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Dept. of Eletrial & Computer Engineering

It is of importane to study biologial olletives and apply the wisdom so

arued to modern day engineering problems. In this dissertation we attempt to

gain insight into olletive behavior where the main ontribution is twofold. First,

a `bottom-up' approah is employed to study individual level ontrol law synthesis

and emergene thereby of olletive behavior. Three di�erent problems, involv-

ing single and multiple agents, are studied by both analytial and experimental

means. These problems arise from either a pratial viewpoint or from attempts

at desribing biologially plausible feedbak mehanisms. One result obtained in

this ontext for a double agent senario is that under a partiular onstant bearing

pursuit strategy, the problem exhibits ertain features ommon with the Kepler

two body problem. Laboratory demonstrations of the solutions to these problems

are presented. It is to be noted that these types of individual level ontrol prob-

lems an help understand and onstrut building bloks for group level behaviors.

The seond approah is `top-down' in nature. It treats a olletive as a whole



and asks if its movement minimizes some kind of energy funtional. A key goal

of this work is to develop wave equations and their solutions for a natural lass

of optimal ontrol problems with whih one an analyze information transfer in

�oks. Controllability arguments in in�nite dimensional spaes give strong sup-

port to onstrut solutions for suh optimal ontrol problems. Sine the optimal

ontrol problems are in�nite dimensional in the state spae and one annot simply

expet Pontryagin's Maximum Priniple (PMP) to apply in suh a setting, the

work has required are and attention to funtional analyti onsiderations. In this

work, it is shown that under a ertain assumption on �nite o-dimensionality of a

reahable set, PMP remains valid. This assumption is then shown to hold true for

the ase of a spei� ensemble of agents, eah with state spae as the Heisenberg

group H(3). Moreover, analysis of optimal ontrols demonstrates the existene

of traveling wave solutions in that setting. Synhronization results are obtained

in a high oupling limit where deviation from neighbors is too ostly for every

agent. The ombination of approahes based on PMP and alulus of variations

have been fruitful in developing a solid new understanding of wave phenomena in

olletives. We provide partial results along these lines for the ase of a ontinuum

of planar agents (SE(2) ase).

Finally, a di�erent top-down and data-driven approah to analyze olletive be-

havior is also put forward in this thesis. It is known that the total kineti energy

of a �ok an be divided into several modes attributed to rigid-body translations,

rotations, volume hanges, et. Flight reordings of multiple events of European



starling �oks yield time-signals of these di�erent energy modes. This approah

then seeks an explanation of kineti energy mode distributions (viewed as �ok-

sale deisions) by appealing to tehniques from evolutionary game theory and

optimal ontrol theory. We propose the notion of ognitive ost that alulates

a suitably de�ned ation funtional and measures the ost to an event, resulting

from temporal variations of energy mode distributions.
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Chapter 1

Introdution

The last few deades have witnessed an inrease in researh e�orts towards un-

overing mehanisms behind olletive motion [Nagy et al., 2010; Ballerini et al.,

2008a; Cavagna et al., 2010; Inada and Kawahi, 2002℄ and pursuit behavior [Ol-

berg et al., 2000; Mizutani et al., 2003; Ghose et al., 2006; Chiu et al., 2010℄

in nature. Ranging from �sh shools to bird �oks, olletive behavior is seen

abundantly in nature. The onept of safety in numbers is used in aomplishing

variety of goals, from foraging food to evading predators. Reent improvements

in data olletion and proessing tehnology has enabled researhers to study

these natural �oks in more detail than ever before [Ballerini et al., 2008a,b℄.

The driving question then beomes to answer how loal interations between in-

dividual agents in the olletive give rise to group level ohesion and synhrony.

Although several attempts have been made to understand these behaviors [Cuker

and Smale, 2007; Mora and Bialek, 2011; Bialek et al., 2012; Young et al., 2013;

Attanasi et al., 2014℄, the individual level mehanisms responsible for emergene

1



of olletive behavior remain mostly elusive to researhers. It is therefore a sig-

ni�ant goal of this thesis to pursue suh questions.

This thesis is distintively divided into two parts, where we take two di�er-

ent approahes to understand olletive behavior. The �rst approah is alled a

`bottom-up' approah, i.e. instead of studying the �ok as a whole, we onen-

trate on dynamis of individual agents and analyze simple interation laws among

small number of agents. Studying these interations are important sine they an

be used as a building blok for group level motion. In a 1995 paper [Visek et al.,

1995℄, a novel disrete time self-driven partile model was �rst introdued to ad-

dress self-ordered motion in a system of partiles. The onept of self-steering

partiles was developed in the following deades [Justh and Krishnaprasad, 2004,

2006; Reddy et al., 2006; Mishiati and Krishnaprasad, 2010, 2012; Galloway

et al., 2013℄. We undertake the self-steering partile model under gyrosopi on-

trol [Justh and Krishnaprasad, 2003, 2004℄ as the basi model for individuals in

the �ok. This model desribes a trajetory of an individual as a urve, desribed

by the natural Frenet frame equations [Bishop, 1975℄ in the Eulidean spae; and

the driving ontrols are given by speed and urvature of the urve. We show in

Chapter 2, 3 that even in the single agent or double agent ase, interesting mo-

tion patterns an be synthesized from arefully seleting these ontrol inputs. The

ontrol inputs an be generated from an underlying optimal ontrol problem or by

applying some biologially plausible feedbak strategies. Parallel to the quest of

2



mathemetial modeling, some groups in the robotis ommunity have performed

suessful implementation of various ontrol strategies [Thurrowgood et al., 2014;

Vásárhelyi et al., 2014℄, and thereby demonstrated the power of a bio-inspired ap-

proah towards synthesizing olletive motion. Our work is similar in spirit, and

provides indoor demonstrations of problems raised in Chapter 2. Some of these

problems were oneptualized from a pratial perspetive and arry engineering

value.

The other approah to study olletive behavior is what an be alled as `top-

down' view. Instead of speifying agent level ontrol laws, the idea is to infer

those laws from solving a bigger problem that investigates the �ok as a whole.

Existing literature employs several methods suh as optimal ontrol [Justh and

Krishnaprasad, 2015b,a℄, statistial physis [Mora and Bialek, 2011; Bialek et al.,

2012℄ et. It is the framework of optimal ontrol [Justh and Krishnaprasad, 2015b℄

that we undertake and extend in this thesis. It has been observed from empir-

ial data [Ballerini et al., 2008a℄ that interation among starlings in the �ok is

loal, i.e. eah bird interat with six/seven neighbors during �ight. Taking in-

spiration from this idea, the entral onept of [Justh and Krishnaprasad, 2015b℄

is to set up an optimal ontrol problem whih penalizes ontrols of individual

agents oupled with mismath in ontrol with its `neighbors'. The neighbors are

determined by a previously de�ned interation graph. We then let the number

of agents in the �ok to go to in�nity in order to propose a ontinuum model for

3



�oking. Various ontinuum models have been studied for olletives [Kudrolli

et al., 2008; Topaz et al., 2006; Zhang et al., 2010℄. These models study a set of

partial di�erential equations that desribe spatio-temporal evolution of the �ok

density. Our approah is di�erent in the sense that the system dynamis an be

seen as an ordinary di�erential equation in an appropriate in�nite dimensional

Lie group setting. The oupling between birds are introdued through the mis-

math term in the ost funtional. A natural question of ontrollability of suh

a system is addressed by using a generalized Chow-Rashevsky theorem for in�-

nite dimensional systems. This enables us to formulate the underlying optimal

ontrol problem in an in�nite dimensional setting in whih the usual Pontryagin's

maximum priniple fails in general without further assumptions. In Chapter 4,

we invoke a maximum priniple atered for this spei� setting. A spei� ex-

ample of ontinuum of nonholonomi integrators is also studied in detail. This

an be viewed as a ontinuum version of single agent Heisenberg ase [Justh and

Krishnaprasad, 2016℄. It has been found that optimal ontrol solutions possess

a traveling wave harater, whih might enable information transfer in the �ok.

In addition to the Heisenberg ase, we provide optimal ontrol equations in the

ase of a ontinuum �ok of planar agents. Synhronization results and numerial

simulations are presented for both the ases.

In Chapter 5, we present another `top-down' approah to the �oking problem.

This approah is data-driven in nature. Kinemati energy modes of European
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starling �oks are represented on a simplex whih is then subjeted to desription

as trajetory of some evolutionary game dynamis. Solution of this data-�tting

problem on the simplex results in ontrol inputs that are interpreted as modulation

of �tness assoiated with the energy modes. We note that in ontrast to Chapter

4, where the ontrol inputs were individual agent-level (or `low-level') ontrols,

the ontrols obtained by this data-driven approah are �ok-level (or `high-level')

ontrols. The �ok is oneptualized to apply these ontrols to optimally alloate

its kineti energy among di�erent modes.

1.1 Mathematial Bakground

1.1.1 Self Steering Partile Model

We desribe the partile model that is the underlying generative model in all our

subsequent analysis throughout this thesis. The trajetory of a single agent an

be desribed by a funtion r : [0, T ] → R3
, for some T > 0. We assume r(t) to

be a regular urve, i.e. ṙ(t) 6= 0, ∀t ∈ [0, T ]. Let s be the ar length parameter,

i.e. s(t) =
∫ t

0
‖ṙ(σ)‖ dσ. Under the regularity assumption, s(t) is monotonially

inreasing and invertible funtion of time. We an then reparametrize the urve

r(t) by the ar length parameter s and the evolution equations an be expressed

in terms of well known Fernet-Serret frames. However, this way of representation

requires thrie di�erentiability of the urve and need the urvature of the urve to

be stritly positive. To overome these di�ulties, we take an alternate approah
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for framing the urve, known as the Natural Frenet frame [Bishop, 1975℄. This

approah requires only twie di�erentiability and is well de�ned even when the

seond derivative vanishes.

In 3D, to any point on the urve r(t), we attah an orthonormal moving frame

{x(t),y(t), z(t)}. The unit vetor x(t) is tangent to the urve and points toward

the heading of an individual. The unit vetors {y(t), z(t)} are hosen in the plane

normal to x(t). The evolution of these vetors are given by the frame equations,

ṙ(t) = ν(t)x(t)

ẋ(t) = ν(t)(u(t)y(t) + v(t)z(t))

ẏ(t) = −ν(t)u(t)x(t)

ṙ(t) = −ν(t)v(t)x(t),

(1.1)

where ν(t) is the speed (‖ṙ(t)‖) and (u(t), v(t)) are alled natural urvatures of

the trajetory [Justh and Krishnaprasad, 2005℄. In a planar setting, we have the

frame {x(t),y(t)} and the evolution equations are written as,

ṙ(t) = ν(t)x(t)

ẋ(t) = ν(t)u(t)y(t)

ẏ(t) = −ν(t)u(t)x(t).

(1.2)

We an therefore treat ν and u variables as ontrol inputs to steer the individual

on the plane, ν as the veloity input and u as the urvature ontrol input.
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Figure 1.1: Mobile robot based experimental platform (Pioneer 3 DX) with two-

wheel di�erential and aster.

1.2 Experimental Setup

We provide a omprehensive desription of the laboratory set up in the Intelli-

gent Servosystems Lab, University of Maryland. All the laboratory experiments

presented in this thesis are done under this setup. Our experimental test-bed is

omprised of Pioneer 3 DX wheeled robots from Adept MobileRobots [Pioneer℄.

These ompat, di�erential-drive mobile robots are equipped with reversible DC

motors, high-resolution motion enoders and 19m wheels, and the onboard om-

putation is done via a 32-bit Renesas SH2-7144 RISC miroproessor, inluding

the P3-SH miroontroller with ARCOS. The sensors on the robot inlude eight

forward-faing ultrasoni (sonar) sensors. ARIA [ROS-ARIA℄ provides an inter-

fae for ontrolling and reeiving data from the robot, and ommuniation with

the robot for sending ontrol ommands (forward veloity and turning rate) is

done via 802.11-b/g/n networking. The width of the robot is 380 mm and it has

a swing radius of 260 mm.

7



Algorithm implementation (i.e, feedbak law omputation) has been done in

C++ using ROS [ROS℄, along with ROS-ARIA [ROS-ARIA℄, as the interfaing

robotis middleware. The experiments have been arried out in a laboratory en-

vironment equipped with a sub-millimeter aurate Vion motion apture system

[Vion℄. We use a Dell workstation to run ROS, and this omputer is onneted

to the Vion server via a dediated Ethernet onnetion.

The Vion system aptures the motion of the robots and sends out the position

and heading data to the omputer running ROS. The ontrol law program listens

to this data, and transmits the individual veloities and turning rates. Both of

these operations are arried out at a frequeny of 25 Hz. The ontrol law program

omputes the ontrols aording to the strategy that is spei� to the problem

onsidered. The omputed veloity and urvature ontrol variables ν(t), u(t) an

be translated to the turning rate ω(t) (in degrees/se) as:

ω(t) =

(

180

π

)

ν(t)u(t). (1.3)
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Part I

Synthesis of Colletive Motion:

Bottom-up Approahes
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Chapter 2

Feedbak Laws for Colletive Motion

2.1 Introdution

Colletive motion plays a ruial role in modern day robotis and engineering. It

is beoming ommonplae for a group of unmanned, remote ontrolled vehiles

to be deployed to aomplish goals ranging from searh and resue to surveil-

lane. For the swarm of robots to funtion in a harmonious manner, it is very

important to ontrol them arefully. Natural olletives are indeed an inspira-

tion in this endeavor. On the other hand, a thorough study of those olletives

remain inomplete without understanding agent level interation laws. In this

hapter therefore, we will build models for olletive motion from `bottom-up',

i.e. from individual level ontrol strategy to �ok level synhrony through in-

teration among agents. This hapter presents a range of theoretial results as

well as laboratory demonstrations of ontrol laws that we propose or has been

proposed before. This hapter has two main ontributory setions, most of whih
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are taken verbatim from their respetive publiations. We start with a problem

that studies a partiular dyadi interation under the setting of a pursuit strategy

alled onstant bearing pursuit [Halder et al., 2016℄. We gain interesting insight

from this problem that onnets to the Kepler two body problem. The obtained

result of this problem is then used to solve a problem arising from a pratial robot

maneuvering senario. The last problem is purely experimental [Halder and Dey,

2015℄ whih demonstrate another dyadi interation strategy potentially useful

for surveillane, and a �oking strategy involving many agents.

2.2 Steering for Beaon Pursuit under Limited Sens-

ing

In this setion, we will try to understand simple dyadi pursuit strategies (i.e.

strategies based on pairwise interations), and exploit them as building bloks

for synthesis of omplex motion patterns for olletives. In [Galloway et al.,

2009, 2013℄, using symmetry priniples and nonlinear dynamis, a spei� strat-

egy, known as onstant bearing yli pursuit, is shown to produe a rih variety

of behaviors for appropriate hoies of parameters (bearing angles). In [Justh

and Krishnaprasad, 2006℄ a biologially plausible feedbak ontrol law is inves-

tigated that exeutes motion amou�age, a type of stealthy pursuit assoiated

with visually-guided �ight in insets (e.g. hover�ies and dragon�ies). Stealth

arises from nulling opti �ow in the visual �eld of the target of pursuit, thereby
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inreasing the hane of suess in prey apture or territorial battle against a on-

spei�. This type of dyadi interation is also exploitable in oordinated motion,

for instane see [Mishiati and Krishnaprasad, 2010℄.

The present work is similar to [Justh and Krishnaprasad, 2004℄ in motivation.

We onsider a problem of two agents moving in a plane with onstant (not ne-

essarily idential) speeds and, one of them is free i.e. it assumes any open loop

steering (urvature) ontrol, while the other pursues it. The free agent may be

onstrued as a beaon and the pursuer's task is to reah a safe viinity of the

beaon and irulate around it. In the interesting ase when the beaon is sta-

tionary, but the pursuer has a sensor with limited �eld of view (FOV) to detet

the beaon, the irling law proposed in [Justh and Krishnaprasad, 2004℄ may be

foiled. One goal of this work is to devise a prinipled approah (ontrol algorithm)

for this problem that opes with sensor limitation. We do this via a two-step pro-

ess. We �rst analyze a slightly di�erent problem of traking a (slowly) moving

beaon assuming that: (a) the beaon trak is of onstant urvature (i.e. on a

straight line or on a irle); and (b) the sensor on-board the pursuer has no FOV

limitation. For the hoie of a onstant bearing pursuit feedbak ontrol law, one

obtains a rih dynamis. The phase portrait in turn suggests the seond step � a

feedbak law modi�ation that is appliable to the setting of stationary beaon,

and limited FOV. In this ase, one needs an additional ingredient � an estimator

using odometry to trak the beaon when it has fallen out of the FOV. The idea

here is to use the odometry-based estimate in the feedbak law as if it is exat

12



PSfrag replaements

r12 = r1 − r2r1

x1

y1

r2

x2

y2

κ1

κ2

Figure 2.1: Illustration of salar shape variables (ρ, κ1, κ2) used to parametrize

the shape spae.

(a type of ertainty equivalene) and use diret observation of the beaon when

it is re-aptured in the FOV. Suh an estimator is used in an implementation of

beaon traking in a laboratory test-bed with a range amera (Kinet [Kinet℄) as

the sensor mounted on a mobile ground robot. A high preision (marker-based)

motion apture system (Vion [Vion℄) is used to determine ground truth and

analyze the performane. In addition, the unonstrained traking of the moving

beaon problem is revisited and it is shown that the resulting dynamis an be

identi�ed with motion of a harged partile in an eletromagneti �eld. Moreover,

at a partiular value of the beaon urvature, the ombined dynamis is exatly

same as the Kepler problem of two bodies.

2.2.1 Traking a Moving Beaon

Let us onsider two agents moving on a plane, eah abiding the self steering par-

tile equations of motion. We assume that both their speeds ν1, ν2 are onstants.

It is possible to represent the dynamis of the system of two agents by the help

13



of salar shape variables ρ, κ1, κ2 (Fig. 2.1) as

ρ̇ = −ν1 cosκ1 − ν2 cosκ2

κ̇1 = −ν1u1 +
1

ρ
(ν1 sin κ1 + ν2 sin κ2)

κ̇2 = −ν2u2 +
1

ρ
(ν1 sin κ1 + ν2 sin κ2).

(2.1)

This is rather a straightforward alulation. We view agent 1 as a slowly moving

beaon to whih agent 2 pays attention. Let us make the following assumption.

A-1: The speed of agent 1 is less than the speed of agent 2, i.e. ν1 < ν2.

We pik the feedbak ontrol law for agent 2 as follows:

u2 = −µ̃
(

R(α)y2 ·
r21

|r21|

)

− 1

ν2|r21|

(

r21

|r21|
· ṙ⊥21

)

, (2.2)

for some µ̃ > 0. Here we denote a⊥ = R(π/2)a, for any vetor a in the plane of

motion, R(·) is the planar rotation matrix. Note that this ontrol law is a standard

onstant bearing (CB) pursuit law [Galloway et al., 2013℄ with parameter α. The

feedbak ontrol law an be expressed in terms of the salar shape variables as

u2 = µ̃ sin(κ2 − α) +
1

ν2ρ
(ν1 sin κ1 + ν2 sin κ2)

The losed loop dynamis of (2.1) then takes the form

ρ̇ = −ν1 cosκ1 − ν2 cos κ2

κ̇1 = −ν1u1 +
1

ρ
(ν1 sin κ1 + ν2 sin κ2)

κ̇2 = −µ̃ν2 sin(κ2 − α).

(2.3)

A fundamental result [Galloway et al., 2013℄ for the CB strategy tells us that

under the ation of the ontrol law (2.2), the manifold

Mα
CB = {(ρ, κ1, κ2) ∈ R

+ × S1 × S1 : κ2 = α}
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is an attrative invariant manifold for all initial onditions exept κ2(0) = α +

π. The invariane follows diretly from the losed loop dynamis (2.3). The

attrativeness an be proved by de�ning Λ(t) = − cos(κ2(t)− α). Thus Λ(0) 6= 1

implies Λ(t)→ −1 as t→∞ or equivalently κ2 onverges to α.

2.2.2 Dynamis Restrited to the Invariant Manifold

At this stage, we are ready to make another assumption:

A-2: We onsider the urvature of the beaon to be onstant, i.e. u1 = u, for

some u ∈ R onstant.

Now we fous our analysis on the dynamis on the invariant manifold (alled

MShape = R+ × S1
) whih may be expressed as

ρ̇ = −ν1 cos κ1 − ν2 cosα

κ̇1 = −ν1u+
1

ρ
(ν1 sin κ1 + ν2 sinα).

(2.4)

It is of interest to haraterize the solutions of the restrited dynamis (2.4) on

the invariant manifold. Note that given ν1, ν2, u and α, (2.4) might have at most

two equilibrium points (ρ∗, κ∗1), with cosκ∗1 = − cosα
ν

and ρ∗ =
ν sinκ∗

1+sinα

νu
, where

we denote ν = ν1
ν2
< 1. Existene of suh equilibrium points is guaranteed if ν ≥

| cosα| and (ν sin κ∗1 + sinα)u > 0. Linearizing (2.4) around suh an equilibrium

point gives the Jaobian matrix

ν2









0 ν sin κ∗1

−νu
ρ∗
− cosα

ρ∗









,
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with assoiated Eigenvalues

λ = ν2

(

− cosα±
√

cos2 α− 4ν2ρ∗u sinκ∗1
2ρ∗

)

.

Depending on α, following ases will arise

I. α ∈ (−π,−π/2) ∪ (π/2, π]

In this region, cosα < 0, whih makes the equilibrium points unstable. So

all trajetories tend to blow up in (ρ, κ1) plane.

II. α ∈ (−π/2, π/2)

Here, cosα > 0, then (loally) stable equilibrium exists if u sin κ∗1 > 0,

otherwise (ρ∗, κ∗1) is unstable whih leads to eventual ollision. We note

that [Davis, 1962℄ (pages 119-125) studies the same problem with α = 0.

For the α = 0 ase, the existene onditions of equilibrium read ν ≥ 1 and

u sinκ∗1 > 0, whih in turn means we will have a stable equilibrium only

when ν ≥ 1. The urrent problem an be viewed as a generalization of that

onsidered in [Davis, 1962℄.

III. α ∈ {π/2,−π/2}

In this ase, however, the dynamis (2.4) produes a rih behavior whih we

analyze next. We only provide the analysis for α = π/2 ase, the other ase

being analogous.
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2.2.3 Speial Case: α = π

2

We rewrite (2.4) in this partiular ase,

ρ̇ = −ν1 cosκ1

κ̇1 = −ν1u+
1

ρ
(ν2 + ν1 sin κ1).

(2.5)

All the trajetories of (2.5) are losed and we will prove this in the same way as

exploited in [Mishiati and Krishnaprasad, 2012℄. We �rst introdue the following

de�nitions and a theorem due to Birkho�.

De�nition 2.1 (Involution). A di�eomorphism F : M → M from a manifold

M onto itself is said to be an involution if F 6= idM , the identity di�eomorphism

and F 2 = idM , i.e. F (F (m)) = m, ∀m ∈M .

De�nition 2.2 (F-reversibility). A vetor �eld X de�ned over a manifold M

is said to be F-reversible if there exists an involution F suh that F∗(X) = −X,

i.e. F maps orbits of X to orbits of X , reversing the time parametrization. Here

(F∗(X))(m) = (DF )F−1(m)X(F−1(m)), ∀m ∈ M is the push-forward of F . We

all F the reverser of X .

Theorem 2.2.1 (G.D. Birkho�, [Birkho�, 1915℄). Let X be a F-reversible vetor

�eld on M and ΣF the �xed-point set of the reverser F . If an orbit of X through

a point of ΣF intersets ΣF at another point, then it is periodi.

See [Mishiati and Krishnaprasad, 2012℄ for a detailed proof of this theorem.

Based on these de�nitions and the theorem, we propose the following.
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Figure 2.2: Phase portrait (polar plot) of the system dynamis restrited to the

invariant manifold (2.5) with di�erent values of u, keeping ν1 = 0.5, ν2 = 1 �xed

for all three ases.

Theorem 2.2.2. (i) The quantity,

E(ρ, κ1) = ρ(ν2 + ν1 sin κ1)−
1

2
ν1uρ

2 = E(ρ(0), κ1(0)) (2.6)

is onserved along any trajetory of (2.5).

(ii) Every solution of (2.5) is periodi.

Proof. (i) Denote, χ = ρ(ν2 + ν1 sin κ1), then

dχ

dt
= ρ̇(ν2 + ν1 sin κ1) + (ρν1 cosκ1)κ̇1

= ν1uρ
dρ

dt

=⇒ χ(t) =
1

2
ν1uρ

2(t) + c,

where c = χ(0)− ν1uρ2(0)/2 = onstant, whih, in turn implies

E(ρ, κ1) = ρ(ν2 + ν1 sin κ1)−
1

2
ν1uρ

2 = E(ρ(0), κ1(0)).
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(ii) Step-1: Vetor �eld de�ned by (2.5) is F-reversible with reverser F (ρ, κ1) =

(ρ, π − κ1).

Clearly, F is an involution sine F 2(ρ, κ1) = (ρ, κ1). Next,

(F∗(X))(ρ, κ1) = (DF )F−1(ρ,κ1)X(F−1(ρ, κ1))

=









1 0

0 −1









X(ρ, π − κ1)

= −X(ρ, κ1).

Hene, X is F-reversible.

Step-2: Fixed point set of F is given by ΣF = {(ρ, κ1) : ρ > 0, κ1 = ±π
2
}. So

every orbit of (2.5) rossing κ1 = ±π
2
line twie is periodi. Now, depending on

the value of u, di�erent ases will arise.

(a) u ≤ 0 : In this ase, we note that the assumption ν2 > ν1 is su�ient

to guarantee monotoniity of κ̇1, in partiular κ̇1 > 0 for all time. Hene, any

trajetory originating from any point on the κ1 = ±π/2 line (exluding the origin)

will travel ounter lokwise until it hits the line again when κ1 gets inremented

by an amount of π radian (see Fig. 2.2a, 2.2b). Note that the onserved energy, E

prohibits any trajetory that starts with positive energy to go to the origin (with

zero energy).

(b) u > 0 : Beause κ̇1 an assume any sign under this ase, we need a more

serious argument for this ase. To determine the nullline κ̇1 = 0, we ompute
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Figure 2.3: Nulllines of (2.5) with u = 1, ν1 = 0.5, ν2 = 1.

ρ = ν2+ν1 sinκ1

ν1u
and ν2 > ν1 ensures existene of a valid ρ for eah value of κ1. The

ρ̇ nullline is simply the κ1 = ±π/2 line. This is illustrated in Fig. 2.3. It is

immediate that in this ase we have two equilibrium points, A =
(

ν2+ν1
ν1u

,+π
2

)

and

B =
(

ν2−ν1
ν1u

,−π
2

)

. The trajetories starting from either of those points are learly

periodi.

