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It is of importance to study biological collectives and apply the wisdom so
accrued to modern day engineering problems. In this dissertation we attempt to
gain insight into collective behavior where the main contribution is twofold. First,
a ‘bottom-up’ approach is employed to study individual level control law synthesis
and emergence thereby of collective behavior. Three different problems, involy-
ing single and multiple agents, are studied by both analytical and experimental
means. These problems arise from either a practical viewpoint or from attempts
at describing biologically plausible feedback mechanisms. One result obtained in
this context for a double agent scenario is that under a particular constant bearing
pursuit strategy, the problem exhibits certain features common with the Kepler
two body problem. Laboratory demonstrations of the solutions to these problems
are presented. It is to be noted that these types of individual level control prob-

lems can help understand and construct building blocks for group level behaviors.

The second approach is ‘top-down’ in nature. It treats a collective as a whole



and asks if its movement minimizes some kind of energy functional. A key goal
of this work is to develop wave equations and their solutions for a natural class
of optimal control problems with which one can analyze information transfer in
flocks. Controllability arguments in infinite dimensional spaces give strong sup-
port to construct solutions for such optimal control problems. Since the optimal
control problems are infinite dimensional in the state space and one cannot simply
expect Pontryagin’s Maximum Principle (PMP) to apply in such a setting, the
work has required care and attention to functional analytic considerations. In this
work, it is shown that under a certain assumption on finite co-dimensionality of a
reachable set, PMP remains valid. This assumption is then shown to hold true for
the case of a specific ensemble of agents, each with state space as the Heisenberg
group H(3). Moreover, analysis of optimal controls demonstrates the existence
of traveling wave solutions in that setting. Synchronization results are obtained
in a high coupling limit where deviation from neighbors is too costly for every
agent. The combination of approaches based on PMP and calculus of variations
have been fruitful in developing a solid new understanding of wave phenomena in
collectives. We provide partial results along these lines for the case of a continuum
of planar agents (SE(2) case).

Finally, a different top-down and data-driven approach to analyze collective be-
havior is also put forward in this thesis. It is known that the total kinetic energy
of a flock can be divided into several modes attributed to rigid-body translations,

rotations, volume changes, etc. Flight recordings of multiple events of European



starling flocks yield time-signals of these different energy modes. This approach
then seeks an explanation of kinetic energy mode distributions (viewed as flock-
scale decisions) by appealing to techniques from evolutionary game theory and
optimal control theory. We propose the notion of cognitive cost that calculates
a suitably defined action functional and measures the cost to an event, resulting

from temporal variations of energy mode distributions.
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Chapter 1

Introduction

The last few decades have witnessed an increase in research efforts towards un-
covering mechanisms behind collective motion [Nagy et al., 2010; Ballerini et al.,
2008a; Cavagna et al., 2010; Inada and Kawachi, 2002| and pursuit behavior |Ol-
berg et al., 2000; Mizutani et al., 2003; Ghose et al., 2006; Chiu et al., 2010]
in nature. Ranging from fish schools to bird flocks, collective behavior is seen
abundantly in nature. The concept of safety in numbers is used in accomplishing
variety of goals, from foraging food to evading predators. Recent improvements
in data collection and processing technology has enabled researchers to study
these natural flocks in more detail than ever before |Ballerini et al., 2008a,b].
The driving question then becomes to answer how local interactions between in-
dividual agents in the collective give rise to group level cohesion and synchrony.
Although several attempts have been made to understand these behaviors |[Cucker
and Smale, 2007; Mora and Bialek, 2011; Bialek et al., 2012; Young et al., 2013;

Attanasi et al., 2014|, the individual level mechanisms responsible for emergence



of collective behavior remain mostly elusive to researchers. It is therefore a sig-

nificant goal of this thesis to pursue such questions.

This thesis is distinctively divided into two parts, where we take two differ-
ent approaches to understand collective behavior. The first approach is called a
‘bottom-up’ approach, i.e. instead of studying the flock as a whole, we concen-
trate on dynamics of individual agents and analyze simple interaction laws among
small number of agents. Studying these interactions are important since they can
be used as a building block for group level motion. In a 1995 paper [Vicsek et al.,
1995|, a novel discrete time self-driven particle model was first introduced to ad-
dress self-ordered motion in a system of particles. The concept of self-steering
particles was developed in the following decades [Justh and Krishnaprasad, 2004,
2006; Reddy et al., 2006; Mischiati and Krishnaprasad, 2010, 2012; Galloway
et al., 2013]. We undertake the self-steering particle model under gyroscopic con-
trol [Justh and Krishnaprasad, 2003, 2004] as the basic model for individuals in
the flock. This model describes a trajectory of an individual as a curve, described
by the natural Frenet frame equations [Bishop, 1975] in the Euclidean space; and
the driving controls are given by speed and curvature of the curve. We show in
Chapter 2, 3 that even in the single agent or double agent case, interesting mo-
tion patterns can be synthesized from carefully selecting these control inputs. The
control inputs can be generated from an underlying optimal control problem or by

applying some biologically plausible feedback strategies. Parallel to the quest of



mathemetical modeling, some groups in the robotics community have performed
successful implementation of various control strategies |Thurrowgood et al., 2014;
Vasarhelyi et al., 2014], and thereby demonstrated the power of a bio-inspired ap-
proach towards synthesizing collective motion. Our work is similar in spirit, and
provides indoor demonstrations of problems raised in Chapter 2. Some of these
problems were conceptualized from a practical perspective and carry engineering

value.

The other approach to study collective behavior is what can be called as ‘top-
down’ view. Instead of specifying agent level control laws, the idea is to infer
those laws from solving a bigger problem that investigates the flock as a whole.
Existing literature employs several methods such as optimal control [Justh and
Krishnaprasad, 2015b,a|, statistical physics [Mora and Bialek, 2011; Bialek et al.,
2012] ete. It is the framework of optimal control [Justh and Krishnaprasad, 2015b]
that we undertake and extend in this thesis. It has been observed from empir-
ical data [Ballerini et al., 2008a| that interaction among starlings in the flock is
local, i.e. each bird interact with six/seven neighbors during flight. Taking in-
spiration from this idea, the central concept of |Justh and Krishnaprasad, 2015b]
is to set up an optimal control problem which penalizes controls of individual
agents coupled with mismatch in control with its ‘neighbors’. The neighbors are
determined by a previously defined interaction graph. We then let the number

of agents in the flock to go to infinity in order to propose a continuum model for



flocking. Various continuum models have been studied for collectives [Kudrolli
et al., 2008; Topaz et al., 2006; Zhang et al., 2010]. These models study a set of
partial differential equations that describe spatio-temporal evolution of the flock
density. Our approach is different in the sense that the system dynamics can be
seen as an ordinary differential equation in an appropriate infinite dimensional
Lie group setting. The coupling between birds are introduced through the mis-
match term in the cost functional. A natural question of controllability of such
a system is addressed by using a generalized Chow-Rashevsky theorem for infi-
nite dimensional systems. This enables us to formulate the underlying optimal
control problem in an infinite dimensional setting in which the usual Pontryagin’s
maximum principle fails in general without further assumptions. In Chapter 4,
we invoke a maximum principle catered for this specific setting. A specific ex-
ample of continuum of nonholonomic integrators is also studied in detail. This
can be viewed as a continuum version of single agent Heisenberg case [Justh and
Krishnaprasad, 2016]. It has been found that optimal control solutions possess
a traveling wave character, which might enable information transfer in the flock.
In addition to the Heisenberg case, we provide optimal control equations in the
case of a continuum flock of planar agents. Synchronization results and numerical

simulations are presented for both the cases.

In Chapter 5, we present another ‘top-down’ approach to the flocking problem.

This approach is data-driven in nature. Kinematic energy modes of European



starling flocks are represented on a simplex which is then subjected to description
as trajectory of some evolutionary game dynamics. Solution of this data-fitting
problem on the simplex results in control inputs that are interpreted as modulation
of fitness associated with the energy modes. We note that in contrast to Chapter
4, where the control inputs were individual agent-level (or ‘low-level’) controls,
the controls obtained by this data-driven approach are flock-level (or ‘high-level’)
controls. The flock is conceptualized to apply these controls to optimally allocate

its kinetic energy among different modes.

1.1 Mathematical Background

1.1.1 Self Steering Particle Model

We describe the particle model that is the underlying generative model in all our
subsequent analysis throughout this thesis. The trajectory of a single agent can
be described by a function r : [0,7] — R3, for some T' > 0. We assume r(t) to
be a regular curve, i.e. ©(t) # 0,Vt € [0,T]. Let s be the arc length parameter,
ie. s(t) = fot |lt(¢)|| do. Under the regularity assumption, s(¢) is monotonically
increasing and invertible function of time. We can then reparametrize the curve
r(t) by the arc length parameter s and the evolution equations can be expressed
in terms of well known Fernet-Serret frames. However, this way of representation
requires thrice differentiability of the curve and need the curvature of the curve to

be strictly positive. To overcome these difficulties, we take an alternate approach



for framing the curve, known as the Natural Frenet frame [Bishop, 1975]. This
approach requires only twice differentiability and is well defined even when the
second derivative vanishes.

In 3D, to any point on the curve r(t), we attach an orthonormal moving frame
{x(t),y(t),z(t)}. The unit vector x(¢) is tangent to the curve and points toward
the heading of an individual. The unit vectors {y(t¢),z(¢)} are chosen in the plane

normal to x(¢). The evolution of these vectors are given by the frame equations,

where v(t) is the speed (||#(¢)|]) and (u(t),v(t)) are called natural curvatures of
the trajectory [Justh and Krishnaprasad, 2005|. In a planar setting, we have the

frame {x(t),y(t)} and the evolution equations are written as,

x(t) = v(t)u(t)y(t) (1.2)

We can therefore treat v and u variables as control inputs to steer the individual

on the plane, v as the velocity input and w as the curvature control input.



Figure 1.1: Mobile robot based experimental platform (Pioneer 3 DX) with two-

wheel differential and caster.

1.2 Experimental Setup

We provide a comprehensive description of the laboratory set up in the Intelli-
gent Servosystems Lab, University of Maryland. All the laboratory experiments
presented in this thesis are done under this setup. Our experimental test-bed is
comprised of Pioneer 3 DX wheeled robots from Adept MobileRobots |Pioneer|.
These compact, differential-drive mobile robots are equipped with reversible DC
motors, high-resolution motion encoders and 19cm wheels, and the onboard com-
putation is done via a 32-bit Renesas SH2-7144 RISC microprocessor, including
the P3-SH microcontroller with ARCOS. The sensors on the robot include eight
forward-facing ultrasonic (sonar) sensors. ARIA [ROS-ARIA| provides an inter-
face for controlling and receiving data from the robot, and communication with
the robot for sending control commands (forward velocity and turning rate) is
done via 802.11-b/g/n networking. The width of the robot is 380 mm and it has

a swing radius of 260 mm.



Algorithm implementation (i.e, feedback law computation) has been done in
C+-+ using ROS |ROS], along with ROS-ARIA [ROS-ARIA|, as the interfacing
robotics middleware. The experiments have been carried out in a laboratory en-
vironment equipped with a sub-millimeter accurate Vicon motion capture system
[Vicon|. We use a Dell workstation to run ROS, and this computer is connected
to the Vicon server via a dedicated Ethernet connection.

The Vicon system captures the motion of the robots and sends out the position
and heading data to the computer running ROS. The control law program listens
to this data, and transmits the individual velocities and turning rates. Both of
these operations are carried out at a frequency of 25 Hz. The control law program
computes the controls according to the strategy that is specific to the problem
considered. The computed velocity and curvature control variables v(t), u(t) can

be translated to the turning rate w(t) (in degrees/sec) as:

wlt) = (ﬁ) V(E)ut). (1.3)

™
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Chapter 2

Feedback Laws for Collective Motion

2.1 Introduction

Collective motion plays a crucial role in modern day robotics and engineering. It
is becoming commonplace for a group of unmanned, remote controlled vehicles
to be deployed to accomplish goals ranging from search and rescue to surveil-
lance. For the swarm of robots to function in a harmonious manner, it is very
important to control them carefully. Natural collectives are indeed an inspira-
tion in this endeavor. On the other hand, a thorough study of those collectives
remain incomplete without understanding agent level interaction laws. In this
chapter therefore, we will build models for collective motion from ‘bottom-up’,
i.e. from individual level control strategy to flock level synchrony through in-
teraction among agents. This chapter presents a range of theoretical results as
well as laboratory demonstrations of control laws that we propose or has been

proposed before. This chapter has two main contributory sections, most of which
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are taken verbatim from their respective publications. We start with a problem
that studies a particular dyadic interaction under the setting of a pursuit strategy
called constant bearing pursuit [Halder et al., 2016]. We gain interesting insight
from this problem that connects to the Kepler two body problem. The obtained
result of this problem is then used to solve a problem arising from a practical robot
maneuvering scenario. The last problem is purely experimental [Halder and Dey,
2015] which demonstrate another dyadic interaction strategy potentially useful

for surveillance, and a flocking strategy involving many agents.

2.2 Steering for Beacon Pursuit under Limited Sens-
ing

In this section, we will try to understand simple dyadic pursuit strategies (i.e.
strategies based on pairwise interactions), and exploit them as building blocks
for synthesis of complex motion patterns for collectives. In [Galloway et al.,
2009, 2013], using symmetry principles and nonlinear dynamics, a specific strat-
egy, known as constant bearing cyclic pursuit, is shown to produce a rich variety
of behaviors for appropriate choices of parameters (bearing angles). In [Justh
and Krishnaprasad, 2006] a biologically plausible feedback control law is inves-
tigated that executes motion camouflage, a type of stealthy pursuit associated
with visually-guided flight in insects (e.g. hoverflies and dragonflies). Stealth

arises from nulling optic flow in the visual field of the target of pursuit, thereby
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increasing the chance of success in prey capture or territorial battle against a con-
specific. This type of dyadic interaction is also exploitable in coordinated motion,
for instance see [Mischiati and Krishnaprasad, 2010].

The present work is similar to [Justh and Krishnaprasad, 2004] in motivation.
We consider a problem of two agents moving in a plane with constant (not nec-
essarily identical) speeds and, one of them is free i.e. it assumes any open loop
steering (curvature) control, while the other pursues it. The free agent may be
construed as a beacon and the pursuer’s task is to reach a safe vicinity of the
beacon and circulate around it. In the interesting case when the beacon is sta-
tionary, but the pursuer has a sensor with limited field of view (FOV) to detect
the beacon, the circling law proposed in [Justh and Krishnaprasad, 2004] may be
foiled. One goal of this work is to devise a principled approach (control algorithm)
for this problem that copes with sensor limitation. We do this via a two-step pro-
cess. We first analyze a slightly different problem of tracking a (slowly) moving
beacon assuming that: (a) the beacon track is of constant curvature (i.e. on a
straight line or on a circle); and (b) the sensor on-board the pursuer has no FOV
limitation. For the choice of a constant bearing pursuit feedback control law, one
obtains a rich dynamics. The phase portrait in turn suggests the second step — a
feedback law modification that is applicable to the setting of stationary beacon,
and limited FOV. In this case, one needs an additional ingredient — an estimator
using odometry to track the beacon when it has fallen out of the FOV. The idea

here is to use the odometry-based estimate in the feedback law as if it is exact
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Figure 2.1: Illustration of scalar shape variables (p, k1, k2) used to parametrize

the shape space.

(a type of certainty equivalence) and use direct observation of the beacon when
it is re-captured in the FOV. Such an estimator is used in an implementation of
beacon tracking in a laboratory test-bed with a range camera (Kinect [Kinect]) as
the sensor mounted on a mobile ground robot. A high precision (marker-based)
motion capture system (Vicon [Vicon|) is used to determine ground truth and
analyze the performance. In addition, the unconstrained tracking of the moving
beacon problem is revisited and it is shown that the resulting dynamics can be
identified with motion of a charged particle in an electromagnetic field. Moreover,
at a particular value of the beacon curvature, the combined dynamics is exactly

same as the Kepler problem of two bodies.

2.2.1 Tracking a Moving Beacon

Let us consider two agents moving on a plane, each abiding the self steering par-
ticle equations of motion. We assume that both their speeds vq, 5 are constants.

It is possible to represent the dynamics of the system of two agents by the help

13



of scalar shape variables p, k1, ko (Fig. 2.1) as

) = —U COS K1 — Vo COS Ko
. 1 . .
k1 = —1uy + — (v sin Ky + Vo sin ko) (2.1)
p
ko = —lous + — (V1 sin K1 + vy sin Ka).
p

This is rather a straightforward calculation. We view agent 1 as a slowly moving

beacon to which agent 2 pays attention. Let us make the following assumption.
A-1: The speed of agent 1 is less than the speed of agent 2, i.e. 1y < vs.

We pick the feedback control law for agent 2 as follows:

Uy = —fi (R(a)yz = ) S ( = ri) ; (2.2)

|r21| V2|F21| |F21|

for some i > 0. Here we denote at = R(m/2)a, for any vector a in the plane of
motion, R(-) is the planar rotation matrix. Note that this control law is a standard
constant bearing (CB) pursuit law [Galloway et al., 2013] with parameter o. The

feedback control law can be expressed in terms of the scalar shape variables as

. 1 ) )
ug = fisin(ky — ) + — (V1 sin k1 + vy sin Ka)
Vap

The closed loop dynamics of (2.1) then takes the form

p = —1U/1 COS K1 — Vs COS Ko
k1 = —1ug + — (11 sin kg + Ve sin Ky) (2.3)
P
Ko = —[ivg sin(ky — ).

A fundamental result |Galloway et al., 2013] for the CB strategy tells us that

under the action of the control law (2.2), the manifold
o = 1(p; k1, k2) € R™ x S* x S* : ky = a}

14



is an attractive invariant manifold for all initial conditions except r2(0) = a +
7. The invariance follows directly from the closed loop dynamics (2.3). The
attractiveness can be proved by defining A(t) = — cos(k2(t) — «). Thus A(0) # 1

implies A(t) — —1 as t — oo or equivalently ko converges to a.

2.2.2 Dynamics Restricted to the Invariant Manifold

At this stage, we are ready to make another assumption:

A-2: We consider the curvature of the beacon to be constant, i.e. u; = u, for

some u € R constant.

Now we focus our analysis on the dynamics on the invariant manifold (called

Mshape = RT x S') which may be expressed as

p = —V1 COS K1 — Vo COS (X
(2.4)

k1 = —1u+ — (v sin kg + ve sin ).
p

It is of interest to characterize the solutions of the restricted dynamics (2.4) on

the invariant manifold. Note that given vy, 15, u and «, (2.4) might have at most

vsin k] +sina

o , where

two equilibrium points (p*, k), with cosk} = and p* =

_ cosa
v

we denote v = Z—; < 1. Existence of such equilibrium points is guaranteed if v >
|cosa| and (vsink} + sina)u > 0. Linearizing (2.4) around such an equilibrium

point gives the Jacobian matrix

Vo )
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with associated Eigenvalues

—cosa £ /cos? a — 4v2p*usin k]
A= 1%} 2p* .

Depending on «, following cases will arise

L.

IT.

III.

a€ (—m,—m/2)U(7/2,7]
In this region, cosa < 0, which makes the equilibrium points unstable. So

all trajectories tend to blow up in (p, k1) plane.

a € (—7m/2,7/2)

Here, cosa > 0, then (locally) stable equilibrium exists if usink} > 0,
otherwise (p*,k}) is unstable which leads to eventual collision. We note
that [Davis, 1962] (pages 119-125) studies the same problem with o = 0.
For the o = 0 case, the existence conditions of equilibrium read v > 1 and
usink] > 0, which in turn means we will have a stable equilibrium only

when v > 1. The current problem can be viewed as a generalization of that

considered in |Davis, 1962].

a€{n/2,—7/2}
In this case, however, the dynamics (2.4) produces a rich behavior which we
analyze next. We only provide the analysis for o = 7/2 case, the other case

being analogous.
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s

2.2.3 Special Case: a = §

We rewrite (2.4) in this particular case,

p = —U1 COS Kq

(2.5)
k1 = —1u+ —(vg + vy sinky).
p
All the trajectories of (2.5) are closed and we will prove this in the same way as

exploited in [Mischiati and Krishnaprasad, 2012|. We first introduce the following

definitions and a theorem due to Birkhoff.

Definition 2.1 (Involution). A diffeomorphism F' : M — M from a manifold
M onto itself is said to be an involution if F' # id,;, the identity diffeomorphism

and F? =idy, i.e. F(F(m))=m, Vm € M.

Definition 2.2 (F-reversibility). A vector field X defined over a manifold M
is said to be F-reversible if there exists an involution F' such that F,(X) = —X,
i.e. F' maps orbits of X to orbits of X, reversing the time parametrization. Here
(Fi(X))(m) = (DF)p-1(my X (F~*(m)), ¥Ym € M is the push-forward of F. We

call F' the reverser of X.

Theorem 2.2.1 (G.D. Birkhoff, [Birkhoff, 1915]). Let X be a F-reversible vector
field on M and X the fized-point set of the reverser F' . If an orbit of X through

a point of X intersects X g at another point, then it is periodic.

See |[Mischiati and Krishnaprasad, 2012| for a detailed proof of this theorem.

Based on these definitions and the theorem, we propose the following.
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270

(c) u=+2

Figure 2.2: Phase portrait (polar plot) of the system dynamics restricted to the
invariant manifold (2.5) with different values of u, keeping v, = 0.5, 5 = 1 fixed

for all three cases.

Theorem 2.2.2. (i) The quantity,

E(p, k1) = p(ve + v sin k) — éuluﬁ = E(p(0), x1(0)) (2.6)

is conserved along any trajectory of (2.5).

(ii) Every solution of (2.5) is periodic.

Proof. (i) Denote, x = p(va + vy sin Ky ), then

d ) ) .
d_); = p(va + v18inky) + (pry cos K1)k
dp
= up—-
1 pdt
1 2
— x(0) = pug(t) e

where ¢ = x(0) — v1up*(0)/2 = constant, which, in turn implies

) 1
E(p, k1) = p(ve + vy sinky) — §V1Up2 = E(p(0), k1(0)).
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(ii) Step-1: Vector field defined by (2.5) is F-reversible with reverser F'(p, k1) =

(p, 7 — K1).

Clearly, F is an involution since F?(p, k1) = (p, r1). Next,

(F(X))(p, 1) = (DF) po(pe) X (" (p, 1))

1 0

= X(pvﬂ-_’il)
0 -1

= _X(pv ’%1)'

Hence, X is F-reversible.
Step-2: Fixed point set of I is given by ¥r = {(p,x1) : p > 0,51 = £5}. So
every orbit of (2.5) crossing ; = £7 line twice is periodic. Now, depending on

the value of u, different cases will arise.

