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Submicrometer phonon systems are becoming increasingly relevant in modern
day technology. Phonon mechanisms are notably relevant in a number of solid-
state devices including lasers, LEDs, transistors, and thermoelectrics. Proliferation
of these devices has been driven by advancements in silicon-on-insulator technol-
ogy. These advancements have allowed for the manufacture of devices with complex
nanostructures and dimensions deep in the sub-microscale regime. However, accom-
panying improvements in the manufacture and design of novel crystalline systems
is the requirement for accurate computational approaches for phonon modeling in
nanostructured, anisotropic, and complex materials. The phonon Boltzmann trans-
port equation is uniquely well suited to modeling energy transfer at the nano- and
micro- meter length scales and is therefore an excellent candidate for this simulation
task. However, current Boltzmann modeling approaches utilize a range of assump-
tions and simplifications that restrict their validity to isotropic, nominally one or
two dimensional, or compositionally simple systems.

In this dissertation we present an original finite volume-based methodology for
the solution of the three dimensional full Brillouin zone phonon Boltzmann transport
equation. This methodology allows for separate real and reciprocal space discretiza-
tion. By taking a sampling of vibrational modes throughout the first Brillouin zone
our methodology captures three unique sources of phonon anisotropy. We investigate
the effect of phonon anisotropy in a fin field effect transistor, calculating the effect
that incorporating various sources of anisotropy has on the resultant temperature
fields.

In a second study, we consider phonon flow through silicon nanowires with
a modified boundary geometry. The three-dimensional flow fields are calculated
and thermal transport below the Casimir limit is observed. Reduction in thermal
conductivity is a result of maximizing the phonon backscatter that occurs in our
phononic system. The backscatter serves to create regions of highly misaligned



phonon flux. In addition, our silicon nanowire geometry has properties analogous
with a high-pass phonon filter.

In the final study we apply our Boltzmann transport methodology to the
simulation of phonon transport in the energetic material, RDX. We study phonon
transport in the vicinity of a material hotspot, the location at which chemistry
initiates in the material. By applying Boltzmann modeling, applied for the first
time to this material, we gain valuable insights into the interplay between thermal
transport and phonon modes linked with initiation.
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Chapter 1: Introduction

Thermal transport processes play a key role in the material behavior of a

wide-array of important microscale engineering problems [3, 4]. For example, the

overheating and energy dissipation in field effect transistors [5–12], energy conver-

sion efficiency in thermoelectric devices [13–20], and initiation in energetic materi-

als [21–29] are all processes which are inextricably linked to the microscale thermal

behavior of these systems [30]. At the microscale, continuum descriptions of heat

transfer, such as Fourier’s Law, break down. Therefore, accurate modeling of ther-

mal transport requires consideration of the phonons, i.e. collective vibrations of the

atomic lattice, which are the fundamental carriers of heat in non-metals. The im-

portance of accurate modeling of microscale thermal transport properties will only

continue to grow as an increasing number of devices operate in the sub-continuum

regime. Amongst such devices are the transistors on computer chips and nanowires

in thermoelectric devices, both of which are undergoing rapid reduction in size in

order to increase computing power and thermoelectric efficiency, respectively. There-

fore, accurate phonon modeling holds promise for resolving numerous engineering

challenges such as improved transistor design, increased thermoelectric efficiency,

and improved control over the initiation of energetic materials.

1



There exists a wide array of numerical approaches for the simulation of phonons,

i.e. computational phononics. The length scale domain to which a computational

phononics approach applies is delimited by important phonon wave properties, in-

cluding phonon wavelength and mean free path, as well as the system size. In the

sub-continuum regime, where length scales are on the order of the phonon mean free

path or smaller, prevailing computational approaches include density functional the-

ory (DFT), lattice dynamics (LD), molecular dynamics (MD), and the Boltzmann

transport equation (BTE). The length scales at which these approaches are applica-

ble are depicted in Fig. 1.1. Of these approaches DFT, LD, and MD all retain the

λ ∼ Λ � Λ

MD

BTE/LD BTE

Figure 1.1: Length scales of applicability of the LD, MD, BTE, and DFT methods.

In this figure λ represents the phonon wavelength while Λ represents the phonon

mean free path.

complete atomic description of the system allowing for the calculation of important

wave properties such as vibrational mode shapes and vibration spectrum. However,

retaining all atomistic information comes at a high computational cost and these

approaches are limited to length scales on the order of the phonon wavelengths. In

2



contrast, the phonon BTE neglects phase effects allowing it to access longer length

scales on the order of the phonon MFP. Therefore, as this thesis will focus on ma-

terial systems in which important thermal processes occur at both the nano- and

micro- scale, the phonon BTE will be best equipped for studying relevant thermal

transport problems.

1.1 Challenges Associated with Phonon Modeling

The phonon Boltzmann transport equation (BTE) describes the spatial and

temporal evolution of the phonon distribution for all phonon modes present in a

system. The phonon BTE is written [31]

∂N

∂t
+ v · ∇N =

[
∂N

∂t

]

collision

, (1.1)

here v is the phonon group velocity (the speed and direction in which a phonon

carries energy), N is the phonon distribution function, and the right side of Eq. 1.1

represents the phonon collision term, i.e. scattering. The challenge of BTE mod-

eling lies in determining the seven-dimensional phonon distribution function, N ,

which is a function of real space, reciprocal space (i.e. space of vibrational modes),

and time. Therefore, numerical approaches may become computationally demand-

ing as discretization must be applied to seven variables. Further complicating the

solution process is the fact that the phonon BTE requires a number of key phonon

parameters as inputs, such as the group velocities and vibrational frequencies. Ac-

curate calculation of these parameters requires atomistic simulations, such as MD,

LD, or DFT. This adds an additional step to the simulation process that may be

3



computationally demanding, in the case of DFT, or requires access to accurate em-

pirical potentials for certain complex systems, for example when using LD and MD.

To deal with these computational challenges, previous Boltzmann transport based

research efforts have often resorted to assumptions or approximations when apply-

ing the phonon BTE. In particular, two common simplifications are applied when

modeling a material system. The first simplification involves reducing the dimen-

sionality of a system by assuming variations in the phonon occupation occur in only

one or two spatial dimensions. The second simplification involves approximating

the three-dimensional reciprocal space representation of the phonon carriers as zero

or one dimensional. We now elaborate on these two common simplifications.

a) 1D/2D Assumption

One of the predominant simplifying assumptions made when solving the phonon

BTE is to approximate systems or devices to be nominally one or two dimensional.

The earliest numerical solutions of the phonon transport equation considered a

semi-infinite nominally 1D domain in order to model phonon transport across a

thin film [32, 33]. Subsequent work studied other 2D geometries such as MOS-

FETs [12,34,35] and periodic microstructures [36,37]. Only in the past decade have

fully three dimensional phonon transport simulations begun to appear [30,36,38,39],

enabled by the continued increase in computing power. The importance of accurate

microscale thermal modeling in three dimensions will continue to grow as silicon-

on-insulator (SOI) technology improves, enabling geometrically complex microscale
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devices. One such device is the FinFET transistor which has a raised fin geome-

try, resulting in a temperature profile that varies in three dimensions. Examples

of systems that can be effectively modeled as one or two dimensional, as well as a

recently developed FinFET device that has temperature profiles that vary in three

dimensions, are shown in figure 1.2.

Gate

(SiO

2

)

(SiO

2

)

(a) (b) (c)

Figure 1.2: Examples of microscale systems that may be regarded as (a) one, (b)

two, or (c) three dimensional. Cross-plane heat transport in a thin film (a) is a

nominally one dimensional system. Heat flow in a planar MOSFET (b) can be

modeled as a two dimensional system. Current generation transistors such as a

FinFET (c) have thermal profiles which vary in all three dimensions.

b) Simplified BZ Representation

Another common challenge in the solution of the phonon BTE is the accurate

representation of the full Brillouin zone (FBZ), i.e. the subset of reciprocal space

containing all unique vibrational modes that exist within a material. Phonon wave
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properties influencing energy transport include the phonon frequency, group veloc-

ity, specific heat, and lifetime. These phonon parameters depend on the vibrational

mode in question, where the vibrational mode is uniquely indexed by wavevector,

k, and branch, λ. In an infinite crystalline material the wavevector k varies con-

tinuously within the FBZ. Early solutions of the phonon BTE assumed the phonon

parameters could be replaced by a single averaged value, which implicitly collapses

the Brillouin zone to a single point, i.e. the gray phonon assumption [8, 32, 40, 41].

The gray assumption fails to account for the fact that the phonon frequencies, life-

times, and group velocities each take on range of values that span several orders

of magnitude, therefore leading to inaccurate predictions of thermal properties [12].

To remedy the failures associated with the gray phonon model, researchers incorpo-

rated dispersion characteristics by calculating the phonon parameters along a single

direction in the FBZ and took the phonon parameters to be radially symmetric,

effectively replacing the true Brillouin zone with a sphere of radially symmetric

dispersion [38, 39, 42–44]. Figure 1.3 compares the full Brillouin zone representa-

tion to the simplified isotropic representation. While the isotropic dispersion model

increases accuracy relative to the gray model, it necessarily ignores the fact that

phonon parameters are, in general, anisotropic in the BZ. Furthermore, research

of phonon transport in thin films has indicated that anisotropy has a significant

effect on thermal conductivity predictions in microscale systems [45], even if the

macroscopic anisotropy of the constituent material is relatively weak. Therefore,

accurate modeling of phonon transport in micro- and nano- scale devices requires a

FBZ representation.
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Figure 1.3: Comparison of a full Brillouin zone representation (a) versus the sim-

plified isotropic dispersion representation (b). The constant frequency contours of

the kz = 0 plane in the isotropic Brillouin zone are circular sections. The gray

approximation is not shown as it collapses the BZ to point where dispersion has no

meaning, i.e. ω is a constant independent of wavevector k.

1.2 Research Outline

The feasibility of three dimensional phonon transport simulation, coupled with

full Brillouin zone phonon inputs, means we can now accurately simulate thermal

effects in novel 3D device structures. These simulations could, in turn, inform

how to engineer microscale devices with desirable thermal properties. Among the

device geometries that have gained widespread interest in recent years are three

dimensional FinFET transistors and silicon nanowire based thermoelectric systems.
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These systems can be used to manufacture smaller transistors, leading to increased

microchip computing power, and more efficient thermoelectric devices. However

challenges remain such as efficient heat removal in FinFETs and nanowire device

design for improved energy conversion capability in nanowire-based thermoelectrics.

In addition to engineering phonon behavior in semiconducting systems, the phonon

BTE may be used to better understand thermal transport properties in energetic

molecular crystals. Advances in knowledge of thermal processes in energetics will

allow for greater control over the sensitivity of these systems. Thus accurate 3D

phonon modeling will aid in addressing a range of engineering challenges, ushering in

smaller, more efficient semiconducting devices as well as highly controllable energetic

systems.

The aim of this dissertation is to address these challenges through the de-

velopment, and subsequent application, of a FBZ three dimensional phonon BTE

solution methodology. In Ch. 2 we will cover the fundamentals of phonon theory,

providing the reader with the prerequisite knowledge and intuition required for the

remainder of the work. We also present a brief overview of the various numerical

approaches for solving the phonon BTE.

In chapter 3 we will present an original phonon BTE solution method which

accurately captures phonon transport behavior in three dimensions, accounting for

the full range of phonon properties throughout the Brillouin zone. In addition we

will describe the approach for determining the relevant phonon parameters required

as inputs. The methodology will be verified through comparison to exact analytical

solution to the BTE. The method will be used in chapters 4-6 to address three critical
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microscale thermal engineering problems. Each of these investigations represents

original work published by the author in [30] , [46], [47], and [48].

Chapter 4 presents an investigation into the effects of anisotropy in a FinFET

composed of a cubic lattice material. FinFETs represent the new generation of

transistor technology consisting of a raised fin appendage surrounded on three sides

by a gate (see fig. 1.2). This fin geometry allows for greater control over the tran-

sistor performance and decreased power consumption. However, due to the extreme

scaling of the transistor dimensions (Intel’s newest chips boast a characteristic di-

mensions < 20 nm) there is a large increase in boundary scattering, exacerbating

Joule heating effects which may lead overheating and device failure. We perform a

numerical experiment of a FinFET device, accounting for Brillouin zone and finite

lattice effects on anisotropy. We extract the temperature profiles within the FinFET

and analyze the role that anisotropic heat carriers play.

In chapter 5 we investigate the thermal conductance of a silicon nanowire with

a chamber-offset geometry. This investigation is performed in the context of a recent

surge in interest in the use of Si nanowires as components in thermoelectric devices.

The interest in Si nanowires as a thermoelectric component is due to the prevalence

of Si and the fact that Si nanowires have a thermal conductivity a factor of 10-100

times less than bulk silicon. As thermoelectric efficiency is inversely proportional

to thermal conductivity, Si nanowires hold promise as thermoelectric components.

Furthermore, a number of recent papers have found that modifying the geometry of

Si nanowires may lead to further thermal conductivity reduction. In light of these

studies, we consider a Si nanowire with periodically offset sections, finding that
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this geometry has desirable thermoelectric characteristics and is a better candidate

geometry for reducing thermoelectric flux than previously studied geometries. In

addition we analyze the interior flow nature of phonons through the nanowire and

consider the possible applications of the nanowire design as a ”thermal filter.”

Chapter 6 delves into the important role phonons play in the initiation pro-

cesses of energetic crystals. Specifically, we study the molecular crystal RDX. It is

believed that phonons play a key role in energetics via the ”up-pumping” mecha-

nism in which energy deposited into low-energy phonon modes is transferred, via

phonon-phonon interactions, into higher frequency intramolecular vibrations which

are closely linked with chemical decomposition and ultimately detonation. There-

fore, we perform a careful examination of the phonon mode lifetimes in RDX as

well as phonon transport in the vicinity of an RDX hotspot. Hotspots in energetic

materials are localized regions of higher energy density and are believed to be the

location where chemistry begins. In addition we parse the mode-wise contribution

to thermal transport with special attention paid to phonon modes that are closely

linked with Nitrogen-Nitrogen (N-N) bond stretching.

In chapter 7 we present a summary of our findings and identify key scientific

questions for future work.
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Chapter 2: Phonon Theory and Simulation 1

In the first section of this chapter we present the fundamentals of phonon the-

ory where, in the interest of pedagogy, we develop intuition for phonon behavior

in microscale regimes. Specifically, we consider a one-dimensional model crystalline

solid which avoids the cumbersome mathematical machinery required for the study

of phonons in a real material. Subsequently, we outline the lattice dynamics ap-

proach and detail the mathematical framework for calculating the wave properties

of phonons in a general crystalline system. The section concludes with a description

of anharmonic effects, the role they play in thermal transport, and how they are

handled within a modeling framework.

In section 2.2 we introduce the phonon Boltzmann transport equation which

will be used throughout this work to model microscale phonon transport. A brief

history of the solution techniques of the phonon BTE is presented along with a

description of the microscale systems which have been studied using Boltzmann

transport modeling.

1Portions of this chapter appeared in the publication: F. G. VanGessel, J. Peng, and P. W.

Chung, A review of computational phononics: the bulk, interfaces, and surfaces. J. Mater. Sci.

(2017) [47]
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a

0

Figure 2.1: A 1D crystalline system consisting of atoms of mass m. Each mass is

connected to its nearest neighbor via a linear spring. The spacing between nearest

neighbors is a. The outline of the unit cell of the crystal is indicated by the dashed

line.

2.1 Phonon Theory

2.1.1 1D System

In order to establish intuition for what constitutes a phonon, consider the sim-

ple one-dimensional crystalline system depicted in Fig. 2.1. A system is crystalline

if it is composed of a periodic tiling of unit cells, where each unit cell contains an

identical configuration of atoms (referred to as a basis). In our one-dimensional

crystal, each unit cell, denoted by the dashed box, contains a single atom of mass m

located at the left-hand side of the unit cell. Furthermore, each unit cell is repeated

with a period of a and corresponding to each unit cell is an index l, where l is an

integer. Therefore, the equilibrium position of the atom belonging to unit cell l is

located at r0
l = la. Since the basis consists of only a single atom, and the system
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is one dimensional, there is only a single phonon branch and vibrational modes are

uniquely indexed by wavenumber k. In order to visualize the vibrations of atoms

associated with a phonon, we take the motions to be transverse with respect to the

orientation of the chain. In a materials of a higher dimensions, there exist both

transverse and longitudinal polarizations of the atomic motion, termed the trans-

verse phonon branch and longitudinal phonon branch respectively. Furthermore,

systems with two or more atoms in the basis will contain multiple transverse and

longitudinal phonon branches. In the following discussion we will refer to k as the

wavevector, with the implicit knowledge that k corresponds to a single scalar compo-

nent. We will now derive the phonon mode shapes, frequencies, and group velocities

of all vibrational modes, indexed by k, in this crystal.

Begin by writing the equation of motion for an arbitrary atom affixed to unit

cell l,

mül = A(ul+1 − ul)− A(ul − ul+1) = A(ul+1 + ul−1 − 2ul) (2.1)

here A is the spring constant. As we are seeking solutions of the plane-wave form,

let ul = C0e
i(kal−ωt). Inserting the functional form of ul into Eq. 2.1 yields

−mω2 = A
[
eika + e−ika − 2

]
, (2.2)

which upon rearrangement gives

ω(k) =

√
2A

m
[1− cos(ka)]1/2 (2.3)

Thus we have an analytical form for the frequency of all phonon modes in the 1D

chain. For an infinitely long crystal, the wavevector k is a continuous variable. Note
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that the phonon mode shape is periodic under any translation of the wavevector by

an integer multiple, n, of 2π/a, i.e.

ul(k + 2πn/a) = C0e
i[(k+ 2π

a
n)al−ωt]

= C0e
i[kal−ωt]ei2πln

= C0e
i[kal−ωt]

= ul(k) .

(2.4)

Thus all unique vibrational modes of the system are contained within a finite range

of wavevectors where, by convention, we assign k to the interval [−π/a, π/a]. The

region extending from −π/a to π/a is called the Brillouin zone of our crystalline

system. The equivalence of points falling outside the Brillouin zone to points within

the Brillouin zone is visualized in Fig. 2.2.

From Fig. 2.2 one can see that all wavevectors falling outside the Brillouin

zone may be mapped into the Brillouin zone, through the appropriate addition of

2πn/a where n ∈ Z, where the corresponding atomic vibrations are invariant under

the mapping. The frequency-wavevector relation is termed the phonon dispersion

curve, and is plotted over the entire Brillouin zone in Fig. 2.3. The single curve,

i.e. transverse phonon branch, is indicative of a one-dimensional system with a

monatomic basis. The dispersion curve is zero at the Brillouin zone center and

approaches a maximum, ωmax =
√

4A/m, at the Brillouin zone boundary. In a three-

dimensional material the three low frequency branches, i.e. acoustic branches, follow

a similar trend. In addition to visualizing the phonon wavevector-frequency relation,

we can also visualize the displacements due to a phonon of wavevector k, i.e. the
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n = 1

n = 2

n = 3

n = 4

Figure 2.2: Plots of a six atom section, along with corresponding mode shapes,

of the one-dimensional crystalline system. The continuous curves corresponding to

u(x, k) = C0e
ikx for k = π/10a and k = π/10a + 2πn/a (n = 1, 2, 3, 4) are shown in

blue and red respectively. At the points r0
l (filled black circles) the displacements

corresponding to k = π/10a and k = π/10a+2πn/a (open black circles) are identical and

therefore the atomic motion corresponding to the wavevectors outside the Brillouin

zone is indistinguishable from wavevector, k, within the Brillouin zone.

phonon mode shape. These displacements are plotted for five different wavevectors

in Fig. 2.4.

Phonons carry mechanical energy as they propagate, the speed at which a

phonon propagates is termed its group velocity, defined as v(k) = ∂ω/∂k. In the case
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Figure 2.3: Phonon frequencies for 1D chain. The black dots correspond to the

phonon modes visualized in Fig. 2.4

of our one-dimensional crystal the group velocity may be calculated analytically,

doing so yields

v(k) =

[
Aa2 sin2(ka)

2m [1− cos(ka)]

] 1
2

. (2.5)

The relation between group velocity and wavevector is plotted in Fig. 2.5. Note

that the group velocity attains a maximum value at the Brillouin zone center where

vmax = a
√

A/m and approaches zero at the Brillouin zone edge. The acoustic modes

of real materials follow a similar trend.

Thus far we have referred to vibrational mode and phonon interchangeably,

however there is an important, but subtle, distinction between these two concepts. A
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Figure 2.4: Phonon mode shapes for 5 different wavevectors. The equilibrium posi-

tions of the atoms are denoted by open red circles. The displacements of the atoms

from equilibrium are indicated by blue arrows. The black lines are a visual aid to

make the sinusoidal shape of the phonon mode more apparent.
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Figure 2.5: Phonon group velocities for 1D chain.

phonon, while corresponding to a single vibrational mode, is only a single quantum

of energy within that mode. Therefore within a crystalline material there exists

many vibrational modes, each of which contains a varying number of phonons. The

number of phonons in a given mode is termed the modal occupation number, denoted

by N(k).

When a phonon system is in thermodynamic equilibrium at temperature T ,

the number of phonons in each vibrational mode follows a Bose-Einstein distribution

N(k) =
1

exp
(
h̄ω(k)
kBT
− 1
) (2.6)

where h̄ is Planck’s constant, kB is the Boltzmann constant, and T is temperature.

At equilibrium the total energy in the vibrational mode is equal to the number of
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phonons in the mode, N(k), multiplied by the energy of each individual phonon,

h̄ω(k), E(k) = h̄ω(k)N(k). The amount of energy carried by a vibrational mode is

proportional to the modal specific heat, which is calculated as the derivative of the

energy stored in a vibrational mode with respect to temperature

C(k) =
∂E(k)

∂T
= kBx

2 ex

[ex − 1]2
; x =

h̄ω(k)

kBT
. (2.7)

The specific heat for all vibrational modes at three temperature regimes (low,

medium, and high temperature regimes are taken relative to the quantity h̄ωmax
kB

)

is plotted in Fig. 2.6. Note that at low temperatures only the small k modes carry a

substantial amount of heat, while at high temperatures, all vibrational modes carry

the same amount of thermal energy.

To understand the role phonon modes of different k play in the transport of

thermal energy we invoke the phonon gas model (PGM) of thermal conductivity [49].

Within the PGM framework, each phonon mode represents a quasiparticle that

contributes to thermal conductivity κ, we express this relation for a one dimensional

system as

κ =

∫ π/a

−π/a
κ(k)dk ; κ(k) = C(k)v(k)2τ(k) . (2.8)

In Equation 2.8, τ represents the phonon relaxation time which will be discussed

in detail in sec. 2.1.3 for now we take it to be a constant, τ(k) = τ . The thermal

conductivity contribution from each wavevector is plotted in figure 2.7. Inspection of

this figure indicates that phonon modes that correspond to small wavevectors carry

a relatively larger amount of thermal energy than large wavevector modes. In fact

at low temperatures nearly all the energy is carried by phonons near the Brillouin
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Figure 2.6: The specific heat as a function of wavevector at three distinct tempera-

ture regimes.

zone center due to the negligible occupation of phonon modes corresponding to

medium and large wavevectors. The total thermal conductivity (the area under the

curves in figure 2.7) of the system increases with temperature due to the increase

in phonon population of all phonon modes as temperature rises. We stress that

the observations made about phonon behavior in our one-dimensional systems are

not strict rules and serve only as general guidelines for a real material. In real

materials complicating factors include the three-dimensionality of the system, large

basis containing many atoms, and complex interatomic potentials. However, these

heuristics do provide a reasonable approximation for the behavior of the acoustic

phonon branches which dominate heat conduction in most materials.
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Figure 2.7: The thermal conductivity as a function of wavevector at three distinct

temperature regimes.

The phonon specific heat, group velocity, and frequency form three of the

four phonon parameters required for pBTE modeling of phonon transport. Here we

calculated these parameters for all vibrational modes in one dimensional crystalline

system. While we studied an idealized systems, much of the intuition gained here

can be applied to more complex systems. Next, we provide a brief overview of

lattice dynamics which is the mathematical formalism most often used for calculating

phonon parameters in real materials.
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2.1.2 Real Materials

We saw in figure 2.4 that phonons represent a delocalized harmonic vibration

of atoms within a solid and therefore have wave-like properties such as mode shape

and natural frequency. Lattice dynamics methods provide a general framework for

the determination of these phonon parameters. We present a brief overview of the

lattice dynamics approach here, but for greater detail the reader is referred to one

of the many excellent texts on the topic [50–52].

Begin by writing the equation of motion for the displacement u(lb) of the bth

atom in lth unit cell or lattice point,

mb
∂2uα(lb)

∂t2
= −

∑

l′b′β

Φαβ(lb, l′b′)uβ(l′b′) . (2.9)

Next we assume that the displacement due to wavevector k is of plane-wave form,

mbuα(lb;k) = Uα(k, b) exp[i(k · xl − ω(k)t)] , (2.10)

where Uα(k, b) and ω(k) are the mode shape and frequency corresponding to wavevec-

tor k and xl is the location of the lth lattice site in equilibrium. Under this assump-

tion we obtain the eigensystem

ω2(k)U(k) = D(k)U(k) (2.11)

where the 3n × 3n dynamical matrix D, n being the number of atoms in the unit

cell, is defined as

D(k) =
1√

mbmb′

∑

l′

Φ(l′) exp(ik · x′l) (2.12)
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and Φ(l) is the harmonic force constant matrix representing the interactions between

the 0th lattice point (located at the origin) and the lth lattice point. Solution of Eq.

2.11 yields 3n eigenpairs, these solutions correspond to the 3n branches where the

branches will be indexed by λ. Therefore, using lattice dynamics one can determine

the mode shapes, U(k, λ) and frequencies ω(k, λ) for each phonon mode, φ = (k, λ),

in the system. From the phonon frequencies, it is straightforward to determine the

phonon group velocities v(k, λ) and specific heat, C(k, λ).