Depending on the nulllines, the whole spae an be divided into four regions as

shown in Fig. 2.3 and those regions are haraterized as

Region I : ρ̇ < 0, κ̇1 < 0, Region III : ρ̇ > 0, κ̇1 > 0,

Region II : ρ̇ > 0, κ̇1 < 0, Region IV : ρ̇ < 0, κ̇1 > 0.

Now imagine trajetories starting on the line segment OA, exluding both

points. Sine κ̇1 < 0, they will move into region III, whih an produe two

outomes:

(b1) It hits the OB line (exluding both points).
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(b2) It exits region III through NK and goes into region II. Now the onstany

of E gives the following observation, if a trajetory of (2.5) rosses NK at

a ertain angle κ
(1)
1 , then it must ross it again at a di�erent angle κ

(2)
1 and

these angles are symmetri about κ1 = π/2. This means trajetories must

not enter region III from region II. This leads all the trajetories in region

II to hit the κ1 = +π/2 line beyond point A.

Next, onsider trajetories starting at the boundary of region I and II with

κ1 = π/2. κ̇1 < 0 gives rise to lokwise motion into region I. Again, we need to

analyze two senarios:

(b3) The trajetories reah boundary between region I and II with κ1 = −π/2.

(b4) They enter region IV through NK. Similar argument as in ase (b2) an

be employed to prove they must reah boundary between region III and IV

with κ1 = π/2.

Now, trajetories starting on OB line (exluding both points) must move in

region IV and hene must hit OA line (exluding both points).

Finally, trajetories starting on the boundary between region I and II with

κ1 = −π/2 must go into region II and must eventually hit the boundary between

region I and II with κ1 = π/2 following a lokwise path (and without entering

region III).

This ompletes the proof. �

Remark 2.1. In a speial ase u = 0, (2.6) reads exatly as the polar equation of

an ellipse

1
ρ
= c̃(1 + ν cos θ), where the origin is plaed at one fous of the ellipse,
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the angle θ is measured from the origin with respet to the major axis of the ellipse

and ν = ν1
ν2

is the eentriity of the ellipse (reall A-1). It is of interest to note

that the same ellipti equation omes from the analysis of the Kepler two-body

problem [Goldstein et al., 2001℄.

A result of the dynamis (2.5) regarding time period is immediate in the light

of Proposition 2.2.2.

Corollary 2.2.1. Every orbit of (2.4) has a period

T = 2

∫ ρmax

ρmin

dρ
√

ν21 − (1
2
ν1uρ+

E0

ρ
− ν2)2

, (2.7)

where ρmin and ρmax are solutions of the pair of equations

ρ(ν2 ± ν1)−
1

2
ν1uρ

2 = E(ρ(0), κ1(0)) =: E0 (2.8)

In partiular, for the ase u = 0, the time period beomes, T = 2πν2E0

(ν22−ν21 )
3
2
.

Remark 2.2. Note that for an �admissible� value of E0, the pair of equations

(2.8) has only two solutions. For the speial ase, u = 0, we know the losed loop

trajetories are desribed by the ellipses ρ = E0/(ν2 + ν1 sin κ1) with semi-major

axis, a = 1
2
(ρmin + ρmax) = E0

2

(

1
ν2+ν1

+ 1
ν2−ν1

)

= E0ν2
ν22−ν21

. Then, from Corollary

2.2.1, we �nd T 2 =
(

4π2

ν2E0

)

a3.

Remark 2.3. The ondition ν2 > ν1 is neessary for the existene of periodi

orbits for the ase u = 0 while it is merely a su�ient ondition for other values

of u.
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2.2.4 The Limited Field of View (FOV) Problem

In this setion, we will desribe the problem of traking a stationary beaon by

a ontrolled agent equipped with a sensor (e.g. a depth amera like Kinet) with

limited �eld of view. As opposed to the problem disussed in the previous setion,

this problem is inspired by an implementation point of view. The bakbone model

(2.1) of the system stays the same. Agent 2 is supposed to sense the position of

the beaon relative to its own position and use the sensed quantities to determine

the ontrol ation. Using the shape variables, it has aess to the pair (ρ, κ2) (refer

to Fig. 2.1), with the limitation that |κ2| ≤ κmax < π/2, whih we all the �eld of

view onstraint. Although various feedbak ontrol laws have been proposed (for

e.g. [Justh and Krishnaprasad, 2004℄) to enirle a stationary beaon, permanent

loss of the target (beaon) from the �eld of view annot be avoided by those laws.

More preisely, the limited FOV problem boils down to enirling the beaon while

being able to sense it (at least) periodially.

Putting beaon speed, ν1 = 0 in (2.1) and ignoring κ1 dynamis, the equivalent

shape spae equations an be redued to

ρ̇ = −ν2 cosκ2

κ̇2 = −ν2u2 +
1

ρ
ν2 sin κ2.

(2.9)

Remark 2.4. From (2.9), it is guaranteed that under the �eld of view onstraint,

the attempt of enirling the beaon would eventually make the beaon perma-

nently invisible (as long as a irular orbit around the beaon is onsidered).

Moreover, from ρ dynamis, meeting the onstraint |κ2| ≤ κmax < π/2 for all time

23



will lead to de�nite ollision.

One the beaon goes out of the FOV, the only hoie for the vehile would be

to e�iently estimate the position of the beaon and apply the ontrol based on

those estimates. Aepting the fat mentioned in remark 2.4, one an only try to

design the ontrol u2 in suh a way that the ontrol law provides some promise to

bring the beaon bak in the �eld of view after losing it. The following proposition

is meant to serve that purpose.

Proposition 2.2.1. The feedbak ontrol law given by

uFOV
2 = u0 −

µ

ρν2
, u0 ≤ 0, µ > ν2, (2.10)

guarantees the periodi return of the beaon to the �eld of view under ideal esti-

mates.

Proof. With the feedbak ontrol (2.10), the losed loop system beomes,

ρ̇ = −ν2 cosκ2

κ̇2 = −ν2u0 +
1

ρ
(µ+ ν2 sin κ2).

(2.11)

Notiing that (2.11) is equivalent to (2.5), the laim follows diretly from Theorem

2.2.2. From the polar phase portrait (Fig. 2.2), we see that the ondition u0 ≤ 0

is required for the angle variable κ2 to go through a full 360◦ rotation whih is

essential in order to bring the beaon bak in the FOV. �

As we will disover next, the ondition on the parameter u0 an be relaxed

to inlude positive values as well. From Theorem 2.2.2, the ondition µ > ν2 is
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only su�ient for any value of u0. It beomes neessary for the partiular ase of

u0 = 0.

Although the feedbak ontrol law (2.10) produes all periodi orbits and it

inherently takes are of ollision avoidane problem (see Fig. 2.2), it laks in the

freedom of driving the vehile to a partiular desired orbit (f. the irular orbits

with desired radius as in [Justh and Krishnaprasad, 2004℄). Moreover, the periodi

orbits are not orbitally asymptotially stable whih makes them suseptible to

disturbanes. To overome these shortomings, we propose the following.

Proposition 2.2.2. Let Ed denote the admissible value of the desired energy, i.e.

there exists a periodi orbit with E(ρ, κ2) = Ed. Here E(ρ, κ2) is as in (2.6) with

the pair (ν1, ν2) interpreted as (ν2, µ) in present ontext. Then the ontrol law

u2 = uFOV
2 + uAD

2 = u0 −
µ

ρν2
+ kd(E(ρ, κ2)−Ed) cosκ2, (2.12)

with kd > 0 makes the orbit with energy Ed asymptotially stable with region of

attration given by MShape \ {(ρ, κ2) : cosκ2 = 0, ρ = (µ+ν2 sinκ2)
ν2u0

, u0 > 0}, where

MShape = R+ × S1
.

Proof. Note that the trajetories of (2.9) with ontrol (2.12) will no longer be peri-

odi beause of the inlusion of the extra uAD
2 term. Sine E(ρ, κ2) is a ontinuous

funtion of both ρ and κ2, it su�es to prove that the quantity (E(ρ, κ2) − Ed)
2

is monotonially dereasing. We obtain,

d

dt
(E(ρ, κ2)−Ed)

2 = −2kdρν22(E(ρ, κ2)− Ed)
2 cos2 κ2.
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Clearly, with kd > 0, d(E(ρ, κ2)−Ed)
2/dt ≤ 0, for all (ρ, κ2) suh that ρ > 0. The

largest invariant subset of {(ρ, κ2) : d(E(ρ, κ2)−Ed)
2/dt = 0} is indeed {(ρ, κ2) :

E(ρ, κ2) = Ed}, whih, in turn establishes the statement of the proposition. �

In the light of Theorem 2.2.2, we see that the restrition u0 ≤ 0 in Proposition

2.2.1 an be relaxed. In partiular, for u0 > 0, one only has to hoose Ed suh

that k2 ompletes full 360◦ rotation (for e.g. one might pik Ed = E(ρ,−π/2),

with ρ > µ−ν2
ν2u0

, see Fig. 2.2()).

2.2.5 Implementation

In this laboratory implementation, we hose to use the newest Kinet model,

whih was reated for Mirosoft's Xbox One. The Kinet primarily funtions as

a motion-sensing input devie, enabling players to interat with video games in

exiting ways. To aomplish this, the devie is equipped with several sensors

inluding an RGB sensor, 3D Depth Sensor, as well as Multi-array Mirophones.

The Kinet's RGB sensor has a 70.6 degree horizontal �eld of view, and a 60

degree vertial �eld of view (see Fig. 2.4). The Kinet operates at a rate of 30

Hz, and has an e�etive range between 0.5 meters, and 4.5 meters where auray

is reliable. Despite it's original use ase as a video game ontroller, the Kinet

has been studied reently as a sensor for many robotis appliations, inluding

autonomous vehiles [Oliver et al., 2012℄ and healthare [Nghiem et al., 2012℄.

In this experiment, the Kinet RGB amera ats as a primary sensor for de-

termining the distane and relative heading of the beaon (i.e. ρ, κ2), whih in
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Figure 2.4: Robot (Pioneer 3 DX) with Kinet mounted, and the orange one

used as the beaon.

our experiment was an orange one. OpenCV [OpenCV℄ is used to perform a

simple blob detetion algorithm that alulates the entroid of the one in pixel

oordinates, and then uses the Kinet's oordinate mapping feature to transform

the result into physial, or amera spae. To take advantage of these API features,

we mount a laptop running the Windows operating system onto the robot, and

utilize a ustom TCP/IP server to stream the oordinates bak to the robot on-

trol station. The ontrol station is a Dell omputer running ROS [ROS℄, and the

algorithm implementation is done using the MATLAB ROS toolbox [MATLAB℄.

Finally, the Vion motion apture system [Vion℄ is used to trak the motion of

the robot and beaon in the lab oordinate spae to obtain ground truth results

of the implementation.

2.2.5.1 Estimation

In order to suessfully implement the proposed ontrol law, the robot has to be

able to e�iently determine the beaon position relative to its own position during
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the periods of time when the beaon is not in FOV. Equivalently, the estimation

problem then is to integrate the losed loop shape dynamis ((2.9) with ontrol

(2.12)) given some initial ondition, whih in this ase would be the last known

(ρ, κ2) value before the robot loses sight of the beaon. Sine there is a onserved

quantity assoiated with (2.11) (Proposition 2.2.2), a mid-point based update

rule performs better than the naive Euler rule [Austin et al., 1993℄. Denoting the

estimate of (ρ, κ2) by (ρ̂, κ̂2) and the disrete time step by ∆t, the update rule

may be impliitly expressed as follows:

ρ̂n+1 − ρ̂n
∆t

= −ν2 cos
(

κ̂n2 + κ̂n+1
2

2

)

κ̂n+1
2 − κ̂n2
∆t

= −ν2un2 +
2ν2

ρ̂n+1 + ρ̂n
sin

(

κ̂n2 + κ̂n+1
2

2

)

,

(2.13)

where un2 = u2(ρ̂
n, κ̂n2 ) as in (2.12) and (ρ̂0, κ̂02) is the last suessful measurement

of the beaon position. We then solve the nonlinear equations (2.13) numerially

(using MATLAB's fsolve) to produe the neessary estimates whenever the beaon

is not in the �eld of view of the sensor. This proedure an be summarized in

Algorithm 1.

2.2.5.2 Experimental Results

To demonstrate our solution to the limited �eld of view problem, we onstruted

an experiment for whih the robot sees the orange one and attempts to enir-

le it using the desribed ontrol mehanisms. The result is a trajetory that

periodially brings the one bak in its FOV so that the robot an ful�ll its net
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Algorithm 1: Steering Law Computation for Limited FOV Problem

Data: ρ : measured distane to beaon, κ2 : measured angle to beaon;

ρ̂ : estimate of ρ, κ̂2 : estimate of κ2

Parameters: u0, µ, kd, Ed

begin

while not stopped do

if beaon visible then

Compute u2 = u2(ρ, κ2) using equation (2.12)

else

Initialize: (ρ̂0, κ̂02)←− (ρlast, κlast2 )

Calulate (ρ̂, κ̂2) from (2.13)

Determine u2 = u2 (ρ̂, κ̂2) using (2.12)
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enirling of the beaon. The ground truth data was obtained using Vion. We

ran the experiment using a robot speed ν2 = 200 mm/se, and the parameters

were u0 = 0 mm

−1
, µ = 5ν2 = 1000 mm/se, kd = 5 × 10−9

mm

−3
se and Ed

was taken to be energy orresponding to the orbit whih maintains the minimum

distane of 1200 mm from the beaon, in other words Ed = 1.44× 106 mm

2
/se.

Implementation results are shown in Fig. 2.5. The ground truth polar plot

an be seen in omparison to the desired ellipse (sine u0 was taken to be 0) in

Fig. 2.5b. The mid-point rule estimation method results in a robust ontroller

that ahieves the desired trajetory although it is slightly loser to the beaon

than the theory predits. The error between these two orbits is observed (∼ 200

mm) to be within the size of the robot (∼ 400 mm).

2.2.6 Assoiated Lagrangian

Here we will re-visit the problem of traking a moving beaon as onsidered in

Setion 2.2.1. It is of spei� interest to ask whether the system dynamis admits

some Lagrangian formulation. Without loss of generality, at this stage we take

ν2 = 1 and denote ν1 = ν (note that A-1 translates to ν < 1). Writing r = r1−r2,

we see that on the invariant manifold, the feedbak ontrol law (2.2) takes the

form

u2 = −
r · ṙ⊥
|r|2 .
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Now it is a straightforward exerise to see that the baseline vetor satis�es the

following seond order ODE:

r̈ = ν2uy1 − u2y2

= ν2uy1 +

(

r · ṙ⊥
|r|2

)(

r

|r|

)

. (2.14)

Note that here we used the fat that on the invariant manifold the bearing angle

of the seond agent to the beaon, κ2 = π/2 and hene the y2 vetor is aligned

with the baseline vetor r, or in other words y2 =
(

r

|r|

)

.

Proposition 2.2.3. On every level set of E, (E(ρ, κ1) = E0, as in (2.6)) the

two dimensional system (2.14) is atually the Euler-Lagrange equation of the La-

grangian funtion (of the type kineti energy−potential energy)

L(r, ṙ) = K(r, ṙ)− V (r, ṙ)

=
1

2
|ṙ|2 −

(

−E0

|r| −
1

2
νu|r| − A(r) · ṙ

)

, (2.15)

where A is de�ned as A(r) := −1
2
νur⊥.

Proof. Note that the quantity, E0 = ρ(1 + ν sin κ) − 1
2
νuρ2 is onserved and

r · ṙ⊥ = −ρ(1 + ν sin κ). From here, we an rewrite (2.14) as

r̈ = νu(νy1 − y2) +

(

− E0

|r|2 +
1

2
νu

)(

r

|r|

)

= (ṙ×B)−∇
(

−E0

|r| −
1

2
νu|r|

)

= (ṙ×B) + E(r), (2.16)

where we introdue B := −νuẑ, a stati �magneti �eld� in the diretion per-

pendiular to the plane of motion of the agents, ẑ being the unit vetor in
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that diretion. Also, we all E(r) := −∇Φ(r), the �eletri �eld� and Φ(r) :=

−
(

E0

|r| +
1
2
νu|r|

)

, the orresponding eletrostati potential.

Now, the equation (2.16) resembles with that of the equation of motion of a

harged partile in an eletromagneti �eld and one an �nd obvious similarity

of the right hand side with that of Lorentz fore law. Then a standard result

[Goldstein et al., 2001℄ in the theory of eletromagnetism gives the Lagrangian

formulation of (2.16). Sine ∇ · B = 0, B an be written as url of a �magneti

vetor potential� A(t, r), i.e. B = ∇×A. Also, the eletri �eld E an be writ-

ten as E = −∇Φ(r) − ∂A
∂t
. Mathing this with (2.16), we an see that A is a

vetor valued funtion of r only. It is a straightforward exerise to show that

A = −1
2
(r × B) = −1

2
νur⊥ satis�es B = ∇ × A. Then the Lagrangian whih

generates (2.16) is given by

L(r, ṙ) = K(r, ṙ)− V (r, ṙ)

=
1

2
|ṙ|2 − (Φ(r)−A(r) · ṙ)

=
1

2
|ṙ|2 + E0

|r| +
1

2
νu|r| − 1

2
νur⊥ · ṙ

�

Remark 2.5. In essene, Proposition 2.2.3 reveals that with open loop onstant

urvature ontrol of one agent and with feedbak ontrol (2.2), namely onstant

bearing pursuit law with parameter α = π/2, of the other, (on every level set

of an invariant manifold) the oupled system behaves exatly the same way as a

harged partile in a stati eletromagneti �eld. Moreover, the magneti �eld, B

is dependent on the onstant urvature (u) of the �rst agent. Thus u = 0 implies
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the absene of the magneti �eld and the agents are subjet to the eletrostati

�eld only. The �eld E has familiar inverse square form and hene the results

for the speial ase u = 0 agree with Kepler's laws whih are obtained from a

two-body problem subjet to Newtonian gravitational fore.

2.3 Biomimeti Algorithms for Coordinated Mo-

tion

In this setion, we will report implementation of two feedbak ontrol strategies

on our laboratory test-bed. The �rst of these two strategies is alled mutual mo-

tion amou�age (MMC) [Mishiati and Krishnaprasad, 2012℄. Existing literature

on dragon�ies [Corbet, 1999℄ provides qualitative analysis of territorial battles,

wherein the trajetories display spiraling motion onsistent with the theoretial

preditions [Mishiati and Krishnaprasad, 2011℄. This partiular bio-inspired on-

trol algorithm inherits an appealing overage property through the mehanism of

spae �lling urves, and our implementations are able to reprodue overage pat-

terns similar to the predited ones.

Although there has been a long history of ontrol algorithms for �oking, al-

most every model of olletive motion predits di�usive transport of information.

But, ontrary to the existing models, reent �ndings [Attanasi et al., 2014℄ from

starling �oks suggest that diretional information within a �ok propagates with

an almost onstant speed, and this linear growth of information an be explained
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by models with wave-like aspets. In [Dey, 2015; Halder and Dey, 2015℄ a on-

trol strategy alled topologial veloity alignment (TVA) was introdued, whih

onforms to this riterion and an explain how information about loal neighbors

an in�uene the agents in a �ok to align their headings in a single ommon

diretion. Hene it seems reasonable to use TVA strategy for olletive motion

synthesis. Furthermore, our implementation results in real robots have shown

that redution in neighborhood size and external perturbation (similar to preda-

tor attak) an split a �ok into smaller subgroups.

2.3.1 Mutual Motion Camou�age (MMC)

Here we onsider the mutual interation between two agents eah applying the

same pursuit law, while pereiving the other one as a target. As the dynamis of

MMC in a planar setting has been studied earlier [Mishiati and Krishnaprasad,

2012℄, we just reiterate some key results in order to have a omprehensive frame-

work. Allowing di�erent speeds for the agents, we begin with the following sym-

metry:

u1ν1 = u2ν2 = u. (2.17)

Then the dynamis of the relative motion vetors, namely r = r1 − r2, g = ṙ =

ν1x1 − ν2x2 and h = g⊥ = ṙ⊥, an be expressed as

ṙ = g

ġ = uh

ḣ = −ug.

(2.18)
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Now we introdue three salar shape variables de�ned as ρ = |r|, γ = (r · g)/|r|

and λ = (r ·h)/|r|. Then, aording to [Justh and Krishnaprasad, 2006℄, we have

u = −µ
(

r

|r| · ṙ
⊥
)

= −µ
(

r

|r| · h
)

= −µλ, (2.19)

where, µ > 0 denotes the feedbak gain. As shown earlier, the dynamis of relative

motion (2.18) an be redued to yield a seond order dynamis given by

ρ̇ = γ

γ̇ = (1/ρ− µ)
(

δ2 − γ2
)

,

(2.20)

where, δ = |g| = |h| is onserved along any trajetory of (2.18). As detailed in the

original work [Mishiati and Krishnaprasad, 2012℄, individual trajetories an be

reonstruted from the solutions of (2.20). Moreover, the solutions of the redued

dynamis (2.20) onstitute level sets for another onserved quantity, de�ned as

E(ρ, γ) = ρ2(δ2 − γ2)e−2µρ = E(ρ0, γ0). (2.21)

However, the absene of damping in the redued dynamis (2.20) has poten-

tial to deteriorate the performane of the original MMC law (2.19). A modi�ed

feedbak law, with an added dissipative term to neutralize any deviation from the

predited trajetories, an be expressed as

utot = u+ udis = −µλ+ kdλγ
(

E(ρ, γ)−Ed

)

, (2.22)

where Ed is set as the initial value of the onserved quantity E(ρ, γ), i.e. Ed =

E(ρ0, γ0). Previous work [Mishiati and Krishnaprasad, 2010℄ has shown that this

modi�ed ontrol law (2.22) with kd > 0 makes the periodi orbit (with energy Ed)
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orbitally asymptotially stable, and the orresponding domain of attration is

haraterized by {(ρ, γ) : ρ > 0,−δ < γ < δ, (ρ, γ) 6= (1/µ, 0)}.

2.3.2 Topologial Veloity Alignment (TVA)

Here we formalize the strategy of topologial veloity alignment (TVA) [Halder

and Dey, 2015; Dey, 2015℄, and assume that eah member in a group of n-agents

uses this strategy to move together while keeping its heading parallel to the neigh-

borhood enter of mass veloity. Letting Ni denote the neighborhood of the i-th

agent, the enter of mass (COM) veloity of this neighborhood is given by

v
COM

=
1

|Ni|
∑

j∈Ni

νjxj, (2.23)

where |Ni| represents the number of neighbors in�uening the i-th agent. Next,

by assuming that v
COM

does not vanish to zero, we de�ne the diretion of the

enter of mass motion as

xNi
=

v
COM

|v
COM
| . (2.24)

It should be noted that xNi
is not well-de�ned over a thin set in the state spae.

As the hane of getting into the thin set is very small, we an overlook this

situation for all pratial purposes. Now we introdue a ontrast funtion

Θi =
1

2
(xNi

− xi) · (xNi
− xi) = 1− xi · xNi

, (2.25)

as a quantitative measure for the misalignment between the heading of an agent

and the diretion of motion of its neighborhood enter of mass. Clearly, this

ontrast funtion (Θi) assumes its minimum value (= 0) whenever the i-th agent's

36



veloity is aligned with its neighborhood enter of mass veloity, and inreases

monotonially with inrease in the misalignment between them. Thus, Θi an be

interpreted as a measure of departure from our goal of ahieving alignment.

Next, by assuming a non-zero veloity for the neighborhood enter of mass

(v
COM
6= 0), the TVA law is given by [Dey, 2015℄

ui = µ

(

xNi
· yi

νi

)

, (2.26)

where µ > 0 denotes a positive gain, and yi arries its usual meaning. Alterna-

tively, lateral aeleration for this hoie of ontrol laws (2.26) an be expressed

as

a

lat
i = µνi

(

xNi
−
[

xNi
· xi

]

xi

)

, (2.27)

and this provides a physial intuition behind (2.26) as the lateral aeleration

is proportional to the projetion of the normalized veloity of its neighborhood

enter of mass onto the transverse of its own diretion of motion.

Remark 2.6. Earlier works [Justh and Krishnaprasad, 2003, 2004℄ have onsid-

ered a very similar form of this ontrol law with three omponents for attra-

tion (while the agents are far away), repulsion (to avoid ollision) and veloity

alignment. However, the TVA ontrol law onsiders only veloity alignment, but

extends the sope from a planar setting to a three dimensional environment. More-

over it relaxes the assumption on uniform speed of the olletive by allowing the

agents non-uniform and time-varying speed pro�les. This relaxation plays an im-

portant role in the ontext of applying this ontrol law to a group of heterogeneous

agents.
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It was shown in [Halder and Dey, 2015; Dey, 2015℄, for a two agent system it

is possible to show that the TVA strategy (2.26) aligns the veloity of the agents,

only if their veloity vetors were not exatly opposite to eah other initially. [Dey,

2015℄ also provides further analytial results for a general n agent system with a

yli interation senario. As analysis of an n-agent system with neighborhood

de�ned as the set of K-nearest neighbors poses hard hallenges, we propose an

algorithmi way (Algorithm 2) to implement TVA in a real system. We bring in

an additional neighbor into onsideration whenever v
COM

beomes zero. Clearly,

this provides a way to avoid ill-posedness assoiated with v
COM

being zero beause

non-zero speeds of individual agents ensure that onsidering an extra neighbor will

make an otherwise zero v
COM

non-zero.

2.3.3 Implementation Results

We present the implementation results of the two ontrol laws in our roboti test-

bed. In this setion, we are presenting results for whih the speeds of all the

individual agents are same, i.e. νi = νj , ∀i, j. Though it should be noted that

both ontrol laws an be implemented with di�erent speeds.

2.3.3.1 Implementation of MMC

Here we will show some implementation results for MMC, and demonstrate the

e�etiveness of using a dissipative ontrol term (2.22). Our analysis also inludes

a omparison between the observed trajetories and trajetories obtained from
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Algorithm 2: Topologial Veloity Alignment

Data: Initial Time - tinitial; Final Time - tfinal; Sampling Interval - ∆;

Number of Agents - n; Initial Position and Orientation - {gi}ni=1;

Neighborhood Size - K

begin

Initialize: tcurrent ←− tinitial ;

for i = 1 to n do

Initialize: State - Xi ←− gi ;

while tcurrent ≤ tfinal do

for i = 1 to n do

De�ne: Ni - the set of K-nearest neighbors ;

Compute: Neighborhood enter of mass veloity - v
COM

;

if v
COM

= 0 then

De�ne: Ni - the set of K + 1-nearest neighbors ;

Compute: Neighborhood enter of mass veloity - v
COM

;

Compute: Steering ontrol - ui;

Implement: Steering Control - {ui}ni=1 ;

Update: State - {Xi}ni=1 ;

Update: Time - tcurrent ←− tcurrent +∆ ;

theoretial preditions, obtained via integrating the redued system dynamis

(2.20). Considering the prersene of a onserved quantity (2.6) in the system,

we used the method desribed in [Austin et al., 1993℄ for integration instead of

general ODE solver, whih otherwise would not be able to keep the quantity

E(ρ, γ) onstant to its initial value. Then, from the updated values of ρk and γk,

we reonstrut the trajetories along with their frame vetors, i.e. ri
k
, xi

k
, yi

k
,

with i = 1, 2 and k denoting the time indies. At eah time instane tk, the error
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Figure 2.6: Performane of the system signi�antly improved upon addition of

the dissipative ontrol term (with µ = 0.001 mm

−1
, ν1 = ν2 = 200 mm/se and

kd = 1× 10−15
mm

−6
se

3
)

(eki ) is omputed as: eki = |rki,expt − rki,ideal|.