(a) u < 0 : In this case, we note that the assumption v, > 14 is sufficient
to guarantee monotonicity of £q, in particular £; > 0 for all time. Hence, any
trajectory originating from any point on the k1 = £7/2 line (excluding the origin)
will travel counter clockwise until it hits the line again when k; gets incremented
by an amount of 7 radian (see Fig. 2.2a, 2.2b). Note that the conserved energy, F
prohibits any trajectory that starts with positive energy to go to the origin (with

Zero energy).

(b) u > 0 : Because £; can assume any sign under this case, we need a more
serious argument for this case. To determine the nullcline £, = 0, we compute
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Figure 2.3: Nullclines of (2.5) with u = 1,11 = 0.5, = 1.

p= % and 15 > 14 ensures existence of a valid p for each value of x;. The

p nullcline is simply the x; = £7/2 line. This is illustrated in Fig. 2.3. It is

immediate that in this case we have two equilibrium points, A = <%, —l—%) and

viu

B= (M —g) The trajectories starting from either of those points are clearly
periodic.
Depending on the nullclines, the whole space can be divided into four regions as

shown in Fig. 2.3 and those regions are characterized as
RegionI: p <0, A1 <0, RegionIIl: p >0, k1 > 0,
Region IT: p > 0, £; <0, Region IV :p <0, & > 0.
Now imagine trajectories starting on the line segment OA, excluding both

points. Since £; < 0, they will move into region III, which can produce two

outcomes:

(bl) It hits the OB line (excluding both points).
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(b2) It exits region III through NK and goes into region II. Now the constancy
of E gives the following observation, if a trajectory of (2.5) crosses NK at
a certain angle mﬁ”, then it must cross it again at a different angle /<;§2) and
these angles are symmetric about k1 = 7/2. This means trajectories must
not enter region III from region II. This leads all the trajectories in region

IT to hit the x; = 4+m/2 line beyond point A.

Next, consider trajectories starting at the boundary of region I and II with
K1 = 7/2. k1 < 0 gives rise to clockwise motion into region I. Again, we need to

analyze two scenarios:

(b3) The trajectories reach boundary between region I and II with x; = —7/2.

(b4) They enter region IV through NK. Similar argument as in case (b2) can
be employed to prove they must reach boundary between region III and IV

with K = 7/2.

Now, trajectories starting on OB line (excluding both points) must move in
region IV and hence must hit OA line (excluding both points).

Finally, trajectories starting on the boundary between region I and II with
K1 = —m/2 must go into region II and must eventually hit the boundary between
region I and II with x; = 7/2 following a clockwise path (and without entering
region III).

This completes the proof. [ |
Remark 2.1. In a special case u = 0, (2.6) reads exactly as the polar equation of

an ellipse % = ¢(1 + v cosf), where the origin is placed at one focus of the ellipse,
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the angle 6 is measured from the origin with respect to the major axis of the ellipse
and v = £ is the eccentricity of the ellipse (recall A-1). It is of interest to note
that the same elliptic equation comes from the analysis of the Kepler two-body

problem [Goldstein et al., 2001].

A result of the dynamics (2.5) regarding time period is immediate in the light

of Proposition 2.2.2.

Corollary 2.2.1. Every orbit of (2.4) has a period

Pmazx d
T=2 / r , (2.7)
where pmin and pPpa: are solutions of the pair of equations
1 2
p(ve £11) — Jrup” = E(p(0),k1(0)) =: Ey (2.8)
In particular, for the case u = 0, the time period becomes, T = %
b=y

Remark 2.2. Note that for an “admissible” value of Ej, the pair of equations
(2.8) has only two solutions. For the special case, u = 0, we know the closed loop

trajectories are described by the ellipses p = Fy /(v + v sin k1) with semi-major

: 1 ) _ Ey 1 1 _ Egue
axis, a = g(pmm + Pmaz) = 53 <V2+V1 + Vz_ﬂ) = 2o Then, from Corollary

2.2.1, we find T2 = (i) a3,

v2Eg

Remark 2.3. The condition v > v; is necessary for the existence of periodic
orbits for the case u = 0 while it is merely a sufficient condition for other values

of u.
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2.2.4 The Limited Field of View (FOV) Problem

In this section, we will describe the problem of tracking a stationary beacon by
a controlled agent equipped with a sensor (e.g. a depth camera like Kinect) with
limited field of view. As opposed to the problem discussed in the previous section,
this problem is inspired by an implementation point of view. The backbone model
(2.1) of the system stays the same. Agent 2 is supposed to sense the position of
the beacon relative to its own position and use the sensed quantities to determine
the control action. Using the shape variables, it has access to the pair (p, ko) (refer
to Fig. 2.1), with the limitation that |ka| < Kmax < 7/2, which we call the field of
view constraint. Although various feedback control laws have been proposed (for
e.g. [Justh and Krishnaprasad, 2004|) to encircle a stationary beacon, permanent
loss of the target (beacon) from the field of view cannot be avoided by those laws.
More precisely, the limited FOV problem boils down to encircling the beacon while
being able to sense it (at least) periodically.

Putting beacon speed, v; = 0 in (2.1) and ignoring x; dynamics, the equivalent
shape space equations can be reduced to

p = —Uo COS Ko

(2.9)

Ko = —UloUg + ;I/g sin K.
Remark 2.4. From (2.9), it is guaranteed that under the field of view constraint,
the attempt of encircling the beacon would eventually make the beacon perma-
nently invisible (as long as a circular orbit around the beacon is considered).

Moreover, from p dynamics, meeting the constraint |ks| < Kpax < /2 for all time
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will lead to definite collision.

Once the beacon goes out of the FOV, the only choice for the vehicle would be
to efficiently estimate the position of the beacon and apply the control based on
those estimates. Accepting the fact mentioned in remark 2.4, one can only try to
design the control usy in such a way that the control law provides some promise to
bring the beacon back in the field of view after losing it. The following proposition

is meant to serve that purpose.

Proposition 2.2.1. The feedback control law given by

ugovzuo—i, up <0, p> vy, (2.10)
pVe

guarantees the periodic return of the beacon to the field of view under ideal esti-

mates.

Proof. With the feedback control (2.10), the closed loop system becomes,

p = —1/ COS Ko
(2.11)

g = —LhUy + ;(,u + vy Sin Ky).
Noticing that (2.11) is equivalent to (2.5), the claim follows directly from Theorem
2.2.2. From the polar phase portrait (Fig. 2.2), we see that the condition ug <0
is required for the angle variable ko to go through a full 360° rotation which is

essential in order to bring the beacon back in the FOV. |

As we will discover next, the condition on the parameter ug can be relaxed

to include positive values as well. From Theorem 2.2.2, the condition p > vy is
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only sufficient for any value of ug. It becomes necessary for the particular case of
ug = 0.

Although the feedback control law (2.10) produces all periodic orbits and it
inherently takes care of collision avoidance problem (see Fig. 2.2), it lacks in the
freedom of driving the vehicle to a particular desired orbit (¢f. the circular orbits
with desired radius as in [Justh and Krishnaprasad, 2004]). Moreover, the periodic
orbits are not orbitally asymptotically stable which makes them susceptible to

disturbances. To overcome these shortcomings, we propose the following.

Proposition 2.2.2. Let E; denote the admissible value of the desired energy, i.e.
there ezists a periodic orbit with E(p,ke) = E4. Here E(p, k2) is as in (2.6) with

the pair (v, vo) interpreted as (v, p) in present context. Then the control law

Uy = ugov + u?D = ug — % + kq(E(p, ko) — Eq) cos Ka, (2.12)

with kg > 0 makes the orbit with energy E; asymptotically stable with region of
attraction given by Mgnape \ {(p, k2) © cos ky = 0, p = WB2EE2) 4 s OV yhere

vauo

MShape = ]R"" X Sl.

Proof. Note that the trajectories of (2.9) with control (2.12) will no longer be peri-
odic because of the inclusion of the extra u5? term. Since E(p, k7) is a continuous
function of both p and ks, it suffices to prove that the quantity (E(p, ko) — Ey)?

is monotonically decreasing. We obtain,

d

ﬁ(E(p, ko) — Eq)? = —2kqpra(E(p, ke) — Ey)? cos® ky.
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Clearly, with kg > 0, d(E(p, o) — E4)?/dt < 0, for all (p, k2) such that p > 0. The
largest invariant subset of {(p, ko) : d(E(p, k2) — Eq)?/dt = 0} is indeed {(p, ko) :

E(p, k2) = E4}, which, in turn establishes the statement of the proposition. W

In the light of Theorem 2.2.2, we see that the restriction vy < 0 in Proposition
2.2.1 can be relaxed. In particular, for ug > 0, one only has to choose E,; such

that ko completes full 360° rotation (for e.g. one might pick E; = E(p, —7/2),

with p > £=22 see Fig. 2.2(c)).

o
vauQ

2.2.5 Implementation

In this laboratory implementation, we chose to use the newest Kinect model,
which was created for Microsoft’s Xbox One. The Kinect primarily functions as
a motion-sensing input device, enabling players to interact with video games in
exciting ways. To accomplish this, the device is equipped with several sensors
including an RGB sensor, 3D Depth Sensor, as well as Multi-array Microphones.
The Kinect’s RGB sensor has a 70.6 degree horizontal field of view, and a 60
degree vertical field of view (see Fig. 2.4). The Kinect operates at a rate of 30
Hz, and has an effective range between 0.5 meters, and 4.5 meters where accuracy
is reliable. Despite it’s original use case as a video game controller, the Kinect
has been studied recently as a sensor for many robotics applications, including
autonomous vehicles [Oliver et al., 2012| and healthcare [Nghiem et al., 2012].
In this experiment, the Kinect RGB camera acts as a primary sensor for de-

termining the distance and relative heading of the beacon (i.e. p, ks), which in
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Figure 2.4: Robot (Pioneer 3 DX) with Kinect mounted, and the orange cone

used as the beacon.

our experiment was an orange cone. OpenCV [OpenCV] is used to perform a
simple blob detection algorithm that calculates the centroid of the cone in pixel
coordinates, and then uses the Kinect’s coordinate mapping feature to transform
the result into physical, or camera space. To take advantage of these API features,
we mount a laptop running the Windows operating system onto the robot, and
utilize a custom TCP/IP server to stream the coordinates back to the robot con-
trol station. The control station is a Dell computer running ROS [ROS], and the
algorithm implementation is done using the MATLAB ROS toolbox [MATLAB].
Finally, the Vicon motion capture system |Vicon| is used to track the motion of
the robot and beacon in the lab coordinate space to obtain ground truth results

of the implementation.

2.2.5.1 Estimation

In order to successfully implement the proposed control law, the robot has to be

able to efficiently determine the beacon position relative to its own position during
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the periods of time when the beacon is not in FOV. Equivalently, the estimation
problem then is to integrate the closed loop shape dynamics ((2.9) with control
(2.12)) given some initial condition, which in this case would be the last known
(p, Ka) value before the robot loses sight of the beacon. Since there is a conserved
quantity associated with (2.11) (Proposition 2.2.2), a mid-point based update
rule performs better than the naive Euler rule [Austin et al., 1993]. Denoting the
estimate of (p, k2) by (p, A2) and the discrete time step by At, the update rule

may be implicitly expressed as follows:

An+1 n on rn+1
A ko + hy
— = —1ppcos | ————

At 2
(2.13)
Aot — Rp - 2y . (KB +RYT!
—— = —lhu ———sin| ——
At 22 ﬁn—l—l _I_ﬁn 2 )

where u} = uy(p", #%) as in (2.12) and (p°, #9) is the last successful measurement
of the beacon position. We then solve the nonlinear equations (2.13) numerically
(using MATLAB's fsolve) to produce the necessary estimates whenever the beacon
is not in the field of view of the sensor. This procedure can be summarized in

Algorithm 1.

2.2.5.2 Experimental Results

To demonstrate our solution to the limited field of view problem, we constructed
an experiment for which the robot sees the orange cone and attempts to encir-
cle it using the described control mechanisms. The result is a trajectory that

periodically brings the cone back in its FOV so that the robot can fulfill its net
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Algorithm 1: Steering Law Computation for Limited FOV Problem
Data: p: measured distance to beacon, ko : measured angle to beacon;

p . estimate of p, ko : estimate of ko
Parameters: ug, u, kg, £y
begin
while not stopped do

if beacon visible then

| Compute uy = us(p, ko) using equation (2.12)

else

Initialize: (p°,49) «— (p'*t, rkest)

Calculate (p, A2) from (2.13)

Determine us = us (p, ko) using (2.12)

—— Experimental
2000 ——Ideal
60

90

-500r

—-1000r
-2000

-1000 1000 2000

(a) Robot Trajectory (b) Phase Portrait

Figure 2.5: Implementation results as recorded by Vicon (with v, = 200 mm/sec,
up = 0 mm~!, g = 1000 mm/sec, k; = 5 x 1072 mm3sec and E; = 1.44 x 10°

mm?/sec).
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encircling of the beacon. The ground truth data was obtained using Vicon. We
ran the experiment using a robot speed v = 200 mm/sec, and the parameters

3 sec and E,

were ug = 0 mm™', u = 55 = 1000 mm/sec, kg = 5 x 107 mm™
was taken to be energy corresponding to the orbit which maintains the minimum
distance of 1200 mm from the beacon, in other words F; = 1.44 x 10° mm?/sec.

Implementation results are shown in Fig. 2.5. The ground truth polar plot
can be seen in comparison to the desired ellipse (since uy was taken to be 0) in
Fig. 2.5b. The mid-point rule estimation method results in a robust controller
that achieves the desired trajectory although it is slightly closer to the beacon

than the theory predicts. The error between these two orbits is observed (~ 200

mm) to be within the size of the robot (~ 400 mm).

2.2.6 Associated Lagrangian

Here we will re-visit the problem of tracking a moving beacon as considered in
Section 2.2.1. It is of specific interest to ask whether the system dynamics admits
some Lagrangian formulation. Without loss of generality, at this stage we take
v = 1 and denote v; = v (note that A-1 translates to v < 1). Writing r = r; —ry,
we see that on the invariant manifold, the feedback control law (2.2) takes the

form

r-r

U9 = —W
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Now it is a straightforward exercise to see that the baseline vector satisfies the

following second order ODE:

. 2
r=rvuy; — u2yz

= Vuy, + (%) (%) . (2.14)

Note that here we used the fact that on the invariant manifold the bearing angle
of the second agent to the beacon, ko = m/2 and hence the ys vector is aligned

with the baseline vector r, or in other words y, = (|—£|>

Proposition 2.2.3. On every level set of E, (E(p,k1) = Eo, as in (2.6)) the
two dimensional system (2.14) is actually the Euler-Lagrange equation of the La-

grangian function (of the type kinetic energy—potential enerqgy)

1 E 1
:4W—<—f——mm—Auy0, (2.15)
where A is defined as A(r) := —svurt.

Proof. Note that the quantity, Fy = p(1 + vsink) — %l/up2 is conserved and

r-rt = —p(1 +vsink). From here, we can rewrite (2.14) as

I =vu(ry; — ——= +-vu ) | —

E 1
:@XE—V(Tﬁ—imM)

= (I x B) + E(r), (2.16)
where we introduce B := —vuz, a static “magnetic field” in the direction per-

pendicular to the plane of motion of the agents, z being the unit vector in
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that direction. Also, we call E(r) := —V®(r), the “electric field” and ®(r) :=
— (% + %yu|r|), the corresponding electrostatic potential.

Now, the equation (2.16) resembles with that of the equation of motion of a
charged particle in an electromagnetic field and one can find obvious similarity
of the right hand side with that of Lorentz force law. Then a standard result
[Goldstein et al., 2001] in the theory of electromagnetism gives the Lagrangian
formulation of (2.16). Since V- B = 0, B can be written as curl of a “magnetic
vector potential” A(t,r), i.e. B =V x A. Also, the electric field E can be writ-
ten as E = —V®(r) — 2. Matching this with (2.16), we can see that A is a
vector valued function of r only. It is a straightforward exercise to show that
A = —1(r x B) = —ivur® satisfies B = V x A. Then the Lagrangian which

2

generates (2.16) is given by

L(r,7) = K(r,¥) — V(r,1)

1. :
= 5 [Ff* = (2(r) = A(r) - )
1 E 1 1
= §|r|2 + ﬁ + §VU|I'| — il/url T

Remark 2.5. In essence, Proposition 2.2.3 reveals that with open loop constant
curvature control of one agent and with feedback control (2.2), namely constant
bearing pursuit law with parameter o = 7/2, of the other, (on every level set
of an invariant manifold) the coupled system behaves exactly the same way as a
charged particle in a static electromagnetic field. Moreover, the magnetic field, B
is dependent on the constant curvature (u) of the first agent. Thus v = 0 implies
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the absence of the magnetic field and the agents are subject to the electrostatic
field only. The field E has familiar inverse square form and hence the results
for the special case u = 0 agree with Kepler’s laws which are obtained from a

two-body problem subject to Newtonian gravitational force.

2.3 Biomimetic Algorithms for Coordinated Mo-
tion

In this section, we will report implementation of two feedback control strategies
on our laboratory test-bed. The first of these two strategies is called mutual mo-
tion camouflage (MMC) [Mischiati and Krishnaprasad, 2012|. Existing literature
on dragonflies [Corbet, 1999] provides qualitative analysis of territorial battles,
wherein the trajectories display spiraling motion consistent with the theoretical
predictions [Mischiati and Krishnaprasad, 2011]. This particular bio-inspired con-
trol algorithm inherits an appealing coverage property through the mechanism of
space filling curves, and our implementations are able to reproduce coverage pat-
terns similar to the predicted ones.

Although there has been a long history of control algorithms for flocking, al-
most every model of collective motion predicts diffusive transport of information.
But, contrary to the existing models, recent findings [Attanasi et al., 2014] from
starling flocks suggest that directional information within a flock propagates with

an almost constant speed, and this linear growth of information can be explained
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by models with wave-like aspects. In [Dey, 2015; Halder and Dey, 2015| a con-
trol strategy called topological velocity alignment (TVA) was introduced, which
conforms to this criterion and can explain how information about local neighbors
can influence the agents in a flock to align their headings in a single common
direction. Hence it seems reasonable to use TVA strategy for collective motion
synthesis. Furthermore, our implementation results in real robots have shown
that reduction in neighborhood size and external perturbation (similar to preda-

tor attack) can split a flock into smaller subgroups.

2.3.1 Mutual Motion Camouflage (MMC)

Here we consider the mutual interaction between two agents each applying the
same pursuit law, while perceiving the other one as a target. As the dynamics of
MMC in a planar setting has been studied earlier [Mischiati and Krishnaprasad,
2012|, we just reiterate some key results in order to have a comprehensive frame-
work. Allowing different speeds for the agents, we begin with the following sym-
metry:

ULV = Ugly = U. (2.17)

Then the dynamics of the relative motion vectors, namely r = ry —ry, g =1 =

11X, — 19Xy and h = g+ =1+, can be expressed as

r=g
g =uh (2.18)
h = —ug.



Now we introduce three scalar shape variables defined as p = |r|, v = (r - g)/|r]|

and A = (r-h)/|r|. Then, according to |Justh and Krishnaprasad, 2006|, we have

w=—u (% : rL> = —u (% : h) = —u, (2.19)

where, © > 0 denotes the feedback gain. As shown earlier, the dynamics of relative

motion (2.18) can be reduced to yield a second order dynamics given by

p="
(2.20)
¥=0/p—m) (8" =77).
where, 6 = |g| = |h| is conserved along any trajectory of (2.18). As detailed in the
original work |[Mischiati and Krishnaprasad, 2012|, individual trajectories can be

reconstructed from the solutions of (2.20). Moreover, the solutions of the reduced

dynamics (2.20) constitute level sets for another conserved quantity, defined as

E(p,7) = p*(6° = 4*)e™ " = E(po, ). (2.21)

However, the absence of damping in the reduced dynamics (2.20) has poten-
tial to deteriorate the performance of the original MMC law (2.19). A modified
feedback law, with an added dissipative term to neutralize any deviation from the

predicted trajectories, can be expressed as
Utor = U + Ugis = —pX + kgAY (E(p,7) — Ea), (2.22)

where E; is set as the initial value of the conserved quantity E(p,~), i.e. Eq =
E(po,70). Previous work [Mischiati and Krishnaprasad, 2010| has shown that this
modified control law (2.22) with k; > 0 makes the periodic orbit (with energy Ey)
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orbitally asymptotically stable, and the corresponding domain of attraction is

characterized by {(p,7) : p>0,—d <~y <4, (p,7v) # (1/1,0)}.

2.3.2 Topological Velocity Alignment (TVA)

Here we formalize the strategy of topological velocity alignment (TVA) |Halder
and Dey, 2015; Dey, 2015], and assume that each member in a group of n-agents
uses this strategy to move together while keeping its heading parallel to the neigh-
borhood center of mass velocity. Letting ; denote the neighborhood of the i-th

agent, the center of mass (COM) velocity of this neighborhood is given by

Veou = m Z ViXj, (2.23)

where || represents the number of neighbors influencing the i-th agent. Next,

by assuming that v does not vanish to zero, we define the direction of the

COM

center of mass motion as

Xy, = oo (2.24)

Veou!|

It should be noted that xy; is not well-defined over a thin set in the state space.
As the chance of getting into the thin set is very small, we can overlook this

situation for all practical purposes. Now we introduce a contrast function

1
0= Jlow %) b —x) =1 mn, (2

as a quantitative measure for the misalignment between the heading of an agent
and the direction of motion of its neighborhood center of mass. Clearly, this
contrast function (©;) assumes its minimum value (= 0) whenever the i-th agent’s
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velocity is aligned with its neighborhood center of mass velocity, and increases

monotonically with increase in the misalignment between them. Thus, ©; can be

interpreted as a measure of departure from our goal of achieving alignment.
Next, by assuming a non-zero velocity for the neighborhood center of mass

v 0), the TVA law is given by |Dey, 2015
COM

T— (M) : (2.26)

Vi
where ;1 > 0 denotes a positive gain, and y; carries its usual meaning. Alterna-
tively, lateral acceleration for this choice of control laws (2.26) can be expressed
as

l‘at

al™ = i (xn, — [xv; - x]xi), (2.27)
and this provides a physical intuition behind (2.26) as the lateral acceleration

is proportional to the projection of the normalized velocity of its neighborhood

center of mass onto the transverse of its own direction of motion.

