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detect regions of interests of nuclei in cancer images.



FEATURE EXTRACTION IN IMAGE PROCESSING
AND DEEP LEARNING

by

Yiran Li

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2018

Advisory Committee:
Dr. Wojciech Czaja, Chair/Advisor
Dr. John Benedetto
Dr. Radu Balan
Dr. Kasso Okoudjou
Dr. Ilya Ryzhov
Dr. Stephen Lockett



c© Copyright by
Yiran Li

2018





Dedication

This thesis is dedicated to my parents. Thank you for all the support.

ii



Acknowledgments

First and foremost I would like to thank my advisor, Dr. Wojciech Czaja, for

introducing me to the world of interesting pure and applied mathematical research.

I started with the scientific computation track at University of Maryland, and I com-

pleted my one-year long project course under the supervision of Wojtek. It was very

fulfilling experience meeting and discussing mathematical ways to approach applied

problem with Wojtek and so I continued to work with him on new projects later

on and he became my advisor. Wojtek has always been very helpful and insightful

in leading me on the path of research. He always points out new directions when

research is stagnant, and the conversations we had in our regular meetings stimu-

late my passion and interest in conducting research in applied harmonic analysis. I

would not have completed my five years here at the University of Maryland without

his guidance and support.

I would also like to thank Dr. John Benedetto for bringing me to the Norbert

Wiener Center for harmonic analysis and applications and for teaching me fascinat-

ing lectures on harmonic analysis and wavelets. The two courses I took with John

broadened my view from real analysis and extend to the world of harmonic analysis

and all of its potential applications, and established a strong basis for me to conduct

my research. I appreciate all the help that John has offered at various stages of my

Ph.D. years.

I would also like to thank Dr. Kasso Okoudjou and Dr. Radu Balan for the

inspirations they give me on the path of my education through the the seminars and

iii



talks at the Norbert Wiener Center. I appreciate their help and support.

During the summer of my third year, I encountered a great opportunity to

work with Dr. Stephen Lockett from National Institute of Health, on the problem

of cancer image analysis. I would like to thank Stephen Lockett for giving me this

opportunity to collaborate with him and with Robert Kinders, and I really appre-

ciate his help and patience in filling me with useful biological and methodological

insights and guidance on my research. I would also like to thank Dr. Konstantina

Trivisa for bringing this opportunity to me.

I would like to thank Dr. Ilya Ryzhov for agreeing to serve on my committee

and for teaching me basics in probabilistic models. The knowledge I learned vividly

stays in my mind and the modeling way of thinking facilitates my research progress.

I would like to thank Dr. Maria Cameron for her help and her guidance in the

summer project in my first year. She has brought invaluable help for my education.

I would like to thank all members of the Norbert Wiener Center for Harmonic

Analysis and Its Applications. Thanks to Mike Pekala and to Weilin Li, for the

collaboration on maximal function pooling we have done and for sharing interesting

mathematical perspectives on this subject; thanks to Matt Guay, who has organized

illuminating RITs on deep learning for many semesters; thanks to Dongmian Zou,

and Shujie Kang, for the mathematical discussions on research that helped us think;

and thanks to Franck Ndjakou Njeunje, Zeyad Emam, and Chenzhi Zhao for being

supportive office mates.

During my years of Ph.D. life in college park, I have met friends that make

my life much more enjoyable. I’d like to thank Luyu Sun, Zhang Zhang, Chen Qian,

iv



Jinhang Xue, for the fun time we spent together.

I would like to thank my friends that I have known for so long and who have

accompanied me along the path of my Ph.D.. My gratitude for Cheng Peng, Yang

Song and Zhe Wang. Thank you for being there.

I owe my deepest gratitude to my family. I convey my deepest sorrow for my

grandmother Bide and my grandfather Maoqing, who have accompanied me from

childhood, but whose last days I wish I had been by their side. I would also like

to thank my niece Wanyi for coming into this world. Last but most importantly, I

would like to thank my father Min and my mother Mingyu. My gratitude for their

support from the first day of my life all the way to my Ph.D. is beyond words. I

thank my parents for their faith in my ability and for all the love and support they

have given to me.

v



Contents

Preface ii

Dedication ii

Acknowledgements iii

List of Tables viii

List of Figures ix

List of Abbreviations x

1 Summary of Results 1

2 Mathematical Preliminaries 4
2.1 Time-Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Basic Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Gabor Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Feedforward Neural Network . . . . . . . . . . . . . . . . . . . 20

3 Provable approximation properties for deep neural networks 24
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Mathematical preliminaries . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Approximation of functions using complex deep neural networks . . . 30

3.3.1 Construction of Gabor frame using rectified linear units . . . . 30
3.3.2 Construction of deep neural network for function approximation 42

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Maximal function pooling in deep convolutional sparse coding 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Convolutional Sparse Coding . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vi



5 Gabor Regression of Quantum Chemical Energies 62
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Background on Quantum Energy Regression . . . . . . . . . . . . . . 65

5.2.1 Computation of quantum chemical energy . . . . . . . . . . . 65
5.2.2 Invariant properties of chemical molecules . . . . . . . . . . . 66
5.2.3 Electron density approximation . . . . . . . . . . . . . . . . . 67

5.3 Gabor Invariant Representation . . . . . . . . . . . . . . . . . . . . . 69
5.3.1 2D Gabor Invariant Representation . . . . . . . . . . . . . . . 69

5.4 Energy Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.1 Sparse Regression by Orthogonal Least Square . . . . . . . . . 73

5.5 Other molecular representations . . . . . . . . . . . . . . . . . . . . . 75
5.5.1 Coulomb matrix representation . . . . . . . . . . . . . . . . . 75
5.5.2 Invariant Wavelet Modulus and Multiscale Scattering . . . . . 76
5.5.3 Invariant Fourier Modulus . . . . . . . . . . . . . . . . . . . . 78

5.6 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6.1 Representation of Planar Molecules . . . . . . . . . . . . . . . 79
5.6.2 Numerical Comparison of Planar Molecules . . . . . . . . . . . 80
5.6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Detection of Epithelial versus Mesenchymal Regions in 2D Images of Tumor
Biopsies Using Shearlets 85
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Shearlet based region detection . . . . . . . . . . . . . . . . . . . . . 88

6.2.1 Shearlet Transform . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2.2 Shearlet Max Difference Thresholding Method . . . . . . . . . 91

6.3 Experiment and Result . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.2 The Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.3 Validation Methods . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Bibliography 111

vii



List of Tables

4.1 Empirical results for various pooling strategies. Pooling regions have
dimensions b× b and the pooling stride is s. When s = r, the pooling
regions partition the spatial dimensions of the image, i.e. there are
no overlaps in pooling regions. . . . . . . . . . . . . . . . . . . . . . 60

5.1 Average Error ± Standard Deviation over the five folds in kcal/mol . 82

6.1 Result of regions of interest detection of wavelet, shearlet and SMDT
methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

viii



List of Figures

2.1 An Example of a feedforward neural network (from [47]) . . . . . . . 21

3.1 Window function g definied in (3.12). . . . . . . . . . . . . . . . . . . 32
3.2 Modulated window function g, with n = 5 . . . . . . . . . . . . . . . 32
3.3 Modulated and translated window function g, with m = 1, n = 6 . . . 33
3.4 Illustration of the neural network . . . . . . . . . . . . . . . . . . . . 43

4.1 Convolutional Sparse Coding, level 1 . . . . . . . . . . . . . . . . . . 50

5.1 Left: ground state electron density ρx and right: approximate electron
density ρ̃x [59] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Left: atomic density; middle: core density; right: valence density. [58] 69
5.3 Atomic density (left) and the Gabor transform at selected pixel loca-

tions (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Atomic density and Gabor coefficients integrated over translation . . 71
5.5 Rotational invariant representations . . . . . . . . . . . . . . . . . . . 72

6.1 Image of cell nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Shearlet coefficients at “+” and “x” respectively . . . . . . . . . . . . 92
6.3 Max Difference coefficients MD of Figure 6.1 . . . . . . . . . . . . . 93
6.4 Density matrix D of Figure 6.1 (with uniform filter) . . . . . . . . . . 94
6.5 Weight matrix W obtained from density matrix in Figure 6.4 . . . . . 95
6.6 Thresholded MD matrix T . . . . . . . . . . . . . . . . . . . . . . . 96
6.7 Weighted matrix Tw of T . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.8 Max Difference coefficients MDT of Tw in Figure 6.7 . . . . . . . . . 98
6.9 Density matrix DMDT of MDT (with uniform filter) . . . . . . . . . . 99
6.10 Weighted density matrix WD of DMDT . . . . . . . . . . . . . . . . . 99
6.11 S̃, the thresholded WD from Shearlet coefficients at level 5 . . . . . . 100
6.12 S̃, the thresholded WD from Shearlet coefficients at level 4 . . . . . . 101
6.13 Combined regions of elongated nuclei (yellow) from shearlet coeffi-

cients at level 4 and level 5 before post processing . . . . . . . . . . . 102
6.14 Combined regions of elongated nuclei (yellow) from Shearlet coeffi-

cients at level 4 and level 5 after post processing . . . . . . . . . . . . 102
6.15 Segmentation results of selected images 1 . . . . . . . . . . . . . . . . 108
6.16 Segmentation results of selected images 2 . . . . . . . . . . . . . . . . 108
6.17 Segmentation results of selected images 3 . . . . . . . . . . . . . . . . 109
6.18 Segmentation results of selected images 4 . . . . . . . . . . . . . . . . 109

ix



6.19 Segmentation results of selected images 5 . . . . . . . . . . . . . . . . 110

x



List of Abbreviations

R The set of real numbers
C The set of complex numbers
〈·, ·〉 The inner product
suppf The support of a function f

f̂ , F The Fourier transform of f
z The complex conjugate of a complex number z
‖ · ‖p The Lp norm
ess supf The essential supremum of f

STFT Short time Fourier transform
DNN Deep neural network
MLP Multilayer perceptron
ReLU Rectified linear unit
CNN Convolutional neural network
DCP Deep coding problem
DCPP Deep coding problem with pooling
SVM Support vector machine
DFT Density functional theory
EMT Epithelial-mesenchymal transition
ROI Region of interest
DAPI 6-diamidino-2-phenylindole

xi



Chapter 1: Summary of Results

This thesis incorporates classical harmonic analysis ideas in theoretical analy-

sis of deep learning, and presents new results in theory of deep learning and applied

harmonic analysis. It focuses on the design of feature extractors from harmonic

analysis and property analysis of such feature extractors in fields of deep learning,

quantum energy regression and biomedical imaging analysis. The harmonic analy-

sis detailed in this thesis focuses on the time-frequency representation systems that

contain local frequency information. In Chapter 2, a survey of classical harmonic

analysis emphasizing Fourier analysis and time-frequency analysis is presented, as

well as a brief introduction to deep learning, whose theoretical study is of interest

to many mathematicians. In particular, we review theoretical properties of Gabor

frames as a time-frequency representation of signals and introduce feedforward neu-

ral networks, the most common network structure in deep learning.

In Chapter 3 we study the approximation properties of neural networks. Neural

networks extract useful features of the input functions and learn representations of

functions by adjusting weights via training on extensive amount of data. The per-

formance of a neural network on tasks such as classification depends heavily on its

ability to effectively represent input functions. Thus the degree to which a neural
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network can approximate functions also links tightly to its performance. The study

of the relation between error rate of approximation and the size of the network

can be beneficial to estimation of training time. We design a novel type of neural

network inspired by Gabor frames and prove its theoretical approximation rate to

functions based on the network topology. The theory presented in this Chapter en-

riches the study of provable approximation rate of neural networks by introducing

a new neural network that explores frequency information of input signal. It has

promising application values with the development of training algorithms for com-

plex valued neural network, and it achieves better accuracy when input function has

explicit compact support.

In Chapter 4, we continue our endeavor to analyze deep neural networks under the

perspective of convolutional sparse coding introduced by M. Elad, et al. Pooling is

a common feature extraction strategy adopted in convolutional neural networks. It

reduces dimensionality of input features and mitigate the problem of overfitting in

training of neural network. Inspired by the maximal function, a classical concept

in harmonic analysis, we deign the maximal function pooling, or the maxfun pool-

ing, and analyze the stability of neural networks with maxfun pooling when noise

is present as well as its performance in classification compared with existing state-

of-the-art pooling strategies. The results in this Chapter show that the maxfun

pooling preserves stability of the neural network and it outperforms state-of-the-art

pooling strategies in certain classification tasks. The maxfun pooling demonstrates

intriguing theoretical properties with prominent application values.

In Chapter 5, we dive into the problem of invariant representation of molecules

2



and design an invariant feature extractor for quantum energy regression. Driven

by useful applications such as synthesis of new material, machine learning strate-

gies have been exploited to reduce the costs of computing ground state energy of

chemical molecules. We present Gabor invariant transform which produces a set

of dictionaries representing each molecule in a translation and rotation invariant

fashion. The set of dictionaries is selected via machine learning algorithms using

cross validation to achieve best performance. The Gabor invariant representation

demonstrates invariant properties necessary for molecule representation, competes

with state-of-the-art methods for planar molecules, and has the advantage of being

extendable to represent high dimensional data.

In Chapter 6, we dig into the problem of detecting regions of two different types

of cell nuclei, mesenchymal and epithelial, in cancer image analysis. The detection

of the location of mesenchymal cells is crucial in the study of tumor growth and

its drug treatment. We design an algorithm which exploits the directional infor-

mation presented in cell shapes and in their alignments using Shearlet transform.

The Shearlet transform produces anisotropic features and is sensitive in detecting

edge-like features in input data. We develop the Shearlet max difference threshold-

ing method, which outperforms benchmark algorithms using wavelets and shearlets,

and demonstrates its potential extension to detecting regions of interest in 3D image

data.
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Chapter 2: Mathematical Preliminaries

In this Chapter we introduce the mathematical preliminaries which later Chap-

ters are built upon. In particular, we introduce the notion of time-frequency analysis

and the notion of deep learning. Many mathematical ideas from the later Chapters

can be retrieved from the mathematical foundations mentioned in this Chapter.

2.1 Time-Frequency Analysis

In this section we introduce motivations behind time-frequency analysis and

some of the important results achieved in this field. We first introduce several

notations. The notation for inner product in Rd is x · ω =
∑d

i=1 xiωi. For x =

(x1, x2, ..., xd) ∈ Rd, and for 1 ≤ p <∞, we use the notation

‖f‖p =

(∫
Rd
|f(x)|pdx

)1/p

(2.1)

for Lp norm of f , and Lp(Rd) is the Banach space of all measurable function f that

have finite Lp norm. Given a measurable function f : X → R defined under measure

µ, the essential supremum (ess sup) is defined as the smallest α such that the set

(x : f(x) > α) has measure zero. When p = ∞, ‖f‖∞ = ess supx∈Rd |f(x)|. When
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p = 2, for f, g ∈ L2(Rd), the inner product is defined by

〈f, g〉 =

∫
Rd
f(x)g(x)dx (2.2)

and L2(Rd) is a Hilbert space.

2.1.1 Basic Fourier Analysis

Fourier analysis focuses on the analysis of Fourier transform of functions and

the relation between the function and its transform. The Fourier transform is a

classical subject of study in harmonic analysis, and it has served as a powerful

tool for computations in fields of engineering and physical sciences. The first use of

Fourier methods was in in Lagrange's study of partial differential equations modeling

string vibration [17].

Let f be a function defined for x ∈ Rd. The Fourier transform of f is naturally

defined on L1(Rd).

Definition 2.1. The Fourier transform of f ∈ L1(Rd) is defined as

F (ω) =

∫
Rd
f(x)e−2πix·ωdx, ω ∈ R̂d. (2.3)

Notationally, we write the pairing between the function f and F in the following

ways: f ←→ F , F = f̂ .

The Fourier transform can be extended to L2(Rd) naturally. A major result

about L2(R) is the following theorem [10].

Theorem 2.2. (Plancherel [10]) There is a unique linear bijection F : L2(R) −→

L2(R̂d) with properties:
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• ∀f ∈ L2(Rd), ‖f‖2 = ‖Ff‖2;

• ∀f ∈ L1(Rd) ∩ L2(Rd) and ∀ω ∈ R̂d, f̂(ω) = (Ff)(ω);

• ∀f ∈ L2(Rd), ∃{fn : n = 1, ...} ⊆ L1(Rd) ∩ L2(Rd) for which

limn→∞ ‖fn − f‖2 = 0 and limn→∞ ‖f̂n − Ff‖2 = 0.

The Fourier transform f̂ and f gives equivalent representation of the same

function f in different domains, the frequency domain and the time domain. The

inverse of Fourier transform is defined by the inversion formula [10].

Theorem 2.3. Let f ∈ L1(Rd) and let f̂ = F . The Fourier transform inversion

formula is

f(x) =

∫
Rd
F (ω)e2πix·ωdω. (2.4)

Given the pairing f ←→ F , we write F (ω) = A(ω)eiφ(ω), and one may think

of a signal f as a “sum” of exponentials e2πix·ω [10]

“f(x) =
∑
ω

A(ω)eiφ(ω)e2πix·ω ” (2.5)

with complex coefficients A(ω)eiφ(ω). A(ω) is the amplitude and φ(ω) is the phase

angle of F (ω). The amplitude spread |A(ω)|2 can be viewed as the amount of energy

of f in frequency band about a small neighborhood of ω.

Fourier transform serves as a useful computational tool based on its analytical

properties. We list some of the properties that are relevant in Chapter 3.

Theorem 2.4. (Analytic Properties of Fourier Transforms [10]) Let f ∈ L1(R),

and consider the paring f ←→ F , where F (ω) is the Fourier transform of f(x).

6



• Boundedness. For each ω ∈ R̂, |F (ω)| ≤ ‖f‖L1(R).

• Riemann-Lebesgue Lemma. lim|ω|→∞ F (ω) = 0.