The plots of a sample run using the modi�ed MMC feedbak law (2.22) are

shown in Fig 2.6. This modi�ed ontrol law has been applied with kd = 1 ×

10−15
mm

−6
se

3
, and the parameters µ, ν1 and ν2 are seleted as 0.001 mm

−1
,

200 mm/se and 200 mm/se, respetively. The resulting performane is quite

satisfatory as shown in Fig 2.6a (refer [YouTube℄ for implementation video). We

have also observed that the error is bounded (∼ 250 mm) within the size of the

robots (∼ 400 mm).

2.3.3.2 Implementation of TVA

We implemented the TVA ontrol law (2.26) in a 2 dimensional setting (i.e. vi(t) is

ignored). As the implementation is in disrete time, we followed Algorithm 2 in our

implementation in order to avoid the singular ase of |v
COM
| = 0. To demonstrate

the performane of TVA ontrol law, we designed three di�erent experiments (refer
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Figure 2.7: Robot trajetories and ontrast funtions of TVA for (i) Experiment

1 [Fig (a),(d)℄ with 8 agents, demonstrates �oking behavior (K = 3); (ii) Ex-

periment 2 [Fig (b),(e)℄ with 8 agents, desribes the splitting behavior due to low

neighborhood size (K = 1), and (iii) Experiment 3 [Fig (),(f)℄ with 6 agents,

shows that perturbation an ause a swarm to split, the trajetory of the per-

turbing agent is not shown. (µ = 1 Hz and νi = 60 mm/se is kept �xed for all

experiments.)

[YouTube℄ for implementation videos). In these experiments, the sonar sensors

on the robots were ativated to sense any obstale in the diretion of motion of

the robots and if any robot an sense suh an obstale, it will simply apply a

maximum turning rate (ωsat
) to avoid ollision. The sonars are programmed to
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detet an obstale only in lose proximity (∼ 300 mm) of the robots. In all our

experiments ωsat
is taken to be 50 rad/se, forward speeds of all of the robots

are kept onstant at 60 mm/se and the value of the parameter µ is hosen to

be 1 Hz. A system with eight agents is onsidered and we apply same TVA law

to all of them. The neighborhood size is taken to be three (i.e. K = 3). The

robots are initially plaed in arbitrary positions and diretions. The footprints of

the robots and the orresponding ontrast funtion, Θ(t) =
∑

i Θi(t) is plotted

against time in Fig 2.7a, 2.7d. The initial and �nal diretions of the robots

are shown using arrows and the �nal positions of the robots are denoted using

dots. It an be seen from Fig 2.7d that the ontrast funtion deays to zero very

quikly whih indiates perfet veloity alignment within the swarm. Next we

dereased the neighborhood size and made it one (K = 1), so that every robot

only `ommuniates' with its losest neighbor. We hose the initial positions in

suh a way that they may form sub-lusters instead of moving as a single swarm.

This behavior is alled `splitting ' in a swarm. From Fig 2.7b, we an learly see

that the swarm of eight robots gradually split from eah other and form three

di�erent lusters. It is to be noted that even if all the agents are not going in

the same diretion, the ontrast funtion still onverges to zero (Fig 2.7e). This

happens beause eah of the robots are aligned with their nearest neighbors and

hene eah of the individual ontrast funtions (Θi(t)) are zero. This experiment

may explain the splitting phenomenon observable in nature. Lastly, we ombined

the above two experiments, and onduted an experiment using six robots in a
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swarm and another robot as a predator. A separate omputer was used for manual

ontrol of the `predator' robot.

At the beginning, neighborhood size is kept at K = 3, suh that the `om-

muniation' graph among the robots stays onneted and they move as an entire

swarm in a ommon diretion. When the swarm omes lose to the predator, the

neighborhood size is dereased to one. As we are not using any onboard visual

sensing and the sonar sensing is done only in very lose region (∼ 300 mm), the

hange in neighborhood size is made manually. From Fig 2.7f, we an see that

the hange in neighborhood size takes plae at around 20 seonds and we an

also see a tiny jump in the ontrast funtion at that time. The predator then

slowly approahes to one of the agents in the swarm, whih abiding to its ollision

avoidane rule, turns to avoid the predator. In Fig 2.7, the trajetories of the

agents are drawn in dashed lines before the ourrene of this event and in solid

lines afterwards. The trajetory of the predator robot in not shown in the �g-

ure. After reating the initial perturbation, the predator is slowly moved through

the swarm ausing some subsequent disturbanes. These perturbations reate a

notieable impat in the swarm. As the attaked agent turns, its neighbor also

tries to align itself with that agent and so does its neighbor. This goes on until

the ommuniation graph beomes disonneted and a split in the swarm is then

observed [YouTube℄ just like in Experiment 2. As we an see in Fig 2.7, the

swarm is divided in two groups after the attak of the predator. The jumps in

plot of the ontrast funtion in Fig 2.7f symbolize the perturbations aused by
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the external agent. The ontrast funtion eventually onverges to zero after the

members are aligned with their neighbors within eah subgroup.
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Chapter 3

Optimal Steering of Agents on a Plane

3.1 Introdution

The kinemati uniyle model is often used in path-planning for ground vehiles,

sine the on�guration of a ground vehile an often be represented by a point

in a plane that is onstrained to move in the diretion of the urrent heading

[Bellaïhe et al., 1998; LaValle, 2006℄. The state of this system an be represented

as an element of the speial Eulidean group SE(2), where the ontrol inputs are

a urvature input whih ontrols the rate of hange of the heading angle, and a

veloity input whih ontrols the rate of hange of the uniyle position in the

diretion of the heading angle.

Given the urrent on�guration of the uniyle and a desired future on�g-

uration, an admissible path for moving the uniyle from an initial to a �nal

on�guration an be determined via the minimization of some ost funtional.

There an be many variations to this problem depending on the hosen ost fun-
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tional. A muh elebrated problem is the problem of Euler's elastia [Euler, 1744℄

where the minimum urvature path joining two given on�gurations on the plane

is onsidered. Partiularly elegant and other well-known variations inlude the

minimum-time solutions of [Dubins, 1957℄ and [Reeds and Shepp, 1990℄. Optimal

paths of the minimum-time problem onsist only of straight-line and irular-ar

segments whih, when pathed together, reate disontinuities in the path ur-

vature and ause potential di�ulty in implementation sine abrupt hanges in

urvature are hard to trak. Proposed modi�ations that alleviate this problem

enfore that the urvature stay ontinuous, e.g., [Fraihard and Sheuer, 2004℄,

yet it is also possible to penalize the total urvature along the path in the expe-

tation that the optimal urvature will be ontinuous. [Halder and Kalabi, 2017℄

takes the latter approah, onsidering the minimization of the urvature along a

path onneting initial and �nal uniyle on�gurations with free �nal time.

In this hapter, we will present a problem that penalizes both the urvature

and speed ontrols in maneuvering a uniyle from initial to desired �nal on�g-

uration. This helps both the urvature and speed ontrols to be smooth along an

optimal trajetory. These optimal trajetories losely resemble to those obtained

in [Halder and Kalabi, 2017℄. Our solution is obtained using geometri optimal

ontrol, where the neessary onditions for optimality are obtained via the Pon-

tryagin Maximum Priniple (PMP), and Lie-Poisson redution [Krishnaprasad,

1993; Ohsawa, 2013℄. Using geometri optimal ontrol on SE(2) to �nd solutions

to path-planning problems has also been onsidered by [Sussmann and Tang, 1991;
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Krishnaprasad, 1993; Agrahev and Sahkov, 2004; Dey and Krishnaprasad, 2014;

Justh and Krishnaprasad, 2015b℄.

Studying a uniyle on the plane is important sine often a olletive of N

agents exhibits single agent behavior under synhronization. In the later part of

this hapter, we will present a framework for analyzing suh a olletive. This

framework is based on [Justh and Krishnaprasad, 2015b℄, where every agent was

assumed to have onstant speed. Here we will, however, onsider a ost funtion

that penalizes both speed and urvature ontrols. In addition to the individual

ontrol osts, there is one ost that is attributed to the `mismath in ontrol' of

an agent with its `neighbors'. The neighbors of any agent is ditated by a �xed

graph of interation. The strength of suh interation is aptured by a oupling

parameter. It is shown that in extreme ases (no oupling and high oupling)

the optimal olletive ontrols are diretly assoiated with optimal ontrols for a

single agent problem. This framework is what we use in the later hapters of this

thesis where we onsider optimal ontrol problems for a ontinuum of agents.

3.2 Optimal Steering of a Uniyle

In this setion, we onsider minimizing the urvature and speed ontrol osts of

a path in SE(2) onneting an initial uniyle on�guration g0 with its desired

�nal on�guration gT at time T . We formulate this optimization as a geometri

optimal ontrol problem and derive the neessary onditions using PMP and Lie-

Poisson redution. From the neessary onditions, we show that there are two
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onstants of motion: the Hamiltonian and the Casimir. We show that there are

three possible families of solutions depending on the values of Casimir and the

Hamiltonian. In the �rst ase, the motion onsists of segments of a U-turn; in

the seond ase, the motion onsists of segments of parallel parking trajetories;

in the third ase, the motion onsists of straight lines or asymptoti approahes

thereto.

Consider the uniyle kinemati equations,

ẋ(t) = v(t) cos θ(t), (3.1a)

ẏ(t) = v(t) sin θ(t), (3.1b)

θ̇(t) = u(t), (3.1)

where (x(t), y(t)) ∈ R
2
is the position of the uniyle on the Cartesian plane,

θ(t) ∈ S1
is the heading of the uniyle, v(t) is the uniyle speed ontrol, and

u(t) is the steering ontrol, equal to the rate of hange of the heading θ(t).

The on�guration of the uniyle an be represented as an element of the

matrix Lie group SE(2). Let g(t) ∈ SE(2) where,

g(t) =

















cos θ(t) − sin θ(t) x(t)

sin θ(t) cos θ(t) y(t)

0 0 1

















. (3.2)

Then the equations (3.1) an be written in left-invariant form,

ġ(t) = g(t)ξ(u(t), v(t)), (3.3)

where,

ξ(u(t), v(t)) = u(t)X1 + v(t)X2, (3.4)
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and,

X1 =

















0 −1 0

1 0 0

0 0 0

















, X2 =

















0 0 1

0 0 0

0 0 0

















. (3.5)

The matries X1 and X2 are elements of the Lie algebra se(2). Together with

X3 = [X1, X2] = X1X2 −X2X1, X1 and X2 form a basis for se(2).

Without loss of generality, we an assume that g0 = I3, sine g(t) an always

be rede�ned aording to g(t) := g−1
0 g(t). Given a �nal time T > 0 and a �nal

state gT , ost funtion to be minimized is,

1

2

∫ T

0

(

u(t)2 + v(t)2
)

dt. (3.6)

3.2.1 Optimal Control Solution

In order to solve the problem we form the pre-Hamiltonian,

H = 〈p, gξ(u, v)〉 − 1

2
(u2 + v2), (3.7)

where p(t) ∈ SE(2)∗ is the adjoint variable. To simplify the Hamiltonian, we

perform Lie-Poisson redution, introduing the variable µ(t) ∈ se(2)∗ satisfying

the translation to identity,

〈µ, ξ(u, v)〉 = 〈p, gξ(u, v)〉.

As an element of the dual spae, µ(t) an be represented as µ(t) = µ1X
♭
1+µ2X

♭
2+

µ3X
♭
3, where {X♭

1, X
♭
2, X

♭
3} are the basis vetors dual to {X1, X2, X3}.

49



The pre-Hamiltonian therefore beomes,

H(µ, u, v) = 〈µ, ξ(u, v)〉 − 1

2
(u2 + v2),

= 〈µ1X
♭
1 + µ2X

♭
2 + µ3X

♭
3, uX1 + vX2〉

− 1

2
(u2 + v2),

= µ1u+ µ2v −
1

2
(u2 + v2).

Aording to the PMP, the optimal ontrol (u∗, v∗) satis�es,

H(µ∗, u∗, v∗) = max
(u,v)∈R2

H(µ∗, u, v). (3.8)

Therefore the optimal ontrols are given by,

u∗1 = µ1, (3.9)

u∗2 = µ2, (3.10)

The redued Hamiltonian is therefore,

H = H(µ, u∗1, u
∗
2) =

1

2

(

µ2
1 + µ2

2

)

, (3.11)

and the dynamis of the µi variables are given by [Krishnaprasad, 1993℄,

















µ̇1

µ̇2

µ̇3

















=

















0 −µ3 µ2

µ3 0 0

−µ2 0 0

















∂h

∂(µ1, µ2, µ3)
, (3.12)

µ̇1 = −µ2µ3, (3.13a)

µ̇2 = µ1µ3, (3.13b)

µ̇3 = −µ1µ2. (3.13)
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(a) c = 0.5 (b) c = 1.5 () c = 1

Figure 3.1: M (blak) plotted as an intersetion of C (red) and H (blue) for h = 1

and three values of the Casimir c

Let,

c = µ2
2 + µ2

3. (3.14)

This variable is alled the Casimir and it is a onstant of motion, implying that

the variables µ2 and µ3 evolve on irle of radius

√
c. Along with the Casimir,

the Hamiltonian (3.11) is also a onserved quantity of motion. For onveniene of

subsequent alulations, we will work with the following saled Hamiltonian,

h = 2H = µ2
1 + µ2

2. (3.15)

3.2.2 Charaterizing the Types of Motion

Aording to (3.14) and (3.15), the dynamis (3.13) evolve on the manifold M

where,

M = C ∩ H,

C = {(µ1, µ2, µ3) ∈ R
3 : c = µ2

2 + µ2
3},

H = {(µ1, µ2, µ3) ∈ R
3 : h = µ2

1 + µ2
2}.

(3.16)

51



The manifoldM is one-dimensional and equal to the intersetion of the ylinders

C and H. The shape ofM is determined by the Casimir c, while the shape of H

is determined by h. The motion of µ evolves on M. Due to ontinuity, it must

evolve on a onneted omponent ofM, so it is important to onsider the types

of possible intersetions, of whih there are three orresponding to three di�erent

ases: in Case 1, C is stritly smaller than H; in Case 2, C is stritly larger than

H; in Case 3, C is equal in size to H. To perform a ase-by-ase ategorization of

M, we note that, aording to (3.14), the variable µ2 is restrited to ±√c and,

aording to (3.15), µ2 is restrited to ±
√
h. In Case 1, c < h, so |µ2| ≤

√
c <
√
h.

Therefore the motion evolves on a onneted omponent ofM where µ1 does not

hange sign sine µ2
1 = h − µ2

2 ≥ h − c > 0. Similarly, in Case 2, c > h, so

|µ2| ≤
√
h <
√
c. The motion evolves on a onneted omponent ofM where µ3

does not hange sign sine µ2
3 = c − µ2

2 ≥ c − h > 0. In Case 2, c = h, so the

two onstraints agree at the extremes. Instead of having M as a one onneted

omponent, it atually has four disonneted omponents. These omponents

meet eah other asymptotially at the extremes µ1 = µ3 = 0, µ2 = ±
√
h. See

Fig. 3.1 for a visualization of the three ases. In the following, we study the three

types of motion in further detail.

Case 1: 0 < c < h

The equations (3.13) admit the following expliit solutions by means of Jaobian
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Figure 3.2: Extremal trajetories for di�erent ases (solid blak) � inreasing c

produes the dot-dashed red urve; inreasing η produes the solid blue urve;

hanging s1 or s2 produes the dashed green urve. h = 1 for all three ases.

ellipti funtions [Davis, 1962; Byrd and Friedman, 1971℄,

µ1 = s1
√
h dn

(√
h(t+ η), k

)

, (3.17a)

µ2 = s1
√
c sn

(√
h(t+ η), k

)

, (3.17b)

µ3 =
√
c n

(√
h(t+ η), k

)

, (3.17)

where the modulus k of the ellipti funtions is given by k2 = c
h
. The parameters

s1 ∈ {1,−1} and η ∈ R do not depend on c and h, but on the endpoint onstraints.

Note that these solutions are periodi with the period given by T1 :=
4K(k)√

h
, where

K(k) denotes the omplete ellipti integral of the �rst kind.

Proposition 3.2.1. Let 0 < c < h. Assume η = 0, then any extremal trajetory
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is given by,

x(t) =
s1
k

(

1− dn

(√
ht, k

))

(3.18a)

y(t) =
1

k

(√
ht− E

(

am

(√
ht, k

)

, k
))

(3.18b)

θ(t) = s1 · am
(√

ht, k
)

= s1 cos
−1
(

n

(√
ht, k

))

= s1 sin
−1
(

sn

(√
ht, k

))

,

(3.18)

where E(·, ·) denotes the inomplete ellipti integral of the seond kind.

Proof. We have from (3.9) and (3.17a),

u1 = µ1 = s1
√
h dn

(√
ht, k

)

.

Integrating the equation θ̇ = u1 gives

θ(t) = s1 · am
(√

ht, k
)

= s1 cos
−1
(

n

(√
ht, k

))

= s1 sin
−1
(

sn

(√
ht, k

))

.

Sine the optimal speed ontrol is given by (3.10) and (3.17b),

u2 = µ2 = s1
√
c sn

(√
ht, k

)

,

we may now integrate x and y dynamis to obtain position variables as funtions

of time. We have,

x(t) =

∫ t

0

u2 cos(θ(t))dt

=

∫ t

0

s1
√
c sn

(√
ht, k

)

n

(√
ht, k

)

dt

= −s1
√
c√
h
· 1
k2

[

dn

(√
ht, k

)]t

t=0

=
s1
k

(

1− dn

(√
ht, k

))

(3.19)
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Similarly,

y(t) =

∫ t

0

u2 sin(θ(t))dt

=

∫ t

0

√
c sn2

(√
ht, k

)

dt

=

√
c√
h
· 1
k2

[√
ht− E

(

am

(√
ht, k

)

, k
)]t

t=0

=
1

k

(√
ht−E

(

am

(√
ht, k

)

, k
))

(3.20)

�

Studying the extremal trajetories in η = 0 ase is important sine any other

trajetory an be expressed by means of these trajetories after a suitable trans-

lation and rotation. This is demonstrated in the following proposition.

Proposition 3.2.2. Assume 0 ≤ c < h. Let us denote an extremal trajetory

belonging to η = 0 ase by (x0(t), y0(t), θ0(t)) aording to (3.18). Then any

extremal trajetory generated by (3.17) an be expressed as,









x(t)

y(t)









= R(−ψ)

















x0(t+ η)

y0(t+ η)









−









x0(η)

y0(η)

















, (3.21)

θ(t) = θ0(t + η)− θ0(η), (3.22)

where R(·) is the planar rotation matrix and ψ is de�ned as,

ψ := s · am
(√

h η
)

= θ0(η). (3.23)
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Proof. Indeed, equation (3.22) is readily ahieved by integrating (3.17a). Further,

notie that

ẋ(t) = s1
√
c sn

(√
h(t+ η), k

)

cos
(

s1 · am
(√

h(t+ η), k
)

− ψ
)

=
√
c
(

s1 · cos(ψ) · sn
(√

h(t+ η), k
)

n

(√
h(t+ η), k

)

+ sin(ψ) · sn2
(√

h(t + η), k
))

,

and,

ẏ(t) = s1
√
c sn

(√
h(t + η), k

)

sin
(

s1 · am
(√

h(t+ η), k
)

− ψ
)

=
√
c
(

−s1 · sin(ψ) · sn
(√

h(t+ η), k
)

n

(√
h(t + η), k

)

+cos(ψ) · sn2
(√

h(t+ η), k
))

.

Compatly, we have









ẋ(t)

ẏ(t)









=









cos(ψ) sin(ψ)

− sin(ψ) cos(ψ)









·









ẋ0(t + η)

ẏ0(t + η)









. (3.24)

Integration of (3.24) yields (3.21). �

Case 2: c > h

This ase admits solutions analogous to those of Case 1 and we will proeed in a

similar way. To start, we write down solutions to (3.13) as,

µ1 =
√
h n

(√
c(t+ η), k

)

, (3.25a)

µ2 = s2
√
h sn

(√
c(t + η), k

)

, (3.25b)

µ3 = s2
√
c dn

(√
c(t+ η), k

)

, (3.25)
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with the modulus k2 = h
c
. s2 ∈ {1,−1} and η ∈ R are similar parameters as in

ase 1. These solutions are periodi as well, with period given by T2 :=
4K(k)√

c
.

Proposition 3.2.3. Let h > 0 and c > h. Assume η = 0, then any extremal

trajetory is given by,

x(t) = s2 · k
(

1− n

(√
c t, k

))

(3.26a)

y(t) = s2
(√

c t− E
(

am

(√
c t, k

)

, k
))

(3.26b)

θ(t) = cos−1
(

dn

(√
c t, k

))

= sin−1
(

k sn

(√
c t, k

))

, (3.26)

where E(·, ·) denotes the inomplete ellipti integral of the seond kind.

Proof. The proof is similar to that of Proposition 3.2.1 and uses elementary inte-

grals of Jaobi ellipti funtions. �

Analogous to Proposition 3.2.2, we have the following result.

Proposition 3.2.4. Assume h > 0 and c > h. Let us denote an extremal traje-

tory belonging to η = 0 ase by (x0(t), y0(t), θ0(t)) aording to (3.26). Then any

extremal trajetory generated by (3.17) an be expressed as,









x(t)

y(t)









= R(−ψ)

















x0(t+ η)

y0(t+ η)









−









x0(η)

y0(η)

















, (3.27)

θ(t) = θ0(t + η)− θ0(η), (3.28)

where R(·) is the planar rotation matrix and ψ is de�ned as,

ψ := cos−1
(

dn

(√
c η, k

))

= sin−1
(

k sn

(√
c η, k

))

= θ0(η). (3.29)
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Proof. The proof is essentially the same to that of Proposition 3.2.2. Note the

di�erent de�nition of ψ in (3.29) �

Case 3: c = h

This ase is transitional between ase 1 and ase 2. Putting the modulus k2 =

c
h
= 1 in either of the equations (3.17) or (3.25), we get the following solutions

µ1 = s1
√
c seh

(√
c(t + η)

)

, (3.30a)

µ2 = s2
√
c tanh

(√
c(t + η)

)

, (3.30b)

µ3 = s3
√
c seh

(√
c(t + η)

)

, (3.30)

with s1, s2, s3 ∈ {1,−1} and η ∈ R. We readily obtain the following result.

Proposition 3.2.5. Let c = h > 0. Assume η = 0, then any extremal trajetory

is given by,

x(t) = s2
(

1− seh

(√
c t
))

, (3.31a)

y(t) = s1s2
(√

c t− tanh
(√

c t
))

, (3.31b)

θ(t) = s1 tan
−1
(

sinh
(√

c t
))

. (3.31)

Proof. Indeed, integrating θ̇ = u1 = µ1 yields (3.31). Sine u1 = µ2, we get

ẋ = s2
√
c seh

(√
c t
)

tanh
(√

c t
)

,

ẏ = s1s2
√
c tanh2

(√
c t
)

,

whih in turn gives (3.31a)�(3.31b) after integration. �
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In the same spirit as before, we write any general extremal trajetories in terms

of these trajetories.

Proposition 3.2.6. Assume c = h > 0. Let us denote an extremal trajetory

belonging to η = 0 ase by (x0(t), y0(t), θ0(t)) aording to (3.31). Then any

extremal trajetory generated by (3.30) an be expressed as,









x(t)

y(t)









= R(−ψ)

















x0(t+ η)

y0(t+ η)









−









x0(η)

y0(η)

















, (3.32)

θ(t) = θ0(t + η)− θ0(η), (3.33)

where R(·) is the planar rotation matrix and ψ is de�ned as,

ψ := s1 tan
−1
(

sinh
(√

c η
))

= θ0(η). (3.34)

This ase onsists of two types of solutions: a straight line solution, orrespond-

ing to the subase where the �nal ondition lies on the x-axis, and an asymptoti

solution, whih asymptotially approahes a straight line with slope cotψ. See

Fig. 3.2 for a graphi.

3.2.3 On Time-optimality

From an engineering perspetive, it seems appealing to onsider a similar problem

where �nal time T is free. Therefore we want to reah from initial on�guration

g0 to the �nal on�guration gT in a minimal time so that the ontrol ost (u2+v2)

is minimized along the optimal trajetory. It also makes sense to add a penalty
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to the time it takes for the uniyle to omplete the maneuver. The ost funtion

an be expressed as

min
T,u(·),v(·)

1

2

∫ T

0

(a+ u(t)2 + v(t)2)dt, (3.35)

for some time-penalty parameter a > 0. Note that without the penalty on time, a

solution ould orrespond to a prohibitively large �nal time whih is not desired

from a pratial viewpoint. This time-optimal version is just a speial ase of

what we have onsidered in setion 3.2. To see this, we ompute the Hamiltonian

(3.11) as, H = 1
2
(µ2

1 + µ2
2− a). Sine time-optimality requires the Hamiltonian to

be identially zero, we have speial ase of h = µ2
1 + µ2

2 = a (.f. (3.15)). This

also gives the bounds of the optimal ontrols u1 = µ1, u2 = µ2 to be within ±√a.

We an, therefore, use the parameter a to set a desired bound on the ontrols

that is permitted by physial onstraints. A losely related problem was studied

in [Halder and Kalabi, 2017℄, where the speed ontrol v was assumed to be of

onstant magnitude, and the minimum time problem assoiated with minimum

urvature path was onsidered.