In three dimensions, visualization of the phonon dispersion relations, ω(k, λ)

becomes difficult requiring dimensionality reduction for visualization such as, for

example, line traces. In this context it is easiest to visualize dispersion surfaces,

i.e ”slices” through the Brillouin zone volume for a given branch. An example of

such slices for the acoustic branches of Si are shown in Fig. 2.8. Inspection of

these dispersion surfaces reveals that the dispersion properties are anisotropic, i.e.

the constant frequency contours of ω are not circular conic sections. Each branch

possesses varying degrees and orientations of phonon anisotropy as measured by the

phonon energy flux along various crystallographic directions.

Up until this point all descriptions of the phonon transport properties have

been derived under the so-called harmonic approximation. In the harmonic ap-

proximation the potential energy function is expanded as a Taylor series about the

equilibrium atomic positions and truncated to second order. This approximation is

necessary for decoupling the vibrational modes and, as a result, produces the phonon

frequencies, group velocities, and specific heat, collectively termed harmonic prop-

erties. However, in real materials higher order anharmonic terms in the potential
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ωmax = 7.04 THz ωmax = 7.75 THz ωmax = 11.07 THz

Figure 2.8: Dispersion surfaces of the first three branches (TA, TO, LA) of silicon

in the kz = 0 plane. The projected constant frequency contours indicate microscale

dispersion anisotropy. The blue lines form an outline of the irreducible wedge of the

first Brillouin zone.

energy function play a crucial role, they couple phonon modes. Without higher

order terms, energy introduced into a given phonon mode would remain in that

mode indefinitely. In an anharmonic system when a vibrational mode is excited out

of equilibrium, phonon mode coupling relaxes the system back to equilibrium by

redistributing the energy amongst all vibrational modes. This coupling process is

commonly referred to as phonon scattering and represents the final transport prop-

erty required for phonon BTE simulation. We will now discuss the physics of phonon

scattering and common modeling approaches.

24



2.1.3 Phonon Scattering

In Peierls’ seminal paper, ”On the Kinetic Theory of Thermal Conduction in

Crystals” he describes the importance of anharmonic terms of the potential energy

to thermal conductivity of solids [31]. His consideration of third-order (and higher)

terms resolves the paradox of infinite thermal conductivity present in harmonic the-

ories of heat conduction. Infinite heat flux arose in harmonic theories due to the

lack of coupling between modes. Consider a single mode that is excited out of equi-

librium, therefore inducing a heat flux, the mode remains excited indefinitely even

in the absence of a temperature gradient. Fourier’s Law, f = κ∇T , with a non-zero

flux, f , and zero temperature gradient, ∇T = 0, intimates that this situation would

indeed lead to infinite thermal conductivity. In contrast, anharmonicity causes en-

ergy to be siphoned from the excited mode and redistributed amongst the other

vibrational modes, returning the system to equilibrium.

In his 1929 paper, Peierls determined that three vibrational modes can ex-

change energy contingent on the fact that these modes satisfy certain conservation

criteria. Specifically, phonon scattering amongst three phonon modes occurs only if

the three modes satisfy conservation of energy and conservation of crystal momen-

tum (modulo a reciprocal lattice vector, G).

ωφ ± ωφ′ = ωφ′′

k ± k′ = k′′ +G

(2.13)

A numerical modeling approach termed the ”full scattering iterative approach,”

described in sec. 2.2.2.3, enforces the explicit satisfaction of these relationships.
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However, rigorous implementation of the scattering term derived in Peierls work

is an arduous computational task. This computational difficulty stems from two

sources, a search over a grid of wavevectors to identify all three phonon interactions

(an O(n3
k) algorithm for nk wavevectors) that obey eq. 2.13 [53], and determination

of the anharmonic force constants for each of the allowed three phonon interactions.

Furthermore, the wavevector grid must be sufficiently refined to attain accurate

results. While full-scattering approaches have certainly been utilized to great ef-

fect, see sec. 2.2.2.3, these approaches are predominantly zero-dimensional in na-

ture [54–56], aside from the rare exception [57]. However, simulations of phonon

transport in three dimensions eschew the full-scattering approach preferring a com-

putationally simpler, if less rigorous, representation of phonon scattering.

One common simplification of the scattering term is a reversion to the kinetic

theory of gases that employs the idea of a relaxation time, i.e. the characteristic time

scale for a perturbed distribution to return to equilibrium. The so-called relaxation

time approximation (RTA) simplifies the scattering term of eq. 1.1 into the form

[
∂Nφ

∂t

]

collision

=
N0
φ −Nφ

τφ
(2.14)

where τφ is the phonon relaxation time for the φth phonon mode. If we combine eq.

1.1 with eq. 2.14 and set the group velocity to 0, we find that nφ(t) = exp (−t/τφ)

where nφ = Nφ − N0
φ is the phonon modal occupation deviation from equilibrium.

Therefore it is clear that the RTA causes the phonon modal occupation to relax

toward equilibrium at the characteristic rate τφ. It is in this relaxation that the

RTA indirectly models phonon-phonon collisions (in a pristine crystal these are
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the only events that return the distribution to equilibrium), however no discrete

collision events are calculated. Since τφ is an empirical parameter within the RTA

model, a wide array of scattering events that occur in a real material, such as

phonon-phonon, phonon-electron, impurity, etc., can be included in τφ. Typically,

all scattering processes are incorporated into the RTA framework via Matthiessen’s

rule which dictates that the total modal relaxation time is calculated as

1

τφ
=
∑

s

1

τs
(2.15)

where s indexes the various scattering processes. The most important type of scat-

tering in the context of this work is phonon-phonon, or intrinsic, scattering caused

by anharmonicity. Therefore, we assume for the remainder of this chapter that τφ

refers to phonon-phonon scattering only.

The empirical formulas for τφ are generally expressed as a function of ωαφ

and T , where α is a fitting parameter. In contrast to modeling all three phonon

interactions within the full-scattering model, the assumption of a simple functional

form for τφ greatly reduces the computing effort, as the relaxation time may be

calculated directly from the phonon frequencies. It should be noted that caution

must be taken when invoking the RTA as the use of the RTA introduces an inherent

restriction on the types of heat transport phenomena that can be studied by the

phonon BTE. Heat transport processes, for which modeling via the BTE using RTA,

should occur over time scales longer than the slowest characteristic scattering time

scale, i.e., phonon-phonon, phonon-electron, and impurity [58]. In this work we

make use of the phonon relaxation time approximation, calculating the relaxation
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time separately for each mode. To ensure the validity of our model, we restrict

our studies to systems of sufficiently long time scales such that the RTA is a valid

descriptor of intrinsic scattering. Further details for this calculation procedure are

given in Sec. 3.3. We now provide a brief overview of numerical phonon BTE

solution methods.

2.2 Phonon Boltzmann Transport Modeling

2.2.1 Phonon Boltzmann Transport Equation

We stated in chapter 1 that this dissertation will use the phonon BTE to

investigate phonon behavior in a number of microscale systems. In this section we

will describe the BTE in greater detail. Specifically, we will outline its derivation,

how phonons are represented within the BTE framework, as well as important length

scale considerations.

The BTE as written in eq. 1.1 governs the phonon distribution function N .

We rewrite this equation, making the mode dependence, φ, explicit

∂Nφ

∂t
+ vφ · ∇Nφ =

[
∂Nφ

∂t

]

collision

. (2.16)

The terms on the left-hand side of Eq. 2.16 indicates the phonon distributions

vary with respect to both time and space, whereas the right-hand side represents

the anharmonic coupling of phonon modes which may be treated with varying de-

grees of rigor. Within the RTA framework one can define the characteristic distance

that a phonon of mode φ travels before experiencing a collision or scattering event
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as the phonon mean free path (MFP), Λφ, where Λφ = |vφ|τφ. The MFP repre-

sents an important length scale, demarcating regimes of applicability of the phonon

BTE. Phonons modeled using BTE are consistent with the wavepacket description

of phonons, which represents the phonons as localized particles [51]. Wavepackets

are formed from a weighted superposition of phonons modes from a small region of

the Brillouin zone, resulting in a packet of vibrational energy that is spatially local-

ized [59]. The BTE has been derived from energy conservation rules leading to an

equation of motion [51]. Alternative derivations begin with the Liouville equation

governing the time rate of change of the system probability density function [59]. By

considering a single phonon mode φ and marginalizing over the remaining modes,

the system probability function is projected onto a single-mode distribution func-

tion, fφ. Applying this projection approach to the Liouville equation yields the

BTE.

Note that Eq. 2.16 corresponds to the phonon BTE for a single phonon

mode. Rigorously, a phonon mode is defined by a four-dimensional vector: a three-

dimensional wavevector and a polarization number, thus technically, there are as

many phonon Boltzmann transport equations as there are unique phonon modes.

In the continuum limit, φ is a continuous variable which means there is an infinite

number of equations governing the phonon distribution function. The distinction

between whether a system is discrete or continuous is made based primarily on the

number of phonon modes in the system. In the discrete case, the Born-von Karman

boundary conditions [60] are the periodic boundary conditions, applied to a discrete

set of atoms in a supercell, that lead to the requirement that the wavevector k and
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dimensions Li of the supercell lattice vector must satisfy exp(ik ·Li) = 1. Thus, the

set of phonon modes is discrete. As an example, consider a cubic lattice where the

supercell is defined by a tiling of Nl unit cells, for l ∈ (1, 2, 3). Then, the neighbor-

ing wavevectors along the direction corresponding to l = 1 will be separated by a

distance ∆k1 ∝ 1/N1. Likewise, along direction 2 and 3, the wavevectors are spaced

proportionally to 1/N2 and 1/N3, respectively. Then, it is clear that in the limit

of a system containing a large number of unit cells, the distance between wavevec-

tors vanishes. In that limit, the wavevectors in the BTE problem are continuous

variables and the set of allowed vectors is infinite. The vast majority of phonon

transport studies have assumed the system of study to be large enough that the

wavevector can be taken as a continuous variable. However, for small system size

the distinction between discrete and continuous is important. Consider, for instance,

lattice-scale anisotropy of thermal transport where the discreteness naturally gives

rise to anisotropic effects, whereas the analogous continuous wavevector representa-

tion is otherwise isotropic. This effect will be further demonstrated in Chs. 3 and

4.

The BTE is well suited for modeling phonon transport in devices with charac-

teristic dimensions large enough so that phonon properties are bulk-like [61]. Phonon

properties may be considered bulk-like when the number of modes is sufficient to

allow for the formation of wavepackets and when phase effects, namely construc-

tive or destructive interference, are negligible. The latter effect, often referred to as

coherency, is tantamount to averaging over all phases. Gurevich [51] refers to this

assumption as ”quantum mechanical averaging” which necessarily leads to the loss
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of phase information. Both the assumption of sufficient vibrational modes and neg-

ligible coherent effects are key in the derivation of the phonon BTE [51]. Turney et

al. [61] found that thin films of thickness 4.3 and 17.4 nm, for LJ argon and silicon,

respectively, exhibited bulk-like densities of states and therefore represent a reason-

able lower size limit for modeling by BTE. The BTE may technically be applied

to the modeling of phonons in any material with characteristic length scales large

enough to exhibit bulk-like dispersion characteristics. However, such an approach

would be computationally inefficient for simulation of systems with characteristic

lengths much larger than the dominant heat carrier MFP. At length scales much

larger than the MFP, phonon transport is primarily diffusive and other approaches,

such as Fourier’s heat equation, may be applied with negligible error [62]. The

Knudsen number, Knφ = Λφ/Lc, provides a quantitative discriminator for determin-

ing whether a purely diffusive model is sufficient. It is a problem-dependent quantity

defined as the ratio between Λφ, the phonon MFP, and Lc, a characteristic length

scale in the flow domain. The characteristic length scale, Lc, may be, for instance,

the spot size radius of a collimated laser used to heat a sample in a time domain

thermoreflectance experiment [63], the spacing of the thermal grating in a transient

thermal grating experiment [64], or the film thickness for heat conduction in a thin

film [65]. Note that the phonon MFP’s within a given material span a large range

of values, therefore resulting in a range of Knudsen numbers. Large values of the

Knudsen number (Knφ � 1) indicate phonon mode φ is a ballistic carrier, while

small numbers (Knφ � 1) imply a diffusive carrier. When applying Fourier’s Law,

or other continuum approaches, one should take care to ensure all relevant carriers
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in the system correspond to a small Knudsen number.

In the next section we detail the prevailing numerical techniques for solving

the phonon BTE.

2.2.2 Numerical Methods

Solving the BTE numerically requires the consideration of three key compo-

nents to each model:

• real space representation

• reciprocal space representation

• scattering model

The existing numerical techniques may be grouped, roughly, according to the

component they emphasize. Some approaches seek to account for multiple compo-

nents simultaneously. A table summarizing the spatial domain complexity, recip-

rocal space accuracy, and scattering term associated with hypothetical BTE model

emphasizing a certain component is shown in table 2.1. Here, we review efforts that

appear to emphasize a key development or finding and describe their assumptions

that contribute to physical accuracy.

2.2.2.1 Real Space Discretization

The real space discretization is the discretization over the domain defined

in the coordinate system of the physical body. Existing modeling methods use

32



Component
of Focus of
BTE Model

Spatial Domain
Complexity

Reciprocal Space
Accuracy

[
∂N

∂t

]

c

Real Space
Representation

k

k

ω(k)

N0
φ −Nφ

τφ

Reciprocal Space
Representation

kx ky

ω(k)

kx

ky
kz

N0
φ −Nφ

τφ

Scattering Model T = T0

∑

φ′φ′′

[
(Ψφ′′ − Ψφ′ − Ψφ) Λ+

φφ′φ′′+

1

2
(Ψφ′′ + Ψφ′ − Ψφ) Λ−φφ′φ′′

]

subject to

{
ωφ ± ωφ′ = ωφ′′

k ± k′ = k′′ + G

(1)

1

1

Table 2.1: Comparison of the three types of phonon BTE numerical solution tech-

niques, each of which emphasizes a certain component of the BTE model: real space,

reciprocal space, or scattering. The primary differences between these types are the

complexity of the spatial domains to which they are applied, how the represent

the Brillouin zone (isotropic, anisotropic, or explicit calculation of mode to mode

coupling), and how phonon-phonon scattering is modeled.

real space discretizations based on finite difference, finite volume, or finite element

techniques. Methods based on a finite difference approximation are most often

associated with the so-called lattice Boltzmann method (LBM) [45,66]. The lattice

Boltzmann method discretizes the spatial domain into a regular grid of points. Often

the temperature field is sought that accounts for both ballistic (phonons that travel

without scattering) and diffusive (phonons that undergo many scattering events)
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thermal energy carriers. Due to the discretization of the angular domain, i.e. the

set of all possible phonon propagation directions, into a small number of directions,

temperature fields obtained from the LBM may be grid dependent, especially in the

ballistic regime [45]. This behavior arises from the restriction of flow only along a

fixed set of directions that correspond to grid lines between nearest neighbor grid

points. The overwhelming majority of LBM simulations use grids with either six or

eight nearest neighbor grid points. As a result, there are a relatively small number

of allowed propagation directions, leading to the so called ”ray-effect” in the ballistic

regime. Other approaches such as the finite volume approach allow for refinement of

the spatial and angular grid independently of one another. Therefore, these methods

can achieve a relatively larger number of propagation directions, mitigating such

ray-effects [67]. Modifications and advancements to the LBM have been made to

better capture a wider array of phonon transport phenomena. Such advancements

include consideration of phonon dispersion [68], where the phonon frequencies have

a nontrivial dependence on the wavevector. Studies have also shown the effects of

optical phonons [69] and 1D solutions of the phonon BTE accounting for wavevectors

throughout the anisotropic first Brillouin zone [45]. Additionally, a coupled LBM-

Fourier approach has been used to perform multiscale thermal transport simulations

where ballistic phonon effects at the small length scale are captured by LBM, while

diffusive heat transport at the larger length scale is modeled using Fouriers law [11].

Presently, most methods appear to be based on the finite volume method

[12, 34, 35, 38–40, 43, 70–73]. Borrowing concepts developed from the computational

fluid dynamics community, finite volume approaches for solving the phonon BTE
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have been developed for varying degrees of physical and numerical complexity. Early

work involved numerical experiments of microscale semiconductor devices, such as

field effect transistors [12,34,35,40,73], while subsequent studies considered a wider

range of systems [38, 39, 43, 46, 48]. The finite volume method has been developed

to better describe phonon transport through the incorporation of phonon disper-

sion, microscale anisotropy, and heterogeneous structures [12,34,39]. In addition to

improving existing finite volume approaches to better capture phonon mechanisms,

recent work has focused on improving the computational efficiency of the method

through novel parallelization schemes and algorithm development [38, 39, 70, 72].

Due to the very large number of degrees of freedom, parallelization techniques are

needed to reduce compute time. Ali et al. [38] found the most efficient parallelization

speedup comes from a hybrid band/cell-based parallelization in which paralleliza-

tion is applied to bands in conjunction with a parallel linear solver. For a hybrid

band/cell-based parallelization, 88% parallel efficiency was achieved. Band paral-

lelization in the context of the single-mode relaxation time approximation should

have relatively little communication overhead and therefore should be highly scal-

able. Ni and Murthy [72] applied spatial decomposition parallelization and phonon

band decomposition parallelization to solutions of the phonon BTE using both a

full scattering as well as an SMRT model. They found that under the RTA model

both parallelization techniques performed equally well, while spatial decomposition

performed better for the full scattering model. We note that despite the numerous

developments to the finite volume approach, the vast majority still use isotropic

dispersion relations, neglecting full Brillouin zone effects.
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In the next section we focus on numerical methods that primarily address the

reciprocal space representation of phonons.

2.2.2.2 K-Space Representation

The reciprocal space representation is essentially the discretization over the

domain of wavevectors. When the set of allowed wavevectors is finite, or the domain

is naturally discrete, no discretization is necessary. However, when the phonons are

in a continuous medium, then the number of allowed wavevectors is intractably

large (∼ 4.5× 1022 phonons/m3 [42]). Since a full copy of the real space discretized

geometry is modeled at each allowed wavevector or phonon mode, this is clearly

problematic. In this situation, a subset of wavevectors and their assignments into

the real space may be sampled using the Monte Carlo technique.

Monte Carlo approaches simulate phonon packets corresponding to an en-

semble of phonons that have the same frequency, direction of propagation, and

spatial location. The solution of the phonon BTE occurs in two steps. First, the

phonon packet propagates in an advection step in an Eulerian description. Then,

a collisional step occurs in which the probability of scattering is drawn from an

exponential distribution [42]. If the phonon packet is scattered, it is then destroyed

and a new phonon packet is resampled from the frequency, angular, and polar-

ization stochastic spaces. Monte Carlo methods have been developed to include

more complex phonon physics, such as phonon dispersion [42], optical phonons [74],

three dimensionality [36, 75], and fully anisotropic Brillouin zone properties [76].
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Furthermore, algorithm developments have extended the capabilities of the Monte

Carlo approach. Lacroix and co-workers defined a new distribution function so that

sampling phonon-phonon collisions conserves energy without resampling events [77].

Péraud and Hadjiconstantinou developed the variance reduction formulation [36] to

study thermal conductivity in porous nanostructures where the phonon distribu-

tion deviation from equilibrium is determined numerically, while the equilibrium

distribution is known analytically. The variance-reduced approach allows for the

resolution of small temperature fluctuations without increased computational cost.

The Monte Carlo approach may be desirable for multiple reasons [36]. For

instance, resources may be used to exploit an ”embarrassingly” parallel problem

which means that many simulations may be performed simultaneously to enable

use of the Central Limit Theorem and thereby reduce error. Furthermore, the

resources conserved by sampling may be redistributed to deal with larger real space

grids or more complex device geometries. Samples of the phonon population, in the

form of phonon packets corresponding to an ensemble of phonons, are drawn from

seven stochastic spaces representing frequency space, real space, angular space, and

polarization space. The number of phonon packet samples used in the simulation is

chosen based on the desired accuracy as well as computational limitations [42]. The

error in the calculated phonon distribution function is proportional to the inverse of

the square root of the number of samples. In their work, Majumdar and Mazumder

simulated phonon transport in silicon thin films using ∼100,000 phonon packets [42]

Stochastic methods based on Monte Carlo simulations have also been used

to study phonon-mediated heat transfer in a wide array of systems including the
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effect of boundary scattering on the temperature distributions in thin wires [32]

and in thin films [33]. Shomali et al. [75] studied temperature fields in 3D tran-

sistors. Additionally, Pop et al. [78] performed coupled electron-phonon transport

simulations, while Yang and Minnich [76] studied thermal transport across grain

boundaries. Common among all of these efforts is the material studied contained a

very large, potentially computationally intractable, number of phonon modes. Nu-

merical approaches for solving the BTE are also important for the interpretation of

experimental results. Using theoretical and experimental techniques, respectively,

Chen [79] and Sverdrup et al. [8] found that the effective thermal conductivity at

length scales commensurate to the phonon MFP is smaller than the bulk value. At

such small length scales, carriers with larger MFP were essentially being suppressed.

In recent years, this phenomenon has been exploited to probe MFP spectra of ma-

terials with the aid of computational BTE solutions. Experiments such as transient

thermal grating (TTG), time domain thermoreflectance (TDTR), and broadband

frequency domain thermoreflectance (BB-FDTR) quantify the modal contributions

of different phonons to the thermal conductivity by inducing a temperature gradient

at length scales comparable to the phonon MFP [80]. For temperature gradients

that occur over lengths smaller than a phonon MFP, the relative contribution of

that phonon mode to the thermal conductivity is suppressed. In order to quantify

the degree to which this suppression occurs for a specific phonon mode, the BTE

is solved numerically for the experimental geometry to determine the suppression

function [81]. Once the suppression function is determined, it may be used to inter-

pret experimental values of the effective thermal conductivity in order to reconstruct
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the material dependent MFP spectrum [82]. The suppression function may also be

used to characterize thermal conductivity reduction due to boundary scattering in

nanostructures such as in thin wires and thin films [65].

In the final section of this chapter we discuss solution of the phonon BTE

which retain the full-scattering expression.

2.2.2.3 Full Scattering BTE

The numerical approaches detailed thus far focused on the solution of the

phonon BTE under some variant of a relaxation time approximation. The relaxation

time is an empirical parameter that can be estimated numerically (see, for instance

[83]) but must be determined outside of the BTE simulation. The steady-state

zero-dimensional phonon BTE has been solved while retaining the full scattering

terms [55]. Due to the nonlinearity of the full scattering BTE, the solution to

equation 1.1 is most readily realized through an iterative approach wherein the

phonon distribution function is updated in each iteration as a result of changes to

all other distribution functions [56]. All studies that follow the iterative approach

follow a roughly similar calculation procedure and set of assumptions. The full

scattering BTE accounting for three-phonon processes is given by

−vφ · ∇T
∂Nφ

∂T
=
∑

φ′φ′′

{[
NφNφ′(1 +Nφ′′)− (1 +Nφ)(1 +Nφ′)Nφ′′

]
Λ+
φφ′φ′′

+
1

2

[
Nφ(1 +Nφ′)(1 +Nφ′′)− (1 +Nφ)Nφ′Nφ′′

]
Λ−φφ′φ′′

} (2.17)

The setup of the model is as follows. First, the phonon distribution is linearized

with respect to frequency, this linearization comes from the assumption that the
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phonon distribution deviation from equilibrium is small [53], namely

Nφ = N0
φ −

∂N0
φ

∂ωφ
Ψφ (2.18)

where N0
φ is the equilibrium Bose-Einstein distribution, and Ψφ is the unknown

deviation factor.

Next, it is assumed that there exists local equilibrium at each point in the

material. Doing so admits the definition of a temperature T . The deviation factor

of the distribution function from equilibrium is then rewritten under the assumption

that it is proportional to the local temperature gradient, thus the deviation factor

becomes

Ψφ = Fφ · ∇T (2.19)

where Fφ is the solution vector of length ndim (ndim is the dimensionality of the

system) that we are solving for in the iterative procedure. The deviation from

equilibrium, Ψφ describes the perturbing effect of the temperature gradient on the

phonon distribution function. Substituting Eq. 2.18 into Eq. 2.17 gives the lin-

earized steady-state full scattering phonon BTE (accounting only for three-phonon

scattering events)

−vφ · ∇T
∂N0

φ

∂T
=
∑

φ′φ′′

[
(Ψφ′′ −Ψφ′ −Ψφ) Λ+

φφ′φ′′

+
1

2
(Ψφ′′ + Ψφ′ −Ψφ) Λ−φφ′φ′′

] (2.20)

where Λ±φφ′φ′′ is the probability of phonon creation and annihilation events

Λ±φφ′φ′′ =
h̄V

32π2

N0
φ

(
N0
φ′ +

1
2
± 1

2

) (
N0
φ′′ + 1

)

ωφωφ′ωφ′′
|Φ±(φ, φ′, φ′′)|2

× δ(ωφ ± ωφ′ − ωφ′′)δ(k ± k′ − k′′ −G)

(2.21)
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Here, V represents the unit cell volume, while the delta functions enforce energy

and quasi-momentum conservation. These probabilities, determined from quantum

mechanical rules governing transitions between phonon states, are functions of the

second and third-order force constants, Φ±(φ, φ′, φ′′). These force constants may

be obtained, for instance, from the third-order derivatives of the potential energy

function [84]. By plugging eq. 2.19 into eq. 2.20 and rearranging we obtain the

expression

Fφ =
1∑

φ′φ′′

(
Λ+
φφ′φ′′ +

1
2
Λ−φφ′φ′′

)
∑

φ′φ′′

[
Λ+
φφ′φ′′ (Fφ′′ − Fφ′) +

1

2
Λ−φφ′φ′′ (Fφ′′ + Fφ′)

]

+
1∑

φ′φ′′

(
Λ+
φφ′φ′′ +

1
2
Λ−φφ′φ′′

)vφ
∂N0

φ

∂T
.

