal traje
tory generated by (3.30) 
an be expressed as,









x(t)

y(t)









= R(−ψ)

















x0(t+ η)

y0(t+ η)









−









x0(η)

y0(η)

















, (3.32)

θ(t) = θ0(t + η)− θ0(η), (3.33)

where R(·) is the planar rotation matrix and ψ is de�ned as,

ψ := s1 tan
−1
(

sinh
(√

c η
))

= θ0(η). (3.34)

This 
ase 
onsists of two types of solutions: a straight line solution, 
orrespond-

ing to the sub
ase where the �nal 
ondition lies on the x-axis, and an asymptoti


solution, whi
h asymptoti
ally approa
hes a straight line with slope cotψ. See

Fig. 3.2
 for a graphi
.

3.2.3 On Time-optimality

From an engineering perspe
tive, it seems appealing to 
onsider a similar problem

where �nal time T is free. Therefore we want to rea
h from initial 
on�guration

g0 to the �nal 
on�guration gT in a minimal time so that the 
ontrol 
ost (u2+v2)

is minimized along the optimal traje
tory. It also makes sense to add a penalty
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to the time it takes for the uni
y
le to 
omplete the maneuver. The 
ost fun
tion


an be expressed as

min
T,u(·),v(·)

1

2

∫ T

0

(a+ u(t)2 + v(t)2)dt, (3.35)

for some time-penalty parameter a > 0. Note that without the penalty on time, a

solution 
ould 
orrespond to a prohibitively large �nal time whi
h is not desired

from a pra
ti
al viewpoint. This time-optimal version is just a spe
ial 
ase of

what we have 
onsidered in se
tion 3.2. To see this, we 
ompute the Hamiltonian

(3.11) as, H = 1
2
(µ2

1 + µ2
2− a). Sin
e time-optimality requires the Hamiltonian to

be identi
ally zero, we have spe
ial 
ase of h = µ2
1 + µ2

2 = a (
.f. (3.15)). This

also gives the bounds of the optimal 
ontrols u1 = µ1, u2 = µ2 to be within ±√a.

We 
an, therefore, use the parameter a to set a desired bound on the 
ontrols

that is permitted by physi
al 
onstraints. A 
losely related problem was studied

in [Halder and Kalabi
, 2017℄, where the speed 
ontrol v was assumed to be of


onstant magnitude, and the minimum time problem asso
iated with minimum


urvature path was 
onsidered.

3.3 Optimal Control of a Colle
tive of Agents

Now we 
onsider a 
olle
tive of N agents moving on the plane. Motion of ea
h

agent 
an be modeled by the uni
y
le dynami
s (3.1). As seen before, this dynam-

i
s 
an be equivalently expressed as a 
ontrolled dynami
s in SE(2), ġk = gkξk(uk),
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where

ξk(uk) = uk1X1 + uk2X2, k = 1, 2, ..., N. (3.36)

We suppose these agents intera
t among themselves dire
ted by a �xed adja
en
y

matrix A = [aij ] ∈ RN×N
. aij = 1 if agent i and agent j intera
t and aij = 0

otherwise. The nature of the intera
tion will be made pre
ise shortly. LetD be the

degree matrix, i.e. the diagonal matrix where the i-th diagonal entry represents

the number of agents the i-th agent intera
t with. Then the graph Lapla
ian is

de�ned by B := D − A. In this setup, we seek to minimize

L =

∫ T

0

L(ξ1(u1(t)), ..., ξN(uN(t)))dt

=
1

2

∫ T

0

(

N
∑

k=1

|ξk|2 + χ
N
∑

k=1

N
∑

j=1

akj |ξk − ξj|2
)

dt, (3.37)

for some 
onstant χ ≥ 0 and the �xed endpoint 
onditions gk(0) = gk0, gk(T ) =

gkT , k = 1, ..., N . Note that we used the tra
e norm |ξ| =
√

tr(ξTξ). The param-

eter χ is 
alled a 
oupling 
onstant sin
e it a
ts as a weight to the se
ond term

in the 
ost fun
tional (3.37). Without the 
oupling term, this problem simpli�es

to solving N 
opies of the single agent problem as 
onsidered in Se
. 3.2. The


oupling term penalizes agent k through the `mismat
h in 
ontrol' with the agents

that it is intera
ting with (i.e. nonzero entries of k-th row of the matrix A). This

type of 
ost fun
tional is aimed to 
apture the `allelomimeti
 behavior' or the

tenden
y to 
opy neighbors in a natural 
olle
tive. [Justh and Krishnaprasad,

2015b℄ studies a very similar problem where the speeds of ea
h agent is assumed

to be 
onstant. Here the speed 
ontrols (uk2, k = 1, 2, ..., N) are to be determined
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by solving the optimal 
ontrol problem (3.37).

Sin
e the underlying optimal 
ontrol problem is essentially the same, we will

use the results from [Justh and Krishnaprasad, 2015b℄ to derive �rst order opti-

mality 
onditions using the Pontryagin's Maximum Prin
iple and the Lie-Poisson

redu
tion te
hnique. Denote µk ∈ se∗(2) by,

µk =
3
∑

i=1

µkiX
♭
i , (3.38)

where {X♭
1, X

♭
2, X

♭
3} is dual basis to {X1, X2, X3}. If we de�ne µ̃k =

[

µk1 µk2 µk3

]T

,

�rst order optimality (PMP) yields

















u1

.

.

.

uN

















= Ψ

















µ̃1

.

.

.

µ̃N

















, (3.39)

where

Ψ = ((IN + 2χB)⊗ I2)
−1 = (IN + 2χB)−1 ⊗ I2. (3.40)

Here ⊗ denotes the Krone
ker produ
t. The redu
ed Hamiltonian in (se∗(2))N

takes the form

h =
1

2

[

µ̃T

1 · · · µ̃T

N

]

Ψ

















µ̃1

.

.

.

µ̃N

















. (3.41)

The Lie-Poisson redu
ed dynami
s is then expressed as follows. De�ne µ =
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[

µT

1 · · · µT

N

]T

. Then,

µ̇ = Λ(µ)∇h, (3.42)

where Λ(µ) = −diag(Ω1, · · · ,ΩN), with

Ωk =

















0 µk3 −µk2

−µk3 0 0

µk2 0 0

















, k = 1, ..., N. (3.43)

Also we have ∇h =

[

(∇h)1 · · · (∇h)N
]T

, (∇h)k =

[

∂h
∂µk1

∂h
∂µk2

0

]T

, k =

1, ..., N . Note that along with the Hamiltonian (3.41), there are N Casimirs

whi
h are 
onstants of motion. The Casimirs are de�ned as,

ck = µ2
k2 + µ2

k3. (3.44)

In both the extreme 
ases (i) no 
oupling (χ = 0) and (ii) high 
oupling (χ→∞),

the 
olle
tive optimal problem simpli�es to studying the single agent problem as


onsidered in Se
tion 3.2. The χ = 0 
ase is immediate. The details of the high


oupling limit χ → ∞ is worked out in [Justh and Krishnaprasad, 2015b℄ (see

se
tion 3(
)). De�ning the quantities

α1 =
1

N

N
∑

j=1

µj1, α2 =
1

N

N
∑

j=1

µj2, α3 =
1

N

N
∑

j=1

µj3, (3.45)

we obtain the following di�erential equations

α̇1 = −α2α3,

α̇2 = α1α3,

α̇3 = −α1α2.

(3.46)
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These are the same equations we already obtained and analyzed in details for a

single agent 
ase (3.13).

3.4 Con
luding Remarks

In this 
hapter, we studied an optimal 
ontrol problem of a uni
y
le on the plane

in detail. First order ne
essary 
onditions are obtained by using the Pontryagin's

Maximum Prin
iple and the Lie-Poisson redu
tion te
hnique. All possible mo-

tion types are properly 
ategorized by the relative values of the Casimir and the

Hamiltonian. In the later part, we presented a framework for studying a 
lass

of optimal 
ontrol problems involving many agents. These agents intera
t with

ea
h other by a pre-determined intera
tion graph. The intera
tion enters into the

optimal 
ontrols of the agents through the additive `
ontrol-mismat
h' term in


ost fun
tional. This type of 
ost has been used in literature [Justh and Krish-

naprasad, 2015a,b℄ to 
apture the `allelomimeti
 behavior' in natural �o
ks. The

single agent 
ase, 
onsidered in this 
hapter, emerges naturally in a syn
hroniza-

tion limit of the 
olle
tive model. This 
olle
tive framework gives us the starting

point to 
on
eptualize a 
ontinuum �o
k where we study the limiting 
ase of

N → ∞ under a spe
i�
 intera
tion graph. These topi
s are des
ribed in detail

in later 
hapters of this thesis.
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Part II

Analysis of Colle
tive Motion:

Top-down Approa
hes
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Chapter 4

Continuum Flo
king and Control

4.1 Motivation

It is a 
ommon pra
ti
e in 
lassi
al me
hani
s to 
onsider a 
ontinuous des
ription

of a physi
al system. Appli
ations in
lude vibrating rods, vibrating membranes,

�uid me
hani
s et
. [Goldstein et al., 2001; Chorin et al., 1990℄ The transition

from dis
rete-parti
le system to a 
ontinuum enables a 
ompa
t des
ription of

the system, often leading to partial di�erential equations that reveal deep insights

into the system, e.g. wave-like phenomena, whi
h may be too obs
ure or inelegant

in the dis
rete 
ounterpart. In the same spirit, we attempt to 
on
eptualize a


ontinuum �o
k and address its optimal maneuvering properties. Biologi
al �o
ks

are known to show remarkable response to predator atta
ks. In the 
ase of an

atta
k, the whole �o
k seems to divert away from the predator. They 
an perform

these tasks my means of propagating information (in this 
ase, threat) through

the �o
k at a mu
h higher speed than the �o
king speed [Attanasi et al., 2014℄.
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A key goal of our approa
h is to 
apture this phenomenon, i.e. to un
over the

wave-like aspe
ts of �o
king. An optimal 
ontrol problem for a �o
k of �nite

agents is presented in Se
tion 3.3. We take the same framework and formulate a

general 
ontinuum version of the problem.

Consider an ensemble of N identi
al, self-steering parti
les, ea
h obeying a

drift free left invariant system on a matrix Lie group G,

ġi = giξi, gi ∈ G, ξi ∈ g, i = 1, ..., N, (4.1)

where g is the Lie algebra of G. These parti
les intera
t with ea
h other by

a pre-de�ned graph of intera
tion. The 
olle
tive behavior of su
h a system was

extensively studied in [Justh and Krishnaprasad, 2015b℄ by solving an appropriate

optimal 
ontrol problem. Borrowing the notations of [Justh and Krishnaprasad,

2015b℄, we write the 
ost fun
tional as �self-energy� term 
oupled with a �mismat
h

in steering� term

J =

∫ T

0

L(ξ1(t), ..., ξN(t))dt, (4.2)

where,

L(ξ1, ..., ξN) =
1

2

(

N
∑

i=1

‖ξi‖2 + χ
N
∑

i=1

N
∑

j=1

aij ‖ξi − ξj‖2
)

, (4.3)

where binary valued aij 's populate the adja
en
y matrix that de�nes the graph

of intera
tion and χ ≥ 0 is a 
oupling 
onstant. Note that the inner produ
t

〈ξ, η〉 = tr(ξTη), and the 
orresponding tra
e norm, ‖ξ‖ =
√

〈ξ, ξ〉 are in e�e
t,

where ξ, η ∈ g.
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In an attempt to extend this view, we 
onsider an in�nite number of parti
les,

i.e. the limiting 
ase of N →∞. Here we 
onsider a one-dimensional 
ontinuum

of parti
les, i.e. ea
h parti
le is labeled by a point on a 
ir
le S1
. This way, the

agents are thought as a virtual �lament. Moreover, we 
onsider a 
y
li
 intera
tion

graph, i.e. ea
h parti
le is thought to be intera
ting with the `next' parti
le on

the 
ir
le. We introdu
e the maps, g : R × S1 → G and ξ : R × S1 → g. The

mismat
h in steering term 
an then be written as the gradient of ξ in the limiting


ase. In other words, in 
ontinuum limit of N →∞, the Lagrangian in (4.3) take

the form,

L(ξ) =
1

2

∫ 2π

0

(

‖ξ(t, θ)‖2 + χ

∥

∥

∥

∥

∂ξ(t, θ)

∂θ

∥

∥

∥

∥

2
)

dθ. (4.4)

Note that the summations over the number of parti
les in (4.3) have been repla
ed

by integral over the 
ir
le in the 
ontinuum setting in (4.4).

Let n be the dimension of the Lie algebra g and {A1, A2, ..., An} denote an or-

thonormal basis of g. We introdu
e the 
ontrols ui : R × S1 → R, i = 1, ..., m,

so that ξ 
an be written as,

ξ(t, θ) =
m
∑

i=1

ui(t, θ)Ai, (4.5)

where m < n. With this substitution, the Lagrangian in (4.4) 
an be rewritten

as,

L(u1, ..., um) =
1

2

∫ 2π

0

m
∑

i=1

(

u2i + χ

(

∂ui
∂θ

)2
)

dθ. (4.6)
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Finally, we attempt to minimize the 
ost fun
tional,

J =

∫ T

0

L(u1, ..., um)dt, (4.7)

subje
t to the group dynami
s,

∂g(t,θ)
∂t

= g(t, θ)ξ(t, θ) = g(t, θ)

(

m
∑

i=1

ui(t, θ)Ai

)

and

the �xed end-point 
onstraints, g(0, θ) = g0(θ) and g(T, θ) = gT (θ).

We will note that this optimal 
ontrol problem 
an be 
ast in a more 
onvenient

setting of loop groups, the group of smooth fun
tions from the 
ir
le to the Lie

group G. In Se
tion 4.2, we will develop a general framework for su
h optimal


ontrol problems in loop group setting. Controllability results will be dis
ussed

in Se
tion 4.3. This helps us to des
ribe optimal 
ontrol solutions in Se
tion 4.4.

Ne
essary 
onditions will be derived by both 
al
ulus of variations and Pontrya-

gin's Maximum Prin
iple approa
h. An example of 
ontinuum of nonholonomi


integrators will be studied in detail in Se
tion 4.5. Se
tion 4.6 will present deriva-

tion of optimal 
ontrol equations in the SE(2) 
ase along with their numeri
al

treatment. This is a joint work with Dr. E. Justh [Halder et al., 2019a℄.

4.2 A Control System on a Loop Group

Let G be a �nite dimensional matrix Lie group and g be its Lie algebra of di-

mension n. We will study spa
es of smooth maps from the 
ir
le S1
to G and

g,

G = C∞(S1;G), L = C∞(S1; g).
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We 
an 
onstru
t Sobolev 
ompletions of G and L as done in [Krishnaprasad

et al., 1983℄. We 
an always view the Lie algebra g as a subalgebra of the general

linear algebra gl(r,R) for some r > n. De�ning the spa
e R = C∞(S1; gl(r,R)),

we have

G ⊂ R, L ⊂ R.

For any f ∈ R, use the Sobolev k-norm (k ≥ 1)

‖f‖k =
∫

S1

k
∑

l=0

∣

∣

∣

∣

dl

dθl
f(θ)

∣

∣

∣

∣

2

dθ, (4.8)

where

|f |2 = tr(fTf).

Let the 
ompletions of G , L , and R in this norm be denoted as Gk, Lk, and Rk,

respe
tively. By Proposition 3.1 of [Krishnaprasad et al., 1983℄, Gk is a
tually a Lie

group under pointwise multipli
ation operation (g1g2)(θ) = g1(θ) · g2(θ), g1, g2 ∈

Gk, θ ∈ S1
. Moreover, Lk is the Lie algebra of Gk under pointwise Lie bra
ket

de�ned as [f1, f2](θ) = [f1(θ), f2(θ)], f1, f2 ∈ Lk, θ ∈ S1
. The spa
es Gk and Lk

are 
alled loop groups and loop algebras [Pressley and Segal, 1986℄.

Similar to the �nite dimensional Lie groups, we introdu
e (pointwise) left a
tion

by Lg : Gk → Gk, h 7→ gh, the left translation by g ∈ Gk. The tangent map of Lg

is then given as ThLg : ThGk → TghGk. We now de�ne a left invariant ve
tor �eld

on Gk as follows. A ve
tor �eld X : Gk → TGk, h 7→ X(h) is 
alled left invariant if

ThLg(X(h)) = X(gh), ∀h ∈ Gk. (4.9)
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Re
ognizing the Lie algebra Lk as the tangent spa
e at identity e of Gk (e = {f ∈

Gk|f(θ) ≡ eG}, where eG is the identity element of G), i.e. Lk = TeGk, we 
an

de�ne a left invariant 
ontrol system as,

dg(t)

dt
= TeLg(t)(ξ(t)) = g(t) · ξu(t), (4.10)

where a given 
ontrol input u(t) determines a 
ontrolled ve
tor ξu(t) in the Lie

algebra Lk. Note that the loop algebra Lk 
an be identi�ed with the tensor

produ
t spa
e g ⊗ F , where F is the ring of real valued C∞
fun
tions on S1

.

Choose a basis of g as {A1, A2, . . . An}. Then, any ξ ∈ Lk 
an be written as,

ξ(θ) = ξ1(θ)A1 + · · ·+ ξn(θ)An, θ ∈ S1,

where ea
h of ξk's (k = 1, . . . , n) are smooth fun
tions on the 
ir
le. We will now

limit ourselves to the study of 
ontrol ve
tors ξu of the form,

ξu(t) = u1(t)A1 + · · ·+ um(t)Am, (4.11)

where m < n and the 
ontrol input u(·) = (u1(·), . . . , um(·)) belongs to the set U

of pie
ewise 
ontinuous U valued fun
tions, where U is ve
tor spa
e of Rm
valued

smooth fun
tions on the 
ir
le, i.e. U := {u(·) : u is pie
ewise 
ontinuous in t, u(t) ∈

U = C∞(S1;Rm)}.

4.3 Controllability

Having 
onstru
ted the 
ontrol system on the loop group Gk, it is natural to ask

the question of 
ontrollability or a

essibility, i.e. given any two points g1 and
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g2 in Gk, if they 
an be 
onne
ted by a pie
ewise di�erentiable 
urve, 
onsisting

of possibly �nitely many pie
es, ea
h pie
e being an integral 
urve of a left in-

variant ve
tor �eld de�ned by 
hoosing a 
ontrol u(·) ∈ U . In �nite dimensional

analogue of this question, i.e. where we shrink the 
ir
le S1
down to a point, the


ontrollability question is answered by the well known Chow-Rashevsky theorem

[Wei-Liang, 1939; Rashevsky, 1938℄. In in�nite dimensional 
ases, however, it is

not immediate if the Chow-Rashevsky theorem remains valid. There is a body of

literature [Heintze and Liu, 1999; Salehani and Markina, 2014℄ that attempts to

atta
k this problem. It is the result of [Heintze and Liu, 1999℄ that we use in this

se
tion. This result addresses the 
ontrollability question in a weaker sense whi
h

we will make expli
it.