3.3 Optimal Control of a Colletive of Agents

Now we onsider a olletive of N agents moving on the plane. Motion of eah

agent an be modeled by the uniyle dynamis (3.1). As seen before, this dynam-

is an be equivalently expressed as a ontrolled dynamis in SE(2), ġk = gkξk(uk),
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where

ξk(uk) = uk1X1 + uk2X2, k = 1, 2, ..., N. (3.36)

We suppose these agents interat among themselves direted by a �xed adjaeny

matrix A = [aij ] ∈ RN×N
. aij = 1 if agent i and agent j interat and aij = 0

otherwise. The nature of the interation will be made preise shortly. LetD be the

degree matrix, i.e. the diagonal matrix where the i-th diagonal entry represents

the number of agents the i-th agent interat with. Then the graph Laplaian is

de�ned by B := D − A. In this setup, we seek to minimize

L =

∫ T

0

L(ξ1(u1(t)), ..., ξN(uN(t)))dt

=
1

2

∫ T

0

(

N
∑

k=1

|ξk|2 + χ
N
∑

k=1

N
∑

j=1

akj |ξk − ξj|2
)

dt, (3.37)

for some onstant χ ≥ 0 and the �xed endpoint onditions gk(0) = gk0, gk(T ) =

gkT , k = 1, ..., N . Note that we used the trae norm |ξ| =
√

tr(ξTξ). The param-

eter χ is alled a oupling onstant sine it ats as a weight to the seond term

in the ost funtional (3.37). Without the oupling term, this problem simpli�es

to solving N opies of the single agent problem as onsidered in Se. 3.2. The

oupling term penalizes agent k through the `mismath in ontrol' with the agents

that it is interating with (i.e. nonzero entries of k-th row of the matrix A). This

type of ost funtional is aimed to apture the `allelomimeti behavior' or the

tendeny to opy neighbors in a natural olletive. [Justh and Krishnaprasad,

2015b℄ studies a very similar problem where the speeds of eah agent is assumed

to be onstant. Here the speed ontrols (uk2, k = 1, 2, ..., N) are to be determined
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by solving the optimal ontrol problem (3.37).

Sine the underlying optimal ontrol problem is essentially the same, we will

use the results from [Justh and Krishnaprasad, 2015b℄ to derive �rst order opti-

mality onditions using the Pontryagin's Maximum Priniple and the Lie-Poisson

redution tehnique. Denote µk ∈ se∗(2) by,

µk =
3
∑

i=1

µkiX
♭
i , (3.38)

where {X♭
1, X

♭
2, X

♭
3} is dual basis to {X1, X2, X3}. If we de�ne µ̃k =

[

µk1 µk2 µk3

]T

,

�rst order optimality (PMP) yields

















u1

.

.

.

uN

















= Ψ

















µ̃1

.

.

.

µ̃N

















, (3.39)

where

Ψ = ((IN + 2χB)⊗ I2)
−1 = (IN + 2χB)−1 ⊗ I2. (3.40)

Here ⊗ denotes the Kroneker produt. The redued Hamiltonian in (se∗(2))N

takes the form

h =
1

2

[

µ̃T

1 · · · µ̃T

N

]

Ψ

















µ̃1

.

.

.

µ̃N

















. (3.41)

The Lie-Poisson redued dynamis is then expressed as follows. De�ne µ =

62



[

µT

1 · · · µT

N

]T

. Then,

µ̇ = Λ(µ)∇h, (3.42)

where Λ(µ) = −diag(Ω1, · · · ,ΩN), with

Ωk =

















0 µk3 −µk2

−µk3 0 0

µk2 0 0

















, k = 1, ..., N. (3.43)

Also we have ∇h =

[

(∇h)1 · · · (∇h)N
]T

, (∇h)k =

[

∂h
∂µk1

∂h
∂µk2

0

]T

, k =

1, ..., N . Note that along with the Hamiltonian (3.41), there are N Casimirs

whih are onstants of motion. The Casimirs are de�ned as,

ck = µ2
k2 + µ2

k3. (3.44)

In both the extreme ases (i) no oupling (χ = 0) and (ii) high oupling (χ→∞),

the olletive optimal problem simpli�es to studying the single agent problem as

onsidered in Setion 3.2. The χ = 0 ase is immediate. The details of the high

oupling limit χ → ∞ is worked out in [Justh and Krishnaprasad, 2015b℄ (see

setion 3()). De�ning the quantities

α1 =
1

N

N
∑

j=1

µj1, α2 =
1

N

N
∑

j=1

µj2, α3 =
1

N

N
∑

j=1

µj3, (3.45)

we obtain the following di�erential equations

α̇1 = −α2α3,

α̇2 = α1α3,

α̇3 = −α1α2.

(3.46)
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These are the same equations we already obtained and analyzed in details for a

single agent ase (3.13).

3.4 Conluding Remarks

In this hapter, we studied an optimal ontrol problem of a uniyle on the plane

in detail. First order neessary onditions are obtained by using the Pontryagin's

Maximum Priniple and the Lie-Poisson redution tehnique. All possible mo-

tion types are properly ategorized by the relative values of the Casimir and the

Hamiltonian. In the later part, we presented a framework for studying a lass

of optimal ontrol problems involving many agents. These agents interat with

eah other by a pre-determined interation graph. The interation enters into the

optimal ontrols of the agents through the additive `ontrol-mismath' term in

ost funtional. This type of ost has been used in literature [Justh and Krish-

naprasad, 2015a,b℄ to apture the `allelomimeti behavior' in natural �oks. The

single agent ase, onsidered in this hapter, emerges naturally in a synhroniza-

tion limit of the olletive model. This olletive framework gives us the starting

point to oneptualize a ontinuum �ok where we study the limiting ase of

N → ∞ under a spei� interation graph. These topis are desribed in detail

in later hapters of this thesis.
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Part II

Analysis of Colletive Motion:

Top-down Approahes
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Chapter 4

Continuum Floking and Control

4.1 Motivation

It is a ommon pratie in lassial mehanis to onsider a ontinuous desription

of a physial system. Appliations inlude vibrating rods, vibrating membranes,

�uid mehanis et. [Goldstein et al., 2001; Chorin et al., 1990℄ The transition

from disrete-partile system to a ontinuum enables a ompat desription of

the system, often leading to partial di�erential equations that reveal deep insights

into the system, e.g. wave-like phenomena, whih may be too obsure or inelegant

in the disrete ounterpart. In the same spirit, we attempt to oneptualize a

ontinuum �ok and address its optimal maneuvering properties. Biologial �oks

are known to show remarkable response to predator attaks. In the ase of an

attak, the whole �ok seems to divert away from the predator. They an perform

these tasks my means of propagating information (in this ase, threat) through

the �ok at a muh higher speed than the �oking speed [Attanasi et al., 2014℄.
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A key goal of our approah is to apture this phenomenon, i.e. to unover the

wave-like aspets of �oking. An optimal ontrol problem for a �ok of �nite

agents is presented in Setion 3.3. We take the same framework and formulate a

general ontinuum version of the problem.

Consider an ensemble of N idential, self-steering partiles, eah obeying a

drift free left invariant system on a matrix Lie group G,

ġi = giξi, gi ∈ G, ξi ∈ g, i = 1, ..., N, (4.1)

where g is the Lie algebra of G. These partiles interat with eah other by

a pre-de�ned graph of interation. The olletive behavior of suh a system was

extensively studied in [Justh and Krishnaprasad, 2015b℄ by solving an appropriate

optimal ontrol problem. Borrowing the notations of [Justh and Krishnaprasad,

2015b℄, we write the ost funtional as �self-energy� term oupled with a �mismath

in steering� term

J =

∫ T

0

L(ξ1(t), ..., ξN(t))dt, (4.2)

where,

L(ξ1, ..., ξN) =
1

2

(

N
∑

i=1

‖ξi‖2 + χ
N
∑

i=1

N
∑

j=1

aij ‖ξi − ξj‖2
)

, (4.3)

where binary valued aij 's populate the adjaeny matrix that de�nes the graph

of interation and χ ≥ 0 is a oupling onstant. Note that the inner produt

〈ξ, η〉 = tr(ξTη), and the orresponding trae norm, ‖ξ‖ =
√

〈ξ, ξ〉 are in e�et,

where ξ, η ∈ g.
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In an attempt to extend this view, we onsider an in�nite number of partiles,

i.e. the limiting ase of N →∞. Here we onsider a one-dimensional ontinuum

of partiles, i.e. eah partile is labeled by a point on a irle S1
. This way, the

agents are thought as a virtual �lament. Moreover, we onsider a yli interation

graph, i.e. eah partile is thought to be interating with the `next' partile on

the irle. We introdue the maps, g : R × S1 → G and ξ : R × S1 → g. The

mismath in steering term an then be written as the gradient of ξ in the limiting

ase. In other words, in ontinuum limit of N →∞, the Lagrangian in (4.3) take

the form,

L(ξ) =
1

2

∫ 2π

0

(

‖ξ(t, θ)‖2 + χ

∥

∥

∥

∥

∂ξ(t, θ)

∂θ

∥

∥

∥

∥

2
)

dθ. (4.4)

Note that the summations over the number of partiles in (4.3) have been replaed

by integral over the irle in the ontinuum setting in (4.4).

Let n be the dimension of the Lie algebra g and {A1, A2, ..., An} denote an or-

thonormal basis of g. We introdue the ontrols ui : R × S1 → R, i = 1, ..., m,

so that ξ an be written as,

ξ(t, θ) =
m
∑

i=1

ui(t, θ)Ai, (4.5)

where m < n. With this substitution, the Lagrangian in (4.4) an be rewritten

as,

L(u1, ..., um) =
1

2

∫ 2π

0

m
∑

i=1

(

u2i + χ

(

∂ui
∂θ

)2
)

dθ. (4.6)
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Finally, we attempt to minimize the ost funtional,

J =

∫ T

0

L(u1, ..., um)dt, (4.7)

subjet to the group dynamis,

∂g(t,θ)
∂t

= g(t, θ)ξ(t, θ) = g(t, θ)

(

m
∑

i=1

ui(t, θ)Ai

)

and

the �xed end-point onstraints, g(0, θ) = g0(θ) and g(T, θ) = gT (θ).

We will note that this optimal ontrol problem an be ast in a more onvenient

setting of loop groups, the group of smooth funtions from the irle to the Lie

group G. In Setion 4.2, we will develop a general framework for suh optimal

ontrol problems in loop group setting. Controllability results will be disussed

in Setion 4.3. This helps us to desribe optimal ontrol solutions in Setion 4.4.

Neessary onditions will be derived by both alulus of variations and Pontrya-

gin's Maximum Priniple approah. An example of ontinuum of nonholonomi

integrators will be studied in detail in Setion 4.5. Setion 4.6 will present deriva-

tion of optimal ontrol equations in the SE(2) ase along with their numerial

treatment. This is a joint work with Dr. E. Justh [Halder et al., 2019a℄.

4.2 A Control System on a Loop Group

Let G be a �nite dimensional matrix Lie group and g be its Lie algebra of di-

mension n. We will study spaes of smooth maps from the irle S1
to G and

g,

G = C∞(S1;G), L = C∞(S1; g).
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We an onstrut Sobolev ompletions of G and L as done in [Krishnaprasad

et al., 1983℄. We an always view the Lie algebra g as a subalgebra of the general

linear algebra gl(r,R) for some r > n. De�ning the spae R = C∞(S1; gl(r,R)),

we have

G ⊂ R, L ⊂ R.

For any f ∈ R, use the Sobolev k-norm (k ≥ 1)

‖f‖k =
∫

S1

k
∑

l=0

∣

∣

∣

∣

dl

dθl
f(θ)

∣

∣

∣

∣

2

dθ, (4.8)

where

|f |2 = tr(fTf).

Let the ompletions of G , L , and R in this norm be denoted as Gk, Lk, and Rk,

respetively. By Proposition 3.1 of [Krishnaprasad et al., 1983℄, Gk is atually a Lie

group under pointwise multipliation operation (g1g2)(θ) = g1(θ) · g2(θ), g1, g2 ∈

Gk, θ ∈ S1
. Moreover, Lk is the Lie algebra of Gk under pointwise Lie braket

de�ned as [f1, f2](θ) = [f1(θ), f2(θ)], f1, f2 ∈ Lk, θ ∈ S1
. The spaes Gk and Lk

are alled loop groups and loop algebras [Pressley and Segal, 1986℄.

Similar to the �nite dimensional Lie groups, we introdue (pointwise) left ation

by Lg : Gk → Gk, h 7→ gh, the left translation by g ∈ Gk. The tangent map of Lg

is then given as ThLg : ThGk → TghGk. We now de�ne a left invariant vetor �eld

on Gk as follows. A vetor �eld X : Gk → TGk, h 7→ X(h) is alled left invariant if

ThLg(X(h)) = X(gh), ∀h ∈ Gk. (4.9)
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Reognizing the Lie algebra Lk as the tangent spae at identity e of Gk (e = {f ∈

Gk|f(θ) ≡ eG}, where eG is the identity element of G), i.e. Lk = TeGk, we an

de�ne a left invariant ontrol system as,

dg(t)

dt
= TeLg(t)(ξ(t)) = g(t) · ξu(t), (4.10)

where a given ontrol input u(t) determines a ontrolled vetor ξu(t) in the Lie

algebra Lk. Note that the loop algebra Lk an be identi�ed with the tensor

produt spae g ⊗ F , where F is the ring of real valued C∞
funtions on S1

.

Choose a basis of g as {A1, A2, . . . An}. Then, any ξ ∈ Lk an be written as,

ξ(θ) = ξ1(θ)A1 + · · ·+ ξn(θ)An, θ ∈ S1,

where eah of ξk's (k = 1, . . . , n) are smooth funtions on the irle. We will now

limit ourselves to the study of ontrol vetors ξu of the form,

ξu(t) = u1(t)A1 + · · ·+ um(t)Am, (4.11)

where m < n and the ontrol input u(·) = (u1(·), . . . , um(·)) belongs to the set U

of pieewise ontinuous U valued funtions, where U is vetor spae of Rm
valued

smooth funtions on the irle, i.e. U := {u(·) : u is pieewise ontinuous in t, u(t) ∈

U = C∞(S1;Rm)}.

4.3 Controllability

Having onstruted the ontrol system on the loop group Gk, it is natural to ask

the question of ontrollability or aessibility, i.e. given any two points g1 and
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g2 in Gk, if they an be onneted by a pieewise di�erentiable urve, onsisting

of possibly �nitely many piees, eah piee being an integral urve of a left in-

variant vetor �eld de�ned by hoosing a ontrol u(·) ∈ U . In �nite dimensional

analogue of this question, i.e. where we shrink the irle S1
down to a point, the

ontrollability question is answered by the well known Chow-Rashevsky theorem

[Wei-Liang, 1939; Rashevsky, 1938℄. In in�nite dimensional ases, however, it is

not immediate if the Chow-Rashevsky theorem remains valid. There is a body of

literature [Heintze and Liu, 1999; Salehani and Markina, 2014℄ that attempts to

attak this problem. It is the result of [Heintze and Liu, 1999℄ that we use in this

setion. This result addresses the ontrollability question in a weaker sense whih

we will make expliit.

Let M be a omplete onneted Hilbert manifold and let X(M) denote the

set of all smooth vetor �elds de�ned onM. Let F ⊂ X(M) be a given family of

smooth vetor �elds onM. LetRF(x) be the set of points inM that an be joined

from x ∈ M by means of a pieewise di�erentiable urve, eah piee of whih is

an integral urve of a vetor �eld in F . Let Lie F be the Lie subalgebra of X(M)

generated by F , and Liex F = {X(x) : X ∈ Lie F} - the evaluation of Lie F at

x ∈M. IfM is �nite dimensional, the lassial Chow-Rashevsky theorem holds:

if Liex F = TxM for eah x ∈ M, then RF (x) = M, for every x ∈ M. In a

general Hilbert manifoldM, the following generalized Chow-Rashevsky theorem

holds:
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Theorem 4.3.1 ([Heintze and Liu, 1999℄). LetM be a omplete onneted Hilbert

manifold and F a family of smooth vetor �elds de�ned onM. If Liex F is dense

in TxM for all x ∈M, then RF (x) is dense inM for all x ∈M.

Theorem 4.3.1 is a weaker statement than the one for �nite dimensional ase.

Here we make preise the strong and weak notions of ontrollability. Consider

the ontrol system onstruted in (4.10)�(4.11). Note that the loop group Gk

an be given a struture of a smooth Hilbert manifold [Eells Jr, 1966; Ebin and

Marsden, 1970℄. In this ase, the family F ∈ X(Gk) is given by {Xi}mi=1 , where

Xi(g(t)) = g(t) · (ui(t)Ai), for g(t) ∈ Gk.

De�nition 4.1. (Strong Controllability) The ontrol system (4.10)�(4.11) is

said to be strongly ontrollable if RF = Gk, i.e. given any two points g1, g2 ∈ Gk,

we an �nd a ontrol input that will transfer the system from g1 to g2.

De�nition 4.2. (Weak Controllability) The ontrol system (4.10)�(4.11) is

said to be weakly ontrollable if RF is dense in Gk, i.e. given any two points

g1, g2 ∈ Gk, we an �nd a ontrol input that will transfer the system from g1 to a

state that is arbitrarily lose to g2.

The set {A1, ..., Am} is said to be braket generating if the iterated brakets

of its elements span the Lie algebra g. In the �nite dimensional analogue of

the ontrol system de�ned in (4.10)�(4.11), the (strong) ontrollability ondition

aording to Chow-Rashevsky theorem is equivalent to having the set {Al}ml=1

braket generating in g. We will now try to establish (weak) ontrollability of
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the in�nite dimensional loop group ase by assuming that {A1, ..., Am} is braket

generating in g.

Theorem 4.3.2. Consider the ontrol system (4.10)�(4.11) on the loop group Gk.

Assume that the set {Al}ml=1 is braket generating in g. Then the system is weakly

ontrollable.

Proof. The de�nition of left invariant vetor �elds on Gk (4.9) an also be made

expliit by means of smooth funtions on Gk. Let D be the set of smooth real val-

ued funtions on Gk. Then given an element ξ ∈ Lk, we an de�ne a di�erentiable

vetor �eld Xξ : D → D as,

(Xξf)(g) = (Df)g · gξ, f ∈ D, (4.12)

whereD denotes the di�erential operator. Given two vetor �eldsXξ, Xη ∈ X(Gk),

we an alulate their Jaobi-Lie braket de�ned as,

[Xξ, Xη]f = Xξ(Xηf)−Xη(Xξf), f ∈ D.

We ompute,

Xξ(Xηf)(g) = (Xξ((Df)g · gη))(g)

= D((Df)g · gη)g · gξ

= (D2f)g · (gη, gξ) + (Df)g · (D(gη)g · gξ)

= (D2f)g · (gη, gξ) + (Df)g · (gξη).

Similarly,

Xη(Xξf)(g) = (D2f)g · (gξ, gη) + (Df)g · (gηξ).
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The symmetry of the seond di�erential operator D2
yields

[Xξ, Xη]f(g) = (Df)g · (g(ξη − ηξ))

= X[ξ,η]f(g),

where [ξ, η] is the usual (pointwise) Lie braket on Lk. This leads us to a detailed

study of the Lie braket of the loop algebra Lk. It is immediate that Lk is

generated by the generators {Pmr
r }mr∈Z, r∈{1,...,n} de�ned as,

Pmr

r = eimrθAr. (4.13)

Let the struture onstants of g be denoted by Γr
pq. Then,

[Pmp
p , Pmq

q ] =

n
∑

r=1

Γr
pqP

mp+mq
r . (4.14)

With this notation, a ontrolled vetor ξ(t) = ξu(t) ∈ Lk an be expressed as

ξu(t) =
m
∑

r=1

(

∑

mr∈Z
umr

r (t)Pmr

r

)

, (4.15)

where for eah r = 1, ..., m, umr
r (t) ∈ C's are the Fourier oe�ients of the ontrol

ur(t) and umr
r (t) = u−mr

r (t) (sine the ontrols are real). We now de�ne a family

of vetor �elds on Gk as F = {Xmr
r }mr∈Z, r∈{1,...,m}, where

Xmr

r f(g) = (Df)g · gPmr

r , f ∈ D.

Taking braket of any two vetor �elds from the family F yields another vetor

�led whih is governed by the ommutator relationship in (4.14). Note that sine

the set {A1, ..., Am} is braket generating in g, for eah l ∈ {m+ 1, ..., n}, we are

guaranteed to get the item

Pml

l := P
∑

r armr

l , ar ∈ Z
+ ∪ {0}, mr ∈ Z, r ∈ {1, ..., m},
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at some depth of iterated brakets from the family F . By hoosing mr ∈ Z, r ∈

{1, . . . , m}, we an then ahieve any ml ∈ Z. We have thus proved that if the set

{Ar}r∈{1,...,m} is braket generating in g, Lieg F is dense in the tangent spae TgGk

at eah g ∈ Gk. The generalized Chow's theorem 4.3.1 then provides the required

(weak) ontrollability result. �

4.4 Optimal Control Problems

We start with the left invariant ontrol system on the loop group Gk as in (4.10)-

(4.11). Now for a given T > 0, onsider the following �xed end-point optimal

ontrol problem,

(PG)
min
u∈U

J(u) =

∫ T

0

L(g(t), u(t))dt

subjet to: ġ = g · ξ, g(0) = g0, g(T ) = gT ; g0, gT ∈ Gk.

(4.16)

We are interested in deriving neessary onditions for optimality for suh optimal

ontrol problems. Speial are needs to be taken sine the problem is posed in an

in�nite dimensional setting. We provide two di�erent approahes for doing that.

4.4.1 Calulus of Variations Approah

Let x(t) = (x1(t), ..., xr(t)) ∈ C∞(S1,Rr) =: X denote a vetor that an be used

to represent the omponents of g(t) ∈ G, for some r ≥ n. The group dynamis

ġ = g · ξ(u) = g · (∑i uiAi) e�etively lets us write the ontrol u(t) as a funtion

of (x(t), ẋ(t)). The �xed endpoint onstraints in g an be translated to some
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nonholonomi onstraints of the form

Φ(x, ẋ) =

∫ T

0

φ(x(t), ẋ(t))dt = 0, (4.17)

where φ(x(t), ẋ(t)) ∈ C∞(S1,Rl) =: Z, for some l < r. Then the problem (PG)

an be written as,

min J =

∫ T

0

L(x(t), ẋ(t))dt, (4.18)

subjet to the nonholonomi onstraints (4.17). Here we have to keep in mind that

the variations in x are to be both in t and θ. This is a well known problem alled

the `Lagrange problem' in alulus of variations. The one-dimensional Lagrange

problem is well studied [Gelfand and Fomin, 1963; Elsgol, 2012℄. However, the

theory behind multidimensional problem is more ompliated and less omplete

[Giaquinta and Hildebrandt, 1996; Bliss, 1946℄. The di�ulty arises sine not all

the ẋ are freely variable. Aording to [Giaquinta and Hildebrandt, 1996, p. 112℄,

there exist a Lagrange multiplier λ ∈ C∞(R× S1;Rl), suh that we an �nd the

free extremals of the augmented Lagrangian in an usual way. Moreover, sine the

onstraints (4.17) are of isoperimetri type, λ does not depend on t [Rund, 1966,

p. 349℄. We an write the augmented Lagrangian as

L̃ = L+ 〈λ, φ〉Z , (4.19)

where λ = (λ1, λ2, ..., λl) ∈ C∞(S1;Rl).

Furthermore, we are interested in a speial struture of the Lagrangian, namely

L(x, ẋ) =

∫ 2π

0

L(x, ẋ) dθ, (4.20)
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where the funtional L is alled the Lagrangian density. The augmented ost

funtion take the form,

J̃(x, ẋ) =

∫ T

0

∫ 2π

0

L(x, ẋ) dθdt+
l
∑

j=1

∫ 2π

0

λj(θ)φj(x, ẋ) dθ

=

∫ T

0

∫ 2π

0

L̃(x, ẋ) dθdt,

where the rede�ned Lagrangian density is given by,

L̃ = L+

l
∑

j=1

λjφj. (4.21)

We will relabel L̃ by L in subsequent analysis for onveniene. By invoking

notations xt =
∂x
∂t
, xθ =

∂x
∂θ
, xtθ =

∂2x
∂t∂θ

= xθt et., we an write L = L(x, xθ, xt, xtθ).

In order to optimize this ost funtional, the variational priniple requires that,

δJ̃ =

∫ T

0

∫ 2π

0

r
∑

i=1

(

∂L
∂xi

δxi +
∂L
∂xi,θ

δxi,θ +
∂L
∂xi,t

δxi,t +
∂L
∂xi,tθ

δxi,tθ

)

dθdt = 0,

where δy denotes variation of the quantity y that vanishes at the endpoints of t

and θ. Using integration by parts, for eah i, we may write,

∫ 2π

0

∂L
∂xi,θ

δxi,θdθ =
∂L
∂xi,θ

δxi

∣

∣

∣

∣

∣

2π

0

−
∫ 2π

0

∂

∂θ

(

∂L
∂xi,θ

)

δxidθ

= −
∫ 2π

0

∂

∂θ

(

∂L
∂xi,θ

)

δxidθ,

Similarly,

∫ T

0

∂L
∂xi,t

δxi,tdt = −
∫ T

0

∂

∂t

(

∂L
∂xi,t

)

δxidt,

∫ T

0

∫ 2π

0

∂L
∂xi,tθ

δxi,tθdθdt =

∫ T

0

∫ 2π

0

∂2

∂t∂θ

(

∂L
∂xi,tθ

)

δxi dθdt.
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Hene,

δJ̃ =

∫ T

0

∫ 2π

0

∑

i

(

∂L
∂xi
− ∂

∂θ

(

∂L
∂xi,θ

)

− ∂

∂t

(

∂L
∂xi,t

)

+
∂2

∂t∂θ

(

∂L
∂xi,tθ

))

δxi dθdt

The Euler-Lagrange equations an then be expressed as,

∂L
∂xi
− ∂

∂θ

(

∂L
∂xi,θ

)

− ∂

∂t

(

∂L
∂xi,t

)

+
∂2

∂t∂θ

(

∂L
∂xi,tθ

)

= 0, i = 1, 2, ..., r. (4.22)

4.4.2 Maximum Priniple Approah

In this setion we provide a brief exposure to Pontryagin's Maximum Priniple

(PMP) type argument in in�nite dimensional spaes. It is to be noted that PMP

does not automatially hold in general in�nite dimensional optimal ontrol prob-

lems, one requires some more assumptions for it to work. A detailed study on

this subjet is done in Appendix A. Here we only de�ne some notations and

assumptions to state the neessary theorem.

We onsider an abstrat di�erential equation in a Hilbert spae X ,

dx(t)

dt
= f(t, x(t), u(t)) a.e. in [0, T ], (4.23)

where x(t) ∈ X , u(·) ∈ U , and T > 0. Here X is alled the state spae and U

is the set of all measurable funtions u(·) : [0, T ] → U , where U is a separable

metri spae alled the ontrol spae. With this setup, we formulate the following

optimal ontrol problem (P),

(P)

min
u∈U

J(u) =

∫ T

0

L(t, x(t), u(t))dt

subjet to: ẋ = f(t, x, u) a.e. in [0, T ], x(0) = x0, x(T ) = xT .