• Time Differentiation. Suppose that f (d), d ≥ 1, exists everywhere and that

f (d) ∈ L1(R). Assume

f(±∞) = ... = f (d−1)(±∞) = 0, (2.6)

where f(±∞) = 0 indicates that limt→∞ f(t) = 0 and limt→−∞ f(t) = 0. Then

f (d) ←→ (2πiω)dF (ω). (2.7)

We also introduce the notion of convolution. Let f, g ∈ L1(R). The convolution

of f and g, denoted by f ∗ g, is [10]

f ∗ g(t) =

∫
f(t− u)g(u)du =

∫
f(u)g(t− u)du. (2.8)

We obtain the theorem regarding Fourier transform of convolution [10].

Theorem 2.5. Let f , g ∈ L1(R), with corresponding Fourier pairs f ←→ F and

g ←→ G. Then f ∗ g ∈ L1(R) and (f ∗ g)̂ = f̂ ĝ.

Although Fourier transform has served as a useful tool for various problems,

it has some drawbacks. When analyzing signals, the goal is often to obtain both

temporal and frequency information instantaneously. An analogy is to think of the

signal f as a piece of music [32], [49]. At any time x ∈ R, we may measure the

amplitude of a song as f(x), and we may gather rhythmic information of the music.

But we would have trouble identifying the key or the melodic information of the
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song. If we look at f̂ , by looking at its dominant frequency, we may be able to

identify its key, but none of the temporal information can be recovered. The goal

is to represent f in a way that simultaneous information about time and frequency

can be present, like how our hearing perceives music.

Due to the mathematical nature of the Fourier transform, a collection of in-

equalities named uncertainty principles prevents the ideal construction of instan-

taneous frequency representation. In a qualitative form, the uncertainty principle

states that:

A function f and its Fourier transform f̂ cannot be supported on arbi-

trarily small sets.

In other words, in order to calculate instantaneous frequency at any x, we need

to take the Fourier transform of f multiplied by some function g of small support

around x. By the uncertainty principle, the support of f̂ · g cannot be small and

thus it does not make sense to speak of instantaneous frequency at x. We state the

classical uncertainty principle in dimension d = 1.

Theorem 2.6. (Heisenberg-Pauli-Weyl inequality [49]) If f ∈ L2(R) and a, b ∈ R

are arbitrary, then(∫ ∞
−∞

(x− a)2|f(x)|2dx
)1/2(∫ ∞

−∞
(ω − b)2|f̂(ω)|2dω

)1/2

≥ 1

4π
‖f‖2

2. (2.9)

Equality in 2.9 holds if and only if f is a multiple of e2πib(x−a) · e−π(x−a)2/c for some

a, b ∈ R and c > 0.

The factors in the above theorem measure the degree of localization of f around

a and of f̂ around b, respectively. The minimal support in both time and frequency
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domains is achieved when f is translation and modulation of a Gaussian function.

Note that this result also holds for self-adjoint operators on a Hilbert space. Let the

commutator of two linear operators A,B, be denoted by:

[A,B] = AB −BA. (2.10)

Theorem 2.7. Let A and B be (possibly unbounded) self-adjoint operators on a

Hilbert space H. Then from [49],

‖(A− a)f‖‖(B − b)f‖ ≥ 1

2
|〈[A,B]f, f〉| (2.11)

for all a, b ∈ R and for all f in the domain of AB and BA. Equality holds if and

only if (A− a)f = ic(B − b)f for some c ∈ R.

The solution f of Equation 2.9 when equality is reached in Theorem 2.6 pro-

vides us with some intuition about proper representation of signals with both tem-

poral and frequency information, as it minimizes support in both time and frequency

domains. Dennis Gabor was the first to address the question [43], on whether cer-

tain functions can be built as “atoms” to span the space of L2(Rd). The study of

Gabor systems later becomes an important part of time-frequency analysis.

2.1.2 Gabor Systems

In order to obtain local frequency information of f , we take the Fourier trans-

form of f restricted to an interval. To avoid problems created by discontinuity, we

use a smooth cut-off function as a “window”.

9



Definition 2.8. For function g ∈ L2(Rd), fix g 6= 0 (called the window function).

Then the short-time Fourier transform (STFT) of a function f with respect to g is

defined in [49] as

Vgf(x, ω) =

∫
Rd
f(t)g(t− x)e−2πit·ωdt, for x, ω ∈ Rd. (2.12)

The short-time Fourier transform is also called the “sliding window Fourier

transform”. Vgf(x, ω) gives the measure of the amplitude of the frequency band

near ω at time x [49].

The STFT enjoys several properties similar to the classical Fourier transform.

It preserves the L2 norm of functions and inversion formula can be obtained based

on its properties.

Theorem 2.9. If f, g ∈ L2(Rd), then

‖Vgf‖2 = ‖f‖2‖g‖2. (2.13)

In particular, if ‖g‖2 = 1, then

‖f‖2 = ‖Vgf‖2 for all f ∈ L2(Rd). (2.14)

Thus, in this case the STFT is an isometry from L2(Rd) into L2(R2d).

Note that the time shift T of g by x is defined by

Txg(t) = g(t− x) (2.15)

and the modulation of g by ω is defined by

Mωg(t) = e2πiω·tg(t). (2.16)
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The signal f can be completely recovered from its STFT representation. The inverse

of Vg is given by the inversion formula of STFT.

Theorem 2.10. (Inversion formula of STFT [49]) Suppose that g, γ ∈ L2(Rd) and

〈g, γ〉 6= 0. Then for all f ∈ L2(Rd)

f =
1

〈γ, g〉

∫ ∫
R2d

Vgf(x, ω)MωTxγdωdx. (2.17)

Based on the inversion formula of STFT, a given signal f can be expanded

continuously with respect to the uncountable system of functions {MωTxγ : (x, ω) ∈

R2d}. Since L2(Rd) is a separable Hilbert space, the question becomes how to

represent f with respect to a countable subset of time-frequency shifts. The study

of this problem leads to the development of frame theory and Gabor systems.

The first attempt to find proper representation of f using countable subset of

time-frequency shifts is to replace the integral by Riemann sum over lattices:

f =
∑∑
k,n∈Zd

〈f, TαkMβnγ〉TαkMβng (2.18)

for some suitable windows g, γ ∈ L2(Rd) and lattice parameters α, β > 0. D. Gabor

first proposed the discrete and linear time-frequency representations with a Gaussian

window g = e−πx
2

and α = β = 1, see [43]. The Gabor system is defined in [49] as

follows.

Definition 2.11. Given a non-zero window function g ∈ L2(Rd) and lattice param-

eters α, β > 0, the set of time-frequency shifts

G(g, α, β) = {TαkMβng : k, n ∈ Zd} = {g(t− αk)e−2πiβn·ω : k, n ∈ Zd} (2.19)

is called a Gabor system.
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Note that the elements in Gabor system can be viewed as multiplication of

shifted window function with exponentials. The set of functions

{e−2πin·ω}n∈Zd (2.20)

forms an orthonormal basis for L2(Td), see e.g., [10]. It is natural to ask whether

the set of functions in Gabor systems can form a basis L2(Rd). This problem is

studied in an extended form, where the idea of orthonormal basis is generalized.

Orthonormal basis can represent space of functions in an efficient manner.

Given any signal f , one can encode f by projecting it onto subspaces spanned by

each orthonormal basis element φn, and f can be completely recovered from the set

of coefficients {〈f, φn〉}n∈Z. However, when some of the stored coefficients become

missing or contaminated by noise, it becomes difficult to recover f without losing

information. In modern days, data can be easily lost or corrupted in transmission,

and thus redundancy in storing information is sometimes preferred. A redundant

system for data representation assures better recovery of data and can provides more

detailed information of the function. We consider the notion of a frame introduced

by Duffin and Schaeffer originally in 1952 for non-uniform sampling of band-limited

functions [36].

Definition 2.12. A sequence {ej, j ∈ J} in a (separable) Hilbert space H is called

a frame if there exist positive constants A,B > 0 such that for all f ∈ H

A‖f‖2 ≤
∑
j∈J

|〈f, ej〉|2 ≤ B‖f‖2. (2.21)

Any two constants A,B where 0 < A ≤ B < ∞ satisfying the above statement are

called frame bounds. If A = B, then {ej : j ∈ J} is called a tight frame.
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Observe that an orthonormal basis is a tight frame with frame bounds A =

B = 1. Frames can be thought of as a generalization of orthonormal bases. The

frame elements are neither orthogonal nor linearly independent to each other, yet

one can obtain a reconstruction formula from the frame coefficients {〈f, ej〉}j∈J .

Define the frame operator S on H by

Sf =
∑
j∈J

〈f, ej〉ej. (2.22)

In order to state the reconstruction theorem for frames, we also need to define

unconditional convergence.

Definition 2.13. Let {fj : j ∈ J} be a countable set in a Banach space B. The

series
∑

j∈J fj converges unconditionally to f ∈ B if for every ε > 0 there exists a

finite set F0 ⊆ J such that

‖f −
∑
j∈F

fj‖B < ε for all finite sets F ⊇ F0. (2.23)

The reconstruction formula for frames is stated as follows.

Theorem 2.14. If {ej : j ∈ J} is a frame with frame bounds A,B > 0, then

{S−1ej : j ∈ J} is a frame with frame bounds B−1, A−1 > 0, the dual frame. Every

f ∈ H has non-orthogonal expansions

f =
∑
j∈J

〈f, S−1ej〉ej, (2.24)

where both sums converge unconditionally in H.

We are interested in knowing the condition under which the Gabor system will
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be a frame. Note that the Gabor frame operator Sg,g is given by

Sf =
∑∑
k,n∈Zd

〈f, TαkMβng〉TαkMβng

=
∑∑
k,n∈Zd

Vgf(αk, βn)MβnTαkg.

(2.25)

The study of Gabor frames is closely related to the idea of periodization, and the

Wiener space comes up in the treatment of periodic functions. Denote the cube

[0, α]d by Qα and write Q = Q1 = [0, 1]d for the unit cube. Let χA be the charac-

teristic function of the set A.

Definition 2.15. A function g ∈ L∞(Rd) belongs to the Wiener space W = W (Rd)

if

‖g‖W =
∑
n∈Zd

ess sup
x∈Q

|g(x+ n)| <∞. (2.26)

Informally, a central result on Gabor frames can be stated as the following:

If g ∈ W (Rd) and α, β > 0 are small enough, then G(g, α, β) is a frame

for L2(Rd).

The formal formulation utilizes the correlation functions used in the Walnut repre-

sentation, see Theorem 2.17 below, of the frame operator.

Definition 2.16. Given g, γ ∈ L2(Rd) and α, β > 0, the correlation functions of

the pair (g, γ) are defined to be

Gn(x) = G(α,β)
n (x) =

∑
k∈Zd

g(x− n

β
− αk)γ(x− αk) (2.27)

for n ∈ Zd.
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The Gn’s are the periodizations of Tn
β
g · γ with period αZd. The existence of

Gabor frames depends on parameters α, β so that the inverse operator S−1
g,g exists.

Theorem 2.17. (Walnut [49]) Suppose that g ∈ W (Rd) and that α > 0 is chosen

such that for constants a, b > 0

a ≤
∑
k∈Zd
|g(x− αk)|2 ≤ b <∞ x− a.e. (2.28)

Then there exists value β0 = β0(α) > 0, such that G(g, α, β) is a Gabor frame for

all β ≤ β0. Specifically, if β0 > 0 is chosen such that

∑
n∈Zd
n6=0

‖G(α,β0)
n ‖∞ < ess inf

x∈Rd
|G0(x)|, (2.29)

then G(g, α, β) is a frame for all β ≤ β0 with frame bounds

A = β−d
(
a−

∑
n6=0

‖G(α,β)
n ‖∞

)
(2.30)

and

B = β−d
∑
n∈Zd
‖G(α,β)

n ‖∞. (2.31)

The structure of the dual frame of a Gabor frame is also of interest. In fact,

a function f ∈ L2(Rd) can be expanded using Gabor frame and its dual frame [49].

Theorem 2.18. If G(g, α, β) is a frame for L2(Rd), then there exists a dual window

γ ∈ L2(Rd), such that the dual frame of G(g, α, β) is G(γ, α, β). Consequently, every

f ∈ L2(Rd) possesses the expansions

f =
∑
k,n∈Zd

∑
〈f, TαkMβng〉TαkMβnγ

=
∑
k,n∈Zd

∑
〈f, TαkMβnγ〉TαkMβng

(2.32)
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with unconditional convergence in L2(Rd). Further, the following norm equivalences

hold:

A‖f‖2
2 ≤

∑∑
k,n∈Zd

|Vgf(αk, βn)|2 ≤ B‖f‖2
2, (2.33)

B−1‖f‖2
2 ≤

∑∑
k,n∈Zd

|〈f, TαkMβnγ〉|2 ≤ A−1‖f‖2
2. (2.34)

Localization properties of Gabor transforms have made it a useful tool in

applications such as image denoising [81] and analysis. Directional Gabor coefficients

have been developed to detect directional information in image analysis [96]. The

theoretical properties of Gabor frames have also been studied by J. Benedetto, et al

in [11], [12], [13], and by discrete directional Gabor frame has been studied by W.

Czaja, B. Manning, J. Murphy, K. Stubbs in [29]. We shall see in Chapter 3 that the

reconstruction formula for Gabor frames and its ability to obtain local information

also plays a role in modern analysis of deep neural networks (DNNs), which will be

introduced in the next section. The abundance in information from redundancy of

Gabor coefficients also facilitates the extraction of useful feature in image processing

by providing a rich family of dictionary elements, as we will discuss in Chapter 4.

2.2 Deep Neural Networks

Deep Neural Network is the basic structure used in deep learning, and it has

been a very successful tool in accomplishing tasks in machine learning in recent years,

especially in fields of speech recognition, object recognition and image classification.

Extensive experimental research has been done on the structure of the DNNs and
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algorithms used for it due to its outstanding performance compared with traditional

machine learning techniques.

A formal definition of the learning process of a machine is given by Tom M.

Mitchell [87]:

“A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P if its performance at

tasks in T, as measured by P, improves with experience E.”

Broadly speaking, the experience E is provided by data sets such as images or other

types of signals, and the performance measure P can be error rate from particular

tasks specified in the process [87]. There are typically two types of machine learning

tasks, supervised and unsupervised, depending on whether “feedback” is available

to the learning system. In unsupervised learning, no labels on input data are given

to the learning system, and the algorithm works on its own to find hidden structures

of the input data or extract useful features from the data set. In supervised learning,

input data comes with labels as their desired output from the algorithm, and the

goal of the learning algorithm is to produce a “map” that maps unlabeled input

data onto correct output label. The input label can be only partially available .

The process of teaching the machine to do the task better with labeled input data

is called training, see e.g., [106].

Representation learning is the set of methods that automatically learns the

features needed for classification or detection tasks when fed with raw input data.

Conventional machine learning techniques lack the ability to process data in its
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raw form. Careful design of a feature extractor is often needed to provide effective

representation of the raw input data for classification or regression tasks. Deep

learning takes the raw input and learn representation of the data through training.

It can be thought of as performing a type of representation learning. Deep learning

algorithms learn representation of input data layer by layer, with multiple layers

of computational units constructed and connected by weighted edges. Each layer

captures features of different levels of abstraction, from concrete, low level to more

abstract, high level features, see e.g., [77].

Broadly speaking, there have been three waves of development in the field

of deep learning: cybernetics which occurred in the 1940s to 1960s, connectionism

which occurred in 1980s to 1990s, and the current resurgence known as deep learning

beginning in 2006, see e.g., [47]. The earliest predecessors of modern deep learning

were motivated by the study of neuroscience. In early 1940s, D.O. Hebb, a psychol-

ogist created Hebb learning, a model that takes a set of n input values x1, ..., xn and

associate them with an output y, e.g., [55]. A set of weights w1, ..., wn were associ-

ated with the input and the output is computed as
∑n

i=1 wixi. At around the same

time, McCulloch and Pitts build the McCulloch-Pitts neuron as an early model of

brain function to recognize two different categories of model by testing whether the

output is positive or negative. The weights were set manually in order to produce

correct results [85]. In the 1950s, Rosenblatt built the perceptron, which became

the first model that could learn the weights that defined the categories based on

examples from each category [103]. At around the same time, the Adaptive lin-

ear elements (ADALINE) were developed to predict a real number based on input
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data [118].

After some stagnation in deep learning research due to the problem of com-

putational limitations at the time, in 1975, Werbo’s design of the backpropagation

algorithm accelerated the training time of multi-layer neural networks and brought

deep learning back to public attention [117]. In the 1980s, Rumelhart [107] and

McClelland [84] described the model of connectionism or parallel distributed pro-

cessing. Connecitonism is closely related to cognitive science; its main idea is that

intelligent behavior is achieved via the connection of large number of simple com-

putation units. The idea of computation units also originated from neuroscience.

A commonly used neuron, called Rectified Linear Unit, originated from the model

called cognitron. Cognitron was first introduced by Fukushima in 1975 [41] and a

renewed version, neocognitron [42], became the basis for the modern convolutional

network (LeCun). Meanwhile, back propagation was also popularized in training of

neural networks by Rumelhart [104] and LeCun [76].

With the development in kernel machines and graphical models in the field

of machine learning, and the computational difficulties arose in deep learning, the

interests in deep learning mitigated until 2006, when G. Hinton designed a type

of network called deep belief network which could be trained effectively using a

strategy called greedy layer-wise pretraining [57]. This network was shown to work

well for recognizing handwritten digits, and especially when training data size is

limited. With the increasing computational power the third wave in deep learning

rises and continues to thrive until today.

19



2.2.1 Feedforward Neural Network

The simplest structured neural network is the feedforward neural network, a

type of neural network where information only moves in one direction. Chapter 6

in the book [47] introduces the feedforward neural network in details and in this

seciton we briefly summarize important concepts introduced in [47].

Connections between computational units of a feedforward neural network do

not form a cycle. The idea of neural networks originated from feedforward neural

networks are also called multilayer perceptrons (MLPs). The goal of the feedforward

neural network is to learn representation of some function f ∗. For instance, f ∗ can

be a classifier which maps input x to category y.