Let M be a 
omplete 
onne
ted Hilbert manifold and let X(M) denote the

set of all smooth ve
tor �elds de�ned onM. Let F ⊂ X(M) be a given family of

smooth ve
tor �elds onM. LetRF(x) be the set of points inM that 
an be joined

from x ∈ M by means of a pie
ewise di�erentiable 
urve, ea
h pie
e of whi
h is

an integral 
urve of a ve
tor �eld in F . Let Lie F be the Lie subalgebra of X(M)

generated by F , and Liex F = {X(x) : X ∈ Lie F} - the evaluation of Lie F at

x ∈M. IfM is �nite dimensional, the 
lassi
al Chow-Rashevsky theorem holds:

if Liex F = TxM for ea
h x ∈ M, then RF (x) = M, for every x ∈ M. In a

general Hilbert manifoldM, the following generalized Chow-Rashevsky theorem

holds:
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Theorem 4.3.1 ([Heintze and Liu, 1999℄). LetM be a 
omplete 
onne
ted Hilbert

manifold and F a family of smooth ve
tor �elds de�ned onM. If Liex F is dense

in TxM for all x ∈M, then RF (x) is dense inM for all x ∈M.

Theorem 4.3.1 is a weaker statement than the one for �nite dimensional 
ase.

Here we make pre
ise the strong and weak notions of 
ontrollability. Consider

the 
ontrol system 
onstru
ted in (4.10)�(4.11). Note that the loop group Gk


an be given a stru
ture of a smooth Hilbert manifold [Eells Jr, 1966; Ebin and

Marsden, 1970℄. In this 
ase, the family F ∈ X(Gk) is given by {Xi}mi=1 , where

Xi(g(t)) = g(t) · (ui(t)Ai), for g(t) ∈ Gk.

De�nition 4.1. (Strong Controllability) The 
ontrol system (4.10)�(4.11) is

said to be strongly 
ontrollable if RF = Gk, i.e. given any two points g1, g2 ∈ Gk,

we 
an �nd a 
ontrol input that will transfer the system from g1 to g2.

De�nition 4.2. (Weak Controllability) The 
ontrol system (4.10)�(4.11) is

said to be weakly 
ontrollable if RF is dense in Gk, i.e. given any two points

g1, g2 ∈ Gk, we 
an �nd a 
ontrol input that will transfer the system from g1 to a

state that is arbitrarily 
lose to g2.

The set {A1, ..., Am} is said to be bra
ket generating if the iterated bra
kets

of its elements span the Lie algebra g. In the �nite dimensional analogue of

the 
ontrol system de�ned in (4.10)�(4.11), the (strong) 
ontrollability 
ondition

a

ording to Chow-Rashevsky theorem is equivalent to having the set {Al}ml=1

bra
ket generating in g. We will now try to establish (weak) 
ontrollability of
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the in�nite dimensional loop group 
ase by assuming that {A1, ..., Am} is bra
ket

generating in g.

Theorem 4.3.2. Consider the 
ontrol system (4.10)�(4.11) on the loop group Gk.

Assume that the set {Al}ml=1 is bra
ket generating in g. Then the system is weakly


ontrollable.

Proof. The de�nition of left invariant ve
tor �elds on Gk (4.9) 
an also be made

expli
it by means of smooth fun
tions on Gk. Let D be the set of smooth real val-

ued fun
tions on Gk. Then given an element ξ ∈ Lk, we 
an de�ne a di�erentiable

ve
tor �eld Xξ : D → D as,

(Xξf)(g) = (Df)g · gξ, f ∈ D, (4.12)

whereD denotes the di�erential operator. Given two ve
tor �eldsXξ, Xη ∈ X(Gk),

we 
an 
al
ulate their Ja
obi-Lie bra
ket de�ned as,

[Xξ, Xη]f = Xξ(Xηf)−Xη(Xξf), f ∈ D.

We 
ompute,

Xξ(Xηf)(g) = (Xξ((Df)g · gη))(g)

= D((Df)g · gη)g · gξ

= (D2f)g · (gη, gξ) + (Df)g · (D(gη)g · gξ)

= (D2f)g · (gη, gξ) + (Df)g · (gξη).

Similarly,

Xη(Xξf)(g) = (D2f)g · (gξ, gη) + (Df)g · (gηξ).
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The symmetry of the se
ond di�erential operator D2
yields

[Xξ, Xη]f(g) = (Df)g · (g(ξη − ηξ))

= X[ξ,η]f(g),

where [ξ, η] is the usual (pointwise) Lie bra
ket on Lk. This leads us to a detailed

study of the Lie bra
ket of the loop algebra Lk. It is immediate that Lk is

generated by the generators {Pmr
r }mr∈Z, r∈{1,...,n} de�ned as,

Pmr

r = eimrθAr. (4.13)

Let the stru
ture 
onstants of g be denoted by Γr
pq. Then,

[Pmp
p , Pmq

q ] =

n
∑

r=1

Γr
pqP

mp+mq
r . (4.14)

With this notation, a 
ontrolled ve
tor ξ(t) = ξu(t) ∈ Lk 
an be expressed as

ξu(t) =
m
∑

r=1

(

∑

mr∈Z
umr

r (t)Pmr

r

)

, (4.15)

where for ea
h r = 1, ..., m, umr
r (t) ∈ C's are the Fourier 
oe�
ients of the 
ontrol

ur(t) and umr
r (t) = u−mr

r (t) (sin
e the 
ontrols are real). We now de�ne a family

of ve
tor �elds on Gk as F = {Xmr
r }mr∈Z, r∈{1,...,m}, where

Xmr

r f(g) = (Df)g · gPmr

r , f ∈ D.

Taking bra
ket of any two ve
tor �elds from the family F yields another ve
tor

�led whi
h is governed by the 
ommutator relationship in (4.14). Note that sin
e

the set {A1, ..., Am} is bra
ket generating in g, for ea
h l ∈ {m+ 1, ..., n}, we are

guaranteed to get the item

Pml

l := P
∑

r armr

l , ar ∈ Z
+ ∪ {0}, mr ∈ Z, r ∈ {1, ..., m},
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at some depth of iterated bra
kets from the family F . By 
hoosing mr ∈ Z, r ∈

{1, . . . , m}, we 
an then a
hieve any ml ∈ Z. We have thus proved that if the set

{Ar}r∈{1,...,m} is bra
ket generating in g, Lieg F is dense in the tangent spa
e TgGk

at ea
h g ∈ Gk. The generalized Chow's theorem 4.3.1 then provides the required

(weak) 
ontrollability result. �

4.4 Optimal Control Problems

We start with the left invariant 
ontrol system on the loop group Gk as in (4.10)-

(4.11). Now for a given T > 0, 
onsider the following �xed end-point optimal


ontrol problem,

(PG)
min
u∈U

J(u) =

∫ T

0

L(g(t), u(t))dt

subje
t to: ġ = g · ξ, g(0) = g0, g(T ) = gT ; g0, gT ∈ Gk.

(4.16)

We are interested in deriving ne
essary 
onditions for optimality for su
h optimal


ontrol problems. Spe
ial 
are needs to be taken sin
e the problem is posed in an

in�nite dimensional setting. We provide two di�erent approa
hes for doing that.

4.4.1 Cal
ulus of Variations Approa
h

Let x(t) = (x1(t), ..., xr(t)) ∈ C∞(S1,Rr) =: X denote a ve
tor that 
an be used

to represent the 
omponents of g(t) ∈ G, for some r ≥ n. The group dynami
s

ġ = g · ξ(u) = g · (∑i uiAi) e�e
tively lets us write the 
ontrol u(t) as a fun
tion

of (x(t), ẋ(t)). The �xed endpoint 
onstraints in g 
an be translated to some
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nonholonomi
 
onstraints of the form

Φ(x, ẋ) =

∫ T

0

φ(x(t), ẋ(t))dt = 0, (4.17)

where φ(x(t), ẋ(t)) ∈ C∞(S1,Rl) =: Z, for some l < r. Then the problem (PG)


an be written as,

min J =

∫ T

0

L(x(t), ẋ(t))dt, (4.18)

subje
t to the nonholonomi
 
onstraints (4.17). Here we have to keep in mind that

the variations in x are to be both in t and θ. This is a well known problem 
alled

the `Lagrange problem' in 
al
ulus of variations. The one-dimensional Lagrange

problem is well studied [Gelfand and Fomin, 1963; Elsgol
, 2012℄. However, the

theory behind multidimensional problem is more 
ompli
ated and less 
omplete

[Giaquinta and Hildebrandt, 1996; Bliss, 1946℄. The di�
ulty arises sin
e not all

the ẋ are freely variable. A

ording to [Giaquinta and Hildebrandt, 1996, p. 112℄,

there exist a Lagrange multiplier λ ∈ C∞(R× S1;Rl), su
h that we 
an �nd the

free extremals of the augmented Lagrangian in an usual way. Moreover, sin
e the


onstraints (4.17) are of isoperimetri
 type, λ does not depend on t [Rund, 1966,

p. 349℄. We 
an write the augmented Lagrangian as

L̃ = L+ 〈λ, φ〉Z , (4.19)

where λ = (λ1, λ2, ..., λl) ∈ C∞(S1;Rl).

Furthermore, we are interested in a spe
ial stru
ture of the Lagrangian, namely

L(x, ẋ) =

∫ 2π

0

L(x, ẋ) dθ, (4.20)
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where the fun
tional L is 
alled the Lagrangian density. The augmented 
ost

fun
tion take the form,

J̃(x, ẋ) =

∫ T

0

∫ 2π

0

L(x, ẋ) dθdt+
l
∑

j=1

∫ 2π

0

λj(θ)φj(x, ẋ) dθ

=

∫ T

0

∫ 2π

0

L̃(x, ẋ) dθdt,

where the rede�ned Lagrangian density is given by,

L̃ = L+

l
∑

j=1

λjφj. (4.21)

We will relabel L̃ by L in subsequent analysis for 
onvenien
e. By invoking

notations xt =
∂x
∂t
, xθ =

∂x
∂θ
, xtθ =

∂2x
∂t∂θ

= xθt et
., we 
an write L = L(x, xθ, xt, xtθ).

In order to optimize this 
ost fun
tional, the variational prin
iple requires that,

δJ̃ =

∫ T

0

∫ 2π

0

r
∑

i=1

(

∂L
∂xi

δxi +
∂L
∂xi,θ

δxi,θ +
∂L
∂xi,t

δxi,t +
∂L
∂xi,tθ

δxi,tθ

)

dθdt = 0,

where δy denotes variation of the quantity y that vanishes at the endpoints of t

and θ. Using integration by parts, for ea
h i, we may write,

∫ 2π

0

∂L
∂xi,θ

δxi,θdθ =
∂L
∂xi,θ

δxi

∣

∣

∣

∣

∣

2π

0

−
∫ 2π

0

∂

∂θ

(

∂L
∂xi,θ

)

δxidθ

= −
∫ 2π

0

∂

∂θ

(

∂L
∂xi,θ

)

δxidθ,

Similarly,

∫ T

0

∂L
∂xi,t

δxi,tdt = −
∫ T

0

∂

∂t

(

∂L
∂xi,t

)

δxidt,

∫ T

0

∫ 2π

0

∂L
∂xi,tθ

δxi,tθdθdt =

∫ T

0

∫ 2π

0

∂2

∂t∂θ

(

∂L
∂xi,tθ

)

δxi dθdt.
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Hen
e,

δJ̃ =

∫ T

0

∫ 2π

0

∑

i

(

∂L
∂xi
− ∂

∂θ

(

∂L
∂xi,θ

)

− ∂

∂t

(

∂L
∂xi,t

)

+
∂2

∂t∂θ

(

∂L
∂xi,tθ

))

δxi dθdt

The Euler-Lagrange equations 
an then be expressed as,

∂L
∂xi
− ∂

∂θ

(

∂L
∂xi,θ

)

− ∂

∂t

(

∂L
∂xi,t

)

+
∂2

∂t∂θ

(

∂L
∂xi,tθ

)

= 0, i = 1, 2, ..., r. (4.22)

4.4.2 Maximum Prin
iple Approa
h

In this se
tion we provide a brief exposure to Pontryagin's Maximum Prin
iple

(PMP) type argument in in�nite dimensional spa
es. It is to be noted that PMP

does not automati
ally hold in general in�nite dimensional optimal 
ontrol prob-

lems, one requires some more assumptions for it to work. A detailed study on

this subje
t is done in Appendix A. Here we only de�ne some notations and

assumptions to state the ne
essary theorem.

We 
onsider an abstra
t di�erential equation in a Hilbert spa
e X ,

dx(t)

dt
= f(t, x(t), u(t)) a.e. in [0, T ], (4.23)

where x(t) ∈ X , u(·) ∈ U , and T > 0. Here X is 
alled the state spa
e and U

is the set of all measurable fun
tions u(·) : [0, T ] → U , where U is a separable

metri
 spa
e 
alled the 
ontrol spa
e. With this setup, we formulate the following

optimal 
ontrol problem (P),

(P)

min
u∈U

J(u) =

∫ T

0

L(t, x(t), u(t))dt

subje
t to: ẋ = f(t, x, u) a.e. in [0, T ], x(0) = x0, x(T ) = xT .

(4.24)
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We assume that both the fun
tions f(·, ·, ·) and L(·, ·, ·) are Bo
hner integrable in

t ∈ [0, T ] and Lips
hitz 
ontinuous in x(t) ∈ X , with 
onstant K. Furthermore,

we require the existen
e and 
ontinuity of the Fré
het derivatives f ′
x(t, x, u) and

L′
x(t, x, u). We also assume the fun
tions f, L and their derivatives f ′

x, L
′
x to be

bounded, i.e. there exists an M > 0, su
h that

‖f(t, x, u)‖ ≤M, ‖f ′
x(t, x, u)‖ ≤M,

‖L(t, x, u)‖ ≤M, ‖L′
x(t, x, u)‖ ≤M,

for all (t, x(t), u(t)) ∈ [0, T ]×X×U . Note that these hypotheses ensure a 
ontin-

uous and unique solution of (4.23) to exist [Avez, 1986℄. The following te
hni
al

details is one of the key ingredients in the proof of the PMP.

De�nition 4.3. (Finite Codimensionality) [Fattorini, 1987℄ A subset S of a

Hilbert spa
e Z is 
alled to be �nite 
odimensional in Z, if there exists a 
losed

subspa
e Zc ⊆ Z of �nite 
odimension su
h that Sc = Πc(
o(S)), has nonempty

interior in Zc, where Πc denotes the orthogonal proje
tion from Z onto Zc and 
o

means 
losed 
onvex hull.

We will now make a key assumption to derive a nontrivial maximum prin
iple.

Let a solution of problem (P) exist and the optimal 
ontrol be denoted by u∗ ∈ U

and let the 
orresponding optimal traje
tory be denoted as x∗(·). Then de�ne the

`rea
hable set' as,

R :=

{

z(T ) ∈ X | z(t) =
∫ t

0

f ′
x(s, x

∗(s), u∗(s)) · z(s)ds

+

∫ t

0

(f(s, x∗(s), v(s))− f(s, x∗(s), u∗(s))) ds, for some v(·) ∈ U
}

(4.25)
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(A1) The set R is �nite 
odimensional in X .

Remark 4.1. In general, it is not 
lear whether there exists a relationship between


ontrollability (strong or weak) of the system and the �nite 
odimensionality

assumption of the `rea
hable set' R. We will, however, prove that in a spe
ial


ase of G = H(3), the Heisenberg group, the strong 
ontrollability implies �nite


odimensionality of R. It is of future 
onsideration to address this question in a

general 
ase.

Using usual formalism, we invoke the pre-Hamiltonian fun
tion H : R×X ×

U ×R×X∗ → R as,

H(t, x(t), u(t), p0, p(t)) = p0L(t, x(t), u(t)) + 〈p(t), f(t, x(t), u(t))〉 , (4.26)

where p(t) ∈ X∗
is 
alled the 
ostate variable. Then the PMP 
an be written as,

Theorem 4.4.1. (Maximum Prin
iple) Let u∗ ∈ U be an optimal 
ontrol for

problem (P) and x∗(t) be the 
orresponding optimal traje
tory. Then, there exist

a pair (p∗0, p
∗(t)) ∈ R × X∗, t ∈ [0, T ], su
h that (p∗0, p

∗) 6≡ (0, 0), p∗0 ≤ 0, p∗(·)

satis�es the di�erential equation,

ṗ∗(t) = − (f ′
x(t, x

∗(t), u∗(t))
⋆
p∗(t)− p∗0L′

x(t, x
∗(t), u∗(t)), (4.27)

where by A⋆
we denote the adjoint operator of the operator A. The pointwise

maximization of the pre-Hamiltonian holds,

H(t, x∗(t), u∗(t), p∗0, p
∗(t)) = max

v∈U
H(t, x∗(t), v, p∗0, p

∗(t)), (4.28)
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for a.e. t ∈ [0, T ]. Moreover, x∗ and p∗ satisfy Hamilton's 
anoni
al equations,

i.e.

dx∗

dt
=
δH

δp∗
(t, x∗, u∗, p∗0, p

∗) (4.29)

dp∗

dt
= −δH

δx∗
(t, x∗, u∗, p∗0, p

∗). (4.30)

A proof of this theorem is rather 
ompli
ated and is given in Appendix A. We

now use this result to state a maximum prin
iple for the loop group 
ase.

Theorem 4.4.2. (Maximum Prin
iple in loop group setting) Let u∗ ∈ U

be an optimal 
ontrol for problem (PG) and g∗(t) be the 
orresponding optimal

traje
tory. Assume the �nite 
odimensionality 
ondition (A1). Denote Rk, the

Hilbert spa
e of k-Sobolev 
ompletion of the spa
e R = C∞(S1, gl(r,R)), for some

r > n. Then, there exist a pair (p∗0, p
∗(t)) ∈ R×Rk, t ∈ [0, T ], su
h that (p∗0, p

∗) 6≡

(0, 0), p∗0 ≤ 0, p∗(·) satis�es the di�erential equation

ṗ∗(t) = −p∗(t) · ξ(u∗(t))T, (4.31)

and the pointwise maximization of the pre-Hamiltonian holds,

H(g∗(t), u∗(t), p∗0, p
∗(t)) = max

v∈U
H(g∗(t), v, p∗0, p

∗(t)), (4.32)

for a.e. t ∈ [0, T ]. Moreover, g∗ and p∗ satisfy Hamilton's equations, i.e.

dg∗

dt
=
δH

δp∗
(g∗, u∗, p∗0, p

∗)

dp∗

dt
= −δH

δg∗
(g∗, u∗, p∗0, p

∗).