(2.22)

Equation 2.22 may now be solved via an iterative procedure where the values of Fφ

are initialized and then successively updated using prevailing values for Fφ′ and Fφ′′

at each iteration step. A typical choice for the initialization is

F 0
φ =

1∑
φ′φ′′

(
Λ+
φφ′φ′′ +

1
2
Λ−φφ′φ′′

)vφ
∂N0

φ

∂T
. (2.23)

Upon determining Fφ, the thermal conductivity may be obtained. This procedure

is based on a presumption of the thermal conductivity tensor as implemented in

Fouriers law, relating to the flux of thermal phonon carriers as follows

q =
∑

φ

h̄ωφNφvφ = −κ∇T (2.24)

and substituting Eqs. 2.19 and 2.19 into Eq. 2.24 gives the expression [56]

κ = −
∑

φ

h̄ωφ
h̄N0

φ(N0
φ + 1)

kBT
vφ ⊗ Fφ . (2.25)
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To date, generalized iterative approaches have been challenging to develop due to

their relatively larger computational costs. The large computational cost is due

both to the iterative process itself, but also the calculation of Λ±φφ′φ′′ which requires

extensive Brillouin zone mapping in order to calculate the three-phonon interactions

that satisfy energy and pseudo-momentum conservation rules (see eq. 2.13). Calcu-

lations based on the iterative approach require at least an order of magnitude larger

computing time than the RTA method [56]. Furthermore, studies thus far have

restricted application of the iterative approach to simple crystals. In fact, Broido et

al. observed that the computationally intensive task of calculating the energy and

momentum conserving processes currently precludes the study of crystalline solids

with complex unit cells [53]. The iterative approach was first applied to thermal

conductivity in an isotropic solid [55] and extended to include anisotropy in rare-gas

solids interacting through a simple pair potential [85]. Subsequent work applied the

approach to diamond-type lattices [86], modified the interactions to include non-

central forces [87], and applied the iterative approach to superlattices [54]. As the

force constants are the only inputs for the iterative approach, it is vital that the

model selected for the atomic interactions accurately captures harmonic and anhar-

monic forces. It was found that several common classical interatomic potentials fail

to reproduce the true force constants and as a result these early studies obtained

computational results for the thermal conductivity two to four times greater than

experiment [88].

To remove this flaw, researchers calculated harmonic and anharmonic force

constants from density functional theory (DFT), leading to a substantial increase
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in accuracy of the method [53, 56, 89]. Thermal conductivities calculated from the

iterative procedure using force constants obtained from DFT are highly accurate

in comparison with experiments over a wide range of temperatures [53]. This ap-

proach has been used with good effect to calculate the thermal conductivity of Si

and Ge [53], diamond [90], graphene [91], several compound conductors [89], and

thermoelectric materials [92].

Finally, while the BTE solution techniques detailed in this section have been

applied to a wide range of atomic crystals, literature on phonons in molecular crys-

tals and other complex crystals remains relatively sparse. Energetic molecular crys-

tals such as RDX, HMX, and TATB are commonly used explosives with industrial

and defense application [22]. Phonon behavior within these materials is important

to chemical initiation processes [21]. Previous attempts to model heat transport in

energetic materials have used Fouriers heat law which is known to break down when

temperature variations occur over distances smaller than the MFP. Kroonblawd and

Sewell investigated the difference in the temperature distributions predicted by MD

and Fourier simulations of nanoscale heat transport and found that for TATB the

phonon MFP is sufficiently small (<10 Å) to conclude that continuum methods

provide reasonable accuracy for thermal modeling [93]. However, due to the lack

of available MFP data for energetic molecular crystals, open questions remain as

to how phonons actually contribute to initiation [22]. A particular challenge is the

sheer computational complexity of dealing with unit cells that can contain tens to

over one hundred atoms [22, 94], making calculations of dispersion curves nontriv-

ial. Nevertheless, progress continues to be made in improving the understanding of
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phonon behaviors in complex materials. Recently, Long and Chen [95] developed a

theoretical approach for determining phonon lifetimes in energetic complex crystals

allowing for the calculation of the MFP that brings us closer to developing a more

complete phonon model of energetics. In this dissertation we utilize the phonon

BTE, for the first time, to investigate phonon behavior in the molecular crystal

αRDX, providing insight into the mechanisms that lead to initiation in energetic

materials.

In the next chapter we present our own solution method for the three di-

mensional full Brillouin zone phonon BTE. This solution method involves inde-

pendent real and reciprocal space discretizations in order to capture the full range

of anisotropic thermal carrier behavior present in novel three dimensional phonon

systems.
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Chapter 3: Methodology for Solution of Full Brillouin Zone Three

Dimensional Phonon BTE 2

In chapter 2 we introduced the fundamentals of phonon theory and formed an

intuition for phonon mediated microscale thermal transport. In addition we surveyed

the landscape of numerical techniques for solution of the phonon BTE, detailing the

strengths and weaknesses of the prevailing approaches as well as providing examples

of microscale systems that were studied using the various numerical techniques. In

this chapter a model and associated numerical method are presented for simulation

of heat transport at the microscale via the solution of the three dimensional phonon

BTE. In small domains, the full Brillouin zone has a finite number of vibrational

modes, as determined by Born von-Karman boundary conditions, and therefore has

a discrete representation. As a result of this discreteness, the present method allows

for general crystal anisotropy, at the lattice-, micro-, and macro- scale, as well as

finite dimensional effects that naturally permit anisotropic thermal transport and

energy flow. The method is shown and verified using analytical solutions for isotropic

2Portions of this chapter appeared in the publication: F. G. VanGessel, P. W. Chung, An

anisotropic full Brillouin zone model for the three dimensional phonon Boltzmann transport equa-

tion. Comput. Methods Appl. Mech. Engrg. (2017), http://dx.doi.org/10.1016/j.cma.2017.01.010

[30]
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thermal flows.

3.1 History of BTE Methodology Developments

In systems with characteristic length scales on or below the phonon MFP, ac-

curate thermal modeling requires methods that account for the discrete nature of

the system, i.e. atomistic or quasi-continuum methods. Whereas the average MFP

in crystalline silicon at ambient conditions is 300 nm [96], transistor devices made of

silicon now have feature sizes < 50 nm [97]. At such length scales, thermal carriers

are predominantly ballistic, i.e. boundary scattering processes dominate phonon-

phonon scattering. Anisotropy at such small length scales can arise from three fac-

tors. The finite-sized device structure severely reduces the number of carriers in the

system relative to a bulk crystal [98]. If the aspect ratio of the device is sufficiently

large, the spacing of carriers in reciprocal space becomes highly non-uniform along

different principal directions, leading to anisotropy in the thermal flow [99–101] .

In addition, even macroscopically isotropic crystals, i.e. cubic crystals, produce

non-radially symmetric dispersion surfaces (see Fig. 2.8) and group velocities which

directionally bias thermal carriers [65,99,102]. The resulting anisotropy, termed mi-

croscale phonon anisotropy, in thermal flow is only present at the microscale whereas

the flow reduces to isotropic at length scales where all carriers become diffusive. Fi-

nally, non-cubic crystal structures can lead to macroscopic anisotropy, such as in

hexagonal close packed systems or layered systems such as graphite [103–105]. The

different types of phonon anisotropy as well as the associated source of anisotropy,
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system length scale at which the anisotropy arises, and quantifying metric of the

anisotropy, are detailed in figure 3.1. Computational approaches applied to model-

ing phonon transport in microscale systems must therefore be capable of modeling

discrete and anisotropic carriers in both the ballistic and diffusive transport regimes.

Furthermore, these approaches must possess the capability to capture all three dis-

tinct sources of thermal carrier anisotropy. The phonon BTE is well-suited to this

task. It is capable of accurately determining phonon transport in devices with di-

mensions on the order of a phonon MFP [51].

Improvements to existing phonon BTE modeling methodologies are required

to handle the challenges presented by new device designs and constituent device ma-

terials that result in increasingly complex phonon behavior. Two primary drivers of

increasing complexity of phonon transport within next generation solid-state devices

are emergent three-dimensional device geometries, i.e. vertical transistors [106], and

reduction of device dimensions [97]. Earlier computational studies were focused on

planar structures, primarily directed towards horizontal devices [34, 40, 42, 66, 73]

which could be treated as nominally two-dimensional systems. However, interior

phonon flow within novel device geometries with complex features, such as phononic

thin films and nanowires [107–109], is complicated by re-entrant corners leading to

phenomena such as phonon backscattering and phonon trapping [110–112]. There-

fore, accurate phonon modeling of emergent devices requires accounting for the three

dimensional spatial variation of the phonon energy field. Furthermore, Recent stud-

ies have also found that anisotropic effects play an important role in heat flow in

silicon nanomembranes and layered graphite thin films [45, 100, 103]. Current com-
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Finite Lattice Microscale Macroscopic

Source: Non-uniform
wavevector

distribution in
Brillouin Zone

Brillouin zone
anisotropy,

ω(k) 6= ω(|k|)

Non-cubic lattice
structure (ai 6= aj)

Characteristic
length scale

(Lc) of system:
Lc/ai ∼ O(10) (Lc <

100 unit cells)
Lc . max

φ
Λφ

(ballistic transport)
anisotropy present for

any Lc

Quantifying
metric:

κ Hd̂ κ

1

Figure 3.1: The three types (finite lattice, microscale, and macroscopic) of phonon

anisotropy. Associated with each type of anisotropy is the source, characteristic sys-

tem length scale, as well as quantifying metric. The source of the phonon anisotropy

indicates the underlying cause. The characteristic system length scale indicates

the system dimensions for which the anisotropy produces non-negligible effects on

phonon flow. The quantifying metric indicates the method for quantifying the de-

gree, and directionality, of the anisotropy (either thermal conductivity, κ, calculated

via the phonon gas model as defined in eq. 6.1, or phonon radiosity defined in eq.

4.3).
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putational approaches appear to employ assumptions that do not make it obvious

how they should be extended to consider all three types of anisotropic mechanisms.

Notably, the majority of established methods employ an isotropic assumption where

phonon behavior along a single high symmetry line of the Brillouin zone is taken to

model the phonon properties in all directions [36, 38, 39]. This radially symmetric

model of the Brillouin zone necessarily produces a diagonal conductivity tensor with

equal terms. It cannot consider situations encountered in general anisosssstropic

thermal flows due to one, or several, sources of anisotropy where the conductivity

tensor has non-zero off-diagonal terms or non-equal terms along the diagonal, or

both.

Early computational approaches for solving the phonon BTE were directed

towards study of solids composed of group-IV chemical elements whose bonds are

generally tetrahedrally-coordinated. Owing to this symmetry, the macroscopic ther-

mal conductivity is isotropic. Thus the first computational methods assumed that

phonon frequencies were radially symmetric, usually based on the frequencies in a

high symmetry direction as described earlier, and therefore exhibit isotropy in their

flows. For instance, Mazumder and Majumdar developed a Monte Carlo (MC) solu-

tion method for the two dimensional phonon BTE, which accounted for dispersion

and multiple acoustic branches along a single direction in the Brillouin zone [42].

The method was used to determine thermal conductivity values in thin silicon films

which were found to agree well with experimental values. Narumanchi et. al. de-

veloped a control volume method for the solution of the two dimensional isotropic

phonon BTE [73] and similarly found good agreement in conductivity values with
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experimental results for a range of film widths and dopant levels in silicon. Ali

and Mazumder developed a technique for the solution of the three dimensional

isotropic phonon BTE in a heterogeneous material which accounted for material

interfaces [39]. Their model incorporated phonon scattering at material interfaces

as well as variation in the dispersion relations in the two materials.

In transport of energy in finite dimensional structures of sufficiently small

dimensions, the discreteness and truncation of the lattice leads to discreteness of

carriers and, for large aspect ratios, anisotropic thermal flows. A general cubic

crystal therefore should exhibit anisotropy in small device structures, namely in the

ballistic regime, but isotropy at large scales in the diffusive regime [113]. Ni and

Murthy accounted for the microscale anisotropy of phonon properties in a continuous

representation of the Brillouin zone BTE [34]. These anisotropic features allowed

them to also model anisotropic phonon scattering through directionally-dependent

relaxation times. While anisotropy arising from non-radially symmetric dispersion

surfaces could certainly be modeled through this approach, a continuous Brilluoin

zone largely confines that consideration to microscale and macroscopic anisotropy.

It is not immediately apparent how such a continuous Brillouin zone representation

could be used to capture ansiotropy arising from finite dimensional effects.

In the remainder of this chapter, a method is presented for three dimensional

solutions to the phonon BTE with explicit consideration for the physically allowed

phonon modes in finite dimensional structures. Despite the numerous available BTE

solvers and descriptions of solution methods, there remains remarkably few if any

computer methods that have been described. Our goal is to investigate the role
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of various sources of anisotropy on thermal transport and draw conclusions about

the effects. The physically allowed phonon modes are determined from the system

dimensions using Born von-Karman boundary conditions. The method is described

in sec. 3.3 and then verified in sec. 3.4 using an emulated isotropic Brillouin zone

that is compared with an analytical radiative transport solution.

3.2 Problem Definition

3.2.1 Material Domain

Consider a domain, Ω, with boundary Γ shown in Fig. 3.2. The side lengths

of the domain are L1, L2, and L3. The domain is composed of a crystalline ma-
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Figure 3.2: Domain Ω with boundary Γ

terial with primitive lattice vectors {a1,a2,a3} and atomic basis B = {br|r ∈

(1, 2, · · · , p)} composed of p atoms, where ai ∈ R3 and br ∈ R3 for i ∈ {1, 2, 3}

and r ∈ {1, 2, · · · , p}. Figure 3.3 depicts a three dimensional crystal with a three
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atom basis.
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Figure 3.3: A crystal lattice with lattice points as blue dots, primitive lattice vectors

{a1,a2,a2}, and three-atom basis {b1, b2, b2}.

Let {ê1, ê2, ê3} be the unit vectors in the direction of ai. The set of lattice

points inside Ω is

L = {n1a1 + n2a2 + n3a3 | ni ∈ (0, 1, . . . , Ni) , i = 1, 2, 3} (3.1)

Where a lattice point Ln ∈ L indexed by n = (n1, n2, n3), n ∈ Z3, satisfies the

condition Ln · êi ≤ Li, i.e. all allowed lattice points fall within Ω. The maximum

index values, (N1, N2, N3), for a lattice point lying within Ω are obtained by solving
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the linear system




N1

N2

N3




=






a1 · ê1 a2 · ê1 a3 · ê1

a1 · ê2 a2 · ê2 a3 · ê2

a1 · ê3 a2 · ê3 a3 · ê3




−1 


L1

L2

L3





bxc = max{n ∈ Z|n < x}

(3.2)

Clearly, when the primitive lattice vectors are orthogonal such as in an orthorhombic

crystalline systems, the matrix is diagonal.

3.2.2 Born von-Karman Boundary Conditions

Born von-Karman (BvK) boundary conditions are used to handle the finite size

of the domain. Born von-Karman boundary conditions result in discrete vibrational

modes where in the limit as the crystal becomes infinite, the allowed modes become

continuous. The BvK conditions depend on the physical dimensions of the domain

and the crystalline material composing the domain. Associated with the real space

Bravais lattice, L, is a reciprocal space lattice, R ⊂ R3 and Brillouin zone, BZ ⊂ R3.

The reciprocal space lattice vectors are related to real space lattice vectors through

bi = 2π
aj × ak

|ai · (aj × ak) |
. (3.3)

Due to the periodicity of the lattice, the reciprocal lattice is also periodic and is

given by

R = {l1b1 + l2b2 + l3b3 | li ∈ Z , i = 1, 2, 3} . (3.4)

with a unit cell given by the first Brillouin zone. The first Brillouin zone is con-

structed by perpendicularly bisecting all lines connecting the origin of reciprocal
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space to all other reciprocal lattice points. The bisecting planes then create a vol-

ume in reciprocal space enclosing the origin, this volume corresponds to the first

Brillouin zone. Equivalently, the first Brillouin zone can be taken to be the locus

of points lying closer to the origin than all other lattice points, i.e. the Voronoi cell

surrounding the origin. Points lying outside the Brillouin zone may be mapped to

a unique point within the Brillouin zone through the addition of a linear combina-

tion of reciprocal lattice vectors. In an infinite crystal, the Brillouin zone likewise

contains an infinite number of points. However, for a crystal of a finite number of

lattice points, there exist a finite set of discrete points corresponding to wavevectors

(i.e. vibrational modes) in the Brillouin zone. These wavevectors, represented as k,

we will refer to as kpoints.

The atomic motion may be decomposed into vibrational waves in an atomic

lattice whose corresponding atomic displacement for the rth basis atom in the nth

unit cell, is given by [50]

unr(t) =
1√
mr

∑

φ

Uφre
i(k·Ln−ωφt) . (3.5)

Here u is the atomic displacement from the equilibrium position, mr is the mass

of atom r, the sum ranges over all phonon modes φ, U is the vibrational mode

polarization vector, Ln is the lattice point of cell n, ωφ is the vibrational frequency

associated with mode φ, and t is time. Finally k represents the wavevector associated

with phonon mode φ.

The discrete nature of the allowed wavevectors, arising from the Born von-
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Karman boundary conditions, originates from the requirement that

un,r(t) =un+G,r(t)

G = N1a1 +N2a2 +N3a3

(3.6)

Combining Eqs. 3.5 and 3.6 leads to the condition

eik·Ln = eik·(Ln+G) =⇒ eik·G = 1 (3.7)

this means that the size of Ω limits the allowed vibrational modes, k, that can exist

within the material. To satisfy Eq. 3.7, the argument to the exponential must be an

integer multiple of 2π. Noting that k = k1b1 + k2b2 + k3b3, and using the relation

ai · bj = 2πδij leads to

k ·G = 2πN1k1 + 2πN2k2 + 2πN3k3 . (3.8)

Thus the components of k must satisfy the relation

ki =
pi
Ni

; pi ∈ Z (3.9)

Therefore, we define the set of all physically allowed wavevectors, K, as

K =

{
k : ki =

pi
Ni

, pi ∈ Z ∀ i ∈ {1, 2, 3} and k ∈ BZ
}

(3.10)

In the limit as Ni becomes infinite, the distance between neighboring kpoints be-

comes zero. Thus, in phonon models of macroscale crystals it can usually be as-

sumed that wavevectors are continuous variables. However, at the microscale finite-

dimensional systems clearly have a discrete set of kpoints.

In addition, at each kpoint there exist a number of branches equivalent to three

times the number of atoms in the basis (i.e. p). The set of all branches is denoted

Λ = {λ | λ ∈ (1, 2, . . . , 3p)} . (3.11)
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Therefore the vibrational or phonon modes belong to the finite set

Φ = K × Λ = {φ = (k, λ) | k ∈ K,λ ∈ Λ} . (3.12)

In order to model thermal flow at the microscale within a crystalline material,

the phonon Boltzmann transport equations must be discretized and solved for all

physically allowed phonon modes, φ, in Φ.

3.2.3 Phonon Boltzmann Transport Equation

The general form of the phonon BTE is written

∂Nφ

∂t
+ vφ · ∇Nφ =

[
∂Nφ

∂t

]

collision

; φ ∈ Φ (3.13)

where vφ ∈ R3 and Nφ : R3 → R. The discretization method can be applied equally

to time dependent and steady state forms of the BTE. The time dependent term

can be handled using, for instance, the generalized alpha family [114]. For the sake

of simplicity we focus on the steady state form and neglect the time derivative term

on the left hand side.

The collisional term in Eq. 3.13 can be considered using a multitude of ap-

proaches of varying degrees of physical approximation [50] including methods that

permit the consideration of anisotropy in scattering [34]. The full-scattering ex-

pression is a complex non-linear function of the occupation numbers for all phonon

modes [115]. However, for systems relatively close to equilibrium the scattering

expression may be reduced to a linear form known as the relaxation time approxi-
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mation (RTA) [50]. Thus we may write the phonon BTE as

vφ · ∇Nφ =
N0
φ −Nφ

τφ
; φ ∈ Φ . (3.14)

where vφ represents the phonon group velocity, τφ is the relaxation time, N0
φ is the

equilibrium occupation of the phonon mode, and Nφ is the unknown occupation

of the phonon mode. The occupation of a phonon mode represents the number

of energy quanta, or phonons, in that mode. The equilibrium occupation is de-

termined through Bose-Einstein statistics, whose associated phonon distribution is

represented by the expression

N0
φ(r) =

[
exp

(
h̄ωφ
kbT (r)

)
− 1

]−1

(3.15)

where h̄ is Planck’s reduced constant, kb is the Boltzmann constant, and T is the

temperature. Thus the right hand side contribution in Eq. 3.14 is non-zero in the

presence of a nonequilibrium distribution of phonons.

Following [73], we choose to formulate the phonon BTE in terms of energy.

The energy form is obtained by multiplying through Eq. 3.14 by h̄ωφ, neglecting

the ground state energy, and including a phonon generation term, Sφ, the energy

form of the BTE is obtained for a given mode φ,

vφ · ∇eφ =
e0
φ − eφ
τφ

+ Sφ ; φ ∈ Φ . (3.16)

Here eφ = h̄ωφNφ and e0
φ = h̄ωφN

0
φ.

The problem of phonon transport may now be stated. Consider a finite do-

main in real space denoted by Ω ∈ R3, with a boundary Γ ∈ R2. Γ may be further
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partitioned into Γt, Γd, Γs, and Γp denoting regions with applied temperature, dif-

fuse, specular, and periodic Dirichlet boundary conditions respectively. Associated

with this domain is a discrete set, Φ, of allowed phonon modes which may exist

within the crystalline material that constitutes Ω, a single mode is denoted φ. Find

the energy density function eφ : R3 → R such that

vφ · ∇eφ(r) =
e0φ(r)−eφ(r)

τφ
+ Sφ(r) for r ∈ Ω

eφ(r) = etφ(r) for r ∈ Γt

eφ(r) = edφ(r) for r ∈ Γd

eφ(r) = esφ(r) for r ∈ Γs

eφ(r) = epφ(r) for r ∈ Γp

; ∀ φ ∈ Φ

3.3 Methodology

This section describes the computational method in two parts. The first por-

tion covers the discretization of the phonon Boltzmann transport equation. The

second portion involves the determination of the thermal transport properties of

the phonon modes, where the modes are limited to the set, Φ, of those physically

permitted in accordance with the Born von-Karman boundary conditions. Figure

3.4 illustrates the methodology structure. Phonon-phonon scattering is handled

through an equilibrium temperature bath that serves as the driver for returning

non-equilibrium phonon modes back to Bose-Einstein statistics.
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Figure 3.4: The BTE is solved for the complete set of phonon modes (..., γ, κ, τ, µ, ...)

as determined by Born von-Karman boundary conditions. The domain on which

each mode resides is discretized and solved on copies of the same spatial grid. The

advection properties of each mode are determined from the group velocity (red

arrows). The coupling between phonon modes occurs through the RTA which models

phonon-phonon scattering by relaxing each mode to an equilibrium thermal bath

corresponding to the total system energy (red rectangle). Energy is transferred to

and from each mode when the mode deviates from the equilibrium Bose-Einstein

statistical distribution. The coupling strength of each mode to the thermal bath is

determined by the mode relaxation time τ .
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3.3.1 Discretization

For real materials, or in all but the simplest geometries, eφ cannot be deter-

mined by solving Eq. 3.14 analytically. We therefore discretize using the control vol-

ume method [116] which was also employed in [39,40,73]. Solutions to the governing

equations are determined at grid points which are located at both volume and sur-

face centroids. The spatial discretization involves partitioning Ω and Γ into discrete

volumes and facets. Ω is partitioned into NΩ non-overlapping polyhedral control vol-

umes, where the ith control volume is denoted by Ωi. Therefore Ω =
⋃
i∈{1,2,...,NΩ}Ωi.

The boundary of Ωi is denoted by ∂Ωi. The control volume boundary is comprised

of m facets, each labeled as ∂Ωif , where ∂Ωi =
⋃
f∈{1,2,...,m} ∂Ωif , where for a brick-

shaped control volume, m = 6. Each facet has an associated constant normal vector

n̂if . Gradients or fluxes are then defined on facets and boundary conditions are

imposed through control points in facets that intersect the domain surface, Γ.

The domain boundary, Γ is partitioned into NΓ non-overlapping control areas,

where Γ =
⋃
l∈{1,2,...,NΓ} Γl. Associated with each control area is the outward-directed

normal vector n̂l. Hereafter i and j are indices for control volumes, while l is the

index for control areas. The union of all bulk control volumes and the boundary

control areas forms the spatial grid discretizing the entire domain, Ω
⋃

Γ. The

boundary mesh and the bulk domain grid are conforming. The discretized domain

is depicted in Fig. 3.3.1. We express the conservation of energy of mode φ in each

control volume by integrating Eq. 3.16, for phonon mode φ, over the control volume

60



  

!  

"!

�"!"

! !"

Figure 3.5: Domain Ω discretized into control volumes. A single control volume, Ωi,

is depicted along with a surface facet, ∂Ωif , and the associated normal vector, n̂i,f .

Additionally the boundary control area that Ωi intersects, Γl, is shown along with

the associated normal vector n̂l

Ωi,
∫

Ωi

vφ · ∇eφ(r)dr =

∫

Ωi

1

τφ

[
e0
φ(r)− eφ(r)

]
dr +

∫

Ωi

Sφ(r)dr . (3.17)

Following the control volume method [116], let us assume that the eφ and e0
φ are
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constant over the control volume, this allows Eq. 3.17 to be written in the form

∫

Ωi

vφ · ∇eφ(r)dr =
1

τφ

[
e0
φi − eφi

]
Ωi + SφiΩi . (3.18)

Applying the Gauss divergence theorem to the term on the left hand side of

Eq. 3.18, the following expression is obtained

∫

∂Ωi

vφ · eφ(r)n̂ dS (3.19)

where now integration is over the surface of the cell, ∂Ωi, and n̂ is the outward-

facing normal to the boundary. Divide the surface integral into individual integrals

over the m facets of ∂Ωi, where over each facet both the facet normal, n̂if , and the

facet energy density, eφf , are taken to be constant. Under this assumption Eq. 3.19

becomes
m∑

f=1

Afeφfvφ · n̂if (3.20)

where Af is the area of the f th facet. In order to resolve the value of eφf , the first

order upwinding approximation is applied, following [116] this is written as

eφf =
max(vφ · n̂f , 0)

|vφ · n̂f |
eφi +

max(−vφ · n̂f , 0)

|vφ · n̂f |
eφj (3.21)

where f is the facet that is shared by control volumes i and j.