(4.24)
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We assume that both the funtions f(·, ·, ·) and L(·, ·, ·) are Bohner integrable in

t ∈ [0, T ] and Lipshitz ontinuous in x(t) ∈ X , with onstant K. Furthermore,

we require the existene and ontinuity of the Fréhet derivatives f ′
x(t, x, u) and

L′
x(t, x, u). We also assume the funtions f, L and their derivatives f ′

x, L
′
x to be

bounded, i.e. there exists an M > 0, suh that

‖f(t, x, u)‖ ≤M, ‖f ′
x(t, x, u)‖ ≤M,

‖L(t, x, u)‖ ≤M, ‖L′
x(t, x, u)‖ ≤M,

for all (t, x(t), u(t)) ∈ [0, T ]×X×U . Note that these hypotheses ensure a ontin-

uous and unique solution of (4.23) to exist [Avez, 1986℄. The following tehnial

details is one of the key ingredients in the proof of the PMP.

De�nition 4.3. (Finite Codimensionality) [Fattorini, 1987℄ A subset S of a

Hilbert spae Z is alled to be �nite odimensional in Z, if there exists a losed

subspae Zc ⊆ Z of �nite odimension suh that Sc = Πc(o(S)), has nonempty

interior in Zc, where Πc denotes the orthogonal projetion from Z onto Zc and o

means losed onvex hull.

We will now make a key assumption to derive a nontrivial maximum priniple.

Let a solution of problem (P) exist and the optimal ontrol be denoted by u∗ ∈ U

and let the orresponding optimal trajetory be denoted as x∗(·). Then de�ne the

`reahable set' as,

R :=

{

z(T ) ∈ X | z(t) =
∫ t

0

f ′
x(s, x

∗(s), u∗(s)) · z(s)ds

+

∫ t

0

(f(s, x∗(s), v(s))− f(s, x∗(s), u∗(s))) ds, for some v(·) ∈ U
}

(4.25)
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(A1) The set R is �nite odimensional in X .

Remark 4.1. In general, it is not lear whether there exists a relationship between

ontrollability (strong or weak) of the system and the �nite odimensionality

assumption of the `reahable set' R. We will, however, prove that in a speial

ase of G = H(3), the Heisenberg group, the strong ontrollability implies �nite

odimensionality of R. It is of future onsideration to address this question in a

general ase.

Using usual formalism, we invoke the pre-Hamiltonian funtion H : R×X ×

U ×R×X∗ → R as,

H(t, x(t), u(t), p0, p(t)) = p0L(t, x(t), u(t)) + 〈p(t), f(t, x(t), u(t))〉 , (4.26)

where p(t) ∈ X∗
is alled the ostate variable. Then the PMP an be written as,

Theorem 4.4.1. (Maximum Priniple) Let u∗ ∈ U be an optimal ontrol for

problem (P) and x∗(t) be the orresponding optimal trajetory. Then, there exist

a pair (p∗0, p
∗(t)) ∈ R × X∗, t ∈ [0, T ], suh that (p∗0, p

∗) 6≡ (0, 0), p∗0 ≤ 0, p∗(·)

satis�es the di�erential equation,

ṗ∗(t) = − (f ′
x(t, x

∗(t), u∗(t))
⋆
p∗(t)− p∗0L′

x(t, x
∗(t), u∗(t)), (4.27)

where by A⋆
we denote the adjoint operator of the operator A. The pointwise

maximization of the pre-Hamiltonian holds,

H(t, x∗(t), u∗(t), p∗0, p
∗(t)) = max

v∈U
H(t, x∗(t), v, p∗0, p

∗(t)), (4.28)
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for a.e. t ∈ [0, T ]. Moreover, x∗ and p∗ satisfy Hamilton's anonial equations,

i.e.

dx∗

dt
=
δH

δp∗
(t, x∗, u∗, p∗0, p

∗) (4.29)

dp∗

dt
= −δH

δx∗
(t, x∗, u∗, p∗0, p

∗). (4.30)

A proof of this theorem is rather ompliated and is given in Appendix A. We

now use this result to state a maximum priniple for the loop group ase.

Theorem 4.4.2. (Maximum Priniple in loop group setting) Let u∗ ∈ U

be an optimal ontrol for problem (PG) and g∗(t) be the orresponding optimal

trajetory. Assume the �nite odimensionality ondition (A1). Denote Rk, the

Hilbert spae of k-Sobolev ompletion of the spae R = C∞(S1, gl(r,R)), for some

r > n. Then, there exist a pair (p∗0, p
∗(t)) ∈ R×Rk, t ∈ [0, T ], suh that (p∗0, p

∗) 6≡

(0, 0), p∗0 ≤ 0, p∗(·) satis�es the di�erential equation

ṗ∗(t) = −p∗(t) · ξ(u∗(t))T, (4.31)

and the pointwise maximization of the pre-Hamiltonian holds,

H(g∗(t), u∗(t), p∗0, p
∗(t)) = max

v∈U
H(g∗(t), v, p∗0, p

∗(t)), (4.32)

for a.e. t ∈ [0, T ]. Moreover, g∗ and p∗ satisfy Hamilton's equations, i.e.

dg∗

dt
=
δH

δp∗
(g∗, u∗, p∗0, p

∗)

dp∗

dt
= −δH

δg∗
(g∗, u∗, p∗0, p

∗).

(4.33)

Proof. It is almost immediate that under a �nite odimensionality assumption like

(A1), we an state a maximum priniple like Theorem 4.4.1 for problem (PG). The
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only aveat is that the state spae Gk is not a Hilbert spae and hene Theorem

4.4.1 annot be applied diretly. However, adopting an `enlargement' tehnique

[Brokett, 1973; Justh and Krishnaprasad, 2015a℄, we an state an analogous

maximum priniple. We reognize that the loop group Gk is a subset of Rk. The

spae Rk an then be regarded as the `raised' state spae. The dynamis (4.10),

along with the initial ondition g(0, θ) = g0(θ) ∈ G for all θ ∈ S1
, ensures that

g(t, θ) remains in G for all (t, θ) ∈ [0, T ] × S1
. Endow the spae gl(r,R) with

the trae inner produt and an indued norm, i.e. 〈A,B〉
gl(r,R) = tr

(

ATB
)

and

‖A‖gl(r) =
√

tr (ATA), for A,B ∈ gl(r,R). We now de�ne the pre-Hamiltonian

H : Rk × U ×R×Rk → R as,

H(g(t), u(t), p0, p(t)) = 〈p(t), g(t)ξ(u(t))〉Rk
+ p0L(u(t)), (4.34)

where the duality pairing in the de�nition of H an be expliitly written as,

〈p(t), g(t)ξ(u(t))〉
Rk

=

∫ 2π

0

k
∑

i=0

〈

di

dθi
p(t, θ),

di

dθi
(g(t, θ)ξ(u(t, θ)))

〉

gl(r,R)

dθ

=

∫ 2π

0

k
∑

i=0

tr

(

di

dθi
p(t, θ)T · d

i

dθi
(g(t, θ)ξ(u(t, θ)))

)

dθ.

We are now all set to apply Theorem 4.4.1. If u∗ ∈ U is an optimal ontrol, then

we have,

H(g∗(t), u∗(t), p∗0, p
∗(t)) = max

v∈U
H(g∗(t), v, p∗0, p

∗(t)). (4.35)

It is obvious that

δH
δp∗

(g∗, u∗, p∗0, p
∗) = g∗ξ(u∗) = ġ∗. We an also derive for any

g̃(t) ∈ Rk, (suppressing other arguments)

δH

δg∗
· g̃ = lim

α→0

H(g∗ + αg̃)−H(g∗)

α
= 〈p∗, g̃ξ(u∗)〉

Rk
=
〈

p∗ξ(u∗)T, g̃
〉

Rk
,
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whih implies the adjoint equation to (4.10) is,

ṗ∗(t) = −p∗(t) · ξ(u∗(t))T. (4.36)

�

4.5 Speial Case : G = H(3)

The previous setion on optimal ontrol provides a onrete foundation in whih

we an state the maximum priniple for the onsidered optimal ontrol problem.

In this setion, we will explore a speial ase where we take the Lie group, G as

the Heisenberg group, H(3). Note that the �nite number of partiles ase of this

problem has been onsidered in [Justh and Krishnaprasad, 2016℄ and hene this

work an be thought as a ontinuum ounterpart of it. In H(3), g(t, θ) ∈ H(3) has

the struture,

g =

















1 x1 x3 +
x1x2

2

0 1 x2

0 0 1

















,

that satisfy the group evolution equation,

∂

∂t
g(t, θ) = g(t, θ) · (u1(t, θ)A1 + u2(t, θ)A2) , (4.37)

where,

A1 =

















0 1 0

0 0 0

0 0 0

















, A2 =

















0 0 0

0 0 1

0 0 0

















,
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along with A3 = [A1, A2], form an orthonormal basis for the assoiated Lie algebra

h(3). We attempt to address the optimal ontrol problem formulated before, under

this Heisenberg group setting, i.e. we solve the following,

min

∫ T

0

L(u)dt =

∫ T

0

∫ 2π

0

L(u)dθdt

=
1

2

∫ T

0

∫ 2π

0

(

(

u21 + u22
)

+ χ

(

(

∂u1
∂θ

)2

+

(

∂u2
∂θ

)2
))

dθdt,

(4.38)

where L is alled the Lagrange density funtion.

4.5.1 Controllability

It is a diret exerise of the generalized Chow-Rashevsky theorem 4.3.1 to show

weak ontrollability in this ase. The loop algebra C∞(S1, h(3)) is spanned by

{eim1θA1, e
im2θA2, e

im3θA3}. The family F of left invariant vetor �elds that is

hosen by means of ontrol inputs is given by F = {Xm1
1 , Xm2

2 }, where

Xmr

r f(g) = (Df)g · geimrθAr, f ∈ D, r = 1, 2.

Sine the only non-vanishing brakets in h(3) are [A1, A2] = A3 = −[A2, A1], the

set Lieg F would span the tangent spae at every point g ∈ C∞(S1,H(3)).

However, we an provide an argument that establishes the strong ontrol-

lability in this ase. Here we desribe an approah to onstrut a andidate

smooth ontrol given any endpoint onditions x0i (θ) and x
T
i (θ), i = 1, 2, 3. With-

out loss of generality, we may assume x0i (θ) = 0 for all i. Now sine, xi(t, θ) =
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∫ t

0
ui(t, θ)dt, i = 1, 2, we an hoose smooth ontrols vi(t, θ), t ∈ [0, t̄ ], i = 1, 2, for

some t̄ < T , suh that x1 and x2 reah their �nal endpoints. At time t = t̄, let the

`error' in x3 variable be denoted as ∆x3(θ) = xT3 (θ)− x3(t̄, θ). Note that without

loss of generality, we may assume that ∆x3(θ) > 0 for all θ. We know that in

a single nonholonomi integrator ase, if we omplete a loop in time for (x1, x2)

variables, the hange in x3 variable will be given by the area of the loop. We may

use the same idea in the ontinuum ase to onstrut smooth ontrols. We an

generate the following irular loops (in time) in (x1, x2) variables,









x1(t, θ)

x2(t, θ)









=









xT1 (θ)− r(θ)

xT2 (θ)









+ r(θ)









cos(ω(t− t̄))

sin(ω(t− t̄))









,

ω =
2π

T − t̄ , t ∈ (t̄, T ],

(4.39)

where r(·) is a smooth funtion in θ. The ontrols required to generate these loops

are given by









ṽ1(t, θ)

ṽ2(t, θ)









= r(θ)ω









− sin(ω(t− t̄))

cos(ω(t− t̄))









, (4.40)

We then ompute,

x3(T, θ) = x3(t̄, θ) +
1

2

∫ T

t̄

(x1(t, θ)ṽ2(t, θ)− x2(t, θ)ṽ1(t, θ))dt

= xT3 (θ)−∆x3(θ) + πr2(θ).

Sine ∆x3(·) is smooth, we an always hoose smooth funtion r(·) suh that
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∆x3(θ) = πr2(θ), and thus the smooth ontrols

ui(t, θ) =



















vi(t, θ), t ∈ [0, t̄ ]

ṽi(t, θ), t ∈ (t̄, T ]

, i = 1, 2, (4.41)

make the required state transitions possible. This shows that in the Heisenberg

ase we have strong ontrollability.

Remark 4.2. We an assume ∆x3 > 0 for all θ beause if it was not the ase,

we ould add another piee of ontrols v̂i's before applying the ontrols ṽi's. The

purpose of the ontrols v̂i's would be to make the states (x1, x2) undergo a irular

loop of radius r̂, for all θ. This will produe a hange in the x3 variable by πr̂2

for all θ. Hene the new error an be written as ∆x3(θ) = ∆x3(θ) + πr̂2. We an

always pik a r̂ so that ∆x3(θ) > 0 for all θ.

4.5.2 Equations of Optimal Control

Neessary onditions for optimality an be derived by various methods. We will

present two suh approahes to solve the optimal ontrol problem (4.38).
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4.5.2.1 Calulus of Variations Approah

Note that the group dynamis in (4.37) an also be expressed by the di�erential

equations,

∂x1
∂t

= u1, (4.42)

∂x2
∂t

= u2, (4.43)

∂x3
∂t

=
1

2
(x1u2 − x2u1). (4.44)

Sine we have an integral onstraint, namely, ∆x3(θ) =
1
2

∫ T

0
(x1u2 − x2u1)dt, we

invoke a Lagrange multiplier, λ ∈ C∞(S1,R) to write the augmented Lagrangian

density funtion as,

L =
1

2

[(

x21,t + x22,t
)

+ χ
(

x21,θt + x22,θt
)

+ λ (x1x2,t − x2x1,t)
]

. (4.45)

where we adopted the notation onventions xi,θ = ∂xi

∂θ
, xi,tθ = ∂2xi

∂t∂θ
= xi,θt et.

Appliation of the Euler-Lagrange equations (4.22) gives the following equations,

∂2x1
∂t2

= λ
∂x2
∂t

+ χ
∂4x1
∂θ2∂t2

∂2x2
∂t2

= −λ∂x1
∂t

+ χ
∂4x2
∂θ2∂t2

,

(4.46)

whih yields the evolution equations for optimal ontrols,

A∂u1
∂t

= λu2

A∂u2
∂t

= −λu1,
(4.47)

where we denote A := (1− χ∆), ∆ being the Laplaian.

Remark 4.3. A is a positive de�nite self adjoint operator in C∞(S1,R), having

eigenvalues αn = 1 + χn2
with assoiated eigenvetors en = einθ for n ∈ Z.
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Lemma 4.5.1. The quantities,

hn =

∫ 2π

0

(

∂nu1
∂tn
A∂

nu1
∂tn

+
∂nu2
∂tn
A∂

nu2
∂tn

)

dθ, n = 0, 1, 2, ... (4.48)

are onserved along any optimal trajetories satisfying (4.47).

Proof. It is easy to establish that for eah n, dhn

dt
= 0, whih follows diretly from

the way optimal ontrols behave in (4.47) and the fat that the operator A is self

adjoint. �

4.5.2.2 PMP Approah

We introdue the ostate variable p(t) = (p1(t), p2(t), p3(t)) ∈ C∞(S1;R3), t ∈

[0, T ]. The pre-Hamiltonian an be written as (onsidering only normal extremals,

i.e. where p0 6= 0 and an be normalized to −1),

H = 〈ẋ, p〉 − L

=

∫ 2π

0

(

u1p1 + u2p2 +
1

2
(x1u2 − x2u1)p3 −

1

2

(

u21 + u22
)

− χ

2

(

u21,θ + u22,θ
)

)

dθ.

(4.49)

Remark 4.4. Note that the �nite odimensionality assumption is satis�ed in this

ase. To see this, note that the omponents of members of the `reahability set'

(4.25) an be expressed as,

z1(T ) =

∫ T

0

w1(t)dt

z2(T ) =

∫ T

0

w2(t)dt

z3(T ) =
1

2

∫ T

0

(z1(t)u
∗
2(t)− z2(t)u∗1(t)) dt+

1

2

∫ T

0

(x∗1(t)w2(t)− x∗2(t)w1(t)) dt,
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where w(t) = (w1(t), w2(t)) is any arbitrary ontrol input. If we denote trajetories

orresponding to any input u(·) as xu(t) = x(t, u(·)), then, z1(T ) = xw1 (T ), z2(T ) =

xw2 (T ). Furthermore note that,

z3(T ) =
1

2

[∫ T

0

(x∗1u
∗
2 − x∗2u∗1)dt+

∫ T

0

(xw1 w2 − xw2 w1)dt

−
∫ T

0

((x∗1 − xw1 )(u∗2 − w2)− (x∗2 − xw2 )(u∗1 − w1))dt

]

= x∗3(T ) + xw3 (T )− x̃3(T ),

where x̃ = x∗ − xw. We may now hoose w = u∗. This makes x̃(T ) = 0

and (z1(T ), z2(T ), z3(T )) = (x∗1(T ), x
∗
2(T ), 2x

∗
3(T )). Sine the Heisenberg ase is

strongly ontrollable, the `reahability set' R spans the whole of the state spae

X , making it trivially �nite odimensional in X .

We an now diretly apply Theorem 4.4.1 to derive neessary optimality on-

ditions. The maximum priniple would require us to maximize (4.49) pointwise

over the ontrols, i.e. we are attempting to �nd the Hamiltonian as,

H(x, p) = sup
v1,v2∈C∞(S1;R)

H(x, {vi}2i=1, p)

= sup
v1,v2∈C∞(S1;R)

∫ 2π

0

(

v1p1 + v2p2 +
1

2
(x1v2 − x2v1)p3

−1
2

(

v21 + v22
)

− χ

2

(

v21,θ + v22,θ
)

)

dθ (4.50)

This maximization results in two Euler-Lagrange equations,

∂H

∂vi
− ∂

∂θ

(

∂H

∂vi,θ

)

= 0, i = 1, 2, (4.51)
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that yield the optimal ontrols,

Au1 = p1 −
1

2
x2p3,

Au2 = p2 +
1

2
x1p3,

(4.52)

with the usual de�nition of A = (1− χ∆). The Hamiltonian an be read as,

H =
1

2

∫ 2π

0

(u1Au1 + u2Au2) dθ

=
1

2

∫ 2π

0

[(

p1 −
1

2
x2p3

)

A−1

(

p1 −
1

2
x2p3

)

+

(

p2 +
1

2
x1p3

)

A−1

(

p2 +
1

2
x1p3

)]

dθ (4.53)

The dynamis of the ostate variable p an be alulated from Hamilton's equa-

tion,

∂p
∂t

= − δH
δx
, where

δH
δx

denotes the funtional derivative of H with respet

to x. Note that the Hamiltonian funtion H is smooth in x, so we an take this

derivative. This an be de�ned as, DH(xi) · σ =
〈

δH
δxi
, σ
〉

, i = 1, 2, 3, where

DH(xi) · σ is the Fréhet derivative of H at xi in the diretion of σ. This is

de�ned as,

DH(xi) · σ =
d

dǫ
H(x1 + ǫσ)

∣

∣

∣

∣

ǫ=0

.

We may alulate, for i = 1,

DH(x1) · σ =
1

2

d

dǫ

∫ 2π

0

[(

p1 −
1

2
x2p3

)

A−1

(

p1 −
1

2
x2p3

)

+

(

p2 +
1

2
(x1 + ǫσ)p3

)

A−1

(

p2 +
1

2
(x1 + ǫσ)p3

)]

dθ

∣

∣

∣

∣

ǫ=0

=
1

2

∫ 2π

0

(

σp3A−1

(

p2 +
1

2
(x1 + ǫσ)p3

))

dθ

=
1

2

∫ 2π

0

(

σp3A−1

(

p2 +
1

2
x1p3

))

dθ

=

〈

p3
2
A−1

(

p2 +
1

2
x1p3

)

, σ

〉

, (4.54)
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so that we may write,

δH
δx1

=
p3
2
A−1

(

p2 +
1

2
x1p3

)

. (4.55)

We an similarly alulate

δH
δx2

= −p3
2
A−1

(

p1 − 1
2
x2p3

)

and

δH
δx3

= 0. The evolution

of p an then be expressed as,

∂p1
∂t

= −p3
2
A−1

(

p2 +
1

2
x1p3

)

∂p2
∂t

=
p3
2
A−1

(

p1 −
1

2
x2p3

)

∂p3
∂t

= 0.

(4.56)

From (4.52) and (4.56), we notie that,

∂

∂t
Au1 = −p3A−1u2

∂

∂t
Au2 = p3A−1u1

(4.57)

Hene, reognizing p3 as the negative of Lagrange multiplier λ in the previous

setion, we redisover (4.47).

4.5.3 Behavior of Optimal Control

Denote, z(t, θ) := u1(t, θ) + iu2(t, θ). Then, (4.47) an be expressed as,

A∂z
∂t

= −iλz. (4.58)

Sine u1, u2 are periodi funtions in θ with period 2π, they have a Fourier series

representation, uν(t, θ) =
∞
∑

n=−∞
u
(ν)
n (t)einθ, ν = 1, 2, where u

(ν)
n 's are the Fourier
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oe�ients of uν . Moreover, sine uν 's are real valued funtions of θ, we have,

u
(ν)
−n = u

(ν)
n . Transforming (4.58) in Fourier domain, we get,

A
dž

dt
= −iΛž, (4.59)

where we denote, A = diag

(

{αn}∞n=−∞
)

, ž(t) = [zn(t)]
∞
−∞. zn(t) = u

(1)
n (t) +

iu
(2)
n (t), i.e. zn(t)'s are Fourier oe�ients of z(t, θ). Λ is the in�nite Toeplitz

matrix generated by the Fourier oe�ients of λ, i.e.

Λ =

























λ0 λ−1 λ−2 · · ·

λ1 λ0 λ−1 · · ·

λ2 λ1 λ0 · · ·

· · · · · · · · · · · ·

























(4.60)

Sine λn's are Fourier oe�ients of real valued funtion λ, we have λ−n = λn.

This leads to the observation that Λ is (in�nite) Hermitian matrix, i.e. Λ = Λ∗
.

4.5.3.1 Trunation of Fourier Coe�ients

Here we will onsider �rst N+1 Fourier oe�ients of z and provide an analysis of

(4.59) in the trunated �nite dimensional ase. We write, žN = (z−N · · · z0 · · · zN )T ∈

C
2N+1

. Then, the trunated version of (4.59) an be written as,

AN
džN
dt

= −iΛN žN , (4.61)

where AN and ΛN 's are appropriately trunated matries from A and Λ, respe-

tively. Note that AN ≻ 0. Let us denote, ẑ = A
1/2
N žN and BN = A−1

N , then we

get,
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dẑ

dt
= −iΛ̂N ẑ, (4.62)

where Λ̂N = B
1/2
N ΛNB

1/2
N =

(

Λ̂N

)∗
. Sine the matrix −iΛ̂N is skew Hermitian,

all its eigenvalues are on the imaginary axis. Denote them by −iσn, σn ∈ R, for

n = −N, ..., N . There exists a unitary matrix V that diagonalizes −iΛ̂N , i.e.

−iΛ̂N = V ∗DV, D = diag({−iσn}).

We perform another oordinate hange by,

z̃ = V ẑ = V A
1/2
N žN , (4.63)

whih yields the deoupled equations,

dz̃

dt
= Dz̃, (4.64)

i.e.

dz̃n
dt

= −iσnz̃n,

=⇒ z̃n(t) = e−iσntz̃n(0), n = −N, · · · , N. (4.65)

Performing the inverse Fourier operation, we see that,

z̃(t, θ) =

N
∑

n=−N

z̃n(t)e
inθ

=⇒ z̃(t, θ) =

N
∑

n=−N

ei(nθ−σnt)z̃n(0). (4.66)
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This is an equation of superposition of 2N + 1 traveling waves with n being the

wave number and vn = σn

n
is the speed of propagation assoiated with n-th mode

of the wave.

4.5.3.2 Veloity of Propagation

We know that in the wave equation of (4.66), the veloity vn of propagation

orresponding to n-th frequeny is determined as, vn = σn

n
, where σn's are (real)

eigenvalues of the Hermitian matrix Λ̂N = B
1/2
N ΛNB

1/2
N . Sine B

1/2
N ΛNB

1/2
N ∼

ΛNBN ∼ BNΛN (similar matries), the eigenvalues of Λ̂N an be haraterized by

those of BN and ΛN .

We have eig(BN ) = {βn}N−N , where βn = 1
αn

= 1
1+χn2 . Now, ΛN is a Toeplitz

Hermitian matrix formed by the Fourier oe�ients {λn}2N−2N . Given those oe�-

ients, it is in general not possible to write down losed form representation of its

eigenvalues. However, the bounds of eigenvalues of suh a matrix is well known.

We will make a little detour to state these results.

95



4.5.3.3 Toeplitz Matries and Eigenvalues

Let f be a periodi funtion over the interval [0, 2π) and {fn} are its Fourier

oe�ients. Let us denote Tn(f), the n×n Toeplitz Hermitian matrix de�ned as,

Tn(f) =

































f0 f−1 f−2 · · · f−(n−1)

f1 f0 f−1 · · · f−(n−2)

f2 f1 f0 · · ·
.

.

.

.

.

.

.

.

.

f(n−1) f0

































. (4.67)

We also de�ne,

mf = ess inf(f), (4.68)

Mf = ess sup(f). (4.69)

Let the eigenvalues of Tn(f) be denoted by τn,k, k = 1, ..., n. Then,

mf ≤ τn,k ≤Mf . (4.70)

Note that, max
k
|τn,k| ≤ max(|mf | , |Mf |) ≤ M|f |. We reall another useful result

here.

Lemma 4.5.2. Let P,Q be Hermitian positive de�nite matries of same order.

If τ(X) denote eigenvalues of X, then,

τmax(PQ) ≤ τmax(P ) · τmax(Q) (4.71)

τmin(PQ) ≥ τmin(P ) · τmin(Q) (4.72)
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4.5.3.4 Bounds on the Veloity

To get bounds on σn's, we need an useful assumption that will be apparent shortly.

A-1 mλ > 0, i.e. ΛN = T2N+1(λ) ≻ 0.

Sine µn = τ(BNT2N+1(λ)), Lemma 4.5.2 gives the following bound, for n =

−N, ..., N ,

τmin(BN)τmin(T2N+1(λ) ≤ σn ≤ τmax(BN)τmax(T2N+1(λ)),

=⇒ mλ

1 + χN2
≤ σn ≤Mλ.

(4.73)

Aordingly, the veloity is bounded by,

mλ

n(1 + χN2)
≤ vn ≤

Mλ

n
(4.74)

Remark 4.5. The assumption A-1 an be extended to inlude the ase Mλ < 0,

i.e. ΛN ≺ 0 as well.

4.5.3.5 Speial Cases

1. Case - I: Constant λ :

λ(θ) = λ0 6= 0, a onstant. We may assume that λ0 > 0. In this ase, (4.59)

an be expliitly solved and the solution an be expressed as,

z(t, θ) =
∞
∑

n=−∞
n 6=0

e
in

(

θ−βnλ0

n
t

)

zn(0) + e−jλ0tz0(0). (4.75)

Here the veloities vn an be written as, vn = λ0

n(1+χn2)
, n ∈ Z \ {0}.
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2. Case - II: Band-limited λ :

Here, we onsider only one frequeny omponent of λ, i.e. λ(θ) = λ0 +

λ1e
iθ + λ−1e

−iθ
. Let A-1 hold, i.e. ΛN = T2N+1(λ) ≻ 0. In this ase, ΛN is

a tri-diagonal Toeplitz matrix. The eigenvalues of suh a matrix are known

to take the following form.