Remark 2.6. Earlier works [Justh and Krishnaprasad, 2003, 2004] have consid-
ered a very similar form of this control law with three components for attrac-
tion (while the agents are far away), repulsion (to avoid collision) and velocity
alignment. However, the TVA control law considers only velocity alignment, but
extends the scope from a planar setting to a three dimensional environment. More-
over it relaxes the assumption on uniform speed of the collective by allowing the
agents non-uniform and time-varying speed profiles. This relaxation plays an im-
portant role in the context of applying this control law to a group of heterogeneous
agents.
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It was shown in [Halder and Dey, 2015; Dey, 2015], for a two agent system it
is possible to show that the TVA strategy (2.26) aligns the velocity of the agents,
only if their velocity vectors were not exactly opposite to each other initially. [Dey,
2015] also provides further analytical results for a general n agent system with a
cyclic interaction scenario. As analysis of an n-agent system with neighborhood
defined as the set of K-nearest neighbors poses hard challenges, we propose an
algorithmic way (Algorithm 2) to implement TVA in a real system. We bring in

an additional neighbor into consideration whenever v becomes zero. Clearly,

cCOoOM
this provides a way to avoid ill-posedness associated with v_,, being zero because
non-zero speeds of individual agents ensure that considering an extra neighbor will

make an otherwise zero v_,,, non-zero.

M

2.3.3 Implementation Results

We present the implementation results of the two control laws in our robotic test-
bed. In this section, we are presenting results for which the speeds of all the
individual agents are same, i.e. v; = v;,Vi,j. Though it should be noted that

both control laws can be implemented with different speeds.

2.3.3.1 Implementation of MMC

Here we will show some implementation results for MMC, and demonstrate the
effectiveness of using a dissipative control term (2.22). Our analysis also includes

a comparison between the observed trajectories and trajectories obtained from
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Algorithm 2: Topological Velocity Alignment
Data: Initial Time - ¢,44; Final Time - ¢;,4; Sampling Interval - A;

Number of Agents - n; Initial Position and Orientation - {g;}" ;;
Neighborhood Size - K

begin

Initialize: t.yrrent <— tinitial 3

fori =1 ton do

Initialize: State - X; <— ¢; ;

while t.yrrent < tpina do
for i =1 ton do
Define: N - the set of K-nearest neighbors ;
Compute: Neighborhood center of mass velocity - v, ;
if v,,, =0 then
Define: N - the set of K + 1-nearest neighbors ;

Compute: Neighborhood center of mass velocity - v, ;

Compute: Steering control - u;;

Implement: Steering Control - {u;}?; ;

Update: State - {X;}" ;

Updatei Time - teurrent < teurrent + A ;

theoretical predictions, obtained via integrating the reduced system dynamics
(2.20). Considering the prersence of a conserved quantity (2.6) in the system,
we used the method described in |[Austin et al., 1993| for integration instead of
general ODE solver, which otherwise would not be able to keep the quantity
E(p,) constant to its initial value. Then, from the updated values of p* and ~*,
we reconstruct the trajectories along with their frame vectors, i.e. ri¥, x;*, yi*,

with i = 1,2 and k denoting the time indices. At each time instance t*, the error

39



300

600 600

400 400

200

\\\\\\
A\N
‘\ﬁ}\\\ \

2
N

N

200 200

2L
7
L2

N
=

=
.
1)
S

2=

22

=
AN

e

—

=5
=

—

-200

=

-200

2%

o
S5

o
<

o

So32

=2

5
S
O
5
<
=%
<

S

L
2%
L%

K

SO0

)
2997/
257
277 = -800

-400

=
03

-400

(in mm/sec)

Z
e85
%

vy
7o
L7
/L7
777

77
<2

-600

hA
1)
S

-600

(in mm)
(in mm)

=
==

2

)
Y s
i ey
hi

S

-800

i

Y
&
3
38

1/

-1000 -1000

NSNS
g

Y

e

-1200

-1200 e

500 0 500 . 1000 500 0 . 50 . 1000 500 1000 , 1500 2000
mm) m) p (in mm3

&
S
5}

(a) Trajectory (Experiment) (b) Trajectory (Simulation) (c) Phase plot
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The plots of a sample run using the modified MMC feedback law (2.22) are
shown in Fig 2.6. This modified control law has been applied with k; = 1 X
1075 mm~%ec3, and the parameters p, v, and v, are selected as 0.001 mm™?,
200 mm/sec and 200 mm/sec, respectively. The resulting performance is quite
satisfactory as shown in Fig 2.6a (refer [YouTube| for implementation video). We

have also observed that the error is bounded (~ 250 mm) within the size of the

robots (~ 400 mm).

2.3.3.2 Implementation of TVA

We implemented the TVA control law (2.26) in a 2 dimensional setting (i.e. v;(¢) is
ignored). As the implementation is in discrete time, we followed Algorithm 2 in our
implementation in order to avoid the singular case of |v_,,,| = 0. To demonstrate

the performance of TVA control law, we designed three different experiments (refer
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Figure 2.7: Robot trajectories and contrast functions of TVA for (i) Experiment
1 |Fig (a),(d)] with 8 agents, demonstrates flocking behavior (K = 3); (ii) Ex-
periment 2 [Fig (b),(e)] with 8 agents, describes the splitting behavior due to low
neighborhood size (K = 1), and (iii) Experiment 3 |Fig (c¢),(f)] with 6 agents,
shows that perturbation can cause a swarm to split, the trajectory of the per-
turbing agent is not shown. (x = 1 Hz and v; = 60 mm/sec is kept fixed for all

experiments.)

|[YouTube| for implementation videos). In these experiments, the sonar sensors
on the robots were activated to sense any obstacle in the direction of motion of
the robots and if any robot can sense such an obstacle, it will simply apply a

maximum turning rate (w*) to avoid collision. The sonars are programmed to
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detect an obstacle only in close proximity (~ 300 mm) of the robots. In all our

" is taken to be 50 rad/sec, forward speeds of all of the robots

experiments w*®
are kept constant at 60 mm/sec and the value of the parameter u is chosen to
be 1 Hz. A system with eight agents is considered and we apply same TVA law
to all of them. The neighborhood size is taken to be three (i.e. K = 3). The
robots are initially placed in arbitrary positions and directions. The footprints of
the robots and the corresponding contrast function, ©(t) = >, ©,(t) is plotted
against time in Fig 2.7a, 2.7d. The initial and final directions of the robots
are shown using arrows and the final positions of the robots are denoted using
dots. It can be seen from Fig 2.7d that the contrast function decays to zero very
quickly which indicates perfect velocity alignment within the swarm. Next we
decreased the neighborhood size and made it one (K = 1), so that every robot
only ‘communicates’ with its closest neighbor. We chose the initial positions in
such a way that they may form sub-clusters instead of moving as a single swarm.
This behavior is called ‘splitting’ in a swarm. From Fig 2.7b, we can clearly see
that the swarm of eight robots gradually split from each other and form three
different clusters. It is to be noted that even if all the agents are not going in
the same direction, the contrast function still converges to zero (Fig 2.7e). This
happens because each of the robots are aligned with their nearest neighbors and
hence each of the individual contrast functions (©;(¢)) are zero. This experiment

may explain the splitting phenomenon observable in nature. Lastly, we combined

the above two experiments, and conducted an experiment using six robots in a
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swarm and another robot as a predator. A separate computer was used for manual
control of the ‘predator’ robot.

At the beginning, neighborhood size is kept at K = 3, such that the ‘com-
munication’ graph among the robots stays connected and they move as an entire
swarm in a common direction. When the swarm comes close to the predator, the
neighborhood size is decreased to one. As we are not using any onboard visual
sensing and the sonar sensing is done only in very close region (~ 300 mm), the
change in neighborhood size is made manually. From Fig 2.7f, we can see that
the change in neighborhood size takes place at around 20 seconds and we can
also see a tiny jump in the contrast function at that time. The predator then
slowly approaches to one of the agents in the swarm, which abiding to its collision
avoidance rule, turns to avoid the predator. In Fig 2.7c, the trajectories of the
agents are drawn in dashed lines before the occurrence of this event and in solid
lines afterwards. The trajectory of the predator robot in not shown in the fig-
ure. After creating the initial perturbation, the predator is slowly moved through
the swarm causing some subsequent disturbances. These perturbations create a
noticeable impact in the swarm. As the attacked agent turns, its neighbor also
tries to align itself with that agent and so does its neighbor. This goes on until
the communication graph becomes disconnected and a split in the swarm is then
observed |[YouTube| just like in Experiment 2. As we can see in Fig 2.7c, the
swarm is divided in two groups after the attack of the predator. The jumps in

plot of the contrast function in Fig 2.7f symbolize the perturbations caused by
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the external agent. The contrast function eventually converges to zero after the

members are aligned with their neighbors within each subgroup.
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Chapter 3

Optimal Steering of Agents on a Plane

3.1 Introduction

The kinematic unicycle model is often used in path-planning for ground vehicles,
since the configuration of a ground vehicle can often be represented by a point
in a plane that is constrained to move in the direction of the current heading
|Bellaiche et al., 1998; LaValle, 2006|. The state of this system can be represented
as an element of the special Euclidean group SE(2), where the control inputs are
a curvature input which controls the rate of change of the heading angle, and a
velocity input which controls the rate of change of the unicycle position in the
direction of the heading angle.

Given the current configuration of the unicycle and a desired future config-
uration, an admissible path for moving the unicycle from an initial to a final
configuration can be determined via the minimization of some cost functional.

There can be many variations to this problem depending on the chosen cost func-
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tional. A much celebrated problem is the problem of Euler’s elastica [Euler, 1744]
where the minimum curvature path joining two given configurations on the plane
is considered. Particularly elegant and other well-known variations include the
minimum-time solutions of [Dubins, 1957] and [Reeds and Shepp, 1990]. Optimal
paths of the minimum-time problem consist only of straight-line and circular-arc
segments which, when patched together, create discontinuities in the path cur-
vature and cause potential difficulty in implementation since abrupt changes in
curvature are hard to track. Proposed modifications that alleviate this problem
enforce that the curvature stay continuous, e.g., [Fraichard and Scheuer, 2004],
yet it is also possible to penalize the total curvature along the path in the expec-
tation that the optimal curvature will be continuous. [Halder and Kalabic, 2017]
takes the latter approach, considering the minimization of the curvature along a
path connecting initial and final unicycle configurations with free final time.

In this chapter, we will present a problem that penalizes both the curvature
and speed controls in maneuvering a unicycle from initial to desired final config-
uration. This helps both the curvature and speed controls to be smooth along an
optimal trajectory. These optimal trajectories closely resemble to those obtained
in |Halder and Kalabic, 2017]. Our solution is obtained using geometric optimal
control, where the necessary conditions for optimality are obtained via the Pon-
tryagin Maximum Principle (PMP), and Lie-Poisson reduction |[Krishnaprasad,
1993; Ohsawa, 2013|. Using geometric optimal control on SE(2) to find solutions

to path-planning problems has also been considered by [Sussmann and Tang, 1991;
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Krishnaprasad, 1993; Agrachev and Sachkov, 2004; Dey and Krishnaprasad, 2014;
Justh and Krishnaprasad, 2015b].

Studying a unicycle on the plane is important since often a collective of N
agents exhibits single agent behavior under synchronization. In the later part of
this chapter, we will present a framework for analyzing such a collective. This
framework is based on [Justh and Krishnaprasad, 2015b|, where every agent was
assumed to have constant speed. Here we will, however, consider a cost function
that penalizes both speed and curvature controls. In addition to the individual
control costs, there is one cost that is attributed to the ‘mismatch in control’ of
an agent with its ‘neighbors’. The neighbors of any agent is dictated by a fixed
graph of interaction. The strength of such interaction is captured by a coupling
parameter. It is shown that in extreme cases (no coupling and high coupling)
the optimal collective controls are directly associated with optimal controls for a
single agent problem. This framework is what we use in the later chapters of this

thesis where we consider optimal control problems for a continuum of agents.

3.2 Optimal Steering of a Unicycle

In this section, we consider minimizing the curvature and speed control costs of
a path in SE(2) connecting an initial unicycle configuration gy with its desired
final configuration gr at time 7. We formulate this optimization as a geometric
optimal control problem and derive the necessary conditions using PMP and Lie-

Poisson reduction. From the necessary conditions, we show that there are two

47



constants of motion: the Hamiltonian and the Casimir. We show that there are
three possible families of solutions depending on the values of Casimir and the
Hamiltonian. In the first case, the motion consists of segments of a U-turn; in
the second case, the motion consists of segments of parallel parking trajectories;
in the third case, the motion consists of straight lines or asymptotic approaches
thereto.

Consider the unicycle kinematic equations,

&(t) = v(t) cos O(t), (3.1a)
y(t) = v(t)sin6(t), (3.1b)
0(t) = u(t), (3.1¢)

where (z(t),y(t)) € R? is the position of the unicycle on the Cartesian plane,
O(t) € S! is the heading of the unicycle, v(t) is the unicycle speed control, and
u(t) is the steering control, equal to the rate of change of the heading 6(t).

The configuration of the unicycle can be represented as an element of the
matrix Lie group SE(2). Let g(t) € SE(2) where,
_cos O(t) —sind(t) x(t)-
9(t) = [sin6(t) cosO(t) y(t)]| - (3.2)

0 0 1

Then the equations (3.1) can be written in left-invariant form,

9(t) = g(0)&(u(t), v(t)), (3.3)

where,



and,

0 —1 0 00 1
Xi=11 0 0o/,X2=100 0 (3.5)
0 0 0 00 0

The matrices X; and X, are elements of the Lie algebra se(2). Together with
X3 = [X1, Xo] = X5 Xy — XX, Xj and X5 form a basis for se(2).

Without loss of generality, we can assume that gy = I3, since g(t) can always
be redefined according to g(t) := g;'g(t). Given a final time 7 > 0 and a final

state gp, cost function to be minimized is,

% /0 (u(t)? + o(t)?) dt. (3.6)

3.2.1 Optimal Control Solution

In order to solve the problem we form the pre-Hamiltonian,

H = (p.g&(u,0)) — 50 +27), (3.7

where p(t) € SE(2)* is the adjoint variable. To simplify the Hamiltonian, we

*

perform Lie-Poisson reduction, introducing the variable u(t) € se(2)* satisfying

the translation to identity,

{1, &(u, v)) = (p, g&(u, v)).

As an element of the dual space, j(t) can be represented as p(t) = iy X7+ po X5+

p3 X3, where { X}, X5 X5} are the basis vectors dual to {X;, Xa, X3}.
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The pre-Hamiltonian therefore becomes,

1
H(pyu,0) = (s € (u,0)) = 5 (0 +0%),
= (I X0 + o Xs + ps X, uX: + vXo)
1
- 5(“2 +Uz)a
1 2 2
= U+ fo¥ — §(u + v).

According to the PMP, the optimal control (u*, v*) satisfies,

H(p* u ) = H(p*, u,v). 3.8
(T Jnax, (1" u,v) (3.8)

Therefore the optimal controls are given by,
uy = p, (3.9)
Uy = fo, (3.10)
The reduced Hamiltonian is therefore,

H = H{pujug) = 5 (4 + 1) (3.11)

N | —

and the dynamics of the u; variables are given by |Krishnaprasad, 1993,

-ﬂl- - 0 —pus ,Uz-

f2| = | ps 0 0 W’ (3.12)

_ﬂ3_ | —H2 0 0 |
fin = —pafis, (3.13a)
[l = 41 j13, (3.13b)
fl3 = — i1 [ha- (3.13¢)
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Figure 3.1: M (black) plotted as an intersection of C (red) and #H (blue) for h =1

and three values of the Casimir ¢

Let,

c= 3+ 13 (3.14)

This variable is called the Casimir and it is a constant of motion, implying that
the variables po and usz evolve on circle of radius y/c. Along with the Casimir,
the Hamiltonian (3.11) is also a conserved quantity of motion. For convenience of

subsequent calculations, we will work with the following scaled Hamiltonian,

h=2H =i+ p3. (3.15)

3.2.2 Characterizing the Types of Motion

According to (3.14) and (3.15), the dynamics (3.13) evolve on the manifold M

where,
M=CnNH,
C = {(p, p2, pi3) € R ¢ = pd + 3}, (3.16)
H = {(1n1, pa, p13) € R - b = pii + iz}
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The manifold M is one-dimensional and equal to the intersection of the cylinders
C and H. The shape of M is determined by the Casimir ¢, while the shape of H
is determined by h. The motion of i evolves on M. Due to continuity, it must
evolve on a connected component of M, so it is important to consider the types
of possible intersections, of which there are three corresponding to three different
cases: in Case 1, C is strictly smaller than #; in Case 2, C is strictly larger than
H; in Case 3, C is equal in size to H. To perform a case-by-case categorization of
M, we note that, according to (3.14), the variable ps is restricted to +4/c and,
according to (3.15), pg is restricted to +v/h. In Case 1, ¢ < h, so |us| < v/ < V/h.
Therefore the motion evolves on a connected component of M where p; does not
change sign since y? = h — u3 > h —c¢ > 0. Similarly, in Case 2, ¢ > h, so
|12] < VB < /c. The motion evolves on a connected component of M where js
does not change sign since p3 = ¢ — pu2 > ¢ —h > 0. In Case 2, ¢ = h, so the
two constraints agree at the extremes. Instead of having M as a one connected
component, it actually has four disconnected components. These components
meet each other asymptotically at the extremes pq = ps = 0, s = £Vh. See
Fig. 3.1 for a visualization of the three cases. In the following, we study the three

types of motion in further detail.

Case1l: 0<c<h

The equations (3.13) admit the following explicit solutions by means of Jacobian
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(a) ¢ = 0.5 (solid black) and 0.75 (b) ¢ = 1.5 (solid black) and 2 (c)e=1

(dot-dashed red) (dot-dashed red)

Figure 3.2: Extremal trajectories for different cases (solid black) — increasing c
produces the dot-dashed red curve; increasing n produces the solid blue curve;

changing s; or s, produces the dashed green curve. h = 1 for all three cases.

elliptic functions [Davis, 1962; Byrd and Friedman, 1971],

= sV do (x/ﬁ(t + 1), k) , (3.17a)
11 = 814/ sn (\/ﬁ(t + 1), k) , (3.17h)
1 = v/c cn (x/ﬁ(t + 1), k;) , (3.17¢)

where the modulus % of the elliptic functions is given by k% = 7. The parameters

s1 € {1,—1} and n € R do not depend on ¢ and h, but on the endpoint constraints.

Note that these solutions are periodic with the period given by 77 := ﬁx/%k), where

K (k) denotes the complete elliptic integral of the first kind.

Proposition 3.2.1. Let 0 < ¢ < h. Assume n = 0, then any extremal trajectory
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s given by,

(t) = % (1 —du (\/ﬁt, k)) (3.18a)

y(t) = % (ﬁt B <am (\/ﬁt, k) k)) (3.18b)

0(t) = s1 - am (\/Et, k:) = s;cos! (cn (\/ﬁt, k)) — gy sin* <sn <\/Et, k)) ,
(3.18c¢)

where E(-,+) denotes the incomplete elliptic integral of the second kind.

Proof. We have from (3.9) and (3.17a),
Uy = iy = 81\/E dn <\/ﬁt, k) )
Integrating the equation 0 =u gives
0(t) = s - am <\/ﬁt, k;) = sycos <cn (\/ﬁt, l{;)) = sysin? (sn <\/ﬁt, ]f)) )
Since the optimal speed control is given by (3.10) and (3.17b),
Uy = Uy = S14/C SN (\/ﬁt, k;) ,

we may now integrate x and y dynamics to obtain position variables as functions

of time. We have,

() = /0 "y cos(8(1))dt
= /t s14/c sn (\/ﬁt, k;) cn (\/ﬁt, k;) dt

- —31£ : % [dn (x/ﬁt, k;)]

YN 319

t
t=0
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Similarly,

o) = [ w0
_ /Ot Ve su® (Vi k) dt
- [V o (v75) )
= 3 (Vi =B (s (ViL£) 1)) (3:20

t

t=0

Studying the extremal trajectories in n = 0 case is important since any other
trajectory can be expressed by means of these trajectories after a suitable trans-

lation and rotation. This is demonstrated in the following proposition.

Proposition 3.2.2. Assume 0 < ¢ < h. Let us denote an extremal trajectory
belonging to n = 0 case by (xo(t),yo(t),0(t)) according to (3.18). Then any

extremal trajectory generated by (3.17) can be expressed as,

x(t) wo(t + 1) zo(n)
= R(—v) - : (3.21)

y(t) Yo(t + 1) Yo(n)
0(t) = o(t +n) — 6o(n), (3.22)

where R(-) is the planar rotation matriz and v is defined as,

Y :=s-am (\/ﬁn) = 0o(n). (3.23)
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Proof. Indeed, equation (3.22) is readily achieved by integrating (3.17a). Further,

notice that

&(t) = s1v/c sn <\/E(t +n), k‘) cos (31 - am <\/E(t +1), k‘) - @b)
=/ <81 - cos(t)) - sn (\/ﬁ(t +n), k) cn (\/E(t +1), k)
+sin (1)) - sn <\/E(t +1), k)) ;

and,

y(t) = s1v/csn <\/E(t +n), k;) sin (sl - am (\/ﬁ(t +n), k) — ¢>
=+/c (—31 -sin(%) - sn (\/E(t +n), k) cn (\/ﬁ(t +n), k)
+ cos(1) - sn? <\/ﬁ(t +7n), k:)) :

Compactly, we have

(t) cos(¢)  sin(yp) | | dolt +n)
- : . (3.24)
y(t) —sin(y) cos(¥)| | go(t+n)

Integration of (3.24) yields (3.21). |

Case 2: ¢ > h
This case admits solutions analogous to those of Case 1 and we will proceed in a

similar way. To start, we write down solutions to (3.13) as,

i = Vhen (Ve(t+n), k), (3.25a)
pi2 = soV'hosn (Velt +n), k), (3.25b)
ps = sov/c dun (Ve(t +n), k), (3.25¢)
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with the modulus k% = % sy € {1,—1} and n € R are similar parameters as in

case 1. These solutions are periodic as well, with period given by 75 := &\/(Ek).

Proposition 3.2.3. Let h > 0 and ¢ > h. Assume 1 = 0, then any extremal
trajectory is given by,
z(t) = s2- k(1 —cn (Vet, k) (3.26a)
y(t) = 52 (Vet — B (am (VL. k), 1)) (3.26b)
0(t) = cos™* (dn (vet, k) =sin~" (k sn (vet, k), (3.26¢)

where E(-,+) denotes the incomplete elliptic integral of the second kind.

Proof. The proof is similar to that of Proposition 3.2.1 and uses elementary inte-

grals of Jacobi elliptic functions. |
Analogous to Proposition 3.2.2, we have the following result.