Then combining Eqs. 3.18, 3.20, and 3.21, yields

m∑

f=1

Af

[
max(vφ · n̂f , 0)

|vφ · n̂f |
eφi +

max(−vφ · n̂f , 0)

|vφ · n̂f |
eφj

]
vφ · n̂f

=
1

τφ

[
e0
φi − eφi

]
Ωi + SφiΩi .

(3.22)

Equation 3.22 describes the energy balance for the φth phonon mode in the ith control

volume. It indicates that the energy leaving through the facets should be balanced by
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the energy entering the phonon mode through phonon scattering, modeled through

the relaxation time, or due to phonon generation within the control volume. The

values of the phonon energy densities at the facets are expressed in terms of the cell

centered values eφ due to the upwinding approximation. Equation 3.22 represents

a balance equation for the ith control volume. Assembling the balance equations

for all control volumes and control areas results in a system of linear equations.

The approach for treating the effect of boundary conditions, and determination of

phonon energy density values at the control area face centers, will be detailed in Sec.

3.3.3. The final step in the discretization is to recast the linear system into matrix

form, [Kφ]{eφ} = {fφ}, where [Kφ] ∈ R(NΩ+NΓ)×(NΩ+NΓ) and {fφ} ∈ R(NΩ+NΓ) whose

terms can be shown to be

[Kφ]αβ =





1
τφ

Ωα +
∑m

f=1Af
max(vφ·n̂f ,0)

|vφ·n̂f |
vφ · n̂f α = β

; Ωα ∈ Ω
Af

max(−vφ·n̂f ,0)

|vφ·n̂f |
vφ · n̂f α 6= β

1 α = β
; Γα ∈ Γ

0 α 6= β

(3.23)

and

{fφ}α =





1
τφ

Ωαe
0
φα + SφαΩα ; Ωα ∈ Ω

eφα ; Γα ∈ Γ

(3.24)

here α, β ∈ {1, 2, · · · , NΩ +NΓ}. Recasting the linear system in matrix form allows

one to make use of the plethora of highly efficient linear system numerical solvers.

Solving the linear system yields the cell-centered phonon mode energy densities, eφ ∈

R(NΩ+NΓ). This is repeated for all phonon modes in Φ. The total cell centered energy
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density within each control volume may then be computed via the summation,

ei =
∑

φ∈Φ

eφi for all Ωi ∈ Ω . (3.25)

Once the energy field has been obtained the temperature field is determined through

thermodynamic relations involving the specific heat.

3.3.2 Specific Heat

Often the quantity of interest in thermal transport simulations is the material

temperature rather than the energy or energy density. To convert the energy density

field to a temperature field, the specific heat is used. The volumetric specific heat

is a thermodynamic quantity relating energy to temperature change, and is defined

as

C =
∂U

∂T

∣∣∣∣
V

(3.26)

where U is the internal energy density and the derivative is taken at constant volume.

The contribution to the volumetric specific heat from a single mode may be written

as [98]

Cφ =
∂eφ
∂T

(3.27)

where for the microscale heat transfer problems considered here it is assumed the

material remains at constant volume. Temperature as a thermodynamic quan-

tity is only defined in equilibrium [73], therefore the phonon mode energy den-

sity in Eq. 3.27 may be replaced by the equilibrium value, e0
φ. Since the tem-

perature dependence of the phonon mode energy at equilibrium is known to be
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e0
φ = h̄ωφ

[
exp(

h̄ωφ
kbT

)− 1
]−1

, the analytical form of the mode-wise specific heat fol-

lows from Eq. 3.27,

Cφ =
1

V

(h̄ωφ)2

kbT 2

e
h̄ωφ
kbT

[
e
h̄ωφ
kbT − 1

]2 (3.28)

where V is the volume of the crystal. Equation 3.28 is a fully quantum mechanical

expression in that it is a result of Bose-Einstein statistics.

The total specific heat of the crystalline material is determined by summing

all mode contributions,

C =
∑

φ∈Φ

Cφ . (3.29)

Equation 3.28 indicates that the specific heat is a function of temperature, however

for temperature ranges of interest in this work the specific heat will be assumed

to take on a constant value at some reference temperature Tref . The choice of

Tref is non-unique, where a sensible choice could be an average of the prescribed

temperature Fourier boundary condition (see Sec. 3.3.3), therefore C(T ) = C(Tref ).

The assumption of constant specific heat allows for a simple relationship be-

tween energy and temperature by combining Eqs 3.25 and 3.27 in Eq. 3.29, yielding

e = C (T − Tref ) . (3.30)

Note that the energy density obtained in this manner corresponds to the difference

between the system energy density at temperature T and the system energy density

at temperature Tref . Temperature as a thermodynamic quantity is not well defined

on length scales below the phonon mean free path [3]. However, following [73] a

temperature as defined in Eq. 3.30 will be used throughout the simulation. The
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temperature defined in this way corresponds to a measure of energy within the

system [73].

Finally, note that Eq. 3.24 may be rewritten using Eqs. 3.28, 3.29, and 3.30

to give

{fφ}i =
1

τφ
ΩiCφ(Ti − Tref ) + Sφ,iΩi . (3.31)

3.3.3 Boundary Conditions

Phonons are confined to the crystalline lattice and therefore scatter at material

boundaries. Each control area may be assigned a different type of boundary scat-

tering. The four types of boundary conditions considered presently are: prescribed

temperature condition, specular scattering, diffuse scattering, and periodic bound-

ary condition (note that this periodic boundary condition is fundamentally different

than Born von-Karman boundary conditions). At the boundary, only phonon modes

propagating into the domain, i.e. phonon mode φ such that vφ · n̂l < 0, have an

applied boundary condition. Modes leaving through the boundary have no effect on

the solution variables, eφi.

3.3.3.1 Applied Temperature Condition

Following [40], the applied temperature condition assumes blackbody behav-

ior at the boundary, where phonons propagating out of the domain are perfectly

absorbed by the boundary. Conversely, phonon modes propagating into the do-

main are assumed to be in equilibrium, as determined by Bose-Einstein statistics,
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at the applied temperature. The applied temperature condition at control area Γl

is expressed as

eφl = Cφ (Tl − Tref ) ; vφ · n̂l < 0 (3.32)

where n̂l is the boundary outward facing normal and Tl is the prescribed temperature

at the control area facet which intersects with the applied temperature boundary,

i.e. Γl ⊆ Γt. Note that this boundary condition allows for a non-zero net flux

through the boundary. The applied temperature condition prescribes the value of

eφl for all facets that intersect Γt.

3.3.3.2 Specular Scattering Condition

At specular boundaries, phonons undergo reflection such that the component

of the phonon group velocity tangential to the boundary remains unchanged. The

process is depicted in Fig. 3.6. Specular reflection models either phonon reflection
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Figure 3.6: Phonon wavepacket undergoing specular reflection

at crystal boundaries that are highly ordered, or a symmetry plane in the domain.
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The condition is expressed as

eφ′l = eφ i ; φ = (k, λ) , φ′ = (k′, λ)

such that

vφ′ = vφ − 2 (vφ · n̂l) n̂l

(3.33)

where eφ′l represents the energy density at the boundary control area Γl which

intersects the facet of the ith control volume, i.e. there is a facet f of ∂Ωi such that

Γl = ∂Ωif . The specular scattering condition thus determines eφl for control areas

intersecting Γs and φ propagating into the domain from the boundary.

3.3.3.3 Diffuse Scattering Condition

Fabrication techniques for nanoscale devices often create disorder within the

crystalline lattice near, or at, the device surface. This surface roughness is assumed

to diffusely reflect phonons [39,117]. Diffuse reflection means the energy in phonon

modes colliding with the boundary is thermalized. Thermalization refers to the

transfer of energy in phonon modes incident on the boundary into incoming phonon

modes in a manner which equilibrizes the phonons locally at the boundary. Specif-

ically, the energy is redistributed according to Bose-Einstein statistics amongst the

incoming modes [118]. The equilibrium boundary temperature, Tb, is determined

such that there is zero net flux across the boundary, thus the diffuse scattering con-

dition is adiabatic. Note that the diffuse scattering condition is different than the

applied temperature condition in that the boundary temperature is not predeter-

mined, but rather wholly determined by the intensity of phonon impinging of the
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adiabatic boundary. A diffuse scattering process is depicted in Fig. 3.7.
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Figure 3.7: Phonon wavepacket undergoing diffuse reflection in an idealized material

with radially symmetric dispersion surfaces.

The expression for diffuse reflection is

eφl = e0
φ(Tb) such that vφ · n̂l < 0 (3.34)

where

∑

φ
φ·n̂b<0

e0
φ(Tb)|vφ · n̂b| =

∑

φ
φ·n̂b≥0

eφi|vφ · n̂b| (3.35)

recalling that e0
φ(Tb) = Cφ(Tb − Tref ), the boundary temperature can be directly

calculated as

Tb = Tref +

∑

φ
vφ·n̂b≥0

eφi|vφ · n̂b|

∑

φ
vφ·n̂b<0

Cφ|vφ · n̂b|
. (3.36)
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Note that eφi corresponds to the bulk control volume, Ωi which intersects the bound-

ary control area Γl. Thus eφl of the facets that intersect Γd are known. The redis-

tribution that occurs during thermalization is on a per branch basis. The diffuse

scattering resists the component of energy flux tangential to the material boundary,

and therefore gives rise to thermal resistance at the domain surface.

3.3.3.4 Periodic Condition

Periodic boundary conditions assume that the phonon deviation from equilib-

rium is periodic. More precisely, we specify that at point r0, the local equilibrium

temperature is T0, and similarly at point r1, the local equilibrium temperature is

T1. These two points are separated by the translation vector T = r1 − r0. Periodic

boundary conditions then state that the deviation of energy in phonon mode φ from

equilibrium, as determined by the local temperature, is periodic with respect to the

translation vector T . This is expressed mathematically as

eφ(r0)− e0
φ(T0) = eφ(r1)− e0

φ(T1) (3.37)

It is assumed that each control area Γl that is prescribed as a periodic boundary

has a corresponding control area Γl′ such that rl′ = rl +T , where rl and rl′ are the

centroids of control areas Γl and Γl′ respectively.

In practice the periodic boundary conditions are implemented as follows. Con-

sider the control area pair Γl and Γl′ . Associated with Γl is the centroid rl, local

temperature Tl, and intersecting control volume Ωi. Analogously, associated with

Γl′ is the centroid rl′ , local temperature Tl′ , and intersecting control volume Ωi′ .

70



The centroids are connected by the translation vector T such that rl′ = rl+T . The

incoming phonon modes at Γl and Γl′ are then determined to be

eφl = eφi′ + Cφ [Tl − Tl′ ] : vφ · T ≥ 0

eφl′ = eφi + Cφ [Tl′ − Tl] : vφ · T < 0 .

(3.38)

The periodic boundary condition is used to replicate infinite systems. A subset of

infinite systems are phononic systems, which have generated widespread interest due

to their desirable thermal transport properties. Phononic systems are defined by an

artificial secondary periodicity that exists in addition to the atomic level periodicity

inherent in every crystalline lattice.

All four types of boundary conditions amount to specifying the solution vari-

able eφ over all of Γ. Our approach calculates the energy densities at all control

areas from the energy field of the control volumes. Additionally, diffuse, specular,

and periodic boundary conditions are dependent upon the solution field and will

therefore require an iterative procedure to obtain the steady state solution.

3.3.4 Determination of Phonon Properties

The full Brillouin zone properties that serve as inputs to the numerical method

must be determined for all phonon modes, i.e. for all φ ∈ Φ. The required properties

are frequency (ωφ), group velocity (vφ), specific heat (Cφ), and relaxation time (τφ).

Together with Born von-Karman boundary conditions, these properties respectively

define the vibrational mode frequencies of the lattice, the velocity at which energy

is transported by each mode, the amount of energy each mode can store, and the

average time between collisions of each phonon carrier. The properties can be ob-
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tained from either classical or quantum modeling techniques. We presently employ

a simple classical potential for the sake of convenience.

It is important to note that due to the anisotropic nature of crystalline systems,

the properties will also be anisotropic in general. Only, in the special case where

kpoints lie on spherical constant frequency surfaces in the Brillouin zone, the phonon

properties are isotropic. By accounting for the anisotropy of phonon properties in

the method described here, any anisotropy in thermal flow will also be captured.

In what follows, standard phonon dispersion calculation methods are em-

ployed. These are extensively described in classic references [50, 98, 119] whose

details are not critical to this paper. Thus readers are referred to these texts for a

more in-depth discussion of the determination of phonon properties, while presently

we limit the discussion to more practical methodology details. Specifically we will

detail the approach for determining the phonon properties used in Ch. 4, where the

extension of these techniques to other problems is straightforward.

3.3.4.1 Frequencies

Crystal lattices are invariant under certain rotation and reflection operations,

and the Brillouin zone of the lattice also possesses the same invariance properties,

or point group symmetries. Furthermore, a function in reciprocal space will exhibit

the same symmetry properties [50]. The dispersion relation, i.e. frequencies ω(k), of

the lattice is such a function and therefore all unique frequency values are contained

in a subset of the Brillouin zone [50]. This subset is referred to as the irreducible
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wedge. Thus when obtaining the frequencies for all allowed kpoints, only frequen-

cies of kpoints falling within the irreducible wedge need be determined. Then the

frequencies for other kpoints in the BZ can be determined through point group op-

erations. In this paper, this will be shown for a crystal structure that has a cubic

symmetry by generating the full BZ from the irreducible wedge through π/2 rotations

about the ê1, ê2, and ê3 Cartesian axes. For such a crystal the irreducible wedge

coincides with the positive octant of the Brillouin zone, BZ+ ⊂ R3, where

BZ+ = {k ∈ BZ : kx ≥ 0, ky ≥ 0, kz ≥ 0}. (3.39)

A wide variety of techniques exist for the determination of the phonon fre-

quencies, any of which may be used with the present developments. We chose to use

the molecular dynamics package General Utility Lattice Program (GULP) [120] to

obtain the frequencies for the cases considered in chapters 4-6. Once the frequencies

within the irreducible wedge are determined, the remaining phonon mode frequen-

cies in the rest of the Brilluoin zone are determined from the point group symmetry

of the cubic lattice. The frequencies in BZ are related to those within BZ+ through

the relation

ωφ′ = ωφ ;
φ = (k, λ) , k = (kx, ky, kz) ∈ BZ+

φ′ = (k′, λ) , k′ = (γkx, γ
′ky, γ

′′kz) ∈ BZ
(3.40)

where γ, γ′, γ′′ ∈ {+1,−1}. Note that this relation is material dependent, i.e. cor-

responds to the point group symmetry of the lattice. Therefore, in general, other

relations would be required for crystals with a non-cubic symmetry.
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3.3.4.2 Group Velocities

The phonon group velocity for mode φ is defined as [121]

vφ =
∂ωφ
∂k

. (3.41)

The group velocity defines the speed and direction with which energy in mode φ can

travel. In order to determine the group velocity for all physically allowed phonon

modes the following procedure is used. First the set of allowed kpoints which fall

within the irreducible wedge of the Brillouin zone, BZ+, are determined. For a

general kpoint, k = (kx, ky, kz) ∈ BZ+, the central differencing scheme is used to

determine vφ by generating six perturbed kpoints




k+x = (kx + ∆k, ky, kz)

k−x = (kx −∆k, ky, kz)

k+y = (kx, ky + ∆k, kz)

k−y = (kx, ky −∆k, kz)

k+z = (kx, ky, kz + ∆k)

k−z = (kx, ky, kz −∆k)





At all six of the perturbed kpoints, the frequencies are determined in the same

manner used in Sec. 3.3.4.1. The frequencies at the perturbed kpoints are then

used to determine the phonon mode group velocity via central differencing

vφx =
∂ωφ
∂kx

=
ω+x − ω−x

2∆k

vφy =
∂ωφ
∂ky

=
ω+y − ω−y

2∆k

vφz =
∂ωφ
∂kz

=
ω+z − ω−z

2∆k

(3.42)
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where ω±α is the respective frequency corresponding to wavevector k±α where α =

x, y, z.

Next the phonon mode group velocities through the rest of the Brillouin zone

are determined using symmetry relations and the fact that group velocity is an odd

function of kx, ky, and kz [33]. Letting vφ be the group velocity of mode φ = (k, λ)

where k ∈ BZ+. Then the group velocity of any mode φ′ = (k′, λ), where k′ is a

permutation of k such that k′ = (γkx, γ
′ky, γ

′′kz) and γ, γ′, γ′′ ∈ {+1,−1}, is given

by the relation

vφ′x =γvφx

vφ′y =γ′vφy

vφ′z =γ′′vφz

(3.43)

By using the antisymmetry of the group velocity in kx, ky, and kz, vg for all

modes is determined.

3.3.4.3 Specific Heat

The lattice capacity for energy storage can be composed from the contributions

of the individual phonon modes. It can be expressed in the form of the specific heat.

In control volume i, the total specific heat is

Ci =
∑

φ∈Φ

Cφi (3.44)

and depends only on the frequencies of the modes. Where Cφi was defined in Eq.

3.28. The mode-wise specific heat depends only on the phonon mode frequency.

Therefore once the frequencies are determined via the procedure described in Sec.
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3.3.4.1, the phonon mode specific heats may be determined for all phonon modes

which then yield the total specific heat using Eq. 3.44.

3.3.4.4 Relaxation Times

The collisional term in the phonon BTE, Eq. 3.13, represents a variety of

phonon interaction processes such as phonon-phonon, phonon-electron, and phonon-

impurity scattering. In infinite defect-free semiconductors only phonon-phonon scat-

tering is present as this form of scattering arises from the intrinsic anharmonicity of

the atomic interactions [98]. In this work we restrict our study to that of pristine

lattices and therefore assume the only intrinsic scattering mechanism is phonon-

phonon interactions. The phonon-phonon scattering term, and the associated wide

array of modeling approaches, was discussed in detail in Ch. 2. We use the RTA to

model phonon-phonon collisions, where the RTA was described in sec. 2.1.3.

The relaxation time τ represents the average time a phonon travels before col-

liding with a boundary, impurity, or other energy carriers. During extended periods

of ballistic flight, the phonon mode can deviate from equilibrium and no longer be

represented by Bose-Einstein statistics, N0
φ. Collisions are restorative in the sense

of helping to return the phonon to the equilibrium distribution. A wide range of

relaxation time expressions appear in the literature. Early expressions for τ were

derived from theory using simplifications such as the assumption of low tempera-

ture [49, 83], or were fit to experimental data for bulk crystals [122]. However, ab-

initio calculations performed using density functional perturbation theory (DFPT)
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allow relaxation times to be fit to data obtained from third-order force constants.

Analytic models for relaxation times, parameterized in this way, have been found

to accurately predict the thermal conductivity of common semiconductor materials

silicon and germanium [123].

A commonality amongst most empirical models is that the phonon mode re-

laxation time depends on temperature and mode frequency i.e. τφ = τφ (ωφ, T ),

where the exact functional form depends on the specific model. Therefore, once the

appropriate empirical formula has been chosen for the problem under consideration,

the relaxation times may be calculated using the frequencies as determined in sec.

3.3.4.1, and temperature T = Tref where Tref was defined in Sec. 3.3.2.

3.4 Verification

To verify the numerical implementation of the methodology, we first demon-

strate that numerical solutions recover the classic isotropic gray solution for a semi-

infinite continuum slab. Physically, this problem corresponds to a slab of material,

infinite in the lateral dimensions, with a finite width. Furthermore, the heat car-

riers within the material are gray, i.e. have the same specific heat, group velocity

magnitude, and relaxation time, and the propagation directions of the carriers is an

infinite continuum. We test solutions for convergence as a function of the number

of kpoints using a spherical Brillouin zone that has a single dispersionless branch.

Mathematically, this problem is identical to that of a gray photon radiating across

an open gap for which analytical solutions are known [67,124,125].
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At small slab thickness, the gray phonon model predicts that the transport

is ballistic, i.e. phonons propagate through the slab without scattering, and strong

deviation occurs from the equilibrium carrier distribution. With increasing slab

width, the transport takes on a more diffusive character as phonons undergo a

significant number of scattering events [42]. Therefore, this problem serves as a good

measure for whether our method is capturing ballistic and diffusive transport as well

as the intermediate regime. The general solution for the normalized temperature,

Φb, is given by [67]

Φb(x) =
1

2

[
E2(x) +

∫ L

0

Φb(x
′)E1 (|x− x′|) dx′

]

Φb(x) =
T 4(x)− T 4

2

T 4
1 − T 4

2

,

(3.45)

where L is the slab thickness normalized by the MFP, T1 and T2 are the prescribed

temperatures on the two slab faces, and the elliptic integral is defined as

En(x) =

∫ 1

0

µn−2e
−x/µdµ . (3.46)

x is the distance along the domain normalized by the mean free path of the phonons.

Thus all distance quantities are expressed as a fraction of the phonon MFP. The

MFP for a phonon mode φ is defined as Λφ = |vφτφ|, where because the material

is gray Λφ reduces to a constant, Λφ = Λ. Φb is determined through the method of

successive approximations (details can be found in [67]) using the trapezoidal rule

with 4000 intervals which ensures an L2 error of less than 10−8.
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3.4.0.1 Pseudo-1D Slab

The physical setup of the pseudo-1D slab numerical experiment is depicted in

Fig. 3.8. The large slab has front and back faces held at two different temperatures.

To simulate the infinite lateral directions, the slab is modeled as a large brick-shaped

material of a small thickness along the x-direction with specular reflection conditions

imposed on the four faces oriented normal to the x-direction. In this set up, like

the original classic problem, temperature and energy profiles will vary only in a

single direction, i.e. the x-direction in Fig. 3.8, despite the present use of three-

dimensional real space geometries and Brillouin zones. A slab of variable thickness

but with an area of 1000Λ× 1000Λ is discretized into a 1000× 3× 3 spatial grid of

control volumes, where the finer discretization is along the thickness (x) direction.

The accompanying gray phonon properties are given in Table 3.4.0.1.

Group Velocity Magnitude |v| 6400 m
sec

Relaxation Time τ 7.2× 10−12 sec

Frequency ω 16.0 THz

Mean Free Path Λ 4.608× 10−8 m

Table 3.1: Gray phonon properties

The front and back faces have an applied temperature boundary conditions

with T (x = 0) = T1 = 301K and T (x = L) = T2 = 300K. We calculate the error

between our BTE solution and the analytical formula given in Eq. 3.45 for a range of
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Figure 3.8: Temperature profile (thick dashed line) of a slab geometry composed

of material with gray phonon properties. The Fourier boundary conditions at the

boundaries are given by the temperatures T1 (red) and T2 (blue).

kpoint refinements. Eight Brillouin zone models were created with different numbers

of kpoints (shown in Fig. 3.9) to study the refinement effect. The kpoints lie on the

surface of the sphere in a roughly uniform distribution with the number of kpoints

ranging from 102 to 49,426 points. A simulation that would be identical to the

analytical model would have a spherical Brillouin zone with an infinite continuum
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of kpoints covering the sphere. Three different slab thicknesses of .1Λ, 0.5Λ, 1Λ are

studied.

Figure 3.9: Spherical Brillouin Zones of (a) 102 kpoints (b) 236 kpoints (c) 408

kpoints (d) 824 kpoints (e) 1444 kpoints (f) 2208 kpoints (g) 9092 kpoints (h) 49426

kpoints. Kpoints are placed on the surface of a sphere so that their distribution is

as uniform as possible.

3.4.0.2 Verification Results

For each slab thickness, the difference between the computed and analytical

temperature solutions are plotted Fig. 3.10. The pointwise error is plotted for Bril-

louin zones containing 102, 1444, and 49426 kpoints to show the reduction in error

as the number of kpoints is increased. The error is greatest near the slab boundaries.

Error near the boundaries is likely a result of two compounding issues, namely, a)

the finite number of carriers which cannot fully sample the entire hemisphere of
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directions in which the energy can theoretically propagate, and b) the finite gap

between the boundary and the first interior control volume grid point. As the slab

thickness decreases, transport becomes purely ballistic, resulting in a wall temper-

ature slip [67]. This temperature slip is predicted in the analytical solution, where

there exists a discontinuity in the energy field as we take an infinitely small step

into the material away from the fixed temperature wall. The temperature slip is a

result of transport being ballistic due to the absence of phonon-phonon scattering,

leading to a highly non-equilibrium system.

The L2-norm error is shown in Fig. 3.11 as a function of the number of kpoints.

For slab thicknesses Λ/10 and Λ/2 the convergence rate appears to be roughly .5 while

for a slab thickness of Λ the convergence is approximately .3. The convergence

with respect to kpoint refinement, as seen in Fig. 3.11, is clearly non-monotonic.

This behavior is an unavoidable consequence of using discrete kpoints to represent

a continuum of solid angles in which the carriers can propagate. When the dis-

crete kpoints are unevenly distributed over the sphere surface, a relatively larger

error is observed. Achieving a perfectly even distribution of points on a sphere

an unsolved classic mathematical problem known as Fejes Tóth’s Problem. Thus,

the non-monotonic convergence seen in the present results is attributed to possible

uneven placement of kpoints on the spheres seen in Fig. 3.9. Methods such as

the Control Angle Discrete Ordinates Method (CADOM) [67] employ a weighted

approach based upon associating a control area with each kpoint. Thus CADOM

represents a more accurate model of the continuum of propagation directions. In

Fig. 3.11, the convergence rate noticeably declines with increasing slab thickness.
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This trend is attributable to the use of the same number of control volumes, in

the thickness direction, for all slab models. Thus the control volumes are effectively

larger for larger slab thickness whereas the phonon mean free path remains constant.

This implies that the thicker slab is studied with a relatively coarser grid which in

general leads to larger error, even in spite of kpoint refinement.
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Figure 3.10: Point wise error in the temperature results for numerical experiment

of 1D slabs with varying thickness.

