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A bioinformatic search of the genomes of chestnut blight fungus, Cryphonectria 

parasitica (Cp), and the Arabidopsis powdery mildew fungus, Golovinomyces 

cichoracearum (Gc), yielded six suspected pathogenicity genes with homologues in 

both species.   Deletion of these genes by homologous gene replacement was 

attempted in Cp, with one success, TG4.  The TG4-knockout strain showed changes 

in phenotype and reduced fungal virulence against chestnut.   TG4 appears to be a 

promising target for host-induced gene silencing (HIGS) in transgenic American 

chestnut.  The use of homologues from genetically tractable species like Cp can help 

overcome the obstacles to performing reverse genetics on intractable, biotrophic fungi 

such as Gc. Experiments underway involving the silencing and ectopic 

overexpression of the Gc homologues of the target genes provide a rapid method to 

study Cp genes, including to screen additional candidate genes as future targets for 

HIGS. 
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Chapter 1: Research Narrative 

 

Introduction 

The long-term goal of this thesis research project is to expand our understanding of 

the molecular interactions between plants and plant-pathogenic fungi for developing 

host resistance.  We sought to take advantage of two distinct pathosystems to identify 

key fungal genes, characterize their potential roles in pathogenesis, and explore host-

induced gene silencing (HIGS) to develop antifungal resistance in plants. The first 

pathosystem is the interaction between American chestnut (Castanea dentata) and a 

necrotrphic pathogen Cryphonectria parasitica (Cp) which results in the devastating 

chestnut blight disease.  The second pathosystem is the interaction between 

Arabidopsis thaliana and a biotrophic pathogen, Golovinomyces cichoracearum (Gc), 

one species which leads to a common disease called powdery mildew.  Specifically, 

homologous recombination-based gene replacement will be used to delete conserved 

fungal genes in Cp to investigate their potential role in fungal survival and 

pathogenesis.  Time permitting, homologous Gc genes encoding candidate secreted 

effector proteins (CSEPs) may be expressed in Arabidopsis to test if they can 

suppress host immunity. Candidate fungal genes identified will be targeted in Gc via 

HIGS using Arabidopsis. Finally, HIGS would be deployed to target essential Cp 

genes identified to engineer Cp resistance in American chestnut  
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Background and Literature Review 
 

Interactions between plants and pathogenic fungi 
 

The study of plant disease is as old as agriculture itself.   For thousands of years, 

humanity has tried to prevent or mitigate the effects of disease on crops through 

cultural practices and the artificial selection of resistant cultivars.   Only recently 

however, have we begun to understand the biological, biomolecular and genetic basis 

of plant disease resistance and susceptibility.   Key discoveries since the 1950s have 

made it possible to discover the details about how plants defend themselves from 

pathogens, and how pathogens can overcome plant defenses in order to parasitize 

their hosts (Bent 2018).   More recent advances in genetics and molecular biology 

have given us new tools to explore the nature of plant disease more deeply, and 

continually help us refine our understanding of plant disease. 

 

A certain degree of basal resistance to fungi, bacteria, oomycetes, nematodes, (as well 

as to herbivores and abiotic stress) is found in all plants. In nature, most plants are 

resistant to most potential microbial pathogens thanks to the existence of robust 

preformed and inducible defense barriers (Bent 2018).  Preformed (or constitutive) 

defense barriers of plants include the cellulosic plant cell wall, surface waxes, and 

other protective compounds and structures that make living plants an inhospitable 

environment for all but the most adapted microbes (Bigeard 2014). “Plant pathogens” 

is a term that refers to the subset of microbes that have evolved to produce enzymes, 

toxins and/or physical structures that enable them to overcome these constitutive 

defenses, penetrate host plant tissues and derive nutrients from them.  
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The induced defenses that plants use against broad categories of microbes, serve as a 

second tier of defense against the specialized, plant-adapted pathogens that overcome 

plants’ constitutive defenses.  Pattern recognition receptors (PRRs), proteins 

embedded in plant cell membranes, can detect compounds which are commonly 

associated with broad categories of potential pathogens (Boutrot and Zipfel 2017).  

These pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs) 

include signature compounds of fungi and bacteria, such as chitin and flagellin.  

Compounds released by damage to the plant cell wall (damage associated molecular 

patterns, or DAMPS) can also trigger PRRs.  When microbes can get past a plant’s 

constitutive defenses and establish themselves on, or damage the plant surface, they 

trigger a defensive response, generally known as PAMP-triggered immunity (PTI) or 

MAMP-triggered immunity.  In PTI, microbes or damage trigger the PRRs, which in 

turn initiate chemical signaling cascades between the plant cell plasma membrane and 

the nucleus (Bigeard 2014).  This results in the mobilization of various energy-

intensive but highly effective defense responses on the part of the plant, including the 

production or increased production of anti-microbial compounds, and secretion of 

enzymes involved in reinforcement and repair of the plant cell wall (Bent 2018, 

Boutrot and Zipfel 2017).   