Lemma 4.5.3.

τk(ΛN) = λ0 + 2 |λ1| cos
(

kπ

2N + 2

)

, k = 1, ..., 2N + 1. (4.76)

This, ombined with Lemma 4.5.2, we get the following bound,

λ0 + 2 |λ1| cos
(

(2N+1)π
2N+2

)

1 + χN2
≤ σn ≤ λ0 + 2 |λ1| cos

(

π
2N+2

)

(4.77)

4.5.4 Strong Coupling Limit, χ→∞

It is interesting to note that in the limit χ→∞, the equations (4.47) take simple

form. To see this, note that for some z ∈ C∞(S1;R), we may express

A−1z =
∞
∑

n=−∞
βn 〈φn, z〉 φn,

where βn = 1
1+χn2 are the eigenvalues of A−1

, and φn = einθ. This implies,

lim
χ→∞

A−1z =
∑

n

(

lim
χ→∞

1

1 + χn2

)

〈z, φn〉φn

= 〈z, 1〉

=⇒ lim
χ→∞

A−1z =

∫ 2π

0

zdθ.
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Figure 4.1: Numerial solution of (4.61) for experiment 1. Evolution of u1 (blue)

and u2 (red) is given in the �rst row; the ontrols form a simple traveling wave

along the θ domain. The seond row shows evolution of x1, x2 variables.

With this realization, we may rewrite (4.47) in the strong oupling limit as,

∂u1
∂t

=

∫ 2π

0

λu2dθ

∂u2
∂t

= −
∫ 2π

0

λu1dθ.

(4.78)

It is lear from (4.52) that both u1 and u2 are independent of θ. Then the equations

(4.78) an be equivalently written as

u̇1 = λ̃u2

u̇2 = −λ̃u1,
(4.79)

99



-1
0

1

-1

0

1
-1

-0.5

0

0.5

1

-1.5
1

-1

1

-0.5

0

0

0
-1 -1

-3
1

-2

1

-1

0

0

0
-1 -1

-4
1

-3

-2

1

-1

0

0

0
-1 -1

-6
1

-4

1

-2

0

0

0
-1 -1

-8
1

-6

-4

1

-2

0

0

0
-1 -1

PSfrag replaements

t = 0 s t = 4 s t = 8 s

t = 12 s t = 16 s t = 20 s

Figure 4.2: Evolution of x3 for experiment 1. The blue loop represents the irle

S1
while the height of eah point on the red loop is given by the value of x3 at

the orresponding point of θ.

where λ̃ =
∫ 2π

0
λdθ. Equations (4.79) are optimal ontrol evolution equations for

a single agent [Justh and Krishnaprasad, 2016℄. Thus in the strong oupling limit

χ → ∞, the optimal ontrol solutions for the ontinuum of agents ollapses to

that of a single agent. This is alled the synhronization of the �ok, where every

agent in the �ok behaves the same way.
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Figure 4.3: Numerial solution of (4.61) for experiment 2. Evolution of u1 (blue)

and u2 (red) is given in the �rst row. The seond row shows evolution of x1, x2

variables.

4.5.5 Simulation Results

We simulate the evolution of optimal ontrols u1 and u2 governed by the linear

partial di�erential equations (4.47) by means of Fourier analysis as presented in

the setion 4.5.3. In partiular, here we present the solutions of the trunated

ordinary di�erential equations (4.61), where we only keep trak of �rst N + 1

Fourier oe�ients of eah variable. Note that λ is assumed to have less than

N + 1 oe�ients. We will now present numerial solutions in di�erent ases by
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Figure 4.4: Evolution of x3 for experiment 2. The blue loop represents the irle

S1
while the height of eah point on the red loop is given by the value of x3 at

the orresponding point of θ.

varying the initial onditions and parameter values. For all the experiments pre-

sented here, N is taken to be 30 and the �nal time T is set as 20 seonds and

four snapshots of the optimal ontrols are shown. The Hamiltonian is veri�ed to

be staying a onstant (up to mahine preision) for all of the experiments. The

evolution of state variables is also reorded. For all the experiments presented

here, (x1, x2) is set to start from a unit irle and x3 is initially zero for all values

of θ.
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Figure 4.5: Numerial solutions of (4.61) for experiment 3 for (a) �rst row, χ =
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and u2 is shown in red. The speed of information propagation dereases as the

oupling onstant inreases.
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The simplest set of initial onditions u1(0, θ) = cos(θ), u2(0, θ) = sin(θ), λ(θ) =

5, χ = 1 generate a traveling wave solution, aording to equation (4.75). This

an be seen from Fig. 4.1. The states (x1, x2, x3) are also integrated from an

initial ondition for (x1, x2) forming a irle on the plane and x3 being identially

zero for all θ. The evolution of (x1, x2) an be seen from Fig. 4.1. The shape

of the (x1, x2) irle did not hange, although its size varied over time. The

evolution of x3 is shown in Fig. 4.2, whih appeared to derease steadily for all

θ. Next, for experiment 2, we onsider a band-limited λ, i.e. λ(θ) = 5 + cos(θ).

Keeping all other onditions same as in experiment 1, we get Fig. 4.3-4.4. Here

both size and shape of the (x1, x2) irle hanged over time. The value of x3

dereased in this ase as well but more asymmetrially than in experiment 1. In

experiment 3, we show how a loalized disturbane gets spread in the ontinuum.

For this experiment, we let the ontrol u1 is initially zero everywhere, u1(0, θ) = 0.

However, u2 has a loalized peak at a ertain spatial point. We took the example

of a Gaussian form,

u2(0, θ) =
1

√

2πρ2
e
− (θ−π)2

2ρ2 , (4.80)

with ρ = 0.1. We then plot the solutions in three di�erent settings of χ values,

χ = 0.1, 1, 10 in Fig. 4.5. λ is taken to be a onstant in all these ases, λ(θ) = 5.

It is disovered in the previous setion that the speed of traveling wave dereases

as χ inreases. This an be seen learly from Fig. 4.5 as the disturbane is seen

to be not well propagated for higher values of χ.
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4.6 A Continuum of Agents on the Plane

As an extension of the problem onsidered in Setion 3.3, we will explore the ase

where we take the underlying group as the speial Eulidean group, SE(2). This

ase then an be seen as a ontinuum ounterpart of [Justh and Krishnaprasad,

2015b℄. Every g(t, θ) ∈ SE(2) an be represented as,

g =

















cosx3 − sin x3 x1

sin x3 cosx3 x2

0 0 1

















,

with group evolution dynamis,

∂

∂t
g(t, θ) = g(t, θ) · (u1(t, θ)A1 + u2(t, θ)A2) , (4.81)

where,

A1 =

















0 −1 0

1 0 0

0 0 0

















, A2 =

















0 0 1

0 0 0

0 0 0

















,

along with A3 = [A1, A2], form a basis for the assoiated Lie algebra se(2). Note

that sine {A1, A2} is braket generating in se(2), similar argument as in the

Heisenberg ase would provide (weak) ontrollability result in this ase as well.

We then seek to minimize the same ost funtional as in (4.38),

J =
1

2

∫ T

0

∫ 2π

0

(

(u21 + u22) + χ

(

(

∂u1
∂θ

)2

+

(

∂u2
∂θ

)2
))

dθdt
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4.6.1 Equations of Optimal Control

4.6.1.1 Calulus of Variations Approah

The system dynamis an be equivalently expressed as,

∂x1
∂t

= u2 cosx3

∂x2
∂t

= u2 sin x3

∂x3
∂t

= u1.

(4.82)

Note that the ontrols u1 and u2 an be expressed by the xj variables and their

derivatives as,

u1 = x3,t, u2 = x1,t cos x3 + x2,t sin x3.

Sine we have two integral onstraints in this ase, namely,

∆x1(θ) =

∫ T

0

u2 cosx3dt =

∫ T

0

(x1,t cosx3 + x2,t sin x3) · cosx3dt

∆x2(θ) =

∫ T

0

u2 sin x3dt =

∫ T

0

(x1,t cosx3 + x2,t sin x3) · sin x3dt,

we invoke Lagrange multipliers λ, µ ∈ C∞(S1;R) and the augmented Lagrangian

density an be read as,

L =
1

2

[(

x23,t + (x1,t cos x3 + x2,t sin x3)
2)+ χ

(

x23,tθ + (x1,tθ cos x3 + x2,tθ sin x3)
2)]

+ λ (x1,t cosx3 + x2,t sin x3) · cosx3 + µ (x1,t cosx3 + x2,t sin x3) · sin x3.

(4.83)

We reall the Euler-Lagrange equations from (4.22),

∂L
∂xi
− ∂

∂θ

(

∂L
∂xi,θ

)

− ∂

∂t

(

∂L
∂xi,t

)

+
∂2

∂θ∂t

(

∂L
∂xi,θt

)

= 0,
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for i = 1, 2, 3. We note the following quantities,

u2 = x1,t cosx3 + x2,t sin x3,

u2,θ = x1,tθ cosx3 + x2,tθ sin x3,

∂

∂t

(

∂L
∂x1,t

)

= u2,t cos x3 − u1 (u2 sin x3 + λ sin 2x3 − µ cos 2x3) ,

∂2

∂θ∂t

(

∂L
∂x1,θt

)

= χ (u2,θθt cosx3 − x3,θ (u2,θt sin x3 + u2,θu1 cos x3)

− sin x3 (u2,θθu1 + u2,θu1,θ)) ,

∂

∂t

(

∂L
∂x2,t

)

= u2,t sin x3 + u1 (u2 cosx3 + λ cos 2x3 + µ sin 2x3) ,

∂2

∂θ∂t

(

∂L
∂x2,θt

)

= χ (u2,θθt sin x3 + x3,θ (u2,θt cosx3 − u2,θu1 sin x3)

+ cosx3 (u2,θθu1 + u2,θu1,θ)) ,

∂

∂t

(

∂L
∂x3,t

)

= u1,t,

∂2

∂θ∂t

(

∂L
∂x3,θt

)

= χu1,θθt.

Subsequently, the Euler-Lagrange equations for the Lagrangian (4.83) take the

form,

u2,t cos x3 − u1u2 sin x3 − u1 (λ sin 2x3 − µ cos 2x3)

= χ (u2,θθt cosx3 − sin x3 (u2,θθu1 + u2,θu1,θ)− x3,θ (u2,θt sin x3 + u2,θu1 cosx3)) ,

u2,t sin x3 + u1u2 cos x3 + u1 (λ cos 2x3 + µ sin 2x3)

= χ (u2,θθt sin x3 + cosx3 (u2,θθu1 + u2,θu1,θ) + x3,θ (u2,θt cosx3 − u2,θu1 sin x3)) ,

u1,t − χu1,θθt = −u2 (λ sin x3 − µ cosx3 − χu2,θx3,θ) ,

(4.84)
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whih after some readjustments yield,

∂

∂t
(1− χ∆)u1 = −u2 (λ sin x3 − µ cosx3 − χx3,θu2,θ)

∂

∂t
(1− χ∆)u2 = u1 (λ sin x3 − µ cosx3 − χx3,θu2,θ)

∂

∂t
(λ sin x3 − µ cosx3 − χu2,θx3,θ) = −u1(1− χ∆)u2.

(4.85)

Denoting A := (1 − χ∆) and µ3 := λ sin x3 − µ cosx3 − χu2,θx3,θ, we then an

express (4.85) as,

∂

∂t
Au1 = −µ3u2

∂

∂t
Au1 = µ3u1

∂µ3

∂t
= −u1Au2.

(4.86)

4.6.1.2 PMP Approah

We introdue the ostate variable p(t) = (p1(t), p2(t), p3(t)) ∈ C∞(S1;R3), t ∈

[0, T ]. The pre-Hamiltonian (onsidering only normal extremals) an be written

as,

H = 〈ẋ, p〉 − L

=

∫ 2π

0

(

u2 (p1 cosx3 + p2 sin x3) + u1p3 −
1

2

(

u21 + u22
)

− χ

2

(

u21,θ + u22,θ
)

)

dθ.

(4.87)

Remark 4.6. Here we only onsider normal extremals, i.e. when p0 6= 0 and an

be normalized to −1. Note that in this ase, the emptiness (i.e. the full ostate

being identially zero) of the PMP would not our. It is of future e�ort to

investigate whether the �nite odimensionality ondition is satis�ed in the SE(2)

ase.
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The maximum priniple (Theorem 4.4.1) would require us to maximize (4.87)

pointwise over the ontrols, i.e. we are attempting to �nd the Hamiltonian as,

H = sup
v1,v2∈C∞(S1;R)

H

= sup
v1,v2∈C∞(S1;R)

∫ 2π

0

(v2 (p1 cosx3 + p2 sin x3) + v1p3

−1
2

(

v21 + v22
)

− χ

2

(

v21,θ + v22,θ
)

)

dθ (4.88)

This maximization results in two Euler-Lagrange equations,

∂H

∂vi
− ∂

∂θ

(

∂H

∂vi,θ

)

= 0, i = 1, 2, (4.89)

that yields the optimal ontrols,

Au1 = p3,

Au2 = p1 cosx3 + p2 sin x3,

(4.90)

where we denote A = (1− χ∆), as usual. The Hamiltonian an be read as,

H =
1

2

∫ 2π

0

(u1Au1 + u2Au2) dθ

=
1

2

∫ 2π

0

(

p3A−1p3 + (p1 cosx3 + p2 sin x3)A−1 (p1 cosx3 + p2 sin x3)
)

dθ

(4.91)

The dynamis of the ostate variable p an be alulated from Hamilton's equa-

tion,

∂p
∂t

= − δH
δx
, where

δH
δx

denotes the funtional derivative of H with respet to

x. Expliit alulations yield,

∂p1
∂t

= 0

∂p2
∂t

= 0

∂p3
∂t

= −u2 (−p1 sin x3 + p2 cos x3) .

(4.92)
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If we denote µ3 := −p1 sin x3 + p2 cosx3, then from (4.90) and (4.92), we an

redisover (4.86). Renaming µi = Aui, i = 1, 2, (4.86) an also be written as,

∂µ1

∂t
= −µ3A−1µ2

∂µ2

∂t
= µ3A−1µ1

∂µ3

∂t
= −µ2A−1µ1.

(4.93)

4.6.2 Strong Coupling Limit, χ→∞

Similar to the Heisenberg ase, it an be shown that synhronization is ahieved in

strong oupling limit in this ase as well. We know that for some z ∈ C∞(S1;R),

we have lim
χ→∞

A−1z =
∫ 2π

0
zdθ. Thus, we may rewrite (4.93) in the strong oupling

limit as,

∂µ1

∂t
= −µ3

(
∫ 2π

0

µ2dθ

)

∂µ2

∂t
= µ3

(
∫ 2π

0

µ1dθ

)

∂µ3

∂t
= −µ2

(
∫ 2π

0

µ1dθ

)

.

(4.94)

If we de�ne the variables,

αi =

∫ 2π

0

µidθ, i = 1, 2, 3, (4.95)

then these variables will evolve aording to,

α̇1 = −α2α3

α̇2 = α1α3

α̇3 = −α1α2.

(4.96)
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Equations (4.96) are the equations for a single agent senario and they are studied

in detail in Setion 3.2. This indiates the synhronization phenomenon in the

planar ontinuum �ok. Note that α1 and α2 are essentially the optimal ontrols

u1 and u2, respetively. The Hamiltonian (4.88) simply beomes,

h∞ =
1

2

(

α2
1 + α2

2

)

. (4.97)

4.6.3 Simulation Results

While it has not been possible to haraterize general solutions of (4.93) analyti-

ally, here we demonstrate numerial solutions. To numerially solve the evolution

equations of µi variables, we used a �nite di�erene method. We partitioning the

spae domain [0, 2π] uniformly in M points, 0 = θ1, . . . , θM = 2π, so that the

di�erene between two onseutive spae points beome δθ = 2π
M
. In this dis-

rete setting any z(t, θ) an be approximated as an M vetor, z(t, θ) ≈ z(t) =

[z1(t), z2(t), . . . , zM(t)]T with the onstraint z1(t) = zM(t) for all t to respet the

periodiity property. Note also that in a seond-order entral di�erene sheme,

the double partial spae derivative is expressed as,

∂2z(t, θj)

∂θ2
=
zj+1 − 2zj + zj−1

δθ2
,

for j = 1, . . . ,M with appropriate adjustments for the boundary points j = 1,M .

The linear operatorA = (1−χ∆) an then be expressed by theM×M nonsingular
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Figure 4.6: Numerial solution of (4.99) (�rst two rows) along with the state

evolution (third row) for experiment 1. The arrows represent the diretion of

movement of the partile at that point.

matrix AM ,

AM =

































1 +
(

2χ
δθ2

)

−
(

χ
δθ2

)

0 . . . −
(

χ
δθ2

)

0

−
(

χ
δθ2

)

1 +
(

2χ
δθ2

)

−
(

χ
δθ2

)

0 . . . 0

0 −
(

χ
δθ2

)

1 +
(

2χ
δθ2

)

−
(

χ
δθ2

)

. . . 0

.

.

.

.

.

.

.

.

.

.

.

.

0 −
(

χ
δθ2

)

. . . 0 −
(

χ
δθ2

)

1 +
(

2χ
δθ2

)

































. (4.98)
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With this notation, the partial di�erential equations (4.93) an be expressed as a

system of ordinary di�erential equations (ODE),

µ̇1 = −µ3A
−1
M µ2

µ̇2 = µ3A
−1
M µ1

µ̇3 = −µ2A
−1
M µ1.

(4.99)

These ODEs (4.99) are then solved using a mid-point based ODE solver in MAT-

LAB. The optimal ontrols ui's an be derived from the µ variables by the relation,

ui = A−1
M µi, i = 1, 2 whih are used in the quadrature of the state variables xj 's.

Here we present results of some experiments with varying initial onditions. The

�nal time T and spae disretization fator M is kept �xed at T = 20 seonds

and M = 128 for all the experiments. A high value of M is hosen for a faithful

alulation of the spatial derivatives. In the subsequent experiments we try to

investigate the behavior of a simple loop under the optimal ontrols generated

by (4.99), i.e. we take, x1(0, θ) = 0.01 cos(θ) and x2(0, θ) = 0.01 sin(θ) so that

initially the partiles start on a irle. The remaining initial onditions of x3 and

µi variables and the parameter χ is varied in the following experiments. It is to be

noted that the Hamiltonian and the Casimir variables are validated to be onstant

in eah of the experiments.

Experiment 1

We take a simple example where eah agent start moving in the positive x axis

and with unit speeds, i.e. x3(0, θ) = 0, µ2(0, θ) = 1. The initial urvature of eah
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Figure 4.7: State evolution is only shown for experiment 2. The arrows represent

the diretion of movement of the partile at that point.

agent is taken to be zero, µ1(0, θ) = 0 whih means every agent starts harmo-

niously with same veloity and urvature. The value of χ is taken as 1. Four

snapshots of the µ, u and x variables are shown in Fig. 4.6. The urvature �eld is

seen to be forming two peaks in the spatial domain whih gives rise to the twisted

form of the initial irle.

Experiment 2

We keep all the initial onditions same as in experiment 1 exept the initial dire-

tion of movement of the partiles. It is simulated that almost half the partiles

try to go in one diretion while the other half in the opposite diretion. To write

this as a ontinuous periodi funtion, we take

x3(0, θ) =



















π
2

(

1 + tanh
(

100
(

θ − π
2

)))

, if 0 ≤ θ < π

π
2

(

1− tanh
(

100
(

θ − 3π
2

)))

, if π ≤ θ ≤ 2π

. (4.100)

This de�nition of the initial diretion means that the partiles on the `east' part

of the irle initially go to the right and the partiles on the `west' part go to

the left. The simulation results are shown in Fig. 4.7. Comparing to Fig. 4.6,
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Figure 4.8: State evolution is only shown for experiment 3. The arrows represent

the diretion of movement of the partile at that point.

the �rst two rows are idential sine the initial onditions of µ variables did not

hange and hene they are omitted. What is interesting is that the irle splits

into two loops onneted by very small number of partiles.

Experiment 3

Similar to experiment 2, we try to investigate the e�et of hange in initial dire-

tion of movement of the partiles. Here, we set the partiles to go on a radially

outward path, i.e. x3(0, θ) = θ, with keeping all other onditions same as in ex-

periment 2. The simulation results are shown in Fig. 4.8. The �rst two rows are

not shown sine they are idential with experiment 1.

Experiment 4

In this experiment, again we �x all the initial onditions and parameters same as

in experiment 1, exept the initial urvature is given a loal intensity. In other

words we hoose this Gaussian funtion,

µ1(0, θ) =
1√
2πσ2

e−
(θ−π)2

2σ2 , (4.101)
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Figure 4.9: Numerial solution of (4.99) (�rst two rows) along with the state

evolution (third row) for experiment 4. The arrows represent the diretion of

movement of the partile at that point.

with σ = 0.05. The purpose of hoosing this initial ondition is to see whether

a loalized information gets spread aross the ontinuum or not. The simulation

results are shown in Fig. 4.9.

Experiment 5

Finally, we demonstrate the e�et of strong oupling limit by taking a large value
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Figure 4.10: Numerial solution of (4.99) (�rst two rows) along with the state

evolution (third row) for experiment 5. The arrows represent the diretion of

movement of the partile at that point. The u1, u2 solutions are almost `�at',

indiating single agent solution or synhronization.

of χ = 1000. We note that even in the ase, µ1(0, θ) = cos(θ), µ2(0, θ) = 1 +

0.2 cos(θ), µ3(0, θ) = sin(θ), x3(0, θ) = π/4, we essentially get the system derived

by the optimal ontrols that are spatially non varying.
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4.7 Disussion and Sope of Future Researh

In this hapter, we have presented a general framework for a ontinuum desrip-

tion of a �ok. We are interested in solving optimal ontrol problems to explain

olletive movement of suh a �ok. We reognize this is a hallenging problem

that naturally provides several open questions for further researh. We itemize

few suh possibilities.

• It is shown that under a ertain �nite odimensionality of a reahable set,

the PMP remains valid in a general Hilbert spae setting. One might want to

disover its relationship with the ontrollability ondition. In partiular, if a

system on the loop group is strongly ontrollable, does the PMP ondition

satisfy automatially? We have been able to show this to be true in the

Heisenberg ase. Does this remain valid if we only have weak ontrollability?

• It is of interest to extrat meaningful features of the optimal solutions of

the SE(2) ase. While we have not been able to solve (4.93) analytially,

we want to answer few questions about it. For example, do these equations

possess a traveling wave like solution (like the Heisenberg ase)? If so, what

is the speed of those waves? The answer might give an insight toward the

information transfer in biologial swarms. It is the inherent nature of the

numerial study presented here that there exist many possibilities by varying

initial on�gurations whih makes it partiularly di�ult. We explored only

a tiny fration of possible variations in the initial on�gurations in this
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doument. A future work ould perform more extensive numerial study of

these partial di�erential equations (4.93).

• We have presented the results in this hapter under the ase of a �xed yli

interation topology. A more general, possibly state dependent (hene time

dependent, too) interation sheme an be modeled and subjeted under

similar questions.

• It will be an interesting future work to establish ontinuum parallel of the

Lie-Poisson redution in the loop group ase.
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Chapter 5

Cognitive Cost of Floking: A Geometri

and Hamiltonian Perspetive

5.1 Introdution

It has been an appealing question to researhers from several �elds to address

how natural olletives funtion at a fundamental level. Many theories have been

proposed to desribe this phenomenon over the past few deades. The lak of

aurate motion apturing tehnologies had limited the study of natural olletives

for many years. However, as motion apture beame more sophistiated, more

movement data of these olletives were reorded. This enabled researhers to

unover several underlying mehanisms behind �oking [Ballerini et al., 2008a,b;

Attanasi et al., 2014; Cavagna et al., 2018; Nagy et al., 2010℄. These studies

shed light on how individual agents interat with its neighboring agents or how

information may be propagated through the �ok.
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Continuing the spirit of the `top-down' view of the �ok, we will present a novel

perspetive for analyzing olletive motion data. The �ok movement results in a

time-series of its kineti energy, whih an be divided into several energy modes.

Normalized modes de�ne a urve in some appropriate dimensional simplex whih

we attempt to desribe by an evolutionary game dynamis. Individual energy

modes are onsidered as pure strategies of suh a game. An optimal ontrol

problem is proposed to best �t the data on the simplex, where the ontrol inputs

modulate the �tness assoiated with the strategies. This is in ontrast to the

optimal ontrol problem posed in Chapter 4, where the ontrols are `low-level'

i.e. individual ontrol inputs are determined post-solution of the optimal ontrol

problem. In the present ontext however, the ontrol inputs are `high-level'. The

olletive itself is thought to be deiding the optimal alloation of its energy

among several di�erent modes during a �ight event. A notion of ognitive ost is

introdued to denote the optimal ost for the olletive to perform this alloation.

This work brings together several key ingredients for this data-driven approah.

In setion 5.2, the motion data of European �oks is detailed. This data is then

subjeted to a linear data smoothing tehnique [Dey and Krishnaprasad, 2012℄

that reonstruts smooth trajetory data of eah bird in the �ok. A nonlinear

data smoothing tehnique [Dey and Krishnaprasad, 2014℄ is later used for the

optimal energy alloation problems. These smoothing tehniques are based on

optimal ontrol theory and are desribed in setion 5.3. Setion 5.4 ontains the

geometri theory developed in [Mishiati and Krishnaprasad, 2017℄ to ompute
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di�erent energy modes. Finally, in setion 5.5, a generative model based on [Raju

and Krishnaprasad, 2018℄ is desribed to onstrut an optimal ontrol problem on

a simplex. Numerial solution of this optimal ontrol problem, as well as the idea

of ognitive ost, are presented in setion 5.6. This is a joint work with V. Raju

[Halder et al., 2019b℄.

5.2 Floking Data

We are provided with �ight data of European starlings that were taken by Dr.