Using a fixed number of 99, 576 kpoints, real space grid refinement shows

convergence to the exact solution in Fig. 3.12, with a rate of convergence of the

83



 !  !!  !"
 ! !

 !  

 ! #

" #$%&'()

  

$!#% * " + !#,-$ !# .
$! * " + !#,,$ !#-.

/ * " + !#01$ 0#.1

Figure 3.11: RMS error vs. number of kpoints in Brillouin zone for varying slab

thickness.

RMS error of approximately 1. This convergence rate is consistent with the use of

the first order upwinding scheme. Note that the upwinding scheme used here will

suffer from false diffusion which can be mitigated through the use of higher order

differencing schemes [126].

This completes the presentation of the solution method for the full Brillouin

zone three-dimensional phonon BTE. In sections 3.2 and 3.3 we defined the mi-

croscale thermal transport problem and detailed the discretization approach for

numerically solving a set of phonon Boltzmann equations. Section 3.3.4 contained

a discussion of a practical approach for calculating the full Brillouin zone phonon

transport properties. Finally in sec. 3.4 we verified the implementation of the com-
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Figure 3.12: Root mean square (RMS) error between the Boltzmann method and

the exact numerical solution from Eq. 3.45 for variable grid sizes. Slab thickness is

Λ/10.

puter method. The remainder of this work presents applications of our methodology

to thermal engineering problems in microscale and nanoscale systems.
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Chapter 4: Effect of Phonon Anisotropy in FinFET Device 3

In chapter 3 we presented our numerical methodology for the simulation of

heat transport at the microscale via the solution of the three dimensional phonon

BTE. In this chapter a series of simulations are performed, using our newly developed

methodology, to calculate temperature and energy profiles in a fin field effect transis-

tor composed of a cubic crystalline material. The anisotropic thermal conductivity

and the accompanying significance on thermal fields are calculated. The differences

between an isotropic solution and the anisotropic model are shown to be significant

with differences in the temperatures approximately 10%. Furthermore, the tem-

perature differences between a partially isotropic model and the fully anisotropic

model are found to be as large as 30%. At larger scales, where phonon-phonon

scattering becomes more prevalent, differences in the solutions become smaller and

macroscopic isotropy is recovered due to the cubic symmetry of the material.

3Portions of this chapter appeared in the publication: F. G. VanGessel, P. W. Chung, An

anisotropic full Brillouin zone model for the three dimensional phonon Boltzmann transport equa-

tion. Comput. Methods Appl. Mech. Engrg. (2017), http://dx.doi.org/10.1016/j.cma.2017.01.010

[30]

86

http://dx.doi.org/10.1016/j.cma.2017.01.010


4.1 FinFET Device Simulation

A FinFET is a transistor design in which the semiconducting material has a

vertical ”fin” geometry, surrounded by a gate on two or three sides (see Fig. 4.1).

The multi-gate design allows for better control over the flow of electrons in the

 !"# $

 !"# $

Figure 4.1: FinFET device, the dimensions are given in units of nanometers.

fin, thereby enabling smaller devices without sacrificing performance. The reduced

device dimensions subsequently enables high transistor densities which enable faster

and more capable central processing units (CPUs). However, the reduced sizes lead

to increased boundary scattering, exacerbating localized Joule heating effects. Joule
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heating refers to the electron-phonon interactions which occur in the presence of an

electric current. As the electrons move under the influence of an electric field, they

collide with the atomic lattice creating phonons and therefore heat. Overheating in

FinFETs is known to degrade device performance and shorten device lifetime [5].

In this section we investigate thermal effects in a FinFET undergoing Joule heating,

by modeling the effect of full Brillouin zone representation, and finite dimensional

structural features, on the thermal flow. The importance of anisotropic effects in a

nanostructure is quantified by calculating the peak temperature within the FinFET

for both an isotropic, and full, Brillouin zone representation.

4.1.0.1 FinFET Numerical Experiment Problem Set-Up

For the parameter study, three fin widths were chosen as well as three source

region geometries (the latter drawn from [2]). The overall energy sourced into the

system due to Joule heating is assumed to be the same regardless of the geometry

of the fin or heated region. The FinFET dimensions are on the same order of

magnitude as the phonon MFPs at 300K, placing transport in the semi-ballistic

regime.

For the sake of this numerical experiment, we assume the material is an ideal-

ized Lennard-Jones solid with a simple cubic crystal lattice, with nearest neighbor

(NN) and next nearest neighbor (NNN) interactions. The associated Brillouin zone

is depicted in Fig. 4.2. The interatomic potential is

Vn(rij) = 4Bn

(
A12
n

r12
ij

− A6
n

r6
ij

)
n = NN or NNN (4.1)
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Figure 4.2: Brillouin zone for idealized Simple Cubic Lattice including high symme-

try points (Γ, X, M , and R)

.

where rij is the distance between atoms i and j, and An and Bn are the Lennard-

Jones parameters. The associated parameters are listed in Table 4.1. The dispersion

surfaces of the cubic lattice material is depicted in Fig. 4.3 in the kz = 0 plane of

the three dimensional Brillouin zone. The microscopic anisotropy is clearly demon-

strated by the non-circular constant frequency contours. Figure 4.3 shows the con-

tinuous dispersion curves which would apply to an infinitely large material, whereas

as a consequence of the Born von-Karman boundary conditions, only a discrete set

of points lying on these curves represent actual carriers in a finite-size system. This

means that the shape of the structure, i.e. FinFET dimensions, will influence the

anisotropy. Specifically, unequal fin dimensions necessarily yields a distribution of

carriers which are not uniformly spaced along each of the three principal directions.
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This non-uniformity results in anisotropic thermal flow in spite of the cubic symme-

try of the crystal. Thus the microscopic anisotropy, due to non-radially symmetric

dispersion surfaces, and the lattice anisotropy due to Born von-Karman conditions

will both contribute to the total observed anisotropy in the system. For this exam-

ANN 4.4545× 10−10 [m]

BNN 2.7× 10−20 [J]

ANNN 6.2996× 10−10 [m]

BNNN 1.9× 10−20 [J]

Table 4.1: Interatomic potential constants

ple, we use the empirical relaxation time model from [1] to model phonon-phonon

collisions. The relevant properties are summarized in Tables 4.2 and 4.3.

Polarization τ−1
U τ−1

N

Transverse BTUω
2Te−CT/T BTωT

4

Longitudinal BLUω
2Te−CL/T BLω

2T 3

Table 4.2: Functional form of the phonon scattering rates from [1] for both Umklapp,

τ−1
U , and normal, τ−1

N , scattering rates.

We apply the heating selectively in control volumes that are located in regions

known to have the highest electron density, namely the so-called channel region. The

BT

[
K−4

]
BTL [s/K3] BTU [s] BLU [s] CT [K] CL [K]

2× 10−13 2× 10−21 1× 10−19 5× 10−19 55 180

Table 4.3: Parameter values for phonon scattering rates in Table 4.2 given by [1]
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Figure 4.3: Dispersion surfaces in a quadrant of the kz = 0 plane. The constant

frequency contours of the longitudinal acoustic branch are projected below the dis-

persion surfaces.

shape of the channel varies because a higher applied voltage draws the conducting

electrons closer to the gate interface. To consider the spatial variation in electron

density as the voltage changes, three different channel region geometries were used

corresponding to the shapes estimated for the low, middle, and high voltage scenarios

[2]. These are labeled channels I, II, and III and are shown in Fig. 4.4, where the

depth, i.e. length in x-direction, of all channels is set to 10 nm. Joule heating

imparts energy to phonon modes that are relatively close in energy to the energy of

91



the electrons [127]. Namely, the probability that electron-phonon scattering imparts

energy into phonon modes with energy levels comparable to the energy of electrons is

significantly larger than the probability that the energy will scatter into a low energy

acoustic phonon mode. Phonon-phonon interactions then scatter energy deposited

into high energy phonon modes into lower energy acoustic modes. The low-energy

acoustic modes, in general, have larger group velocities and therefore subsequently

transport energy away from the channel region. To capture this effect, nontrivial

source terms are applied only to modes whose frequencies are larger than ωmax/2

where ωmax = maxφ∈Φ ωφ. We use ω as a discriminator for high-energy modes as

the energy of a phonon is linearly related to the phonon frequency, i.e. a quanta of

energy in phonon mode φ has energy h̄ωφ. No source term is applied to lower energy

modes. The total energy injected into the channel is constant for all fin widths and

for all channel geometries. The total energy per unit time sourced into the domain

is 3.33 × 10−7 Watts. This energy is evenly divided amongst all kpoints and to all

control volumes occupying the source region.

The FinFET dimensions are also varied to investigate the effect of fin width

on the temperature field. Three fin widths were considered, depicted in Fig. 4.5,

the shaded brown surfaces correspond to Si/SiO2 interfaces while all other surfaces

of the fin are free surfaces. Due to symmetry of the geometry and boundary condi-

tions only a quarter of the FinFET is simulated. However the allowed wavevectors

must be determined from Born von-Karman boundary conditions using the dimen-

sions of the full physical domain. Specular boundary conditions are applied to the

symmetry surfaces. Diffuse boundary conditions are applied to the free surfaces
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Figure 4.4: Three channel geometries simulated in FinFET device. Channels I, II,

and III correspond respectively to the low, medium, and high applied gate voltage

conditions [2]. Energy is sourced only into control volumes with centroids lying

within the source region.

due to disorder in the crystal structure at these boundaries. Applied temperature

boundary conditions are applied to the silicon/silicon dioxide (Si/SiO2) interfaces.

It is assumed that the majority of heat generated within the domain is removed

through the Si/SiO2 interfaces, corresponding to interfaces between the fin and gate

dielectric as well as the fin and buried oxide. All applied temperature boundary

conditions are set to 300 K.
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Figure 4.5: FinFET dimensions for the three fin widths, all dimensions are in units

of nanometers.

4.1.0.2 Device Simulation Results

The temperature field is obtained using an iterative approach to calculate

eφ within all control volumes. Iteration is required since the boundary conditions

depend on the energy density field. The iterations are performed until the L2 norm of

the change in the energy field at the kth iteration, ∆ek =
√∑NΩ

i=1

∑
φ∈Φ

[
ekφi − ek−1

φi

]2
,

reaches a tolerance value of 10−6. The calculated steady-state temperature fields for
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all nine parameter combinations of channel geometries and fin widths are shown in

Fig. 4.6, where each row corresponds to a channel geometry and each column to a

fin width. The solutions show that the maximum temperature experienced by the

fin depends in the shape and size of the channel region, width of the fin, and relative

proximity of the channel to the non-adiabatic boundaries. As the amount of energy

sourced into each system is held constant, one expects that widening the fin would

result in a lowering of the peak temperature, if all other factors remain constant.

For the channel I case, the temperatures are highest in the center of the channel

region and decrease sharply outside. The energy is confined to the channel region

as heat is generated before phonon-phonon scattering has had a chance to transfer

energy into lower frequency modes that are more conductive.

Channel II has a larger heated region volume than channel I which results in

a lower peak temperature for the same total imparted energy, i.e. channel II source

is of lower energy density. The channel region in this configuration is in closer

proximity to the applied temperature boundary which allows for expedited removal

of heat. It appears that the short distances separating the phonon generation region

from non-adiabatic boundary result in transport of energy out of the domain by

high-frequency phonon modes which are typically less conductive. The ability of

these phonon modes to directly transport energy circumvents the need to scatter

the energy to the higher velocity acoustic modes prior to removal.

Channel III produces the highest peak temperatures due to the confined re-

gion where the source energy is applied. The channel lies adjacent to an applied

temperature boundary as does channel II. However this configuration has the largest
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Figure 4.6: Temperature profiles obtained from the FinFET numerical experiment.

The three different channel regions are labeled by row. All temperatures are reported

in units of Kelvin.
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energy density among the channel configurations studied. Thus, while high energy

modes will expedite the removal of heat in a manner analogous to that observed in

channel II, the higher local source magnitude still produces a larger peak tempera-

ture than in channel II. Also, sharp temperature gradients are observed in regions

near the channel. This effect is characteristic of non-equilibrium ballistic transport

at the nanoscale and has been observed in similar device simulations [39].

The maximum temperature increases are listed in Table 4.4. Several conclu-

Thin Fin Medium Fin Thick Fin

Channel 1 12.245 K 9.735 K 8.276 K

Channel 2 3.823 K 3.024 K 2.535 K

Channel 3 24.966 K 19.044 K 16.048 K

Table 4.4: Maximum temperature rise in each simulation over 300K.

sions may be drawn from these results. First, smaller channel configuration volumes,

corresponding to large applied gate voltages, produce larger peak temperatures.

This is a consequence of our use of the same total imparted energy for all channel

configurations and fin widths. Furthermore, as the fin thickness is increased, peak

temperatures decrease. This is because the smaller fin is accompanied by a larger

source energy density due to the same amount of energy being introduced into a

smaller volume.

In order to ascertain the effects of anisotropy on the calculated temperature

field, we compare anisotropic and isotropic solutions. Three simulations are per-
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formed with the 8 nanometer fin in the channel I configuration. The first uses the

isotropic gray phonon approximation (IBZ), the second uses a crystalline disper-

sive material with gray scattering (FBZτ), and the third is of the same dispersive

material but where scattering is anisotropic (FBZ). The FBZ model corresponds to

our full Brillouin zone phonon BTE methodology outlined in chapter 3. The IBZ

simulation uses a spherical Brillouin zone with 50, 008 kpoints in the gray phonon

approximation, analogous to the Brillouin zones used in the 1D slab verification

problem. Isotropic scattering in an anisotropic crystalline dispersive material is

not an entirely realistic assumption. However, its present use is to differentiate

the anisotropy in the Brillouin zone dispersion surfaces, manifesting in the specific

heat and group velocity phonon parameters, from anisotropy due to the scattering

term. Isotropic scattering is enforced by employing an average relaxation time for

all phonon modes in the calculation. The average relaxation time is determined

from

τavg =

√√√√
∑

φ

∑3
i,j=1 (Cφvφivφjτφ)2

∑
φ

∑3
i,j=1 (Cφvφivφj)

2 . (4.2)

The total specific heats in FBZ, FBZτ , and IBZ are kept equal so that we may

calculate the equivalent temperatures from the energy distributions using Eq. 3.30.

The specific heat in IBZ is equally distributed amongst all modes, while the modal

specific heat in FBZ and FBZτ is calculated from Eq. 3.28. The average group

velocity magnitude is then chosen such that the trace of the thermal conductivity

tensors of FBZ and IBZ are equal. This ensures that thermal flow in the diffusive

regime is equivalent in the two models. The gray phonon properties are given in
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Tab. 4.5. The thermal conductivity tensors, in units of W/m K, for FBZ, FBZτ , and

ωavg [s-1] vavg
m/s τavg [s] Ctot

J/K

1.363× 1013 1.767× 103 3.288× 10−11 1.006× 106

Table 4.5: Average phonon properties used in the IBZ BTE simulation of the Fin-

FET.

IBZ are calculated using the phonon gas model of Callaway [113]. The conductivities

are

κFBZ =




35.06 0 0

0 33.68 0

0 0 34.87




κFBZτ =




34.59 0 0

0 34.44 0

0 0 34.58




κIBZ = 34.54




1 0 0

0 1 0

0 0 1




All simulations were performed using the same real space discretization, chan-

nel geometry, and source energy magnitude as those from the parameter study of

the 8nm width fin with channel I source geometry. In FBZ and FBZτ , the source

term is applied as described in section 4.1.0.1. For the IBZ case the source term is

applied equally to all phonon modes.

Figure 4.7 shows the percent differences in the temperatures along a two di-

mensional slice in the y = 3nm plane for FBZ and FBZτ (blue line) as well as for

FBZ and IBZ (red line). Each plot shows the temperature field difference along a

line of control volumes in the z direction at various points along the xz-plane of the

fin (plane in which the data points lie is outlined in red in the inset of Fig. 4.7).

99



y

x

−20 0 20
0

5

10

15

20

25

z

x y

z

Figure 4.7: Percent difference in the cell centered temperatures of the FBZ and

FBZ-τ models (blue) and the FBZ and IBZ models (red) for control volumes in the

xz-plane of the FinFET. The xz-plane corresponding to the plots is outlined in red

in the inset schematic.

The difference in temperature fields between FBZ and FBZτ are found to be

as large as 28.45% where FBZτ has higher temperatures overall. Conversely, IBZ

has lower temperatures than FBZ with difference in the temperature fields as large

as 10.2%. The temperature difference predicted by the three solutions decreases

further into the fin as scattering occurs and the transport becomes more diffusive.

In the ballistic regime, however, the results show significant influence of anisotropy

on thermal flows.

Temperatures from FBZ are generally lower than those from FBZτ . This is due

to the relatively smaller relaxation times in FBZτ . The smaller τ resists phonon

propagation by reducing the phonon MFP. Thus energy is less readily removed
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from the source region in FBZτ due to relatively more phonon-phonon scattering.

However, temperatures from FBZ are larger than those from IBZ. This is partly

explained by the non-dispersive nature of the gray phonon modes. As a result all

gray phonon modes have non-trivial group velocities and therefore may contribute to

thermal energy transport. Furthermore all phonons within IBZ have phonon MFPs

of approximately 58.2 nm and therefore propagate ballistically within the fin, only

experiencing resistive effects when undergoing diffuse surface reflections.

To further understand the temperature differences among the three models the

respective phonon irradiation values are compared. The phonon irradiation, Hd̂, is

a measure of the energy propagating in a direction d̂ per unit area per unit time

and is defined

Hd̂ =
∑

φ∈Φ

vφ·d̂≥0

e0
φvφ · d̂ . (4.3)

Thus the phonon irradiation may be viewed as a measure of the phonon flux in the

ballistic regime which is a good approximation for phonon flow in the present system.

The phonon irradiation is solely dependent upon the harmonic properties of the

crystal. Hd̂ for FBZ and FBZτ is equivalent as Hd̂ is independent of relaxation time

which is the only difference between the two models. The values for the radiosity

of IBZ and FBZ along the three principal spatial directions is given in table 4.6.

Inspection of table 4.6 indicates phonons within IBZ carry more energy at a faster

rate away from the source region compared to their FBZ counterparts resulting in

relatively smaller temperatures in IBZ.

Anisotropic effects, which give rise to the temperature differences, are due to
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Hd̂ x̂ ŷ ẑ

IBZ 1.33 1.33 1.33

FBZ 1.12 1.10 1.12

Table 4.6: Radiosity of IBZ, FBZ, and FBZτ along the principal direction, all values

are in units of 1011 W/m2.

the finite crystal lattice, as well as non-isotropic Brillouin-zone properties. These

effects have been shown to have a significant impact on temperature fields as demon-

strated by Fig. 4.7. However further work is required in understanding and quanti-

fying the effect of all sources of anisotropy. Namely the effects of a finite number of

carriers with different number of carriers along each direction producing lattice-scale

anisotropy, microscale anisotropy in the Brillouin zone properties, and macroscopic

anisotropy in non-cubic crystals.

4.1.0.3 Verification of FinFET Simulations

While the implementation of our numerical approach was verified in ch. 3,

we desire additional confirmation that we are correctly modeling phonon transport

within a FinFET. In order to ensure the veracity of our results we ensure the sim-

ulation results agree with physical intuition. Namely, one would expect that the

peak temperatures in the parameter study should correspond to systems with the

largest source energy density, this intuition is confirmed by table 4.4. Furthermore,

as the conductivity tensors of all models have an equal trace one would expect the
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temperatures predicted to agree at locations far from the Joule heating region [83].

This agreement of the model predictions is precisely what is observed in fig. 4.7, as

we noted in sec. 4.1.0.2. Thus, we are confident that we are correctly solving the

mathematical model and also capturing the full Brillouin zone effects as well as the

nanoscale feature size effects on phonon flow.

4.2 Conclusion

The capability of simulating anisotropic thermal flow in three dimensional

nanoscale devices was demonstrated through models of a three dimensional Fin-

FET transistor. The presented results show that the influence of anisotropy can be

significant; for the configuration studied in this work the differences in temperature

solutions were found to be as large as 28.45%. Furthermore, it is observed that

models that represent anisotropy in the crystal without anisotropy in the scattering

result in larger errors than the fully isotropic model. Further studies are required

to quantify the relative effects of all sources of anisotropy. However, it is clear

that accurate thermal modeling in nanoscale devices require a full Brillouin-zone

representation in order to capture important anisotropic effects on phonon flows.
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Chapter 5: Phonon backscatter, trapping, and misalignment effects

on microscale thermal conductance below the Casimir

limit 4

Thermoelectric devices convert waste heat into electricity and therefore hold

promise as maintenance free sources of clean energy at little cost to the environ-

ment [128, 129] . However, the low energy conversion efficiency of thermoelectric

devices has been a stumbling block to their widespread acceptance. Thus significant

opportunity exists for engineering more efficient thermoelectric devices. Improved

efficiency could be realized through material selection and/or nano- and micro- scale

feature design, ushering in an entirely new class of highly efficient thermoelectric

devices. Among the promising candidates for improving thermoelectric efficiency

are Si nanowires (NWs), which are garnering increasing attention as thermoelectric

components due to their unique heat transfer properties.

In this chapter we study microscale thermal transport in Si NWs, identify-

4Portions of this chapter appeared in the publication: F. G. VanGessel , P.

W. Chung, Phonon backscatter, trapping, and misalignment effects on microscale ther-

mal conductance below the Casimir limit, Int. J. Heat Mass Transfer, (2018),

https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.028 [46]
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ing a specific NW geometry that improves thermoelectric efficiency. At nanometer

to micron length scales, there exists a strong competition between phonon-phonon

(intrinsic) and boundary (extrinsic) scattering mechanisms that fundamentally al-

ters the thermal transport. Despite significant progress in demonstrating the ability

to reach thermal transport behaviors below the Casimir limit, little appears to be

understood about the competition between these scattering sources. In this in-

vestigation, we propose a simple one-parameter NW geometry that simultaneously

modulates backscattering and trapping effects to enable directed study of these dif-

ferent means of controlling phonons. The geometry is a simple sequence of chambers

offset from one another by a defined distance. We use the geometry to study the

effects of phonon backscatter, trapping, and corner-turning on the thermal conduc-

tance in Si nanowires (NWs). We employ a the phonon BTE method, detailed in

ch. 3, to determine spatially-varying phonon densities in the geometry. By creating

a geometry that maximizes backscatter, a roughly 8-fold reduction in thermal con-

ductance below the Casimir limit can be achieved at room temperature which is a

factor of four smaller than the nearest reported value in the literature. The geome-

try is also useful for systematic investigation of other means of controlling phonons

and affecting thermal transport; particularly, we investigate diffuse versus specular

boundary scattering and the induced misalignment between the phonon flow and

thermal flux due to the shape of the geometry. These effects offer new insights into

fundamental phonon behaviors and possible routes toward phonon control.
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5.1 Controlling Phonons in Nano- and Micro- structures

As the trend towards smaller, more powerful, and more efficient microelec-

tronic and MEMs devices continues, high fidelity control over thermal energy trans-

port continues to grow in importance for maximizing the performance of these de-

vices. Advances in silicon-on-insulator technologies have made devices with nanoscale

features smaller than 100nm commonplace [130]. Furthermore, while early nanos-

tructures were primarily simple nanowires or thin films, it is now possible to en-

gineer nanostructures with novel geometries that deviate significantly from those

earlier designs. However, at the submicrometer length scale, classical boundary

Brillouin zone-averaged scattering expressions, such as those derived in [131, 132],

neglect phonon mode-level effects such as the propagation direction of individual

phonon modes, an important mechanism in heat transport in nanostructures [103].

For example, Casimir predicted the mean free path of phonons within a cylindrical

rod of diameter D were uniformly attenuated to Λ = D [131]. This approximation

neglects the range of phonon MFPs present in a material as well as the direction

of propagation of individual phonon modes relative to the cylinder axis. Therefore,

in order to utilize novel device geometries to engineer desirable thermal transport

characteristics, a more complete understanding is required of how nanodevice ge-

ometries affect phonon transport, resist heat flow, and alter the carriers ability to

conduct heat at the level of individual phonon modes. Many types of devices stand

to benefit from the improved ability to engineer heat transport behavior including

transistors, photodiodes, and thermoelectrics.
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Research efforts to manipulate heat transport at small scales has brought con-

siderable attention to phononic crystals, i.e. crystalline systems with an artificial sec-

ondary periodicity. Such crystals can be developed to have desirable heat transport

properties such as a high degree of anisotropy, phononic band gaps, or reduced ther-

mal conductivity. Three types of phononic crystal concepts are found in the present

literature. One uses nanopillars [133] or nanodots [134] periodically arranged on

structures. The additional features create nonpropagating vibrational modes which

can trap thermal energy and reduce thermal conductivity. Another concept uses

membranes patterned with periodically-arranged circular [135], square [136], hexag-

onal [137], and triangular [138] pores. The pores can obstruct phonon flow and

thereby reduces thermal conductivity, enhances anisotropy of the heat flow, and in

the coherent limit creates phononic band gaps. A third concept uses NWs with

periodically modulated thickness [139] or irregular surface geometries such as saw-

tooth [110], corrugated [140], or fishbone [107] features that backscatter phonons or

also create nonpropagating modes thereby leading to increased thermal resistance

and reduced conductivity. All of these concepts are motivated by the potential to

engineer desirable phonon behaviors using mechanisms that manipulate the way

scattering occurs in the material. Efforts to combine concepts, such as pores and

nanowires [109] and films and nanowires [141], have also shown some degree of effi-

cacy.

A separate class of techniques for manipulating heat transport operates in a

different MFP regime than is of current interest. Whereas we are primarily focused

on long MFP phonons, approaches that modulate transport through control over
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small MFP phonons using defects such as impurities [42], voids/vacancies [142], and

dislocations [143], or superlattice constructions [144] have been pursued.