 

Plant pathogens have also evolved ways to overcome PTI.   They secrete proteins and 

other compounds, collectively known as effectors, which can disrupt the PTI 

response.  Effectors that pathogens use to disrupt PTI also vary widely in architecture 
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and function, and tend to be host-specific, allowing a given effector to overcome the 

defenses of just one or several closely-related plant host species (Kim et al, 2018, 

Jones and Dangl 2016, Lo Presti 2015). 

 

Through the process of attack and counter-attack, plants have evolved a third tier of 

defense known as effector triggered immunity (ETI).  In ETI, plant immune receptors 

(often called resistance or R proteins) can recognize the presence or virulence activity 

of certain specific effectors and subsequently trigger even more robust defensive 

responses in plants (Jones and Dangl 2016).  Unlike in PTI, plant immune receptors 

that detect pathogen effectors are generally intracellular and belong to a nucleotide-

binding and leucine-rich-repeat (NB-LRR) superfamily highly conserved across all 

plant species.  During ETI, an R protein gets activated upon recognition of a specific 

pathogen effector, which leads to elevated biosynthesis of salicylic acid (SA) and 

production of anti-microbial compounds.  ETI is often, although not always, 

associated with the hypersensitive response (HR).  HR is a form of programmed cell 

death at the site of infection, which can stop some pathogens, especially biotrophs 

such as powdery mildew, by depriving them of the resources they need to survive 

(Bent 2018, Jones and Dangl 2006). 

 

In addition to the tight regulation of PTI and ETI by various molecular components 

downstream of the respective immune receptors, plant defenses are also modulated by 

phytohormones, such as SA, jasmonic acid (JA) and ethylene (ET).  These hormones 

are also involved in systemic acquired resistance (SAR) and induced systemic 
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resistance (ISR).  SAR and ISR are broad spectrum forms of resistance induced by 

local infection by microbes, including avirulent fungal endophytes and beneficial 

root-colonizing bacteria.  Kuhn et al reported that basal defenses against fungal 

pathogens, at least in Arabidopsis, rely primarily on PRR signaling to block 

penetration, but that phytohormone-mediated signaling comes into play once the 

pathogen has penetrated the plant surface (Kuhn et al 2016).    

   

Every pathogen-host relationship (pathosystem) is unique and involves multiple, 

sometimes hundreds, of molecular interactions at the cellular level, governed by 

genes accumulated over millions of years of co-evolution (Kim et al 2018).   The co-

evolution can be compared to an arms race that endows both sides with arsenals of 

molecular weapons and defenses, developed in response to each other over time, 

through a series of incremental genetic changes.  This gradual change allows 

successful pathogens and hosts to remain in ecological equilibrium with each other.  

Our knowledge of the nature of these molecular interactions remains incomplete, 

however, even for highly-conserved interactions common to all plants.  A better 

understanding of these molecular interactions will enable us to understand the 

disequilibrium that leads to specific diseases and develop strategies to control them. 

 

The demise of American chestnut as a case study in host – pathogen disequilibrium  

Background: 
 

 
The near complete eradication of the once-prevalent American chestnut from the 

eastern forests of North America, which began in the early 1900s, is a perfect case 
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study in host-pathogen disequilibrium.   The causal agent of chestnut blight, the 

ascomycete fungus Cp, originated in Asia (Rigling and Prospero 2018, Gruenwald 

2012), and researchers have described its accidental introduction to North America as 

a classic example of disasters that can arise when pathogens are introduced to new 

environments or host species (Anagnostakis 1987). The arsenal of offensive genes Cp 

had developed through eons of co-evolution with Asian chestnut species allowed it to 

decimate the nearly defenseless American chestnut population, that had never been 

exposed to it, within a few decades of introduction.  Cp has been endemic in the 

American chestnut’s entire natural range since the mid-1900s (Rigling and Prospero 

2018, Steiner 2017). 

 

Asian Castanea species, including Japanese chestnut (C. crenata), Chinese chestnut 

(C. mollissima), and two other Chinese species, C. henryi, and C. seguinii, show 

variable but generally high levels of resistance to Cp (Steiner 2017, Zhang 1998).   