(4.33)

Proof. It is almost immediate that under a �nite 
odimensionality assumption like

(A1), we 
an state a maximum prin
iple like Theorem 4.4.1 for problem (PG). The

82



only 
aveat is that the state spa
e Gk is not a Hilbert spa
e and hen
e Theorem

4.4.1 
annot be applied dire
tly. However, adopting an `enlargement' te
hnique

[Bro
kett, 1973; Justh and Krishnaprasad, 2015a℄, we 
an state an analogous

maximum prin
iple. We re
ognize that the loop group Gk is a subset of Rk. The

spa
e Rk 
an then be regarded as the `raised' state spa
e. The dynami
s (4.10),

along with the initial 
ondition g(0, θ) = g0(θ) ∈ G for all θ ∈ S1
, ensures that

g(t, θ) remains in G for all (t, θ) ∈ [0, T ] × S1
. Endow the spa
e gl(r,R) with

the tra
e inner produ
t and an indu
ed norm, i.e. 〈A,B〉
gl(r,R) = tr

(

ATB
)

and

‖A‖gl(r) =
√

tr (ATA), for A,B ∈ gl(r,R). We now de�ne the pre-Hamiltonian

H : Rk × U ×R×Rk → R as,

H(g(t), u(t), p0, p(t)) = 〈p(t), g(t)ξ(u(t))〉Rk
+ p0L(u(t)), (4.34)

where the duality pairing in the de�nition of H 
an be expli
itly written as,

〈p(t), g(t)ξ(u(t))〉
Rk

=

∫ 2π

0

k
∑

i=0

〈

di

dθi
p(t, θ),

di

dθi
(g(t, θ)ξ(u(t, θ)))

〉

gl(r,R)

dθ

=

∫ 2π

0

k
∑

i=0

tr

(

di

dθi
p(t, θ)T · d

i

dθi
(g(t, θ)ξ(u(t, θ)))

)

dθ.

We are now all set to apply Theorem 4.4.1. If u∗ ∈ U is an optimal 
ontrol, then

we have,

H(g∗(t), u∗(t), p∗0, p
∗(t)) = max

v∈U
H(g∗(t), v, p∗0, p

∗(t)). (4.35)

It is obvious that

δH
δp∗

(g∗, u∗, p∗0, p
∗) = g∗ξ(u∗) = ġ∗. We 
an also derive for any

g̃(t) ∈ Rk, (suppressing other arguments)

δH

δg∗
· g̃ = lim

α→0

H(g∗ + αg̃)−H(g∗)

α
= 〈p∗, g̃ξ(u∗)〉

Rk
=
〈

p∗ξ(u∗)T, g̃
〉

Rk
,
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whi
h implies the adjoint equation to (4.10) is,

ṗ∗(t) = −p∗(t) · ξ(u∗(t))T. (4.36)

�

4.5 Spe
ial Case : G = H(3)

The previous se
tion on optimal 
ontrol provides a 
on
rete foundation in whi
h

we 
an state the maximum prin
iple for the 
onsidered optimal 
ontrol problem.

In this se
tion, we will explore a spe
ial 
ase where we take the Lie group, G as

the Heisenberg group, H(3). Note that the �nite number of parti
les 
ase of this

problem has been 
onsidered in [Justh and Krishnaprasad, 2016℄ and hen
e this

work 
an be thought as a 
ontinuum 
ounterpart of it. In H(3), g(t, θ) ∈ H(3) has

the stru
ture,

g =

















1 x1 x3 +
x1x2

2

0 1 x2

0 0 1

















,

that satisfy the group evolution equation,

∂

∂t
g(t, θ) = g(t, θ) · (u1(t, θ)A1 + u2(t, θ)A2) , (4.37)

where,

A1 =

















0 1 0

0 0 0

0 0 0

















, A2 =

















0 0 0

0 0 1

0 0 0

















,
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along with A3 = [A1, A2], form an orthonormal basis for the asso
iated Lie algebra

h(3). We attempt to address the optimal 
ontrol problem formulated before, under

this Heisenberg group setting, i.e. we solve the following,

min

∫ T

0

L(u)dt =

∫ T

0

∫ 2π

0

L(u)dθdt

=
1

2

∫ T

0

∫ 2π

0

(

(

u21 + u22
)

+ χ

(

(

∂u1
∂θ

)2

+

(

∂u2
∂θ

)2
))

dθdt,

(4.38)

where L is 
alled the Lagrange density fun
tion.

4.5.1 Controllability

It is a dire
t exer
ise of the generalized Chow-Rashevsky theorem 4.3.1 to show

weak 
ontrollability in this 
ase. The loop algebra C∞(S1, h(3)) is spanned by

{eim1θA1, e
im2θA2, e

im3θA3}. The family F of left invariant ve
tor �elds that is


hosen by means of 
ontrol inputs is given by F = {Xm1
1 , Xm2

2 }, where

Xmr

r f(g) = (Df)g · geimrθAr, f ∈ D, r = 1, 2.

Sin
e the only non-vanishing bra
kets in h(3) are [A1, A2] = A3 = −[A2, A1], the

set Lieg F would span the tangent spa
e at every point g ∈ C∞(S1,H(3)).

However, we 
an provide an argument that establishes the strong 
ontrol-

lability in this 
ase. Here we des
ribe an approa
h to 
onstru
t a 
andidate

smooth 
ontrol given any endpoint 
onditions x0i (θ) and x
T
i (θ), i = 1, 2, 3. With-

out loss of generality, we may assume x0i (θ) = 0 for all i. Now sin
e, xi(t, θ) =
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∫ t

0
ui(t, θ)dt, i = 1, 2, we 
an 
hoose smooth 
ontrols vi(t, θ), t ∈ [0, t̄ ], i = 1, 2, for

some t̄ < T , su
h that x1 and x2 rea
h their �nal endpoints. At time t = t̄, let the

`error' in x3 variable be denoted as ∆x3(θ) = xT3 (θ)− x3(t̄, θ). Note that without

loss of generality, we may assume that ∆x3(θ) > 0 for all θ. We know that in

a single nonholonomi
 integrator 
ase, if we 
omplete a loop in time for (x1, x2)

variables, the 
hange in x3 variable will be given by the area of the loop. We may

use the same idea in the 
ontinuum 
ase to 
onstru
t smooth 
ontrols. We 
an

generate the following 
ir
ular loops (in time) in (x1, x2) variables,









x1(t, θ)

x2(t, θ)









=









xT1 (θ)− r(θ)

xT2 (θ)









+ r(θ)









cos(ω(t− t̄))

sin(ω(t− t̄))









,

ω =
2π

T − t̄ , t ∈ (t̄, T ],

(4.39)

where r(·) is a smooth fun
tion in θ. The 
ontrols required to generate these loops

are given by









ṽ1(t, θ)

ṽ2(t, θ)









= r(θ)ω









− sin(ω(t− t̄))

cos(ω(t− t̄))









, (4.40)

We then 
ompute,

x3(T, θ) = x3(t̄, θ) +
1

2

∫ T

t̄

(x1(t, θ)ṽ2(t, θ)− x2(t, θ)ṽ1(t, θ))dt

= xT3 (θ)−∆x3(θ) + πr2(θ).

Sin
e ∆x3(·) is smooth, we 
an always 
hoose smooth fun
tion r(·) su
h that
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∆x3(θ) = πr2(θ), and thus the smooth 
ontrols

ui(t, θ) =



















vi(t, θ), t ∈ [0, t̄ ]

ṽi(t, θ), t ∈ (t̄, T ]

, i = 1, 2, (4.41)

make the required state transitions possible. This shows that in the Heisenberg


ase we have strong 
ontrollability.

Remark 4.2. We 
an assume ∆x3 > 0 for all θ be
ause if it was not the 
ase,

we 
ould add another pie
e of 
ontrols v̂i's before applying the 
ontrols ṽi's. The

purpose of the 
ontrols v̂i's would be to make the states (x1, x2) undergo a 
ir
ular

loop of radius r̂, for all θ. This will produ
e a 
hange in the x3 variable by πr̂2

for all θ. Hen
e the new error 
an be written as ∆x3(θ) = ∆x3(θ) + πr̂2. We 
an

always pi
k a r̂ so that ∆x3(θ) > 0 for all θ.

4.5.2 Equations of Optimal Control

Ne
essary 
onditions for optimality 
an be derived by various methods. We will

present two su
h approa
hes to solve the optimal 
ontrol problem (4.38).
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4.5.2.1 Cal
ulus of Variations Approa
h

Note that the group dynami
s in (4.37) 
an also be expressed by the di�erential

equations,

∂x1
∂t

= u1, (4.42)

∂x2
∂t

= u2, (4.43)

∂x3
∂t

=
1

2
(x1u2 − x2u1). (4.44)

Sin
e we have an integral 
onstraint, namely, ∆x3(θ) =
1
2

∫ T

0
(x1u2 − x2u1)dt, we

invoke a Lagrange multiplier, λ ∈ C∞(S1,R) to write the augmented Lagrangian

density fun
tion as,

L =
1

2

[(

x21,t + x22,t
)

+ χ
(

x21,θt + x22,θt
)

+ λ (x1x2,t − x2x1,t)
]

. (4.45)

where we adopted the notation 
onventions xi,θ = ∂xi

∂θ
, xi,tθ = ∂2xi

∂t∂θ
= xi,θt et
.

Appli
ation of the Euler-Lagrange equations (4.22) gives the following equations,

∂2x1
∂t2

= λ
∂x2
∂t

+ χ
∂4x1
∂θ2∂t2

∂2x2
∂t2

= −λ∂x1
∂t

+ χ
∂4x2
∂θ2∂t2

,

(4.46)

whi
h yields the evolution equations for optimal 
ontrols,

A∂u1
∂t

= λu2

A∂u2
∂t

= −λu1,
(4.47)

where we denote A := (1− χ∆), ∆ being the Lapla
ian.

Remark 4.3. A is a positive de�nite self adjoint operator in C∞(S1,R), having

eigenvalues αn = 1 + χn2
with asso
iated eigenve
tors en = einθ for n ∈ Z.
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Lemma 4.5.1. The quantities,

hn =

∫ 2π

0

(

∂nu1
∂tn
A∂

nu1
∂tn

+
∂nu2
∂tn
A∂

nu2
∂tn

)

dθ, n = 0, 1, 2, ... (4.48)

are 
onserved along any optimal traje
tories satisfying (4.47).

Proof. It is easy to establish that for ea
h n, dhn

dt
= 0, whi
h follows dire
tly from

the way optimal 
ontrols behave in (4.47) and the fa
t that the operator A is self

adjoint. �

4.5.2.2 PMP Approa
h

We introdu
e the 
ostate variable p(t) = (p1(t), p2(t), p3(t)) ∈ C∞(S1;R3), t ∈

[0, T ]. The pre-Hamiltonian 
an be written as (
onsidering only normal extremals,

i.e. where p0 6= 0 and 
an be normalized to −1),

H = 〈ẋ, p〉 − L

=

∫ 2π

0

(

u1p1 + u2p2 +
1

2
(x1u2 − x2u1)p3 −

1

2

(

u21 + u22
)

− χ

2

(

u21,θ + u22,θ
)

)

dθ.

(4.49)

Remark 4.4. Note that the �nite 
odimensionality assumption is satis�ed in this


ase. To see this, note that the 
omponents of members of the `rea
hability set'

(4.25) 
an be expressed as,

z1(T ) =

∫ T

0

w1(t)dt

z2(T ) =

∫ T

0

w2(t)dt

z3(T ) =
1

2

∫ T

0

(z1(t)u
∗
2(t)− z2(t)u∗1(t)) dt+

1

2

∫ T

0

(x∗1(t)w2(t)− x∗2(t)w1(t)) dt,
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where w(t) = (w1(t), w2(t)) is any arbitrary 
ontrol input. If we denote traje
tories


orresponding to any input u(·) as xu(t) = x(t, u(·)), then, z1(T ) = xw1 (T ), z2(T ) =

xw2 (T ). Furthermore note that,

z3(T ) =
1

2

[∫ T

0

(x∗1u
∗
2 − x∗2u∗1)dt+

∫ T

0

(xw1 w2 − xw2 w1)dt

−
∫ T

0

((x∗1 − xw1 )(u∗2 − w2)− (x∗2 − xw2 )(u∗1 − w1))dt

]

= x∗3(T ) + xw3 (T )− x̃3(T ),

where x̃ = x∗ − xw. We may now 
hoose w = u∗. This makes x̃(T ) = 0

and (z1(T ), z2(T ), z3(T )) = (x∗1(T ), x
∗
2(T ), 2x

∗
3(T )). Sin
e the Heisenberg 
ase is

strongly 
ontrollable, the `rea
hability set' R spans the whole of the state spa
e

X , making it trivially �nite 
odimensional in X .

We 
an now dire
tly apply Theorem 4.4.1 to derive ne
essary optimality 
on-

ditions. The maximum prin
iple would require us to maximize (4.49) pointwise

over the 
ontrols, i.e. we are attempting to �nd the Hamiltonian as,

H(x, p) = sup
v1,v2∈C∞(S1;R)

H(x, {vi}2i=1, p)

= sup
v1,v2∈C∞(S1;R)

∫ 2π

0

(

v1p1 + v2p2 +
1

2
(x1v2 − x2v1)p3

−1
2

(

v21 + v22
)

− χ

2

(

v21,θ + v22,θ
)

)

dθ (4.50)

This maximization results in two Euler-Lagrange equations,

∂H

∂vi
− ∂

∂θ

(

∂H

∂vi,θ

)

= 0, i = 1, 2, (4.51)
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that yield the optimal 
ontrols,

Au1 = p1 −
1

2
x2p3,

Au2 = p2 +
1

2
x1p3,

(4.52)

with the usual de�nition of A = (1− χ∆). The Hamiltonian 
an be read as,

H =
1

2

∫ 2π

0

(u1Au1 + u2Au2) dθ

=
1

2

∫ 2π

0

[(

p1 −
1

2
x2p3

)

A−1

(

p1 −
1

2
x2p3

)

+

(

p2 +
1

2
x1p3

)

A−1

(

p2 +
1

2
x1p3

)]

dθ (4.53)

The dynami
s of the 
ostate variable p 
an be 
al
ulated from Hamilton's equa-

tion,

∂p
∂t

= − δH
δx
, where

δH
δx

denotes the fun
tional derivative of H with respe
t

to x. Note that the Hamiltonian fun
tion H is smooth in x, so we 
an take this

derivative. This 
an be de�ned as, DH(xi) · σ =
〈

δH
δxi
, σ
〉

, i = 1, 2, 3, where

DH(xi) · σ is the Fré
het derivative of H at xi in the dire
tion of σ. This is

de�ned as,

DH(xi) · σ =
d

dǫ
H(x1 + ǫσ)

∣

∣

∣

∣

ǫ=0

.

We may 
al
ulate, for i = 1,

DH(x1) · σ =
1

2

d

dǫ

∫ 2π

0

[(

p1 −
1

2
x2p3

)

A−1

(

p1 −
1

2
x2p3

)

+

(

p2 +
1

2
(x1 + ǫσ)p3

)

A−1

(

p2 +
1

2
(x1 + ǫσ)p3

)]

dθ

∣

∣

∣

∣

ǫ=0

=
1

2

∫ 2π

0

(

σp3A−1

(

p2 +
1

2
(x1 + ǫσ)p3

))

dθ

=
1

2

∫ 2π

0

(

σp3A−1

(

p2 +
1

2
x1p3

))

dθ

=

〈

p3
2
A−1

(

p2 +
1

2
x1p3

)

, σ

〉

, (4.54)

91



so that we may write,

δH
δx1

=
p3
2
A−1

(

p2 +
1

2
x1p3

)

. (4.55)

We 
an similarly 
al
ulate

δH
δx2

= −p3
2
A−1

(

p1 − 1
2
x2p3

)

and

δH
δx3

= 0. The evolution

of p 
an then be expressed as,

∂p1
∂t

= −p3
2
A−1

(

p2 +
1

2
x1p3

)

∂p2
∂t

=
p3
2
A−1

(

p1 −
1

2
x2p3

)

∂p3
∂t

= 0.

(4.56)

From (4.52) and (4.56), we noti
e that,

∂

∂t
Au1 = −p3A−1u2

∂

∂t
Au2 = p3A−1u1

(4.57)

Hen
e, re
ognizing p3 as the negative of Lagrange multiplier λ in the previous

se
tion, we redis
over (4.47).

4.5.3 Behavior of Optimal Control

Denote, z(t, θ) := u1(t, θ) + iu2(t, θ). Then, (4.47) 
an be expressed as,

A∂z
∂t

= −iλz. (4.58)

Sin
e u1, u2 are periodi
 fun
tions in θ with period 2π, they have a Fourier series

representation, uν(t, θ) =
∞
∑

n=−∞
u
(ν)
n (t)einθ, ν = 1, 2, where u

(ν)
n 's are the Fourier
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oe�
ients of uν . Moreover, sin
e uν 's are real valued fun
tions of θ, we have,

u
(ν)
−n = u

(ν)
n . Transforming (4.58) in Fourier domain, we get,

A
dž

dt
= −iΛž, (4.59)

where we denote, A = diag

(

{αn}∞n=−∞
)

, ž(t) = [zn(t)]
∞
−∞. zn(t) = u

(1)
n (t) +

iu
(2)
n (t), i.e. zn(t)'s are Fourier 
oe�
ients of z(t, θ). Λ is the in�nite Toeplitz

matrix generated by the Fourier 
oe�
ients of λ, i.e.

Λ =

























λ0 λ−1 λ−2 · · ·

λ1 λ0 λ−1 · · ·

λ2 λ1 λ0 · · ·

· · · · · · · · · · · ·

























(4.60)

Sin
e λn's are Fourier 
oe�
ients of real valued fun
tion λ, we have λ−n = λn.

This leads to the observation that Λ is (in�nite) Hermitian matrix, i.e. Λ = Λ∗
.