Andrea Cavagna and his ollaborators from the Colletive Behaviour in Biologial

Systems (COBBS) group at the Institute for Complex Systems (ISC-CNR), Uni-

versity of Rome �La Sapienza". Starlings gather around urban areas during the

winter months in order to get extra warmth from the ities. Floks of these kind of

birds are well known to perform remarkable maneuvers, the purpose and meha-

nisms of whih still elude researhers. Equipped with modern imaging tehniques

and sophistiated algorithms for stereo reonstrution, these group of researhers

managed to apture a series of �ight events with di�erent �ok sizes in the winter

months of 2011. See [Attanasi et al., 2014℄ for more details about the proess. We

will study eight partiular �oking events, the details of whih are given in table

5.1.
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Floking Flok Size Duration Data Capture Rate

Event (n) (seonds) (frames/seond)

1 175 5.4875 80

2 123 1.8176 170

3 46 5.6118 170

4 485 2.3471 170

5 104 3.8824 170

6 122 4.1588 170

7 380 5.7353 170

8 194 1.7588 170

Table 5.1: Details of aptured �oking events

5.3 Data Smoothing

Given a time-indexed sequene of sampled observations on a manifold, genera-

tive models provide a meaningful way of apturing them through the use of an

underlying dynamial system omplete with ontrol inputs having useful interpre-

tations. The ontrol inputs are determined by solving an optimal ontrol problem,

where the ost funtion onsists of a �tness term that penalizes mismath between

the generated trajetory and sampled data, and a smoothing term weighted by a

parameter λ that a�ets the smoothness of the generated trajetory. We disuss

two generative models that have been proposed to solve this problem.
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5.3.1 A linear generative model

A �rst approah to solving the data smoothing problem, presented in [Dey and

Krishnaprasad, 2012℄, is to formulate an optimal ontrol problem to minimize the

jerk path integral, with intermediary state osts determining the �t error. Suppose

that {ri}Ni=0 denote the positions of the birds at eah sampling time, with ri ∈ R3
.

In order to reover a trajetory �t r(t) : [t0, tN ]→ R3
, one an use the jerk-driven

linear generative model,

ṙ(t) = v(t)

v̇(t) = a(t)

ȧ(t) = u(t) (5.1)

where v(t), a(t),u(t) denote the veloity, aeleration and jerk (input) of the tra-

jetory. The ost funtional to be minimized is

Jl =

N
∑

i=0

||r(ti)− r(t)||2 + λ

tN
∫

t0

||u(t)||2dt (5.2)

where the minimization is over initial onditions r(t0),v(t0), a(t0) and the input

u(t). De�ning the state and output as

x(t) =

















r(t)

v(t)

a(t)

















∈ R
9,y(t) = x(t) ∈ R

3
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we obtain the linear state equations

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t), where

A =

















0 13 0

0 0 13

0 0 0

















, B =

















0

0

13

















, C = [13 0 0] (5.3)

Therefore, the problem of minimizing Jl subjet to (5.3) is a linear, quadrati

optimal ontrol problem, whih an be solved by a ompletion of squares of terms

in the ost by invoking a path independene lemma, or by applying the Pontryagin

Maximum Priniple as shown in [Dey and Krishnaprasad, 2012℄. This approah

has been used to smooth the starling �ok data for all the events listed in table

5.1.

5.3.2 Data smoothing in the Eulidean setting

In this setion, we present a general result on the Pontyagin Maximum Priniple

based approah for data smoothing on the Eulidean spae Rn
. Suppose that

{

xdi
}N

i=0
denote the sampled data. For a generative model given by the dynamis

ẋ = f(x, u) on Rn
, with the ontrol u ∈ Rm

, the optimal ontrol problem an be

formulated as:

min
x(t0), u∈Rm

J(x(t0), u) =
λ

2

∫ tN

t0

‖u‖2 dt+
N
∑

i=0

Fi(x(ti), x
d
i ),

subjet to: ẋ = f(x, u),

(5.4)

125



where parameter λ > 0 is a regularization parameter, and Fi's are suitably de�ned

�t errors of the reonstruted trajetories and sampled data at the sampling

times. Using Pontryagin's Maximum Priniple, the optimal ontrol values an be

alulated as a funtion of the state and a o-state variable. The following result

from [Dey and Krishnaprasad, 2014℄ states this preisely.

Theorem 5.3.1. (PMP for data smoothing [Dey and Krishnaprasad, 2014℄ ) Let

u∗(·) be an optimal ontrol input for (5.28), and let x∗(·) denote the orresponding

state trajetory. Then there exist a ostate trajetory p : [t0, tN ] → R
n, p 6= 0 ,

suh that

ẋ∗ =
∂H
∂p

(t, x∗, p, u∗)

ṗ = −∂H
∂x

(t, x∗, p, u∗)

(5.5)

during t ∈ (ti, ti+1), i = 0, 1, ..., N − 1, and the Hamiltonian is given as

H(t, x∗, p, u∗) = max
v∈Rm

H(t, x∗, p, v), (5.6)

for t ∈ [t0, tN ]\{t0, t1, ..., tN}, where the pre-Hamiltonian is de�ned asH(t, x, p, u) =

〈p, f(x, u)〉 − λ
2
‖u‖2. Moreover, jump disontinuities of the ostate variable an

be written as

p(t−0 ) = 0,

p(t+i )− p(t−i ) =
∂Fi(x(ti))

∂x(ti)
, i = 0, 1, ..., N,

p(t+N) = 0.

(5.7)

The pieewise ontinuous nature of the o-state trajetory due to jump on-

ditions arising from mismath between the sampled data points and the reon-
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struted state must be noted here. The initial ondition x(t0) is identi�ed by using

the terminal ondition for the o-state, while the optimal value of λ is typially

obtained through leave-one-out or ordinary ross validation. The reonstruted

trajetory is then obtained as the projetion onto the state spae of the solution

of Hamilton's equations derived from the (maximized pre-) Hamiltonian. We refer

the reader to [Dey, 2015℄ for a detailed treatment of these problems. This is the

result that we will use in our data �tting problem on a simplex.

5.4 Energy Modes

Avian �oks display a variety of �ight behaviors that may be haraterized as

olletive strategies suh as steady direted translation of enter of mass (whih

we denote by om), oherent rotation about enter of mass (rot), hange of form

(ens), internal re-shu�ing of relative positions (dem), rapid expansion or on-

tration of volume (vol) et. A �oking event may display all of the mentioned

strategies to varying degrees as governed by the time-dependent alloation of ki-

neti energy to eah strategy. We take the viewpoint presented in [Mishiati and

Krishnaprasad, 2017℄ and study the frations of the total kineti energy of a �ok

alloated to several `kinemati modes' � rigid translations, rigid rotations, inertia

tensor transformations, expansion and ompression, in order to desribe olletive

behavior.

If the positions of the birds in a �ok are denoted by {r1, r2, ..., rn}, the enter
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of mass an be written as,

r
om

=
1

n

n
∑

i=1

ri, (5.8)

where we treat every bird alike, i.e. their masses are taken to be equal. The

ensemble inertia tensor is de�ned by

K =

n
∑

i=1

(ri − r
om

) (ri − r
om

)T . (5.9)

Let the veloities of the birds be denoted as, {vr1, ...,vrn}, then the total kineti

energy is,

E =
1

2

n
∑

i=1

‖vri‖2 . (5.10)

We an de�ne the position and veloity vetor with respet to the enter of mass,

i.e. c , [c1, ..., cn] ∈ R3×n
, where ci = ri − r

om

; vc , [vc1,vc2, ...,vcn] ∈ R3×n
,

where vci = vri − v
om

. Then,

E
om

=
n

2
‖v

om

‖2 , E
rel

,
1

2

n
∑

i=1

‖vci‖2 . (5.11)

We thus have the splitting, E = E
om

+ E
rel

. As presented in [Mishiati and

Krishnaprasad, 2017℄, instantaneous relative energy alloations an be expressed

on a probability simplex (∆4
)

1

by exploiting the �ber bundle strutures of the

�ok's total on�guration spae to split the total kineti energy using (i) ensemble

�bration or (ii) shape �bration.

(i) Ensemble Fibration: We note that the ensemble inertia tensor K (5.9) is

a symmetri positive de�nite matrix. Hene its eigendeomposition an be

1

Note that in this hapter we will use ∆
n
to denote the n-dimensional simplex.
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written as, K = QΛQT
, with Λ = diag(λ1, λ2, λ3), where λ1 ≥ λ2 ≥ λ3 > 0.

De�ne, F := cvT

c
+vcc

T
and F̃ = [F̃ij ] = QTFQ. Then the following energy

modes an be alulated,

E
ens.rot

,
1

2

(

F̃ 2
12

λ1 + λ2
+

F̃ 2
13

λ1 + λ3
+

F̃ 2
23

λ2 + λ3

)

E
ens.def

,
1

8

(

F̃ 2
11

λ1
+
F̃ 2
22

λ2
+
F̃ 2
33

λ3

)

.

(5.12)

Furthermore,

E
vol

,
1

2

tr

2
(

cvT

c

)

tr(K)
, (5.13)

so that, E
ens.res

= E
ens.def

− E
vol

. We may also alulate E
dem

= E
rel

−

E
ens.rot

− E
ens.def

. Hene, in this �bration we have the following splitting of

the kineti energy,

{

E
om

E
,
E
dem

E
,
E
ens.rot

E
,
E
vol

E
,
E
ens.res

E

}

∈ ∆4
(5.14)

(i) Shape Fibration: De�ne

J =
n
∑

i=1

(ci × vci) ,

Ic =
n
∑

i=1

(

‖ci‖2 1− cic
T

i

)

.

(5.15)

Then the rotational energy E
rot

an then be alulated as,

E
rot

,
1

2
JTI−1

c
J, (5.16)

The shape residual energy is given by E
shp.res

= E
rel

−E
rot

−E
end.def

, whih

provides the splitting in this �bration as below

{

E
om

E
,
E
rot

E
,
E
shp.res

E
,
E
vol

E
,
E
ens.res

E

}

∈ ∆4
(5.17)
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While we an split the kineti energy in 5 di�erent modes (5.14),(5.17), many

�oking events show a predominant alloation of nearly onstant energy of rigid

translation (E
om

). We exlude this omponent from the total E in our analysis,

and onsider the alloation of the remaining energy E
rel

to obtain a time dependent

trae of eah event on a lower dimensional simplex. In partiular, we apture the

trae generated by the following deomposition of E
rel

using ensemble �bration

on the 1-simplex by two di�erent methods,

(ENS-I)

{

E
dem

E
rel

,
E
ens

E
rel

}

∈ ∆1, (5.18)

(ENS-II)

{

E
ens.rot

E
rel

,
E
rel

− E
ens.rot

E
rel

}

∈ ∆1, (5.19)

where E
rel

= E−E
om

, and E
ens

= E
rel

−E
dem

= E
ens.rot

+E
vol

+E
ens.res

. Similarly,

a one dimensional simplex desription using shape �bration may be given by two

ways,

(SHP-I)

{

E
shp.res

E
rel

,
E
rel

−E
shp.res

E
rel

}

∈ ∆1, (5.20)

(SHP-II)

{

E
rot

E
rel

,
E
shp

E
rel

}

∈ ∆1, (5.21)

where E
shp

= E
rel

− E
rot

= E
shp.res

+ E
vol

+ E
ens.res

.

In this way, moment-to-moment deisions made by individuals in a �ok, tak-

ing aount of the deisions of their neighbors, ontribute to �ok-sale strategies

as aptured by suh time dependent traes on the probability simplex. Treating

the strategy prevalene as being given by the respetive energy frations, we resort

to a generative evolutionary game dynamis to model the ompetition between

the �ok-sale strategies.
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5.5 Generative model on the 1-simplex and the

data-smoothing problem

Sine we are interested in desribing the evolution of two �ok strategies as in

eqs. (5.18) and (5.19) for ensemble �bration or eqs. (5.20) and (5.21) for shape

�bration, we apture the trae of �oking events via a generative model on the

1-simplex. We onsider an evolutionary game model, namely repliator dynamis

equipped with a multipliative ontrol, in order to desribe their evolution in the

interior (0, 1) of the one-dimensional simplex. The hoie of repliator dynamis

is in�uened by its universality in desribing simplex-preserving dynamis, and

by virtue of being an extremal for a variational problem [Svirezhev, 1972; Raju

and Krishnaprasad, 2018℄. Presently, with the inlusion of a ontrol variable,

we onsider a di�erent variational problem that aims to perform data smoothing

using regularization as in [Dey and Krishnaprasad, 2014℄. To see this, let x =

[x1 x2]
T ∈ ∆1

where xi, i = 1, 2 denote the prevalene of strategies i (to be

spei�ed) on the simplex with the natural onstraint x1 + x2 = 1. xi = 1, i = 1, 2

orrespond to alloation of Erel entirely to one of the two pure strategies. Suppose

that the frequenies assoiated with the strategies are updated aording to the

rule

xi(t+ 1) = xi(t)
f i(x)

f̄(x)
(5.22)
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where the �tness f i(x) = Ax and f̄ = x1f
1(x) + x2f

2(x) . Here, A = [aij ] ∈ R2

de�nes a payo� matrix with aij denoting the payo� of the ith strategy against jth

strategy. In the ase that the payo�s do not depend on the strategy j of against

whih it is mathed up, the olumns of A are idential. In the ode limit of (5.22),

after an inhomogeneous time-sale hange, we get the mean �eld equations:

ẋi(t) = xi(t)(f
i(x)− f̄(x)), i = 1, 2 (5.23)

It an be readily veri�ed that (5.23) is simplex-preserving, leaving the pure strate-

gies invariant. Sine addition of the same term to eah omponent of the �tness

keeps the dynamis (5.23) unhanged, by subtrating a21 and a12 from the �rst

and seond olumn elements of A respetively, we get the equivalent payo� matrix

Ã =









a11 − a21 0

0 a22 − a12









(5.24)

We introdue a ontrol input ũ that sales the �tness, and hoose the parameters

of the matrix suh that a11 − a21 = −(a22 − a12) = 1 so that the �tness an be

rewritten as:

f(x) = ũ









1 0

0 −1









x (5.25)

Due to the simplex onstraint, (5.23) is ompletely desribed using x = x1:

ẋ(t) = ũ(t)x(t)(1 − x(t))(f 1(x)− f 2(x)) (5.26)

with x = 0, 1 orresponding to the pure strategies 2 and 1 respetively. Due to

our hoie of the payo� matrix parameters, f 1 − f 2
is a onstant. This allows
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us to adopt a time-sale hange by the fator f 1 − f 2
to arrive at our generative

model:

ẋ(t) = u(t)x(t)(1− x(t)) (5.27)

This dynamis results in asymptoti onvergene to the pure strategy x = 1 in

the absene of ontrol, that is, when u(t) ≡ 1. However, the time-varying on-

trol variable u serves to model hanging preferenes for the �ok strategies by

appropriate hanges in its sign and magnitude. Suh a temporal modulation of

the �tness ensures feasibility of apturing arbitrary traes in the interior of the

simplex.

Given a set of data points {xd0, xd1, ..., xdN} with eah xdk ∈ (0, 1), k = 0, 1, ..., N ,

at time instants {t0, t1, ..., tN}, we formulate the optimal ontrol problem,

min
x(t0), u∈R

J(x(t0), u) =
λ

2

∫ tN

t0

u2dt+

N
∑

i=0

Fi(x(ti)),

subjet to: ẋ = ux(1− x),
(5.28)

where the �t errors Fi's are given by the Kullbak-Leibler divergene measure of

mismath between the data and the state,

Fi(x) = xdi log

(

xdi
x

)

+ (1− xdi ) log
(

1− xdi
1− x

)

, i = 0, 1, ..., N. (5.29)

We an diretly appeal to Pontryagin's Maximum Priniple (PMP) and theo-

rem (5.3.1) to write neessary onditions for optimality. We an write the pre-

Hamiltonian as,

H(x, p, u) = upx(1− x)− λ

2
u2. (5.30)

133



The Hamiltonian maximization ondition (5.6) yields an optimal ontrol in eah

time interval t ∈ (ti, tt+1), i = 0, 1, ..., N − 1,

u =
1

λ
px(1− x), (5.31)

with Hamiltonian given by,

H(x, p) = 1

2λ
p2x2(1− x)2. (5.32)

Hamilton's equations (5.5) read,

ẋ =
1

λ
px2(1− x)2

ṗ = −1

λ
p2x(1− x)(1− 2x).

(5.33)

The jump onditions for p (5.7) an be written as,

p(t−0 ) = 0,

p(t+i )− p(t−i ) =
x(ti)− xdi

x(ti)(1− x(ti))
, i = 0, 1, ..., N,

p(t+N) = 0.

(5.34)

Remark 5.1. Note that the optimal ontrol is pieewise onstant sine

du
dt

= 0

for eah of these time intervals t ∈ (ti, ti+1), i = 0, 1, ..., N − 1.

Therefore, denoting xk = x(tk), k = 0, 1, ..., N , any optimal ontrol an be

desribed by a vetor (u0, u1, ..., uN) with the onditions

u0 =
1

λ
(x0 − xd0),

uk − uk−1 =
1

λ
(xk − xdk), k = 1, 2, ..., N

uN = 0.

(5.35)
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Pieewise onstany of the ontrol input allows us to write the solution to the state

equation (5.26) expliitly. Suppose the sampling time of the trae is uniform, i.e.

∆t := tk+1 − tk, ∀k ∈ {0, ..., N − 1}, integrating the state equation (5.26) in

(tk, tk+1), we an write

xk+1 =
xke

uk∆t

1 + xk (euk∆t − 1)
, k = 0, 1, ..., N − 1. (5.36)

By iteration, we an in turn write every xk as a funtion of x0 and u0, u1, ..., uk−1,

xk = xk(x0) =
x0e

(u0+u1+···+uk−1)∆t

1 + x0 (e(u0+u1+···+uk−1)∆t − 1)
, k = 1, 2, ..., N. (5.37)

The endpoint ondition (uN = 0) an then be written as,

x0 + x1 + · · ·+ xN = xd0 + xd1 + · · ·+ xdN , (5.38)

where the left hand side of (5.38) is a funtion of x0. Solving the optimal ontrol

problem (5.28) thus boils down to solving (5.38) for x0 ∈ (0, 1).

Remark 5.2. The value of the regularization parameter λ is usually hosen

through ross validation tehnique. We do not employ any suh tehniques here.

The value of λ is hosen suh that the root �nding algorithm for solving (5.38)

onverges for all events. For λ = 0.2, the roots were found with reasonably good

auray with value of the funtion at the root being of the order of 1 × 10−5
or

lower for all events. For lower λ however, the problem beomes sti�er and left

hand side of (5.38) demonstrates `e�etive disontinuity' in x0. This poses seri-

ous problem in solving (5.38). It is to be noted that the original aptured �ight

data was subjeted to data-smoothing to obtain smooth trajetories [Dey, 2015℄.
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Figure 5.1: Hamiltonian signatures

The data-smoothing problem in [Dey, 2015℄ onsidered a linear generative model

as in Setion 5.3.1 and used ordinary ross validation for trajetory of eah bird

to determine the appropriate weight to the regularization term. This generated

smooth trajetories with suppressed level of noise ompared to the original data.

We then take the sampled data {xd0, · · · , xdN} from these smooth trajetories. This

an justify taking same value of λ aross all the events. As a future step, ross

validation ould be employed to arrive at a good value of λ in the range where

(5.38) an be solved.

5.6 Data Fitting Results

For all 8 events, we solve the optimal ontrol problem (5.28) and report the

results here. The value of the regularization weight λ is taken to be 0.2 and 100

data samples at regular time intervals are taken for all events. Given the data
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vetor, we solve equation (5.38) for x0 ∈ (0, 1). In Table 5.2, we report time

averaged Hamiltonian integrals and time averaged total osts for all the di�erent

games that we onsider in eqs. (5.18) to (5.21). These time averaged Hamiltonian

integrals are thought of as ognitive osts of the events. As seen from Table 5.2,

the trend of (ENS-I) losely follow the game (SHP-I), while the other two games

seem to follow eah other. This is graphially represented in Fig. 5.1. Optimal

ontrol solutions for the games ENS-I (5.18) and SHP-II (5.21) for individual

events are shown in Fig. 5.2�5.9. We note that more variation in the energy time

signal results in higher ognitive ost (in both measures). This is interpreted as

the olleting having to `think' more to properly alloate the modes, inurring

higher osts. These ognitive osts for a partiular game an thus indiate overall

physial behavior of the �ok. For example, in the games (ENS-II) or (SHP-II)

where a rotational energy is onsidered as one of the pure strategies, relatively

higher ognitive osts for event 2, 5 indiate that the �oks went through more

rotations than the other events during the �ight periods. On the other hand,

low ost for event 4 is justi�ed by almost retilinear overall motion. Similar

onlusions an be drawn for the other set of games (ENS-I) and (SHP-II), where

the respetive ognitive ost will stipulate nature of variation of the demorati

(reshu�ing within the �ok) energy. The higher the ost is, more aggressively the

relative positions of the birds within the �oks are hanged, leading to a more

omplex �ight event.
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Duration

∫
Hdt∫
dt

J(x0,u)∫
dt

(seonds) (ENS-I) (SHP-I) (ENS-II) (SHP-II) (ENS-I) (SHP-I) (ENS-II) (SHP-II)

5.4875 0.1232 0.1263 0.0976 0.1077 0.1981 0.1975 0.1454 0.1499

1.8176 0.1432 0.1018 0.2210 0.1760 0.2227 0.1619 0.3769 0.3118

5.6118 0.2735 0.2392 0.0613 0.1073 0.4595 0.4092 0.1557 0.2495

2.3471 0.1021 0.1270 0.0107 0.0190 0.2440 0.2702 0.0594 0.0610

3.8824 0.0779 0.2699 0.1587 0.1383 0.0896 0.3692 0.3001 0.3041

4.1588 0.1809 0.1634 0.0846 0.1105 0.2799 0.2706 0.2063 0.2090

5.7353 0.0804 0.1293 0.0576 0.0619 0.1127 0.2079 0.1087 0.1221

1.7588 0.4569 0.4069 0.0731 0.1090 0.8037 0.8361 0.2074 0.3810

Table 5.2: Hamiltonian Signature

5.7 Disussion

In this hapter, we have brought together several results from geometry, optimal

data-�tting and evolutionary game theory to assoiate a ognitive aspet to �ok-

ing. The �ight data of Starling �oks give rise to time-signals of energy mode

distributions. Here, the whole �ok is oneptualized to making deisions about

how to optimally alloate its energy in several modes. The di�erent energy modes

are thought as pure strategies of an evolutionary game and their �tness is mod-

ulated by some deision or ontrol variables. These ontrols are then determined

by optimally �tting this model to the observed energy mode distributions in the

data. The ost to this data-�tting are referred to as ognitive ost for the �ok.

In this work, we have only onsidered splitting energy into two modes. In this
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setting, the optimal ontrol solutions present interesting harateristis. It will

be an important diretion to onsider energy splitting in several energy modes,

hene solving the �tting problem in a higher dimensional simplex. It will also be

of interest to interpret the ognitive osts in suh senarios.
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Figure 5.2: Event 1, λ = 0.2, Number of samples = 100, (b)-() x = E
dem
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(SHP-II)
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Figure 5.3: Event 2, λ = 0.2, Number of samples = 100, (b)-() x = E
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Figure 5.4: Event 3, λ = 0.2, Number of samples = 100, (b)-() x = E
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Figure 5.5: Event 4, λ = 0.2, Number of samples = 100, (b)-() x = E
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Chapter 6

Conlusions and Diretions for Future Re-

searh

We have made an attempt to explain olletive behavior in natural �oks in this

thesis. Possible roboti appliations in this ontext are also presented. The thesis

is distintively divided into two parts depending on the underlying approah �

either olletive behavior is viewed as an emergene of interations between small

number of agents in a `bottom-up' fashion or those interations are inferred in a

`top-down' way. We summarize below the ontributions of this dissertation along

with diretions in whih this line of researh an be ontinued.

In Chapter 2, we explored inter-agent interation strategies from both theoret-

ial and implementation perspetives. First, we onsider a two-agent senario in

whih one agent pursues the other using onstant-bearing (CB) pursuit law. The

pursued agent behaves like a moving beaon whose movement is independent to

the other. It is then shown that under partiular parameter setting of the CB law
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and onstant urvature paths of the beaon, the ombined equations of motion of

the system resemble to that of a ouple of gravitating partiles. Periodi orbits

are shown to exist, eah orresponding to a �xed energy. This result is used in a

roboti appliation subsequently. We have e�etively utilized the results of this

problem in the problem of enirling a stati beaon that is sensed visually by a

mobile robot by means of a amera with limited �eld-of-view (FOV). Proper feed-

bak law for the robot is advised to make a desired losed loop in the phase spae

asymptotially stable. This guarantees intermittent appearane of the beaon in

the amera's FOV. Laboratory demonstration of this problem inorporates online

estimation of the beaon's position when it falls out of the FOV. Seondly, labo-

ratory implementations of two biologially plausible feedbak laws are presented.

These laws inlude another dual-agent law alled Mutual Motion Camou�age and

a multi-agent onsensus type law alled Topologial Veloity Alignment. In this

hapter we have shown how omplex olletive motion patterns an emerge from

simple interations among the agents in a �ok.

We study the problem of optimal steering of a single agent in Chapter 3. The

agent is driven from initial to �nal on�guration on the plane while minimizing

the ontrol ost that penalizes both speed and urvature ontrol. Optimal ontrol

solution is obtained by using Pontryagin's Maximum Priniple (PMP) and Lie-

Poisson redution tehnique. Optimal trajetories are ategorized by the values

of the Hamiltonian and another onserved quantity alled Casimir. This problem

is then extended to apture the senario of a �ok of agents moving on the plane.
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These agents interat with eah other by a prede�ned graph. The individual

ontrol osts are oupled with mismath in ontrol with the neighbors. This

hapter forms a bridge between the two parts of the thesis.

In Chapter 4, we take the problem of optimal steering of many agent ase and

onsider its ontinuum limit. A goal of suh an approah is to develop wave equa-

tions that may explain observed phenomenon of information transfer in natural

�oks. We only onsider the yli graph of interation that enables us to present

the results in a ompat way. A general optimal ontrol problem in the loop

group ase is stated. General ontrollability result in in�nite dimensional setting

is shown to be helpful to onstrut suh optimal ontrol problem. The neessary

onditions for optimality, namely the Pontryagin's Maximum Priniple (PMP) in

Hilbert spae setting is only valid under a ondition of �nite o-dimensionality of

a reahable set. Two speial ases of this problem are studied. The ase in whih

the underlying group is the Heisenberg group H(3), i.e. a ontinuum of nonholo-

nomi integrators is studied in detail. We have shown that the optimal ontrol

solutions possess traveling wave harater. Moreover, a synhronization result is

obtained in whih the in�nite oupling strength prohibits every agent in the �ok

to behave di�erently. The ase of planar ontinuum, i.e. agents moving in the

speial Eulidean group SE(2) is also onsidered. Optimal ontrol evolution equa-

tions are obtained by both alulus of variations and PMP approah. Similar to

the H(3) ase, synhronization result is obtained. Numerial simulations for both

these ases are presented. However, we have not been able to perform a thorough
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analytial study of the partial di�erential equations obtained in the SE(2) ase.

It is one of the diretions in whih future researh ould be onduted. A ritial

question will answer whether traveling wave solutions exist in this ase. Further-

more, di�erent interation graphs an be onsidered to unover more interesting

details about this problem.