Proposition 3.2.4. Assume h > 0 and ¢ > h. Let us denote an extremal trajec-
tory belonging to n = 0 case by (xo(t), yo(t), 0o(t)) according to (3.26). Then any

extremal trajectory generated by (3.17) can be expressed as,

z(t) zo(t + 1) wo(n)
= R(—v) - : (3.27)

y(t) Yo(t +n) Yo(n)
0(t) = 0o(t +n) — 0o(n), (3.28)

where R(-) is the planar rotation matriz and v is defined as,

¢ :=cos™" (du (Ven, k) =sin™" (k sn (Ven, k) = bo(n). (3.29)
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Proof. The proof is essentially the same to that of Proposition 3.2.2. Note the

different definition of ¢ in (3.29) |

Case 3: c=h

This case is transitional between case 1 and case 2. Putting the modulus k% =

C

£ =1 in either of the equations (3.17) or (3.25), we get the following solutions

1 = s1v/e sech (Ve(t +1)) , (3.30a)
p2 = s2v/c tanh (Ve(t +1)), (3.30b)
ps = s3v/c sech (Ve(t +1)), (3.30¢)

with s1, $9, 83 € {1, —1} and n € R. We readily obtain the following result.

Proposition 3.2.5. Let ¢ = h > 0. Assume n =0, then any extremal trajectory
s given by,
z(t) = s5 (1 — sech (Vct)), (3.31a)
y(t) = s1s2 (Vet — tanh (Vet)), (3.31b)

0(t) = sy tan™" (sinh (vV/ct)) . (3.31c)

Proof. Indeed, integrating 0=u = w1 yields (3.31c¢). Since uy = uo, we get
& = sov/csech (v/ct) tanh (Vet),
§ = s1s9y/ctanh’ (Vet),

which in turn gives (3.31a)—(3.31b) after integration. |
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In the same spirit as before, we write any general extremal trajectories in terms

of these trajectories.

Proposition 3.2.6. Assume ¢ = h > 0. Let us denote an extremal trajectory
belonging to n = 0 case by (xo(t),yo(t),0(t)) according to (3.31). Then any

extremal trajectory generated by (3.30) can be expressed as,

x(t) zo(t + 1) zo(n)
= R(—v) - : (3.32)

y(t) Yo(t +m) Yo(n)
0(t) = 0o(t +n) — 0o(n), (3.33)

where R(-) is the planar rotation matriz and v is defined as,

¢ = sy tan”" (sinh (ven)) = 6o(n). (3.34)

This case consists of two types of solutions: a straight line solution, correspond-
ing to the subcase where the final condition lies on the z-axis, and an asymptotic
solution, which asymptotically approaches a straight line with slope cot . See

Fig. 3.2c for a graphic.

3.2.3 On Time-optimality

From an engineering perspective, it seems appealing to consider a similar problem
where final time 7" is free. Therefore we want to reach from initial configuration
go to the final configuration g7 in a minimal time so that the control cost (u*+v?)
is minimized along the optimal trajectory. It also makes sense to add a penalty
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to the time it takes for the unicycle to complete the maneuver. The cost function

can be expressed as

1 T
min — a+u(t)? +v(t)?)dt, 3.35
pmin 5 [ (sl + o) (3.35)

for some time-penalty parameter a > 0. Note that without the penalty on time, a
solution could correspond to a prohibitively large final time which is not desired
from a practical viewpoint. This time-optimal version is just a special case of
what we have considered in section 3.2. To see this, we compute the Hamiltonian
(3.11) as, H = (4 4 p3 — a). Since time-optimality requires the Hamiltonian to
be identically zero, we have special case of h = uf + 3 = a (c.f. (3.15)). This
also gives the bounds of the optimal controls u; = 1, us = sz to be within ++/a.
We can, therefore, use the parameter a to set a desired bound on the controls
that is permitted by physical constraints. A closely related problem was studied
in [Halder and Kalabic, 2017|, where the speed control v was assumed to be of
constant magnitude, and the minimum time problem associated with minimum

curvature path was considered.

3.3 Optimal Control of a Collective of Agents

Now we consider a collective of N agents moving on the plane. Motion of each
agent can be modeled by the unicycle dynamics (3.1). As seen before, this dynam-

ics can be equivalently expressed as a controlled dynamics in SE(2), g, = gx&x(ug),
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where
Sk(uk) = ulel + ungg, k= 1, 2, ceny N. (336)

We suppose these agents interact among themselves directed by a fixed adjacency
matrix A = [a;;] € RV*N. a;; = 1 if agent ¢ and agent j interact and a;; = 0
otherwise. The nature of the interaction will be made precise shortly. Let D be the
degree matrix, i.e. the diagonal matrix where the i-th diagonal entry represents
the number of agents the i-th agent interact with. Then the graph Laplacian is

defined by B := D — A. In this setup, we seek to minimize

- / L(E (s (6))s o E ()t
/ <Z|§k| + ZZ ar; 1§ = )dt, (3.37)
k=1 j=1

for some constant x > 0 and the fixed endpoint conditions gx(0) = gro, gx(T") =
gers k= 1,..., N. Note that we used the trace norm |¢| = /tr(£7€). The param-
eter x is called a coupling constant since it acts as a weight to the second term
in the cost functional (3.37). Without the coupling term, this problem simplifies
to solving N copies of the single agent problem as considered in Sec. 3.2. The
coupling term penalizes agent k through the ‘mismatch in control’ with the agents
that it is interacting with (i.e. nonzero entries of k-th row of the matrix A). This
type of cost functional is aimed to capture the ‘allelomimetic behavior’ or the
tendency to copy neighbors in a natural collective. [Justh and Krishnaprasad,
2015b] studies a very similar problem where the speeds of each agent is assumed
to be constant. Here the speed controls (ugg, k = 1,2, ..., N) are to be determined
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by solving the optimal control problem (3.37).

Since the underlying optimal control problem is essentially the same, we will
use the results from [Justh and Krishnaprasad, 2015b] to derive first order opti-
mality conditions using the Pontryagin’s Maximum Principle and the Lie-Poisson

reduction technique. Denote py. € se¢*(2) by,
3
e = X7, (3.38)
i=1

.
where { X2, X3, X3} is dual basis to { X1, X5, X3}. If we define ji;, = [,um Lo ng] :

first order optimality (PMP) yields

Uy i
=V ||, (3.39)
uy N
where
U= (Iy+2xB) @) "' = (Iy +2xB) ' ® L. (3.40)

Here ® denotes the Kronecker product. The reduced Hamiltonian in (se*(2))V

takes the form

1
h:ﬂﬂ; ﬂg]qf ] (3.41)

The Lie-Poisson reduced dynamics is then expressed as follows. Define p =
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o = A(p)Vh, (3.42)

where A(p) = —diag(Qy, -+, Qy), with

0 ME3  — k2
Qo= |- 0 o |, k=1 ,N. (3.43)
HE2 0 0

T T
Also we have Vh = [(Vh)l---(Vh)N} , (Vh), = [f% oh 0} ., k=

Opr1  Opga

1,...,N. Note that along with the Hamiltonian (3.41), there are N Casimirs

which are constants of motion. The Casimirs are defined as,
2 2
Ck = Mk2 T Hig- (3.44)

In both the extreme cases (i) no coupling (x = 0) and (ii) high coupling (x — o0),
the collective optimal problem simplifies to studying the single agent problem as
considered in Section 3.2. The y = 0 case is immediate. The details of the high
coupling limit x — oo is worked out in [Justh and Krishnaprasad, 2015b| (see

section 3(c¢)). Defining the quantities

1 — 1 — 1 —
) = N ;/,le, Qg = N ;/,LjQ, Q3 = N jz:;ujg, (345)

we obtain the following differential equations

a1 = —aaas,
dg = (13, (346)
dg = —109.
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These are the same equations we already obtained and analyzed in details for a

single agent case (3.13).

3.4 Concluding Remarks

In this chapter, we studied an optimal control problem of a unicycle on the plane
in detail. First order necessary conditions are obtained by using the Pontryagin’s
Maximum Principle and the Lie-Poisson reduction technique. All possible mo-
tion types are properly categorized by the relative values of the Casimir and the
Hamiltonian. In the later part, we presented a framework for studying a class
of optimal control problems involving many agents. These agents interact with
each other by a pre-determined interaction graph. The interaction enters into the
optimal controls of the agents through the additive ‘control-mismatch’ term in
cost functional. This type of cost has been used in literature [Justh and Krish-
naprasad, 2015a,b| to capture the ‘allelomimetic behavior’ in natural flocks. The
single agent case, considered in this chapter, emerges naturally in a synchroniza-
tion limit of the collective model. This collective framework gives us the starting
point to conceptualize a continuum flock where we study the limiting case of
N — oo under a specific interaction graph. These topics are described in detail

in later chapters of this thesis.

64



PART 11

ANALYSIS OF COLLECTIVE MOTION:

TOP-DOWN APPROACHES
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Chapter 4

Continuum Flocking and Control

4.1 Motivation

It is a common practice in classical mechanics to consider a continuous description
of a physical system. Applications include vibrating rods, vibrating membranes,
fluid mechanics etc. [Goldstein et al., 2001; Chorin et al., 1990] The transition
from discrete-particle system to a continuum enables a compact description of
the system, often leading to partial differential equations that reveal deep insights
into the system, e.g. wave-like phenomena, which may be too obscure or inelegant
in the discrete counterpart. In the same spirit, we attempt to conceptualize a
continuum flock and address its optimal maneuvering properties. Biological flocks
are known to show remarkable response to predator attacks. In the case of an
attack, the whole flock seems to divert away from the predator. They can perform
these tasks my means of propagating information (in this case, threat) through

the flock at a much higher speed than the flocking speed [Attanasi et al., 2014].
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A key goal of our approach is to capture this phenomenon, i.e. to uncover the
wave-like aspects of flocking. An optimal control problem for a flock of finite
agents is presented in Section 3.3. We take the same framework and formulate a
general continuum version of the problem.

Consider an ensemble of N identical, self-steering particles, each obeying a

drift free left invariant system on a matrix Lie group G,

where g is the Lie algebra of GG. These particles interact with each other by
a pre-defined graph of interaction. The collective behavior of such a system was
extensively studied in [Justh and Krishnaprasad, 2015b| by solving an appropriate
optimal control problem. Borrowing the notations of [Justh and Krishnaprasad,
2015b], we write the cost functional as “self-energy” term coupled with a “mismatch

in steering” term

J:/O L(E(E), ... En())dt, (4.2)

where,

1 N N N
L&, - &n) = 5 (Z I&1" +x D> ai g - §j||2> : (4.3)
1=1

i=1 j=1

where binary valued a;;’s populate the adjacency matrix that defines the graph

of interaction and y > 0 is a coupling constant. Note that the inner product

(€,m) = tr(Tn), and the corresponding trace norm, ||€]| = 1/(&, &) are in effect,

where £, 1 € g.
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In an attempt to extend this view, we consider an infinite number of particles,
i.e. the limiting case of N — oco. Here we consider a one-dimensional continuum
of particles, i.e. each particle is labeled by a point on a circle S'. This way, the
agents are thought as a virtual filament. Moreover, we consider a cyclic interaction
graph, i.e. each particle is thought to be interacting with the ‘next’ particle on
the circle. We introduce the maps, g : R x S' — G and ¢ : R x S' — g. The
mismatch in steering term can then be written as the gradient of ¢ in the limiting
case. In other words, in continuum limit of N' — oo, the Lagrangian in (4.3) take

the form,

wo=5 [ (ns(t O+ x | X2

Note that the summations over the number of particles in (4.3) have been replaced

) do. (4.4)

by integral over the circle in the continuum setting in (4.4).

Let n be the dimension of the Lie algebra g and {A4;, A, ..., A,} denote an or-
thonormal basis of g. We introduce the controls v; : Rx S' = R,i=1,...m

so that & can be written as,

§(8,0) = D _uilt, )4, (4.5)

where m < n. With this substitution, the Lagrangian in (4.4) can be rewritten

as,

l\DI»—t

/0 szj ( (a“if) do. (4.6)
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Finally, we attempt to minimize the cost functional,

T
J:/ L(uy, ..., uy,)dt, (4.7)
0

subject to the group dynamics, 89&’9) = g(t,0)E(t, 0) = g(t,0) (; wi(t, G)Ai) and

the fixed end-point constraints, g(0,0) = go(¢) and ¢(7,0) = gr(6).

We will note that this optimal control problem can be cast in a more convenient
setting of loop groups, the group of smooth functions from the circle to the Lie
group G. In Section 4.2, we will develop a general framework for such optimal
control problems in loop group setting. Controllability results will be discussed
in Section 4.3. This helps us to describe optimal control solutions in Section 4.4.
Necessary conditions will be derived by both calculus of variations and Pontrya-
gin’s Maximum Principle approach. An example of continuum of nonholonomic
integrators will be studied in detail in Section 4.5. Section 4.6 will present deriva-
tion of optimal control equations in the SE(2) case along with their numerical

treatment. This is a joint work with Dr. E. Justh [Halder et al., 2019a].

4.2 A Control System on a Loop Group

Let G be a finite dimensional matrix Lie group and g be its Lie algebra of di-

mension n. We will study spaces of smooth maps from the circle S' to G and

g,
G =C>(84G), £ =C"(S%9).
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We can construct Sobolev completions of ¥ and .Z as done in [Krishnaprasad
et al., 1983|. We can always view the Lie algebra g as a subalgebra of the general
linear algebra gl(r, R) for some r > n. Defining the space Z = C>(S*;gl(r, R)),

we have

GYCH L CX.

For any f € %, use the Sobolev k-norm (k > 1)

k
£l =

d! 2
il (0)] db. (4.8)

where

17 = tr(f"f).

Let the completions of ¢4, .Z, and & in this norm be denoted as %, %, and %,
respectively. By Proposition 3.1 of [Krishnaprasad et al., 1983], % is actually a Lie
group under pointwise multiplication operation (g1g2)(0) = ¢1(0) - g2(0), g1, 92 €
4.0 € S'. Moreover, %, is the Lie algebra of 4, under pointwise Lie bracket
defined as [f1, f2](0) = [f1(0), f2(0)], fi,f2 € %, 0 € S*. The spaces 4, and %,
are called loop groups and loop algebras |Pressley and Segal, 1986].

Similar to the finite dimensional Lie groups, we introduce (pointwise) left action
by Ly : %, — %, h — gh, the left translation by g € ¢,. The tangent map of L,
is then given as T}, L, : Th%, — T,;,%;. We now define a left invariant vector field

on % as follows. A vector field X : ¢, — T9,., h — X (h) is called left invariant if
ThLy(X(h)) = X(gh), Yh € %,. (4.9)
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Recognizing the Lie algebra .}, as the tangent space at identity e of 4, (e = {f €
9| f(0) = eq}, where eg is the identity element of G), i.e. £ = T.%;, we can

define a left invariant control system as,

W) Ly (6(0) = 91) - Euc (410)

where a given control input u(t) determines a controlled vector &, in the Lie
algebra .Z;. Note that the loop algebra £ can be identified with the tensor
product space g ® F, where I is the ring of real valued C* functions on S*.

Choose a basis of g as {41, Ay, ... A, }. Then, any £ € % can be written as,
§0) =&)AL + -+ &(0)A,, Oe S

where each of {’s (k= 1,...,n) are smooth functions on the circle. We will now

limit ourselves to the study of control vectors &, of the form,
Eury = Wi (t) A1 + -+ + U (t) A, (4.11)

where m < n and the control input u(-) = (u1(+),. .., un(-)) belongs to the set U
of piecewise continuous U valued functions, where U is vector space of R™ valued
smooth functions on the circle, i.e. U := {u(-) : u is piecewise continuous in t, u(t) €

U=C>SHR™)}.

4.3 Controllability

Having constructed the control system on the loop group %, it is natural to ask
the question of controllability or accessibility, i.e. given any two points ¢g; and
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go in 4, if they can be connected by a piecewise differentiable curve, consisting
of possibly finitely many pieces, each piece being an integral curve of a left in-
variant vector field defined by choosing a control u(-) € U. In finite dimensional
analogue of this question, i.e. where we shrink the circle S* down to a point, the
controllability question is answered by the well known Chow-Rashevsky theorem
[Wei-Liang, 1939; Rashevsky, 1938]. In infinite dimensional cases, however, it is
not immediate if the Chow-Rashevsky theorem remains valid. There is a body of
literature |Heintze and Liu, 1999; Salehani and Markina, 2014| that attempts to
attack this problem. It is the result of [Heintze and Liu, 1999] that we use in this
section. This result addresses the controllability question in a weaker sense which

we will make explicit.

Let M be a complete connected Hilbert manifold and let X(M) denote the
set of all smooth vector fields defined on M. Let F C X(M) be a given family of
smooth vector fields on M. Let Rz(x) be the set of points in M that can be joined
from x € M by means of a piecewise differentiable curve, each piece of which is
an integral curve of a vector field in F. Let Lie F be the Lie subalgebra of X(M)
generated by F, and Lie, F = {X(z) : X € Lie F} - the evaluation of Lie F at
x € M. If M is finite dimensional, the classical Chow-Rashevsky theorem holds:
if Lie, F = T, M for each z € M, then Rz(x) = M, for every x € M. In a
general Hilbert manifold M, the following generalized Chow-Rashevsky theorem

holds:
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Theorem 4.3.1 ([Heintze and Liu, 1999]). Let M be a complete connected Hilbert
manifold and F a family of smooth vector fields defined on M. If Lie, F is dense

in T,M for all x € M, then Rx(x) is dense in M for all x € M.

Theorem 4.3.1 is a weaker statement than the one for finite dimensional case.
Here we make precise the strong and weak notions of controllability. Consider
the control system constructed in (4.10)—(4.11). Note that the loop group %
can be given a structure of a smooth Hilbert manifold [Eells Jr, 1966; Ebin and
Marsden, 1970]. In this case, the family F € X(%,) is given by {X;}, , where

Xi(g(t)) = g(t) - (ui(t)Ay), for g(t) € .

Definition 4.1. (Strong Controllability) The control system (4.10)-(4.11) is
said to be strongly controllable if R = %, i.e. given any two points g1, g2 € %,

we can find a control input that will transfer the system from g, to gs.

Definition 4.2. (Weak Controllability) The control system (4.10)—(4.11) is
said to be weakly controllable if Rz is dense in ¥, i.e. given any two points
g1, 92 € 9, we can find a control input that will transfer the system from g; to a

state that is arbitrarily close to gs.

The set {A4,..., A} is said to be bracket generating if the iterated brackets
of its elements span the Lie algebra g. In the finite dimensional analogue of
the control system defined in (4.10)—(4.11), the (strong) controllability condition
according to Chow-Rashevsky theorem is equivalent to having the set {A4;}]",

bracket generating in g. We will now try to establish (weak) controllability of
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the infinite dimensional loop group case by assuming that {Ay, ..., A,,} is bracket

generating in g.

Theorem 4.3.2. Consider the control system (4.10)—(4.11) on the loop group Y.
Assume that the set {A;}72, is bracket generating in g. Then the system is weakly

controllable.

Proof. The definition of left invariant vector fields on ¥ (4.9) can also be made
explicit by means of smooth functions on %;. Let D be the set of smooth real val-

ued functions on ¥;. Then given an element £ € %, we can define a differentiable

vector field X¢ : D — D as,

(Xef)(g) = (Df)g- 98 feD, (4.12)

where D denotes the differential operator. Given two vector fields X¢, X,, € X(%,),

we can calculate their Jacobi-Lie bracket defined as,

[X§>X7]]f:X§(X7]f) _Xn(Xff)> f €D.

We compute,

Xe(Xf)(g) = (Xe((Df)g - gm)(9)
=D((Df)g-9m)g - 9§
= (D*f)g - (gn,96) + (Df)g - (D(gn)g - 9€)

= (D*f)g - (gn,9€) + (Df)g - (9n).

Similarly,

Xy(Xef)(g) = (D*f)g - (98, 9m) + (Df)g - (gn€).
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The symmetry of the second differential operator D? yields

[Xe, X0l f(9) = (Df)g - (9(&n = n&))

= Xiem f(9),

where [£, 7] is the usual (pointwise) Lie bracket on Z. This leads us to a detailed
study of the Lie bracket of the loop algebra .Z. It is immediate that %} is

generated by the generators { P },, cz, reqi,..n} defined as,

Pmro=¢mi A (4.13)
Let the structure constants of g be denoted by I') . Then,
[P, Pma] Zr’“ pretma, (4.14)

With this notation, a controlled vector {(t) = &u¢) € Z% can be expressed as

Suty = Z (Z u,ﬁ”"(t)Pﬁ*) , (4.15)

r=1 \m,€Z

ez

mr(t) € C’s are the Fourier coefficients of the control

where for each r =1,....m, u
ur(t) and ul (t) = u, ™" (t) (since the controls are real). We now define a family

of vector fields on 4, as F = {X]"" },n, ez, requ,...,m}, Where

X f(g)=(Df)g-gP™, feD.

Taking bracket of any two vector fields from the family F yields another vector
filed which is governed by the commutator relationship in (4.14). Note that since
the set {Ay, ..., A;n} is bracket generating in g, for each [ € {m + 1,...,n}, we are

guaranteed to get the item
P = PRt a, € 25 U{0},m, € Zor € {1,....m},

75



at some depth of iterated brackets from the family F. By choosing m, € Z,r €
{1,...,m}, we can then achieve any m; € Z. We have thus proved that if the set
{A,}requ,.m) is bracket generating in g, Lie, F is dense in the tangent space T,%;
at each g € 9. The generalized Chow’s theorem 4.3.1 then provides the required

(weak) controllability result. |

4.4 Optimal Control Problems

We start with the left invariant control system on the loop group % as in (4.10)-
(4.11). Now for a given T" > 0, consider the following fixed end-point optimal

control problem,

minJ(u):/O L(g(t),u(t))dt

ueU

(Pg) (4.16)

subject to: g =g-&  9(0) = g0,9(T) = gr; 90,97 € %
We are interested in deriving necessary conditions for optimality for such optimal
control problems. Special care needs to be taken since the problem is posed in an

infinite dimensional setting. We provide two different approaches for doing that.

4.4.1 Calculus of Variations Approach

Let z(t) = (z1(t),...,2,.(t)) € C*(S*,R") =: X denote a vector that can be used
to represent the components of g(t) € G, for some r > n. The group dynamics
g=g-&u) =g- (>, wA;) effectively lets us write the control u(t) as a function

of (z(t),4(t)). The fixed endpoint constraints in g can be translated to some
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nonholonomic constraints of the form

O(x,3) = /0 d(a(t), i(t))dt = 0, (4.17)

where ¢(x(t),#(t)) € C>=(SY, R!) =: Z, for some | < r. Then the problem (Pg)

can be written as,

minJ = /0 : L(x(t), #(1))dt, (4.18)

subject to the nonholonomic constraints (4.17). Here we have to keep in mind that
the variations in x are to be both in ¢ and 6. This is a well known problem called
the ‘Lagrange problem’ in calculus of variations. The one-dimensional Lagrange
problem is well studied |Gelfand and Fomin, 1963; Elsgolc, 2012|. However, the
theory behind multidimensional problem is more complicated and less complete
|Giaquinta and Hildebrandt, 1996; Bliss, 1946]. The difficulty arises since not all
the & are freely variable. According to |Giaquinta and Hildebrandt, 1996, p. 112],
there exist a Lagrange multiplier A € C*°(R x S';R!), such that we can find the
free extremals of the augmented Lagrangian in an usual way. Moreover, since the
constraints (4.17) are of isoperimetric type, A does not depend on ¢ [Rund, 1966,

p. 349]. We can write the augmented Lagrangian as
L=L+(\o),. (4.19)

where A = (A1, Ay, ..., \)) € C=(SH; RY).