4.5.3.1 Trun
ation of Fourier Coe�
ients

Here we will 
onsider �rst N+1 Fourier 
oe�
ients of z and provide an analysis of

(4.59) in the trun
ated �nite dimensional 
ase. We write, žN = (z−N · · · z0 · · · zN )T ∈

C
2N+1

. Then, the trun
ated version of (4.59) 
an be written as,

AN
džN
dt

= −iΛN žN , (4.61)

where AN and ΛN 's are appropriately trun
ated matri
es from A and Λ, respe
-

tively. Note that AN ≻ 0. Let us denote, ẑ = A
1/2
N žN and BN = A−1

N , then we

get,
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dẑ

dt
= −iΛ̂N ẑ, (4.62)

where Λ̂N = B
1/2
N ΛNB

1/2
N =

(

Λ̂N

)∗
. Sin
e the matrix −iΛ̂N is skew Hermitian,

all its eigenvalues are on the imaginary axis. Denote them by −iσn, σn ∈ R, for

n = −N, ..., N . There exists a unitary matrix V that diagonalizes −iΛ̂N , i.e.

−iΛ̂N = V ∗DV, D = diag({−iσn}).

We perform another 
oordinate 
hange by,

z̃ = V ẑ = V A
1/2
N žN , (4.63)

whi
h yields the de
oupled equations,

dz̃

dt
= Dz̃, (4.64)

i.e.

dz̃n
dt

= −iσnz̃n,

=⇒ z̃n(t) = e−iσntz̃n(0), n = −N, · · · , N. (4.65)

Performing the inverse Fourier operation, we see that,

z̃(t, θ) =

N
∑

n=−N

z̃n(t)e
inθ

=⇒ z̃(t, θ) =

N
∑

n=−N

ei(nθ−σnt)z̃n(0). (4.66)
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This is an equation of superposition of 2N + 1 traveling waves with n being the

wave number and vn = σn

n
is the speed of propagation asso
iated with n-th mode

of the wave.

4.5.3.2 Velo
ity of Propagation

We know that in the wave equation of (4.66), the velo
ity vn of propagation


orresponding to n-th frequen
y is determined as, vn = σn

n
, where σn's are (real)

eigenvalues of the Hermitian matrix Λ̂N = B
1/2
N ΛNB

1/2
N . Sin
e B

1/2
N ΛNB

1/2
N ∼

ΛNBN ∼ BNΛN (similar matri
es), the eigenvalues of Λ̂N 
an be 
hara
terized by

those of BN and ΛN .

We have eig(BN ) = {βn}N−N , where βn = 1
αn

= 1
1+χn2 . Now, ΛN is a Toeplitz

Hermitian matrix formed by the Fourier 
oe�
ients {λn}2N−2N . Given those 
oe�-


ients, it is in general not possible to write down 
losed form representation of its

eigenvalues. However, the bounds of eigenvalues of su
h a matrix is well known.

We will make a little detour to state these results.
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4.5.3.3 Toeplitz Matri
es and Eigenvalues

Let f be a periodi
 fun
tion over the interval [0, 2π) and {fn} are its Fourier


oe�
ients. Let us denote Tn(f), the n×n Toeplitz Hermitian matrix de�ned as,

Tn(f) =

































f0 f−1 f−2 · · · f−(n−1)

f1 f0 f−1 · · · f−(n−2)

f2 f1 f0 · · ·
.

.

.

.

.

.

.

.

.

f(n−1) f0

































. (4.67)

We also de�ne,

mf = ess inf(f), (4.68)

Mf = ess sup(f). (4.69)

Let the eigenvalues of Tn(f) be denoted by τn,k, k = 1, ..., n. Then,

mf ≤ τn,k ≤Mf . (4.70)

Note that, max
k
|τn,k| ≤ max(|mf | , |Mf |) ≤ M|f |. We re
all another useful result

here.

Lemma 4.5.2. Let P,Q be Hermitian positive de�nite matri
es of same order.

If τ(X) denote eigenvalues of X, then,

τmax(PQ) ≤ τmax(P ) · τmax(Q) (4.71)

τmin(PQ) ≥ τmin(P ) · τmin(Q) (4.72)
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4.5.3.4 Bounds on the Velo
ity

To get bounds on σn's, we need an useful assumption that will be apparent shortly.

A-1 mλ > 0, i.e. ΛN = T2N+1(λ) ≻ 0.

Sin
e µn = τ(BNT2N+1(λ)), Lemma 4.5.2 gives the following bound, for n =

−N, ..., N ,

τmin(BN)τmin(T2N+1(λ) ≤ σn ≤ τmax(BN)τmax(T2N+1(λ)),

=⇒ mλ

1 + χN2
≤ σn ≤Mλ.

(4.73)

A

ordingly, the velo
ity is bounded by,

mλ

n(1 + χN2)
≤ vn ≤

Mλ

n
(4.74)

Remark 4.5. The assumption A-1 
an be extended to in
lude the 
ase Mλ < 0,

i.e. ΛN ≺ 0 as well.

4.5.3.5 Spe
ial Cases

1. Case - I: Constant λ :

λ(θ) = λ0 6= 0, a 
onstant. We may assume that λ0 > 0. In this 
ase, (4.59)


an be expli
itly solved and the solution 
an be expressed as,

z(t, θ) =
∞
∑

n=−∞
n 6=0

e
in

(

θ−βnλ0

n
t

)

zn(0) + e−jλ0tz0(0). (4.75)

Here the velo
ities vn 
an be written as, vn = λ0

n(1+χn2)
, n ∈ Z \ {0}.

97



2. Case - II: Band-limited λ :

Here, we 
onsider only one frequen
y 
omponent of λ, i.e. λ(θ) = λ0 +

λ1e
iθ + λ−1e

−iθ
. Let A-1 hold, i.e. ΛN = T2N+1(λ) ≻ 0. In this 
ase, ΛN is

a tri-diagonal Toeplitz matrix. The eigenvalues of su
h a matrix are known

to take the following form.

Lemma 4.5.3.

τk(ΛN) = λ0 + 2 |λ1| cos
(

kπ

2N + 2

)

, k = 1, ..., 2N + 1. (4.76)

This, 
ombined with Lemma 4.5.2, we get the following bound,

λ0 + 2 |λ1| cos
(

(2N+1)π
2N+2

)

1 + χN2
≤ σn ≤ λ0 + 2 |λ1| cos

(

π
2N+2

)

(4.77)

4.5.4 Strong Coupling Limit, χ→∞

It is interesting to note that in the limit χ→∞, the equations (4.47) take simple

form. To see this, note that for some z ∈ C∞(S1;R), we may express

A−1z =
∞
∑

n=−∞
βn 〈φn, z〉 φn,

where βn = 1
1+χn2 are the eigenvalues of A−1

, and φn = einθ. This implies,

lim
χ→∞

A−1z =
∑

n

(

lim
χ→∞

1

1 + χn2

)

〈z, φn〉φn

= 〈z, 1〉

=⇒ lim
χ→∞

A−1z =

∫ 2π

0

zdθ.
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Figure 4.1: Numeri
al solution of (4.61) for experiment 1. Evolution of u1 (blue)

and u2 (red) is given in the �rst row; the 
ontrols form a simple traveling wave

along the θ domain. The se
ond row shows evolution of x1, x2 variables.

With this realization, we may rewrite (4.47) in the strong 
oupling limit as,

∂u1
∂t

=

∫ 2π

0

λu2dθ

∂u2
∂t

= −
∫ 2π

0

λu1dθ.

(4.78)

It is 
lear from (4.52) that both u1 and u2 are independent of θ. Then the equations

(4.78) 
an be equivalently written as

u̇1 = λ̃u2

u̇2 = −λ̃u1,
(4.79)
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Figure 4.2: Evolution of x3 for experiment 1. The blue loop represents the 
ir
le

S1
while the height of ea
h point on the red loop is given by the value of x3 at

the 
orresponding point of θ.

where λ̃ =
∫ 2π

0
λdθ. Equations (4.79) are optimal 
ontrol evolution equations for

a single agent [Justh and Krishnaprasad, 2016℄. Thus in the strong 
oupling limit

χ → ∞, the optimal 
ontrol solutions for the 
ontinuum of agents 
ollapses to

that of a single agent. This is 
alled the syn
hronization of the �o
k, where every

agent in the �o
k behaves the same way.
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Figure 4.3: Numeri
al solution of (4.61) for experiment 2. Evolution of u1 (blue)

and u2 (red) is given in the �rst row. The se
ond row shows evolution of x1, x2

variables.

4.5.5 Simulation Results

We simulate the evolution of optimal 
ontrols u1 and u2 governed by the linear

partial di�erential equations (4.47) by means of Fourier analysis as presented in

the se
tion 4.5.3. In parti
ular, here we present the solutions of the trun
ated

ordinary di�erential equations (4.61), where we only keep tra
k of �rst N + 1

Fourier 
oe�
ients of ea
h variable. Note that λ is assumed to have less than

N + 1 
oe�
ients. We will now present numeri
al solutions in di�erent 
ases by
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Figure 4.4: Evolution of x3 for experiment 2. The blue loop represents the 
ir
le

S1
while the height of ea
h point on the red loop is given by the value of x3 at

the 
orresponding point of θ.

varying the initial 
onditions and parameter values. For all the experiments pre-

sented here, N is taken to be 30 and the �nal time T is set as 20 se
onds and

four snapshots of the optimal 
ontrols are shown. The Hamiltonian is veri�ed to

be staying a 
onstant (up to ma
hine pre
ision) for all of the experiments. The

evolution of state variables is also re
orded. For all the experiments presented

here, (x1, x2) is set to start from a unit 
ir
le and x3 is initially zero for all values

of θ.
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Figure 4.5: Numeri
al solutions of (4.61) for experiment 3 for (a) �rst row, χ =

0.1, (b) se
ond row, χ = 1, (
) third row, χ = 10. In all plots, u1 is shown in blue

and u2 is shown in red. The speed of information propagation de
reases as the


oupling 
onstant in
reases.
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The simplest set of initial 
onditions u1(0, θ) = cos(θ), u2(0, θ) = sin(θ), λ(θ) =

5, χ = 1 generate a traveling wave solution, a

ording to equation (4.75). This


an be seen from Fig. 4.1. The states (x1, x2, x3) are also integrated from an

initial 
ondition for (x1, x2) forming a 
ir
le on the plane and x3 being identi
ally

zero for all θ. The evolution of (x1, x2) 
an be seen from Fig. 4.1. The shape

of the (x1, x2) 
ir
le did not 
hange, although its size varied over time. The

evolution of x3 is shown in Fig. 4.2, whi
h appeared to de
rease steadily for all

θ. Next, for experiment 2, we 
onsider a band-limited λ, i.e. λ(θ) = 5 + cos(θ).

Keeping all other 
onditions same as in experiment 1, we get Fig. 4.3-4.4. Here

both size and shape of the (x1, x2) 
ir
le 
hanged over time. The value of x3

de
reased in this 
ase as well but more asymmetri
ally than in experiment 1. In

experiment 3, we show how a lo
alized disturban
e gets spread in the 
ontinuum.

For this experiment, we let the 
ontrol u1 is initially zero everywhere, u1(0, θ) = 0.

However, u2 has a lo
alized peak at a 
ertain spatial point. We took the example

of a Gaussian form,

u2(0, θ) =
1

√

2πρ2
e
− (θ−π)2

2ρ2 , (4.80)

with ρ = 0.1. We then plot the solutions in three di�erent settings of χ values,

χ = 0.1, 1, 10 in Fig. 4.5. λ is taken to be a 
onstant in all these 
ases, λ(θ) = 5.

It is dis
overed in the previous se
tion that the speed of traveling wave de
reases

as χ in
reases. This 
an be seen 
learly from Fig. 4.5 as the disturban
e is seen

to be not well propagated for higher values of χ.
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4.6 A Continuum of Agents on the Plane

As an extension of the problem 
onsidered in Se
tion 3.3, we will explore the 
ase

where we take the underlying group as the spe
ial Eu
lidean group, SE(2). This


ase then 
an be seen as a 
ontinuum 
ounterpart of [Justh and Krishnaprasad,

2015b℄. Every g(t, θ) ∈ SE(2) 
an be represented as,

g =

















cosx3 − sin x3 x1

sin x3 cosx3 x2

0 0 1

















,

with group evolution dynami
s,

∂

∂t
g(t, θ) = g(t, θ) · (u1(t, θ)A1 + u2(t, θ)A2) , (4.81)

where,

A1 =

















0 −1 0

1 0 0

0 0 0

















, A2 =

















0 0 1

0 0 0

0 0 0

















,

along with A3 = [A1, A2], form a basis for the asso
iated Lie algebra se(2). Note

that sin
e {A1, A2} is bra
ket generating in se(2), similar argument as in the

Heisenberg 
ase would provide (weak) 
ontrollability result in this 
ase as well.

We then seek to minimize the same 
ost fun
tional as in (4.38),

J =
1

2

∫ T

0

∫ 2π

0

(

(u21 + u22) + χ

(

(

∂u1
∂θ

)2

+

(

∂u2
∂θ

)2
))

dθdt
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4.6.1 Equations of Optimal Control

4.6.1.1 Cal
ulus of Variations Approa
h

The system dynami
s 
an be equivalently expressed as,

∂x1
∂t

= u2 cosx3

∂x2
∂t

= u2 sin x3

∂x3
∂t

= u1.

(4.82)

Note that the 
ontrols u1 and u2 
an be expressed by the xj variables and their

derivatives as,

u1 = x3,t, u2 = x1,t cos x3 + x2,t sin x3.

Sin
e we have two integral 
onstraints in this 
ase, namely,

∆x1(θ) =

∫ T

0

u2 cosx3dt =

∫ T

0

(x1,t cosx3 + x2,t sin x3) · cosx3dt

∆x2(θ) =

∫ T

0

u2 sin x3dt =

∫ T

0

(x1,t cosx3 + x2,t sin x3) · sin x3dt,

we invoke Lagrange multipliers λ, µ ∈ C∞(S1;R) and the augmented Lagrangian

density 
an be read as,

L =
1

2

[(

x23,t + (x1,t cos x3 + x2,t sin x3)
2)+ χ

(

x23,tθ + (x1,tθ cos x3 + x2,tθ sin x3)
2)]

+ λ (x1,t cosx3 + x2,t sin x3) · cosx3 + µ (x1,t cosx3 + x2,t sin x3) · sin x3.

(4.83)

We re
all the Euler-Lagrange equations from (4.22),

∂L
∂xi
− ∂

∂θ

(

∂L
∂xi,θ

)

− ∂

∂t

(

∂L
∂xi,t

)

+
∂2

∂θ∂t

(

∂L
∂xi,θt

)

= 0,
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for i = 1, 2, 3. We note the following quantities,

u2 = x1,t cosx3 + x2,t sin x3,

u2,θ = x1,tθ cosx3 + x2,tθ sin x3,

∂

∂t

(

∂L
∂x1,t

)

= u2,t cos x3 − u1 (u2 sin x3 + λ sin 2x3 − µ cos 2x3) ,

∂2

∂θ∂t

(

∂L
∂x1,θt

)

= χ (u2,θθt cosx3 − x3,θ (u2,θt sin x3 + u2,θu1 cos x3)

− sin x3 (u2,θθu1 + u2,θu1,θ)) ,

∂

∂t

(

∂L
∂x2,t

)

= u2,t sin x3 + u1 (u2 cosx3 + λ cos 2x3 + µ sin 2x3) ,

∂2

∂θ∂t

(

∂L
∂x2,θt

)

= χ (u2,θθt sin x3 + x3,θ (u2,θt cosx3 − u2,θu1 sin x3)

+ cosx3 (u2,θθu1 + u2,θu1,θ)) ,

∂

∂t

(

∂L
∂x3,t

)

= u1,t,

∂2

∂θ∂t

(

∂L
∂x3,θt

)

= χu1,θθt.

Subsequently, the Euler-Lagrange equations for the Lagrangian (4.83) take the

form,

u2,t cos x3 − u1u2 sin x3 − u1 (λ sin 2x3 − µ cos 2x3)

= χ (u2,θθt cosx3 − sin x3 (u2,θθu1 + u2,θu1,θ)− x3,θ (u2,θt sin x3 + u2,θu1 cosx3)) ,

u2,t sin x3 + u1u2 cos x3 + u1 (λ cos 2x3 + µ sin 2x3)

= χ (u2,θθt sin x3 + cosx3 (u2,θθu1 + u2,θu1,θ) + x3,θ (u2,θt cosx3 − u2,θu1 sin x3)) ,

u1,t − χu1,θθt = −u2 (λ sin x3 − µ cosx3 − χu2,θx3,θ) ,

(4.84)
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whi
h after some readjustments yield,

∂

∂t
(1− χ∆)u1 = −u2 (λ sin x3 − µ cosx3 − χx3,θu2,θ)

∂

∂t
(1− χ∆)u2 = u1 (λ sin x3 − µ cosx3 − χx3,θu2,θ)

∂

∂t
(λ sin x3 − µ cosx3 − χu2,θx3,θ) = −u1(1− χ∆)u2.

(4.85)

Denoting A := (1 − χ∆) and µ3 := λ sin x3 − µ cosx3 − χu2,θx3,θ, we then 
an

express (4.85) as,

∂

∂t
Au1 = −µ3u2

∂

∂t
Au1 = µ3u1

∂µ3

∂t
= −u1Au2.

(4.86)

4.6.1.2 PMP Approa
h

We introdu
e the 
ostate variable p(t) = (p1(t), p2(t), p3(t)) ∈ C∞(S1;R3), t ∈

[0, T ]. The pre-Hamiltonian (
onsidering only normal extremals) 
an be written

as,

H = 〈ẋ, p〉 − L

=

∫ 2π

0

(

u2 (p1 cosx3 + p2 sin x3) + u1p3 −
1

2

(

u21 + u22
)

− χ

2

(

u21,θ + u22,θ
)

)

dθ.