Feedforward neural networks are typically represented by composition of many

different functions. The model comes with a directed acyclic graph describing how

different functions are composed together. For example, if we have n functions

f1, f2, ..., fn that we want to connect, to form f(x) = fn(fn−1(...(f1(x))...). These

chain structures are the most commonly seen structures of neural networks. Here

f1 is called the first layer, and fn, the final layer, is called the output layer. The

network is trained using training data. At the output layer, each input data x

produces a desired output label y ≈ f ∗(x). The expected behavior of the middle

layers of the neural network is not designated by the input value x, and thus the

training algorithm must decide what each individual layer should do. These middle

layers that are not output layer are called hidden layers.

Each hidden layer of the neural network often consists of multiple values and
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Figure 2.1: An Example of a feedforward neural network (from [47])

forms a vector of computation units, or neurons. All computation units in each layer

act in parallel to perform computation tasks. The width of the model is determined

by the dimensionality of each hidden layer. Output from each computation unit at

current layer is passed to the next layer by connecting edges and serves as input

value to the computation units of the next layer. The connection between neurons

of different layers and the operations performed at each neuron can be specified a

priori to satisfy different needs.

One can view the feedforward neural networks as a representation of a non-

linear mapping φ(x), that occurred due to the limitations of linear representation

of functions. The strategy in deep learning is to learn the model y = f(x;θ,w) =

φ(x;θ)Tw. Here bold letters represent vectors of parameters. Paramter θ is used

to learn the representation φ from a broad class of functions, and the weight w is

learned to map φ(x) to the desired output. Parameter θ can be viewed as a hy-
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perparamter that can be tuned manually, and the weight w is a parameter in the

learning algorithm to be learned through training.

Consider a simple model in feedforward neural networks with one hidden layer

with two hidden units as shown in Figure 2.1, e.g., [47]. Each value in input vec-

tor is fed into both computation units in the hidden layer. Each input vector x

is associated with a vector of weights W, and shifts c. The output of the first

hidden layer h are computed via function f1(x; W, c). Consider the linear model

f(x; W,b) = xTW + c. The values of the output of first layer are used as input

of the second layer. Because composition of linear functions is still linear, a non-

linear activation function is added to form nonlinear representation of data. Define

h = g(WT +c). A commonly used activation function is the rectified linear unit, or

ReLU [63]. Here g is defined by g(z) = max{0, z}. Therefore the output of the first

layer is f1 = max{0,WTx + c}. Let ω, and b be the weights and shifts associated

with the output of the first layer h. The complete two-layer feedforward neural

network can be described as:

f(x; W, c,ω,b) = ωT max{0,WTx + c}+ b. (2.35)

A feedforward neural network can be trained via gradient descent. The most com-

monly used training method, stochastic gradient descent [102], approximates gradi-

ent descent and uses iterative steps to minimize the cost function. The cost func-

tion is commonly defined so that the probability that the output obtained from the

network produces the desired label is maximized, or such that some well-defined

distance between the output of the network and the label is minimized [67].
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One aspect of design of a neural network is to design its architecture. The

architecture of neural network refers to its structure, including how many units to

include at each layer (width), how many layers to include (depth) and how the units

from different layers will be connected.

The design of the architecture is closely related to other aspects of the neural

network theory: the training algorithms associated with the cost function, and the

approximation properties of the neural network. The approximation properties of

deep neural networks have been of interest to many mathematicians, see, e.g., [22],

[26], [45], [61], [109]. Due to the fact that training a neural network takes large

amount of computations and data storage, it is important to estimate the minimum

amount of computations and storage needed to achieve certain error rate, both

regarding to the structure of the neural network and to the amount of training data

needed. It is crucial to know the theoretical limit of the neural network of certain

structures in order to further pursue practical training algorithms that will lead

to the theoretically proven guarantees. There have been many studies that deal

with the theoretical error bound of the approximation ability of neural network of

certain structures, both non-constructively and constructively. In Chapter 3, a novel

structure of neural network will be presented and its approximation properties will

be introduced.
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Chapter 3: Provable approximation properties for deep neural net-

works

Deep Neural Networks (DNNs) and deep learning algorithms have achieved

successful results in such areas of machine learning as image classification, speech

recognition, and natural language processing [77]. There has been development in

the study of theoretical framework of deep neural networks followed from its boom

in applications. Some important topics in the theoretical study of neural networks

include: 1) specification of the network topology to obtain certain approximation

properties of functions [15], [22], [26], [86], [109]; 2) the stability analysis of the

network [5], [40], [72], [97]; 3) study of the training algorithms for efficient training

[50], [51], [62], [101]. For instance, there have been many studies in the stability

of neural network, including the work by Elad, et al. using convolutional sparse

coding [97] and the work by Balan, et al. using Lipschitz properties [5]. In this

chapter, we focus on the study of approximation properties of neural networks.

In particular, we design a novel type of neural network and prove its theoretical

approximation rate to functions based on the network topology. The approximation

bounds based on this type of neural network can be obtained as a function of the

number of neurons used in each layer, and number of layers in the network. We
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assume that our input data is one dimensional, i.e., x ∈ R.

This Chapter is structured as follows: in Section 3.1 we discuss existing work

in approximation theory of neural networks; in Section 3.2 we state the mathemat-

ical preliminaries needed for building this specific type of deep neural network; in

Section 3.3 we build Gabor frames using a common structure in neural network, rec-

tified linear units, and demonstrate its theoretical approximation properties; then

we introduce the structure of the neural network that we intend to build and state

our main result.

3.1 Background

There is a rich body of work in theoretical analysis of deep neural networks in

terms of its approximation properties. The most well-known early result is proven

independently by Cybenko [26] in 1989 and Hornik [61] in 1991. The statement

is that any continuous function can be uniformly approximated by a continuous

neural network having only one internal hidden layer and with arbitrary contin-

uous sigmoidal nonlinearity [26]. This result is also mentioned as the “Universal

Approximation Property”. The proof was existential and not constructive, i.e., the

questions of how many neurons are required to yield an approximation of a given

quality and how such network can be constructed are not addressed. There are sev-

eral extensions of the universal approximation property [45], [46], [79], which look

at the problem from different perspectives using different activation functions.

Barron [86] was the first to show that given a function f : Rm → R with
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bounded first moment of the magnitude of the Fourier transform

Cf =

∫
Rm
|w||f̃(w)|dw <∞, (3.1)

there exists a neural network with single hidden layer of N sigmoidal functions, so

that fN , the output of the neural network can be bounded by

‖f − fN‖2
2 ≤

cf
N
, (3.2)

where cf is proportional to Cf . Note that the error bound might scale with the

dimension m, as the coefficient cf may grow proportionally to Cf when m gets

large. In [86], H. Mhaskar constructs a neural network with single hidden layer of

N sigmoidal functions such that the approximation error rate

‖f − fN‖2
2 =

c

N2r/m
, (3.3)

is achieved. Here r is the number of times the input function f is differentiable.

This error rate is believed to be optimal [86]. In [109], a sparsely-connected 4-layer

neural network is constructed based on wavelets and obtain similar approximation

error rate based on dimension d of the manifold instead of m. In particular, it states

that if f ∈ C2 has bounded Hessian, then there exists a 4-layer neural network so

that

‖f − fN‖∞ = O
(
N−

2
d

)
. (3.4)

This result is inspired by a recent work by Chui and Mhaskar [22], which develops a

deep learning algorithm using B-splines that finds a local coordinate system for the

manifold in which the high dimensional data X is embedded in, and thus providing

approximation properties of the neural network.
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In 2017, Bölcskei, Grohs, Kutyniok, Petersen [15] constructed a sparsely con-

nected deep neural network with guaranteed uniform approximation rates for ar-

bitrary function classes in L2(Rd). This is a more generalized result regarding the

fundamental lower bounds on the connectivity and the memory requirements of

deep neural networks. More specifically, the class of functions that are well approx-

imated by neural networks are the class of functions that are well approximated by

the representation system known as the affine system. Affine systems include a rich

body of representation systems in multiscale analysis such as wavelets, ridgelets,

curvelets, shearlets, α-shearlets and a generalized class called α-molecules. It is also

conjectured that using stochastic gradient descent to train a network to approxi-

mate α−1 cartoon-like functions, the best approximation obtained using M terms in

the network mimic the classical best M -term approximation using α-molecules as

representation system.

The approximation theory of deep neural networks is mainly studied in the

real domain. In fact, the majority of the study of deep neural networks in terms

of the architecture, training algorithm and theoretical aspects relies on real-valued

representations. There have been attempts to build complex-valued neural networks

dating from the early 1990s, e.g., [44], [68], [80]. The motivation behind building

complex-valued neural networks lies in the fact that functions are well represented

when expressed in the complex domain by transforms such as Fourier transform.

Combination of representation of functions in both real and complex domain allows

for more local information of the function, and the information is not easily obtained

only in the real domain. Bruna, Chintala, LeCun in [18] provide a theoretical ar-
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gument for complex-valued convolutional networks, arguing that a complex-valued

convolutional network using three operations: convolution with complex-valued vec-

tors, taking the absolute value, and local averaging, can be viewed as “multiscale

windowed power spectra”, “multiscale windowed absolute spectra”, and “multi-

wavelet absolute values” with more obvious correspondence. Very recently in 2018,

Trabelsi [114] published a paper that provides algorithms needed for complex batch-

normalization, complex weight initialization strategies for training of complex-valued

neural networks.

The approximation properties of fully complex multilayer perceptrons (MLPs)

are studied in [69]. A number of elementary transcendental functions (ETFs) are

defined as fully complex activation functions, and the approximation capability of

the fully complex MLPs is shown using characteristics of singularity among ETFs.

The complex universal approximation theorem is also existential, and does not spec-

ify the number of units and layers needed to accomplish certain approximation error

rate.

We propose a novel architecture of complex-valued neural networks and prove

the theoretical guarantees of their approximation capabilities for a given class of

functions. In particular, given any error rate ε > 0, we can construct a 4-layer

complex neural network with N(ε) neurons at each layer, such that for any functions

f ∈ C2(R), the output of the neural network fN is bounded by

‖f − fN‖∞ <
Cf
N
. (3.5)

Our construction is based on a type of time-frequency representation called Gabor
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frames. We will introduce some important theoretical results of Gabor frames that

are needed for our proof.

3.2 Mathematical preliminaries

The reconstruction theorem, Theorem 2.18, from Chapter 1 indicates that

any function f ∈ L2(Rd) can be expanded using modulations and translations of

a certain window function g, and the coefficients are computed as inner products

of the function f and translations and modulations of its dual window γ. We are

interested in the mathematical properties of the dual window γ. In [21], Christensen,

Kim and Kim give the condition under which the dual frame γ of g is smooth.

Theorem 3.1. (Christensen [21]) Let K ∈ N∪{0}, and let b ∈ [0, 1/(4K+ 2)]. Let

g be a real-valued bounded function with suppg ⊆ [−(2K + 1), 2K + 1], for which

∑
n∈Z

g(x+ 2n) = 1, x ∈ [−1, 1]. (3.6)

Let l : R→ R be any bounded function for which

l(x) = 0, for x ≤ 0, and l(x) = 1, for x ≥ 1. (3.7)

Define the function H̃ by

H̃(x) =



1
2
l(2(x+ 1)), −1 ≤ x < −1

2
,

1− 1
2
l(−2x), −1

2
≤ x < 0,

1− 1
2
l(2x), 0 ≤ x < 1

2
,

1
2
l(2(1− x)), 1

2
≤ x < 1,

0, otherwise.

(3.8)
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and let

γ(x) = b

K∑
k=−K

T2kH̃(x). (3.9)

Then one can define function γ based on l such that

• h is a symmetric function with suppγ ⊆ [−(2K + 1), 2K + 1].

• {TαkMβng}k,n∈Z and {TαkMβnγ}k,n∈Z are dual frames for L2(R).

• If l is chosen to be smooth, then γ can be constructed to be smooth.

This theorem will help illustrate properties needed for the Gabor coefficients

in the proof of the approximation rate of the neural network.

3.3 Approximation of functions using complex deep neural networks

In this Section we demonstrate the detailed construction of a deep neural

network which can be used to approximate functions. In particular, we first demon-

strate the procedures in building a Gabor frame using rectified linear units, and

secondly show the steps in construction of a deep neural network architecture based

on such frame.

3.3.1 Construction of Gabor frame using rectified linear units

In this Section we demonstrate a method to build Gabor frame of L2(R) based

on rectified linear units. We refer to the results in Section 2.1.2 in Chapter 2 to

show that the dictionary we obtain is a frame in L2(R). The definitions of Gabor

system and frame can be found in Section 2.1.2.
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We first introduce the notion of Gabor system.

Definition 3.2. A Gabor system is the set of time-frequency shifts of a non-zero

window function g ∈ L2(R) with lattice parameters α, β > 0:

{TαkMβng : k, n ∈ Zd}. (3.10)

We intend to build the window function g using rectified linear units. A

rectified linear unit is defined as:

rect(x) = max{0, x}. (3.11)

Rectified linear unit, or ReLU, is commonly used as activation function of the neuron

of deep neural networks. We define the window function g as a triangular-shaped

function:

g(x) = rect

(
1

2
x+ 1

)
− rect(x) + rect

(
1

2
x− 1

)
. (3.12)

We take g as the window function of a Gabor system G(g, α, β) = {TαkMβng : k, n ∈

Zd}. Figure 3.1 demonstrates the window function g constructed by (3.12). Figure

3.2 demonstrates the window function modulated by e2πiβn for β = 1
6

and n = 6.

Figure 3.3 demonstrates the modulcated window function g translated by k = 1.

It can be shown that G(g, α, β) is a Gabor frame. In fact, we have the following

lemma:

Lemma 3.3. Given window function g(x) = rect
(

1
2
x+ 1

)
−rect(x)+rect

(
1
2
x− 1

)
,

the Gabor system G(g, α, β) is a Gabor frame for L2(R) with values of α, β satisfying

α = 1 and β ≤ 1
6
.
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Figure 3.1: Window function g definied in (3.12).

-4 -3 -2 -1 0 1 2 3 4

-1

-0.5

0

0.5

1

1.5

2

Re(M
n*beta

g(x)), n=6, beta=1/6

Figure 3.2: Modulated window function g, with n = 5
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Figure 3.3: Modulated and translated window function g, with m = 1, n = 6

Proof. Note that there are other choices of α and β as long as they satisfy conditions

in Theorem 2.17. Theorem 2.17 gives conditions of the window function g under

which the Gabor system built of g can be a Gabor frame. We need to show that

two conditions of g are satisfied.

For a function g ∈ L∞(Rd) to belong to the Wiener space W = W (Rd), it has to

satisfy conditions in Definition 2.15. In particular, one need to choose constant α

such that for constants a, b > 0,

a ≤
∑
k∈Zd
|g(x− αk)|2 ≤ b <∞ a.e.. (3.13)

In our case, we know that d = 1, because we look at functions f ∈ L2(R). Therefore

Q = [0, 1]. We also know that supp g = [−2, 2], and that ess supx∈[−2,2]|g| = 1 by

construction of g. Since x ∈ [0, 1], and n ∈ Z, there are at most 4 non-zero terms in
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the sum in (2.26) in Definition 2.15. Therefore,

‖g‖W =
∑
n∈R

ess supx∈Q|g(x+ n)|

≤4ess supx∈Q|g| = 4 <∞.

(3.14)

To verify the second condition, note that g is compactly supported on [−2, 2], and

thus we can choose α = 1, so that the infinite sum in (3.13) has only four non-zero

terms for all x ∈ R. We see that the upper bound b we find is b = 4. Given any

x ∈ R, ∑
k∈Z

|g(x− k)|2 ≤ 4ess supx∈[−2,2]|g|2 = 4. (3.15)

Note that the window function g can be expressed as a piece-wise linear function:

g(x) =


1
2
x+ 1, −2 ≤ x ≤ 0;

−1
2
x+ 1, 0 < x ≤ 2.

(3.16)

Hence in order to find the lower bound a, we simplify the sum in (2.26) for some

x ∈ [−2,−1], and rewrite the equation as

∑
k∈Z

|g(x− k)|2 =|g(x)|2 + |g(x+ 1)|2 + |g(x+ 2)|2 + |g(x+ 3)|2

=

(
1

2
x+ 1

)2

+

(
1

2
(x+ 1) + 1

)2

+(
−1

2
(x+ 2) + 1

)2

+

(
−1

2
(x+ 3) + 1

)2

=(x+ 1)2 +
5

2
.

(3.17)

Therefore, the minimum is reached when x = −1 and a = 5
2
. We’ve checked the

two conditions in Theorem 2.17, and therefore G(g, α, β) is a frame with α = 1.

Theorem 2.17 requires β to be chosen small enough. Hence given α = 1, we choose
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β ≤ β0 = 1
6

so that the the condition for β listed in Theorem 2.17 is satisfied. Note

that there are other choices of α and β, i.e., given different choices of α, it is possible

to find corresponding β so that G(g, α, β) is a frame.

Now that we have introduced the Gabor frame built based on the rectified

linear unit, we will build a 4-layer neural network that can be used to approximate

functions, and we will show that the point-wise approximation rate of functions

f can be obtained using properties of the above frame. In particular, We obtain

the following result in this Chapter regarding the approximation rate of functions

f ∈ L2(R).

Lemma 3.4. Let f ∈ L2(R) be s times continuously differentiable, and let ‖f (s)‖1 <

∞. Then for any x ∈ R, there exists a construction fN,K : R → C using Gabor

coefficients with modulations up to scale N (N independent of x), with number of

translations up to scale K = K(x), such that

|f(x)− fN,K(x)(x)| < Cf
N s−1

, (3.18)

where C is a constant dependent on the derivatives of f up to order s, and | · |

denotes the point-wise absolute value.

Note that by Theorem 2.18, any function f ∈ L2(R) can be represented by

the infinite expansion on modulations and translations of the window function g:

f =
∑
k,n∈Zd

∑
〈f, TαkMβnγ〉TαkMβng, (3.19)

where γ is the dual window function of g. Translation Tαk of window function g is
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defined by

Tαkg(x) = g(x− αk), (3.20)

and modulation Mβn of window function g is defined by

Mβng(x) = e2πiβn·xg(x). (3.21)

In order to prove Lemma 3.4, first we need to discuss the properties of the dual

window function γ.