Furthermore, we are interested in a special structure of the Lagrangian, namely
2m
L(z, i) = / Lz, %) db, (4.20)
0
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where the functional £ is called the Lagrangian density. The augmented cost

function take the form,

2T 2T
J(x, 1) // (x, & d9dt+2/ (0)p;(z, ) do

21
= / / L(x, %) dodt,
0 0

where the redefined Lagrangian density is given by,
!
L=L+D> Ny (4.21)
j=1
We will relabel £ by £ in subsequent analysis for convenience. By invoking
notations z; = %, Ty = %, Tip = % = g etc., we can write £ = L(x, g, Ty, Tyg).

In order to optimize this cost functional, the variational principle requires that,

~ T 2w T aﬁ 8£ aﬁ 8£
0J = /0 /0 2:: (8—%51’@ + —8%9 55(71'79 + axlt(sxl T+ 8ZL’Z P (51’“9) dodt = O’

where 0y denotes variation of the quantity y that vanishes at the endpoints of ¢

and 6. Using integration by parts, for each i, we may write,

o (oL
o oL
= —/0 % <a[[’i79) 5$2d9,

27
oL Sl — oL
0 8$Ci,9 Zi0

5:17@'

Similarly,

T oc o roc
; 0xit5Ii’tdt = —/0 E (axlt) (Sl'zdt,

T 27 8£ 2w 82
/0 /0 oz, w&EZ wdldt = / / 5150 (8:@ w) ox; dodt.
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Hence,

. T ror oL 0 (oL o (o o? or

The Euler-Lagrange equations can then be expressed as,
oL 0 ([ oL 0 (oL 0? oL

—— =) -= = =1,2,..,r. (4.22
oz, 00 (axi,g) ot (axi) * Biog (axi,w) 0, i=12..r (422)

4.4.2 Maximum Principle Approach

In this section we provide a brief exposure to Pontryagin’s Maximum Principle
(PMP) type argument in infinite dimensional spaces. It is to be noted that PMP
does not automatically hold in general infinite dimensional optimal control prob-
lems, one requires some more assumptions for it to work. A detailed study on
this subject is done in Appendix A. Here we only define some notations and
assumptions to state the necessary theorem.

We consider an abstract differential equation in a Hilbert space X,

dx(t)
dt

= f(t,z(t),u(t)) a.e.in [0,T], (4.23)

where x(t) € X, u(-) € U, and T > 0. Here X is called the state space and U
is the set of all measurable functions u(-) : [0,7] — U, where U is a separable
metric space called the control space. With this setup, we formulate the following

optimal control problem (P),

min J(u) = L(t,z(t),u(t))dt
(P) ueld /0

subject to: & = f(t,z,u) a.e. in [0,T], x(0) =z, x(T) = xr.

(4.24)
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We assume that both the functions f(-,-,-) and L(-, -, -) are Bochner integrable in
t € [0,7] and Lipschitz continuous in z(t) € X, with constant K. Furthermore,
we require the existence and continuity of the Fréchet derivatives f.(¢,z,u) and
L (t,z,u). We also assume the functions f, L and their derivatives f., L’ to be

bounded, i.e. there exists an M > 0, such that

1f(t 2 u)ll < M, | fo(t 2 u)l] < M,

IL(E, 2, w)l] < M, || L (¢ z,u)|| < M,

for all (¢, z(t),u(t)) € [0,T] x X x U. Note that these hypotheses ensure a contin-
uous and unique solution of (4.23) to exist [Avez, 1986]. The following technical

details is one of the key ingredients in the proof of the PMP.

Definition 4.3. (Finite Codimensionality) |Fattorini, 1987 A subset S of a
Hilbert space Z is called to be finite codimensional in Z, if there exists a closed
subspace Z, C Z of finite codimension such that S, = I1.(co(S)), has nonempty
interior in Z., where Il. denotes the orthogonal projection from Z onto Z. and ¢o

means closed convex hull.

We will now make a key assumption to derive a nontrivial maximum principle.
Let a solution of problem (P) exist and the optimal control be denoted by u* € U
and let the corresponding optimal trajectory be denoted as x*(-). Then define the

‘reachable set’ as,
R:= {Z(T) € X | z(t) :/0 fi(s,2*(s),u*(s)) - z(s)ds
+/0 (f(s,2*(s),v(s)) — f(s,2%(s),u"(s))) ds, for some v(-) € U} (4.25)
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(A1) The set R is finite codimensional in X.

Remark 4.1. In general, it is not clear whether there exists a relationship between
controllability (strong or weak) of the system and the finite codimensionality
assumption of the ‘reachable set’ R. We will, however, prove that in a special
case of G = H(3), the Heisenberg group, the strong controllability implies finite
codimensionality of R. It is of future consideration to address this question in a

general case.

Using usual formalism, we invoke the pre-Hamiltonian function H : R x X X

UxRxX*—= R as,

H{(t, x(t), u(t), po, p(t)) = poL(t, x(t), u(t)) + (p(t), f(t, (1), u(t))),  (4.26)
where p(t) € X* is called the costate variable. Then the PMP can be written as,

Theorem 4.4.1. (Mazimum Principle) Let u* € U be an optimal control for
problem (P) and x*(t) be the corresponding optimal trajectory. Then, there exist
a pair (p5,p*(t)) € R x X*t € [0,T], such that (p5,p*) # (0,0), p§ < 0, p*(+)

satisfies the differential equation,

pr(t) = = (falt, 2" (), w(t))" p"(t) — PaLL (¢, ™ (1), u' (1)), (4.27)

where by A* we denote the adjoint operator of the operator A. The pointwise

mazximization of the pre-Hamiltonian holds,

H(t, 2" (t), u™(t), pp, " (t)) = max H(t, 2" (t), v, pg, " (1)) (4.28)
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for a.e. t € [0,T]. Moreover, x* and p* satisfy Hamilton’s canonical equations,

i.e.
dt = 5—])*(t’x yU y Py, P ) (429)
T e (t,x*, u*, p5, p*). (4.30)

A proof of this theorem is rather complicated and is given in Appendix A. We

now use this result to state a maximum principle for the loop group case.

Theorem 4.4.2. (Mazimum Principle tn loop group setting) Let u* € U
be an optimal control for problem (Pg) and g*(t) be the corresponding optimal
trajectory. Assume the finite codimensionality condition (A1). Denote %y, the
Hilbert space of k-Sobolev completion of the space Z = C=(S*,gl(r,R)), for some
r > n. Then, there exist a pair (p§, p*(t)) € Rx %y, t € [0, T], such that (p§, p*) #

(0,0),p5 <0, p*() satisfies the differential equation

pe(t) = —p"(t) - &(w (1), (4.31)

and the pointwise maximization of the pre-Hamiltonian holds,

H{(g*(t),w"(t), po, p" (1)) = max H(g*(t), v, py, p* (1)), (4.32)

velU

for a.e. t €10, T]. Moreover, g* and p* satisfy Hamilton’s equations, i.e.

- T % ) y K0
dt :_59*(g y U s Poy P )

Proof. 1t is almost immediate that under a finite codimensionality assumption like
(A1), we can state a maximum principle like Theorem 4.4.1 for problem (Pg). The
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only caveat is that the state space ¥ is not a Hilbert space and hence Theorem
4.4.1 cannot be applied directly. However, adopting an ‘enlargement’ technique
[Brockett, 1973; Justh and Krishnaprasad, 2015a], we can state an analogous
maximum principle. We recognize that the loop group %, is a subset of %. The
space ) can then be regarded as the ‘raised’ state space. The dynamics (4.10),
along with the initial condition g(0,0) = go(#) € G for all # € S, ensures that
g(t,0) remains in G for all (¢,6) € [0,T] x S'. Endow the space gl(r, R) with
the trace inner product and an induced norm, i.e. (A, B) ;) = tr (ATB) and

| Al = /tr (ATA), for A, B € gl(r,R). We now define the pre-Hamiltonian

gl(r)

H: %, xUXxRxZ%, — R as,

H{(g(t),u(t), po, p(t)) = (p(t), g(1)€(u(t))) 5, + poL(u(t)), (4.34)

where the duality pairing in the definition of H can be explicitly written as,

o k dz
le) g0, = [ <MZ ) (a0, B)E(u( »»Wm

/ Ztr<d9Z (t,0)7 Cfel((t,e)f(u(t,é))))dé.

We are now all set to apply Theorem 4.4.1. If u* € U is an optimal control, then

we have,

H(g*(t),u"(t),pp,p"(t)) = max H(g"(t), v, pp, p"(t))- (4.35)

velU
It is obvious that 2L (9% u”, pg,p*) = g"€(u) = g*. We can also derive for any
g(t) € %y, (suppressing other arguments)

GH o ™ +0) ~ H(g)
0g* a—0 o

= (p", GE(u")) 4, = (PEW) . 9)
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which implies the adjoint equation to (4.10) is,

pE(t) = —p"(t) - E(u (1)) " (4.36)

4.5 Special Case : G = H(3)

The previous section on optimal control provides a concrete foundation in which
we can state the maximum principle for the considered optimal control problem.
In this section, we will explore a special case where we take the Lie group, G as
the Heisenberg group, H(3). Note that the finite number of particles case of this
problem has been considered in [Justh and Krishnaprasad, 2016] and hence this
work can be thought as a continuum counterpart of it. In H(3), g(¢,0) € H(3) has

the structure,

that satisty the group evolution equation,

%g(t, 0) =g(t,0) - (ur(t,0)A; + uq(t,0)As), (4.37)
where,
-0 1 0_ _0 0 o-
At=10 0 0|, 4=10 0 1};
000 000
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along with A3 = [A;, As], form an orthonormal basis for the associated Lie algebra
h(3). We attempt to address the optimal control problem formulated before, under

this Heisenberg group setting, i.e. we solve the following,

min/ w)dt = // w)dOdt
S (e (o) () ) ) o
(4.38)

where L is called the Lagrange density function.

4.5.1 Controllability

It is a direct exercise of the generalized Chow-Rashevsky theorem 4.3.1 to show
weak controllability in this case. The loop algebra C*°(S*,5(3)) is spanned by
{emf A, em20 A, em39 Al The family F of left invariant vector fields that is

chosen by means of control inputs is given by F = {X{™, XJ"*}, where
X:n”‘f(g) = (Df)g . geimreAr’ f E D,T — 1’2

Since the only non-vanishing brackets in h(3) are [A;, As] = A3 = —[As, Ay, the
set Lie, F would span the tangent space at every point g € C*(S*, H(3)).
However, we can provide an argument that establishes the strong control-
lability in this case. Here we describe an approach to construct a candidate
smooth control given any endpoint conditions z9(6) and x7 (), i = 1,2,3. With-
out loss of generality, we may assume z9(0) = 0 for all .. Now since, z;(¢,0) =
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f(f u;(t,0)dt,i = 1,2, we can choose smooth controls v;(¢,0),t € [0,¢],7 = 1,2, for
some ¢t < T, such that z; and z, reach their final endpoints. At time ¢ = ¢, let the
‘error’ in x3 variable be denoted as Ax3(6) = 21 (0) — x5(t,0). Note that without
loss of generality, we may assume that Az3(f) > 0 for all . We know that in
a single nonholonomic integrator case, if we complete a loop in time for (xy, z5)
variables, the change in x3 variable will be given by the area of the loop. We may
use the same idea in the continuum case to construct smooth controls. We can

generate the following circular loops (in time) in (2, z5) variables,

x1(t, 0) 27(0) —r(0) cos(w(t — 1))

xo(t, 0) 71 (0) sin(w(t — 1)) (4.39)

_27r
STt

w t e (t,T],

where () is a smooth function in 6. The controls required to generate these loops

are given by

01(t,0) . —sin(w(t —t)) | (.40

0o(t, 0) cos(w(t —1))

We then compute,

l’g(T, 9) = Zﬁg(f, 9) + % /{ (ZL’l (t, 9)172(15, 9) - l’g(t, 9)’?]1 (t, 9))dt

= 22 (0) — Axs(0) + 7r*(6).

Since Az3(-) is smooth, we can always choose smooth function r(-) such that

86



Az3(0) = nr?(0), and thus the smooth controls

v;i(t,0), tel0,t]
u(t,0) = . i=1,2, (4.41)

ﬁz(tu ‘9)7 te (Ev T]
make the required state transitions possible. This shows that in the Heisenberg

case we have strong controllability.

Remark 4.2. We can assume Axz > 0 for all # because if it was not the case,
we could add another piece of controls v;’s before applying the controls v;’s. The
purpose of the controls v;’s would be to make the states (x1, x2) undergo a circular
loop of radius 7, for all §. This will produce a change in the x5 variable by 772
for all . Hence the new error can be written as Azs(0) = Azs(0) + 772, We can

always pick a 7 so that Azs() > 0 for all 6.

4.5.2 Equations of Optimal Control

Necessary conditions for optimality can be derived by various methods. We will

present two such approaches to solve the optimal control problem (4.38).
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4.5.2.1 Calculus of Variations Approach

Note that the group dynamics in (4.37) can also be expressed by the differential

equations,

81’1

— = 4.42
ot Uy, ( )
ox

8—; = U9, (443)
ox 1

—8t3 — 5(,’,[‘1’&2 — .]}'gul). (444)

Since we have an integral constraint, namely, Ax3(0) = %fOT(xlug — xouy)dt, we
invoke a Lagrange multiplier, A € C*°(S*, R) to write the augmented Lagrangian
density function as,

1
L=3 (23, +23,) + x (23 9 + 23 90) + A (21324 — T2m1,)] - (4.45)

. . . 2. .
where we adopted the notation conventions x;p = %,xmg = % = 7,9 etc.

Application of the Euler-Lagrange equations (4.22) gives the following equations,

9%xy 0xs 0*xy

= A0~ +X
821’2 . _)\81’1 + 841’2
oz~ "ot Moo

which yields the evolution equations for optimal controls,

A% == )\Ug
;t (4.47)
A% = —>\’LL1,

where we denote A := (1 — yA), A being the Laplacian.

Remark 4.3. A is a positive definite self adjoint operator in C*°(S!, R), having
eigenvalues a,, = 1 4+ yn? with associated eigenvectors e,, = €"? for n € Z.
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Lemma 4.5.1. The quantities,

2 n n n n
h :/ (‘3’ 0w | O'uz 40 “2) do, n=0,1,2,.. (4.48)
0

atr - otn atr -~ otn
are conserved along any optimal trajectories satisfying (4.47).

dhy _

, 2 = 0, which follows directly from

Proof. 1t is easy to establish that for each n
the way optimal controls behave in (4.47) and the fact that the operator A is self

adjoint. ]

4.5.2.2 PMP Approach

We introduce the costate variable p(t) = (pi(t), p2(t), p3(t)) € C=(SL;R3), t €
[0, 7). The pre-Hamiltonian can be written as (considering only normal extremals,

i.e. where py # 0 and can be normalized to —1),

H={(i,p)—L

2w
1 1
= / (Ulpl + ugps + 5(551“2 — TpU1)p3 — ) (U% + Ug) - % ( ie + Ug,e)) do.
0
(4.49)
Remark 4.4. Note that the finite codimensionality assumption is satisfied in this

case. To see this, note that the components of members of the ‘reachability set’

(4.25) can be expressed as,

2(T) = /0 ' ws (t)dt

2(T) = /0 ' ws (1) dt

1

(1) =5 [ G060 - 20ui®)d+ 5 [ @0 - s @,
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where w(t) = (wq(t), ws(t)) is any arbitrary control input. If we denote trajectories
corresponding to any input u(-) as x*(t) = z(t,u(+)), then, 2 (T) = 23(T), 2o(T) =

x¥(T). Furthermore note that,

2(T) = % l/o (xjuly — xbul)dt —i—/o (xYwe — x§wy )dt
- / (&} — 2) (us — wn) — (a5 — 22) (u — 0n))dt
— 2(T) + 22(T) — #5(T),

*

We may now choose w = u*. This makes Z(T) = 0

* w

where £ = z* — V.
and (z1(7), z2(T), z3(T)) = (5(T),x5(T), 225(T)). Since the Heisenberg case is
strongly controllable, the ‘reachability set” R spans the whole of the state space

X, making it trivially finite codimensional in X.

We can now directly apply Theorem 4.4.1 to derive necessary optimality con-
ditions. The maximum principle would require us to maximize (4.49) pointwise

over the controls, i.e. we are attempting to find the Hamiltonian as,

H($ap) = sup H(ZL’, {'Ui}zzzlap)
v1,02€C*(ST;R)
2T 1
= sup / (Ulpl + vap2 + 5(55102 — T201)P3
v1,02€C>°(SL;R) JO
1 (vf + v3) — X (vig+v3g) ) dO (4.50)
2 1 2 2 1,9 279 "

This maximization results in two Euler-Lagrange equations,

OH 0 (0H _
v 00 <8w,9) “0 = 450
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that yield the optimal controls,
1

Auyp =pr — 5%2Ps;
(4.52)

1
Aug = po + 371D,

with the usual definition of 4 = (1 — yA). The Hamiltonian can be read as,

1 2w
H = 5 / (’Uq.AUl + UQAUQ) df
0

1 [ 1 1
= 5/0 Kpl — §ZE2P3) A (pl — 5932293)
1 » 1
|\ P2+ 521D A7 p2 + TP do (4.53)

The dynamics of the costate variable p can be calculated from Hamilton’s equa-

tion, % = ‘?;l, where % denotes the functional derivative of H with respect

to x. Note that the Hamiltonian function A is smooth in x, so we can take this
derivative. This can be defined as, DH(z;) - 0 = <§Zf 0> = 1,2,3, where

DH(x;) - o is the Fréchet derivative of H at z; in the direction of o. This is

defined as,

We may calculate, for ¢ = 1,

1d [ 1 1
DH(z1) 0= 3 de ; {(]h — §$2p3> A (p1 - §$2p3>
1 B 1
+ | p2+ —(xl +eo)ps | A Do+ 5(1’1 +eo)ps || db
27 1
<<7p <p2 + 2(:)31 + ea)pg)) do
0
27 1
(UP (Pz + 2931]93)) do
0
A1 (pg + 2x1p3) ,a>, (4.54)
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so that we may write,

OH b3 1 1

—==A — . 4.55

5t 2 p2 + 511P3 (4.55)
We can similarly calculate (‘% = —%A‘l (p1 — %:Egpg) and (‘% = 0. The evolution

of p can then be expressed as,

0 1
P —@A_l <p2 + —36’1P3)

ot 2 2

Ops _ps g 1 456
ot = 2~A D1 2332173 ( )
Ip3 .

o = 0.

From (4.52) and (4.56), we notice that,

g-Aul = —p3A " uy
; (4.57)
E.Auz = ps A"y

Hence, recognizing ps as the negative of Lagrange multiplier A in the previous

section, we rediscover (4.47).

4.5.3 Behavior of Optimal Control

Denote, z(t,0) := uy(t,6) + iua(t,0). Then, (4.47) can be expressed as,

0z _
AE = —i\z. (4.58)

Since uy, up are periodic functions in € with period 27, they have a Fourier series

representation, u,(t,0) = > ul) (t)e", v = 1,2, where ul’s are the Fourier

n=—oo
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coefficients of u,. Moreover, since u,’s are real valued functions of 0, we have,

)

—-n

)

u”) = ) Transforming (4.58) in Fourier domain, we get,

dz .
A = —ilz, (4.59)

where we denote, A = diag ({on,}52_.), 2(t) = [2.(8)]%. za(t) = ul (1) +

i (t), i.e. z,(t)’s are Fourier coefficients of z(¢,6). A is the infinite Toeplitz

matrix generated by the Fourier coefficients of A, i.e.

Mo Al A
A Ao A

A= (4.60)
A2 A Ao

Since \,’s are Fourier coefficients of real valued function A\, we have A_, = A,.

This leads to the observation that A is (infinite) Hermitian matrix, i.e. A = A*.

4.5.3.1 Truncation of Fourier Coeflicients

Here we will consider first N+ 1 Fourier coefficients of z and provide an analysis of
(4.59) in the truncated finite dimensional case. We write, 2y = (z_n -+~ 20 - 'ZN)T S
C?N*1. Then, the truncated version of (4.59) can be written as,

dzZy

where Ay and Apy’s are appropriately truncated matrices from A and A, respec-
tively. Note that Ay > 0. Let us denote, Z = A]lféN and By = A]_Vl, then we
get,
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d3 A
e .
dt N

(4.62)

where AN = BJI\,/2A1\;B]1\,/2 = <AN> . Since the matrix —iAN is skew Hermitian,

all its eigenvalues are on the imaginary axis. Denote them by —io,, 0, € R, for

n = —N,..., N. There exists a unitary matrix V' that diagonalizes —iAN, i.e.

—iAy = V*DV, D = diag({—io.}).
We perform another coordinate change by,
F=Vs=VAV 5,

which yields the decoupled equations,

dz
— =Dz,
dt
1.e.
dz, .
— = —l0p%n,
dt

— Z,(t) =e%,(0), n=-N,--- N.

Performing the inverse Fourier operation, we see that,

N
2t,0) = D Zu(t)e™
n=—N
N
— i(t,0)= ) _ Mz (0)
n=—N

(4.63)

(4.64)

(4.65)

(4.66)



This is an equation of superposition of 2N + 1 traveling waves with n being the
wave number and v, = 2 is the speed of propagation associated with n-th mode

of the wave.

4.5.3.2 Velocity of Propagation

We know that in the wave equation of (4.66), the velocity v, of propagation
corresponding to n-th frequency is determined as, v, = 2=, where ,,’s are (real)
cigenvalues of the Hermitian matrix Ay = BJIV/2ANB]1V/2. Since BJI\,/2A1\;B]1\,/2 ~
AnBy ~ ByAp (similar matrices), the eigenvalues of Ay can be characterized by
those of By and Ay.

We have eig(By) = {8.}"y, where 3, = a—ln = ﬁ Now, Ay is a Toeplitz
Hermitian matrix formed by the Fourier coefficients {)\,}*¥,. Given those coeffi-
cients, it is in general not possible to write down closed form representation of its

eigenvalues. However, the bounds of eigenvalues of such a matrix is well known.