(4.87)

Remark 4.6. Here we only 
onsider normal extremals, i.e. when p0 6= 0 and 
an

be normalized to −1. Note that in this 
ase, the emptiness (i.e. the full 
ostate

being identi
ally zero) of the PMP would not o

ur. It is of future e�ort to

investigate whether the �nite 
odimensionality 
ondition is satis�ed in the SE(2)


ase.
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The maximum prin
iple (Theorem 4.4.1) would require us to maximize (4.87)

pointwise over the 
ontrols, i.e. we are attempting to �nd the Hamiltonian as,

H = sup
v1,v2∈C∞(S1;R)

H

= sup
v1,v2∈C∞(S1;R)

∫ 2π

0

(v2 (p1 cosx3 + p2 sin x3) + v1p3

−1
2

(

v21 + v22
)

− χ

2

(

v21,θ + v22,θ
)

)

dθ (4.88)

This maximization results in two Euler-Lagrange equations,

∂H

∂vi
− ∂

∂θ

(

∂H

∂vi,θ

)

= 0, i = 1, 2, (4.89)

that yields the optimal 
ontrols,

Au1 = p3,

Au2 = p1 cosx3 + p2 sin x3,

(4.90)

where we denote A = (1− χ∆), as usual. The Hamiltonian 
an be read as,

H =
1

2

∫ 2π

0

(u1Au1 + u2Au2) dθ

=
1

2

∫ 2π

0

(

p3A−1p3 + (p1 cosx3 + p2 sin x3)A−1 (p1 cosx3 + p2 sin x3)
)

dθ

(4.91)

The dynami
s of the 
ostate variable p 
an be 
al
ulated from Hamilton's equa-

tion,

∂p
∂t

= − δH
δx
, where

δH
δx

denotes the fun
tional derivative of H with respe
t to

x. Expli
it 
al
ulations yield,

∂p1
∂t

= 0

∂p2
∂t

= 0

∂p3
∂t

= −u2 (−p1 sin x3 + p2 cos x3) .

(4.92)
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If we denote µ3 := −p1 sin x3 + p2 cosx3, then from (4.90) and (4.92), we 
an

redis
over (4.86). Renaming µi = Aui, i = 1, 2, (4.86) 
an also be written as,

∂µ1

∂t
= −µ3A−1µ2

∂µ2

∂t
= µ3A−1µ1

∂µ3

∂t
= −µ2A−1µ1.

(4.93)

4.6.2 Strong Coupling Limit, χ→∞

Similar to the Heisenberg 
ase, it 
an be shown that syn
hronization is a
hieved in

strong 
oupling limit in this 
ase as well. We know that for some z ∈ C∞(S1;R),

we have lim
χ→∞

A−1z =
∫ 2π

0
zdθ. Thus, we may rewrite (4.93) in the strong 
oupling

limit as,

∂µ1

∂t
= −µ3

(
∫ 2π

0

µ2dθ

)

∂µ2

∂t
= µ3

(
∫ 2π

0

µ1dθ

)

∂µ3

∂t
= −µ2

(
∫ 2π

0

µ1dθ

)

.

(4.94)

If we de�ne the variables,

αi =

∫ 2π

0

µidθ, i = 1, 2, 3, (4.95)

then these variables will evolve a

ording to,

α̇1 = −α2α3

α̇2 = α1α3

α̇3 = −α1α2.

(4.96)
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Equations (4.96) are the equations for a single agent s
enario and they are studied

in detail in Se
tion 3.2. This indi
ates the syn
hronization phenomenon in the

planar 
ontinuum �o
k. Note that α1 and α2 are essentially the optimal 
ontrols

u1 and u2, respe
tively. The Hamiltonian (4.88) simply be
omes,

h∞ =
1

2

(

α2
1 + α2

2

)

. (4.97)

4.6.3 Simulation Results

While it has not been possible to 
hara
terize general solutions of (4.93) analyti-


ally, here we demonstrate numeri
al solutions. To numeri
ally solve the evolution

equations of µi variables, we used a �nite di�eren
e method. We partitioning the

spa
e domain [0, 2π] uniformly in M points, 0 = θ1, . . . , θM = 2π, so that the

di�eren
e between two 
onse
utive spa
e points be
ome δθ = 2π
M
. In this dis-


rete setting any z(t, θ) 
an be approximated as an M ve
tor, z(t, θ) ≈ z(t) =

[z1(t), z2(t), . . . , zM(t)]T with the 
onstraint z1(t) = zM(t) for all t to respe
t the

periodi
ity property. Note also that in a se
ond-order 
entral di�eren
e s
heme,

the double partial spa
e derivative is expressed as,

∂2z(t, θj)

∂θ2
=
zj+1 − 2zj + zj−1

δθ2
,

for j = 1, . . . ,M with appropriate adjustments for the boundary points j = 1,M .

The linear operatorA = (1−χ∆) 
an then be expressed by theM×M nonsingular
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Figure 4.6: Numeri
al solution of (4.99) (�rst two rows) along with the state

evolution (third row) for experiment 1. The arrows represent the dire
tion of

movement of the parti
le at that point.

matrix AM ,

AM =

































1 +
(

2χ
δθ2

)

−
(

χ
δθ2

)

0 . . . −
(

χ
δθ2

)

0

−
(

χ
δθ2

)

1 +
(

2χ
δθ2

)

−
(

χ
δθ2

)

0 . . . 0

0 −
(

χ
δθ2

)

1 +
(

2χ
δθ2

)

−
(

χ
δθ2

)

. . . 0

.

.

.

.

.

.

.

.

.

.

.

.

0 −
(

χ
δθ2

)

. . . 0 −
(

χ
δθ2

)

1 +
(

2χ
δθ2

)

































. (4.98)
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With this notation, the partial di�erential equations (4.93) 
an be expressed as a

system of ordinary di�erential equations (ODE),

µ̇1 = −µ3A
−1
M µ2

µ̇2 = µ3A
−1
M µ1

µ̇3 = −µ2A
−1
M µ1.

(4.99)

These ODEs (4.99) are then solved using a mid-point based ODE solver in MAT-

LAB. The optimal 
ontrols ui's 
an be derived from the µ variables by the relation,

ui = A−1
M µi, i = 1, 2 whi
h are used in the quadrature of the state variables xj 's.

Here we present results of some experiments with varying initial 
onditions. The

�nal time T and spa
e dis
retization fa
tor M is kept �xed at T = 20 se
onds

and M = 128 for all the experiments. A high value of M is 
hosen for a faithful


al
ulation of the spatial derivatives. In the subsequent experiments we try to

investigate the behavior of a simple loop under the optimal 
ontrols generated

by (4.99), i.e. we take, x1(0, θ) = 0.01 cos(θ) and x2(0, θ) = 0.01 sin(θ) so that

initially the parti
les start on a 
ir
le. The remaining initial 
onditions of x3 and

µi variables and the parameter χ is varied in the following experiments. It is to be

noted that the Hamiltonian and the Casimir variables are validated to be 
onstant

in ea
h of the experiments.

Experiment 1

We take a simple example where ea
h agent start moving in the positive x axis

and with unit speeds, i.e. x3(0, θ) = 0, µ2(0, θ) = 1. The initial 
urvature of ea
h
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Figure 4.7: State evolution is only shown for experiment 2. The arrows represent

the dire
tion of movement of the parti
le at that point.

agent is taken to be zero, µ1(0, θ) = 0 whi
h means every agent starts harmo-

niously with same velo
ity and 
urvature. The value of χ is taken as 1. Four

snapshots of the µ, u and x variables are shown in Fig. 4.6. The 
urvature �eld is

seen to be forming two peaks in the spatial domain whi
h gives rise to the twisted

form of the initial 
ir
le.

Experiment 2

We keep all the initial 
onditions same as in experiment 1 ex
ept the initial dire
-

tion of movement of the parti
les. It is simulated that almost half the parti
les

try to go in one dire
tion while the other half in the opposite dire
tion. To write

this as a 
ontinuous periodi
 fun
tion, we take

x3(0, θ) =



















π
2

(

1 + tanh
(

100
(

θ − π
2

)))

, if 0 ≤ θ < π

π
2

(

1− tanh
(

100
(

θ − 3π
2

)))

, if π ≤ θ ≤ 2π

. (4.100)

This de�nition of the initial dire
tion means that the parti
les on the `east' part

of the 
ir
le initially go to the right and the parti
les on the `west' part go to

the left. The simulation results are shown in Fig. 4.7. Comparing to Fig. 4.6,
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le at that point.

the �rst two rows are identi
al sin
e the initial 
onditions of µ variables did not


hange and hen
e they are omitted. What is interesting is that the 
ir
le splits

into two loops 
onne
ted by very small number of parti
les.

Experiment 3

Similar to experiment 2, we try to investigate the e�e
t of 
hange in initial dire
-

tion of movement of the parti
les. Here, we set the parti
les to go on a radially

outward path, i.e. x3(0, θ) = θ, with keeping all other 
onditions same as in ex-

periment 2. The simulation results are shown in Fig. 4.8. The �rst two rows are

not shown sin
e they are identi
al with experiment 1.

Experiment 4

In this experiment, again we �x all the initial 
onditions and parameters same as

in experiment 1, ex
ept the initial 
urvature is given a lo
al intensity. In other

words we 
hoose this Gaussian fun
tion,

µ1(0, θ) =
1√
2πσ2

e−
(θ−π)2

2σ2 , (4.101)
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Figure 4.9: Numeri
al solution of (4.99) (�rst two rows) along with the state

evolution (third row) for experiment 4. The arrows represent the dire
tion of

movement of the parti
le at that point.

with σ = 0.05. The purpose of 
hoosing this initial 
ondition is to see whether

a lo
alized information gets spread a
ross the 
ontinuum or not. The simulation

results are shown in Fig. 4.9.

Experiment 5

Finally, we demonstrate the e�e
t of strong 
oupling limit by taking a large value
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Figure 4.10: Numeri
al solution of (4.99) (�rst two rows) along with the state

evolution (third row) for experiment 5. The arrows represent the dire
tion of

movement of the parti
le at that point. The u1, u2 solutions are almost `�at',

indi
ating single agent solution or syn
hronization.

of χ = 1000. We note that even in the 
ase, µ1(0, θ) = cos(θ), µ2(0, θ) = 1 +

0.2 cos(θ), µ3(0, θ) = sin(θ), x3(0, θ) = π/4, we essentially get the system derived

by the optimal 
ontrols that are spatially non varying.
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4.7 Dis
ussion and S
ope of Future Resear
h

In this 
hapter, we have presented a general framework for a 
ontinuum des
rip-

tion of a �o
k. We are interested in solving optimal 
ontrol problems to explain


olle
tive movement of su
h a �o
k. We re
ognize this is a 
hallenging problem

that naturally provides several open questions for further resear
h. We itemize

few su
h possibilities.

• It is shown that under a 
ertain �nite 
odimensionality of a rea
hable set,

the PMP remains valid in a general Hilbert spa
e setting. One might want to

dis
over its relationship with the 
ontrollability 
ondition. In parti
ular, if a

system on the loop group is strongly 
ontrollable, does the PMP 
ondition

satisfy automati
ally? We have been able to show this to be true in the

Heisenberg 
ase. Does this remain valid if we only have weak 
ontrollability?

• It is of interest to extra
t meaningful features of the optimal solutions of

the SE(2) 
ase. While we have not been able to solve (4.93) analyti
ally,

we want to answer few questions about it. For example, do these equations

possess a traveling wave like solution (like the Heisenberg 
ase)? If so, what

is the speed of those waves? The answer might give an insight toward the

information transfer in biologi
al swarms. It is the inherent nature of the

numeri
al study presented here that there exist many possibilities by varying

initial 
on�gurations whi
h makes it parti
ularly di�
ult. We explored only

a tiny fra
tion of possible variations in the initial 
on�gurations in this
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do
ument. A future work 
ould perform more extensive numeri
al study of

these partial di�erential equations (4.93).

• We have presented the results in this 
hapter under the 
ase of a �xed 
y
li


intera
tion topology. A more general, possibly state dependent (hen
e time

dependent, too) intera
tion s
heme 
an be modeled and subje
ted under

similar questions.

• It will be an interesting future work to establish 
ontinuum parallel of the

Lie-Poisson redu
tion in the loop group 
ase.
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Chapter 5

Cognitive Cost of Flo
king: A Geometri


and Hamiltonian Perspe
tive

5.1 Introdu
tion

It has been an appealing question to resear
hers from several �elds to address

how natural 
olle
tives fun
tion at a fundamental level. Many theories have been

proposed to des
ribe this phenomenon over the past few de
ades. The la
k of

a

urate motion 
apturing te
hnologies had limited the study of natural 
olle
tives

for many years. However, as motion 
apture be
ame more sophisti
ated, more

movement data of these 
olle
tives were re
orded. This enabled resear
hers to

un
over several underlying me
hanisms behind �o
king [Ballerini et al., 2008a,b;

Attanasi et al., 2014; Cavagna et al., 2018; Nagy et al., 2010℄. These studies

shed light on how individual agents intera
t with its neighboring agents or how

information may be propagated through the �o
k.
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Continuing the spirit of the `top-down' view of the �o
k, we will present a novel

perspe
tive for analyzing 
olle
tive motion data. The �o
k movement results in a

time-series of its kineti
 energy, whi
h 
an be divided into several energy modes.

Normalized modes de�ne a 
urve in some appropriate dimensional simplex whi
h

we attempt to des
ribe by an evolutionary game dynami
s. Individual energy

modes are 
onsidered as pure strategies of su
h a game. An optimal 
ontrol

problem is proposed to best �t the data on the simplex, where the 
ontrol inputs

modulate the �tness asso
iated with the strategies. This is in 
ontrast to the

optimal 
ontrol problem posed in Chapter 4, where the 
ontrols are `low-level'

i.e. individual 
ontrol inputs are determined post-solution of the optimal 
ontrol

problem. In the present 
ontext however, the 
ontrol inputs are `high-level'. The


olle
tive itself is thought to be de
iding the optimal allo
ation of its energy

among several di�erent modes during a �ight event. A notion of 
ognitive 
ost is

introdu
ed to denote the optimal 
ost for the 
olle
tive to perform this allo
ation.

This work brings together several key ingredients for this data-driven approa
h.

In se
tion 5.2, the motion data of European �o
ks is detailed. This data is then

subje
ted to a linear data smoothing te
hnique [Dey and Krishnaprasad, 2012℄

that re
onstru
ts smooth traje
tory data of ea
h bird in the �o
k. A nonlinear

data smoothing te
hnique [Dey and Krishnaprasad, 2014℄ is later used for the

optimal energy allo
ation problems. These smoothing te
hniques are based on

optimal 
ontrol theory and are des
ribed in se
tion 5.3. Se
tion 5.4 
ontains the

geometri
 theory developed in [Mis
hiati and Krishnaprasad, 2017℄ to 
ompute
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di�erent energy modes. Finally, in se
tion 5.5, a generative model based on [Raju

and Krishnaprasad, 2018℄ is des
ribed to 
onstru
t an optimal 
ontrol problem on

a simplex. Numeri
al solution of this optimal 
ontrol problem, as well as the idea

of 
ognitive 
ost, are presented in se
tion 5.6. This is a joint work with V. Raju

[Halder et al., 2019b℄.

5.2 Flo
king Data

We are provided with �ight data of European starlings that were taken by Dr.

Andrea Cavagna and his 
ollaborators from the Colle
tive Behaviour in Biologi
al

Systems (COBBS) group at the Institute for Complex Systems (ISC-CNR), Uni-

versity of Rome �La Sapienza". Starlings gather around urban areas during the

winter months in order to get extra warmth from the 
ities. Flo
ks of these kind of

birds are well known to perform remarkable maneuvers, the purpose and me
ha-

nisms of whi
h still elude resear
hers. Equipped with modern imaging te
hniques

and sophisti
ated algorithms for stereo re
onstru
tion, these group of resear
hers

managed to 
apture a series of �ight events with di�erent �o
k sizes in the winter

months of 2011. See [Attanasi et al., 2014℄ for more details about the pro
ess. We

will study eight parti
ular �o
king events, the details of whi
h are given in table

5.1.
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Flo
king Flo
k Size Duration Data Capture Rate

Event (n) (se
onds) (frames/se
ond)

1 175 5.4875 80

2 123 1.8176 170

3 46 5.6118 170

4 485 2.3471 170

5 104 3.8824 170

6 122 4.1588 170

7 380 5.7353 170

8 194 1.7588 170

Table 5.1: Details of 
aptured �o
king events

5.3 Data Smoothing

Given a time-indexed sequen
e of sampled observations on a manifold, genera-

tive models provide a meaningful way of 
apturing them through the use of an

underlying dynami
al system 
omplete with 
ontrol inputs having useful interpre-

tations. The 
ontrol inputs are determined by solving an optimal 
ontrol problem,

where the 
ost fun
tion 
onsists of a �tness term that penalizes mismat
h between

the generated traje
tory and sampled data, and a smoothing term weighted by a

parameter λ that a�e
ts the smoothness of the generated traje
tory. We dis
uss

two generative models that have been proposed to solve this problem.
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5.3.1 A linear generative model

A �rst approa
h to solving the data smoothing problem, presented in [Dey and

Krishnaprasad, 2012℄, is to formulate an optimal 
ontrol problem to minimize the

jerk path integral, with intermediary state 
osts determining the �t error. Suppose

that {ri}Ni=0 denote the positions of the birds at ea
h sampling time, with ri ∈ R3
.

In order to re
over a traje
tory �t r(t) : [t0, tN ]→ R3
, one 
an use the jerk-driven

linear generative model,

ṙ(t) = v(t)

v̇(t) = a(t)

ȧ(t) = u(t) (5.1)

where v(t), a(t),u(t) denote the velo
ity, a

eleration and jerk (input) of the tra-

je
tory. The 
ost fun
tional to be minimized is

Jl =

N
∑

i=0

||r(ti)− r(t)||2 + λ

tN
∫

t0

||u(t)||2dt (5.2)

where the minimization is over initial 
onditions r(t0),v(t0), a(t0) and the input

u(t). De�ning the state and output as

x(t) =

















r(t)

v(t)

a(t)

















∈ R
9,y(t) = x(t) ∈ R

3
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we obtain the linear state equations

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t), where

A =

















0 13 0

0 0 13

0 0 0

















, B =

















0

0

13

















, C = [13 0 0] (5.3)

Therefore, the problem of minimizing Jl subje
t to (5.3) is a linear, quadrati


optimal 
ontrol problem, whi
h 
an be solved by a 
ompletion of squares of terms

in the 
ost by invoking a path independen
e lemma, or by applying the Pontryagin

Maximum Prin
iple as shown in [Dey and Krishnaprasad, 2012℄. This approa
h

has been used to smooth the starling �o
k data for all the events listed in table

5.1.