Lemma 3.5. Given window function g = rect
(

1
2
x+ 1

)
− rect(x) + rect

(
1
2
x− 1

)
,

there exists a compactly supported dual window function γ such that γ ∈ C∞(R) is

smooth.

Proof. Theorem 3.1 provides conditions on the window function g under which a

smooth dual frame can be constructed. Therefore we only need to show that g

satisfies the conditions listed in Theorem 3.1: supp g ⊆ [−(2K + 1), 2K + 1] and

∑
n∈Z

g(x+ 2n) = 1, x ∈ [−1, 1]. (3.22)

By construction, supp g = [−2, 2]. Hence, we can takeK = 1, then supp g ⊆ [−3, 3].

Note that g can be written as a piece-wise linear function:

g(x) =


1
2
x+ 1, x ∈ [−2, 0),

−1
2
x+ 1, x ∈ [0, 2].

Therefore, for x ∈ [−1, 1], if x ∈ [−1, 0), then x+ 2 ∈ [1, 2), and

∑
n∈Z

g(x+ 2n) = g(x) + g(x+ 2) =
1

2
x+ 1− 1

2
(x+ 2) + 1 = 1. (3.23)
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If x ∈ [0, 1], then x− 2 ∈ [−2,−1], and

∑
n∈Z

g(x+ 2n) = g(x) + g(x− 2) = −1

2
x+ 1 +

1

2
(x− 2) + 1 = 1. (3.24)

Therefore, the condition in Theorem 3.1 is satisfied, and we obtain a smooth dual

window function γ.

Now we prove Lemma 3.4.

Proof. We have shown that G(g, α, β) is a Gabor frame for L2(R) with α = 1 and

β ≤ 1
6
, and constructed a smooth dual window γ. In the following proof, we assume

α = 1 and β = 1
6
.

By Theorem 2.18, for any function f ∈ L2(R), we can expand f in terms of modu-

lations and translations of g by

f =
∑
k∈Z

∑
n∈Z

〈f, TαkMβnγ〉TαkMβng. (3.25)

Let fK,N be the approximation obtained by the first (2K + 1)× (2N + 1) terms in

the expansion:

fK,N =
∑
|k|≤K

∑
|n|≤N

〈f, TαkMβnγ〉TαkMβng. (3.26)
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Then for any x ∈ R,

|f(x)− fK,N(x)|

=

∣∣∣∣∣∣
∑
k∈Z

∑
|n|>N

〈f, TαkMβnγ〉TαkMβng(x)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
|k|>K

∑
|n|≤N

〈f, TαkMβnγ〉TαkMβng(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
k∈Z

∑
|n|>N

〈f, TαkMβnγ〉e2πiβn·(x−αk)g(x− αk)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
|k|>K

∑
|n|≤N

〈f, TαkMβnγ〉e2πiβn·(x−αk)g(x− αk)

∣∣∣∣∣∣
≤
∑
k∈Z

∑
|n|>N

|〈f, TαkMβnγ〉| · |e2πiβn·(x−αk)| · |g(x− αk)|

+
∑
|k|>K

∑
|n|≤N

|〈f, TαkMβnγ〉| · |e2πiβn·(x−αk)| · |g(x− αk)|.

(3.27)

Since |e2πiβn·(x−αk)| = 1, we have

|f(x)− fK,N(x)| ≤
∑
k∈Z

∑
|n|>N

|〈f, TαkMβnγ〉||g(x− αk)|

+
∑
|k|>K

|
∑
|n|≤N

〈f, TαkMβnγ〉||g(x− αk)|.
(3.28)

Note that

〈f, TαkMβnγ〉 =

∫
R
f(t)e2πiβn(t−αk)γ(t− αk)dt

=

∫
R
f(t+ αk)γ(t)e−2πiβn(t)dt

=
1

β

∫
R
f(

1

β
t+ αk)γ(

1

β
t)e−2πin(t)dt.

(3.29)

Therefore 〈f, TαkMβnγ〉 is the Fourier transform of the function Hα,β,k(t0) = f( 1
β
t0 +

αk)γ( 1
β
t0), i.e.,

〈f, TαkMβnγ〉 = Ĥα,β,k(n). (3.30)
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Since f is s times continuously differentiable, and γ is smooth, Hα,β,k is also s times

continuously differentiable by the product rule of differentiation. Since f ∈ Cs(R),

by properties of the space Cs(R), we have

|Ĥα,β,k(n)| < Cf
ns
, (3.31)

and ∑
|n|>N

|Ĥα,β,k(n)| <
∑
|n|>N

Cf
ns

< s

∫ ∞
N

2Cf
ns

dn =
2sCf

(s− 1)N s−1
, (3.32)

where Cf is a constant depending on L1 norm of the sth derivative of Hα,β,k, which

depends on the derivatives of f up to order s.

Equation (3.31) follows from the properties of Fourier coefficients in Theorem 2.4.

In order to use time differentiability of functions in Theorem 2.4, we check the

conditions in Theorem 2.4 on Hα,β,k. Recall (3.30), and it suffices to check the

conditions on fγ. Since f ∈ Cs(R), it has bounded derivatives up to order s,

and since γ ∈ C∞(R) and γ is compactly supported, lim|n|→∞ γ
(s0)(n) = 0 for all

0 ≤ s0 ≤ s. Therefore, we obtain

lim
|n|→∞

(fγ)(s0)(n) = 0, (3.33)

for all 0 ≤ s0 ≤ s. Since f ∈ Cs(R), we get ‖f‖∞ < ∞. And since γ is compactly

supported, we get ‖fγ‖1 <∞. Therefore, fγ ∈ L1(R), and we have Hα,β,k ∈ L1(R).

Now we can apply time differentiability formula of Fourier coefficients to obtain

(̂fγ)(s)(n) = (2πin)s(̂fγ)(n), (3.34)

and

Ĥα,β,k(n) =
Ĥ(s)

α,β,k

|2πin|s
. (3.35)
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By boundedness of Fourier coefficients of functions in L1, we obtain that

|Ĥα,β,k(n)| = |Ĥ
(s)
α,β,k|

|2πin|s
<
‖H(s)

α,β,k‖1

|2πin|s
=
Cβ‖(fγ)(s)‖1

|2πin|s
<∞. (3.36)

Note that since Hα,β,k can be written as f( 1
β
t0 + αk)γ( 1

β
t0), its derivatives up to

order s depend only on f with fixed γ, and a constant factor Cβ. Here Cβ depends

on powers of β up to βs. Since f ∈ Cs(R), it has bounded derivatives up to order

s, and since γ is compactly supported, we get (fγ)(s) ∈ L1(R). Note that the

parameter β is chosen in advance, and γ is fixed, so we say that the constant in

(3.31) depends only on input function f . Therefore we obtain the bound in (3.31),

and (3.32) follows.

Now, we plug in the bound in (3.32) back into the first term in (3.28) and obtain

|f(x)−fK,N(x)| <
∑
k∈Z

2sCf
(s− 1)N s−1

|g(x−αk)|+
∑
|k|>K

∑
|n|≤N

|〈f, TαkMβnγ〉||g(x−αk)|.

(3.37)

Note that g is compactly supported on [−2, 2]. Then, for any x, there are only

finitely many k’s (d 4
α
e) such that g(x− αk) 6= 0. Therefore, we get

∑
k∈Z

2sCf
(s− 1)N s−1

|g(x− αk)| ≤
d 4
α
e2sCf

(s− 1)N s−1
. (3.38)

To obtain an error bound on the second term in (3.37), note that for any x, we can

find K = max{d|x+2
α
|e, d|2−x

α
|e, d| 4

α
|e}, such that for all |k| > K, g(x − αk) = 0.

Choosing K satisfying this condition with respect to x, we get

∑
|k|>K(x)

∑
|n|≤N

|〈f, TαkMβnγ〉||g(x− αk)| = 0. (3.39)

By plugging (3.38) and (3.39) back in (3.37), we have

|f(x)− fK(x),N(x)| <
d 4
α
e2sCf

(s− 1)N s−1
. (3.40)
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Therefore, for any s times continuously differentiable function f ∈ L1(R), with

f (s) ∈ L1(R), given any x ∈ R, we can approximate f(x) using fK(x),N evaluated at

x with |f(x)− fK(x),N(x)| < Cf
Ns−1 .

For compactly supported functions, we derive the following corollary from

Lemma 3.4.

Corollary 3.6. Let f ∈ L2(R) be compactly supported with supp f = [t1, t2], s times

continuously differentiable, and let ‖f (s)‖1 < ∞. Then there exists a construction

fN,K : R→ C using Gabor coefficients with modulations up to scale N , with number

of translations up to scale K = K(t1, t2) (K depending on the support of f), such

that for any x ∈ [t1, t2],

|f(x)− fN,K(x)| < Cf
N s−1

, (3.41)

where Cf is a constant dependent on the derivatives of f up to order s, and | · |

denotes the point-wise absolute value.

Proof. The proof follows from the proof of Lemma 3.4. We obtain (3.37) for the

error between |f(x) − fK,N(x)|. To obtain an error bound on the second term in

(3.37), note that f is compactly supported with support supp f = [t1, t2]. Therefore,

we can find K = max{d| t2+2
α
|e, d|2−t1

α
|e, d| t2−t1

α
|e}, such that for all x ∈ [t1, t2], for

all |k| > K, g(x− αk) = 0. Then with this K depending on t1, t2, we obtain

∑
|k|>K

∑
|n|≤N

|〈f, TαkMβnγ〉||g(x− αk)| = 0, (3.42)
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and combining (3.38) and (3.42) in (3.37), we have

|f(x)− fK,N(x)| <
d 4
α
e2sCf

(s− 1)N s−1
. (3.43)

Therefore, for any compactly supported, s times continuously differentiable function

f ∈ L1(R), with f (s) ∈ L1(R), we can approximate f using fK,N (K independent of

x) with |f(x)− fK,N(x)| < Cf
Ns−1 for any x ∈ [t1, t2].

3.3.2 Construction of deep neural network for function approxima-

tion

In this Section we introduce the construction of the neural network based on

Gabor frame G(g, α, β) built using window function g defined in equation 3.12.

We construct the neural network with specified number of nodes and layers as

the following. The input layer consists of one node for input value x ∈ LR. The

first layer consists of all the shifts of input value x: {x − αk} for k ∈ [−K,K]. In

the second layer, output from second layer serves as input of modulated rectified

linear units of three types: rect
(

1
2
x+ 1

)
, −rect(x), rect

(
1
2
x− 1

)
. Each rectified

linear unit is modulated by exp 2πiβnx for n ∈ [−N,N ]. In the third layer, outputs

from different rectified linear units of the same modulation term are added together,

and we obtain TαkMβng for all k ∈ [−K,K] and n ∈ [−N,N ]. In the fourth layer,

outputs from the third layer are added to produce the final output function. The

output of the network has the form

fK,N =
∑
|k|≤K

∑
|n|≤N

wk,nTαkMβng, (3.44)
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Figure 3.4: Illustration of the neural network

where wk,n are the weights on each TαkMβng. The structure of the network is

illustrated in Figure 3.4.

With the above construction of the neural network, we reach the main theorem

of this Chapter.

Theorem 3.7. Let f ∈ L2(R). If f is compactly supported with supp f = [t1, t2], s

times continuously differentiable for s ≥ 2, then f can be approximated point-wise

using a 4-layer network with (2K + 1)(4(2N + 1) + 1) units, and the absolute value

of the point-wise error is bounded by
Cf
Ns−1 . There are 2K+1 linear units in the first

layer; (2K+1)×3×(2N+1) units in the second layer; (2K+1)(2N+1) linear units

in the third layer and a single linear unit in the fourth layer. Here K = K(t1, t2) is

the number of translations and N is the number of modulations in the Gabor system

used to construct the neural network.

Proof. We show that the neural network we built forms (2K + 1)× (2N + 1) terms

of a Gabor frame.
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Given any input x, the first layer of the neural network computes all translations

of x by αk for k ∈ [−K,K], creating (2K + 1) units. The second layer of the

neural network takes each translated x as input, pushes it through three different

rectified linear units, with each rectified linear unit modulated by e2πiβn·x of scales

n ∈ [−N,N ]. The second layer needs (2K+1)×3×(2N+1) units in total, since units

in this layer take each output from the previous layer as input through functions

e2πiβn·xrect
(

1
2
x+ 1

)
, −e2πiβn·xrect(x), and e2πiβn·xrect

(
1
2
x− 1

)
for all n ∈ [−N,N ].

In the third layer, output of different rectified linear units are combined for each

translation scale k and modulation scale n, producing (2K + 1) × (2N + 1) linear

units. The output of this layer are the translations and modulations of the window

function g up to scales K and N .

In fact, by definition of g in terms of rectified linear units, each element TαkMβn in

Gabor system G(g, α, β) can be represented as

TαkMβng(x) =e2πiβn·(x−αk)g(x− αk)

=e2πiβn·(x−αk)
(
rect

(
1

2
(x− αk

)
+ 1
)

− rect (x− αk) + rect

(
1

2
(x− αk)− 1)

)
.

(3.45)

In the fourth layer, all the translations and modulations of window function g are

added up to produce the final approximation result fK,N . Note that we can choose

parameters α and β so that the Gabor system G(g, α, β) is a frame. An example of

the choice of α and β is α = 1 and 0 < β ≤ 1
6
.

Finally, the fact that G(g, α, β) is a frame allows us to find upper bound on the

ability of the neural network to approximate function f using fK,N , for f ∈ Cs(R)
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with bounded sth derivative. Details of the approximation rate are stated in Lemma

3.4 and Corollary 3.6.

Note that we could construct similar schemes to approximate any x for func-

tions that are not compactly supported, but since the size of the scheme would

depend on the particular choice of x (specifically the choice of K would depend on

x), we would not define such scheme as a neural network.

3.4 Conclusions

In this Chapter we constructed a deep neural network that can approximate

functions f ∈ L2(R). We discussed the structure of the neural network in terms of

Gabor systems and described the construction of the neural network using rectified

linear units. We show that both construction describe the same structure mathe-

matically and prove that given specific error rate, we can construct neural network

of size dependent on the error rate in order to approximate functions to desired

accuracy.

This work does not discuss the training aspect of neural network. We show that

theoretically certain error bound that has direct impact on the size of the structure

of the network can be obtained, thus providing the possibility to obtain such error

bound when we use training in practice. There has been successfully developed and

tested training algorithms designed for complex valued neural networks recently

[114], and based on the simple structure of this network, extending this work to

include training aspect of the neural network is of future interests.
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The focus of this work is on the ability to specify size and structure of a neural

network given desired error rate of approximation. We think of input x as intact

and reliable in our construction and do not consider noise in the input value x.

However, in many applications, the input data is often contaminated with noise

and there have been interests in the study of reconstruction of signal x when x is

contaminated with noise. In the next Chapter, we look at a novel construction of a

common type of operation in neural networks, pooling, and study the reconstruction

stability of neural networks when such operation is included in the network.
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Chapter 4: Maximal function pooling in deep convolutional sparse

coding

4.1 Introduction

Convolutional neural networks (CNNs), as a popular type of architecture in

deep learning, have shown outstanding performances in various applications such

as image classification [23], [24]. Many examples of CNNs have used pooling as a

layer in their networks. Pooling is a dimension reduction technique that divides

an image into subregions and returns only one pixel value as the representative

of each subregion. Max pooling and average pooling are widely used traditional

pooling strategies and have demonstrated good performances in application tasks

[47]. Pooling helps reduce overfitting of training data, which is a common problem

in many applications.

Inspired by the maximal function from harmonic analysis [25], [90], we in-

troduce a novel pooling strategy, maxfun pooling, which is similar to both max

pooling and average pooing. In particular, max pooling takes the maximum value

in each pooling region as the scalar output, and average pooling takes the average

of all entries in each pooling region as the scalar output. Maximal function, or the
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Hardy-Littlewood maximal function [25], [90] Mf of function f , is defined by

(Mf)(x) = sup
x∈B

1

|B|

∫
B

|f | (4.1)

for each x ∈ Rn. Here the supreme is taken over all balls B ∈ Rn which contains

x and |B| is the measure of B. An important property of the Hardy-Littlewood

maximal operator is that for f ∈ Lp(Rn) where 1 ≤ p ≤ ∞, Mf is finite almost

everywhere [48]. We limit the support of this operator to be finite, discretize it and

define the maximal function pooling, or maxfun pooling, as follows.

Let X ∈ RN×N . The maxfun pooling Mf(X) for the kth pooling region is defined

by

(Mfb,s(X))k = max
1<j≤b,1≤n≤(b−j+1)2

 1

j2

∑
i∈Bk,j,n

Xi

 , (4.2)

where xi is the ith element in X. The side length of the pooling region is b, and we

compute averages of sub-square regions of side length j inside each pooling region,

with each sub-squares labeled by n = 1, ..., (b − j + 1)2. Bk,j,n is the set of indices

i of X such that xi is in the nth sub-square region of side length j in the kth

pooling region. The stride size s is the interval length at which we take each pooling

region. The maxfun pooling computes averages of sub-regions of different sizes in

each pooling region, and selects the largest average among all.

We analyze properties of maxfun pooling in the realm of convolutional sparse

coding. It has been shown that feed forward convolutional neural network can be

viewed as convolutional sparse coding [97]. Moreover, under the view of convolu-

tional sparse coding, stable recovery of the signal contaminated with noise can be

achieved, given simple sparsity conditions [97]. Equivalently it means that feed for-
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ward neural network maintains stability under noisy situations. The case of pooling

function analyzed via convolutional sparse coding is studied in [65], where the two

common pooling functions, max pooling and average pooling are analyzed. We fol-

low the framework in [65] and analyze maxfun pooling in this Section. We show

that stability of the neural network with presence of noise is also preserved with

maxfun pooling.