Tangential to studies of phononic materials, there has been the surge of in-

terest in reducing thermal conductivity in materials for thermoelectric applica-

tions [19, 20, 107, 135, 140, 145]. Silicon nanowires (NWs) have gained increasing

use as components of thermoelectric systems over the past 10 years due to their

desirable thermal conductivity of 25 W m−1 K−1 [146] which is nearly an order of

magnitude smaller than its bulk value (∼156 W m−1 K−1 at 300K [147]). More

recently studies have found that silicon NWs with roughened sidewalls may attain

thermal conduction far below 10 W m−1 K−1, with conductivity as low as 1.6 W

m−1 K−1 for a NW with 52 nm cross-sectional dimension at room temperature

having been reported [19]. Therefore, the synergistic effect of rough NWs coupled

with phononic features offers a possible route to achieving extremely low thermal

conductivity devices.

Recent NW studies have shown that the net effects of phononic features on

thermal conductivity can be significant. Blanc et al. experimentally studied corru-

gated Si NWs at low temperatures (0.3K - 5K) and found that corrugation resulted

in thermal conductance of roughly half the Casimir limit at 1K [140]. Poborchii et al.

studied corrugated Si nanowires at temperatures ranging from 300-400 K observing

a 60%-70% reduction in κ for strongly corrugated wires at 300K [148]. Monte Carlo

simulations indicated that the observed reduction in thermal conductance may be

due to phonon trapping or backscattering within the corrugations. Several groups

have studied NWs with periodically modulated thickness [107,139,149–153].
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Based on the emerging findings, there is now strong evidence that backscat-

tering or trapping plays some role in reducing thermal conductance from intrinsic

bulk value. Yet, a careful study investigating the degree to which backscattering and

trapping effects reduce thermal conduction does not appear to be available presently.

In the remainder of this chapter we develop a parametric model for systematically

altering a Si NW geometry in order to study the phonon transport properties as

the we approach the limit of zero thermal conduction. The Casimir limit for mini-

mum thermal conductivity refers to the theoretical minimum limit where all phonon

MFPs are attenuated to the characteristic dimension of a microscale device (i.e. the

diameter of a NW). Our goal is to study thermal transport below the Casimir limit,

which arises due to variations in the device dimensions. Namely, we wish to ascertain

whether thermal conductivity can be substantially reduced below the Casimir limit

in NWs with simple boundary modifications using the interplay and competition

between boundary and intrinsic scattering mechanisms. We examine the interac-

tions of backscatter and constriction and attempt to isolate these from the effects

of intrinsic, i.e. phonon-phonon, scattering. For the sake of future experimental

fabrication ease and potential three dimensional device designs, we avoid interior

scattering features such as in [135–138] and instead favor a nanowire-like domain

composed of short NW sections, or chambers, offset from one another. The offsets

cause periodically-spaced regions where increased backscattering occurs. Phonons

must flow around obstructions, creating regions of misalignment between the phonon

flux and the macroscopic temperature gradient. Furthermore, large offsets, relative

to the NW cross-section, produces constriction effects that lead to a greater degree
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of phonon trapping, or when a phonon undergoes multiple backscattering events

within a single chamber before exiting. In contrast to previous studies showing re-

ductions in thermal conductivity of 35-70% compared to the uniform NW of same

cross-section area [107, 110, 148, 154, 155], we find that backscattering and trapping

are the dominant mechanisms for reducing transport and can alone achieve reduc-

tions over 90%. The increased backscatter shifts the degree to which individual

mdoes participate in thermal transport, and serves as a filter for modes of a certain

mean free path. Wires with rough sidewalls allow phonons to more easily realign

with the macroscopic temperature gradient and flow around offsets. Approaches

that do not maximize backscattering produce smaller reductions in conductance.

The outline of this chapter is as follows. The chamber-offset NW and its ge-

ometrical parameters are defined in sec. 5.2.1. Section 5.2.2 describes the method-

ologies used for ray-tracing and three dimensional full Brillouin zone Boltzmann

transport models. Section 5.3 presents the modeling results for NW thermal con-

ductance as well as the analyses of the fundamental mechanisms leading to the

reduction in phonon transport. Finally, in Section 5.4 we provide our concluding

remarks.

5.2 Methodology

5.2.1 Model Geometry

We use Si NW models in this paper. These are composed of cubical chambers

with an offset between adjacent chambers. A section of the geometry is shown
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in Figure 5.1 with x̂ as the transport direction. The chamber-offset is composed

of a periodically repeating segment (indicated by the dash line box), with period

T = W x̂ + Hŷ where W is 50nm and H is the free parameter varied from 0nm to

40nm. Thus the area through which phonons may flow between adjacent chambers

is W × (W − H). NWs of both infinite and finite (450nm) length are studied.

These dimensions are in contrast to previous experimental studies which considered

NWs with cross sectional areas ranging from 20nm x 20nm to 196nm x 550nm and

lengths ranging from 1.7µm to 18.8µm [156–158]. When H = 0 the geometry

x̂

ŷ
H

W

Figure 5.1: Finite section of chamber-offset NW geometry. The red dotted area

denotes a single chamber.

reduces to straight uniform wire with square cross-section. This case provides the

reference transport properties. A vertical surface is introduced for any value of

H 6= 0, which promotes phonon backscattering leading to a reduction in thermal

conductance. The backscattering increases thermal resistance even when reflections
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at the sidewalls are purely specular. The inlet is the face on the left, normal to the

x-axis, and the outlet is the opposite face on the right. Despite this nomenclature,

phonons can leave through either the inlet or the outlet. Furthermore, we rigorously

define backscattering as any scattering event in which the component of the phonon

group velocity aligned with the macroscopic temperature gradient changes sign.

Thus while backscattering is most often associated with a resistive scattering event,

it can, on occasion, lead to an increase in thermal conductivity i.e. when phonons

are ”forward” scattered toward the outlet.

The phonon scattering mechanisms that are presently considered include bound-

ary scattering and intrinsic phonon-phonon scattering. Sidewall scattering can be

either diffuse or specular. This distinction is important because when a significant

portion of phonon modes have an intrinsic phonon MFP that exceeds the limiting

dimensions of the NW, transport becomes semi-ballistic and the type of boundary

scattering plays a significant role in thermal transport [112]. For the tempera-

ture and length scales under consideration, scattering of phonons at boundaries is

expected to be largely diffuse [112]. However, in this study specular and diffuse side-

walls are both considered as they represent the respective minimum and maximum

effects of boundary scattering on thermal resistance. These conditions will allow us

to separately i) capture the extremal values attainable in the thermal conductance

in the presence of strong boundary scattering, and ii) study the combined contribu-

tion of phonon backscattering and Umklapp scattering to thermal resistance when

the sidewall reflections are specular.
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5.2.2 Modeling Approach

5.2.2.1 Ray Tracing

In order to study a limiting case in which backscattering is the only resistive

mechanism, we use a simple ray-tracing method with Monte Carlo sampling with

specular boundary scattering and no intrinsic phonon-phonon scattering. The cal-

culation entails counting particles that pass through a finite region of the chamber-

offset NW using the gray model Brillouin zone with isotropic phonon velocities.

Each ray incident on the boundary undergoes specular reflection, as defined in Sec.

3.3.3. In addition to the boundaries depicted in the model, specular reflection con-

ditions are applied on faces normal to the ẑ-axis. Thus, although the geometry of

the NW is 3D, the thermal transport behaviors in the specular boundary scatter-

ing limit can be observed in two dimensions, namely the x̂ŷ plane. The steps to

perform the ray-tracing are as follows. For a given number of chambers, Nc, we

introduce a ray, representing a phonon wavepacket, at the inlet. The initial loca-

tion and propagation direction of the ray is drawn from the uniform distribution

between [0,W ] and [0, π] respectively. We then track the ray, specularly reflecting

at any boundaries it encounters, until it exits the nanowire. An example simulation

domain for Nc = 3 and H = W/5 is shown in Figure 5.2. For each simulation the

flux reduction relative to the H = 0 case, f red, is calculated as:

f red =
number of rays reaching the outlet

total number of rays simulated
. (5.1)

The number of rays simulated is set to 105.

113



Figure 5.2: Ray tracing through a chamber-offset NW. The red ray contributes to

the flux through the wire, however the blue ray experiences a backscattering event

and therefore does not increase the total flux.

5.2.2.2 Phonon BTE

The full Brillouin zone three-dimensional phonon Boltzmann Transport Equa-

tion (FBZ-BTE) is solved using the method outlined in chapter 3 to account for

the combined effects of diffuse/specular sidewall boundary scattering and intrinsic

phonon-phonon scattering on the thermal conductance. Variants of this FBZ-BTE

method has been previously used to investigate internal phonon flow in nanobeam

”labyrinths” [154] as well as external phonon flow in nanoporous Si thin films

[111,138,153]. Furthermore, the FBZ-BTE captures anisotropy in the phonon trans-

port which would otherwise be neglected in simpler approaches that employ a grey

or Debye approximation or where the 3D Brillouin zone is spherical. Anisotropy in

phonon transport has been shown to cause a 25% difference in thermal conductivity

predictions for thin silicon films, when compared to simulations using an isotropic
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Brillouin zone [102], indicating the importance of using an FBZ model when sim-

ulating phonon transport within nanostructures. For this work we use a uniform

sampling of 16,518 phonon modes from the full Brillouin zone, thus inherently cap-

turing ballistic anisotropy of the phonon transport. In addition, we simulate phonon

transport only for acoustic phonons, assuming the contribution of acoustic phonons

to thermal transport dominates over that of optical phonons. However, we use

the phonon relaxation time parameterization taken from [159], which accounts for

acoustic-optical phonon scattering processes. Note that it has been shown that in

nanostructures optical phonons may contribute 15-20% of the total thermal con-

ductivity [160, 161], compared to only 5% in a bulk system. Therefore, we expect

inclusion of optical phonons will have a non-negligible effect on the calculated con-

ductivities and conductance. However, rough estimates show that including the

optical phonon contributions will not change our fundamental conclusions. The

phonon parameters used for all results reported here are generated in the manner

described in 3.3.4 using a Si interatomic potential [162]. The simulation results

reported in sections 5.3.2-5.3.3 discretize the spatial domain using 27,000 control

volumes while the results in Sec 5.3.4 use 72,000 control volumes.

Solution of the phonon BTE yields the spatial variation of the modal phonon

energies over the entire domain, i.e. eφ(r). From these energies, the mode flux fφ

and total heat flux f can be determined from

fφ = vφeφ ; f =
∑

φ

fφ . (5.2)

The thermal conductivity can then be estimated based on Fourier’s Law using
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the total flux, the applied temperature difference, and the length of the NW. The

definition of conductivity is therefore

κ =
fL

∆T
; L =

√
W 2 +H2 , (5.3)

where f = |f |. In the classical definition of conductance G = κA/L, leading to the

conductance definition

G =
fA

∆T
. (5.4)

5.2.2.3 Boundary Conditions

Four types of boundary conditions (BCs) are used in the simulations - peri-

odic, applied temperature, specular reflection, or diffuse reflection. The inlet and

outlet are assumed to be either periodic with respect to the phonon deviation from

equilibrium, or in equilibrium with a heat bath of specified temperature. Periodic

BCs are used to model the limiting case when the NW is infinitely long. Applied

temperature BCs are used when the boundary is affixed to a heat bath with neg-

ligible thermal boundary resistance, analogous to an experimental set-up in which

the nanowire is directly integrated with the heating and sensing pads during fab-

rication [130], such as those studied in [19, 145]. The side walls are assumed to

be adiabatic with the phonon scattering to be either specular or diffuse. Specular

BCs assume each phonon undergoes a specular reflection at the NW sidewall, while

diffuse BCs assume all phonons are perfectly thermalized at the local temperature

of the sidewall. NWs with specular or diffuse BCs will be referred to as smooth

NWs or rough NWs respectively. The boundary conditions are applied according
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to the approach outline in sec. 3.3.3. In the case of an infinite NW, the periodic

translation vector is set to be T = W x̂+Hŷ

5.3 Results & Discussion

Four sets of results are presented in this section. The first is based on ray-

tracing which is a limiting case of a finite-length conductor with only backscattering

and no intrinsic scattering. The second is another type of limiting case where the

NW is infinite in length, modeled using periodic boundary conditions, but both

effects of intrinsic and extrinsic scattering effects are included. The third set of

results examines interior phonon flow and how readily phonons turn the offset corner

in the smooth and rough infinite NWs. The fourth set studies an experimentally

achievable NW of finite length where applied temperature conditions are applied to

the ends of the NW.

5.3.1 Backscatter in smooth NW: limiting case 1

Five sets of simulations are performed with offsets ofH = {W/5, 2W/5, 3W/5,

4W/5} and Nc ranging from 2 to 40. Shown in Figure 5.3 is the flux reduction, f red,

against 1/Nc . The case where H/W = 0 corresponds to a straight NW without

any offset. In this case, and as a consequence of ray-like behavior where all surface

scattering is specular, there exists no resistance to the rays and f red = 1. For

Nc = 2, the single offset leads to a bottlenecking effect which backscatters a fraction

of the phonons equal to H/W . Only those phonons that successfully traverse the
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constriction contribute to the flux, while those that backscatter do not. However, for

Nc > 2 the effect of the chamber-offset geometry grows more complicated. Phonons

may experience multiple backscattering events, reversing the x-component of their

momentum each time. Increasing the number of chambers always decreases the

overall flux.

With increasing offset size, the likelihood of a phonon becoming trapped in-

creases, leading to a reduction in flux. Inspecting fig. 5.3 reveals that f red is highly

correlated to the inverse of Nc, i.e. the relationship is close to linear. Increasing the

number of chambers decreases the overall flux. Also plotted in Figure 5.3 the flux

reduction f red, which we determine to be

f red
(
H

W
,Nc

)
= 0.33 +

1.38

Nc

− 0.36
H

W
− 1.35

H

W

1

Nc

(5.5)

The rate of convergence to the infinite wire behavior is larger when H is larger.

The Nc →∞ limits, obtained from the intercepts on the vertical axis, are shown in

Table 5.1. These indicate that, in the limit of an infinitely long NW, the phonon

backscattering effect is capable of reducing phonon flux by 75% to 96% for offset

height ranging from W/5 to 4W/5. Furthermore, as shown in Table 5.1 , the average

distance a phonon travels along the x-axis between phonon backscattering events

is reduced from infinitely long for the straight NW to 58 nm for H/W = 4/5. In

addition, as the offset height increases the number of backscattering events a phonon

undergoes within a single chamber increases from 0.6 - 11.8. This indicates the

strong degree of phonon trapping leading to a crossover from propagating to non-

propagating phonon modes. The results suggest that simple designs that exploit
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surface scattering and backscattering mechanisms at the length scale of the carrier

MFP offer the ability to significantly decrease heat flux.

H/W 0/5 1/5 2/5 3/5 4/5

Phonon flux reduction 1.00 0.25 0.18 0.11 0.04

Avg. MFP along

x-direction [nm]

∞ 292 135 84 58

Avg. # of backscattering

events per chamber

0.0 0.6 1.9 4.2 11.8

Table 5.1: Ray-tracing statistics for phonon flux reduction, MFP and, backscattering

in infinite chamber-offset NW.

5.3.2 Backscatter in smooth and rough NW: limiting case 2

When device dimensions are at submicron scales, scattering from material

surfaces may be more diffuse than specular. Here, we solve the FBZ-BTE using

periodic boundary conditions to model the case of a NW of infinite length accounting

for both specular and nonspecular scattering as well as intrinsic scattering. The

latter is modeled using the relaxation time approximation with parameters from

[159]. Periodicity, as described earlier, is in the deviation of phonon energy from the

equilibrium value at the inlet and outlet. Thus, for a given Nc, a thermal gradient

is imposed by specifying temperatures at the inlet and outlet. This simulates the

phonon behavior in an infinite system while eliminating any edge effects due to

the finite length of the NW simulation. The temperature values used here are
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Figure 5.3: Relative reduction of flux through chamber-offset wire vs the inverse of

the number of chambers for a range of offset heights. The linear model equation is

given in Eq. 5.5

T (r0) = 304K and T (rL) = 306K, respectively. The effectiveness of the chamber-

offset geometry in reduced thermal transport may be quantified as the ratio of

conductances using the conductance for H = 0 as the reference. Note that the use of

periodic boundary conditions imply an infinitely long NW conductor. Furthermore,

according to eq. 5.3 the effective thermal conductivity is κ = fL/∆T . Therefore

it would seem that the conductivity will go to zero in the L = ∞ limit or at the

very least the conductivity is dependent on the size of the simulation domain. It

is perhaps better to think of the conductivity as the ratio of flux to temperature

gradient, ∇T , which we approximate as ∆T/L. The flux is linearly related to the
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temperature gradient, i.e. the temperature gradient is the ”driver” and the resulting

flux responds linearly. Thus the thermal conductivity is a constant value regardless

the choice of ∆T and L, making the quantity unambiguous. The conductance,

however, is an extrinsic quantity inversely proportional to system length as given by

eq. 5.4, G = κA/L. However, when taking the ratio of two conductance values the

length, the effect of NW length as a common factor is removed. Therefore, while

we report absolute thermal conductance values as it is a readily experimentally

measurable quantity, the extrinsic nature should be noted.

The results in Figure 5.4 show the relative reduction of conductance with re-

spect to the offset height. In the specular case the only resistive mechanisms to

heat flow are phonon backscattering and the intrinsic phonon-phonon scattering,

and we find the relative reduction in thermal conductance ranges from 89-99% for

H ∈ [W/5, 4W/5]. Note that while the BTE simulations predict an 89% reduction

in thermal conductance for H=W/5, the earlier ray-tracing algorithm predicts a 75%

reduction in the infinite wire limit. The difference of 14% is due to the increased

role of intrinsic phonon-phonon scattering. Although phonon-phonon scattering is

present in the reference case, G0, it has a larger effect for H > 0 where phonons

traversing between chambers, on average, travel a farther distance than when H = 0

due to multiple backscattering events (see Table 5.1). The longer effective path

length of phonons means the material appears more acoustically thick, leading to

more intrinsic scattering events and a reduction in thermal transport. For wires

with diffuse sidewall scattering we observe a 65-95% relative reduction in the ther-

mal conductance for H ∈ [W/5, 4W/5]. This reduction is smaller than the specular
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case because the thermal resistance due to diffuse scattering is independent of off-

set height H. Therefore the relative contribution of phonon-phonon scattering and

phonon backscattering to the total thermal resistance is reduced in the diffuse case.

The downward trend of G(H)/G(0) as additional resistive mechanisms are intro-

duced into the system is consistent with the observed phonon transport behavior

in S-shaped chicane structures [163]. In that case, the characteristic length scale

of the structure was in micrometers, placing the transport well into the diffusive

regime. Bourgeois et al. observed that the difference in measured conductivity be-

tween serpentine and straight wires is small, as the smaller Knudsen number allows

the phonons to turn corners readily. Therefore, the striking reduction in thermal

conductance is in large part due to the ballistic nature of phonon transport within

the chamber-offset NWs. Previous attempts to increase thermal resistance through

geometric modifications of a NW have achieved a wide range of conductivity re-

ductions with respect to a uniform NW. At room temperature, and for similar NW

dimensions considered in this work, the largest reduction achieved was 60-70% [148],

which is less than the reduction in the chamber-offset NW for H ≥ 2W/5.

Thermal conductance and conductivity for both diffuse and specular reflect-

ing walls are shown in Figure 5.5. In the limiting case of H = 0, the predicted

thermal conductivity, ∼ 22 W
m·K, compares well with experimental results of NWs

with similar cross-section area , ∼ 25 W
m·K [146] and ∼ 17.5 W

m·K [148]. Whereas

conductivity is an intrinsic property, the conductance is an extrinsic property. But

to provide an estimate of the transport that factors in the extrinsic effects due to the

smaller effective NW area, we estimate its value in the context of a NW of infinite
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length by substituting the definition of conductivity based on Fouriers Law. The

definitions for the conductivity and conductance are given in Eqs 5.3 and 5.4 respec-

tively. Figure 5.5.b also shows the comparison between the estimated conductivity

and the Casimir limits predicted for straight diffuse nanowires whose rectangular

cross-section has areas equivalent to the reduced area associated with the bottle-

necking dimension, W − H. The Casimir limit represents the diffuse boundary
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G(H)
G0
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Figure 5.4: Relative reduction of thermal conductance of chamber-offset NW ver-

sus offset height. Both a NW with specular (blue) and diffuse sidewalls (red) are

considered.

scattering limit in which phonon MFPs are limited by the NW dimensions, i.e. for

a square cross section NW, Λcasimir
φ = 1.12W [131]. This theoretical limit assumes

all phonon mode MFPs are the same and does not account for the direction of prop-
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Figure 5.5: (a) Thermal conductance of chamber-offset NW versus offset height.

Both a NW with both specular (blue) and diffuse sidewalls (red) are considered. (b)

The thermal conductivity values for the chamber-offset NW vs. offset height. The

grey triangles represent the Casimir limit prediction for the thermal conductivity

for a straight NW with square cross section of width W −H. The specular case for

H = 0 is neglected as this corresponds to the bulk Si value.

agation, branch, or dispersion. Thus it should serve as a reasonable lower bound to

the thermal conductivity when the NW is straight (i.e., H = 0). This is the cause

for the difference between the BTE prediction and Casimir values when H = 0 in

Figure 5.5b. For H > 0, the conductivity of the diffuse wire estimates are smaller

than the Casimir limit while the specular wire is larger. This observation holds

despite using the smaller area associated with the bottlenecking dimension, W −H,

in the Casimir limit calculation. Therefore, not only does the chamber-offset result

in a lower κ than the equivalent area straight NW, it has lower κ than straight
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NWs with dimensions equal to the height at the bottleneck W −H. This indicates

that introducing features that promote backscatter and trapping is more effective

at disrupting thermal transport than reducing the straight NW cross-section.

In order to investigate how backscattering affects the mobility of individual

modes, Figure 5.6 shows the thermal conductance accumulation functionGaccum(Λ∗).

The thermal conductance accumulation is defined as

f̄φ =
1

V

∫

Ω

fφdV ; Gaccum(Λ∗) =
1

G

A

∆T

∑

φ
Λφ≤Λ∗

f̄φ . (5.6)

A significant change in Gaccum(Λ∗) occurs going from H = 0 to any H 6= 0. This is
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Figure 5.6: Thermal conductance accumulation for (a) smooth and (b) rough NWs.

because the phonon modes with smaller MFP contribute relatively more to thermal

transport when H is finite than when H = 0. In fact, phonons with a MFP less

than 1 µm carry ∼83% more energy in the smooth NW, Gaccum(1µm) = 0.64,

than in the bulk where Gaccum(1µm) = 0.35. This significant increase is due to
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the resistive effect of backscattering on long MFP phonons. When H = 0, the

only resistive effect present is from phonon-phonon intrinsic scattering. Unlike the

phonons in the uniform NW geometry that do not backscatter, the phonons in the

chamber-offset NW can travel no farther than 250 nm (for H = W/5) along the x-

axis before backscattering. Note that Gaccum is on a normalized scale and therefore

the conductance when H = 0 is still larger than when H is finite, as shown in

Figure 5.5. For the rough NW case, shown in Figure 5.6b, the difference between

the uniform NW and the chamber-offset NW is less pronounced, relative to that

observed in smooth NWs, due to the presence of diffuse boundary scattering in

each. The diffuse boundary scattering is a resistive mechanism which more strongly

affects long MFP phonons. However, there remains a significant difference in Gaccum

due to the presence of phonon backscattering in the chamber-offset NW. Notably,

phonons with a MFP less than 1 µm carry ∼23% more energy in the chamber-offset

NW, Gaccum (1µm)=0.70, than in the uniform NW where Gaccum(1µm) = 0.57.

A similar shift of the thermal conductivity accumulation curve was observed in

silicon NW ”labyrinths” studied in [154]. The shift to smaller phonon MFPs was

less pronounced in that work as larger NW dimensions led to a greater amount

of diffusive phonon transport. The chamber dimension introduces an additional

physical length scale when H > 0 that limits carriers with longer path lengths.

This manifests as the chamber-offset NW behaving as a high-pass filter. A high-

pass filter is a device which attenuates the portion of a signal corresponding to low

frequencies while allowing high frequency signal to pass. As phonon frequency is

highly correlated with small MFPs, the chamber-offset NW can also be viewed as a
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Figure 5.7: Relative contribution to thermal transport from discrete regions of fre-

quency spectrum in (a) smooth and (b) rough NWs.

low-pass filter on phonon MFPs. The normalized contribution to thermal transport

as a function of frequency is depicted as a histogram in Fig. 5.7. In the ordinate axis,

the frequency-dependent conductance is calculated for each point in the Brillouin

zone. Then modes within a defined frequency interval are placed in the same bin

and the final bin populations are plotted, i.e.

G(ω)

G
=

1

G

∑

{φ:ωφ∈[ω−∆ω,ω+∆ω]}

fφA

∆T
. (5.7)

The bin sizes, [ω − ∆ω, ω + ∆ω], are chosen to reduce the noise stemming from

discrete Brillouin zone sampling.

The filter reduces thermal transport due to lower frequency phonon modes

which results in a larger proportion of the thermal energy being carried by the higher

frequency modes. This is seen by the overall rightward shift of the histograms in
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Fig. 5.7. The dips in G(ω)/G in Fig 5.7b at 3 and 8 THz correspond to situations

where, for a given frequency interval, a greater proportion of phonons are traveling

in directions not aligned with the macroscopic temperature gradient.

5.3.3 Smooth vs. rough NW: flux misalignment

The ray-tracing and BTE simulation results demonstrate that the chamber-

offset NW resists thermal transport by backscattering phonons. The phonon backscat-

tering effect creates a non-zero angle between the local heat flux, f , and the global

temperature gradient, ∇T = ∆T (W x̂+Hŷ)/L2. It has been shown that an increase in

this angle coincides with a reduction in thermal conductivity [135, 137]. The mis-

alignment effect is most noticeable in the ballistic transport regime where absence

of intrinsic scattering prevents phonons from easily turning corners created by the

offset. Therefore, we consider the degree of misalignment between the local flux and

global temperature gradient, comparing the ease with which phonons turn the offset

corner in diffuse and specular NWs. The flux-weighted angle measures the degree

to which local heat flux is oriented along the direction of ∇T and is effectively an

indicator of the ability of the phonons to realign along ∇T ,

θfw(r) =
f(r)

ftot
θ(r) . (5.8)

Where θ(r) is the angle between f and ∇T , f(r) is the local flux magnitude, and

ftot =
∫

Ω
f(r)dV is the total NW flux magnitude. We use the flux weighted angle,

rather than the local angle itself, as we deem it a better measure of resistance to

thermal transport. This is because while the local angle may be large, say in the
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chamber corner, the local flux contribution is negligible. Therefore, we require both

the local flux and the local angle to be large in order to say that thermal transport

has been disrupted by the chamber-offset geometry.