5.3.2 Data smoothing in the Eu
lidean setting

In this se
tion, we present a general result on the Pontyagin Maximum Prin
iple

based approa
h for data smoothing on the Eu
lidean spa
e Rn
. Suppose that

{

xdi
}N

i=0
denote the sampled data. For a generative model given by the dynami
s

ẋ = f(x, u) on Rn
, with the 
ontrol u ∈ Rm

, the optimal 
ontrol problem 
an be

formulated as:

min
x(t0), u∈Rm

J(x(t0), u) =
λ

2

∫ tN

t0

‖u‖2 dt+
N
∑

i=0

Fi(x(ti), x
d
i ),

subje
t to: ẋ = f(x, u),

(5.4)
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where parameter λ > 0 is a regularization parameter, and Fi's are suitably de�ned

�t errors of the re
onstru
ted traje
tories and sampled data at the sampling

times. Using Pontryagin's Maximum Prin
iple, the optimal 
ontrol values 
an be


al
ulated as a fun
tion of the state and a 
o-state variable. The following result

from [Dey and Krishnaprasad, 2014℄ states this pre
isely.

Theorem 5.3.1. (PMP for data smoothing [Dey and Krishnaprasad, 2014℄ ) Let

u∗(·) be an optimal 
ontrol input for (5.28), and let x∗(·) denote the 
orresponding

state traje
tory. Then there exist a 
ostate traje
tory p : [t0, tN ] → R
n, p 6= 0 ,

su
h that

ẋ∗ =
∂H
∂p

(t, x∗, p, u∗)

ṗ = −∂H
∂x

(t, x∗, p, u∗)

(5.5)

during t ∈ (ti, ti+1), i = 0, 1, ..., N − 1, and the Hamiltonian is given as

H(t, x∗, p, u∗) = max
v∈Rm

H(t, x∗, p, v), (5.6)

for t ∈ [t0, tN ]\{t0, t1, ..., tN}, where the pre-Hamiltonian is de�ned asH(t, x, p, u) =

〈p, f(x, u)〉 − λ
2
‖u‖2. Moreover, jump dis
ontinuities of the 
ostate variable 
an

be written as

p(t−0 ) = 0,

p(t+i )− p(t−i ) =
∂Fi(x(ti))

∂x(ti)
, i = 0, 1, ..., N,

p(t+N) = 0.

(5.7)

The pie
ewise 
ontinuous nature of the 
o-state traje
tory due to jump 
on-

ditions arising from mismat
h between the sampled data points and the re
on-
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stru
ted state must be noted here. The initial 
ondition x(t0) is identi�ed by using

the terminal 
ondition for the 
o-state, while the optimal value of λ is typi
ally

obtained through leave-one-out or ordinary 
ross validation. The re
onstru
ted

traje
tory is then obtained as the proje
tion onto the state spa
e of the solution

of Hamilton's equations derived from the (maximized pre-) Hamiltonian. We refer

the reader to [Dey, 2015℄ for a detailed treatment of these problems. This is the

result that we will use in our data �tting problem on a simplex.

5.4 Energy Modes

Avian �o
ks display a variety of �ight behaviors that may be 
hara
terized as


olle
tive strategies su
h as steady dire
ted translation of 
enter of mass (whi
h

we denote by 
om), 
oherent rotation about 
enter of mass (rot), 
hange of form

(ens), internal re-shu�ing of relative positions (dem), rapid expansion or 
on-

tra
tion of volume (vol) et
. A �o
king event may display all of the mentioned

strategies to varying degrees as governed by the time-dependent allo
ation of ki-

neti
 energy to ea
h strategy. We take the viewpoint presented in [Mis
hiati and

Krishnaprasad, 2017℄ and study the fra
tions of the total kineti
 energy of a �o
k

allo
ated to several `kinemati
 modes' � rigid translations, rigid rotations, inertia

tensor transformations, expansion and 
ompression, in order to des
ribe 
olle
tive

behavior.

If the positions of the birds in a �o
k are denoted by {r1, r2, ..., rn}, the 
enter
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of mass 
an be written as,

r

om

=
1

n

n
∑

i=1

ri, (5.8)

where we treat every bird alike, i.e. their masses are taken to be equal. The

ensemble inertia tensor is de�ned by

K =

n
∑

i=1

(ri − r

om

) (ri − r

om

)T . (5.9)

Let the velo
ities of the birds be denoted as, {vr1, ...,vrn}, then the total kineti


energy is,

E =
1

2

n
∑

i=1

‖vri‖2 . (5.10)

We 
an de�ne the position and velo
ity ve
tor with respe
t to the 
enter of mass,

i.e. c , [c1, ..., cn] ∈ R3×n
, where ci = ri − r


om

; vc , [vc1,vc2, ...,vcn] ∈ R3×n
,

where vci = vri − v

om

. Then,

E

om

=
n

2
‖v


om

‖2 , E
rel

,
1

2

n
∑

i=1

‖vci‖2 . (5.11)

We thus have the splitting, E = E

om

+ E
rel

. As presented in [Mis
hiati and

Krishnaprasad, 2017℄, instantaneous relative energy allo
ations 
an be expressed

on a probability simplex (∆4
)

1

by exploiting the �ber bundle stru
tures of the

�o
k's total 
on�guration spa
e to split the total kineti
 energy using (i) ensemble

�bration or (ii) shape �bration.

(i) Ensemble Fibration: We note that the ensemble inertia tensor K (5.9) is

a symmetri
 positive de�nite matrix. Hen
e its eigende
omposition 
an be

1

Note that in this 
hapter we will use ∆
n
to denote the n-dimensional simplex.
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written as, K = QΛQT
, with Λ = diag(λ1, λ2, λ3), where λ1 ≥ λ2 ≥ λ3 > 0.

De�ne, F := cvT

c
+vcc

T
and F̃ = [F̃ij ] = QTFQ. Then the following energy

modes 
an be 
al
ulated,

E
ens.rot

,
1

2

(

F̃ 2
12

λ1 + λ2
+

F̃ 2
13

λ1 + λ3
+

F̃ 2
23

λ2 + λ3

)

E
ens.def

,
1

8

(

F̃ 2
11

λ1
+
F̃ 2
22

λ2
+
F̃ 2
33

λ3

)

.

(5.12)

Furthermore,

E
vol

,
1

2

tr

2
(

cvT

c

)

tr(K)
, (5.13)

so that, E
ens.res

= E
ens.def

− E
vol

. We may also 
al
ulate E
dem

= E
rel

−

E
ens.rot

− E
ens.def

. Hen
e, in this �bration we have the following splitting of

the kineti
 energy,

{

E

om

E
,
E
dem

E
,
E
ens.rot

E
,
E
vol

E
,
E
ens.res

E

}

∈ ∆4
(5.14)

(i) Shape Fibration: De�ne

J =
n
∑

i=1

(ci × vci) ,

Ic =
n
∑

i=1

(

‖ci‖2 1− cic
T

i

)

.

(5.15)

Then the rotational energy E
rot


an then be 
al
ulated as,

E
rot

,
1

2
JTI−1

c
J, (5.16)

The shape residual energy is given by E
shp.res

= E
rel

−E
rot

−E
end.def

, whi
h

provides the splitting in this �bration as below

{

E

om

E
,
E
rot

E
,
E
shp.res

E
,
E
vol

E
,
E
ens.res

E

}

∈ ∆4
(5.17)
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While we 
an split the kineti
 energy in 5 di�erent modes (5.14),(5.17), many

�o
king events show a predominant allo
ation of nearly 
onstant energy of rigid

translation (E

om

). We ex
lude this 
omponent from the total E in our analysis,

and 
onsider the allo
ation of the remaining energy E
rel

to obtain a time dependent

tra
e of ea
h event on a lower dimensional simplex. In parti
ular, we 
apture the

tra
e generated by the following de
omposition of E
rel

using ensemble �bration

on the 1-simplex by two di�erent methods,

(ENS-I)

{

E
dem

E
rel

,
E
ens

E
rel

}

∈ ∆1, (5.18)

(ENS-II)

{

E
ens.rot

E
rel

,
E
rel

− E
ens.rot

E
rel

}

∈ ∆1, (5.19)

where E
rel

= E−E

om

, and E
ens

= E
rel

−E
dem

= E
ens.rot

+E
vol

+E
ens.res

. Similarly,

a one dimensional simplex des
ription using shape �bration may be given by two

ways,

(SHP-I)

{

E
shp.res

E
rel

,
E
rel

−E
shp.res

E
rel

}

∈ ∆1, (5.20)

(SHP-II)

{

E
rot

E
rel

,
E
shp

E
rel

}

∈ ∆1, (5.21)

where E
shp

= E
rel

− E
rot

= E
shp.res

+ E
vol

+ E
ens.res

.

In this way, moment-to-moment de
isions made by individuals in a �o
k, tak-

ing a

ount of the de
isions of their neighbors, 
ontribute to �o
k-s
ale strategies

as 
aptured by su
h time dependent tra
es on the probability simplex. Treating

the strategy prevalen
e as being given by the respe
tive energy fra
tions, we resort

to a generative evolutionary game dynami
s to model the 
ompetition between

the �o
k-s
ale strategies.
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5.5 Generative model on the 1-simplex and the

data-smoothing problem

Sin
e we are interested in des
ribing the evolution of two �o
k strategies as in

eqs. (5.18) and (5.19) for ensemble �bration or eqs. (5.20) and (5.21) for shape

�bration, we 
apture the tra
e of �o
king events via a generative model on the

1-simplex. We 
onsider an evolutionary game model, namely repli
ator dynami
s

equipped with a multipli
ative 
ontrol, in order to des
ribe their evolution in the

interior (0, 1) of the one-dimensional simplex. The 
hoi
e of repli
ator dynami
s

is in�uen
ed by its universality in des
ribing simplex-preserving dynami
s, and

by virtue of being an extremal for a variational problem [Svirezhev, 1972; Raju

and Krishnaprasad, 2018℄. Presently, with the in
lusion of a 
ontrol variable,

we 
onsider a di�erent variational problem that aims to perform data smoothing

using regularization as in [Dey and Krishnaprasad, 2014℄. To see this, let x =

[x1 x2]
T ∈ ∆1

where xi, i = 1, 2 denote the prevalen
e of strategies i (to be

spe
i�ed) on the simplex with the natural 
onstraint x1 + x2 = 1. xi = 1, i = 1, 2


orrespond to allo
ation of Erel entirely to one of the two pure strategies. Suppose

that the frequen
ies asso
iated with the strategies are updated a

ording to the

rule

xi(t+ 1) = xi(t)
f i(x)

f̄(x)
(5.22)
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where the �tness f i(x) = Ax and f̄ = x1f
1(x) + x2f

2(x) . Here, A = [aij ] ∈ R2

de�nes a payo� matrix with aij denoting the payo� of the ith strategy against jth

strategy. In the 
ase that the payo�s do not depend on the strategy j of against

whi
h it is mat
hed up, the 
olumns of A are identi
al. In the ode limit of (5.22),

after an inhomogeneous time-s
ale 
hange, we get the mean �eld equations:

ẋi(t) = xi(t)(f
i(x)− f̄(x)), i = 1, 2 (5.23)

It 
an be readily veri�ed that (5.23) is simplex-preserving, leaving the pure strate-

gies invariant. Sin
e addition of the same term to ea
h 
omponent of the �tness

keeps the dynami
s (5.23) un
hanged, by subtra
ting a21 and a12 from the �rst

and se
ond 
olumn elements of A respe
tively, we get the equivalent payo� matrix

Ã =









a11 − a21 0

0 a22 − a12









(5.24)

We introdu
e a 
ontrol input ũ that s
ales the �tness, and 
hoose the parameters

of the matrix su
h that a11 − a21 = −(a22 − a12) = 1 so that the �tness 
an be

rewritten as:

f(x) = ũ









1 0

0 −1









x (5.25)

Due to the simplex 
onstraint, (5.23) is 
ompletely des
ribed using x = x1:

ẋ(t) = ũ(t)x(t)(1 − x(t))(f 1(x)− f 2(x)) (5.26)

with x = 0, 1 
orresponding to the pure strategies 2 and 1 respe
tively. Due to

our 
hoi
e of the payo� matrix parameters, f 1 − f 2
is a 
onstant. This allows
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us to adopt a time-s
ale 
hange by the fa
tor f 1 − f 2
to arrive at our generative

model:

ẋ(t) = u(t)x(t)(1− x(t)) (5.27)

This dynami
s results in asymptoti
 
onvergen
e to the pure strategy x = 1 in

the absen
e of 
ontrol, that is, when u(t) ≡ 1. However, the time-varying 
on-

trol variable u serves to model 
hanging preferen
es for the �o
k strategies by

appropriate 
hanges in its sign and magnitude. Su
h a temporal modulation of

the �tness ensures feasibility of 
apturing arbitrary tra
es in the interior of the

simplex.

Given a set of data points {xd0, xd1, ..., xdN} with ea
h xdk ∈ (0, 1), k = 0, 1, ..., N ,

at time instants {t0, t1, ..., tN}, we formulate the optimal 
ontrol problem,

min
x(t0), u∈R

J(x(t0), u) =
λ

2

∫ tN

t0

u2dt+

N
∑

i=0

Fi(x(ti)),

subje
t to: ẋ = ux(1− x),
(5.28)

where the �t errors Fi's are given by the Kullba
k-Leibler divergen
e measure of

mismat
h between the data and the state,

Fi(x) = xdi log

(

xdi
x

)

+ (1− xdi ) log
(

1− xdi
1− x

)

, i = 0, 1, ..., N. (5.29)

We 
an dire
tly appeal to Pontryagin's Maximum Prin
iple (PMP) and theo-

rem (5.3.1) to write ne
essary 
onditions for optimality. We 
an write the pre-

Hamiltonian as,

H(x, p, u) = upx(1− x)− λ

2
u2. (5.30)
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The Hamiltonian maximization 
ondition (5.6) yields an optimal 
ontrol in ea
h

time interval t ∈ (ti, tt+1), i = 0, 1, ..., N − 1,

u =
1

λ
px(1− x), (5.31)

with Hamiltonian given by,

H(x, p) = 1

2λ
p2x2(1− x)2. (5.32)

Hamilton's equations (5.5) read,

ẋ =
1

λ
px2(1− x)2

ṗ = −1

λ
p2x(1− x)(1− 2x).

(5.33)

The jump 
onditions for p (5.7) 
an be written as,

p(t−0 ) = 0,

p(t+i )− p(t−i ) =
x(ti)− xdi

x(ti)(1− x(ti))
, i = 0, 1, ..., N,

p(t+N) = 0.

(5.34)

Remark 5.1. Note that the optimal 
ontrol is pie
ewise 
onstant sin
e

du
dt

= 0

for ea
h of these time intervals t ∈ (ti, ti+1), i = 0, 1, ..., N − 1.

Therefore, denoting xk = x(tk), k = 0, 1, ..., N , any optimal 
ontrol 
an be

des
ribed by a ve
tor (u0, u1, ..., uN) with the 
onditions

u0 =
1

λ
(x0 − xd0),

uk − uk−1 =
1

λ
(xk − xdk), k = 1, 2, ..., N

uN = 0.

(5.35)
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Pie
ewise 
onstan
y of the 
ontrol input allows us to write the solution to the state

equation (5.26) expli
itly. Suppose the sampling time of the tra
e is uniform, i.e.

∆t := tk+1 − tk, ∀k ∈ {0, ..., N − 1}, integrating the state equation (5.26) in

(tk, tk+1), we 
an write

xk+1 =
xke

uk∆t

1 + xk (euk∆t − 1)
, k = 0, 1, ..., N − 1. (5.36)

By iteration, we 
an in turn write every xk as a fun
tion of x0 and u0, u1, ..., uk−1,

xk = xk(x0) =
x0e

(u0+u1+···+uk−1)∆t

1 + x0 (e(u0+u1+···+uk−1)∆t − 1)
, k = 1, 2, ..., N. (5.37)

The endpoint 
ondition (uN = 0) 
an then be written as,

x0 + x1 + · · ·+ xN = xd0 + xd1 + · · ·+ xdN , (5.38)

where the left hand side of (5.38) is a fun
tion of x0. Solving the optimal 
ontrol

problem (5.28) thus boils down to solving (5.38) for x0 ∈ (0, 1).

Remark 5.2. The value of the regularization parameter λ is usually 
hosen

through 
ross validation te
hnique. We do not employ any su
h te
hniques here.

The value of λ is 
hosen su
h that the root �nding algorithm for solving (5.38)


onverges for all events. For λ = 0.2, the roots were found with reasonably good

a

ura
y with value of the fun
tion at the root being of the order of 1 × 10−5
or

lower for all events. For lower λ however, the problem be
omes sti�er and left

hand side of (5.38) demonstrates `e�e
tive dis
ontinuity' in x0. This poses seri-

ous problem in solving (5.38). It is to be noted that the original 
aptured �ight

data was subje
ted to data-smoothing to obtain smooth traje
tories [Dey, 2015℄.
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Figure 5.1: Hamiltonian signatures

The data-smoothing problem in [Dey, 2015℄ 
onsidered a linear generative model

as in Se
tion 5.3.1 and used ordinary 
ross validation for traje
tory of ea
h bird

to determine the appropriate weight to the regularization term. This generated

smooth traje
tories with suppressed level of noise 
ompared to the original data.

We then take the sampled data {xd0, · · · , xdN} from these smooth traje
tories. This


an justify taking same value of λ a
ross all the events. As a future step, 
ross

validation 
ould be employed to arrive at a good value of λ in the range where

(5.38) 
an be solved.