4.2 Convolutional Sparse Coding

Sparse coding problem is an important problem in signal processing, where

one aims at finding a low dimensional representation using few dictionaries for high

dimensional data [98]. Given a vector X ∈ RN , and a dictionary D ∈ RN×M , the

sparse coding problem attempts to find the most sparse vector Γ ∈ RM such that

X = DΓ. In other words, for a fixed dictionary D ∈ RM×N , the sparse coding

problem attempts to solve:

min
Γ
‖Γ‖0 s.t. DΓ = X, (4.3)

where ‖Γ‖0 is the l0 pseudo norm, and gives the number of non-zero elements in

vector Γ. Each column in D represents one base in the dictionary, and finding the

basis to represent data X so that minimum number of basis are used solves the

sparse coding problem.

Restriction on the sparsity of Γ with respect to the mutual coherence of the

dictionary D can guarantee uniqueness of the solution to (4.3). Mutual coherence
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Figure 4.1: Convolutional Sparse Coding, level 1

of a matrix D is defined as [35]

µ(D) = max
i 6=j

|diTdj|
‖di‖2 · ‖dj‖2

, (4.4)

where di’s are the columns of matrix D. However, finding the solution remains NP

hard. Relaxation of the model to allow noise and form error bound leads to the

following formulation:

min
Γ
‖Γ‖0 s.t. ‖DΓ−X‖ < ε. (4.5)

When high dimensional signals are present, an alternative method called convolu-

tional sparse coding model(CSC) was proposed. One attempts to represent the

whole signal X ∈ RN as a multiplication of a global convolutional dictionary

D ∈ RN×Nm1 and a sparse vector Γ ∈ RNm1 . D is constructed by shifting a lo-

cal matrix of size n0 × m1 in all possible positions, as shown in Figure 4.1. We

define the jth stripe γj of the sparse vector Γ as a group of 2n0 − 1 adjacent sparse

vectors of length m1, starting at the jth vector of length m1. See Figure 4.1 for an

illustration.
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The stripe γj gives the representation of a patch of X, xj of length n0 by

xj = Ωjγj. Ωj ∈ Rn0×(2n0−1)m1 is a submatrix of D, called a stripe dictionary

consisting of n0 consecutive rows of D and the columns of zeros removed.

The l0,∞ norm of the global sparse vector Γ1 is defined by the maximum number of

non-zeros in any stripe of length (2n0 − 1)m1 extracted from it, i.e.,

‖Γ‖s0,∞ = max
i∈{1,...,N}

‖γi‖0. (4.6)

Here ‖ · ‖0 is the zero norm that gives the number of nonzero elements of a vector.

A multi-layer convolutional sparse coding model is defined so that the output sparse

vector Γ from the previous layer is served as the input vector in the next layer, and

we aim at finding a new representation Γ2 for a new set of dictionary D2. Formally,

the problem of finding solutions to multi-layer convolutional sparse coding problem

is defined as the deep coding problem DCPλ in [97]:

Find {Γi}Li=1

X = D1Γ1,

Γ1 = D2Γ2,

...

ΓL−1 = DLΓL,

s.t.

‖Γ1‖s0,∞ ≤ λ1

‖Γ2‖s0,∞ ≤ λ2

‖ΓL‖s0,∞ ≤ λL

(4.7)

where λi are bounds on sparsity of the output vector Γi at each level, and L is the

number of layers. Note that we want to find representations of the input vectors at

each layer that are sparse in terms of its stripe sparsity, defined by ‖ · ‖0,∞.

In practice, the input signal X can be contaminated with noise, and we have

Y = X + E as the input signal instead of X, where E represents noise. In this
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case, we relax the constraint and allow the representation to vary within some

error bounds of the input signal. The deep coding problem when noise is present

(DCP ε
λ) [97] is defined as:

Find {Γi, Pi}Li=1

‖Y −D1Γ1‖2 ≤ ε1,

‖Γ1 −D2Γ2‖2 ≤ ε2,

...

‖ΓL−1 −DLΓL‖2 ≤ εL,

s.t.

‖Γ1‖s0,∞ ≤ λ1

‖Γ2‖s0,∞ ≤ λ2

‖ΓL‖s0,∞ ≤ λL.

(4.8)

Here εi is the error bound that are allowed in the ith layer.

Uniqueness of the solution to the DCPλ model, and the stability of the solution

to the DCP ε
λ problem have been shown in [97]. The equivalence of deep convolu-

tional sparse coding problem and feed forward neural network have also been shwon

in [97]. It is proven in [97] that one can view the output vector Γi from each layer

of the DCPλ problem as the output from one layer of feed forward convolutional

neural network (CNN), and thus the deep convolutional sparse coding problem can

be viewed as a signal reconstruction problem of CNNs.

Pooling is a common operation included in CNNs that serves as feature extraction

method to reduce redundancy of representation of signal and save computational

resources. It has been shown that adding max pooling and average pooling in the

feed forward path preserves the stability of the neural network [65]. We demonstrate

that the maxfun pooling, preserves the stability in the same sense of a convolutional

neural network when added in between layers of convolutions.
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Given a input signal X, the deep convolutional sparse coding problem with

pooling (DCPP ) is defined by [65]

Find {Γi, Pi}Li=1

X = D1Γ1,

P1 = D2Γ2,

...

PL−1 = DLΓL,

s.t.

‖Γ1‖s0,∞ ≤ λ1

‖Γ2‖s0,∞ ≤ λ2

‖ΓL‖s0,∞ ≤ λL,

P1 = Poolb1,s1(Γ1),

P2 = Poolb2,s2(Γ2),

...

PL = PoolbL,sL(ΓL),

(4.9)

where Poolb,s is the pooling operation. We take Poolb,s to be the maxfun pooling,

i.e., Poolb,s = Mfb,s, as defined in (4.2).

Problem (4.9) intends to find a stable sparse representation Γ1 of X with dictionary

elements in D1, given restriction on the stripe-sparsity of Γ1. Then pooling opera-

tion is performed on Γ1 to get P1. In second layer, we attempt to find the sparse

representation Γ2 of P1 with dictionary elements in D2. The stripe-sparsity of Γ2 is

restricted to be no greater than λ2. We repeat the process L times.

If our input signal X is contaminated by noise E, we are still interested in finding

a sparse representation that is stable. Define the deep convolutional sparse coding

problem with pooling when noise is present (DCPP ε) by [65]

Find {Γi, Pi}Li=1

‖Y −D1Γ1‖ ≤ ε1,

‖P1 −D2Γ2‖ ≤ ε2,

...

‖PL−1 −DLΓL‖ ≤ εL,

s.t.

‖Γ1‖s0,∞ ≤ λ1

‖Γ2‖s0,∞ ≤ λ2

‖ΓL‖s0,∞ ≤ λL,

P1 = Poolb1,s1(Γ1),

P2 = Poolb2,s2(Γ2),

...

PL = PoolbL,sL(ΓL),

(4.10)
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It has been shown in [65] that when max pooling and average pooling are used, the

stability of solution to the DCPP ε problem is preserved. We show that when we

use maxfun pooling, the stability result also holds. We prove the following theorem:

Theorem 4.1. Suppose a vector X satisfies the DCPP model in (4.9), but is con-

tanminated with noise E, where ‖E‖2 ≤ ε, resulting in Y = X + E. Suppose

{Γ∗i , P ∗i }Li=1 solves the problem in (4.9) and {Γ̂i, P̂i}Li=1 solves the problem in (4.10).

If

‖Γ∗i ‖s0,∞ ≤ λi <
1

2
(1 +

1

µ(Di)
), ∀0 ≤ i ≤ L,

ε0 = ε, ε2i =
4ε2i−1

1− (2‖Γ∗i ‖s0,∞ − 1)µ(D1)
∀i ≥ 1,

then for all 1 ≤ i ≤ L,

‖P ∗i − P̂i‖2
2 ≤ ‖Γ∗i − Γ̂i‖2

2 ≤ ε2i .

(4.11)

Here maxfun pooling is used as the pooling operation and we assume that the mini-

mum pooling region size b ≥ 2.

In order to prove Theorem 4.1, we first prove the following Lemma for maxfun

pooling.

Lemma 4.2. Let X and X̂ be two functions in RN×N , and let P = Mfb,s(X),

P̂ = Mfb,s(X̂) be the outcome of maxfun pooling of X and X̂,respectively, and

assume that s ≥ b. Then ‖P − P̂‖2 ≤ ‖X − X̂‖2.

Proof. Let Bk,j,n be the set of indices that represents the nth sub-square region of

side length j in the kth pooling region. Let γk,j,n = 1
j2

∑
i∈Bk,j,n Xi, and γ̂k,j,n =

1
j2

∑
i∈Bk,j,n X̂i. Let j∗k = argmax

1<j≤b,1≤n≤(b−j)2)

γk,j,n be the index of the maximum of γk,j,n
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over all j and n for each k, and let ĵ∗k = argmax
1<j≤b1≤n≤(b−j+1)2

γ̂k,j,n be the index of the

maximum of γ̂k,j,n over all j and n for each k. Let j∗min be the minimum of j∗k for

all k, and let ĵ∗min be the minimum of ĵ∗k for all k. Let K1 be the set of indices of k

so that γk,j∗k ≥ γ̂k,ĵ∗k
. Let K2 be the set of indices of k so that γk,j∗k < γ̂k,ĵ∗k

.

‖P − P̂‖2
2 =

∑
k

 max
1<j≤b

1<n≤(b−j+1)2

(
1

j2

∑
i∈Bk,j,n

Xi)− max
1<j≤b

1≤n≤(b−j+1)2

(
1

j2

∑
i∈Bk,j,n

X̂i)

2

(4.12)

=
∑
k

 max
1<j≤b

1≤n≤(b−j+1)2

γk,j,n − max
1<j≤b

1≤n≤(b−j+1)2

γ̂k,j,n

2

(4.13)

=
∑
k∈K1

 max
1<j≤b

1≤n≤(b−j+1)2

γk,j,n − max
1<j≤b

1≤n≤(b−j+1)2

γ̂k,j,n

2

+ (4.14)

∑
k∈K2

 max
1<j≤b

1≤n≤(b−j+1)2

γ̂k,j,n − max
1<j≤b

1≤n≤(b−j+1)2

γk,j,n

2

(4.15)

=
∑
k∈K1

(γk,j∗k − γ̂k,ĵ∗k)
2 +

∑
k∈K2

(γ̂k,ĵ∗k
− γk,j∗k)

2 (4.16)

≤
∑
k∈K1

(γk,j∗k − γ̂k,j∗k)
2 +

∑
k∈K2

(γ̂k,ĵ∗k
− γk,ĵ∗k)

2 (4.17)

=
∑
k∈K1

 1

(j∗k)
2

∑
i∈Bk,j∗

k

Xi −
1

(j∗k)
2

∑
i∈Bk,j∗

k

X̂i

2

+ (4.18)

∑
k∈K2

 1

(ĵ∗k)
2

∑
i∈Bk,ĵ∗

k

X̂i −
1

(ĵ∗k)
2

∑
i∈Bk,ĵ∗

k

Xi


2

(4.19)

≤
∑
k∈K1

1

(j∗k)
2

∑
i∈Bk,j∗

k

(Xi − X̂i)
2 +

∑
k∈K2

1

(ĵ∗k)
2

∑
i∈Bk,ĵ∗

k

(X̂i −Xi)
2 (4.20)

≤ 1

(j∗min)2

∑
k∈K1,i∈Bk,j∗

k

(Xi − X̂i)
2 +

1

(ĵ∗min)2

∑
k∈K2,i∈Bk,ĵ∗

k

(X̂i −Xi)
2 (4.21)

≤
∑

k∈K1,i∈Bk,s

(Xi − X̂i)
2 +

∑
k∈K2,i∈Bk,s

(X̂i −Xi)
2 (4.22)
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=
N2∑
i=1

(Xi − X̂i)
2 (4.23)

=‖X − X̂‖2
2. (4.24)

The inequality (4.17) comes from the fact that γ̂k,ĵ∗k
is the maximum over all j and

n and thus γ̂k,ĵ∗k
≥ γ̂k,j∗k , and similarly γk,j∗k ≥ γ̂k,j∗k . In (4.18), Bk,j∗k

and Bk,ĵ∗k

are the corresponding set of indices for which γk,j∗k and γ̂k,ĵ∗k
are maximums across

all j’s and n’s, respectively. The inequality (4.20) holds based on the inequality

(
∑n

i=1 ai)
2 ≤ n

∑
a2
i . Inequality (4.22) follows from the fact that stride size s ≥ b.

Bk,s represents the indices of the sub-square of length s at the initial position in the

kth pooling region.

We now prove Theorem 4.1.

Proof. By Theorem 3 in [98], we know that for a signal Y = X + E, if

1.‖Γ∗1‖s0,∞ <
1

2
(1 +

1

µ(D1)
) and ‖E‖2 = ‖Y −D1Γ∗1‖2 ≤ ε0,

2.‖Γ̂1‖s0,∞ <
1

2
(1 +

1

µ(D1)
) and ‖Y −D1Γ̂1‖2 ≤ ε0,

then

‖∆‖2
1 = ‖Γ∗1 − Γ̂1‖2

2 ≤
4ε20

1− (2‖Γ1‖s0,∞ − 1)µ(D1)
= ε21. (4.25)

Since ‖Γ∗1‖s0,∞ ≤ λ1 and ‖Γ̂∗1‖s0,∞ ≤ λ1 by assumption in problem 4.9 and 4.10, and λ

is bounded by assumption 4.11 in theorem 4.1, the first parts of 1 and 2 hold. Since

Γ∗1 is the solution to the DCPP problem, it must be true that ‖Y − D1Γ∗1‖ ≤ ε0.

‖Y − D1Γ̂1‖ ≤ ε0 by assumption in problem 4.10. Therefore, we have ‖∆‖2
2 ≤ ε21.

And hence by Lemma 4.2, we have

‖P ∗1 − P̂1‖2
2 ≤ ‖∆1‖2

2 ≤ ε21. (4.26)
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At second level, the same argument holds so that ‖Γ∗2‖ < λ2 <
1
2
(1 + 1

µ(D1)
) and

‖Γ̂2‖ < λ2 < 1
2
(1 + 1

µ(D1)
). ‖P ∗1 − D2Γ∗2‖2 < ε2 by assumption in problem 4.9.

‖P̂1 −D2Γ̂2‖2 < ε2 by assumption in problem 4.10. Therefore, by theorem 3 in [98]

we have

‖Γ∗2 − Γ̂2‖2
2 ≤ ε22, (4.27)

and by Lemma 1, we get

‖P ∗2 − P̂2‖2
2 ≤ ‖Γ∗2 − Γ̂2‖2

2 ≤ ε22. (4.28)

Following this argument for 1 ≤ i ≤ L, we complete the proof and showed that

‖P ∗i − P̂i‖2
2 ≤ ‖Γ∗i − Γ̂i‖2

2 ≤ ε2i , ∀ 1 ≤ i ≤ L. (4.29)

4.3 Experiments

Now that we have shown that the maxfun pooing function preserves the sta-

bility of deep neural networks when analyzed via deep convolutional sparse coding

scheme, we conduct experiments using convolutional neural networks on a standard

data set to test the performance of maxfun pooling on classification tasks compared

with other pooling strategies. Mike Pekala is the major contributor to the experi-

mental results from this Section.

To test the performance of maxfun pooling, we produce features of image data sets

by running through shallow layers of convolutional neural network, applying pool-

ing functions spatially to the set of features produced in all channels, and then
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feeding the pooled features into a traditional classifier to determine how well the

classification scheme we choose can distinguish different objects based on the pooled

representations.

For image data set we use a subset of the Caltech-101 data set [38]. To reduce bias

created by size differences in each object category, we restrict to the classes that

have between 80 and 130 instances. Therefore we obtain an 18-class classification

problem with mild class imbalance by design. For pre-processing steps, all images

are first padded to become square images; e.g. a 100x120 pixel image is padded to

120x120 pixel image. Each image is kept centered when padding. In the previous

example 10 rows are added to the top of the image and 10 rows are added to the

bottom. Then we resize all images to 128x128 pixels so that the signal’s aspect ratio

is preserved.

We choose to use the features generated by first convolutional layer of the Inception-

v3 network, a recently desinged highly effective network for natural image classi-

fication [113]. A set of feature images in different channels is produced by this

operation, and we then spatially decompose image in each channel into possibly

overlapping pooling regions. Note that this decomposition preserves the channel

dimension, which is the dimension of features produced for each pixel location.

After producing features, various pooling strategies are used to reduce each pooling

region to a scalar value. The vectorized representation of these pooling outputs

becomes the feature representation to be fed into a classification scheme. We choose

a classic method, the support vector machine (SVM) [54] and use one versus one

type of classification to produce final results.
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We compare the maxfun pooling to conventional pooling functions max pooling and

average pooling, and also some novel pooling strategies: stochastic pooling [119]

and “mixed” pooling [78]. For the stochastic pooling implementation we use the

probabilistic averaging method

sj =
∑
i∈Rj

piXi,

where sj denotes the pooled value for jth pooling region and piXi is a weighted

average of activations in the pooling region [119]. Note that parameters pi’s are

randomly chosen within each pooling region according to a multinomial distribution

based on the activities within the pooling region. Mixed pooling is defined as a

linear combination of maximum and average pooling

sj = αPoolmax(Ri) + (1− α)Poolavg(Ri),

where Ri denotes the ith pooling region, Poolmax denotes the maximum pooling,

Poolavg denotes average pooling and α is a scalar in [0, 1].

Both the maxfun pooling and the mixed pooling strategies entail hyperparameter

selection; in the case of the maximal function we select the minimum support cardi-

nality r of j in (4.2) while for the mixed pooling strategy we must select the scalar α.

In both cases we use a k-fold cross-validation procedure with k = 3 to select these

hyperparameters. Our training and testing data sets are of size 975 and 649 with

the partition chosen uniformly at random. The pooling window sizes and resulting

classification accuracy are shown in Table 4.1. Note that we implemented a centered

version (CV) of the maxfun pooling, in which we only compute the averages of the

sub-squares that are centered in each pooling region.
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pooling strategy SVM accuracy

b = 21, s = 21 b = 21, s = 11

average 0.5763 0.6102

maximum 0.5932 0.5932

mixed 0.6287 0.6240

stochastic 0.6502 0.6641

maxfun 0.6225 0.6102

maxfun + CV 0.6626 0.6579

Table 4.1: Empirical results for various pooling strategies. Pooling regions have

dimensions b × b and the pooling stride is s. When s = r, the pooling regions

partition the spatial dimensions of the image, i.e. there are no overlaps in pooling

regions.