To quantify how the phonon flux orientation varies with respect to the offset

location consider the flux misalignment.

θ′(x) =

∫

Γx

θfw(r)dA . (5.9)

The flux misalignment represents the integrated flux weighted angle within the ŷẑ

plane located at x, Γx, shown in figure 5.8.e. A larger value of θ′ indicates a greater

number of phonons are traveling in a direction different from that of the global

temperature gradient at a given location x. Plots of θ′ for specular, θ′s, and diffuse,

θ′d, NWs and r > 0, where r = H/W , are shown in Figure 5.8.

From Figures 5.8a-c, when r ≤ 3/5 we see that θ′d < θ′s, but the behavior is

reversed when r > 3/5. In the former regime, the dominant resistive mechanism

is backscattering, while in the latter, the dominant mechanism is trapping. The

competing effects of backscattering and trapping can be seen in Figure 5.9 where

for small values of r, θfw is at a maximum directly in front of and behind the offset,

while when r → 1 the maximum value occurs in the constriction. The transition

between the backscattering and trapping mechanisms can be understood, in part, as

a result of increasing the effect of the constriction such that the critical dimension,

i.e. W − H, is small enough to capture the majority of carriers, even those with

smaller MFPs. Diffuse boundary scattering takes the energy of an incoming phonon

and redistributes that energy to all outgoing modes. In the rough NW, at smaller
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Figure 5.8: Plots of the flux misalignment, θ′, for r values (a) r = 1/5, (b) r = 2/5,

(c) r = 3/5, and (d) r = 4/5. The plane Γx is shown as the shaded area in (e).

r, there is relatively less of an effect of the constriction and the phonons can more

readily flow around the corner due to the diffuse boundary scattering. Specifically,

energy in phonon modes misaligned with respect to ∇T is redistributed into modes

more closely aligned with ∇T via the thermalization that occurs at diffuse boundary

surfaces. But when the constriction is small enough, even the redistribution effect

is overshadowed by the bottleneck that occurs between chambers. In this regime,

phonons spend the majority of time propagating within a single individual chamber

with a small fraction of phonons occasionally leaking into adjacent chambers. Re-

gardless of whether the system is in the trapping or backscattering regime, the flux

misalignment is largest at the corner and decreases to a minimum at the center of

the chamber.
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Figures 5.8a and 5.8b also show small depressions in θ′d near the midpoint of

the rough NW. This is indicative of a regime in which phonon backscattering is the

dominant resistive mechanism. In this regime θfw is at a maximum in front of and

behind the offset and therefore the maximum flux misalignment is slightly displaced

from the center of the constriction. Conversely, in the phonon trapping regime θfw is

largest in the constriction. The phonon backscattering regime can be seen in Figure

5.9a and Figure 5.9b while the trapping regime is evident in Figure 5.9c and Figure

5.9d. The transition from the backscattering to trapping regime occurs more quickly

in the specular NW where the formation of a band of larger θfw can already be seen

forming in the constriction of the NW in Figure 5.9b. The slower transition in the

rough NW is at least partly due to the corner-turning effect which reduces phonon

trapping to some degree. Thus, the chamber-offset geometry allows the study of the

two competing mechanisms, backscattering and trapping, using a single parameter

r. The magnitude and location of the largest flux misalignment varies due to the

competing resistive effects of the two regimes.

5.3.4 Finite length nanodevice

To study finite length effects, we consider two geometries composed of 9 cham-

bers. The two geometries are shown in Figure 5.10. Both variants are inspired by,

but distinctly different from, the chamber-offset infinite NW. The difference lies pri-

marily in the number of characteristic lengths in each geometry. The first variant

(v1) contains three length scales - the total device length, the chamber size, and the
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diffuse (a, c) NWs with r values (a, b) r = 1/5 and (c, d) r = 4/5. The cross-

sections correspond to the NW centerline x̂ŷ plane located at z = W/2.

distance to the ”bend” in the NW (see Fig. 5.10). The bend notably removes the

direct line of sight between the inlet and outlet. The second (v2) alternates the di-

rection of the offset thus maintaining a direct line of sight, retaining only two length
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parameters, total length and chamber size. The heat baths are set to T (r0) = 300K

and T (rL) = 310K at the inlet and outlet, respectively. The relative reduction, as

W

H

L

W

H

L

x

y

(a)

(b)

Figure 5.10: Two nanodevice geometries (a) v1 and (b) v2.

well as the absolute value, of the thermal conductances within geometries v1 and

v2 are plotted in Figure 5.11, note that in the case of the finite length NW thermal

conductance is well-defined and unambiguous. For the same offset height, v1 has

substantially lower thermal conductance than v2, with a maximum relative differ-

ence of 41.5% for H = 2W/5. This result is due to the difference in the arrangement

of offsets relative to the chamber, as well as the presence of the bend in v1. Note

that the relative reduction in conductance is linear for v2 while nonlinear for v1.

This is primarily because related to the line of sight(LOS) between inlet and out-

let. The lack of a direct LOS in v1 causes all phonons to undergo backscattering,
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Figure 5.11: Plots of the relative conductance reduction (a) and absolute conduc-

tance values (b) for geometries v1 (blue) and v2 (red).

while a direct LOS in v2 allows a portion of the carriers to transport ballistically

through the wire, leading to a larger conductance. Furthermore, v1 causes more

phonon trapping due to a smaller view factor between adjacent chambers than in

geometry v2. Thus it is clear from these results that a geometry which imposes

greater backscattering and stronger phonon trapping, such as v1, is more effective

at reducing phonon transport.

Comparison between uniform NWs of innite and nite extent reveals a length

dependent thermal conductivity. The conductivity of the nite length uniform NW

is approximately 10.4 W/m K whereas the infinite uniform NW has a conductivity

of 21.3 W/m K. This implies our thermal conductivity scales as κ ∝ Lα where

α ≤ 1/3 which is a smaller range of values for the scaling exponent than in previous

studies of NWs [164, 165]. The difference is likely explained by the larger NWs we
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are considering. At these larger length scales the interplay and competition between

intrinsic and extrinsic mechanisms will lead to significantly different behaviors.

5.3.5 Verification of NW Simulations

There exist certain sources in the literature that are relevant for comparison

and verification of our results. Specifically, we wish to ensure that we are accurately

capturing the physics of interior phonon flow through the wire by verifying a number

of key insights. In the limiting case of H = 0, the rough infinite NW has a thermal

conductivity of ∼ 22 W
m·K. As we noted in sec. 5.3.2, experimental results from Li

et al. and Poborchii et al. found that Si NWs of similar cross-section area had a

thermal conductivity of ∼ 25 W
m·K [146] and ∼ 17.5 W

m·K [148] respectively. The close

agreement is indicative that our methodology incorporates the resistive scattering

effects present within a rough wire with dimensions far less than the phonon MFPs.

Furthermore, BTE simulation results of Si NW ”labyrinths” observed a reduction

in the conductivity contribution of long MFP phonons with respect to a uniform

NW [154]. This reduction is qualitatively similar to what was observed in fig. 5.6,

although, as we noted in sec. 5.3.2, the effect is stronger in this work due to the

smaller NW dimensions that lead to an increase in phonons traveling ballistically.

These comparisons indicate that we are appropriately accounting for boundary scat-

tering physics as well as the resistive effect of interior corners on the free flight of

phonons.
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5.4 Conclusion

To conclude, we find that low thermal conductivity nanostructures are those

that maximize phonon backscattering and locally reverse the direction of phonon

propagation. The chamber-offset geometry currently proposed causes more phonon

backscattering events than alternative geometries presently in the literature as evi-

denced by thermal conductivity reductions of >90%. The offset also causes a mis-

alignment between the local phonon flux and the global temperature gradient. The

degree of misalignment is smaller in the rough NW than in the smooth NW as diffuse

boundary scattering facilitates the redistribution of energy within the phonon spec-

trum allowing phonons to more readily turn corners. Furthermore, for large offset

heights, the nanostructure effectively traps phonons within individual chambers, in-

hibiting propagation through the wire and therefore reducing thermal transport by

roughly 95%. We have demonstrated that the thermal conductivity of the chamber-

offset NW falls below the Casimir limit for a uniform NW with cross-sectional area

equivalent to the bottleneck. Additionally, we found that the chamber-offset NW

causes a significant shift, with respect to the uniform NW, in the thermal energy

distribution within the MFP spectrum, leading to a relative increase in heat carried

by short MFP phonons. This shift invites potential use in combination with ap-

proaches such as impurity scattering, grain boundary scattering, and superlattices

that are more suited for targeting small MFP carriers. The offset causes smaller

MFP, higher frequency phonons to carry a larger proportion of the thermal energy

which can then be better targeted by these other approaches. Ultimately, these
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findings could be used to enable broadband control of phonon transport.
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Chapter 6: A Phonon Boltzmann Study of Microscale Thermal Trans-

port in α-RDX Cook-Off 5

In this chapter we apply the phonon BTE methodology, detailed in chapter 3,

to the molecular crystal αRDX. Study of this energetic material marks a departure

from the small unit-cell material based phonon systems studied chapters 4 and 5

which contained 1-2 atoms per unit cell. In contrast, αRDX contains 168 atoms in

the unit cell which leads to unique thermal transport behaviors, and corresponding

modeling challenges. Phonon modeling in energetic crystals is of particular interest

as the microscale thermal transport properties of αRDX are believed to be major

factors in the initiation process. We present a thorough examination of phonon

properties which dominate energy storage and transport in αRDX. The phonon life-

times are determined for all phonon branches, revealing the characteristic time scale

of energy transfer amongst phonon modes. The phonon parameters also serve as

inputs to a full Brillouin zone three dimensional phonon transport simulation in the

presence of a hotspot. In addition to identifying the phonon mode contributions to

5Portions of this chapter appeared in the publication: F. G. VanGessel, Gaurav Ku-

mar, Daniel C. Elton and P. W. Chung, A Phonon Boltzmann Study of Microscale Thermal

Transport in α-RDX Cook-Off. Proceedings of the 16th International Detonation Symposium

arXiv:1808.08295[cond-mat.mtrl-sci] [48]
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thermal transport, and as N-N bond breaking is integral to disassociation, we iden-

tify phonon modes corresponding to large N-N bond stretch analyzing the manner

in which these modes store and transfer energy.

6.1 Phonons in Energetic Materials

Phonons play an important role in initiating the chemical decomposition that

can lead to detonation in secondary explosives such as αRDX [21,28,166]. However,

open questions remain as to the exact nature of phonon-mediated energy trans-

fer into the key intramolecular vibrational modes that result in chemical events.

Dlott and coworkers have theorized that this process occurs in an indirect man-

ner through multiphonon up-pumping [21]. Multiphonon up-pumping refers to a

process in which energy is initially deposited in long-wavelength low frequency vi-

brational modes via shock or heating. This energy is subsequently transferred, via

so-called ”doorway modes”, into intramolecular vibrational modes that correspond

to key bond-stretching motions. However, Kraczek and Chung speculated that the

energy transfer process may occur through a direct route without intermediate en-

ergy transfer [22]. Thus, further investigation is needed to elucidate the manner in

which phonons store, transport, and transfer energy.

Among the candidate approaches for investigating phonon behavior in general

materials are phonon Boltzmann and molecular dynamics (MD) methods. Though

MD still remains a widely used method, and despite the many developments that

enable the study of larger material domains, the fundamentally atomistic nature
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restricts the application of MD to smaller length scales. Phonon Boltzmann is in-

herently better suited to microscale thermal transport simulations as it forgoes some

of the atomistic information, i.e. vibrational phases, in favor of reaching length

scales more commonly seen in real materials. To date, however, phonon Boltzmann

studies have been limited mainly to crystals with a relatively few number of atoms

in the unit cell, likely due in part to the computational complexity associated with

modeling phonons in materials whose unit cells contain large numbers of atoms. For

instance, αRDX is a complex molecular crystal containing 168 atoms in its unit cell,

resulting in 504 phonon branches in the first Brillouin zone (BZ). In the continuum

limit, each branch is a continuous curve representing the infinite number of carriers

that may participate in the storage or transport of energy. Development of MD

and BTE approaches for energetics could reveal much about the thermal behavior.

Molecular dynamics calculations hold promise for determining the characteristic

timescales associated with energy transfer amongst phonon bands. Furthermore,

BTE simulations may give important insight into behavior of thermal and vibra-

tional energy as it flows and scatters within a highly heterogeneous microstructural

mixture. Such developments have not been attempted, as far as we are aware.

In this chapter, we present recent results in our attempts to investigate the

possible mechanisms by which energy is transferred from low-frequency phonons into

the molecular vibrations of αRDX. We begin by determining the phonon thermal

properties based on a full Brillouin zone representation of every phonon vibrational

mode. We identify phonon modes associated with large N-N bond stretch, as scission

of the N-N bonds is understood to be of particular importance to the disassociation of
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the RDX molecule [167]. In contrast to previous investigations detailed in this work,

we determine phonon lifetimes by applying normal mode decomposition techniques

to determine accurate phonon mode lifetimes. These lifetimes reveal important

information regarding the time scales at which phonon modes scatter, a crucial

parameter for understanding initiation. Finally, the phonon properties are then used

as inputs to a phonon Boltzmann simulation of localized heating, i.e. a hotspot, in an

αRDX grain to study out-of-equilibrium thermal transport. In addition, individual

modal contributions to heat storage and transfer are calculated and the participation

of large N-N stretching modes is quantified.

6.2 Methods

In order to form a more complete understanding of microscale energy transport

in αRDX we use a variety of methods. These methods are used to a) perform a full

BZ analysis of the phonon vibrational modes present in αRDX, focusing on the

thermal transport properties of the phonons as well as a normal mode analysis, b)

calculate the full-band highly accurate phonon lifetime data within the relaxation

time approximation for all 504 branches in RDX, c) identify phonon modes which

cause large relative displacements between bonded Nitrogen atoms, and d) perform

phonon Boltzmann transport equation (BTE) simulation of a localized heating to

investigate non-equilibrium energy transport in the presence of a hot spot.
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6.2.1 αRDX Thermal Properties

A study of phonon-mediated thermal flow in αRDX requires a number of

phonon properties, each of which may span several orders of magnitude in value.

These properties include frequency, ωφ, specific heat, Cφ, group velocity, vφ, and

relaxation time, τφ. With the exception of phonon relaxation time, calculation of

these properties may be accomplished via LD using the approach outlined in section

3.3.4. The intra- and inter- molecular interactions are parameterized by the Smith

and Bharadwaj potential [168]. The LD approach allows for the determination not

only of the phonon properties but also the phonon mode shapes, i.e. the eigenvectors,

U calculated from the eigensystem formed by the dynamical matrix, DU = ω2U

[169]. Within the phonon gas model framework the thermal conductivity (TC) of a

material can be expressed as [170]

κij =
∑

φ

Cφvφivφjτφ (6.1)

where i, j ∈ (1, 2, 3) are spatial indices. For the initial BZ analysis, we employ a

gray approximation for the phonon relaxation times assuming τφ = 217 ps for all

phonon modes. This number is chosen to ensure that the average TC predicted by

eq. 6.1 agrees with the average TC published in [171], κ̄ = 0.355 J/mK.s

In addition to the absolute TC we also consider the thermal conductivity

accumulation (TCA) with respect to frequency,

κaccumii (ω) =
1

κii

∑

{φ :ωφ≤ω}

Cφv
2
φiτφ (6.2)

The TCA quantifies the relative contributions of different regions of the frequency
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spectrum to thermal transport.

6.2.2 Full Band Phonon Relaxation Times

Despite the importance of phonons in initiation mechanisms of energetics,

surprisingly little is known about their fundamental anharmonic phonon proper-

ties such as relaxation times. Relaxation times, or lifetimes, imply an important

time-scale with across which phonon modes exchange energy. Knowledge of these

lifetimes are especially important in energetics as it determines the rate at which en-

ergy is ”up-pumped” into the intramolecular vibrational modes that play a key role

in initiation. Attempts to calculate the phonon energy transfer rates in energetic

materials involved theoretical calculations for estimating the anharmonic coupling

in molecular crystals [26]. Ye and Koshi subsequently extended this theoretical ap-

proach by using the entire material frequency spectrum for several energetics. They

found, among the energetic materials they considered, energy transfer rates exhib-

ited a monotonically decreasing behavior with respect to frequency [29]. However,

the theoretical approaches detailed in these works resorted to a number of sim-

plifications due to the complexity of the unit cells comprising energetic materials.

The three main assumptions were that i) the anharmonic coupling was constant

between all modes, ii) optical modes had zero bandwidth, and iii) all phonons were

in equilibrium [26].

In contrast, studies of phonon lifetimes in atomic crystals, i.e. simple unit-

celled crystals, have been relatively more numerous. The most commonly used
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approach for the determination of phonon lifetimes in atomic crystals has been the

iterative procedure for solving the full-scattering BTE, this approach was detailed in

sec. 2.2.2.3. However, the full-scattering approach requires an extensive search over

all modes in the Brillouin zone to determine all three phonon interactions satisfying

the energy conservation and pseudo-momentum rules (see eq. 2.13). Due to this

search, the computing expense of performing these simulations scales with the fourth

power of the number of atoms in the unit cell. Thus, the large number of branches

in RDX currently precludes the use of the iterative method.

We believe that normal mode decomposition approaches, in conjunction with

advances in computing architecture, now offer a path to the determination of phonon

lifetimes. These MD approaches allow us to circumvent many of the assumptions

that were previously necessary for the determination of phonon lifetimes in com-

plex unit-celled crystals. Therefore, we choose to use a MD based approach which

determines the characteristic decay time of fluctuations in the energy of individual

phonon modes. We remark that this part of the effort extends, for the first time,

existing techniques previously only applied to atomic crystals to obtain accurate

phonon relaxation times for every phonon branch in αRDX.

We use a normal mode decomposition(NMD) approach to determine the phonon

lifetimes. The important steps calculating the phonon lifetimes are outlined here,

for a complete description of the method the reader is referred to [172]. The NMD

technique has been previously used to calculate phonon lifetimes in solid argon,

amorphous silicon, and crystalline silicon. As a first step in extending this approach

to complex unit celled crystals we consider a relatively small system composed of
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2x2x2 = 8 unit cells. The supercell is first energy minimized at constant pressure

using the atomic potential described in [168]. The supercell eigenvectors, Uφαβ are

extracted for all allowed phonon modes, where α ∈ (1, 2, 3) is the spatial index and

β indexes the atoms in the unit cell. Separately, a MD simulation is performed using

LAMMPS [173] with 1 fs time-step. The system is initially equilibrated for 1000 ps

at 300K under NPT conditions. A subsequent production step is then performed

using NVE conditions, during which displacement and velocity data for all atoms

in the system were gathered every 4 fs for 2000 ps. Using the supercell eigenvectors

we decompose the atomic displacements in order to calculate the so called phonon

coordinate. The phonon mode coordinate, qφ(t), is defined

qφ(t) =
3nN∑

αβl

√
mβ

N
uαβl(t)U

∗
φαβ exp(ik · r0l) , (6.3)

where mβ is the mass of atom β, n is the number of atoms in the unit cell, N is

the number of unit cells in the supercell, uαβl is the αth component of displacement

of the βth atom of the lth unit cell, k is the wavevector corresponding to mode φ,

and r0l is the spatial location of the lth unit cell. The phonon coordinate velocity,

q̇φ(t), is determined by replacing uαβl with the atomic velocities, u̇αβl, in eq. 6.3.

From the phonon coordinates and velocities, we calculate the mode projected SED,

Φ(k, ω), defined as

Φ(k, ω) =

∣∣∣∣
1√
2π

∫ ∞

−∞
q̇φ exp(−iωt)dt

∣∣∣∣
2

(6.4)

The SED represents the kinetic energy density response of each mode with respect

frequencies within the material frequency spectrum. The phonon SED is strongly
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peaked at the phonon mode’s natural frequency. Within a frequency window cen-

tered on the natural frequency the SED is fit using a Lorentzian function:

Φ(k, ω) =

√
P3

[
P1

P 2
2 +P3

4π

]

[(P2 − ω)2 + P3]
(6.5)

The Lorentzian half width at half maximum linewidth is related to the fitting pa-

rameters through the equation Γφ =
√
P3. Finally, we calculate the phonon lifetime

to be τφ = 1/2Γφ.

6.2.3 Phonon Boltzmann Transport Modeling in αRDX

A hotspot in an energetic represents a localized region in which the energy

density is larger than the surrounding material. The hotspot corresponds to the

location at which chemistry is likely to begin and therefore plays a fundamental

role in initiation processes [21]. In order to model phonon behavior under non-

equilibrium conditions, such as phonons in a hotspot, we use the full BZ three

dimensional phonon BTE solution method detailed in chapter 3. For simplicity, we

initially consider the steady state problem and hold the hot spot in a fixed location.

The phonon BTE method yields the spatial variation of the modal energy values,

eφ(r), as well as the modal fluxes, fφ(r) = vφeφ(r). The total energy and total flux

values are calculated as a sum over the sampled phonon modes, i.e. e(r) =
∑

φ eφ(r)

and f(r) =
∑

φ fφ(r). The phonon properties used here are the same as those

obtained for analysis of the phonon thermal properties where a sampling of 172,368

phonon modes was used. Different, however, are the phonon relaxation times, τφ,

which are obtained now using the NMD procedure detailed in sec. 6.2.2. Due
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Figure 6.1: Physical domain representing a hotspot in RDX. The sphere indicates

the hotspot region. Due to the symmetry, the simulation domain reduces to the

shaded octant.

to the large computational requirements associated with obtaining τφ throughout

the BZ we use the relaxation times obtained at the BZ center and assume that

τφ is constant within each phonon branch. This therefore assumes that scattering

is isotropic presently but distinct for each polarization. The simulation domain

corresponds to 200x200x200 unit cell tiles along the three principal direction, i.e.

[100], [010], and [001]. The domain is discretized using 10,400 control volumes. A

spherical hotspot with 30 nm radius is placed at the center of the domain. Within the

hotspot region, 1× 10−10 J of energy is sourced into the acoustic modes. We choose

to source energy into the acoustic modes in order to mimic the scenario in which

energy is deposited into low-frequency modes by shock or heat and is subsequently

147



up-pumped to intramolecular vibrational modes. The physical domain is pictured

in Figure 6.1, due to symmetry we simulate only an octant of this domain (i.e. the

shaded region in Fig. 6.1). Symmetry planes are modeled as specular boundaries

while the other boundaries are correspond to applied temperature conditions with

T = 300K.

6.2.4 N-N Bond Stretch Metric

The stretching of N-N bonds is believed to play a fundamental role in the

disassociation of the RDX molecule [167,174]. Therefore, we wish to identify phonon

modes that correspond to large N-N bond stretch as these modes may be a key factor

in initiation. The phonon mode φ displaces atom i to the spatial location, rφi =

xi+uφi. Here xi is the equilibrium atomic location while the displacement due to the

phonon is given by the vector uφi = AφiUφi, where Uφi represents the components

of the mode shape eigenvector Uφi corresponding to atom i, and Aφi =
√
eφ/miω2

φ is

the phonon mode amplitude [169]. Therefore, given the energy in a phonon mode,

the resulting spatial location of all atoms can be calculated. Then, the bth N-N

bond connecting atoms b1 and b2 is stretched to the length ‖rφb1 − rφb2‖. The bond

stretch metric for mode φ is the maximum bond stretch length over all bonds,

∆φ = max
b
‖rφb1 − rφb2‖ (6.6)

In order to complete the calculation of the bond stretch we require values for

the phonon energy of each individual mode. Here we consider two limiting cases.

The first case assumes thermal equilibrium in which energy, and therefore amplitude,
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is determined by Bose statistics at temperature T . The second case corresponds to

a non-equilibrium situation in which the modal amplitudes are uniformly constant.

The second case allow us to consider modes that may not typically contain a large

amount of energy, when in equilibrium, but whose displacements correspond to large

N-N stretch. In the equilibrium case Aφi =
√
e0
φ/miω2

φ while in the uniform case

Aφi = A0. Thus we introduce the modal N-N stretch metric, written ∆eq
φ and ∆uni

φ

respectively, for the equilibrium (EQ) and uniform (UNI) cases respectively.

6.3 Results

6.3.1 Full Brillouin Zone Analysis of RDX

The phonon frequency surfaces for a quadrant in the kz = 0 plane of the RDX

BZ is shown in Fig. 6.2, for clarity only the first 14 of the 504 total branches are

shown. For each branch, we use a uniform sampling of 342 wavevectors throughout

the BZ which results in 172,368 phonon modes. Figures 6.3 and 6.4 show the contri-

bution of discrete frequency intervals to the group velocity component magnitudes

and specific heat respectively. The contribution from discrete frequency intervals to

a thermal property is calculated using the equation

a(ω) =
∑

{φ :ωφ∈[ω,ω+∆ω]}

aφ (6.7)

where a is any phonon mode property. The specific heat represents the phonon

modes ability to store energy, while the group velocity is a measure of the speed

with which a phonon mode transports energy. The total specific heat is calculated
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Figure 6.2: Frequency surfaces of first 14 branches in the quadrant of the kz = 0

plane of the BZ.

to be Cv = 4.11 × 103 kJ/m3K which is within roughly a factor of two of the ex-

perimental value 1.96× 103 kJ/m3K [175]. The discrepancy between our calculated

value and the reported experimental value is due to the implicit assumption of 0K in

LD. The inclusion of temperature would cause an overall reduction in the frequency

values, reducing the specific heat value. Furthermore, the calculated group velocity

magnitudes agree with those reported in [22], which is to be expected since the same

atomic potential is presently used. Figure 6.4 indicates that the phonon frequency

spectrum of RDX contains large band gaps punctuated by narrow bands. Addition-

ally, in Fig. 6.3 we can see that phonon modes with the largest group velocities

are located at low frequencies, but a few bands at higher frequencies do possess

non-negligible group velocities. The group velocity plots are qualitatively similar to
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those produced in [22], indicating the correctness of the calculated phonon group

velocities. Therefore as noted in [22], we expect the optical modes to contribute

significantly to thermal transport in RDX.