5.6 Data Fitting Results

For all 8 events, we solve the optimal 
ontrol problem (5.28) and report the

results here. The value of the regularization weight λ is taken to be 0.2 and 100

data samples at regular time intervals are taken for all events. Given the data
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ve
tor, we solve equation (5.38) for x0 ∈ (0, 1). In Table 5.2, we report time

averaged Hamiltonian integrals and time averaged total 
osts for all the di�erent

games that we 
onsider in eqs. (5.18) to (5.21). These time averaged Hamiltonian

integrals are thought of as 
ognitive 
osts of the events. As seen from Table 5.2,

the trend of (ENS-I) 
losely follow the game (SHP-I), while the other two games

seem to follow ea
h other. This is graphi
ally represented in Fig. 5.1. Optimal


ontrol solutions for the games ENS-I (5.18) and SHP-II (5.21) for individual

events are shown in Fig. 5.2�5.9. We note that more variation in the energy time

signal results in higher 
ognitive 
ost (in both measures). This is interpreted as

the 
olle
ting having to `think' more to properly allo
ate the modes, in
urring

higher 
osts. These 
ognitive 
osts for a parti
ular game 
an thus indi
ate overall

physi
al behavior of the �o
k. For example, in the games (ENS-II) or (SHP-II)

where a rotational energy is 
onsidered as one of the pure strategies, relatively

higher 
ognitive 
osts for event 2, 5 indi
ate that the �o
ks went through more

rotations than the other events during the �ight periods. On the other hand,

low 
ost for event 4 is justi�ed by almost re
tilinear overall motion. Similar


on
lusions 
an be drawn for the other set of games (ENS-I) and (SHP-II), where

the respe
tive 
ognitive 
ost will stipulate nature of variation of the demo
rati


(reshu�ing within the �o
k) energy. The higher the 
ost is, more aggressively the

relative positions of the birds within the �o
ks are 
hanged, leading to a more


omplex �ight event.
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Duration

∫
Hdt∫
dt

J(x0,u)∫
dt

(se
onds) (ENS-I) (SHP-I) (ENS-II) (SHP-II) (ENS-I) (SHP-I) (ENS-II) (SHP-II)

5.4875 0.1232 0.1263 0.0976 0.1077 0.1981 0.1975 0.1454 0.1499

1.8176 0.1432 0.1018 0.2210 0.1760 0.2227 0.1619 0.3769 0.3118

5.6118 0.2735 0.2392 0.0613 0.1073 0.4595 0.4092 0.1557 0.2495

2.3471 0.1021 0.1270 0.0107 0.0190 0.2440 0.2702 0.0594 0.0610

3.8824 0.0779 0.2699 0.1587 0.1383 0.0896 0.3692 0.3001 0.3041

4.1588 0.1809 0.1634 0.0846 0.1105 0.2799 0.2706 0.2063 0.2090

5.7353 0.0804 0.1293 0.0576 0.0619 0.1127 0.2079 0.1087 0.1221

1.7588 0.4569 0.4069 0.0731 0.1090 0.8037 0.8361 0.2074 0.3810

Table 5.2: Hamiltonian Signature

5.7 Dis
ussion

In this 
hapter, we have brought together several results from geometry, optimal

data-�tting and evolutionary game theory to asso
iate a 
ognitive aspe
t to �o
k-

ing. The �ight data of Starling �o
ks give rise to time-signals of energy mode

distributions. Here, the whole �o
k is 
on
eptualized to making de
isions about

how to optimally allo
ate its energy in several modes. The di�erent energy modes

are thought as pure strategies of an evolutionary game and their �tness is mod-

ulated by some de
ision or 
ontrol variables. These 
ontrols are then determined

by optimally �tting this model to the observed energy mode distributions in the

data. The 
ost to this data-�tting are referred to as 
ognitive 
ost for the �o
k.

In this work, we have only 
onsidered splitting energy into two modes. In this
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setting, the optimal 
ontrol solutions present interesting 
hara
teristi
s. It will

be an important dire
tion to 
onsider energy splitting in several energy modes,

hen
e solving the �tting problem in a higher dimensional simplex. It will also be

of interest to interpret the 
ognitive 
osts in su
h s
enarios.
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Figure 5.2: Event 1, λ = 0.2, Number of samples = 100, (b)-(
) x = E
dem

E
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(SHP-II)
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Figure 5.3: Event 2, λ = 0.2, Number of samples = 100, (b)-(
) x = E
dem

E
rel

(ENS-I),

(d)-(e) x = E
rot

E
rel

(SHP-II)

141



(a) Flo
k Traje
tory

0 1 2 3 4 5 6
Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x,
 x

d

Trajectory fit
Data

(b) Traje
tory Fit

0 1 2 3 4 5 6
Time (s)

-5

-4

-3

-2

-1

0

1

2

3

u

(
) Optimal Control

0 1 2 3 4 5 6
Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x,
 x

d

Trajectory fit
Data

(d) Traje
tory Fit

0 1 2 3 4 5 6
Time (s)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

u

(e) Optimal Control

Figure 5.4: Event 3, λ = 0.2, Number of samples = 100, (b)-(
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Figure 5.6: Event 5, λ = 0.2, Number of samples = 100, (b)-(
) x = E
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Figure 5.7: Event 6, λ = 0.2, Number of samples = 100, (b)-(
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Figure 5.8: Event 7, λ = 0.2, Number of samples = 100, (b)-(
) x = E
dem
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rot
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Figure 5.9: Event 8, λ = 0.2, Number of samples = 100, (b)-(
) x = E
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(ENS-I),
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Chapter 6

Con
lusions and Dire
tions for Future Re-

sear
h

We have made an attempt to explain 
olle
tive behavior in natural �o
ks in this

thesis. Possible roboti
 appli
ations in this 
ontext are also presented. The thesis

is distin
tively divided into two parts depending on the underlying approa
h �

either 
olle
tive behavior is viewed as an emergen
e of intera
tions between small

number of agents in a `bottom-up' fashion or those intera
tions are inferred in a

`top-down' way. We summarize below the 
ontributions of this dissertation along

with dire
tions in whi
h this line of resear
h 
an be 
ontinued.

In Chapter 2, we explored inter-agent intera
tion strategies from both theoret-

i
al and implementation perspe
tives. First, we 
onsider a two-agent s
enario in

whi
h one agent pursues the other using 
onstant-bearing (CB) pursuit law. The

pursued agent behaves like a moving bea
on whose movement is independent to

the other. It is then shown that under parti
ular parameter setting of the CB law
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and 
onstant 
urvature paths of the bea
on, the 
ombined equations of motion of

the system resemble to that of a 
ouple of gravitating parti
les. Periodi
 orbits

are shown to exist, ea
h 
orresponding to a �xed energy. This result is used in a

roboti
 appli
ation subsequently. We have e�e
tively utilized the results of this

problem in the problem of en
ir
ling a stati
 bea
on that is sensed visually by a

mobile robot by means of a 
amera with limited �eld-of-view (FOV). Proper feed-

ba
k law for the robot is advised to make a desired 
losed loop in the phase spa
e

asymptoti
ally stable. This guarantees intermittent appearan
e of the bea
on in

the 
amera's FOV. Laboratory demonstration of this problem in
orporates online

estimation of the bea
on's position when it falls out of the FOV. Se
ondly, labo-

ratory implementations of two biologi
ally plausible feedba
k laws are presented.

These laws in
lude another dual-agent law 
alled Mutual Motion Camou�age and

a multi-agent 
onsensus type law 
alled Topologi
al Velo
ity Alignment. In this


hapter we have shown how 
omplex 
olle
tive motion patterns 
an emerge from

simple intera
tions among the agents in a �o
k.

We study the problem of optimal steering of a single agent in Chapter 3. The

agent is driven from initial to �nal 
on�guration on the plane while minimizing

the 
ontrol 
ost that penalizes both speed and 
urvature 
ontrol. Optimal 
ontrol

solution is obtained by using Pontryagin's Maximum Prin
iple (PMP) and Lie-

Poisson redu
tion te
hnique. Optimal traje
tories are 
ategorized by the values

of the Hamiltonian and another 
onserved quantity 
alled Casimir. This problem

is then extended to 
apture the s
enario of a �o
k of agents moving on the plane.
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These agents intera
t with ea
h other by a prede�ned graph. The individual


ontrol 
osts are 
oupled with mismat
h in 
ontrol with the neighbors. This


hapter forms a bridge between the two parts of the thesis.

In Chapter 4, we take the problem of optimal steering of many agent 
ase and


onsider its 
ontinuum limit. A goal of su
h an approa
h is to develop wave equa-

tions that may explain observed phenomenon of information transfer in natural

�o
ks. We only 
onsider the 
y
li
 graph of intera
tion that enables us to present

the results in a 
ompa
t way. A general optimal 
ontrol problem in the loop

group 
ase is stated. General 
ontrollability result in in�nite dimensional setting

is shown to be helpful to 
onstru
t su
h optimal 
ontrol problem. The ne
essary


onditions for optimality, namely the Pontryagin's Maximum Prin
iple (PMP) in

Hilbert spa
e setting is only valid under a 
ondition of �nite 
o-dimensionality of

a rea
hable set. Two spe
ial 
ases of this problem are studied. The 
ase in whi
h

the underlying group is the Heisenberg group H(3), i.e. a 
ontinuum of nonholo-

nomi
 integrators is studied in detail. We have shown that the optimal 
ontrol

solutions possess traveling wave 
hara
ter. Moreover, a syn
hronization result is

obtained in whi
h the in�nite 
oupling strength prohibits every agent in the �o
k

to behave di�erently. The 
ase of planar 
ontinuum, i.e. agents moving in the

spe
ial Eu
lidean group SE(2) is also 
onsidered. Optimal 
ontrol evolution equa-

tions are obtained by both 
al
ulus of variations and PMP approa
h. Similar to

the H(3) 
ase, syn
hronization result is obtained. Numeri
al simulations for both

these 
ases are presented. However, we have not been able to perform a thorough
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analyti
al study of the partial di�erential equations obtained in the SE(2) 
ase.

It is one of the dire
tions in whi
h future resear
h 
ould be 
ondu
ted. A 
riti
al

question will answer whether traveling wave solutions exist in this 
ase. Further-

more, di�erent intera
tion graphs 
an be 
onsidered to un
over more interesting

details about this problem.

Chapter 5 presents a data-driven analysis of �ight data of European Starling

�o
ks, 
aptured in Rome. This data gives rise to temporal signals of the �o
k's

energy distribution in several energy modes. We use an optimal 
ontrol based

data-�tting te
hnique to explain this data as the out
ome of an evolutionary

game on a simplex. We 
all the data-�tting 
ost fun
tionals of the underlying

optimal 
ontrol problem as `
ognitive 
ost' that measures the 
ognitive e�ort of

the �o
k to allo
ate its energy in di�erent modes. In our work, we have only


onsidered energy splitting into two modes so as to 
onsider a simple game on

the one-dimensional simplex. This 
an be extended to higher dimensions where

multiple energy modes are 
onsidered.
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Appendix A

An Optimal Control Problem in an In�nite

Dimensional Setting

A.1 Introdu
tion

After Pontryagin provided his method for solving optimal 
ontrol problems in �-

nite dimensional setting [Pontryagin et al., 1962℄, there have been many attempts

to try and prove similar prin
iples in in�nite dimensions. However, the 
ounterex-

ample of Egorov [Egorov, 1963℄ posed a serious 
hallenge to that pro
ess. This


ounterexample showed that the Pontryagin's maximum prin
iple does not gen-

erally hold in in�nite dimensions. In parti
ular, the 
ostate variable 
an be
ome

identi
ally zero, making the maximum prin
iple empty. The advan
ements in the

following de
ades [Ekeland, 1979; Fattorini, 1987; Li and Yong, 2012; Krastanov

et al., 2011℄ showed that it is possible to state PMP in some 
ases where some

additional assumptions are made. In this work, we adopt a similar path to prove
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the maximum prin
iple set in a mu
h friendlier setting.

We 
onsider an abstra
t di�erential equation in a Hilbert spa
e,

dx(t)

dt
= f(t, x(t), u(t)), a.e. in [0, T ], (A.1)

where x(t) ∈ X , u(·) ∈ U , and T > 0. Let X be a Hilbert spa
e 
alled the state

spa
e and U be the set of all measurable fun
tions u(·) : [0, T ] → U , where U is

a separable metri
 spa
e 
alled the 
ontrol spa
e. With this setup, we formulate

the following optimal 
ontrol problem (P),

(P)

min
u∈U

J(u) =

∫ T

0

L(t, x(t), u(t))dt

subje
t to: ẋ = f(t, x, u), a.e. in [0, T ], x(0) = x0, x(T ) = xT .

(A.2)

We assume that both the fun
tions f(·, ·, ·) and L(·, ·, ·) are Bo
hner integrable

in t ∈ [0, T ] and Lips
hitz 
ontinuous in x(t) ∈ X , with 
onstant K. Further-

more, we require the existen
e of the 
ontinuous Fré
het derivatives f ′
x(t, x, u) and

L′
x(t, x, u). We also assume the fun
tions f, L and their derivatives f ′

x, L
′
x to be

bounded, i.e. there exists an M > 0, su
h that

‖f(t, x, u)‖ ≤M, ‖f ′
x(t, x, u)‖ ≤M,

‖L(t, x, u)‖ ≤M, ‖L′
x(t, x, u)‖ ≤M,

(A.3)

for all (t, x(t), u(t)) ∈ [0, T ]× X × U . Note that these hypotheses ensure a 
on-

tinuous and unique solution of (A.1) to exist [Avez, 1986℄. Let the spa
e U be

endowed with the distan
e fun
tion,

d(u, v) = meas{t : u(t) 6= v(t)}, (A.4)
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where meas{·} denotes the usual Lebesgue measure in [0, T ]. Then, a

ording

to Theorem 5.3 of [Fattorini, 1987℄, the spa
e U is 
omplete with respe
t to the

distan
e d. A dire
t 
onsequen
e of the assumptions stated above leads to an

important result [Krastanov et al., 2011℄.

Lemma A.1.1. Let u1(·), u2(·) be any two arbitrary members of U . Denote the

state traje
tories asso
iated with these 
ontrols by, xi(·) = x(·, ui(·)), i = 1, 2.

Then there exist positive 
onstants C1, C2 su
h that,

sup
t∈[0,T ]

‖x1(t)− x2(t)‖ ≤ C1d(u1, u2), (A.5)

|J(u1)− J(u2)| ≤ C2d(u1, u2). (A.6)

Proof. Let S ⊂ [0, T ] be the set where the 
ontrols u1 and u2 di�er, i.e. d(u1, u2) =

meas{S}. We know that (A.1) 
an also be written as,

x(t) = x0 +

∫ t

0

f(s, x(s), u(s))ds.

Then,

x1(t)− x2(t) =
∫ t

0

(f(s, x1(s), u1(s))− f(s, x1(s), u1(s))) ds

=

∫ t

0

(f(s, x1(s), u1(s))− f(s, x2(s), u1(s))) ds

+

∫ t

0

(f(s, x2(s), u1(s))− f(s, x2(s), u2(s))) ds

=

∫ t

0

(f(s, x1(s), u1(s))− f(s, x2(s), u1(s))) ds

+

∫

[0,t]∩S

(f(s, x2(s), u1(s))− f(s, x2(s), u2(s))) ds.
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Taking norm of both sides we get,

‖x1(t)− x2(t)‖ ≤ K

∫ t

0

‖x1(s)− x2(s)‖ ds+ 2Md(u1, u2),

where the Lips
hitz property of f in x is used in the �rst term and the uni-

form boundedness is used in the se
ond term. By the use of Gronwall-Bellman

inequality, we arrive at (A.5). The result (A.6) 
an be derived analogously. �

We now pro
eed to solve this problem by a maximum prin
iple based approa
h.

Before we state the maximum prin
iple, let us give some additional te
hni
al

details that are going to be essential for the proof of the maximum prin
iple.

De�nition A.1. (Finite Codimensionality) [Fattorini, 1987℄ A subset S of a

Hilbert spa
e Z is 
alled to be �nite 
odimensional in Z, if there exists a 
losed

subspa
e Zc ⊆ Z of �nite 
odimension su
h that Sc = Π(
o(S)), has nonempty

interior in Zc, where Πc denotes the orthogonal proje
tion from Z onto Zc and 
o

means 
losed 
onvex hull.

We will now make a key assumption to derive a nontrivial maximum prin
iple.

Let a solution of problem (P) exist and that optimal 
ontrol is denoted as u∗ ∈ U

and let the 
orresponding optimal traje
tory be denoted as x∗(t). Then de�ne the

`rea
hable set' as,

R :=

{

z(T ) ∈ X | z(t) =
∫ t

0

f ′
x(s, x

∗(s), u∗(s)) · z(s)ds

+

∫ t

0

(f(s, x∗(s), v(s))− f(s, x∗(s), u∗(s))) ds, for some v(·) ∈ U
}

(A.7)

(A1) The set R is �nite 
odimensional in X .

155



A.2 Maximum Prin
iple

Using usual formalism, we invoke the pre-Hamiltonian fun
tion H : R×X ×U ×

R×X∗ → R as,

H(t, x(t), u(t), p0, p(t)) = p0L(t, x(t), u(t)) + 〈p(t), f(t, x(t), u(t))〉 , (A.8)

where p(t) ∈ X∗
is 
alled the 
ostate variable. Intuitively, we want to make the

following statement of the maximum prin
iple that needs to be validated.

Theorem A.2.1. (Maximum Prin
iple) Let u∗ ∈ U be an optimal 
ontrol for

problem (P) and x∗(t) be the 
orresponding optimal traje
tory. Then, there exist

a pair (p∗0, p
∗(t)) ∈ R × X∗, t ∈ [0, T ], su
h that (p∗0, p

∗) 6≡ (0, 0), p∗0 ≤ 0, p∗(·)

satis�es the di�erential equation,

ṗ∗(t) = − (f ′
x(t, x

∗(t), u∗(t))
⋆
p∗(t)− p∗0L′

x(t, x
∗(t), u∗(t)), (A.9)

where by A⋆
we denote the adjoint operator of the operator A. The pointwise

maximization of the pre-Hamiltonian holds,

H(t, x∗(t), u∗(t), p∗0, p
∗(t)) = max

v∈U
H(t, x∗(t), v, p∗0, p

∗(t)), (A.10)

Moreover, x∗ and p∗ satisfy Hamilton's 
anoni
al equations, i.e.

dx∗

dt
=
δH

δp∗
(t, x∗, u∗, p∗0, p

∗) (A.11)

dp∗

dt
= −δH

δx∗
(t, x∗, u∗, p∗0, p

∗). (A.12)

Proof. At the outset, we begin by introdu
ing the variable, x0(t) ∈ R that obeys

the dynami
s, ẋ0 = L(t, x, u), x0(0) = 0. De�ne, y(t) =









x0(t)

x(t)









∈ R × X, so
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that

dy(t)

dt
=









L(t, x, u)

f(t, x, u)









=: g(t, y, u), a.e. in [0, T ]. (A.13)

The 
ore of the argument in proving the maximum prin
iple will follow re-

sults of Ekeland [Ekeland, 1979℄, and te
hniques developed in [Fattorini, 1987;

Krastanov et al., 2011; Li and Yong, 2012℄. We will now state a result known as

Ekeland variational prin
iple [Ekeland, 1979℄.