The results of 4.1 suggest that, in the context of our underlying assumptions, the

maxfun pooling strategy provides consistently good results. Note that the classifi-

cation results that we obtain on this data set do not match with the state-of-the-art

classification results of this data set, as our goal is not to outperform existing algo-

rithms for classification on this data set, but to compare various pooling strategies

and assess their ability to represent images effectively. Also note that in order to

distinguish the behaviors of maxfun pooling, max pooling and average pooling which

are similar when pooling size b is small, we choose relatively large pooling regions

to manifest the differences between these pooling strategies.
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4.4 Conclusions

In this Chapter we introduce a novel pooling method, maxfun pooling, inspired

by the maximal function in harmonic analysis, prove that it maintains the stability

of a convolutional neural network and demonstrate its experimental performances

by comparing it with state of the art pooling strategies in classification tasks.

Maxfun pooling is a strategy that effectively extracts features from outputs of

layers of neural networks and produces good representation of images. In fact, many

functions and transformations originated from harmonic analysis have the ability to

extract useful features from data sets for classification or segmentation purposes. In

the next Chapter, we dig into the problem of chemical molecule representation in

quantum energy regression using a novel feature extraction method using the Gabor

transform.
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Chapter 5: Gabor Regression of Quantum Chemical Energies

5.1 Introduction

Computation of the energy of a chemical molecule using the charges and rel-

ative positions of its atoms has become a crucial topic in computational chemistry.

It can be applied to various industrial scenarios such as prediction of the thermody-

namics and kinectics of chemical reactions [34]. There are limitations that hinder the

exact computation of molecular energies for most chemical molecules. The compu-

tation of ground state molecular energies is made possible via the density functional

theory (DFT) [110] by transforming the computation problem into a variational

problem over the total electronic density [60]. Due to the computational complexity

using DFT, machine learning methods have been developed recently to approxi-

mate ground state energy of chemical molecules, see, e.g., [52], [88], [105], [108].

The machine learning methods focus on finding proper representations of chemical

molecules with desired invariant properties [7], such that the dimensionality of the

representation is reduced while the properties of the molecules are preserved.

Using machine learning method, the problem of computing ground state en-

ergy of chemical molecules splits into two separate tasks: effective representation

of the molecules and means to approximate the objective function based on such
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representation. Common methods that are used to approximate the energy are re-

gressions of different forms. Unique and efficient representations of the molecules

are developed based on the geometry and properties of molecules. The quality of

the representation often determines the accuracy of the approximation achieved by

regression models.

Methods based on Coulomb matrix [52], [105] , wavelet scattering trans-

form [58], [59], and deep neural networks [88], [108], have been developed to represent

chemical molecules. Coulomb matrix representation is introduced in 2012, but it

faces problems of non-invariance to atom permutations [105]. A modification of

Coulomb representation comes in 2013 and demonstrates significant improvements

on performance [52]. In 2015, Hirn, Mallat, Poilvert implement scattering transform

to represent chemical molecules on 2D molecules and demonstrate improvements

upon Coulomb matrix representation for 2D molecules [59]. The results for scat-

tering transform is improved in 2017 [58] using symmetries in wavelets and second

level scattering transform. In 2017, a method using deep tensor neural networks for

quantum energy regression is developed and demonstrates the best performance up

to date [108].

In this Chapter, we introduce a novel method based on the Gabor transform

to represent chemical molecules in 2D in an invariant way. Gabor transform, or

the short time Fourier transform [49], has been used as an effective tool for data

representation in various applications [29], [96]. Gabor transform captures local in-

formation of data by entailing frequency information of signal at different locations.

We design Gabor invariant transform which takes electron density of molecules [59]
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as input, and test by sparsely regressing on the representation to predict the energy

of a chemical molecule. Our result shows that Gabor invariant representation is a

generic method that performs at the level of state-of-the-art representation meth-

ods for 2D planar molecules. The Gabor invariant representation method does not

perform as well as the improved scattering representation introduced in 2017 [58]

for 2D planar molecules, but it outperforms the state-of-the-art Coulomb matrix

representation, and can be extended to represent 3D molecules, which is the natural

setting for chemical molecule representation. The Gabor invariant transform pre-

serves essential properties of the chemical molecules, and achieves desired precision

without the need of large amount of training data, or careful tuning of parameters

pertaining to a particular data set.

We organize the remaining of this Chapter as follows. In Section 5.2, we il-

lustrate types of desired invariant properties of a chemical molecule, and introduce

experimental background for quantum energy regression [58]. Our invariant repre-

sentation method, the Gabor invariant representation, is introduced in section 5.3,

along with its invariant properties and applications. In section 5.4, we describe the

regression method used for energy prediction. Section 5.5 includes details of the

state of the art invariant representations of chemical molecules introduced in the

paper [58]. Section 5.6 has the details of experimental setup and results. We will

analyze the results and discuss properties of the Gabor invariant representation,

including its merits, drawbacks, and potential extensions.
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5.2 Background on Quantum Energy Regression

In this Section we introduce the background on quantum chemical energy

regression. In particular, we discuss the problem of computing energy of chemical

molecules in machine learning, desired properties of representation of molecules, and

computation of electronic densities of molecules.

5.2.1 Computation of quantum chemical energy

Computation of energy of a single chemical molecule has become an essential

topic in computational chemistry. A chemical molecule is represented by its state

x = {rk, zk}k, where rk ∈ R3 is the position of the kth nuclei and zk > 0 is the

charge of kth nuclei. Approaches based on DFT compute the quantum energy of a

molecule, denoted as f(x). In machine learning, one way to avoid direct computation

from DFT is to build set of dictionaries of functions Φ(x) = {φi(x)}Ni=1 such that

the energy f(x) can be approximated by f̃(x), where

f̃(x) = 〈x,Φ(x)〉 =
N∑
i=1

wiφi(x),

and the weights {wi} are computed such that the error
∑n

j=1

∣∣∣f̃(xj)− f(xj)
∣∣∣2 on

the training data set of size n is minimized.

With the weights {wi} computed from a training sample {xi}i, given any

input of a chemical molecule x′ with unknown energy f(x′), one can approximate

its energy by first computing its dictionaries Φ(x′) = {φi(x′)}i, and then applying

weights on the dictionaries accordingly to get f̃(x′) =
∑

iwiφi(x
′).
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5.2.2 Invariant properties of chemical molecules

The ground state energy is unique for individual molecule and is closely related

to the chemical properties of individual molecules [59]. It is important to capture

unique properties of each molecule in its representation, because prediction quality of

the regression on the dictionaries depends highly on the degree to which dictionaries

preserve unique properties of the molecules.

Invariant properties are important features of chemical molecules. Let x =

{rk, zk : rk ∈ R3, zk ∈ R, zk > 0}Kk=1 represents a molecule of K atoms at positions

rk with atomic charges zk. The quantum energy f(x) of molecule x must satisfy the

following invariant properties [59]:

• Permutation invariance The energy functional f(x) is invariant under per-

mutation of indices {k = 1, ..., K} in x = {rk, zk}k. The ordering of atoms in

the chemical molecule in the representation does not influence the energy of

the molecule.

• Isometric invariance The energy functional f(x) is invariant under global

translations, rotations, and symmetries of atomic positions rk. Rotating,

translating and reflecting molecule does not resulting in having a different

molecule, and thus the energy of the molecule should not be influenced by

these operations [7].

In order to make precise prediction on the ground state energy functional, it is nec-

essary to ensure that the representation follow the same invariant properties as the
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objective functional. The Gabor invariant representation takes account into permu-

tational and isometric invariances. We compute the Gabor invariant representation

of a molecule from its electron density.

5.2.3 Electron density approximation

The molecular energy E can be written as a functional of the electron density

ρ(u) ≥ 0 which specifies the density of electronic charge at every position u ∈ R3.

The ground state energy f(x) which is unique for every molecule x, can be obtained

by minimizing energy E over a set of electronic densities ρ:

f(x) = E(ρx) = inf
ρ
E(ρ).

An important property of neutral molecules is that the total electrons integrate up

to the summation of its atomic charges, i.e.,
∫
ρxdx =

∑
k zk.

Computing ρx is a challenging problem that is as difficult as computing ground

state energy f(x). Therefore, we approximate electronic density ρx by ρ̃, where ρ̃

also satisfies
∫
ρ̃xdx =

∑
k zk. The approximation ρ̃ is constructed so that it is

invariant under permutation of atoms:

ρ̃x =
K∑
k=1

ρ
a(k)
atom(u− pk).

In other words, ρ̃ is a linear superposition of individual atomic densities. If the

molecule x hasK atoms, each at position pk, and ordered by {a(k)}Kk=1, then ρ
a(k)
atom(u)

represents the atomic density of atom a(k). Atomic densities are shifted to center at

atomic positions pk, and their summation gives the approximate electronic density
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of molecule x. Figure 5.1 gives an example of electron density and its approximation

[59].

Figure 5.1: Left: ground state electron density ρx and right: approximate electron

density ρ̃x [59]

A refinement of the approximation is to separate the densities of the core

electrons ρcor from the densities of the valence electrons ρval. The core electrons stay

close to the nuclei and do not interact between different nuclei, while the valence

electrons will form chemical bonds and interact with each other. This separation

facilitates in differentiating types of electrons and has demonstrated to improve

numerical experiment results in [58]. An illustration is shown in Figure 5.2 [58].

The approximate density ρ̃x is invariant under permutation of atom indices, but it

is not invariant under rotations, reflections and translation. Therefore we need to

construct a set of dictionaries Φ(ρ̃x) = {φk(ρ̃x)}k which satisfies rotational invariance

to approximate the ground state energy f(x):

f(x) =
∑
k

ωkφk(ρ̃x).
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Figure 5.2: Left: atomic density; middle: core density; right: valence density. [58]

5.3 Gabor Invariant Representation

Gabor invariant transform takes in electron densities of molecules and creates

a set of dictionaries that is rotational and permutation invariant. We define Gabor

invariant transform mathematically and derive its invariant properties when it is

applied to the electron density of molecule.

5.3.1 2D Gabor Invariant Representation

A Gabor transform on 2D is a type of short time Fourier transform, which

measures centered phase and frequency information of an image as location of the

center changes over time. For a given function ρ(x), ρ(x) is first centered by multipli-

cation of a window function g(x− t), and then it takes Fourier transform. Formally,

Gabor transform Vgρ(t, γ) for a function ρ is defined in 2.12:

Vgρ(t, γ) =

∫
ρ(x)g(x− t)e−2πixγdx,

where t is the center location of the window and γ specifies frequency of interest.

Common window function is the Gaussian function. For simple notation, we denote
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Figure 5.3: Atomic density (left) and the Gabor transform at selected pixel locations

(right)

the Gabor transform Vgρ of ρ by window function g as Gρ.

Compared with Fourier transform, the multiplication of a Gaussian g(x − t) con-

centrates function ρ(x) around t and reduces the amplitute of ρ(x) when x decays

from t. In this way, we capture information locally, instead of obtaining overall

information of the entire image [49]. Figure 5.3 shows the Gabor transform of the

electronic density of a chemical molecule at different pixel locations.

The Gabor transform is not translation invariant, because it gathers information

at each location point t. Since Gabor transform is taken uniformly on the image

at locations t, translating location does not impact the outcome of the integral and

thus translation invariance is achieved. In fact, for a given Gaussian function g(x),

Gτρ(t, γ) = e−2πiτγGρ(t− τ, γ), where τρ(x) = f(x− τ) denotes the translation of f

by τ . We can take the modulus of Gρ(t, γ) and integrating over all t:

Gρ(γ) =

∫
R3

|Gρ(t, γ)|dt.
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Figure 5.4: Atomic density and Gabor coefficients integrated over translation

By taking the modulus and integrating over all t, we get Gτρ(γ) =
∫
R3 |e−2πiτγGρ(t−

τ, γ)|dt =
∫
R3 |Gρ(t, γ)|dt = Gρ(γ). Therefore translation invariance is obtained.

Figure 5.4 gives an example of the original electron density and integration of Ga-

bor transform of the electron density over translations.

A rotation in function f yields a rotation in Gρ(γ). In order to obtain rotation in-

variance in the representation, we need to ensure that the Gabor invariant transform

is rotaional invariant. This can be achieved by integrating over every circular orbit

around the center of each density representation, and averaging over the length of

the orbit to get a vector representation of each molecule.

Let (α, η) be the spherical coordinates of γ, with |γ| = α, and η ∈ S2 denotes the

rotation orbit. If we write Gρ(γ) = Gρ,α(η), then rotation invariance of Gρ(γ) is

obtained by averaging over each η:

‖Gρ,α‖2
2 =

∫
S2

|Gρ,α(η)|2 dη =

∫
S2

∣∣∣∣∫
R3

|Gρ(t, γ)| dt
∣∣∣∣2 dη.

To approximate exchange correlation terms in quantum energy functionals, whose

resulting energy grows more linearly with the number of electrons than quadratically
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Figure 5.5: Rotational invariant representations

[58], we also include the L1 norm:

‖Gρ,α‖1 =

∫
S2

|Gρ,α(η)|dη =

∫
S2

∣∣∣∣∫
R3

|Gρ(t, γ)| dt
∣∣∣∣ dη.

The radial frequency parameter α is sampled at intervals ε over a frequency range

α ∈ [ε, ε−1]. Figure 5.5 gives a demonstration of the rotational representation of

a chemical molecule. Note that since the input is translation invariant, it is also

translation invariant.

The Gaussian function g concentrates f at t, and the variance of Gaussian function

measures the range in which information of f is taken. To capture information of f

of different widths at t, we adopt two different Gaussian functions g1 and g2, and we

denote G1 and G2 to be their corresponding Gabor transforms.The Gabor modulus

dictionary is defined as:

Φρ = {‖ρ‖1, ‖G1
ρ,kε‖1, ‖G1

ρ,kε‖2
2, ‖G2

ρ,kε‖1, ‖G2
ρ,kε‖2

2}0≤k≤ε−2 .

A Gabor invariant transform is translation and rotation invariant, and it captures

local information of electronic density function of a molecule. Because interaction

between atoms is crucial in defining chemical properties of a molecule, which is
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tight to the ground state energy of the molecule, increment in the ability to gather

local information improves quality of the representation and yields better regression

results. Details will be discussed in Section 5.6.

5.4 Energy Regression Model

5.4.1 Sparse Regression by Orthogonal Least Square

We use sparse regression in dictionaries Φ(x) = {φk(x)}k which are adapted

to the properties of quantum energy functions f(x) [59]. Given a training set of

N molecular state vectors and associated energies {xi, f(xi)}Ni=1, we compute the

sparse regression by restricting the number of nonzero weights ωk:

f̃(x) = 〈ω,Φ(x)〉 =
M∑
m=1

ωmφkm(x),

where M is less than total number of dictionaries N for each molecule x. To account

for correlations between functions in dictionaries, we apply greedy orthogonal least

square forward selection algorithm [20] to select members of the dictionary. The

objective is to minimize the quadratic error function on the training set:

N∑
i=1

∣∣∣∣∣
M∑
m=1

ωmφkm(xi)− f(xi)

∣∣∣∣∣
2

.

A greedy orthogonal least square algorithm selects one regression vector at a time,

and orthogonalizes the remaining dictionary relatively to the previously selected vec-

tors, i.e., the remaining dictionary is decorrelated from the perviously selected vec-

tors. Let {φmk }k be the set of decorrelated dictionary at iteration m. Let {φnkn}
m
n=1−1
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be the set of previously chosen regression vectors. We select one new regression vec-

tor from {φmk }k, say φmkm , so that the quadratic error is minimized when we add the

new vector to the regression terms:

N∑
i=1

|fm(xi)− f(xi)|2 , where fm(x) =
m∑
n=1

ω̃nφ
n
kn(x).

fm(x) is the projection on the first m selected dictionaries, and the weight coefficient

of each φnkn is computed by ω̃n =
〈
f(x), φnkn(x)

〉
=
∑N

i=1 f(xi)φ
n
kn

(xi). Since all

selected dictionaries are orthogonal, the quadratic error can be written as

N∑
i=1

|fm(xi)− f(xi)|2 =
N∑
i=1

|f(xi)|2 −
m∑
n=1

|ω̃m|2,

and the error is minimized by choosing φmkm which maximizes its correlation with

f(x):

km = arg max
k

∑
i

f(xi)φkm(xi).

After φmkm is chosen from {φmk }k, we orthogonalize each remaining φmk with respect

to φmkm over the training set x = (xi)i:

φ̃m+1
k = φmk −

〈
φmkm(x), φmk (x)

〉
φmkm .

Each decorrelated vector φ̃m+1
k is then normalized to define the updated dictionary

φm+1
k :

φm+1
k = φ̃m+1

k ‖φ̃m+1
k (x)‖−1

2 ,

where ‖φ̃m+1
k (x)‖ = (

∑
i |φ̃

m+1
k |2)

1
2 .

The algorithm terminates when we reach the number of regression vectors M , which

is chosen based on a cross validation. we obtain a set of orthonormal dictionaries
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{φnkn}1≤n≤M , and the final M -term regression can be written as a function of the

dictionary Φ = {φmkm}m:

fM(x) =
M∑
m=1

ω̃mφ
m
km =

M∑
m=1

ωmφkm .

This algorithm can be implemented by QR factorization, or implemented directly

as described above [14]. It gives a orthogonal least square regression of M vectors in

Φ. We introduce existing representation method of chemical molecules in the next

Section, mainly the ones introduced in [52] and in [59].

5.5 Other molecular representations

In this Section we describe some of the existing methods used in represen-

tation of chemical molecules for energy regression. In particular, we mention the

representations which we compare with in Section 5.6.

5.5.1 Coulomb matrix representation

Methods to compute dictionaries have been developed and incorporate invari-

ant properties of chemical molecules. One of the state-of-the-art method generates

the Coulomb matrix, which is introduced by Rupp, et al [105]. Coulomb matrix rep-

resentation represents a molecule by a matrix of distance, and adopts kernel ridge

regression from kernels computed from Coulomb matrices. Coulomb matrix of a

molecule x is defined by:

ck,l =


1
2
z2.4
k k = l,

zkzl
|rk−rl|

, k 6= l.