Chapter 5 presents a data-driven analysis of �ight data of European Starling

�oks, aptured in Rome. This data gives rise to temporal signals of the �ok's

energy distribution in several energy modes. We use an optimal ontrol based

data-�tting tehnique to explain this data as the outome of an evolutionary

game on a simplex. We all the data-�tting ost funtionals of the underlying

optimal ontrol problem as `ognitive ost' that measures the ognitive e�ort of

the �ok to alloate its energy in di�erent modes. In our work, we have only

onsidered energy splitting into two modes so as to onsider a simple game on

the one-dimensional simplex. This an be extended to higher dimensions where

multiple energy modes are onsidered.
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Appendix A

An Optimal Control Problem in an In�nite

Dimensional Setting

A.1 Introdution

After Pontryagin provided his method for solving optimal ontrol problems in �-

nite dimensional setting [Pontryagin et al., 1962℄, there have been many attempts

to try and prove similar priniples in in�nite dimensions. However, the ounterex-

ample of Egorov [Egorov, 1963℄ posed a serious hallenge to that proess. This

ounterexample showed that the Pontryagin's maximum priniple does not gen-

erally hold in in�nite dimensions. In partiular, the ostate variable an beome

identially zero, making the maximum priniple empty. The advanements in the

following deades [Ekeland, 1979; Fattorini, 1987; Li and Yong, 2012; Krastanov

et al., 2011℄ showed that it is possible to state PMP in some ases where some

additional assumptions are made. In this work, we adopt a similar path to prove

152



the maximum priniple set in a muh friendlier setting.

We onsider an abstrat di�erential equation in a Hilbert spae,

dx(t)

dt
= f(t, x(t), u(t)), a.e. in [0, T ], (A.1)

where x(t) ∈ X , u(·) ∈ U , and T > 0. Let X be a Hilbert spae alled the state

spae and U be the set of all measurable funtions u(·) : [0, T ] → U , where U is

a separable metri spae alled the ontrol spae. With this setup, we formulate

the following optimal ontrol problem (P),

(P)

min
u∈U

J(u) =

∫ T

0

L(t, x(t), u(t))dt

subjet to: ẋ = f(t, x, u), a.e. in [0, T ], x(0) = x0, x(T ) = xT .

(A.2)

We assume that both the funtions f(·, ·, ·) and L(·, ·, ·) are Bohner integrable

in t ∈ [0, T ] and Lipshitz ontinuous in x(t) ∈ X , with onstant K. Further-

more, we require the existene of the ontinuous Fréhet derivatives f ′
x(t, x, u) and

L′
x(t, x, u). We also assume the funtions f, L and their derivatives f ′

x, L
′
x to be

bounded, i.e. there exists an M > 0, suh that

‖f(t, x, u)‖ ≤M, ‖f ′
x(t, x, u)‖ ≤M,

‖L(t, x, u)‖ ≤M, ‖L′
x(t, x, u)‖ ≤M,

(A.3)

for all (t, x(t), u(t)) ∈ [0, T ]× X × U . Note that these hypotheses ensure a on-

tinuous and unique solution of (A.1) to exist [Avez, 1986℄. Let the spae U be

endowed with the distane funtion,

d(u, v) = meas{t : u(t) 6= v(t)}, (A.4)
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where meas{·} denotes the usual Lebesgue measure in [0, T ]. Then, aording

to Theorem 5.3 of [Fattorini, 1987℄, the spae U is omplete with respet to the

distane d. A diret onsequene of the assumptions stated above leads to an

important result [Krastanov et al., 2011℄.

Lemma A.1.1. Let u1(·), u2(·) be any two arbitrary members of U . Denote the

state trajetories assoiated with these ontrols by, xi(·) = x(·, ui(·)), i = 1, 2.

Then there exist positive onstants C1, C2 suh that,

sup
t∈[0,T ]

‖x1(t)− x2(t)‖ ≤ C1d(u1, u2), (A.5)

|J(u1)− J(u2)| ≤ C2d(u1, u2). (A.6)

Proof. Let S ⊂ [0, T ] be the set where the ontrols u1 and u2 di�er, i.e. d(u1, u2) =

meas{S}. We know that (A.1) an also be written as,

x(t) = x0 +

∫ t

0

f(s, x(s), u(s))ds.

Then,

x1(t)− x2(t) =
∫ t

0

(f(s, x1(s), u1(s))− f(s, x1(s), u1(s))) ds

=

∫ t

0

(f(s, x1(s), u1(s))− f(s, x2(s), u1(s))) ds

+

∫ t

0

(f(s, x2(s), u1(s))− f(s, x2(s), u2(s))) ds

=

∫ t

0

(f(s, x1(s), u1(s))− f(s, x2(s), u1(s))) ds

+

∫

[0,t]∩S

(f(s, x2(s), u1(s))− f(s, x2(s), u2(s))) ds.
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Taking norm of both sides we get,

‖x1(t)− x2(t)‖ ≤ K

∫ t

0

‖x1(s)− x2(s)‖ ds+ 2Md(u1, u2),

where the Lipshitz property of f in x is used in the �rst term and the uni-

form boundedness is used in the seond term. By the use of Gronwall-Bellman

inequality, we arrive at (A.5). The result (A.6) an be derived analogously. �

We now proeed to solve this problem by a maximum priniple based approah.

Before we state the maximum priniple, let us give some additional tehnial

details that are going to be essential for the proof of the maximum priniple.

De�nition A.1. (Finite Codimensionality) [Fattorini, 1987℄ A subset S of a

Hilbert spae Z is alled to be �nite odimensional in Z, if there exists a losed

subspae Zc ⊆ Z of �nite odimension suh that Sc = Π(o(S)), has nonempty

interior in Zc, where Πc denotes the orthogonal projetion from Z onto Zc and o

means losed onvex hull.

We will now make a key assumption to derive a nontrivial maximum priniple.

Let a solution of problem (P) exist and that optimal ontrol is denoted as u∗ ∈ U

and let the orresponding optimal trajetory be denoted as x∗(t). Then de�ne the

`reahable set' as,

R :=

{

z(T ) ∈ X | z(t) =
∫ t

0

f ′
x(s, x

∗(s), u∗(s)) · z(s)ds

+

∫ t

0

(f(s, x∗(s), v(s))− f(s, x∗(s), u∗(s))) ds, for some v(·) ∈ U
}

(A.7)

(A1) The set R is �nite odimensional in X .
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A.2 Maximum Priniple

Using usual formalism, we invoke the pre-Hamiltonian funtion H : R×X ×U ×

R×X∗ → R as,

H(t, x(t), u(t), p0, p(t)) = p0L(t, x(t), u(t)) + 〈p(t), f(t, x(t), u(t))〉 , (A.8)

where p(t) ∈ X∗
is alled the ostate variable. Intuitively, we want to make the

following statement of the maximum priniple that needs to be validated.

Theorem A.2.1. (Maximum Priniple) Let u∗ ∈ U be an optimal ontrol for

problem (P) and x∗(t) be the orresponding optimal trajetory. Then, there exist

a pair (p∗0, p
∗(t)) ∈ R × X∗, t ∈ [0, T ], suh that (p∗0, p

∗) 6≡ (0, 0), p∗0 ≤ 0, p∗(·)

satis�es the di�erential equation,

ṗ∗(t) = − (f ′
x(t, x

∗(t), u∗(t))
⋆
p∗(t)− p∗0L′

x(t, x
∗(t), u∗(t)), (A.9)

where by A⋆
we denote the adjoint operator of the operator A. The pointwise

maximization of the pre-Hamiltonian holds,

H(t, x∗(t), u∗(t), p∗0, p
∗(t)) = max

v∈U
H(t, x∗(t), v, p∗0, p

∗(t)), (A.10)

Moreover, x∗ and p∗ satisfy Hamilton's anonial equations, i.e.

dx∗

dt
=
δH

δp∗
(t, x∗, u∗, p∗0, p

∗) (A.11)

dp∗

dt
= −δH

δx∗
(t, x∗, u∗, p∗0, p

∗). (A.12)

Proof. At the outset, we begin by introduing the variable, x0(t) ∈ R that obeys

the dynamis, ẋ0 = L(t, x, u), x0(0) = 0. De�ne, y(t) =









x0(t)

x(t)









∈ R × X, so
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that

dy(t)

dt
=









L(t, x, u)

f(t, x, u)









=: g(t, y, u), a.e. in [0, T ]. (A.13)

The ore of the argument in proving the maximum priniple will follow re-

sults of Ekeland [Ekeland, 1979℄, and tehniques developed in [Fattorini, 1987;

Krastanov et al., 2011; Li and Yong, 2012℄. We will now state a result known as

Ekeland variational priniple [Ekeland, 1979℄.

Lemma A.2.1. (Ekeland Variational Priniple) Let V be a omplete metri

spae with respet to the distane funtion d(·, ·) and let F : V → R ∪ {+∞} be

lower semiontinuous and bounded below with F 6≡ +∞. Let ǫ > 0 and u ∈ V be

suh that

F (u) ≤ inf{F (w) : w ∈ V }+ ǫ. (A.14)

Then there exists v ∈ V suh that

d(u, v) ≤ √ǫ (A.15)

F (w)− F (v) ≥ −√ǫ d(w, v), ∀w ∈ V. (A.16)

Let us proeed by assuming that an optimal ontrol to the problem (P) exists

and is denoted by u∗ and let y∗ = (x0,∗, x∗) be the orresponding optimal traje-

tory. We write the minimum ost by η0, i.e. η0 = J(u∗). Now, for given ǫ > 0, we

onsider the funtion Jǫ : U → R,

Jǫ(u) =

√

(J(u)− η0 + ǫ)2 + ‖x(T )− xT ‖2X . (A.17)
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It is evident that Jǫ(u) > 0 for all u ∈ U and ǫ > 0. Moreover,

Jǫ(u
∗) = ǫ ≤ inf

u∈U
Jǫ(u) + ǫ,

whih by the Ekeland variational priniple yields the existene of uǫ ∈ U suh

that

d(uǫ, u∗) ≤ √ǫ, (A.18)

Jǫ(w)− Jǫ(uǫ) ≥ −
√
ǫ d(w, uǫ), ∀w ∈ U . (A.19)

Next, we introdue a variation in ontrol uǫ what is known as �needle variations".

For any v(·) ∈ U , let h : [0, T ]→ R×X ,

h(t) = (g(t, xǫ(t), v(t))− g(t, xǫ(t), uǫ(t))) =









L(t, xǫ(t), v(t))− L(t, xǫ(t), uǫ(t))

f(t, xǫ(t), v(t))− f(t, xǫ(t), uǫ(t))









.

(A.20)

Then, aording to Corollary 3.9 (p. 144) of [Li and Yong, 2012℄ , for any ρ ∈ (0, 1],

there is a measurable set Fρ ⊂ [0, T ] suh that meas{Fρ} = ρT and

ρ

∫ t

0

h(s)ds =

∫

Fρ∩[0,t]
h(s)ds+ o(ρ), (A.21)

where

o(ρ)
ρ
→ 0 as ρ ↓ 0, uniformly in t ∈ [0, T ]. The perturbed ontrol is then

de�ned as,

uǫρ(t) =



















uǫ(t), t /∈ Fρ,

v(t), t ∈ Fρ

. (A.22)

It is of interest to express the perturbation in trajetory when the ontrol uǫρ is

applied, i.e. we want a Taylor like expansion of yǫρ(t) = y(t, uǫρ) with respet to ρ
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at ρ = 0, i.e. at yǫ(t) = y(t, uǫ). Let us write,

yǫρ(t) = yǫ(t) + ρψǫ(t) + o(ρ).

Then,

ψǫ(t) = lim
ρ↓0

yǫρ(t)− yǫ(t)
ρ

= lim
ρ↓0

1

ρ

(
∫ t

0

g(s, yǫρ(s), u
ǫ
ρ(s))ds−

∫ t

0

g(s, yǫ(s), uǫ(s))ds

)

= lim
ρ↓0

∫ t

0

g(s, yǫρ(s), u
ǫ
ρ(s))− g(s, yǫ, uǫρ(s))

ρ
ds

+ lim
ρ↓0

∫

[0,t]∩Fρ

g(s, yǫ(s), v(s))− g(s, yǫ, uǫ(s))
ρ

ds

=

∫ t

0

g′y(s, y
ǫ(s), uǫ(s)) · ψǫ(s)ds+

∫ t

0

(g(s, yǫ(s), v(s))− g(s, yǫ, uǫ(s))) ds,

(A.23)

where the seond term follows from (A.21). g′y is the Fréhet derivative of g with

respet to y and an be deomposed as,

g′y(t, y
ǫ(t), uǫ(t)) · q̄ =









L′
x(t, x

ǫ(t), uǫ(t)) · q

f ′
x(t, x

ǫ(t), uǫ(t)) · q









, for any q̄ = (q0, q) ∈ R×X.

Let's write ψǫ(t) = (zǫ0(t), z
ǫ(t)). In partiular, we have zǫ0(T ) =

d
dρ
J(uǫρ)

∣

∣

ρ=0
and

zǫ(t) = d
dρ
xǫρ(t))

∣

∣

ρ=0
, eah of whih an be spelled out separately from (A.23),

zǫ0(T ) =

∫ T

0

L′
x(s, x

ǫ(s), uǫ(s)) · zǫ(s)ds+
∫ T

0

(L(s, xǫ(s), v(s))− L(s, xǫ(s), uǫ(s))) ds,

(A.24)

zǫ(t) =

∫ t

0

f ′
x(s, x

ǫ(s), uǫ(s)) · zǫ(s)ds+
∫ t

0

(f(s, xǫ(s), v(s))− f(s, xǫ(s), uǫ(s))) ds.

(A.25)
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Now, as a next step, we derive neessary onditions for the pair (yǫ(t), uǫ(t)) to

be suboptimal. We do this by using the Ekeland variational priniple and letting

ρ tend to zero. In (A.19), we set w = uǫρ. Note that the ontrols u
ǫ
and uǫρ di�er

only in the set Fρ, whih has a measure ρT . Then,

Jǫ(u
ǫ
ρ)− Jǫ(uǫ) ≥ −

√
ǫd(uǫρ, u

ǫ)

≥ −√ǫρT.

i.e.

Jǫ(u
ǫ
ρ)− Jǫ(uǫ)
ρ

≥ −T√ǫ. (A.26)

Now, note that,

lim
ρ↓0

Jǫ(u
ǫ
ρ)− Jǫ(uǫ)
ρ

=
dJǫ(u

ǫ
ρ)

dρ

∣

∣

∣

∣

∣

ρ=0

=
1

2Jǫ(uǫρ)

[

2(J(uǫρ)− η0 + ǫ)
dJ(uǫρ)

dρ

+2
∥

∥xǫρ(T )− xT
∥

∥

(

∥

∥xǫρ(T )− xT
∥

∥ · dx
ǫ
ρ(T )

dρ

)]

∣

∣

∣

∣

∣

ρ=0

=
(J(uǫ)− η0 + ǫ)

Jǫ(uǫ)
zǫ0(T ) +

〈

xǫ(T )− xT
Jǫ(uǫ)

, zǫ(T )

〉

. (A.27)

Thus, taking the limit in (A.26), we an write,

ξǫ0z
ǫ
0(T ) + 〈ξǫ, zǫ(T )〉 ≥ −T

√
ǫ, (A.28)

where ξǫ0 =
(J(uǫ)−η0+ǫ)

Jǫ(uǫ)
and ξǫ = xǫ(T )−xT

Jǫ(uǫ)
∈ X∗

. Note additionally that,

(ξǫ0)
2 + ‖ξǫ‖2 = 1. (A.29)
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Equation (A.28) an be regarded as the neessary onditions for (yǫ(t), uǫ(t)).

Finally, we will let ǫ tend to zero to obtain neessary onditions for (y∗(t), u∗(t))

to be optimal. De�ne,

z0 :=

∫ T

0

L′
x(s, x

∗(s), u∗(s)) · z(s)ds+
∫ T

0

(L(s, x∗(s), v(s))− L(s, x∗(s), u∗(s))) ds,

(A.30)

z(t) :=

∫ t

0

f ′
x(s, x

∗(s), u∗(s)) · z(s)ds +
∫ t

0

(f(s, x∗(s), v(s))− f(s, x∗(s), u∗(s))) ds.

(A.31)

Sine v(·) is any arbitrary element in U , z(T ) ∈ R, .f. (A.7).

Lemma A.2.2. The following results hold true.

lim
ǫ↓0
|zǫ0(T )− z0| = 0,

lim
ǫ↓0

sup
t∈[0,T ]

‖zǫ(t)− z(t)‖ = 0,

(A.32)

Proof. Let us denote Sǫ = {t ∈ [0, T ] : uǫ(t) 6= u∗(t)}. Then, meas{Sǫ} =

d(uǫ, u∗) ≤ √ǫ, by (A.18). From the de�nition of z(t), we �nd,

‖z(t)‖ ≤M

∫ t

0

‖z(s)‖ ds+ 2MT,

where boundedness of both f and f ′
x have been used. Applying the Gronwall-

Bellman inequality, we get ‖z(t)‖ ≤ 2MTeMT , for all t ∈ [0, T ]. We now write,

zǫ(t)− z(t) =
∫ t

0

f ′
x(s, x

ǫ(s), uǫ(s)) · (zǫ(s)− z(s))ds

+

∫ t

0

(f ′
x(s, x

ǫ(s), uǫ(s))− f ′
x(s, x

∗(s), u∗(s))) · z(s)ds

+

∫ t

0

(f(s, xǫ(s), v(s))− f(s, x∗(s), v(s))) ds

+

∫ t

0

(f(s, xǫ(s), uǫ(s))− f(s, x∗(s), u∗(s))) ds.
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Taking norm on both sides and utilizing boundedness of f ′
x and z(t), we obtain,

‖zǫ(t)− z(t)‖ ≤M

∫ t

0

‖zǫ(s)− z(s)‖ ds

+ 2MTeMT

∫ t

0

‖f ′
x(s, x

ǫ(s), uǫ(s))− f ′
x(s, x

∗(s), u∗(s))‖ ds

+

∫ t

0

‖f(s, xǫ(s), v(s))− f(s, x∗(s), v(s))‖ ds

+

∫ t

0

‖f(s, xǫ(s), uǫ(s))− f(s, x∗(s), u∗(s))‖ ds. (A.33)

The last term in (A.33) an be written as,

∫ t

0

‖f(s, xǫ(s), uǫ(s))− f(s, x∗(s), u∗(s))‖ ds

=

∫

[0,t]\Sǫ

‖f(s, xǫ(s), u∗(s))− f(s, x∗(s), u∗(s))‖ ds

+

∫

[0,t]∩Sǫ

‖f(s, xǫ(s), uǫ(s))− f(s, x∗(s), u∗(s))‖ ds

≤ K

∫

[0,t]\Sǫ

‖xǫ(s)− x∗(s)‖ ds+ 2Md(uǫ, u∗)

≤ (KC1T + 2M)d(uǫ, u∗) ≤ (KC1T + 2M)
√
ǫ

ǫ↓0−→ 0.

Note that we have used the Lipshitz property of f and result of Lemma A.1.1.

The seond and third term an be treated in a similar fashion to show they are of

o(1) whih goes to 0 as ǫ tends to 0. Note that, instead of Lipshitz ontinuity, we

would use ontinuity of f ′
x in x in order to use appropriate upper bound. Hene,

(A.33) an be written as,

‖zǫ(t)− z(t)‖ ≤M

∫ t

0

‖zǫ(s)− z(s)‖ ds+ o(1),
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whih by Gronwall-Bellman inequality yields,

‖zǫ(t)− z(t)‖ ≤ eMTo(1)
ǫ↓0−→ 0,

uniformly in t ∈ [0, T ]. The onvergene of zǫ0(T ) an be shown analogously. �

Using (A.28) and the Cauhy-Shwarz inequality, we may now write,

ξǫ0z0 + 〈ξǫ, z(T )〉 = ξǫ0z
ǫ
0 + 〈ξǫ, zǫ(T )〉 − ξǫ0 (zǫ0 − z0)− 〈ξǫ, zǫ(T )− z(T )〉

≥ −T√ǫ− |ξǫ0| |zǫ0 − z0| − ‖ξǫ‖ ‖zǫ(T )− z(T )‖

≥ −T√ǫ− |zǫ0 − z0| − ‖zǫ(T )− z(T )‖ . (A.34)

The last inequality follows, sine (ξǫ0)
2 + ‖ξǫ‖2 = 1, both |ξǫ0| ≤ 1 and ‖ξǫ‖ ≤ 1.

Denote, κǫ = −T√ǫ − |zǫ0 − z0| − ‖zǫ(T )− z(T )‖ and by the onvergene results

(A.32), we see that κǫ → 0 as ǫ ↓ 0. Thus, (A.34) an be expressed as,

ξǫ0z0 + 〈ξǫ, z〉 ≥ −κǫ, ∀z0 ∈ R, z ∈ R, (A.35)

where, κǫ
ǫ↓0−→ 0. Now the assumption (A1) that the set R is �nite odimensional

in X is going to be useful in proving nontriviality of the limit of the pair (ξǫ0, ξ
ǫ)

as ǫ goes to 0. Here we state the following lemma from [Fattorini, 1987℄, as a

onsequene of �nite odimensionality.

Lemma A.2.3. Let Q be a set of �nite odimension in a Hilbert spae Z and let

{zn} be a sequene of vetors in Z suh that

0 < c ≤ ‖zn‖ ≤ C.
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Assume additionally that,

〈zn, q〉 ≥ −θn,

for q ∈ Q and θn → 0 as n → ∞. Then there exists a subsequene of {zn} that

onverges weakly to z ∈ Z, and z 6= 0.

Now hoose a sequene {ǫ(n)} suh that ǫ(n) → 0 as n → ∞. Sine both

sequenes {ξǫ(n)0 } and {ξǫ(n)} are bounded, there exist subsequenes {ξǫ(nk)} and

{ξǫ(nk)} that onverge weakly to some ξ̄0 ∈ R and ξ̄ ∈ X∗
. For simpliity, let the

subsequenes be denoted by themselves. Showing nontriviality of the pair (ξ̄0, ξ̄)

is a ruial step in proving maximum priniple in in�nite dimensional ase. Reall

that, ξǫ0 = (J(uǫ)−η0+ǫ)
Jǫ(uǫ)

, so that ξǫ0 > 0, ∀ǫ > 0. Hene, we may only have ξ̄0 ≥ 0.

If ξ̄0 6= 0, we are done proving that (ξ̄0, ξ̄) 6= (0, 0). Otherwise, let ξǫ0(n) → 0 as

n → ∞. Then from the relation (A.29), we get, 1 ≥
∥

∥ξǫ(n)
∥

∥

2
= 1 −

(

ξ
ǫ(n)
0

)2

≥

1 − δ > 0, for some δ > 0, for n large enough. Finally, by the lemma A.2.3, we

get ξ̄ 6= 0 in the ase ξ̄0 = 0. Hene we onlude that,

(ξǫ0, ξ
ǫ)

∗
⇀ (ξ̄0, ξ̄) 6= (0, 0), ξ̄0 ≥ 0. (A.36)

Then, �nally taking the limit ǫ ↓ 0 in (A.35), we get for any z ∈ R and z0 as

spei�ed in (A.30), there exists a pair R×X∗ ∋ (ξ̄0, ξ̄) 6= (0, 0), ξ̄0 ≥ 0, so that,

ξ̄0z0 +
〈

ξ̄, z
〉

≥ 0. (A.37)

Now, let us introdue the ostate variable p∗(t) ∈ X∗
, that obeys the following

di�erential equation,

ṗ∗(t) = − (f ′
x(t, x

∗(t), u∗(t))
⋆
p∗(t)− p∗0L′

x(t, x
∗(t), u∗(t)), (A.38)
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with p∗(T ) = −ξ̄ and p∗0 = −ξ̄0 ≤ 0. Here by A⋆
we denote the adjoint operator

of the operator A. Now sine z(0) = 0, we have,

〈p∗(T ), z(T )〉

= 〈p∗(T ), z(T )〉 − 〈p∗(0), z(0)〉

=

∫ T

0

d

dt
〈p∗(t), z(t)〉 dt

=

∫ T

0

[〈

− (f ′
x(t, x

∗(t), u∗(t))
⋆
p∗(t)− p∗0L′

x(t, x
∗(t), u∗(t)), z(t)

〉

+ 〈p∗(t), f ′
x(t, x

∗(t), u∗(t))z(t) + f(t, x∗(t), v(t))− f(t, x∗(t), u∗(t))〉] dt

=

∫ T

0

−p∗0 〈L′
x(t, x

∗(t), u∗(t)), z(t)〉 dt

+

∫ T

0

(〈p∗(t), f(t, x∗(t), v(t))− f(t, x∗(t), u∗(t))〉) dt (A.39)

This, ombined with the de�nition of z0 (A.30) and equation (A.37) yields,

〈p∗(T ), z(T )〉+ p∗0z0

=

∫ T

0

[H(t, x∗(t), v(t), p∗0, p
∗(t))−H(t, x∗(t), u∗(t), p∗0, p

∗(t))] dt ≤ 0. (A.40)

Sine the ontrol set U is separable, the similar argument as in [Krastanov et al.,

2011; Li and Yong, 2012℄ would give the pointwise maximization riterion of the

pre-Hamiltonian,

H(t, x∗(t), v(t), p∗0, p
∗(t)) ≤ H(t, x∗(t), u∗(t), p∗0, p

∗(t)), a.e. in [0, T ], ∀v ∈ U .

(A.41)

From the de�nition of the Hamiltonian, we an �nally ompute its derivatives. In

what follows, the appropriate arguments will be suppressed for simpliity and the

notation |∗ will imply the funtion has been evaluated at optimal parameters. We
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then �nd for any (x̃, p̃) ∈ X ×X∗
,

δH

δp∗

∣

∣

∣

∣

∗
· p̃ = lim

σ→0

H(p∗ + σp̃)−H(p∗)

σ

∣

∣

∣

∣

∗

=
d

dσ
H(p∗ + σp̃)

∣

∣

∣

∣

σ=0,∗

= 〈p̃, f |∗〉

and,

δH

δx∗

∣

∣

∣

∣

∗
· x̃ = lim

σ→0

H(x∗ + σx̃)−H(x∗)

σ

∣

∣

∣

∣

∗

=
d

dσ
H(x∗ + σx̃)

∣

∣

∣

∣

σ=0,∗

=
d

dσ
(〈p∗, f(x∗ + σx̃)〉+ p∗0L(x

∗ + σx̃))

∣

∣

∣

∣

σ=0,∗

= 〈p∗, f ′
x|∗ · x̃〉+ p∗0 〈L′

x|∗, x̃〉

=
〈

(f ′
x|∗)⋆ p∗ + p∗0L

′
x|∗, x̃

〉

.

Thus, we may write the anonial Hamilton's equations of motion,

dx∗

dt
=
δH

δp∗
(t, x∗, u∗, p∗0, p

∗),

dp∗

dt
= −δH

δx∗
(t, x∗, u∗, p∗0, p

∗).

(A.42)

This ompletes the proof of the maximum priniple.

�
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