Lemma A.2.1. (Ekeland Variational Prin
iple) Let V be a 
omplete metri


spa
e with respe
t to the distan
e fun
tion d(·, ·) and let F : V → R ∪ {+∞} be

lower semi
ontinuous and bounded below with F 6≡ +∞. Let ǫ > 0 and u ∈ V be

su
h that

F (u) ≤ inf{F (w) : w ∈ V }+ ǫ. (A.14)

Then there exists v ∈ V su
h that

d(u, v) ≤ √ǫ (A.15)

F (w)− F (v) ≥ −√ǫ d(w, v), ∀w ∈ V. (A.16)

Let us pro
eed by assuming that an optimal 
ontrol to the problem (P) exists

and is denoted by u∗ and let y∗ = (x0,∗, x∗) be the 
orresponding optimal traje
-

tory. We write the minimum 
ost by η0, i.e. η0 = J(u∗). Now, for given ǫ > 0, we


onsider the fun
tion Jǫ : U → R,

Jǫ(u) =

√

(J(u)− η0 + ǫ)2 + ‖x(T )− xT ‖2X . (A.17)
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It is evident that Jǫ(u) > 0 for all u ∈ U and ǫ > 0. Moreover,

Jǫ(u
∗) = ǫ ≤ inf

u∈U
Jǫ(u) + ǫ,

whi
h by the Ekeland variational prin
iple yields the existen
e of uǫ ∈ U su
h

that

d(uǫ, u∗) ≤ √ǫ, (A.18)

Jǫ(w)− Jǫ(uǫ) ≥ −
√
ǫ d(w, uǫ), ∀w ∈ U . (A.19)

Next, we introdu
e a variation in 
ontrol uǫ what is known as �needle variations".

For any v(·) ∈ U , let h : [0, T ]→ R×X ,

h(t) = (g(t, xǫ(t), v(t))− g(t, xǫ(t), uǫ(t))) =









L(t, xǫ(t), v(t))− L(t, xǫ(t), uǫ(t))

f(t, xǫ(t), v(t))− f(t, xǫ(t), uǫ(t))









.

(A.20)

Then, a

ording to Corollary 3.9 (p. 144) of [Li and Yong, 2012℄ , for any ρ ∈ (0, 1],

there is a measurable set Fρ ⊂ [0, T ] su
h that meas{Fρ} = ρT and

ρ

∫ t

0

h(s)ds =

∫

Fρ∩[0,t]
h(s)ds+ o(ρ), (A.21)

where

o(ρ)
ρ
→ 0 as ρ ↓ 0, uniformly in t ∈ [0, T ]. The perturbed 
ontrol is then

de�ned as,

uǫρ(t) =



















uǫ(t), t /∈ Fρ,

v(t), t ∈ Fρ

. (A.22)

It is of interest to express the perturbation in traje
tory when the 
ontrol uǫρ is

applied, i.e. we want a Taylor like expansion of yǫρ(t) = y(t, uǫρ) with respe
t to ρ
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at ρ = 0, i.e. at yǫ(t) = y(t, uǫ). Let us write,

yǫρ(t) = yǫ(t) + ρψǫ(t) + o(ρ).

Then,

ψǫ(t) = lim
ρ↓0

yǫρ(t)− yǫ(t)
ρ

= lim
ρ↓0

1

ρ

(
∫ t

0

g(s, yǫρ(s), u
ǫ
ρ(s))ds−

∫ t

0

g(s, yǫ(s), uǫ(s))ds

)

= lim
ρ↓0

∫ t

0

g(s, yǫρ(s), u
ǫ
ρ(s))− g(s, yǫ, uǫρ(s))

ρ
ds

+ lim
ρ↓0

∫

[0,t]∩Fρ

g(s, yǫ(s), v(s))− g(s, yǫ, uǫ(s))
ρ

ds

=

∫ t

0

g′y(s, y
ǫ(s), uǫ(s)) · ψǫ(s)ds+

∫ t

0

(g(s, yǫ(s), v(s))− g(s, yǫ, uǫ(s))) ds,

(A.23)

where the se
ond term follows from (A.21). g′y is the Fré
het derivative of g with

respe
t to y and 
an be de
omposed as,

g′y(t, y
ǫ(t), uǫ(t)) · q̄ =









L′
x(t, x

ǫ(t), uǫ(t)) · q

f ′
x(t, x

ǫ(t), uǫ(t)) · q









, for any q̄ = (q0, q) ∈ R×X.

Let's write ψǫ(t) = (zǫ0(t), z
ǫ(t)). In parti
ular, we have zǫ0(T ) =

d
dρ
J(uǫρ)

∣

∣

ρ=0
and

zǫ(t) = d
dρ
xǫρ(t))

∣

∣

ρ=0
, ea
h of whi
h 
an be spelled out separately from (A.23),

zǫ0(T ) =

∫ T

0

L′
x(s, x

ǫ(s), uǫ(s)) · zǫ(s)ds+
∫ T

0

(L(s, xǫ(s), v(s))− L(s, xǫ(s), uǫ(s))) ds,

(A.24)

zǫ(t) =

∫ t

0

f ′
x(s, x

ǫ(s), uǫ(s)) · zǫ(s)ds+
∫ t

0

(f(s, xǫ(s), v(s))− f(s, xǫ(s), uǫ(s))) ds.

(A.25)
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Now, as a next step, we derive ne
essary 
onditions for the pair (yǫ(t), uǫ(t)) to

be suboptimal. We do this by using the Ekeland variational prin
iple and letting

ρ tend to zero. In (A.19), we set w = uǫρ. Note that the 
ontrols u
ǫ
and uǫρ di�er

only in the set Fρ, whi
h has a measure ρT . Then,

Jǫ(u
ǫ
ρ)− Jǫ(uǫ) ≥ −

√
ǫd(uǫρ, u

ǫ)

≥ −√ǫρT.

i.e.

Jǫ(u
ǫ
ρ)− Jǫ(uǫ)
ρ

≥ −T√ǫ. (A.26)

Now, note that,

lim
ρ↓0

Jǫ(u
ǫ
ρ)− Jǫ(uǫ)
ρ

=
dJǫ(u

ǫ
ρ)

dρ

∣

∣

∣

∣

∣

ρ=0

=
1

2Jǫ(uǫρ)

[

2(J(uǫρ)− η0 + ǫ)
dJ(uǫρ)

dρ

+2
∥

∥xǫρ(T )− xT
∥

∥

(

∥

∥xǫρ(T )− xT
∥

∥ · dx
ǫ
ρ(T )

dρ

)]

∣

∣

∣

∣

∣

ρ=0

=
(J(uǫ)− η0 + ǫ)

Jǫ(uǫ)
zǫ0(T ) +

〈

xǫ(T )− xT
Jǫ(uǫ)

, zǫ(T )

〉

. (A.27)

Thus, taking the limit in (A.26), we 
an write,

ξǫ0z
ǫ
0(T ) + 〈ξǫ, zǫ(T )〉 ≥ −T

√
ǫ, (A.28)

where ξǫ0 =
(J(uǫ)−η0+ǫ)

Jǫ(uǫ)
and ξǫ = xǫ(T )−xT

Jǫ(uǫ)
∈ X∗

. Note additionally that,

(ξǫ0)
2 + ‖ξǫ‖2 = 1. (A.29)
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Equation (A.28) 
an be regarded as the ne
essary 
onditions for (yǫ(t), uǫ(t)).

Finally, we will let ǫ tend to zero to obtain ne
essary 
onditions for (y∗(t), u∗(t))

to be optimal. De�ne,

z0 :=

∫ T

0

L′
x(s, x

∗(s), u∗(s)) · z(s)ds+
∫ T

0

(L(s, x∗(s), v(s))− L(s, x∗(s), u∗(s))) ds,

(A.30)

z(t) :=

∫ t

0

f ′
x(s, x

∗(s), u∗(s)) · z(s)ds +
∫ t

0

(f(s, x∗(s), v(s))− f(s, x∗(s), u∗(s))) ds.

(A.31)

Sin
e v(·) is any arbitrary element in U , z(T ) ∈ R, 
.f. (A.7).

Lemma A.2.2. The following results hold true.

lim
ǫ↓0
|zǫ0(T )− z0| = 0,

lim
ǫ↓0

sup
t∈[0,T ]

‖zǫ(t)− z(t)‖ = 0,

(A.32)

Proof. Let us denote Sǫ = {t ∈ [0, T ] : uǫ(t) 6= u∗(t)}. Then, meas{Sǫ} =

d(uǫ, u∗) ≤ √ǫ, by (A.18). From the de�nition of z(t), we �nd,

‖z(t)‖ ≤M

∫ t

0

‖z(s)‖ ds+ 2MT,

where boundedness of both f and f ′
x have been used. Applying the Gronwall-

Bellman inequality, we get ‖z(t)‖ ≤ 2MTeMT , for all t ∈ [0, T ]. We now write,

zǫ(t)− z(t) =
∫ t

0

f ′
x(s, x

ǫ(s), uǫ(s)) · (zǫ(s)− z(s))ds

+

∫ t

0

(f ′
x(s, x

ǫ(s), uǫ(s))− f ′
x(s, x

∗(s), u∗(s))) · z(s)ds

+

∫ t

0

(f(s, xǫ(s), v(s))− f(s, x∗(s), v(s))) ds

+

∫ t

0

(f(s, xǫ(s), uǫ(s))− f(s, x∗(s), u∗(s))) ds.
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Taking norm on both sides and utilizing boundedness of f ′
x and z(t), we obtain,

‖zǫ(t)− z(t)‖ ≤M

∫ t

0

‖zǫ(s)− z(s)‖ ds

+ 2MTeMT

∫ t

0

‖f ′
x(s, x

ǫ(s), uǫ(s))− f ′
x(s, x

∗(s), u∗(s))‖ ds

+

∫ t

0

‖f(s, xǫ(s), v(s))− f(s, x∗(s), v(s))‖ ds

+

∫ t

0

‖f(s, xǫ(s), uǫ(s))− f(s, x∗(s), u∗(s))‖ ds. (A.33)

The last term in (A.33) 
an be written as,

∫ t

0

‖f(s, xǫ(s), uǫ(s))− f(s, x∗(s), u∗(s))‖ ds

=

∫

[0,t]\Sǫ

‖f(s, xǫ(s), u∗(s))− f(s, x∗(s), u∗(s))‖ ds

+

∫

[0,t]∩Sǫ

‖f(s, xǫ(s), uǫ(s))− f(s, x∗(s), u∗(s))‖ ds

≤ K

∫

[0,t]\Sǫ

‖xǫ(s)− x∗(s)‖ ds+ 2Md(uǫ, u∗)

≤ (KC1T + 2M)d(uǫ, u∗) ≤ (KC1T + 2M)
√
ǫ

ǫ↓0−→ 0.

Note that we have used the Lips
hitz property of f and result of Lemma A.1.1.

The se
ond and third term 
an be treated in a similar fashion to show they are of

o(1) whi
h goes to 0 as ǫ tends to 0. Note that, instead of Lips
hitz 
ontinuity, we

would use 
ontinuity of f ′
x in x in order to use appropriate upper bound. Hen
e,

(A.33) 
an be written as,

‖zǫ(t)− z(t)‖ ≤M

∫ t

0

‖zǫ(s)− z(s)‖ ds+ o(1),
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whi
h by Gronwall-Bellman inequality yields,

‖zǫ(t)− z(t)‖ ≤ eMTo(1)
ǫ↓0−→ 0,

uniformly in t ∈ [0, T ]. The 
onvergen
e of zǫ0(T ) 
an be shown analogously. �

Using (A.28) and the Cau
hy-S
hwarz inequality, we may now write,

ξǫ0z0 + 〈ξǫ, z(T )〉 = ξǫ0z
ǫ
0 + 〈ξǫ, zǫ(T )〉 − ξǫ0 (zǫ0 − z0)− 〈ξǫ, zǫ(T )− z(T )〉

≥ −T√ǫ− |ξǫ0| |zǫ0 − z0| − ‖ξǫ‖ ‖zǫ(T )− z(T )‖

≥ −T√ǫ− |zǫ0 − z0| − ‖zǫ(T )− z(T )‖ . (A.34)

The last inequality follows, sin
e (ξǫ0)
2 + ‖ξǫ‖2 = 1, both |ξǫ0| ≤ 1 and ‖ξǫ‖ ≤ 1.

Denote, κǫ = −T√ǫ − |zǫ0 − z0| − ‖zǫ(T )− z(T )‖ and by the 
onvergen
e results

(A.32), we see that κǫ → 0 as ǫ ↓ 0. Thus, (A.34) 
an be expressed as,

ξǫ0z0 + 〈ξǫ, z〉 ≥ −κǫ, ∀z0 ∈ R, z ∈ R, (A.35)

where, κǫ
ǫ↓0−→ 0. Now the assumption (A1) that the set R is �nite 
odimensional

in X is going to be useful in proving nontriviality of the limit of the pair (ξǫ0, ξ
ǫ)

as ǫ goes to 0. Here we state the following lemma from [Fattorini, 1987℄, as a


onsequen
e of �nite 
odimensionality.

Lemma A.2.3. Let Q be a set of �nite 
odimension in a Hilbert spa
e Z and let

{zn} be a sequen
e of ve
tors in Z su
h that

0 < c ≤ ‖zn‖ ≤ C.

163



Assume additionally that,

〈zn, q〉 ≥ −θn,

for q ∈ Q and θn → 0 as n → ∞. Then there exists a subsequen
e of {zn} that


onverges weakly to z ∈ Z, and z 6= 0.

Now 
hoose a sequen
e {ǫ(n)} su
h that ǫ(n) → 0 as n → ∞. Sin
e both

sequen
es {ξǫ(n)0 } and {ξǫ(n)} are bounded, there exist subsequen
es {ξǫ(nk)} and

{ξǫ(nk)} that 
onverge weakly to some ξ̄0 ∈ R and ξ̄ ∈ X∗
. For simpli
ity, let the

subsequen
es be denoted by themselves. Showing nontriviality of the pair (ξ̄0, ξ̄)

is a 
ru
ial step in proving maximum prin
iple in in�nite dimensional 
ase. Re
all

that, ξǫ0 = (J(uǫ)−η0+ǫ)
Jǫ(uǫ)

, so that ξǫ0 > 0, ∀ǫ > 0. Hen
e, we may only have ξ̄0 ≥ 0.

If ξ̄0 6= 0, we are done proving that (ξ̄0, ξ̄) 6= (0, 0). Otherwise, let ξǫ0(n) → 0 as

n → ∞. Then from the relation (A.29), we get, 1 ≥
∥

∥ξǫ(n)
∥

∥

2
= 1 −

(

ξ
ǫ(n)
0

)2

≥

1 − δ > 0, for some δ > 0, for n large enough. Finally, by the lemma A.2.3, we

get ξ̄ 6= 0 in the 
ase ξ̄0 = 0. Hen
e we 
on
lude that,

(ξǫ0, ξ
ǫ)

∗
⇀ (ξ̄0, ξ̄) 6= (0, 0), ξ̄0 ≥ 0. (A.36)

Then, �nally taking the limit ǫ ↓ 0 in (A.35), we get for any z ∈ R and z0 as

spe
i�ed in (A.30), there exists a pair R×X∗ ∋ (ξ̄0, ξ̄) 6= (0, 0), ξ̄0 ≥ 0, so that,

ξ̄0z0 +
〈

ξ̄, z
〉

≥ 0. (A.37)

Now, let us introdu
e the 
ostate variable p∗(t) ∈ X∗
, that obeys the following

di�erential equation,

ṗ∗(t) = − (f ′
x(t, x

∗(t), u∗(t))
⋆
p∗(t)− p∗0L′

x(t, x
∗(t), u∗(t)), (A.38)
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with p∗(T ) = −ξ̄ and p∗0 = −ξ̄0 ≤ 0. Here by A⋆
we denote the adjoint operator

of the operator A. Now sin
e z(0) = 0, we have,

〈p∗(T ), z(T )〉

= 〈p∗(T ), z(T )〉 − 〈p∗(0), z(0)〉

=

∫ T

0

d

dt
〈p∗(t), z(t)〉 dt

=

∫ T

0

[〈

− (f ′
x(t, x

∗(t), u∗(t))
⋆
p∗(t)− p∗0L′

x(t, x
∗(t), u∗(t)), z(t)

〉

+ 〈p∗(t), f ′
x(t, x

∗(t), u∗(t))z(t) + f(t, x∗(t), v(t))− f(t, x∗(t), u∗(t))〉] dt

=

∫ T

0

−p∗0 〈L′
x(t, x

∗(t), u∗(t)), z(t)〉 dt

+

∫ T

0

(〈p∗(t), f(t, x∗(t), v(t))− f(t, x∗(t), u∗(t))〉) dt (A.39)

This, 
ombined with the de�nition of z0 (A.30) and equation (A.37) yields,

〈p∗(T ), z(T )〉+ p∗0z0

=

∫ T

0

[H(t, x∗(t), v(t), p∗0, p
∗(t))−H(t, x∗(t), u∗(t), p∗0, p

∗(t))] dt ≤ 0. (A.40)

Sin
e the 
ontrol set U is separable, the similar argument as in [Krastanov et al.,

2011; Li and Yong, 2012℄ would give the pointwise maximization 
riterion of the

pre-Hamiltonian,

H(t, x∗(t), v(t), p∗0, p
∗(t)) ≤ H(t, x∗(t), u∗(t), p∗0, p

∗(t)), a.e. in [0, T ], ∀v ∈ U .

(A.41)

From the de�nition of the Hamiltonian, we 
an �nally 
ompute its derivatives. In

what follows, the appropriate arguments will be suppressed for simpli
ity and the

notation |∗ will imply the fun
tion has been evaluated at optimal parameters. We

165



then �nd for any (x̃, p̃) ∈ X ×X∗
,

δH

δp∗

∣

∣

∣

∣

∗
· p̃ = lim

σ→0

H(p∗ + σp̃)−H(p∗)

σ

∣

∣

∣

∣

∗

=
d

dσ
H(p∗ + σp̃)

∣

∣

∣

∣

σ=0,∗

= 〈p̃, f |∗〉

and,

δH

δx∗

∣

∣

∣

∣

∗
· x̃ = lim

σ→0

H(x∗ + σx̃)−H(x∗)

σ

∣

∣

∣

∣

∗

=
d

dσ
H(x∗ + σx̃)

∣

∣

∣

∣

σ=0,∗

=
d

dσ
(〈p∗, f(x∗ + σx̃)〉+ p∗0L(x

∗ + σx̃))

∣

∣

∣

∣

σ=0,∗

= 〈p∗, f ′
x|∗ · x̃〉+ p∗0 〈L′

x|∗, x̃〉

=
〈

(f ′
x|∗)⋆ p∗ + p∗0L

′
x|∗, x̃

〉

.

Thus, we may write the 
anoni
al Hamilton's equations of motion,

dx∗

dt
=
δH

δp∗
(t, x∗, u∗, p∗0, p

∗),

dp∗

dt
= −δH

δx∗
(t, x∗, u∗, p∗0, p

∗).

(A.42)

This 
ompletes the proof of the maximum prin
iple.

�
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