(5.1)
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Coulomb kernel is computed by

K(x, x′) = exp(− 1

σ

∑
k,l

|ck,l(x)− ck,l(x′)|). (5.2)

If two molecules have different number of atoms, the Coulomb matrix of the molecule

with smaller number of atoms is extended with zeros.

The Coulomb matrix representation is invariant under isometry, and stable

under small perturbation of atomic positions rk, but it changes form under per-

mutation of indices of atoms and is not permutation invariant. Modifications can

be made to reduce the effect of permutation and the kernel ridge regression using

Coulomb kernels gives good prediction results [52].

5.5.2 Invariant Wavelet Modulus and Multiscale Scattering

In this Subsection we describe invariant wavelet modulus and invariant mul-

tiscale scattering representation from [59]. Scattering transform is introduced by S.

Mallat in [82]. It has been proven to possess invariant properties and stability under

small deformations. It can be viewed as a cascade of wavelet transform with modu-

lus taking at different scales and locations. Wavelet transform obtains information

at different scales and orientations. Given a mother wavelet ψ : R3 → C, we can

compute a sequence of dilated and rotated wavelets by

ψj,θ(u) = 2−3jψ(2−jr−1
θ u).

where rθ denotes an rotation with angular parameter θ. The wavelet transform

of a function ρ(x) is defined as ρ ∗ ψj,θ where ∗ is the convolution operation. We
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compute the invariants from the modulus of wavelet coefficients |ρ∗ψj,θ|. Let ψ∗(u) =

ψ(−u) be the complex conjugate of ψ(u), then |ρ ∗ ψj,−θ| = |ρ ∗ ψj,θ|. Therefore the

wavelet ψj,θ only depends on the rotation modulo a sign. We can index the rotation

parameter rθ by a two-dimensional Euler angular parametrisation θ ∈ [0, π]2 of the

half sphere.

Wavelet coefficients are computed up to a maximum scale of 2J . Lower frequencies

are captured by a low-pass filter φJ(u) = 2−3Jφ(2−Ju) where φ(u) ≥ 0 and
∫
φ(u) =

1. The wavelet transform is defined as

Wρ = {ρ ∗ φJ , ρ ∗ ψj,θ}j<J,θ∈[0,π]2 .

The wavelet transform is invariant to reflections, but it is not invariant under transla-

tions and rotations. To account for translation and rotation invariances, we integrate

over the translation and rotation variables in L1 norm where

‖ρ ∗ ψj,·‖1 =

∫
R3

∫
[0,π]2
|ρ ∗ ψj,θ(u)|dθdu,

and in L2 norm where

‖ρ ∗ ψj,·‖2
2 =

∫
R3

∫
[0,π]2
|ρ ∗ ψj,θ(u)|2dθdu.

The invariant dictionary of wavelet coefficients is built up to a highest frequency ε−2

as

Φρ = {‖ρ‖1, ‖ρ ∗ ψj,·‖1, ‖ρ ∗ ψj,·‖2
2}2 log2 ε<j<J .

The integration over u ∈ R3 and θ ∈ [0, π]2 removes rotational and translational

variability, and thus we can propagate along the paths u and θ to obtain more stable
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invariants. In particular, the variations of |ρ ∗ψj,θ(u) are represented by convolving

with a second family of wavelets with different scales 2j
′
and different rotation angles

θ+θ′, and integrated over u and θ. L1 and L2 norms are computed for the dictionary:

‖|ρ ∗ ψj,·| ∗ ψj′,θ′+·‖1 =

∫
R3

∫
[0,π]2
||ρ ∗ ψj,θ(u)| ∗ ψj′,θ′+θ(u)| dudθ,

‖|ρ ∗ ψj,·| ∗ ψj′,θ′+·‖2
2 =

∫
R3

∫
[0,π]2
||ρ ∗ ψj,θ(u)| ∗ ψj′,θ′+θ(u)|2 dudθ.

The resulting second order scattering dictionary is:

Φρ = {‖ρ‖1, ‖ρ ∗ ψj,·‖1, ‖ρ ∗ ψj,·‖2
2,

‖|ρ ∗ ψj,·| ∗ ψj′,θ′+·‖1, ‖|ρ ∗ ψj,·| ∗ ψj′,θ′+·‖2
2}2 log2 ε<j<j

′<J,θ′∈[0,π]2 .

The scattering invariants are invariant under translations, rotations and permuta-

tions, and it is proven to be stable under small deformation when taken to the

limit [58], [59].

5.5.3 Invariant Fourier Modulus

Fourier transform approach can define translation invariant representation and

modifications can be made to account for rotation invariance. The Fourier transform

F : R3 → R̂3 of a density function ρ is defined as:

ρ̂(ω) =

∫
R3

ρ(u) · e−2πiωudu.

Since the Fourier transform ρ̂(u−τ) = e−2πiτωρ̂(u), the modulus of Fourier transform

is translation invariant, i.e., |ρ̂(u− τ)| = |ρ̂(u)|. Rotation invariance is obtained by

averaging over each rotation orbit, indexed by η ∈ S2, where S2 is the sphere. Since

a rotation of ρ yield a rotation of ρ̂, if we write ω in spherical coordinates (α, η), with
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|ω| = α, and write ρ̂(ω) = ρ̂α(η), then integration over η yields rotation invariance

of the Fourier modulus:

‖ρ̂α‖2
2 =

∫
S2

|ρ̂(αη)|2dη.

To approximate exchange correlation terms in quantum energy functionals, whose

resulting energy grows more linearly with the number of electrons than quadratically,

L1 norm of the Fourier modulus is included:

‖ρ̂α‖1 =

∫
S2

|ρ̂(αη)|dη.

The radial frequency parameter α is sampled at intervals ε over a frequency range

α ∈ [ε, ε−1]. The Fourier modulus dictionary is defined by

Φρ = {‖ρ‖1, ‖ρ̂kε‖1, ‖ρ̂kε‖2
2}0<k<ε−2 .

A Fourier modulus is invariant under translation and rotation, but it is not stable

under deformation. It does not provide us with location information of density

function. Quantum energy functionals can be computed from electronic density

functions, and an electronic density function is highly dependent on the position of

atoms. Therefore the Fourier modulus invariant loses location information which is

of importance to the unique representation of a chemical molecule [58].

5.6 Experiments and Results

5.6.1 Representation of Planar Molecules

The Gabor invariant representation can be implemented to represent 2D and

3D data. Due to the time constraint, we test our method on 2D planar molecule
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data and compare the regression performance of Gabor modulus dictionary with

existing dictionaries described in [59].

The 2D planar electron density is obtained by finding nearly planar molecules and

project each atoms onto a 2D plane while preserving the relative distances between

each atomic position. Thus the electron densities are calculated with rk ∈ R2 instead

of in R3. The data set is provided in the paper by Hirn, et al [59].

In numerical experiments, electron densities are sampled at intervals of length ε.

Electron densities are sampled over a square of 22J samples, with J = 9.

To obtain Gabor invariants, 2D Gabor transform is first computed over electron

densities with translation parameter t and frequency parameter γ. Translations are

sampled at intervals of length a. We take a = 16. Frequency parameter γ is sampled

N times uniformly along each dimension. To obtain comparable results with Fourier

modulus, we take N = 2J where J = 9. Integration over translations t and unit

frequency circle S1 is performed, yielding 2J−1 = 28 radial Gabor invariants per

density channel.

5.6.2 Numerical Comparison of Planar Molecules

The data set includes 454 nearly planar molecules among the 7165 molecules

of the QM7 molecular database [59]. The molecular atomization energies in the data

set are computed using hybrid density functional PBE0. The data set consists of a

set of organic molecules composed of Hydrogen, Nitrogen, Oxygen and Sulfur.

We use the same sparse orthogonal least square regression method with software

80



available in [59]. In order to evaluate the prediction error of regression for each

dictionary, we split the data into five representative folds, and use five fold cross

validation. Every one of the five representative folds is selected as a testing set, and

the remaining four folds are selected as a training set. The procedure is repeated

five times, and we get results across five different training and testing sets. Both

root mean squared error(RMSE), which is the square root of the average square

error, and mean absolute error (MAE), which is the average of the absolute value

error,are computed, and is averaged across five train test splits.

The number of regression vector in the sparse regression,M , is selected by a bagging

algorithm. Each training set is uniformly randomly split up into a training bag, and

a testing bag, where training bag consists of β% of the training set, and the testing

bag consists of 1 − β% of the training data. Orthogonal least square algorithm is

applied on the training bag, with up to M0 terms in the regression. The algorithm

then select M̄ ≤ M0 which minimizes the RMSE or MAE on the testing bag.

The resulting M̄ term regression is computed on the testing data. This procedure

is repeated X times, and the regressions are averaged to give final results. In

numerical experiment, β = 90, X = 10. Results of Gabor representation, compared

with Wavelet, Fourier and Scattering invariant representation, and Coulomb matrix

representation are shown below:
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2D molecules from QM7

M̄ RMSE MAE

Coulomb Matrix N/A 6.7 ±2.8 14.8 ± 12.2

Fourier Dirac+Core/Valence 73±27 6.7±0.7 8.5±0.9

Wavelet Dirac+Core/Valence 38±13 6.9±0.6 9.1±0.8

Scattering 15 Atomic 74 6.9 9.0

Gabor Atomic+Core/Valence 71±31 5.3±0.3 7.0±0.6

Scattering 16 Core/Valence 107±41 3.2±0.1 4.5±0.2

Table 5.1: Average Error ± Standard Deviation over the five folds in kcal/mol

Gabor invariant representation achieves smaller Root Mean Square Error (RMSE)

and Mean Absolute Error (MAE) over Coloumb matrix, wavelet, Fourier and the

first implementation of scattering invariant representations. Coloumb matrix repre-

sentation is not permutaion invariant, but techniques are used to reduce the effect.

It is translation and rotation invariant. Wavelet, Fourier, scattering and Gabor

transform are permuation, rotation and translational invariant.

Gabor transform is based on Fourier transform, but it integrates details of

frequency information at different locations, which Fourier transform could not ob-

tain. Wavelet transform gives frequency information of the image at different scales,

and scattering transform recovers part of the correlation information in second layer.

On the other hand, Gabor transform captures interaction between atoms from input
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with no loss, and then integrate it into a form with invariant properties. Experi-

mental results show that Gabor transform can preserve unique information of the

molecules and give smaller prediction error compared with other generic represen-

tation methods.

Note that there are two columns of results for scattering transform. Scattering

invariant modulus is first developed as a generic method which preserves invariances

of the molecules. A newer version of the scattering invariant modulus is described

in [58] which incorporates careful design of wavelet that takes into account the

symmetries of the molecules. However, scattering transform, as an image processing

technique, is designed for processing 2D images, while the Gabor invariant modulus

can be extended to 3D with increment in computation costs.

5.6.3 Conclusion

Gabor invariant representation is a Fourier based method that gathers local

information in frequency domain and integrates information in a way that is trans-

lation and rotation invariant. It is a method that can be exploited when inputs

need to be represented in a unique way and when isometry invariance is a desired

property of the objective function.

Gabor invariant transform outperforms state of the art invariant methods that

are nonspecific to data set in quantum energy regression. It can be applied to other

situations directly with no need of modification. One can also build dictionaries

that are data specific. By changing the variance of the window function and the
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number of window functions, location specific information of various scales will be

captured and more precision can be achieved.

Unlike many existing imaging techniques which lacks ability to process data in

dimensions higher than 2, Gabor invariant representation can be extended to higher

dimensions in theory. Computational costs of 3D Gabor invariant representation

increase, and with limited amount of time we provide only 2D results in this Chap-

ter. Many of the real world problems involve 3D molecules instead 2D molecules,

and thus Gabor invariant representation can be advantageous in situations where

handling multi-dimensional data is necessary.
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Chapter 6: Detection of Epithelial versus Mesenchymal Regions in

2D Images of Tumor Biopsies Using Shearlets

The capability of assessing 2 dimensional images from biological tissue speci-

mens at high resolution requires not only improved optical and biomarker methods,

but also is critically dependent on mathematical techniques that enable efficient

analyses of larger and more complex data sets in which positional information is

accurately assessed. We present here a novel shearlet computational method that

detects regions of interest in 2-dimensional tumor biopsy images, using directional

information and multiscale analysis. The regions putatively correspond to epithe-

lial or mesenchymal areas of cells, which is of critical interest to clinicians since

transition from epithelia to mesenchyme promotes tumor invasion and resistance

to chemotherapy. This method significantly outperformed two benchmark methods

based on wavelets and shearlets.

This is a joint work with Stephen Lockett and Robert Kinders from National Can-

cer Institute at Frederic, MD. Lockett and Kinders provided nuclei image data with

objects of interests for this project. The nuclei images were obtained at the Optical

Microscopy and Analysis Laboratory at National Cancer Institute.
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6.1 Introduction

With the progress of imaging techniques in bio-medical imaging and the de-

velopment in computational algorithms in feature extraction and machine learn-

ing, there have been growing interests in many image recognition and classification

problems that were not tackled before. We look at the problem of detecting and

classifying nuclei of different shapes in confocal microscopy cancer images to study a

specific type of transition of cells that is of crucial importance in developing cancer

treatment.

The conversion of carcinoma cells from an epithelial to a mesenchymal phenotype

(epithelial-mesenchymal transition, or EMT) is of central interest to clinicians due

to its putative role in promoting tumor invasiveness and acquisition of chemoresis-

tance. The hallmarks of EMT include the loss of cell-cell adhesion (due to the loss of

E-cadherin expression), cytoskeletal reorganization to replace keratin with vimentin

intermediate filaments, enhanced cellular motility, and resistance to apoptosis and

senescence [66], [75], [95]. Because downregulation of E-cadherin protein levels at

the plasma membrane, along with upregulation of vimentin protein levels have been

documented in a number of tissues during EMT [16], [33], [112], there has been

development of a quantitative immunofluorescence imaging method relying on E-

cadherin and vimentin expression and clinically validated tumor markers, in tissue

sections on microscope slides, as unequivocal markers of epithelial and mesenchymal

phenotypes, respectively which are distinguished from surrounding stroma [92], [93].

Because histological staining does not distinguish tumor cells displaying a mesenchy-
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mal phenotype from neighboring non-neoplastic mesenchymal cells (stroma) in the

tumor microenvironment [8], and is further limited due to its’ reliance on a small,

2 dimensional preparation from a much larger tissue, containing both normal and

tumor cells, a novel method was developed to identify epithelial, mesenchymal and

transitional phenotypes (EMT) in neoplastic cells from tumor biopsies, and their

localization relative to each other, in regions of 2 dimensional biopsy images by

Stephen Lockett. Measuring EMT in patient samples as part of a treatment strat-

egy could offer valuable insight for medical decision-making including drug selection

and sequencing in a treatment regimen.

The large quantities of 2D images require automatic analysis and with re-

cent development in computer vision and image processing, algorithms that de-

tect regions of interest have been designed for biological images. For example, an

entropy-based automated technique has been proposed to detect regions of interest

in prostate biopsy images [19]. The method utilizes the fact that due to the presence

of different types of textures and shapes of objects, entropy is higher in regions of

cancer cells. In [39], a morphometric tool for segmentation of blood and lymphatic

vessels was reported for tumor prognosis. There are examples using multiscale anal-

ysis to segment region of interest (ROI) of 2D confocal microscopy images [56].

However, detection of ROI remains a topic touched by few compared with whole

image classification or abnormality detection for cancer prognosis.

The shearlet transform is among the popular tools for extracting directional

and multiscale features in biomedical image analysis. It captures edge-like struc-

tures by utilizing shearing in its construction, and its multiscale framework allows
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for detection of details in both high and low resolutions. Its capacity for detecting

the approximate tangent direction of discontinuity can yield local curvature esti-

mates [71]. It has been used for faciliating Gleason grading of prostate cancer in

histological images [99], [100]. Shearlet transform was applied by extracting features

at different stages of prostate cancer and these features served as input for a classi-

fication task.

Shearlet transform has been used as whole image feature extraction tool [2]

or directional filter in preprocessing steps [64] in biomedical image analysis. In this

study we combine properties of two types of nuclei with properties of shearlet coef-

ficients and design a ROI detection method to distinguish mesenchymal cells from

epithelial cells in microscopy images. The chapter is organized as follows. In Section

6.2, we introduce the shearlet transform and our method, max difference threshold-

ing algorithm. In Section 6.3, we compare our method with benchmark methods

and demonstrate results and we draw the conclusion in Section 6.4.

6.2 Shearlet based region detection

The study of theory and applications of directional representation has been

an important subject in harmonic analysis. Although wavelets are known for de-

composing functions in one dimension, they achieve sub-optimal results due to the

presence of discontinuities such as curves in higher dimensions. In order to capture

these edge-like structures, types of representation other than wavelets are devel-

oped. Examples include contourlets, curvelets, ridgelets, bandelets, wedgelets, and
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shearlets. Shearlets are popular among the representations with several fast imple-

mentations available. S. Häuser and G. Steidl have provided the tutorial for their

first finite and translation invariant shearlet implemtntation in [53] in 2014. Other

implementations include the local shearlet toolbox [37] and ShearLab [73], [74].

Shearlets have been widely used in applications including road detection in LIDAR

images [115], superressolution of optical and hyperspectral data [31], [91], [115],

and image registration [91]. With its fast implementation and its ability to capture

anisotropic structures, we choose to use shearlet to detect differences in cell nuclei

shapes. We will introduce shearlet transform next along with the Shearlet Max

Difference Thresholding method for segmenting regions of different cells.