Cp is a minor, superficial disease in Asian chestnut forests, and only causes 

significant damage when trees are stressed by anthropogenic or environmental factors 

(Zhang 1998).   These Asian chestnut species can also survive in good health in North 

America due to their blight resistance, but have not replaced American chestnut in the 

wild during the century since blight arrived, perhaps because they are not ideally 

adapted to American forests.  Asian chestnut species are generally smaller than, and 

lack the timber form of American chestnut (Schlarbaum et al 1992).   American and 

European chestnut species, including C. dentata, Alleghany chinkapin (C. pumilla), 

Ozark chinkapin (C. ozarkensis) and European chestnut (C. sativa), none of which 
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co-evolved with Cp, show variable but low levels of resistance to the fungus 

(Prospero and Rigling 2017).   

 

The molecular basis for Cp virulence and host resistance is poorly understood. 

  

Despite over 100 years of research, the genes that are responsible for resistance in 

Asian chestnut species have not yet been identified (Steiner 2017).  Efforts under way 

to restore American chestnut to North American forests take various approaches that 

do not require specific knowledge of naturally-occurring, resistance genes.  These 

include:  

• selective intercrossing between the most resistant surviving American 

chestnuts (Griffin 2006),  

• the use of the chestnut hypovirus (CHV), a mycovirus, as a biocontrol against 

Cp (Milgroom and Cortesi 2004),  

• backcross breeding of Chinese or Japanese chestnut to the American chestnut 

background (Steiner 2017, Hebard 2005 and 2014),  

• and the use of biotechnology to introduce novel forms of resistance into the 

American chestnut background (Newhouse et al 2014).  

Except for the biotechnology approach, in which an oxalate oxidase gene from wheat 

was inserted in the chestnut genome (Newhouse et al 2014), these approaches rely on 

the introgression of naturally occurring resistance genes from Asian populations into 

a blight-susceptible American population.   Though the loci, sequences, and functions 

of these naturally occurring resistance genes remain elusive (Steiner 2017), 
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researchers have uncovered some clues about the mechanisms behind the resistance 

of Asian chestnut species.    Studies of the inheritance pattern (Hebard 2005 and 

2014) of blight resistance in Chinese-American hybrid trees, for example, support the 

hypothesis that Chinese chestnut’s resistance to Cp involves multiple genes which 

each contribute partially to resistance.    

 

Several researchers have also isolated compounds or chemical fractions present in 

Chinese chestnut bark that inhibit fungal growth (Gao and Shain 1995, McCarrol and 

Thor 1979, Samman et al 1979), suggesting a difference in pre-formed or constitutive 

defenses between Chinese and American chestnut.   Studies on the histology of 

Chestnut blight infections in susceptible and resistant trees, however, also point to 

induced responses that differ in amplitude between resistant and susceptible trees.  

Chinese chestnut and resistant hybrids show an ability to contain the spread of Cp 

infection through the rapid lignification of wound periderm around the infection site, 

while more susceptible trees are slower to lignify, allowing the mycelial fan of the 

fungus to grow through the defensive wound periderm (Hebard et al 1994).   

 

Studies of gene expression in Cp-infected and non-infected American and Chinese 

chestnut tissues (Barakat et al 2009 and 2012) are consistent with the findings of 

Hebard et al (1994).   Upon infection with Cp, Chinese chestnut shows high levels of 

expression of defense-related genes, followed later by a much smaller spike in 

metabolic genes associated with tissue repair.   In American chestnut, on the contrary, 

the amplitude of increased expression of defense-related genes is relatively low, but 
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the subsequent spike in metabolic/repair-associated genes is much higher, likely 

because the damage done by the pathogen is greater.  This suggests that even though 

Chinese and American chestnut can detect fungal infection, but that the PTI response 

of Chinese chestnut is faster or more effective, and/or that ETI plays a stronger role in 

the defenses of Asian chestnut species than it does in C. dentata.     

 

Cp can grow as a saprophyte on numerous woody plant species, and it can be a 

significant pathogen on certain oak species which, like chestnut, are members of the 

Fagaceae family (Roane et al 1986).   However, the fungus is only severely 

pathogenic on chestnut species (the Castanea genus).  This suggests that the highly 

conserved, broad-spectrum, constitutive and PTI defenses found in non-host plants 

are sufficient to protect them from Cp, and that the pathogen has adapted to produce 

effectors that can disable or bypass the particular forms of these defenses that are 

specific to the Castanea genus and its closest relatives.   The fact that Castanea 

species that co-evolved with Cp are resistant, but isolated populations such as C. 

dentata are not, also suggests that ETI developed in Asian chestnut species under the 

selective pressure of Cp.    