We will make a little detour to state these results.
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4.5.3.3 Toeplitz Matrices and Eigenvalues

Let f be a periodic function over the interval [0,27) and {f,} are its Fourier

coefficients. Let us denote T),(f), the n x n Toeplitz Hermitian matrix defined as,

I B R =)
i fo foo o femey

T.(f) = for fi fo - . (4.67)
fon—1) fo
We also define,
my = essinf(f), (4.68)
My = esssup(f). (4.69)

Let the eigenvalues of T,,(f) be denoted by 7,4,k = 1,...,n. Then,
mg S T,k S Mf. (470)

Note that, max [ Toge| < max(|my|,|My]) < Mg. We recall another useful result

here.

Lemma 4.5.2. Let P,(Q) be Hermitian positive definite matrices of same order.

If 7(X) denote eigenvalues of X, then,

Tmax(PQ) < Tmax(P) * Tmax(Q) (4.71)

Tmin(PQ) > 7'min(P) ) Tmin(Q) (4-72)
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4.5.3.4 Bounds on the Velocity

To get bounds on ¢,,’s, we need an useful assumption that will be apparent shortly.

A-1my > O, i.e. AN = T2N+1(>\) = 0.

Since p, = T(BnTony+1(A)), Lemma 4.5.2 gives the following bound, for n =

~N,..,N,

Tmin(BN)Tmin(T2N+1()\) S Onp, S Tmax(BN)Tmax(T2N+l()‘))v

(4.73)
mx
- —>— <, < M,.
1+ xN2— Tn =
Accordingly, the velocity is bounded by,
M
A < 222 (4.74)

EAT— n
n(l+xN?) — =
Remark 4.5. The assumption A-1 can be extended to include the case M) < 0,

i.e. Ay <0 as well.

4.5.3.5 Special Cases

1. Case - I: Constant X :
A(0) = Ao # 0, a constant. We may assume that Ao > 0. In this case, (4.59)

can be explicitly solved and the solution can be expressed as,

> in(@—Mt) -
2(t,0) = Z e ") 2, (0) + 777 2(0). (4.75)
Tt
Here the velocities v, can be written as, v, = W, n € 7\ {0}.
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2. Case - II: Band-limited \ :
Here, we consider only one frequency component of A, i.e. A(f) = Ao +
Ael? + X_1e7? Let A-1 hold, i.e. Ay = Tony1(A) = 0. In this case, Ay is
a tri-diagonal Toeplitz matrix. The eigenvalues of such a matrix are known
to take the following form.

Lemma 4.5.3.

km
2N + 2

Tk(AN):)\0+2|)\1|cos< ) , k=1,.,2N+1. (4.76)

This, combined with Lemma 4.5.2, we get the following bound,

2N+2
14+ xN?

Ao + 2 |Ai| cos (QNH)W

) < on < Ao+ 2|\ cos (3575) (4.77)

4.5.4 Strong Coupling Limit, y — oo

It is interesting to note that in the limit y — oo, the equations (4.47) take simple

form. To see this, note that for some z € C*(S*; R), we may express

ATz = 3" B on, 2) bns

n=—oo

where 3, = ﬁ are the eigenvalues of 47", and ¢, = ™. This implies,

1
. -1 .
i A7 = 3 () oo

= <Z>1>

27
= lim A_lz:/ zd0.
0

X—00
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Figure 4.1: Numerical solution of (4.61) for experiment 1. Evolution of u; (blue)
and uy (red) is given in the first row; the controls form a simple traveling wave

along the # domain. The second row shows evolution of 1, xy variables.

With this realization, we may rewrite (4.47) in the strong coupling limit as,
aul 2m
— = Auadf
ot /0 ?

au2 2

(4.78)

It is clear from (4.52) that both u; and uy are independent of §. Then the equations

(4.78) can be equivalently written as
ul = 5\’1]12
(4.79)

'l:LQ = —>\'U/1,
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Figure 4.2: Evolution of x3 for experiment 1. The blue loop represents the circle
S1 while the height of each point on the red loop is given by the value of z3 at

the corresponding point of 6.

where \ = fozw Adf. Equations (4.79) are optimal control evolution equations for
a single agent |Justh and Krishnaprasad, 2016]. Thus in the strong coupling limit
X — 00, the optimal control solutions for the continuum of agents collapses to
that of a single agent. This is called the synchronization of the flock, where every

agent in the flock behaves the same way.

100



t=0s t=6.67s t=13.33s t=20s

1 1 15 15
05 1 1
05
(o]
0.5
= 0 0.5
—
3 o0 0
0.5 0
0.5
-0.5 .
1 0.5 1
1 15 1 15
0 5 0 5 0 5 0 5
0 0 0 0
3 3 3 3
2 2 2 2

X2
N
X2
o [
)
o [l
X2
-~ O

_1 1
2 2 2 2
3 3 3 3
2 0 2 -2 0 2 2 0 2 2 0 2
T T X1 X

Figure 4.3: Numerical solution of (4.61) for experiment 2. Evolution of u; (blue)
and uy (red) is given in the first row. The second row shows evolution of xy, x5

variables.

4.5.5 Simulation Results

We simulate the evolution of optimal controls u; and uy governed by the linear
partial differential equations (4.47) by means of Fourier analysis as presented in
the section 4.5.3. In particular, here we present the solutions of the truncated
ordinary differential equations (4.61), where we only keep track of first N + 1
Fourier coefficients of each variable. Note that A is assumed to have less than

N + 1 coefficients. We will now present numerical solutions in different cases by
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Figure 4.4: Evolution of x3 for experiment 2. The blue loop represents the circle
S1 while the height of each point on the red loop is given by the value of z3 at

the corresponding point of 6.

varying the initial conditions and parameter values. For all the experiments pre-
sented here, N is taken to be 30 and the final time T is set as 20 seconds and
four snapshots of the optimal controls are shown. The Hamiltonian is verified to
be staying a constant (up to machine precision) for all of the experiments. The
evolution of state variables is also recorded. For all the experiments presented

here, (z1, ) is set to start from a unit circle and 3 is initially zero for all values

of 6.
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Figure 4.5: Numerical solutions of (4.61) for experiment 3 for (a) first row, y =

0.1, (b) second row, y = 1, (¢) third row, y = 10. In all plots, u; is shown in blue

and uo is shown in red. The speed of information propagation decreases as the

coupling constant increases.
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The simplest set of initial conditions (0, §) = cos(6), u2(0,0) = sin(#), A\(0) =
5,x = 1 generate a traveling wave solution, according to equation (4.75). This
can be seen from Fig. 4.1. The states (x1,z,x3) are also integrated from an
initial condition for (z1,x) forming a circle on the plane and x3 being identically
zero for all 0. The evolution of (z1,x2) can be seen from Fig. 4.1. The shape
of the (z1,x9) circle did not change, although its size varied over time. The
evolution of x3 is shown in Fig. 4.2, which appeared to decrease steadily for all
0. Next, for experiment 2, we consider a band-limited A, i.e. A(f) = 5+ cos(6).
Keeping all other conditions same as in experiment 1, we get Fig. 4.3-4.4. Here
both size and shape of the (xi,xs) circle changed over time. The value of 3
decreased in this case as well but more asymmetrically than in experiment 1. In
experiment 3, we show how a localized disturbance gets spread in the continuum.
For this experiment, we let the control u; is initially zero everywhere, u;(0,6) = 0.
However, us has a localized peak at a certain spatial point. We took the example

of a Gaussian form,

1 _(0-m?

e 27 (4.80)
\/ 2mp?

with p = 0.1. We then plot the solutions in three different settings of x values,

Ug(o, 9) =

x = 0.1,1,10 in Fig. 4.5. X is taken to be a constant in all these cases, \(0) = 5.
It is discovered in the previous section that the speed of traveling wave decreases
as y increases. This can be seen clearly from Fig. 4.5 as the disturbance is seen

to be not well propagated for higher values of x.
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4.6 A Continuum of Agents on the Plane

As an extension of the problem considered in Section 3.3, we will explore the case

where we take the underlying group as the special Euclidean group, SE(2). This

case then can be seen as a continuum counterpart of [Justh and Krishnaprasad,

2015b]. Every g¢(t,6) € SE(2) can be represented as,

COS T3
sin 3

0

—sinxgy a1

COSX3 T2

0

1

with group evolution dynamics,

0
ag(t, 0) = g(t,0) - (ur(t,0)A; + us(t,0)As), (4.81)
where,
0O -1 0 0 0 1
Ai=11 0 0|, 4A=10 0 0,
0 00 0 00

along with A3 = [A;, As], form a basis for the associated Lie algebra se(2). Note
that since {A, Ao} is bracket generating in se(2), similar argument as in the
Heisenberg case would provide (weak) controllability result in this case as well.

We then seek to minimize the same cost functional as in (4.38),
1 T I 8’&1 2 8’&2 2
J = T+ Ul — — dodt
oL <(“1+“2’”<(89) (%)
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4.6.1 Equations of Optimal Control

4.6.1.1 Calculus of Variations Approach

The system dynamics can be equivalently expressed as,

% = Uy COS T

T 3

0

% = Uy Sin T3 (4.82)
O3 _

ot "

Note that the controls u; and us can be expressed by the z; variables and their

derivatives as,
Uy = T3y, Up = T14COST3 + ToySinxs.
Since we have two integral constraints in this case, namely,
T T
Azxq1(0) = / Uy COS T3dt = / (14 cos Ty + Tapsinas) - cos xadt
0 0
T T
Axy(0) = / Uy SIn x3dt = / (14 cosxs + waysinxs) - sin xzdt,
0 0

we invoke Lagrange multipliers A\, u € C*°(S';R) and the augmented Lagrangian

density can be read as,

L == [(23, + (z1, cos 3 + 2, sin x3)2) + x (23,49 + (21,10 COS T3 + 249 Sin :):3)2)]

N | —

+ Az cosxsy + wosinws) - cos Tz + p (214 oS T3 + Toysin x) - sin x3.

(4.83)

We recall the Euler-Lagrange equations from (4.22),

0L 0 (0L D (oL, & (0L _ |
82@' 06 8:61-79 ot 8:51-715 000t 81’1'7915 o
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for © = 1,2,3. We note the following quantities,

Uy = Ty COS T3 + Tay SIN T3,

Ug g = T4 COS T3 + T4 SIN T3,

0 [ oL
— = U9 COS T3 — Uy (UgSin T3 + Asin 2x3 — pcos 2x3) ,
ot (axu) 2.t 3 1( 2 3 3— M 3)
o oL (ug,p9t COS T (ug g sin xz + COS T3)
— | = —x i Ug U
0001 33&’1,915 X \(U2,00t 3 3,0 \U2,0t 3 2,0U1 3
—sin 3 (ug,gotr + Uz g1 p))
0 [ oL ) .
— = Ugysin x3 + uy (ug cos xz + A cos 2x3 + psin 2x3) ,
8t 82[‘2715 ’
o oL ) _ (ug,p0t SIn T3 + 39 (U9t COS T3 — Us Uy SID T3)
0001 83&’2,915 = X (U2,00¢ 3 3,0 \U2.0¢ 3 2,0U1 3

+ cos x5 (U gptn + U gl g)) ,

9 (9L _
0t \ s, ) —

o (oL
D00t \ Dy ) — X110

Subsequently, the Euler-Lagrange equations for the Lagrangian (4.83) take the
form,
Ug ¢ COS T3 — UyUg sin w3 — uy (Asin 2x3 — p cos 2a3)

= X (ug,gpt cOS T3 — sin x5 (Uz,gpty + U gy g) — T30 (Uz,ee SIN T3 + Uz Uy COST3)) ,
Ug SIn T3 + Uy U cOs T3 + Uy (A cos 2w + psin 2x3)

= X (uggp: sin x5 + cos x5 (ug gotts + Uz gy 9) + T3 (Ug g COS T3 — Uz pUy SIN T3)) ,

Upp — XU1gor = —Uz (ASIN T3 — pCOST3 — YU29T30) ,

(4.84)
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which after some readjustments yield,

0 .
a(l — xA)uy = —uy (Asinxg — pcosxs — xx39Usg)
0
a(l — xA)uy = uy (Asinxg — 1 cos Ty — XT30U20) (4.85)
5% (Asinzs — prcosxg — Xuz0T30) = —ur (1 — xA)us.
Denoting A := (1 — xA) and p3 := Asinzs — f1cosxs — Xu2,0T3, We then can

express (4.85) as,

0
E-Aul —H3U2
Q.Aul = H3Uq (486)
ot
0
% = —ulAuz

4.6.1.2 PMP Approach

We introduce the costate variable p(t) = (pi(t), p2(t), p3(t)) € C°(S1;R3), t €
[0,7]. The pre-Hamiltonian (considering only normal extremals) can be written

as,
H={(&,p)—L

2
) 1
= / (u2 (p1 cos x3 + pasinzz) + uyps — 2 (uf + u%) — % ( ig + “g,e)) do.
0

(4.87)

Remark 4.6. Here we only consider normal extremals, i.e. when py # 0 and can
be normalized to —1. Note that in this case, the emptiness (i.e. the full costate
being identically zero) of the PMP would not occur. It is of future effort to
investigate whether the finite codimensionality condition is satisfied in the SE(2)
case.
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The maximum principle (Theorem 4.4.1) would require us to maximize (4.87)

pointwise over the controls, i.e. we are attempting to find the Hamiltonian as,

H = sup H
v1,v2€C>(S1;R)

2
= sup / (vg (p1 cos g + posinxg) + v1p3
SLR) JO

v1,v2€C>(

1
St @) ) sy

This maximization results in two Euler-Lagrange equations,

OH 0 (0H _
v; 90 <8'Ui,6) —0or=he (459

that yields the optimal controls,

Aul = P3, ( )
4.90

Aug = py cos x3 + pa sin g,
where we denote A = (1 — xA), as usual. The Hamiltonian can be read as,

1 2T
H= 5 / (upAuy + us Ausg) db
0

1

2
=3 / (psA™'ps + (p1 cos s + pasinzg) A" (py cos s + pysinas)) df
0

(4.91)

The dynamics of the costate variable p can be calculated from Hamilton’s equa-

tion, % = —‘;—7;, where % denotes the functional derivative of H with respect to

x. Explicit calculations yield,
op1
ot
Opa
e (4.92)
ot
Ops
ot

=0

= —uy (—p1 sinxg + py cos x3) .
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If we denote pz := —pysinxs + pacosxs, then from (4.90) and (4.92), we can

rediscover (4.86). Renaming p; = Au;, i = 1,2, (4.86) can also be written as,

0

% = —pg A o

s _ 4 4.93
at - IU’3A lu’l ( )
0

% = —pe A puy.

4.6.2 Strong Coupling Limit, y — oo

Similar to the Heisenberg case, it can be shown that synchronization is achieved in

strong coupling limit in this case as well. We know that for some z € C*(S*; R),

2w

o 2df.Thus, we may rewrite (4.93) in the strong coupling

we have lim A 'z =
X—0o0

limit as,

8,&1 B 2
o T s (/0 ,Uzd@)
8:“/2 2T
— 4.94
ot 3 </0 ,Ulde) ( )

8:“/3 B /27r
8t - :u2( 0 /“’lee .

If we define the variables,
2m
a; = / ,uzdﬁ, 1= 1, 2, 3, (495)
0

then these variables will evolve according to,

dl = —Q03
dg = (13 (496)
dg = —109.
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Equations (4.96) are the equations for a single agent scenario and they are studied
in detail in Section 3.2. This indicates the synchronization phenomenon in the
planar continuum flock. Note that a; and as are essentially the optimal controls

uy and uy, respectively. The Hamiltonian (4.88) simply becomes,

hoo = = (0f +03) . (4.97)

N | —

4.6.3 Simulation Results

While it has not been possible to characterize general solutions of (4.93) analyti-
cally, here we demonstrate numerical solutions. To numerically solve the evolution

equations of u; variables, we used a finite difference method. We partitioning the

space domain [0, 27| uniformly in M points, 0 = 6,...,0y = 27, so that the
difference between two consecutive space points become 66 = % In this dis-

crete setting any z(¢,0) can be approximated as an M vector, z(t,0) ~ z(t) =
[21(), 20(t), . . ., 2 (t)]T with the constraint z1(t) = zy,(¢) for all ¢ to respect the
periodicity property. Note also that in a second-order central difference scheme,

the double partial space derivative is expressed as,

0?z(t,0)) _ %1 — 22+ 20
002 062 ’

for j =1,..., M with appropriate adjustments for the boundary points j = 1, M.

The linear operator A = (1—xA) can then be expressed by the M x M nonsingular
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Figure 4.6: Numerical solution of (4.99) (first two rows) along with the state

evolution (third row) for experiment 1. The arrows represent the direction of

movement of the particle at that point.

matrix Ay,
L+ (5) -

— () 1+

Ay = 0 _

o
|

30
0
0
) L

(4.98)




With this notation, the partial differential equations (4.93) can be expressed as a

system of ordinary differential equations (ODE),

fiv = —p3 Ay o

fin = iy A (4.99)

fis = —pa Ay 1.
These ODEs (4.99) are then solved using a mid-point based ODE solver in MAT-
LAB. The optimal controls u;’s can be derived from the u variables by the relation,
u; = A;jui,i = 1,2 which are used in the quadrature of the state variables z;’s.
Here we present results of some experiments with varying initial conditions. The
final time 7" and space discretization factor M is kept fixed at T" = 20 seconds
and M = 128 for all the experiments. A high value of M is chosen for a faithful
calculation of the spatial derivatives. In the subsequent experiments we try to
investigate the behavior of a simple loop under the optimal controls generated
by (4.99), i.e. we take, z1(0,60) = 0.01cos(f) and z5(0,6) = 0.01sin(f) so that
initially the particles start on a circle. The remaining initial conditions of z3 and
1; variables and the parameter y is varied in the following experiments. It is to be
noted that the Hamiltonian and the Casimir variables are validated to be constant

in each of the experiments.

Experiment 1
We take a simple example where each agent start moving in the positive x axis

and with unit speeds, i.e. x3(0,0) =0, u2(0,6) = 1. The initial curvature of each
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Figure 4.7: State evolution is only shown for experiment 2. The arrows represent

the direction of movement of the particle at that point.

agent is taken to be zero, 11(0,0) = 0 which means every agent starts harmo-
niously with same velocity and curvature. The value of x is taken as 1. Four
snapshots of the u, u and x variables are shown in Fig. 4.6. The curvature field is
seen to be forming two peaks in the spatial domain which gives rise to the twisted
form of the initial circle.

Experiment 2

We keep all the initial conditions same as in experiment 1 except the initial direc-
tion of movement of the particles. It is simulated that almost half the particles
try to go in one direction while the other half in the opposite direction. To write

this as a continuous periodic function, we take

7 (1+tanh (100 (0 —3))), f0<O<m

2
x3(0,0) = . (4.100)

2 (1—tanh (100 (0 —237))), ifrx<0<2r
This definition of the initial direction means that the particles on the ‘east’ part
of the circle initially go to the right and the particles on the ‘west’ part go to

the left. The simulation results are shown in Fig. 4.7. Comparing to Fig. 4.6,
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Figure 4.8: State evolution is only shown for experiment 3. The arrows represent

the direction of movement of the particle at that point.

the first two rows are identical since the initial conditions of ;4 variables did not
change and hence they are omitted. What is interesting is that the circle splits
into two loops connected by very small number of particles.

Experiment 3

Similar to experiment 2, we try to investigate the effect of change in initial direc-
tion of movement of the particles. Here, we set the particles to go on a radially
outward path, i.e. x3(0,0) = 0, with keeping all other conditions same as in ex-
periment 2. The simulation results are shown in Fig. 4.8. The first two rows are
not shown since they are identical with experiment 1.

Experiment 4

In this experiment, again we fix all the initial conditions and parameters same as
in experiment 1, except the initial curvature is given a local intensity. In other

words we choose this Gaussian function,

1 _(6-m?

e 4101
V2mo? ( )

:ul(ov 6) =
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T2

Figure 4.9: Numerical solution of (4.99) (first two rows) along with the state

evolution (third row) for experiment 4. The arrows represent the direction of

movement of the particle at that point.

with ¢ = 0.05. The purpose of choosing this initial condition is to see whether

a localized information gets spread across the continuum or not. The simulation

results are shown in Fig. 4.9.

Experiment 5

Finally, we demonstrate the effect of strong coupling limit by taking a large value
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Figure 4.10: Numerical solution of (4.99) (first two rows) along with the state

evolution (third row) for experiment 5. The arrows represent the direction of

movement of the particle at that point. The wuq,us solutions are almost ‘flat’,

indicating single agent solution or synchronization.

of x = 1000. We note that even in the case, 11(0,0) = cos(6), u2(0,60) = 1 +

0.2 cos(#), ps3(0,0) = sin(), x3(0,0) = w/4, we essentially get the system derived

by the optimal controls that are spatially non varying.
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4.7 Discussion and Scope of Future Research

In this chapter, we have presented a general framework for a continuum descrip-
tion of a flock. We are interested in solving optimal control problems to explain
collective movement of such a flock. We recognize this is a challenging problem
that naturally provides several open questions for further research. We itemize

few such possibilities.

e [t is shown that under a certain finite codimensionality of a reachable set,
the PMP remains valid in a general Hilbert space setting. One might want to
discover its relationship with the controllability condition. In particular, if a
system on the loop group is strongly controllable, does the PMP condition
satisfy automatically? We have been able to show this to be true in the

Heisenberg case. Does this remain valid if we only have weak controllability?

e It is of interest to extract meaningful features of the optimal solutions of
the SE(2) case. While we have not been able to solve (4.93) analytically,
we want to answer few questions about it. For example, do these equations
possess a traveling wave like solution (like the Heisenberg case)? If so, what
is the speed of those waves? The answer might give an insight toward the
information transfer in biological swarms. It is the inherent nature of the
numerical study presented here that there exist many possibilities by varying
initial configurations which makes it particularly difficult. We explored only

a tiny fraction of possible variations in the initial configurations in this
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document. A future work could perform more extensive numerical study of

these partial differential equations (4.93).

e We have presented the results in this chapter under the case of a fixed cyclic
interaction topology. A more general, possibly state dependent (hence time
dependent, too) interaction scheme can be modeled and subjected under

similar questions.

e It will be an interesting future work to establish continuum parallel of the

Lie-Poisson reduction in the loop group case.
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Chapter 5

Cognitive Cost of Flocking: A Geometric

and Hamiltonian Perspective

5.1 Introduction

It has been an appealing question to researchers from several fields to address
how natural collectives function at a fundamental level. Many theories have been
proposed to describe this phenomenon over the past few decades. The lack of
accurate motion capturing technologies had limited the study of natural collectives
for many years. However, as motion capture became more sophisticated, more
movement data of these collectives were recorded. This enabled researchers to
uncover several underlying mechanisms behind flocking [Ballerini et al., 2008a,b;
Attanasi et al., 2014; Cavagna et al., 2018; Nagy et al., 2010]. These studies
shed light on how individual agents interact with its neighboring agents or how

information may be propagated through the flock.
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Continuing the spirit of the ‘top-down’ view of the flock, we will present a novel
perspective for analyzing collective motion data. The flock movement results in a
time-series of its kinetic energy, which can be divided into several energy modes.
Normalized modes define a curve in some appropriate dimensional simplex which
we attempt to describe by an evolutionary game dynamics. Individual energy
modes are considered as pure strategies of such a game. An optimal control
problem is proposed to best fit the data on the simplex, where the control inputs
modulate the fitness associated with the strategies. This is in contrast to the
optimal control problem posed in Chapter 4, where the controls are ‘low-level’
i.e. individual control inputs are determined post-solution of the optimal control
problem. In the present context however, the control inputs are ‘high-level’. The
collective itself is thought to be deciding the optimal allocation of its energy
among several different modes during a flight event. A notion of cognitive cost is
introduced to denote the optimal cost for the collective to perform this allocation.