6.2.1 Shearlet Transform

We introduce the mathematics behind the shearlet transform in this Section

based on the description in [53]. A shearlet ψa,s,t in 2D is defined by dilation, shear

and translation of a function ψ ∈ L2(R2):

ψa,s,t(x) = a−
3
4ψ(A−1

a S−1
s (x− t)) = a−

3
4ψ

 1
a
− s
a

0 1√
a

 (x− t)). (6.1)

Here Aa =

a 0

0
√
a

 , a ∈ R+ is the dilation matrix and S =

1 s

0 1

 , s ∈ R is the

shear matrix. The function ψ is defined via Fourier transform:

ψ̂(ω1, ω2) = ψ̂1(ω1)ψ̂2(
ω2

ω1

), (6.2)
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and functions ψ1 and ψ2 are defined by

ψ̂1(ω) =
√
b2(2ω) + b2(ω), ψ̂2(ω) =


√
v(1 + ω), for ω ≤ 0,√
v(1− ω), for ω > 0,

(6.3)

where b and v are two auxiliary functions defined by

b(ω) =


sin(π

2
v(|ω| − 1)), for 1 ≤ |ω| ≤ 2,

cos(π
2
v(1

2
|ω| − 1)), for 2 ≤ |ω| ≤ 4,

0, otherwise,

(6.4)

and

v(x) =


0, for x < 0,

35x4 − 84x5 + 70x6 − 20x7, for 0 ≤ x ≤ 1,

1, for x > 1.

(6.5)

The continuous shearlet transform SHψ(f) of f ∈ L2(R) at (a, s, t) is given as the

inner product of the function f with the shearlet ψa,s,t:

SHψ(f)(a, s, t) =< f, ψa,s,t > . (6.6)

We treat an image as a discrete function f ∈ RM×N sampled on {(x1
M
, x2
N

) : x =

(x1, x2) ∈ X} where X = {(x1, x2) : x1 = 0, ...,M − 1, x2 = 0, ..., N − 1}. For a

discrete shearlet transform on f , we let j0 =
⌊

1
2

log2 max{M,N}
⌋

be the number of

considered scales. We discretize the dilation, shear and translation parameters as

aj = 2−2j, j = 0, ..., j0 − 1,

sj,k = k2−j, −2j ≤ k ≤ 2j,

tx = (x1
M
, x2
N

), x ∈ G.

(6.7)
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Let Sj = {Stj,1(x), Stj,2(x), ..., Stj,K(x)} denote the set of shearlet coefficients ob-

tained at scale level j for pixel x. Here Stj,k(x) is the kth computed shearlet coeffi-

cients at pixel x. We obtain K = 2j+2 coefficients for scale level j.

Shearlets are designed as multiscale directional representations to address singular-

ities of the images. The discrete shearlet transform computes shearlet coefficients

at different scales. The first J largest shearlet coefficients can be used to recon-

struct the image with error bound on the order of J−2(log J)3. This means that

shearlet representation captures unique features of the original space, and thus we

utilize properties of such representation to facilitate our task of analyzing nuclei

with directional information.

6.2.2 Shearlet Max Difference Thresholding Method

Figure 6.1: Image of cell nuclei
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Figure 6.2: Shearlet coefficients at “+” and “x” respectively

There are two major properties of the two types of nuclei in tumor biopsy im-

ages that motivates the Shearlet Max Difference Thresholding method: difference in

shape and difference in density. We discuss a path to quantify the differences, and

introduce the Shearlet Max Difference Thresholding method. We work on grayscale

images with the value at each pixel representing intensity.

At a given scale, the set of shearlet coefficients is produced by the inner

product of the image at location x = (x1, x2) and the dilated and sheared shear-

let at certain directions. Despite their ability to locate edges, which are present

in both round and elongated objects, shearlet coefficients inside these two objects

demonstrate different distributional characteristics. In elongated objects, computed

shearlet coefficients at given location x tend to contain one high value, with the

remaining being evenly distributed and small. In round objects, all the shearlet

coefficients tend to differ less and have small variation. In Figure 6.1, examples
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of an epithelial and a mesenchymal nucleus are labeled by × and + respectively

(confirmed by the presence and absense of e-cadherin antibody staining at the cell

membrane respectively, not shown), and the absolute value of their shearlet coeffi-

cients at level 5 (pixel + on right, pixel x on left) are presented in Figure 6.2. We can

observe that for the elongated nucleus + there is one peak that differs significantly

from the remaining coefficients, while for the round nucleus × there are multiple

peaks with large variance and no such behavior.

Recall that the set Sj = {Stj,1(x), Stj,2(x), ..., Stj,K(x)} denotes the set of
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Figure 6.3: Max Difference coefficients MD of Figure 6.1

shearlet coefficients of input image f obtained for x at scale j. Let Stj(x)max =

max
i=1,...,K

Stj,i denote the maximum shearlet coefficient at scale j. Let Stj(x)avg denote

the mean of the remaining coefficients at scale j. We calculate the max difference
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(MD) coefficients of the shearlet coefficients for x by

MD(x) = Stj(x)max − Stj(x)avg. (6.8)

Figure 6.3 demonstrates the MD representation of Figure 6.1 at scale level j = 5.

We introduce the weight matrix obtained from density of intensities in the

image, because it is observed that elongated nuclei clusters are less dense compared

with clusters of rounded nuclei, and signals from elongated nuclei are generally not as

strong as signals from rounded nuclei. In order to take into account the difference
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Figure 6.4: Density matrix D of Figure 6.1 (with uniform filter)

in strength of signal, we first blur the image by taking the average of each pixel

around its neighborhood, and then map the density image to a kernel that enhances

regions with low density and weakens regions with high density.

Now we calculate D(x), the input image blurred with a uniform averaging filter

of length s. Recall that f represents the input image. Each entry of the density
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matrix D is defined by

D(x) =
1

s2

∑
y∈Sx

f(y). (6.9)

Note that Sx = {s = (s1, s2)|s1 ∈ [x1− s
2
, x1 + s

2
], s2 ∈ [x2− s

2
, x2 + s

2
]} represents the

support of the filter at each x. Figure 6.4 illustrates the density matrix of Figure

6.1 blurred with a uniform filter of side length s = 20.

We take the negative exponential of the density matrix. The weight matrix W
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Figure 6.5: Weight matrix W obtained from density matrix in Figure 6.4

enhances low density regions and compromises high density regions. W is defined

by

W (x) = exp− |D(x)|
|D|max

, (6.10)

where |D|max denotes the maximum absolute value of the density matrix D. Figure

6.5 represents the weight matrix of Figure 6.1.

Next, we threshold the MD matrix of input image f by certain threshold

95



0

5

10

15

20

25

30

35

40

45

Figure 6.6: Thresholded MD matrix T

θ. The choice of θ is dependent on data set and is best to be chosen as the mean

MDavg value of MD of a sample image in which the number of elongated nuclei

and the number of round nuclei are approximately equal. By using such threshold

θ, we discard signals from regions with no clear directional information. Denote the

output of the thresholding by T . We have

T (x) = MD(x) · 1MD(x)≥MDavg , (6.11)

where 1 is the indicator function. Note that the chosen threshold distinguishes

center lines of elongated nuclei from round nuclei in the MD representation of the

image, but there are regions in which multiple directions are present, and the signals

from the elongated region are not necessarily strong enough. Figure 6.6 represents

the thresholded image of Figure 6.3.

We multiply weights and the thresholded image T to enhance signals from
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Figure 6.7: Weighted matrix Tw of T

regions of elongated nuclei. Define the weighted output Tw by

Tw(x) = W (x) · T (x). (6.12)

Figure 6.7 demonstrates the Tw matrix of Figure 6.1.

Due to the fact that adjacent elongated nuclei tend to orient in similar di-

rections, edge like features appear in elongated nuclei regions in MD matrix while

no ordered structures appear in round nuclei regions, as illustrated in Figure 6.7.

Therefore, with enhancement from weight matrix W , we apply the shearlet trans-

form for a second time to Tw, and obtain the max difference matrix MDT on the new

set of shearlet coefficients we get from Tw. In particular, let S̃j = {S̃tj,1, ..., S̃tj,K}

be the set of shearlet coefficients of Tw at scale j. MDT is defined by

MDT = S̃tj(x)max − S̃tj(x)avg, (6.13)
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where S̃tj(x)max is the maximum in S̃j and S̃tj(x)avg is the average of the remaining

of the coefficients in S̃j. Figure 6.8 illustrates MDT , the MD matrix of Tw. We
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Figure 6.8: Max Difference coefficients MDT of Tw in Figure 6.7

apply the same uniform filter of length size s to MDT to obtain DMDT . DMDT is

defined by

DMDT (x) =
1

s2

∑
y∈Sx

MDT (y), (6.14)

where Sx is defined previously in Equation 6.9. We enhance the elongated nuclei re-

gions again by multiplying weights from the original density image with the blurred

second max difference matrix DMDT . We obtain the weighed density before thresh-

olding WD = W (x) ·DMDT (x). Figure 6.9 demonstrates the density matrix DMDT

of MDT and Figure 6.10 demonstrates the weighted matrix WD of MDT .

Last, we apply thresholding by WDavg, which is the average of WD deter-

mined by the same sample image as in Equation 6.11, and obtain S̃ = WDT (x)
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Figure 6.10: Weighted density matrix WD of DMDT
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Figure 6.11: S̃, the thresholded WD from Shearlet coefficients at level 5

·1WD(x)≥WDavg as our final result. For post-processing, we eliminate regions that are

small and considered as noise.

Although taken at high resolution, images differ in sizes and so do the relative

sizes of the nuclei. For smaller images with large nuclei, to make sure that we avoid

over-segmentation while not losing information from finer scales, we tailored our

method to include two levels of shearlet coefficients, lower and higher level. Details

of the algorithm are described in Section 6.3.1. In this way, over-segmentation from

high level coefficients is covered by outcome from low level coefficients, and miss-

ing components of the outcome from low level coefficients are made up by outcome

from high level coefficients. Based on the sizes of images and relative sizes of the

cell nuclei, we choose to use the shearlet coefficients at the top two finest levels,

scales 4 and 5. Figure 6.11 represents the output of the algorithm for the set of

shearlet coefficients at level 5 before post processing. Figure 6.12 represents the
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Figure 6.12: S̃, the thresholded WD from Shearlet coefficients at level 4

outcome of the same algorithm for the set of shearlet coefficients at level 4 before

post processing. Figure 6.13 gives the area selected as regions of elongated nuclei

from both levels of shearlet coefficients, and 6.14 represents the regions of elongated

nuclei after post processing.

6.3 Experiment and Result

In this section we introduce the background on the data set of tumor biopsy we

obtained, and describe the algorithm for the Shearlet Max Difference Thresholding

method. We also discuss parameter selection, and give description of two benchmark

algorithms as comparison method. The experimental results and examples of result

images are also included.
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Figure 6.13: Combined regions of elongated nuclei (yellow) from shearlet coefficients

at level 4 and level 5 before post processing

Figure 6.14: Combined regions of elongated nuclei (yellow) from Shearlet coefficients

at level 4 and level 5 after post processing
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6.3.1 The Algorithm

We summarize the steps described in Section 6.2 at one level as follows.

The threshold θ is determined by the mean MDavg of MD of a sample image in

Algorithm 1: Shearlet Max Difference Thresholding Algorithm

Input: Input image f

Output: Segmentation result S̃

1 Apply Fast Finite Shearlet Transform (FFST) on input image f .

2 Compute MD of f at level j.

3 Compute density matrix D of f , and compute weight matrix W .

4 Threshold MD by threshold θ to get T .

5 Multiply T with W element-wise to get Tw as their product.

6 Apply FFST on Tw.

7 Compute MDT , the max difference of Tw, at level j.

8 Compute density of of MDT to obtain DMDT .

9 Multiply DMDT with W to obtain WD.

10 Threshold DMDT by WDavg to get S̃.

which the number of elongated nuclei and the number of round nuclei are approxi-

mately equal. We use the same sample image for the threshold WDavg. We choose

j = 5 for the images in which the nuclei are relatively small.

For high resolution images, or the images in which the nuclei are relatively large,

we incorporate two levels of shearlet coefficients. The algorithm for high resolution

images combines the outcome of algorithm 1 at two levels, j = 4 and j = 5. In the
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final output stage, we apply logical OR operation on two regions of interests calcu-

lated from two sets of shearlet coefficients to include regions selected as elongated

nuclei in both processes.

For post-processing, we first erase regions that are selected as elongated nuclei that

has low total intensity. We repeat this procedure for regions that are selected as

round nuclei. In this way, we reduce the effect of over-segmentation. Last, we erase

regions with low average intensity in order to remove regions with no nuclei.

6.3.2 The Data Set

The images of tumor biopsies that we obtained are of the size 1024 by 1024 or

larger. We tested our algorithm on 7 images with over 2000 nuclei in total.

The issue cells in the image were the human gastric cancer cell line, MKN45,

grown as a xenograft under the flank of an immunocompromised mouse. Briefly, 5

micron thick tissue sections were cut, labeled with an EMT panel of fluorescence

antibodies and the DNA dye, DAPI and imaged by confocal microscopy with a 63X

oil objective lens. Only DAPI images were used in this study, since the eventual

goal is to classify 3D regions acquired deep inside thick tissue where antibodies

cannot easily reach. This data was provided by National Cancer Institute through

its collaboration with University of Maryland, College Park.
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6.3.3 Validation Methods

We implemented two benchmark algorithms as comparisons to our method.

We chose wavelet, a standard tool for image processing, and one level shearlet co-

efficients as two alternative feature extraction tools and used 1-nearest neighbor

(1NN) [89] as a classification method with a universal training data set containing

one example per class across images. 1NN compute the distance between the input

data points and the training points and classify each input data point into the same

class as its closest training point.

For both validation methods, we divide the image into a number of superpix-

els [1]. Superpixel is a way of partitioning images based on similarity between pixels

in proximity. By treating each group of pixels that are close in location and that

are similar in some sense as one superpixel, the computation and representation

efficiency is improved. We eliminate the superpixels with no positive intensity val-

ues above certain threshold, which correspond to non-nuclear areas of the images.

Because of noise and the fact that intensities vary within each individual nucleus,

superpixels happen to be a better choice than watershed algorithm in segmenting

nuclei in the image. We compute wavelet transform and shearlet transform on the

input image and obtain representative coefficients of each superpixel as the input

for classification. The 1NN classification is performed at superpixel level.

The fast wavelet transform (FWT) developed by S. Mallat in 1989 [83] is

performed on the image at level j = 4, and average wavelet coefficients within each

superpixel are calculated as a feature vector representing the superpixel.
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For shearlet benchmark, the shearlet transform is performed on input image.

We pick the pixel in each superpixel such that its shearlet coefficients have the

largest max difference as the representative. Each representative shearlet coefficient

is sorted in descending order for uniform comparison and to capture sensitivity in

directionality.

For training data set for the 1NN classifier, one superpixel of the nucleus of

each type is selected and its wavelet and shearlet coefficients served as training data

set. The choice of the number of training examples is based on the fact that there

are only 4 mesenchymal nuclei in one of the images we have, hence by the common

standard of 30% training data, we can only choose one nucleus of each type. We

want to keep training data size consistent across images.

6.3.4 Results

We calculate the percentages of the correctly classified nuclei as epithelial

and the percentages of mesenchymal nuclei correctly classified as mesenchymal of

the three methods. Results of the quantitative analysis of three methods is shown

in Table 6.1. # E nuclei represents the number of epithelial nuclei in the image

and # M nuclei represents the number of mesenchymal nuclei. Figures 6.15 - 6.19

demonstrate the results obtained from three methods. Note that yellow indicates

mesenchymal regions (regions of elongated nuclei) and that purple indicates epithe-

lial regions (regions of round nuclei).

Our Shearlet Max Difference Thresholding method outperforms the traditional
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Images Ground-truth Wavelet Shearlet SMDT

Enumeration (Correct) (Correct) (Correct)

# M nuclei # E nuclei M % E % M % E % M % E %

1 204 1450 82 84 83 93 99 92

2 55 308 80 77 81 71 83 62

3 60 58 100 91 65 90 100 93

4 7 63 71 89 57 76 100 81

5 51 75 45 80 22 84 99 73

6 73 78 6 91 22 84 100 85

7 4 120 0 82 75 65 75 97

Total 454 2152 67 83 66 87 97 87

Table 6.1: Result of regions of interest detection of wavelet, shearlet and SMDT

methods
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Figure 6.15: Segmentation results of selected images 1

Figure 6.16: Segmentation results of selected images 2

wavelet method and the standard shearlet method in detecting elongated nuclei in

most cases. Note that the lower success rate in classifying some of the mesenchymal

cells can be due to the fact that some transitioning epithelial cells are scattered in

between mesenchymal cells and the ground truth boundaries often did not include

these individual nuclei. But the overall results indicates that the Shearlet Max Dif-

ference Thresholding method outperforms the wavelet method and standard shearlet

method.
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Figure 6.17: Segmentation results of selected images 3

Figure 6.18: Segmentation results of selected images 4

6.4 Conclusion

The epithelial-mesenchymal transition (EMT) is an important subject in the

study of cancer invasion. Taking the advantage of the directional and locational

information of nuclei, we designed the shearlet max difference algorithm to detect

the regions of epithelial versus mesenchymal nuclei in images capturing this pro-

cess. Comparing with standard image processing tools, wavelet and shearlet, our

method demonstrates improvement by 30% in its ability to correctly detect regions

of interest.

By its mathematical nature, the shearlet max difference can be extended to
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Figure 6.19: Segmentation results of selected images 5

detect volumes of interest 3D images. Continuous shearlet transformation has been

generalized anisotropically and isotropically for L2(Rk) functions, which includes

functions in all high dimensional spaces. Its mathemtacial properties are studied

in [27], [28], [70], and it has been applied in problems such as superresolution for

remotely sensed images [30]. 3D discrete shearlet transform has also been applied

in video processing [94]. In separate studies utilizing chemical clearing of tissue,

we can image 100s of microns into DAPI-labeled tissue without observable loss of

image quality and therefore the properties of epithelial cells and mesenchymal cells

are also observed in 3D. Hence it is possible to apply 3D discrete shearlet transform

to obtain coefficients representing strength of signals across 3D directions and use

the 3D shearlet max difference method to categorize these nuclei. Note that an

elongated nucleus in 3D might look round in 2D image, and thus by looking at 3D

data, we can obtain results with better accuracy. This will be the next step in this

study.
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