Figure 6.3: Stair plot of the group velocity component magnitudes vs. frequency.

Figure 6.4: Stair plot of specific heat vs. frequency.

Calculating the TC tensor via Eq. 6.1 yields

κ11 = 0.33 J/mK , κ22 = 0.28 J/mK , κ33 = 0.45 J/mK (6.8)
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while all other components are negligible. Note that there exists a high degree of

anisotropy in the thermal transport in αRDX with TC along the z direction 1.6

times larger than along the y direction. While the average TC calculated here

matches with the published values in [171], our TC possesses higher anisotropy

due to the gray phonon approximation. The calculation enables the consideration

of anisotropy by sampling the phonons from the full three-dimensional BZ. The

anisotropy in the present system is due to the non-radially symmetric BZ dispersion

surfaces, i.e. microscale anisotropy, as well as the non-cubic nature of the unit cell,

i.e. macroscopic anisotropy. The TCA is shown in Fig. 6.5 where we see that the

phonons in the low frequency regime, ω <1 THz, contribute to a larger percentage

of the thermal transport along the y and z directions, 20% and 25% respectively,

than to thermal transport along the x direction 15%. However, phonons within the

frequency interval 2 THz< ω <3 THz contribute roughly 24% of the total TC along

the x-direction, causing κxx to overtake κyy and κzz in this interval. Finally, note that

phonons with frequencies > 3 THZ contribute approximately 25% of the TC along

the y direction versus roughly 17.5% to conductivity along the x or z directions. We

suspect that because phonon modes with frequencies >10 THz contribute <20% of

the thermal conductivity, once energy is introduced into those modes, heat transfer

will be mitigated, possibly leading to thermal runaway and ultimately cookoff. The

final portion of this BZ analysis focuses on the phonon modes that correspond to

large stretch of N-N bonds. The bond stretch metric for the EQ, and UNI cases

was detailed in section 6.2.4. Histograms of the mode stretches for the EQ and UNI

cases are shown in Fig. 6.6. Both distributions are heavily weighted toward zero
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Figure 6.5: TCA vs. frequency for all three principle directions.

indicating the vast majority of modes contribute negligibly to N-N bond stretching.

The contributions of phonons within discrete frequency intervals to the EQ and

UNI mode stretch is calculated using Eq. 6.7 with aφ = ∆eq
φ , ∆uni

φ and is visualized

in Fig. 6.7. We note that low frequencies, < 10 THz, intervals correspond to the

largest EQ N-N bond stretching, but negligible bond stretching for the UNI case.

However, above 10 THz the locations, and also the shape, of the peaks for ∆eq and

∆uni are quite similar. The locations of these peaks occur around roughly 17.5,

27.5, and 37.5 THz. The similarity observed at higher frequencies is due to the

commonality of Uφ in both stretching metrics. Above 10 THz, the largest peak in

the bond stretch occurs at 52.5 THz for both the EQ and UNI metrics. Presence of

this peak in both measures of bond stretch indicates the frequency interval around

52.5 THz may play a major role in facilitating N-N bond scission. Thus using our

bond stretch metric we have identified the region of the frequency spectrum most

likely to be involved in initiation. Note that our prediction of 52.5 THz compares
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well with other work which predicted the important N-N bond stretching mode to

be in the 30-60 THz range [21,166].

Figure 6.6: Histogram of phonon mode stretches for the EQ (top) and UNI (bottom)

case. The abcissa is expressed in units of fraction of the average N-N bond length.

6.3.2 Full-Band Relaxation Times of RDX 6

Shown in Fig. 6.8 is the Lorentzian fitting result for a single phonon mode

SED. The following metric was used to quantify the root-mean-square error, Eφ, of

6The author gratefully acknowledges the work of Gaurav Kumar and Daniel C. Elton. G.K.

performed the MD simulation as well as the fitting and analysis of the full-band RDX relaxation

times. D.E. wrote the NMD FORTRAN code and provided valuable insights into the fitting

procedure.
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Figure 6.7: Plot of N-N bond stretch contribution from discrete intervals in the

frequency spectrum. The bond stretch has units of angstroms.

the Lorentzian fitting for the SED of phonon mode φ

Eφ =

√√√√
∑nd

l=1

(
Φφl − Φfit

φl

)2

nd
, (6.9)

where nd is the number of data points extracted for each SED, and Φφl−Φfit
φl is the

difference in the raw SED data and the fitted Lorentzian curve at data point l. The

percent error for the fitting of all phonon modes is defined as

PEφ = 100

√∑nm
φ=1 E

2
φ

nm√∑nm
φ=1

∑nd
l=1 Φ2

φ

nm×nd

, (6.10)

where nm is the total number of phonon modes. Using the above metric we get

2.61% error in fitting the SED for all modes in a 2x2x2 RDX supercell. The standard

deviation of Eφ values over all modes is calculated as

σfit =

√
∑nm

φ

(
Eφ −

∑nm
φ Eφ

nm

)2

∑nm
φ Eφ

nm

. (6.11)
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Figure 6.8: SED vs Frequency for an optical branch of 2x2x2 supercell.

σfit was found to be 6.6 × 10−3 suggesting a consistently good fit for all phonon

modes.

Figure 6.9 indicates that the phonon lifetime values for a 2x2x2 supercell of

RDX fall in the range of 0.9 ps to 34.2 ps. Similar results were obtained for a

1x1x1 supercell of RDX. These results are in good agreement with RDX lifetime

values reported in [29], which were found to fall in the range of 2.5 ps to 11 ps. We

note, that our results display an upturn in phonon lifetimes at large frequencies,

this behavior runs counter to that reported by Ye and Koshi [29]. The cause of

these differences will be the focus of future work. A histogram of the phonon mode

lifetimes is plotted in Fig. 6.10. The majority of phonon modes have lifetimes of

less than 10 ps.
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Figure 6.9: Phonon Lifetimes vs Frequency for RDX 2x2x2 supercell.

We note that the BZ sampling used presently for the phonon lifetimes has

a number of drawbacks. By only using a 1x1x1 supercell, we are only sampling

phonons modes which fall at the Γ point, i.e. k = 0. The acoustic mode lifetimes at

the Γ point are zero, however the acoustic branch modes should contribute signifi-

cantly to thermal transport. Therefore, a finer sampling of wavevectors throughout

the Brillouin zone is required to compute more accurate predictions of TC values.

Computation of phonon properties with a larger supercell for better sampling of the

BZ is currently underway.
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Figure 6.10: : Number of phonon modes vs phonon relaxation time for RDX 2x2x2.

6.3.3 Phonon BTE Simulation of RDX Hotspot

In this section we present the results of a full BZ three-dimensional phonon

BTE simulation of localized heating, i.e. hotspot, in αRDX. It is believed that

hotspot formations play an integral role in exciting the intramolecular vibrations

associated with N-N bond breaking, i.e. the large ∆φ modes [22, 166]. Previous

studies have generally assumed that phonons within the hotspot are in equilibrium

at the hotspot temperature [21].Inclusion of non-equilibrium thermal effects is often

performed in an ad hoc manner, such as assuming the hotspot energy is distributed

only among low frequency vibrational modes [21, 22]. Here, we seek a quantitative

approach for determining the actual distribution of out-of-equilibrium phonon mode
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occupations throughout a three-dimensional domain. This will provide a more com-

plete picture of how energy is distributed among phonon modes, which modes are

responsible for the transport of thermal energy away from the hotspot, and what

role modes corresponding to large ∆φ play.

We analyze the spatial variation of the phonon energy along the x, y, and z

axes emanating from the center of the hotspot (the x, y, z axes are aligned with

the [100], [010], and [001] crystallographic directions respectively). The absolute

phonon energy along each direction is plotted in Fig. 6.11. The total energy rapidly

decreases away from the hotspot center, reaching <1% of the maximum energy value

when r > 0.75 µm. In αRDX the thermal carriers are unable to efficiently remove

heat from the hotspot region. In addition, the discrepancy of the energy values

along the x, y, and z direction for the same r values is indicative of the effect of

macroscopic, and microscale, phonon anisotropy on the TC.

To better understand the importance that modes with large N-N bond stretch

might have, let us consider the 1,724 modes that have the largest N-N bond stretches.

This represents 1% of the 172,368 total modes in the system, i.e. the 1% of all modes

with the largest N-N bond stretch. We define two different sets corresponding to

the EQ and UNI conditions, δeq and δuni respectively.The fractional energy residing

in δeq (and similarly for δuni) calculated as 1/etot ×
∑

φ∈δeq eφ where etot =
∑

φ eφ

is reported in Table 6.3.3. Incidentally, we note that the intersection of δeq and

δuni is empty and the energy in each set is roughly equal to 1%. The percentage of

energy in δeq is slightly larger than in δuni likely because modes in δuni have higher

frequencies, which are generally less populated than lower frequency modes.
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Figure 6.11: : Total energy along three Cartesian directions emanating out from the

hotspot center.

δeq 1.08%

δuni 0.94%

Table 6.1: Percent of energy residing in large stretching modes, δ

Finally, we analyze the modal thermal flux behavior in the presence of a

hotspot. The spatial variation in flux magnitude in the three Cartesian directions is

plotted in Fig. 6.12 , the flux reaches a maximum at the hot spot boundary regard-

less of direction. This indicates relatively more energy resides in modes with large

group velocities in that spatial region. Furthermore, we note the significantly larger

flux along the z-direction, as our BZ analysis predicted. Kraczek and Chung pre-

dicted that optical modes will carry a significant portion of the flux in αRDX [22].

We find this to be the case with the exact percentages reported in table 6.3.3. Table

6.3.3 indicates a significant departure in the manner in which energy transfer occurs
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Acoustic Optical

fx along x-axis 26% 74%

fy along y-axis 22% 78%

fz along z-axis 37% 63%

Table 6.2: Percentage of flux transported by acoustic and optical modes along prin-

cipal directions.
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Figure 6.12: Flux components along the Cartesian directions emanating from

hotspot center. The vertical black line indicates the hotspot boundary.

in αRDX compared to simple atomic crystals. Whereas optical mode contribution

is minimal in atomic crystals (∼ 5% in bulk Si [159]), these modes are dominant

contributors to the thermal flux in αRDX.

Finally, we analyze the flux contribution from the δeq and δuni stretching

modes. The flux contribution from these modes is calculated for δeq (and similarly

for δuni) using the equation 1/fi ×
∑

φ∈δeq fφi where fi =
∑

φ fφi and i = x, y, z.

The contribution to the thermal flux from both the δeq and δuni stretching modes
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along the three principal directions is plotted in Figs. 6.13. We observe that ther-

mal flux contributions are anisotropic for the EQ class but isotropic for the UNI

class. The EQ class transports energy preferentially along the z-direction, and to

a lesser degree along the y-axis. In fact the thermal flux along the y-axis exceeds

that along the x-axis, this behavior is the reverse of the TC tensor in Eq. 6.8 where

κxx > κyy. Note that δeq contributes negative flux near the hotspot center due to

significant energy residing in δeq phonon modes which travel in the −x direction,

however the total flux, fx, remains positive at this location. In addition, the overall

magnitude of the flux contribution from δeq is a factor of 2-10 times larger than the

δuni contribution as a result of the relatively larger group velocities of the phonon

modes constituting δeq. Furthermore, while the ratio of energy residing in δeq was

nearly equal to the mode number fraction, δeq carries a larger proportion of the

thermal flux with respect to the mode number fraction. While δeq corresponds to

only 1% of the total number of modes it contributes 9-20% of the flux. In contrast,

δuni contributes ∼.1% of the total thermal flux outside the hotspot region. Thus,

we surmise that the modes corresponding to large N-N bond stretch, in both the

EQ and UNI classes, are capable of storing thermal energy. However, only the EQ

class modes corresponding to δeq play a significant role in transporting energy from

the hotspot. In contrast the modes constituting δuni are inefficient carriers of heat,

therefore energy residing within these modes will remain localized to the hotspot

region.
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Figure 6.13: Contributions of (a) large EQ stretching modes and (b) large UNI

stretching modes to the thermal flux along all three principal directions.

6.3.4 Verification of Hotspot Simulation

By demonstrating, for the first time, the viability of phonon Boltzmann mod-

eling to simulate microscale thermal transport, these simulations represent a key

advancement in the modeling of thermal processes of energetic molecular crystals.

Therefore, while these simulation results demonstrate the feasibility of applying the

phonon BTE to such materials, it is difficult to directly compare our results against
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existing sources. However, we noted in sec. 6.3, that a number of important phonon

properties, used as inputs to the phonon BTE simulation, compare well with pre-

viously reported values. Specifically, the specific heat is within a factor of two of

the experimental value reported in [175], 4.11 × 103kJ/m3K vs 1.96 × 103kJ/m3K,

the group velocity versus frequency plots in fig. 6.3 are qualitatively similar to

those in [22], and the thermal conductivity values match those reported in [171].

Therefore, we are reasonably certain that the phonon transport results accurately

represent phonon flow in RDX.

6.4 Conclusion

The phonon parameters of αRDX have been determined throughout the entire

BZ and their contributions to thermal transport analyzed. Significant anisotropy

in the TC is reported with contributions both from microscale, as well as lattice,

anisotropy. The TCA indicates contribution to the TC from phonon modes vary

depending on the phonon frequency as well as direction of heat transport. We also

present two metrics for determining the N-N bond stretch due to a certain phonon

mode. These two metrics are based on whether the system is in equilibrium or non-

equilibrium. The vast majority of modes contribute negligibly to N-N bonds stretch.

We presented our initial findings for phonon lifetimes for all branches both at the

BZ center as well as the BZ boundary. The phonon lifetimes are found to lie in the

range of 1-40 ps. Finally we simulated microscale heat transport in the presence of a

hotspot. We found that the optical modes contributed up to 75% of the total ther-
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mal flux. Furthermore, the energy stored in phonon modes that correspond to large

N-N bond stretch was nearly equal to the number fraction of such modes. Addition-

ally, we found that phonon modes with large N-N bond stretch under equilibrium

conditions contribute significantly, 8-20%, to thermal transport, while stretching

modes determined from the non-equilibrium assumption contributed negligibly to

thermal flux. This work represents our first steps to applying accurate atomic and

microscale thermal simulation techniques to more accurately model the phonon pro-

cesses involved in initiation of αRDX.
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Chapter 7: Conclusion

Innovation and demand will continue to accelerate the proliferation of nano-

and micro- scale phonon systems, notably in the form of solid-state devices. The

associated thermal challenges, inherent at such submicron length scales, make ac-

curate thermal modeling essential for engineering the next generation of devices.

Among the various simulation approaches, the phonon BTE is uniquely equipped to

capture the important physical processes relevant to phonon transport at the length

scales of interest. However, prevailing BTE solution methodologies make a variety

of simplifications and assumptions, creating need for improved thermal modeling

methodologies. This dissertation introduced a finite volume-based methodology for

the solution of the three-dimensional phonon Boltzmann transport equation ac-

counting for full Brillouin zone phonon properties. This method enables accurate

submicron length scale simulation of phonon transport in three dimensional domains

while accounting for lattice, microscale, and macroscopic source of anisotropy. This

methodology was applied to three important phonon systems i) studying the effect

of disparate sources of anisotropy on the temperature field of a FinFET transistor,

ii) investigating the competition between extrinsic and intrinsic scattering effects in

the context of achieving sub-Casimir thermal flow in Si NWs, and iii) simulating
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thermal transport in the vicinity of a hotspot in crystalline αRDX. We now review

the contents of this dissertation, highlighting the main findings and contributions.

7.1 Summary and Contributions

Chapter 1 motivated the problem of microscale thermal transport modeling by

highlighting a number of important materials, devices, and systems whose thermal

behaviors are determined by phonon mechanisms. The prevailing computational ap-

proaches for modeling heat transport were discussed before singling out the phonon

BTE as being best suited to the length scales of interest in this dissertation.

In Chapter 2 we began our discussion of phonon mediated thermal transport

modeling by considering a simple one-dimensional crystalline system. Through this

example we discussed the concept of a phonon as a carrier of thermal energy as

well as highlighted the phonon parameters critical to thermal transport. In addi-

tion, intuition was developed regarding the degree to which phonons throughout

the Brillouin zone participate in heat transfer. Practical approaches, utilizing freely

available software, for determining phonon parameters and mode shapes in real

crystalline systems were presented. Finally, we described the landscape of numer-

ical solution techniques for the phonon BTE. Solution techniques may be roughly

categorized by the thermal transport components they emphasize. We noted that

due to the computational complexity associated with solving the phonon BTE, ex-

isting solution methods adopted a number of simplifications and/or assumptions in

order to emphasize a certain component, or components. This led to varying degrees
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of model fidelity.

In Chapter 3 we presented our recently developed finite volume-based method-

ology for the solution of the full Brillouin zone three-dimensional phonon BTE. Our

approach allows for independent discretization of both the real and reciprocal space.

Furthermore, the reciprocal space sampling approach directly incorporates Born

von-Karman boundary conditions, while the phonon parameters that serve as inputs

to the phonon BTE are determined throughout the full Brillouin zone (FBZ). Sam-

pling the discrete allowed phonon modes arising due to Born von-Karman boundary

condition, in conjunction with the calculation of FBZ phonon properties, allows our

methodology to capture three disparate sources of anisotropy - lattice, microscale,

and macroscopic.

This chapter included the following novel addition to the literature

• A comprehensive computational methodology for a finite volume-based solu-

tion of the three dimensional FBZ phonon BTE accounting for finite lattice

effects. By incorporating finite lattice effects the methodology captures lattice,

microscale, and macroscopic phonon flow anisotropy within three-dimensional

submicron domains.

Chapter 4 applied our BTE solution methodology to a parameter study of a

FinFET device. The temperature fields were calculated as the applied voltage and

device dimensions were varied. We determined that use of a gray isotropic model

underestimated the peak temperatures by roughly 10%, while using isotropic relax-

ation times overestimated the peak temperature by roughly 30%. These differences
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highlighted the importance of using a full Brillouin zone representation to capture

anisotropic flows in nanoscale devices.

This chapter contained the following novel additions to the literature

• A rigorous comparison of three different thermal models each capturing, to

varying degrees, sources of phonon anisotropy. The comparisons were quanti-

fied by contrasting the three dimensional FinFET temperature fields predicted

by each model.

• The cumulative effects of anisotropy captured in our FBZ model led to to

∼ 10% difference in peak temperatures compared to a fully isotropic model.

• The cumulative effects of anisotropy captured in our FBZ model led to to

∼ 30% difference in peak temperatures compared to an anisotropic model

with gray relaxation times.

In Chapter 5 we investigated SiNWs of finite and infinite lengths possessing

a simple periodic offset geometry. A number of recent studies have indicated that

modifications to the SiNW boundaries are capable of creating significant thermal

resistance, improving the utility of SiNWs as a thermoelectric component [107,139,

140,148,154]. By increasing phonon backscattering our chamber-offset geometry was

capable of reducing thermal conductivity by over 90% compared to a uniform cross-

sectional SiNW of the same dimensions. In finite length NWs, the designs which

maximize backscattering were also found to be the best candidate for improving the

efficiency of thermoelectric systems. Finally, we found that the chamber-offset NW

behaves as a high-pass phonon filter, attenuating low frequency phonons and, as a
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result, forcing phonons with large frequencies to participate to a greater degree in

thermal transport.

This chapter contained the following novel additions to the literature

• The chamber-offset NW geometry is capable of reducing thermal conductivity

by > 90% compared to a uniform NW of identical cross-section. This exceeds

the previous maximum reduction that was theoretically predicted in studies

of Si NWs with a modified boundary geometry.

• The thermal conductivity accumulation in the infinite chamber-offset NW was

calculated. It was found that small MFP (< 1µm) phonons carry 83% and

23% more energy in the smooth and rough chamber-offset NW, respectively,

compared to their uniform counterparts.

• We demonstrated the potential utility of SiNWs as a phonon filter. The fil-

tering effect is induced by the physical length scale imparted by the offset.

The offset attenuates the thermal transport contribution from low frequency

phonons, forcing phonons with large frequencies to participate to a greater

degree in thermal transport.

Chapter 6 contains a study of phonon transport in the complex molecular crys-

tal αRDX. It is well known that phonons play an integral role in initiation mecha-

nisms of energetic materials [21,22], however the complexity of the atomic structure

in these systems has previously precluded study via the phonon BTE. For the first

time we applied phonon Boltzmann modeling to the study of phonon transport in

αRDX. Specifically, we simulated thermal transport in the vicinity of a hotspot,
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a localized region of higher energy density where chemistry initiates. The phonon

BTE modeling used full-band phonon lifetimes calculated using a normal mode de-

composition approach [176]. Calculation of the full-band phonon lifetimes marks

the first time the NMD approach was applied to αRDX. We parsed the contribution

of individual modes to thermal transport, finding that optical modes transported

the majority, 63%-78%, of thermal energy. Phonon modes that correspond to large

N-N bond stretch, i.e. modes closely linked with initiation, were found to contribute

differently to thermal transport depending on if the system was in equilibrium or

out of equilibrium.

This chapter contained the following novel additions to the literature

• The FBZ phonon BTE simulation was applied to an energetic crystalline sys-

tem composed of a complex (>100 atoms) unit cell to study phonon processes

important to initiation. This marks the first application of phonon BTE mod-

eling to study thermal transport in materials composed of unit cells with over

100 atoms.

• The thermal transport participation of phonon modes corresponding to large

N-N bond stretch depends on the state of the system. In equilibrium, phonon

modes contributing to significant N-N bond stretch carry ∼ 20% of thermal

energy. In the out of equilibrium case corresponding to uniform mode ampli-

tudes, phonon modes contributing to significant N-N bond stretch carry < 1%

of the thermal energy.

171



7.2 Future Research Directions

This work represents a first step toward accurate modeling of anisotropic three-

dimensional phonon flows in nanostructures and complex materials. As such it

invites the possibility of several future research directions.

a) Time Dependency of FBZ-3DBTE

Accurate measurement of submicron thermal transport phenomena has proved

difficult using traditional experimental techniques due to the inherent time and

length scales associated with phonons [43]. Over the past decade, pump-probe

experiments, such as FDTR, TDTR, and TTG, have been used to calculate the

material thermal conductivity accumulation function. These approaches use a laser

pulse to create a nano- to micro- scale heating pattern that is on the same length

scale of the phonon MFPs of a material. A subsequent probe laser is then used

to measure the material thermal response, extracting information regarding how

phonons of different MFPs contribute to thermal transport [80]. Extracting the

MFP accumulation requires an intervening model in order to determine the phonon

suppression function. Specifically, one needs to know to what degree modal contri-

bution to thermal transport is suppressed due to the sub-micrometer length scale

associated with the heating region. In general this suppression is assumed to be a

function of the phonon mode MFP. The BTE is an excellent candidate for calcula-

tion of this suppression function. Due to the inherent time-scales associated with

the pump and probe laser pulses, simulation via the BTE requires consideration of
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the time dependent nature of phonon transport. Only a small number of studies

have attempted to apply the phonon BTE to this problem [43, 177]. Notably these

approaches have assumed the material thermal conductivity is isotropic. Thus, a

time dependent FBZ-BTE solution could be applied to calculation of the suppres-

sion function in a more general class of anisotropic materials, allowing for accurate

TDTR predictions of the thermal conductivity accumulation in anisotropic systems.

b) Experimental Observation of Phonon Filter

The simulation results of Chapter 5 indicate that the chamber-offset NW func-

tions as a high-pass phonon filter. A phonon filter selectively restricts the mechanical

waves which can pass through a material based on the waves frequency. However,

phonon filters have yet to be demonstrated experimentally. The principles challenge

associated with the physical realization of a phonon filter is quantifying the filtering

effect. Essentially, one needs to experimentally demonstrate that the chamber offset

NW attenuates low frequency phonons while leaving the larger frequencies relatively

unaffected. A natural measure of the relative contribution of phonons throughout

the frequency spectrum is the thermal conductivity accumulation function. Candi-

date experimental techniques include TDTR, FDTR, and TTG. However, these ap-

proaches have been primarily used to measure normal and lateral thermal transport

in simple thin films. Therefore, work remains to successfully adapt these experimen-

tal approaches to experimentally demonstrate phonon filtering in a chamber-offset

NW.
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c) Improvements to Phonon Modeling in Large-Unit Cell Systems

Compared to simple atomic crystals, crystalline materials with large unit cells,

such as many energetic materials, have been the subject of relatively few phonon

BTE studies. A primary obstacle to the study of these systems was the large num-

ber of phonon branches that are present when the unit cell is large. In this work

we explicitly modeled the contribution of all 504 branches in RDX. However, an

important issue when modeling large unit-celled crystals is the question of disorder.

Despite the fact that these systems are crystalline, the disorder within the unit cell

may cause a prevalence of non-propagating phonon modes. Such phonon modes

are not well described by the phonon BTE, which assumes that all modes have a

defined group velocity and MFP [178,179]. Thus modifications to the existing BTE

methodology may be required for systems with a large number of so-called diffuson

and locon vibrational modes [180]. These modification may include the definition

of an effective group velocity and MFP for non-propagating vibrational modes. Al-

ternatively, a hybrid approach may be applied where the propagating modes are

treated used a phonon BTE formulation, while non-propagating modes are handled

in a different manner, for example using the theory developed by Allen and Feldman

for thermal transport in disordered materials [179–181]. Regardless of the specific

approach, the first step is to classify the vibrational modes of the system of inter-

est in order to determine whether special care is required. Recent work by Seyf

and Asugen proposed a general classification system for determining the propagons,

diffusons, and locons of any weakly disordered periodic system [182].
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These future research directions will enable more efficient solid-state devices

and improve fundamental knowledge of phonon transport processes.
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