This work brings together several key ingredients for this data-driven approach.
In section 5.2, the motion data of European flocks is detailed. This data is then
subjected to a linear data smoothing technique [Dey and Krishnaprasad, 2012]
that reconstructs smooth trajectory data of each bird in the flock. A nonlinear
data smoothing technique [Dey and Krishnaprasad, 2014] is later used for the
optimal energy allocation problems. These smoothing techniques are based on
optimal control theory and are described in section 5.3. Section 5.4 contains the

geometric theory developed in [Mischiati and Krishnaprasad, 2017] to compute
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different energy modes. Finally, in section 5.5, a generative model based on [Raju
and Krishnaprasad, 2018] is described to construct an optimal control problem on
a simplex. Numerical solution of this optimal control problem, as well as the idea
of cognitive cost, are presented in section 5.6. This is a joint work with V. Raju

|Halder et al., 2019b|.

5.2 Flocking Data

We are provided with flight data of European starlings that were taken by Dr.
Andrea Cavagna and his collaborators from the Collective Behaviour in Biological
Systems (COBBS) group at the Institute for Complex Systems (ISC-CNR), Uni-
versity of Rome “La Sapienza". Starlings gather around urban areas during the
winter months in order to get extra warmth from the cities. Flocks of these kind of
birds are well known to perform remarkable maneuvers, the purpose and mecha-
nisms of which still elude researchers. Equipped with modern imaging techniques
and sophisticated algorithms for stereo reconstruction, these group of researchers
managed to capture a series of flight events with different flock sizes in the winter
months of 2011. See [Attanasi et al., 2014] for more details about the process. We
will study eight particular flocking events, the details of which are given in table

5.1
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Flocking | Flock Size | Duration | Data Capture Rate
Event (n) (seconds) (frames/second)
1 175 5.4875 80
2 123 1.8176 170
3 46 5.6118 170
4 485 2.3471 170
) 104 3.8824 170
6 122 4.1588 170
7 380 5.7353 170
8 194 1.7588 170

Table 5.1: Details of captured flocking events

5.3 Data Smoothing

Given a time-indexed sequence of sampled observations on a manifold, genera-
tive models provide a meaningful way of capturing them through the use of an
underlying dynamical system complete with control inputs having useful interpre-
tations. The control inputs are determined by solving an optimal control problem,
where the cost function consists of a fitness term that penalizes mismatch between
the generated trajectory and sampled data, and a smoothing term weighted by a
parameter A that affects the smoothness of the generated trajectory. We discuss

two generative models that have been proposed to solve this problem.
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5.3.1 A linear generative model

A first approach to solving the data smoothing problem, presented in [Dey and
Krishnaprasad, 2012], is to formulate an optimal control problem to minimize the
jerk path integral, with intermediary state costs determining the fit error. Suppose
that {ri}i]io denote the positions of the birds at each sampling time, with r; € R3.
In order to recover a trajectory fit r(t) : [to, ty] — R?, one can use the jerk-driven

linear generative model,

a(t) = u(t) (5.1)

where v(t),a(t), u(t) denote the velocity, acceleration and jerk (input) of the tra-

jectory. The cost functional to be minimized is

7= lie(t) —r(t)||2+)\/Hu(t)||2dt (5.2)

where the minimization is over initial conditions r(ty), v(ty), a(to) and the input

u(t). Defining the state and output as

x(0)= | v(t) | € R y() =x(t) € R
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we obtain the linear state equations

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t), where

0 13 O 0
A=10 0 15 |- B=| 0 |, C=[13 0 0 (5.3)
0 0 O 15

Therefore, the problem of minimizing J; subject to (5.3) is a linear, quadratic
optimal control problem, which can be solved by a completion of squares of terms
in the cost by invoking a path independence lemma, or by applying the Pontryagin
Maximum Principle as shown in |Dey and Krishnaprasad, 2012|. This approach
has been used to smooth the starling flock data for all the events listed in table

5.1

5.3.2 Data smoothing in the Euclidean setting

In this section, we present a general result on the Pontyagin Maximum Principle
based approach for data smoothing on the Euclidean space R™. Suppose that
{xf}j\io denote the sampled data. For a generative model given by the dynamics
& = f(z,u) on R™, with the control u € R™, the optimal control problem can be

formulated as:

A [N al
min J(e(ty),u) = 2 / luldt + 3 Fi(a(ts), 22,
z(to), ueR™ 2 to p— (5 4)

subject to: & = f(z,u),
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where parameter A > 0 is a regularization parameter, and F}’s are suitably defined
fit errors of the reconstructed trajectories and sampled data at the sampling
times. Using Pontryagin’s Maximum Principle, the optimal control values can be
calculated as a function of the state and a co-state variable. The following result

from [Dey and Krishnaprasad, 2014] states this precisely.

Theorem 5.3.1. (PMP for data smoothing [Dey and Krishnaprasad, 2014] ) Let
u*(+) be an optimal control input for (5.28), and let x*(-) denote the corresponding

state trajectory. Then there exist a costate trajectory p : [to,ty] — R",p # 0,

such that
0
J— a—H(t, I‘*,p, U*>
P (5.5)
9
p = _a—,);l(ta x*vpa U*)
during t € (t;,t;x1), i =0,1,..., N — 1, and the Hamiltonian is given as
H(t, x", p,u”) = max H(t,z*,p,v), (5.6)

veR™
fort € [to, tn]\{to, t1, ..., tn }, where the pre-Hamiltonian is defined as H (t, z,p,u) =
(p, f(z,u)) — 35 |ul|>. Moreover, jump discontinuities of the costate variable can

be written as

p(ty) =0,
p(th) —p(t;) = %, i=0,1,....N, (5.7)
p(ty) = 0.

The piecewise continuous nature of the co-state trajectory due to jump con-
ditions arising from mismatch between the sampled data points and the recon-
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structed state must be noted here. The initial condition x(ty) is identified by using
the terminal condition for the co-state, while the optimal value of A is typically
obtained through leave-one-out or ordinary cross validation. The reconstructed
trajectory is then obtained as the projection onto the state space of the solution
of Hamilton’s equations derived from the (maximized pre-) Hamiltonian. We refer
the reader to [Dey, 2015] for a detailed treatment of these problems. This is the

result that we will use in our data fitting problem on a simplex.

5.4 Energy Modes

Avian flocks display a variety of flight behaviors that may be characterized as
collective strategies such as steady directed translation of center of mass (which
we denote by com), coherent rotation about center of mass (rot), change of form
(ens), internal re-shuffling of relative positions (dem), rapid expansion or con-
traction of volume (vol) etc. A flocking event may display all of the mentioned
strategies to varying degrees as governed by the time-dependent allocation of ki-
netic energy to each strategy. We take the viewpoint presented in [Mischiati and
Krishnaprasad, 2017] and study the fractions of the total kinetic energy of a flock
allocated to several ‘kinematic modes’ — rigid translations, rigid rotations, inertia
tensor transformations, expansion and compression, in order to describe collective
behavior.

If the positions of the birds in a flock are denoted by {ry,rs,...,r,}, the center

127



of mass can be written as,

n

com = %Zrh (58)

i=1
where we treat every bird alike, i.e. their masses are taken to be equal. The

ensemble inertia tensor is defined by

K = Z (r; — Teom) (r; — rcom)T : (5.9)

Let the velocities of the birds be denoted as, {v,1, ..., vy, }, then the total kinetic

energy is,

1 n
E= §Z||vr,~||2. (5.10)
=1

We can define the position and velocity vector with respect to the center of mass,
: AL 3x _ . AL 3x
ie. ¢ = [cy,...,c,] € R**™ where ¢; = r; — T'eom; Ve = [Vel; V2, -, Ven] € R,

where Ve; = Vi — Veom: Then7

B =5 Veomll . Fra 253 vl (5.11)
We thus have the splitting, £ = E¢om + Ere. As presented in [Mischiati and
Krishnaprasad, 2017|, instantaneous relative energy allocations can be expressed
on a probability simplex (A*)! by exploiting the fiber bundle structures of the

flock’s total configuration space to split the total kinetic energy using (i) ensemble

fibration or (ii) shape fibration.

(i) Ensemble Fibration: We note that the ensemble inertia tensor K (5.9) is

a symmetric positive definite matrix. Hence its eigendecomposition can be

INote that in this chapter we will use A" to denote the n-dimensional simplex.
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written as, K = QAQT, with A = diag(\;, X2, A3), where A\; > Xy > A3 > 0.
Define, F := cv] +v.c' and F= [Z:",]] = QTFQ. Then the following energy

modes can be calculated,

1 [ F? F2 F2
Eens.rot é 5 < 12 + 1 + 25 )

)\1+)\2 )\1—|—)\3 )\2“‘)\3

e e (5.12)

1(F F. F.

Eopea 2= [ 211 4 722 783 )
e 8<>\1 TN T
Furthermore,

1 tr? (CVT)
Eog2-—_2%2 5.13
T2 (K) (5.13)
so that, Fengres = Fensder — Evol. We may also calculate Egem = Fre —

Eensrot — Fens.der- Hence, in this fibration we have the following splitting of

the kinetic energy,

Ecom Edem Eens.rot Evol Eens.res 4
A 5.14
{EEEEE}E (5.14)
Shape Fibration: Define
J:Z(CZ XVCi>7
— (5.15)
IC = Z (||CZ||2 1-— CZ'C;I—) .
i=1
Then the rotational energy F,. can then be calculated as,
s Loy
Eo = 5.] 1.°J, (5.16)

The shape residual energy is given by Egnpres = Erel — Lot — Fend.der, Which

provides the splitting in this fibration as below

(5.17)

Ecom Erot Eshp.res Evol Eens.res 4
A
{ E' E E 'E E }E

129



While we can split the kinetic energy in 5 different modes (5.14),(5.17), many
flocking events show a predominant allocation of nearly constant energy of rigid
translation (E.m). We exclude this component from the total E in our analysis,
and consider the allocation of the remaining energy E\. to obtain a time dependent
trace of each event on a lower dimensional simplex. In particular, we capture the
trace generated by the following decomposition of E., using ensemble fibration

on the 1-simplex by two different methods,

Eyem F
ENS-I m s L e Al 5.18
( ) { Erel ’ Erel} ’ ( )

(5.19)

Eens.rot Erel - Eens.rot} c Al,

ENS-II
( ) { Erel ’ Erel

where Erel = E_Ecoma and Eens — Lorel _Edem = ens.rot+Evol+Eens.res- SimilarlY7

a one dimensional simplex description using shape fibration may be given by two

ways,
Es res Ere _Es .res

(SHP-I) { Ehp'l , ! - lhp }EN, (5.20)
EFO ES

(SHP-II) {E I Ehf} e A, (5.21)

where Egp = Erel — Eror = Egnpores T Evol + Eens.res-

In this way, moment-to-moment decisions made by individuals in a flock, tak-
ing account of the decisions of their neighbors, contribute to flock-scale strategies
as captured by such time dependent traces on the probability simplex. Treating
the strategy prevalence as being given by the respective energy fractions, we resort
to a generative evolutionary game dynamics to model the competition between
the flock-scale strategies.
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5.5 Generative model on the 1-simplex and the

data-smoothing problem

Since we are interested in describing the evolution of two flock strategies as in
egs. (5.18) and (5.19) for ensemble fibration or egs. (5.20) and (5.21) for shape
fibration, we capture the trace of flocking events via a generative model on the
1-simplex. We consider an evolutionary game model, namely replicator dynamics
equipped with a multiplicative control, in order to describe their evolution in the
interior (0, 1) of the one-dimensional simplex. The choice of replicator dynamics
is influenced by its universality in describing simplex-preserving dynamics, and
by virtue of being an extremal for a variational problem [Svirezhev, 1972; Raju
and Krishnaprasad, 2018|. Presently, with the inclusion of a control variable,
we consider a different variational problem that aims to perform data smoothing
using regularization as in |[Dey and Krishnaprasad, 2014|. To see this, let z =
[z1 29T € Al where x;, i = 1,2 denote the prevalence of strategies i (to be
specified) on the simplex with the natural constraint x; + zo = 1. x; =1,i = 1,2
correspond to allocation of E,..; entirely to one of the two pure strategies. Suppose
that the frequencies associated with the strategies are updated according to the

rule

(5.22)
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where the fitness fi(z) = Az and f = z,f}(z) + 22f%(z) . Here, A = [a;;] € R?
defines a payoff matrix with a;; denoting the payoff of the i strategy against ;%"
strategy. In the case that the payoffs do not depend on the strategy j of against
which it is matched up, the columns of A are identical. In the ode limit of (5.22),

after an inhomogeneous time-scale change, we get the mean field equations:

@i(t) = zi(t)(f'(z) — f(z)),i=1,2 (5.23)

It can be readily verified that (5.23) is simplex-preserving, leaving the pure strate-
gies invariant. Since addition of the same term to each component of the fitness
keeps the dynamics (5.23) unchanged, by subtracting as; and a;o from the first

and second column elements of A respectively, we get the equivalent payoff matrix

N ap; — Qg 0
A= (5.24)
0 Q22 — A12
We introduce a control input @ that scales the fitness, and choose the parameters

of the matrix such that a;; — asg = —(age — a2) = 1 so that the fitness can be

rewritten as:

1 0
flz)=1a x (5.25)
0 -1
Due to the simplex constraint, (5.23) is completely described using = = x:
(t) = a(t)a(t)(1 — x(t))(f'(2) = f*(2)) (5.26)

with £ = 0,1 corresponding to the pure strategies 2 and 1 respectively. Due to
our choice of the payoff matrix parameters, f! — f2 is a constant. This allows
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us to adopt a time-scale change by the factor f! — f? to arrive at our generative

model:
(t) = u(t)x(t)(1 — z(t)) (5.27)

This dynamics results in asymptotic convergence to the pure strategy = 1 in
the absence of control, that is, when u(t) = 1. However, the time-varying con-
trol variable u serves to model changing preferences for the flock strategies by
appropriate changes in its sign and magnitude. Such a temporal modulation of
the fitness ensures feasibility of capturing arbitrary traces in the interior of the

simplex.

Given a set of data points {zd, 24, ..., 24} with each z{ € (0,1),k=0,1,..., N,

at time instants {¢g,t1, ..., ty}, we formulate the optimal control problem,

min  J(x(t), u) = %/Nuzdt—i- > Falt).

z(to), ueR to

(5.28)
subject to: & = ux(l — x),

where the fit errors F;’s are given by the Kullback-Leibler divergence measure of

mismatch between the data and the state,

d ! d 1—af -
Fi(z) =a7log | — | + (1 —z7)log 1 , 1=0,1,...,N. (5.29)
x —x

We can directly appeal to Pontryagin’s Maximum Principle (PMP) and theo-
rem (5.3.1) to write necessary conditions for optimality. We can write the pre-

Hamiltonian as,

H(z,p,u) =upz(l —x) — %u2. (5.30)
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The Hamiltonian maximization condition (5.6) yields an optimal control in each
time interval t € (¢;,t441), 1 =0,1,..., N — 1,
1
u= Xpa:(l — ), (5.31)
with Hamiltonian given by,

H(w,p) = %p2x2(1 _ o) (5.32)

Hamilton’s equations (5.5) read,

1
T = Xp:vz(l —x)?
1 (5.33)
p= —szx(l —xz)(1 —2x).
The jump conditions for p (5.7) can be written as,
p(ty) =0,
3 2(t;) — 28 .
p(th) —plt;) = L i=0,1,..,N, (5.34)
x(t:) (1 — x(t;))
p(ty) = 0.
Remark 5.1. Note that the optimal control is piecewise constant since Ccll—? =0

for each of these time intervals ¢ € (¢;,t;21), 1=0,1,..., N — 1.

Therefore, denoting zx = z(tx), k = 0,1,..., N, any optimal control can be

described by a vector (ug, u1, ..., ux) with the conditions

1
Up = X(«%’o —z5),
1 d 5.35
uk—uk_l—x(azk—xk), k=1,2,...N (5.35)
unN =0
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Piecewise constancy of the control input allows us to write the solution to the state
equation (5.26) explicitly. Suppose the sampling time of the trace is uniform, i.e.
At = tgpy — tg,Vk € {0,..., N — 1}, integrating the state equation (5.26) in
(tg,trr1), we can write

xkeukAt

14+ 2 (eukAt — 1)’

Tpy1 = k=0,1,..,N —1. (5.36)

By iteration, we can in turn write every z; as a function of xg and ug, uq, ..., ug_1,

$0€(u0+u1+‘“+uk71)At

1+ xo (e(uo+u1+"'+wc71)At _ 1)’

xp = xx(z0) = k=1,2,...,N. (5.37)

The endpoint condition (uy = 0) can then be written as,
_d d d
To+ a1+ -ty =5+ + -+ ay, (5.38)

where the left hand side of (5.38) is a function of zy. Solving the optimal control

problem (5.28) thus boils down to solving (5.38) for xy € (0, 1).

Remark 5.2. The value of the regularization parameter A is usually chosen
through cross validation technique. We do not employ any such techniques here.
The value of A is chosen such that the root finding algorithm for solving (5.38)
converges for all events. For A = 0.2, the roots were found with reasonably good
accuracy with value of the function at the root being of the order of 1 x 107 or
lower for all events. For lower A however, the problem becomes stiffer and left
hand side of (5.38) demonstrates ‘effective discontinuity’ in xy. This poses seri-
ous problem in solving (5.38). It is to be noted that the original captured flight

data was subjected to data-smoothing to obtain smooth trajectories |Dey, 2015].
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Figure 5.1: Hamiltonian signatures

The data-smoothing problem in [Dey, 2015| considered a linear generative model
as in Section 5.3.1 and used ordinary cross validation for trajectory of each bird
to determine the appropriate weight to the regularization term. This generated
smooth trajectories with suppressed level of noise compared to the original data.
We then take the sampled data {zd,--- , 2%} from these smooth trajectories. This
can justify taking same value of A across all the events. As a future step, cross
validation could be employed to arrive at a good value of A in the range where

(5.38) can be solved.

5.6 Data Fitting Results

For all 8 events, we solve the optimal control problem (5.28) and report the
results here. The value of the regularization weight A is taken to be 0.2 and 100

data samples at regular time intervals are taken for all events. Given the data
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vector, we solve equation (5.38) for zy € (0,1). In Table 5.2, we report time
averaged Hamiltonian integrals and time averaged total costs for all the different
games that we consider in egs. (5.18) to (5.21). These time averaged Hamiltonian
integrals are thought of as cognitive costs of the events. As seen from Table 5.2,
the trend of (ENS-I) closely follow the game (SHP-I), while the other two games
seem to follow each other. This is graphically represented in Fig. 5.1. Optimal
control solutions for the games ENS-I (5.18) and SHP-II (5.21) for individual
events are shown in Fig. 5.2-5.9. We note that more variation in the energy time
signal results in higher cognitive cost (in both measures). This is interpreted as
the collecting having to ‘think’ more to properly allocate the modes, incurring
higher costs. These cognitive costs for a particular game can thus indicate overall
physical behavior of the flock. For example, in the games (ENS-II) or (SHP-II)
where a rotational energy is considered as one of the pure strategies, relatively
higher cognitive costs for event 2, 5 indicate that the flocks went through more
rotations than the other events during the flight periods. On the other hand,
low cost for event 4 is justified by almost rectilinear overall motion. Similar
conclusions can be drawn for the other set of games (ENS-I) and (SHP-II), where
the respective cognitive cost will stipulate nature of variation of the democratic
(reshuffling within the flock) energy. The higher the cost is, more aggressively the
relative positions of the birds within the flocks are changed, leading to a more

complex flight event.
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Duration I ;Z’Zt J(f?i’t“)

(seconds) | (ENS-I) | (SHP-I) | (ENS-II) | (SHP-II) | (ENS-I) | (SHP-I) | (ENS-II) | (SHP-II)

5.4875 0.1232 0.1263 0.0976 0.1077 0.1981 0.1975 0.1454 0.1499

1.8176 0.1432 0.1018 0.2210 0.1760 0.2227 0.1619 0.3769 0.3118

5.6118 0.2735 0.2392 0.0613 0.1073 0.4595 0.4092 0.1557 0.2495

2.3471 0.1021 0.1270 0.0107 0.0190 0.2440 0.2702 0.0594 0.0610

3.8824 0.0779 0.2699 0.1587 0.1383 0.0896 0.3692 0.3001 0.3041

4.1588 0.1809 0.1634 0.0846 0.1105 0.2799 0.2706 0.2063 0.2090

5.7353 0.0804 0.1293 0.0576 0.0619 0.1127 0.2079 0.1087 0.1221

1.7588 0.4569 0.4069 0.0731 0.1090 0.8037 0.8361 0.2074 0.3810

Table 5.2: Hamiltonian Signature

5.7 Discussion

In this chapter, we have brought together several results from geometry, optimal
data-fitting and evolutionary game theory to associate a cognitive aspect to flock-
ing. The flight data of Starling flocks give rise to time-signals of energy mode
distributions. Here, the whole flock is conceptualized to making decisions about
how to optimally allocate its energy in several modes. The different energy modes
are thought as pure strategies of an evolutionary game and their fitness is mod-
ulated by some decision or control variables. These controls are then determined
by optimally fitting this model to the observed energy mode distributions in the
data. The cost to this data-fitting are referred to as cognitive cost for the flock.

In this work, we have only considered splitting energy into two modes. In this
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setting, the optimal control solutions present interesting characteristics. It will
be an important direction to consider energy splitting in several energy modes,
hence solving the fitting problem in a higher dimensional simplex. It will also be

of interest to interpret the cognitive costs in such scenarios.
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Chapter 6

Conclusions and Directions for Future Re-

search

We have made an attempt to explain collective behavior in natural flocks in this
thesis. Possible robotic applications in this context are also presented. The thesis
is distinctively divided into two parts depending on the underlying approach —
either collective behavior is viewed as an emergence of interactions between small
number of agents in a ‘bottom-up’ fashion or those interactions are inferred in a
‘top-down’ way. We summarize below the contributions of this dissertation along
with directions in which this line of research can be continued.

In Chapter 2, we explored inter-agent interaction strategies from both theoret-
ical and implementation perspectives. First, we consider a two-agent scenario in
which one agent pursues the other using constant-bearing (CB) pursuit law. The
pursued agent behaves like a moving beacon whose movement is independent to

the other. It is then shown that under particular parameter setting of the CB law
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and constant curvature paths of the beacon, the combined equations of motion of
the system resemble to that of a couple of gravitating particles. Periodic orbits
are shown to exist, each corresponding to a fixed energy. This result is used in a
robotic application subsequently. We have effectively utilized the results of this
problem in the problem of encircling a static beacon that is sensed visually by a
mobile robot by means of a camera with limited field-of-view (FOV). Proper feed-
back law for the robot is advised to make a desired closed loop in the phase space
asymptotically stable. This guarantees intermittent appearance of the beacon in
the camera’s FOV. Laboratory demonstration of this problem incorporates online
estimation of the beacon’s position when it falls out of the FOV. Secondly, labo-
ratory implementations of two biologically plausible feedback laws are presented.
These laws include another dual-agent law called Mutual Motion Camouflage and
a multi-agent consensus type law called Topological Velocity Alignment. In this
chapter we have shown how complex collective motion patterns can emerge from
simple interactions among the agents in a flock.

We study the problem of optimal steering of a single agent in Chapter 3. The
agent is driven from initial to final configuration on the plane while minimizing
the control cost that penalizes both speed and curvature control. Optimal control
solution is obtained by using Pontryagin’s Maximum Principle (PMP) and Lie-
Poisson reduction technique. Optimal trajectories are categorized by the values
of the Hamiltonian and another conserved quantity called Casimir. This problem

is then extended to capture the scenario of a flock of agents moving on the plane.
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These agents interact with each other by a predefined graph. The individual
control costs are coupled with mismatch in control with the neighbors. This
chapter forms a bridge between the two parts of the thesis.

In Chapter 4, we take the problem of optimal steering of many agent case and
consider its continuum limit. A goal of such an approach is to develop wave equa-
tions that may explain observed phenomenon of information transfer in natural
flocks. We only consider the cyclic graph of interaction that enables us to present
the results in a compact way. A general optimal control problem in the loop
group case is stated. General controllability result in infinite dimensional setting
is shown to be helpful to construct such optimal control problem. The necessary
conditions for optimality, namely the Pontryagin’s Maximum Principle (PMP) in
Hilbert space setting is only valid under a condition of finite co-dimensionality of
a reachable set. Two special cases of this problem are studied. The case in which
the underlying group is the Heisenberg group H(3), i.e. a continuum of nonholo-
nomic integrators is studied in detail. We have shown that the optimal control
solutions possess traveling wave character. Moreover, a synchronization result is
obtained in which the infinite coupling strength prohibits every agent in the flock
to behave differently. The case of planar continuum, i.e. agents moving in the
special Euclidean group SE(2) is also considered. Optimal control evolution equa-
tions are obtained by both calculus of variations and PMP approach. Similar to
the H(3) case, synchronization result is obtained. Numerical simulations for both

these cases are presented. However, we have not been able to perform a thorough
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analytical study of the partial differential equations obtained in the SE(2) case.
It is one of the directions in which future research could be conducted. A critical
question will answer whether traveling wave solutions exist in this case. Further-
more, different interaction graphs can be considered to uncover more interesting
details about this problem.

Chapter 5 presents a data-driven analysis of flight data of European Starling
flocks, captured in Rome. This data gives rise to temporal signals of the flock’s
energy distribution in several energy modes. We use an optimal control based
data-fitting technique to explain this data as the outcome of an evolutionary
game on a simplex. We call the data-fitting cost functionals of the underlying
optimal control problem as ‘cognitive cost’ that measures the cognitive effort of
the flock to allocate its energy in different modes. In our work, we have only
considered energy splitting into two modes so as to consider a simple game on
the one-dimensional simplex. This can be extended to higher dimensions where

multiple energy modes are considered.
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Appendix A

An Optimal Control Problem in an Infinite

Dimensional Setting

A.1 Introduction

After Pontryagin provided his method for solving optimal control problems in fi-
nite dimensional setting [Pontryagin et al., 1962|, there have been many attempts
to try and prove similar principles in infinite dimensions. However, the counterex-
ample of Egorov [Egorov, 1963] posed a serious challenge to that process. This
counterexample showed that the Pontryagin’s maximum principle does not gen-
erally hold in infinite dimensions. In particular, the costate variable can become
identically zero, making the maximum principle empty. The advancements in the
following decades |Ekeland, 1979; Fattorini, 1987; Li and Yong, 2012; Krastanov
et al., 2011| showed that it is possible to state PMP in some cases where some

additional assumptions are made. In this work, we adopt a similar path to prove
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the maximum principle set in a much friendlier setting.

We consider an abstract differential equation in a Hilbert space,

dx(t)
dt

= f(t,z(t),u(t)), a.e. in[0,T], (A1)

where z(t) € X, u(-) € U, and T' > 0. Let X be a Hilbert space called the state
space and U be the set of all measurable functions u(-) : [0,7] — U, where U is
a separable metric space called the control space. With this setup, we formulate

the following optimal control problem (P),

- runelzglJ(u):/ L(t,x(t),u(t))dt
P 0

subject to: & = f(t,z,u),a.e. in [0,7], z(0) = zg,2(T) = x7.

(A.2)

We assume that both the functions f(-,-,-) and L(-,-,-) are Bochner integrable
in ¢t € [0,7] and Lipschitz continuous in x(t) € X, with constant K. Further-
more, we require the existence of the continuous Fréchet derivatives f. (¢, z,u) and
L' (t,z,u). We also assume the functions f, L and their derivatives f., L’ to be

bounded, i.e. there exists an M > 0, such that

If(tz,u)l < M, |[f(t @ u)]| < M,
(A.3)
L@, u)|| < M, ||y (8 @, u)l] < M,
for all (¢, x(t),u(t)) € [0,7] x X x U. Note that these hypotheses ensure a con-

tinuous and unique solution of (A.1) to exist [Avez, 1986]. Let the space U be

endowed with the distance function,

d(u,v) = meas{t : u(t) #v(t)}, (A.4)
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where meas{-} denotes the usual Lebesgue measure in [0,7]. Then, according
to Theorem 5.3 of |Fattorini, 1987|, the space U is complete with respect to the
distance d. A direct consequence of the assumptions stated above leads to an

important result [Krastanov et al., 2011].

Lemma A.1.1. Let ui(-),us(+) be any two arbitrary members of U. Denote the
state trajectories associated with these controls by, z;(-) = z(-,u;(+)),i = 1,2.

Then there exist positive constants C1, Cy such that,

sup ||z1(t) — zo(t)|] < Crd(uq, us), (A.5)

te[0,7T

|J(U1) — J(UQ)| S ng(ul, Ug). (A6)

Proof. Let S C [0,T] be the set where the controls u; and uy differ, i.e. d(uy,uy) =

meas{S}. We know that (A.1) can also be written as,

x(t) = xo +/0 f(s,z(s),u(s))ds.

Then,

nlt)— ) = [ (5, (5)y1a(5)) — (5, 1(5),a () ds
_ / (Flsm1(s)u(5)) — (5, 2a(s), a(5))) s
[ (a0 (5) 5 22(5) o)) s
-/ (5 (5), wa(5)) — £, 22(5), w1 () ds
b [ sl () = Fs.as) uals) ds.

[0,NS
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Taking norm of both sides we get,

1 (t) — 22 (8] < K/O [21(8) = w2(s)|l ds + 2Md(uy, up),

where the Lipschitz property of f in x is used in the first term and the uni-
form boundedness is used in the second term. By the use of Gronwall-Bellman

inequality, we arrive at (A.5). The result (A.6) can be derived analogously. W

We now proceed to solve this problem by a maximum principle based approach.
Before we state the maximum principle, let us give some additional technical

details that are going to be essential for the proof of the maximum principle.

Definition A.l. (Finite Codimensionality) [Fattorini, 1987] A subset S of a
Hilbert space Z is called to be finite codimensional in Z, if there exists a closed
subspace Z. C Z of finite codimension such that S, = II(¢6(S)), has nonempty
interior in Z., where Il. denotes the orthogonal projection from Z onto Z. and ¢o

means closed convex hull.

We will now make a key assumption to derive a nontrivial maximum principle.
Let a solution of problem (P) exist and that optimal control is denoted as u* € U
and let the corresponding optimal trajectory be denoted as x*(¢). Then define the

‘reachable set’ as,
R:= {Z(T) € X |z(t) = /0 fi(s,z*(s),u*(s)) - z(s)ds
+/0 (f(s,x2*(s),v(s)) — f(s,2%(s),u"(s))) ds, for some v(-) € U} (A.7)

(A1) The set R is finite codimensional in X.
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A.2 Maximum Principle

Using usual formalism, we invoke the pre-Hamiltonian function H : R x X x U X

R x X* — R as,

H(t, x(t), u(t), po, p(t)) = poL(t, x(t), u(t)) + {p(t), (L, 2(1), u(t))), (A8

where p(t) € X* is called the costate variable. Intuitively, we want to make the

following statement of the maximum principle that needs to be validated.

Theorem A.2.1. (Mazimum Principle) Let u* € U be an optimal control for
problem (P) and x*(t) be the corresponding optimal trajectory. Then, there exist
a pair (p5,p*(t)) € R x X*t € [0,T], such that (ps,p*) # (0,0), p§ < 0, p*(+)

satisfies the differential equation,

pr(t) = — (falt, 2" (1), w" (1)) p*(t) — poLa(t, 2™ (1), u" (1)), (A.9)
where by A* we denote the adjoint operator of the operator A. The pointwise

mazximization of the pre-Hamiltonian holds,

H(t, 2" (t),u"(t), po, p"(t)) = max H(t, z"(t), v, pp, p* (1)), (A-10)

vel
Moreover, x* and p* satisfy Hamilton’s canonical equations, i.e.

dz* O0H

= Fﬂ(t,x*,u*,pa,p*) (A.11)
dt = _E(tax y Wy Py P ) (A12)

Proof. At the outset, we begin by introducing the variable, z°(t) € R that obeys

()
the dynamics, ° = L(t,z,u), 2°(0) = 0. Define, y(t) = € R x X, so

(1)
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that

dy(t L(t, z,u)
dy(t) = =:9(t,y,u), a.e. in [0,7]. (A.13)

[t z,u)
The core of the argument in proving the maximum principle will follow re-
sults of Ekeland |[Ekeland, 1979, and techniques developed in [Fattorini, 1987;

Krastanov et al., 2011; Li and Yong, 2012|. We will now state a result known as

Ekeland variational principle [Ekeland, 1979].

Lemma A.2.1. (Ekeland Variational Principle) Let V be a complete metric
space with respect to the distance function d(-,-) and let F: V — R U {400} be
lower semicontinuous and bounded below with F # +o0o. Let € >0 and u € V' be

such that
F(u) <inf{F(w) : weV}+e (A.14)
Then there exists v € V' such that

d(u,v) < /e (A.15)

F(w) — F(v) > —Ve d(w,v), Yw e V. (A.16)

Let us proceed by assuming that an optimal control to the problem (P) exists
and is denoted by u* and let y* = (2%*, 2*) be the corresponding optimal trajec-
tory. We write the minimum cost by 7o, i.e. 79 = J(u*). Now, for given € > 0, we

consider the function J, : U — R,

Jo(u) = /(T () = no + € + (T) — % (A17)
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It is evident that J.(u) > 0 for all uw € U and € > 0. Moreover,
* — < :
J(u)y=¢€< 11Lr€1£ Je(u) +e,

which by the Ekeland variational principle yields the existence of u® € U such

that

d(u,u*) < /e, (A.18)

Jo(w) — J(uf) > —Ve d(w,u), YweU. (A.19)

Next, we introduce a variation in control u¢ what is known as “needle variations".
For any v(-) e U, let h: [0,7] - R x X,
L(t, 2¢(t), v(t)) — L(t, 2°(t), u (1))
f(t2e(t), v(t) — f(E,2(), u(t))
(A.20)
Then, according to Corollary 3.9 (p. 144) of |Li and Yong, 2012] , for any p € (0, 1],

there is a measurable set F, C [0,7] such that meas{F,} = pT" and

,0/0 h(s)ds = /F o h(s)ds + o(p), (A.21)

where @ — 0 as p | 0, uniformly in ¢ € [0,7]. The perturbed control is then

defined as,
us(t) = : (A.22)

It is of interest to express the perturbation in trajectory when the control u; is
applied, i.e. we want a Taylor like expansion of y5(t) = y(t, u5) with respect to p
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at p =0, i.e. at y°(t) = y(t,u). Let us write,

Yp(t) = y*(t) + p(t) + o(p).

Then,

gD =y

YE(t) = lim P
—tim s ([ ot uges = [ s 0.0 (9)as)
o [Pa(siyp(s), ug(s) — g(s,yS ug(s)) )
_lpliaol/o P d

vy [ O =gl ),
0,6NF,

t t
= / G5,y (s), u(s)) - ) (s)ds + / (9(s,y°(s),v(s)) — g(s,y°, u(s))) ds,
0 0
(A.23)
where the second term follows from (A.21). g; is the Fréchet derivative of g with

respect to y and can be decomposed as,

L [ Le(tat(t),uc(t)) - q )
9,y (), u(t) - ¢ = , forany ¢=(q0,q) € R x X.

fo(t, 25(t), u(t)) - q

Let’s write ¢(t) = (2§(t), 2°(t)). In particular, we have z§(T) = %J(“;)}p:o and
24(t) = d%:v;(t))‘pzo, each of which can be spelled out separately from (A.23),

25(T) = /0 L;(s,xﬁ(s),ue(s)) - 2°(s)ds +/0 (L(s,z(s),v(s)) — L(s, z(s),u(s))) ds,
(A.24)

ﬂﬂ=1ﬂ@ﬁ@wﬁwf@%+lU@f®m@%ﬁ@f@w%m%-
(A.25)
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Now, as a next step, we derive necessary conditions for the pair (y(¢),u(t)) to
be suboptimal. We do this by using the Ekeland variational principle and letting
p tend to zero. In (A.19), we set w = uj,. Note that the controls u® and u, differ

only in the set F,, which has a measure pT". Then,

Je(ug) = Je(u) > —v/ed(us, uf)

> —/epT.

1.e.

£ > —T\/e. (A.26)

Now, note that,

i Je(ug,) — Je(uf) _ dJe(us)
pl0 p dp o
1 . dJ (us)
= 7 (20 -+ 0
dz (T
#20ly1) = arl () = ar- 2520 )]
(J(u) —m+€) . (1) —2r
) o(T) + < AR (T)> (A.27)
Thus, taking the limit in (A.26), we can write,
§2(T) + (€5, 2(T)) = =Te, (A.28)

where £§ = % and £ = xfg;” € X*. Note additionally that,

(&) +lleel® = 1. (A.29)
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Equation (A.28) can be regarded as the necessary conditions for (y¢(t),u(t)).
Finally, we will let € tend to zero to obtain necessary conditions for (y*(t), u*(t))

to be optimal. Define,
2= / L (s, 2" (s), u*(s)) - 2(s)ds + / (L(s,a*(s), v(s)) — L(s,a"(s), w(s))) ds,
(A.30)

:/0 f;(sax*(S)au*(S))-Z(S)d8+/0 (f(s,27(s), v(s)) — f(s,2"(s), u(s))) ds.

(A.31)
Since v(-) is any arbitrary element in U, 2(T) € R, c.f. (A.7).
Lemma A.2.2. The following results hold true.
ligl |26(T) — 20| =0,
(A.32)

lim sup [|z°(¢) — 2(¢)| = 0,
l0 tel0,7)

Proof. Let us denote S, = {t € [0,7] : u(t) # u*(¢)}. Then, meas{S.} =

d(u,u*) < /€, by (A.18). From the definition of z(t¢), we find,
t
=0 < M [ ()] ds + 207,
0

where boundedness of both f and f, have been used. Applying the Gronwall-

Bellman inequality, we get ||z(¢)|| < 2MTeMT, for all ¢t € [0,T]. We now write,

/ FLls,a(s),u(s)) - ((5) — =(5))ds

/0 (F1(s,a(),u(5)) — FLls,* (), u*(5))) - 2(s)ds
-/ (F(5,2(5),0(9)) — Fls,2°(),0(9))) ds
-/ (F(5,2(9),05()) — Fs,2°(5), 07 (5))) ds.
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Taking norm on both sides and utilizing boundedness of f. and z(t), we obtain,

125(t) = 2] < M/O 12°(s) = 2(s)|| ds

+2MT6MT/O £z (s, 2(s), u(5)) = fols, 2" (s),u"(s))| ds

; / 1 (s, 2(s), v(s)) = F(5,2° (), v(s))]| ds

+/0 1f (s, 2(s), u(s)) = f(s,27(s), u’(s))| ds.

The last term in (A.33) can be written as,

/0 1f (s, 2(s), u(s)) = f(s,2"(s), u*(s))| ds
= / 1f (s, 2(s), u"(s)) = f(s,27(s),u"(s))[| ds

[0,¢]\Se

+ / [f (s, 2%(s), u(s)) — f(s,27(s),u"(s))] ds

[0,]NSe

<K / |x(s) — x*(s)|| ds + 2M d(u®, u™)
[0,£]\ S

< (KC\T + 2M)d(uf,u*) < (KC,T + 2M)v/e % 0.

(A.33)

Note that we have used the Lipschitz property of f and result of Lemma A.1.1.

The second and third term can be treated in a similar fashion to show they are of

o(1) which goes to 0 as € tends to 0. Note that, instead of Lipschitz continuity, we

would use continuity of f, in x in order to use appropriate upper bound. Hence,

(A.33) can be written as,

125(8) = 2(D)] < M/O 125(s) = 2(s)| ds + o(1),
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which by Gronwall-Bellman inequality yields,
e MT €l0
125(8) = z()]| < e o(1) — 0,
uniformly in ¢ € [0,T]. The convergence of z§(7T") can be shown analogously. MW

Using (A.28) and the Cauchy-Schwarz inequality, we may now write,

€070 + (&5 2(T)) = &z + (€5, 2°(T)) = & (26 — 20) — (€5 2°(T) — 2(T))

> =TVe — €] |25 — 2ol — 1€ 12°(T) — 2(T)]|

v

—TVe— |25 — 2ol = [[2(T) = 2(D)||. (A.34)

The last inequality follows, since (£5)* + ||€€]|> = 1, both |€5] < 1 and ||¢]| < 1.
Denote, k¢ = —T'\/e — |25 — 20| — ||2°(T") — 2(T")|| and by the convergence results

(A.32), we see that k* — 0 as € | 0. Thus, (A.34) can be expressed as,
Ezo + (€5, 2) > —KS, Vzp € R,z €R, (A.35)

where, x° <% 0. Now the assumption (A1) that the set R is finite codimensional
in X is going to be useful in proving nontriviality of the limit of the pair (£, &)
as € goes to 0. Here we state the following lemma from [Fattorini, 1987|, as a

consequence of finite codimensionality.

Lemma A.2.3. Let QQ be a set of finite codimension in a Hilbert space Z and let

{zn} be a sequence of vectors in Z such that

0<c< |z <C.
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Assume additionally that,

<Zn>q> Z _9n>

for g € Q and 6, — 0 as n — oco. Then there exists a subsequence of {z,} that

converges weakly to z € Z, and z # 0.

Now choose a sequence {e(n)} such that ¢(n) — 0 as n — oo. Since both
sequences {58(")} and {£€™} are bounded, there exist subsequences {¢€™)} and
{€<m)} that converge weakly to some & € R and ¢ € X*. For simplicity, let the
subsequences be denoted by themselves. Showing nontriviality of the pair (£, €)
is a crucial step in proving maximum principle in infinite dimensional case. Recall
that, § = %, so that £§ > 0,Ve > 0. Hence, we may only have & > 0.
If & # 0, we are done proving that (£,€&) # (0,0). Otherwise, let £(n) — 0 as
n — oo. Then from the relation (A.29), we get, 1 > er(")Hz =1- <§S("))2 >

1—9 > 0, for some 6 > 0, for n large enough. Finally, by the lemma A.2.3, we

get £ # 0 in the case & = 0. Hence we conclude that,

(66:€) = (60,€) # (0,0), & > 0. (A.36)
Then, finally taking the limit ¢ | 0 in (A.35), we get for any z € R and z, as

specified in (A.30), there exists a pair R x X* 3 (&, €) # (0,0), & > 0, so that,
oz0+ (€,2) > 0. (A.37)

Now, let us introduce the costate variable p*(t) € X*, that obeys the following

differential equation,
p(t) = = (fot,2™(8),w (1) p"(t) — L (8 2™ (1), u*(2)), (A.38)
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with p*(T) = —€ and p} = —& < 0. Here by A* we denote the adjoint operator

of the operator A. Now since z(0) = 0, we have,

+/0 (0" (8), f (2™ (), v(t)) = [t 27(2),u"(t)))) dt (A.39)

This, combined with the definition of z5 (A.30) and equation (A.37) yields,

(p*(T),2(T)) + P20

- / [ (2 (8), 0(t), 9 9" () — H(t, 2 (0), " (), pi,p* ()] dt < 0. (A.40)

Since the control set U is separable, the similar argument as in [Krastanov et al.,
2011; Li and Yong, 2012| would give the pointwise maximization criterion of the

pre-Hamiltonian,

H(t,x*(t),v(t),p5, p*(t)) < H(t,z*(t),u"(t), p5, p*(t)), ae. in [0,T], Vv € U.
(A.41)
From the definition of the Hamiltonian, we can finally compute its derivatives. In
what follows, the appropriate arguments will be suppressed for simplicity and the
notation |, will imply the function has been evaluated at optimal parameters. We
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then find for any (Z,p) € X x X*,

o\ . Hp +op) - Hp")
= lim
op*|, o0 o .
d
= —H *
dO’ (p + Up) o=0,*
and,
oH f:limH(x + o) — H(z*)
ox* |, o—0 o .
d *
= %H(x + o) .
d * * ~ * * ~
= = (0", f(@" + 02)) + pL(2" + 0F))
7 o=0,%

= (", fals - 2) + 15 (Ly|s, T)

= ((f1)" P+ PL | 7).

Thus, we may write the canonical Hamilton’s equations of motion,

dz* O0H (2, gt )
= % y LU 5Py D )y
dit op (A.42)
dp* oOH
—_ _ t * * * >k .
dt 5x*(7x7u7p07p)
This completes the proof of the maximum principle.
|
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