 

Most of our current knowledge about the molecular interactions between Cp and 

chestnut comes from investigation of the naturally-occurring mycovirus CHV, which 

has effectively prevented the eradication of the C. sativa in Europe (Rigling and 

Prospero 2018).  CHV infects Cp and can significantly reduce its virulence.  The 

capsidless virus is widespread in Europe and Asia, and is transmitted horizontally by 
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anastomosis between mycelia, and vertically through asexual spores (but not sexual 

spores).  Research into viral hypovirulence has revealed several Cp genes suppressed 

by the virus which are essential for virulence, some of which appear to have 

regulatory functions and others of which (summarized in table 1 below) appear to 

encode proteins directly involved in pathogenesis.  These genes are involved in the 

biosynthesis of secreted enzymes or phytotoxins, and many are co-regulated through 

Cp’s G-protein signaling pathway (Dawe et al 2004).    

 
Table 1.  Cp genes identified through research into CHV as being involved in fungal pathogenicity or 
virulence in chestnut. 
 
Gene Putative function Reference 
CHB1 Cellobiohydrolase involved in 

breakdown of cellulose 
 

Wang and Nuss 1995 

CRP Cryparin, an abundant Cp 
hydrophobin associated with fruiting 
body eruption  

Zhang et al 1994 

KEX2 Protease necessary for virulence but 
not vegetative growth 

Jacob-Wilk et al 2009 

LAC3 Extracellular laccase (phenoloxidase) 
necessary for virulence 

Chung et al 2008 
Kim et al 1995 

PRB1 Subtilisin-like protease involved in 
both vegetative growth and virulence 

Shi 2014 

OAH Oxaloacetylhydrolase enzyme 
necessary for the production of the 
phytotoxin oxalic acid 

Havir and Anagnostakis 1985 

 
 

While virulence factors revealed by CHV could serve as targets for engineered forms 

of resistance to Cp, they do not appear to be effector proteins, and are not necessarily 

responsible for the Cp’s unique pathogenicity on Chestnut.   They appear to support 

fungal processes which are necessary, but not sufficient by themselves, for Cp to 

colonize and severely parasitize live chestnut tissue.   For example, the Cp OAH gene 
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is essential for production of the secreted phytotoxin oxalic acid, and the suppression 

of this gene renders Cp avirulent against chestnut (Havir and Anagnostakis 1985).   

There are, however, numerous fungi that produce oxalic acid (Dutton 1996), among 

which only Cp is a significant chestnut pathogen.  Most likely, Cp’s ability to invade 

chestnut tissue and kill cells with oxalic acid is only possible because the fungus also 

produces as-yet-unidentified effectors that overcome chestnut’s constitutive and PTI 

defenses.     

 

Improved sequencing technology, and the recent completion of an American chestnut 

genome (Schmutz et al, not yet published) will help researchers identify and 

characterize some of the natural resistance genes in highly-resistant Chinese-

American hybrid chestnuts (Steiner 2017, Westbrook 2018).  This information will 

greatly improve the efficiency of programs to breed for resistance.  However, even if 

such programs are successful in capturing and fixing major Chinese chestnut 

resistance genes in a mostly American hybrid population, there is reason to believe 

that this may not bring about equilibrium between host and pathogen.   Zhang et al 

(1998), in their analysis of the dynamics between Cp and the blight-resistant C. 

molissima in Chinese chestnut forests, describe the relationship as a “hybrid system” 

in which the disease is kept under control by both host resistance and CHV infection 

of the fungus.  Though CHV has been released, and also found to occur naturally in 

North America, it has not become a widespread or durable biocontrol as it has 

naturally in Europe or Asia.  The reasons for this remain poorly understood 

(Milgroom and Cortesi 2004).   It is therefore likely that novel forms of resistance 
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will be a necessary to supplement the introgression of naturally occurring Asian 

resistance genes in the overall effort to restore the American chestnut. 

 

Rationale and significance of this research 

The growing importance of molecular genetics for crop protection and environmental 

integrity 

The population of the world is projected to reach 9.7 billion in 2050 (United Nations 

2017).  This will put great pressure on a global agricultural system that has limited 

new land to put under cultivation, and which already relies heavily on non-renewable 

fossil fuels and diminishing fresh water sources to meet current demand.   To meet 

the challenge of increasing agricultural yields, an obvious priority is to reduce the 

amount of food lost to plant disease.  Currently, an estimated 30% of crops planted 

are lost to pre- or post-harvest disease, with plant-pathogenic fungi accounting for 

most of this loss (Bent 2018).   Climate change and human behavior are exacerbating 

this problem by bringing crops and wild plants into contact with pathogens which 

have not previously threatened them (Cline 2007).   

 

Despite advances in biotechnology and genetic engineering, most improvements in 

resistance to pathogens of economically important plants still rely on traditional 

breeding to capture naturally occurring genetic resistance (Chrispeels 2018).  There is 

no guarantee that this approach will remain sufficient to stay ahead of accelerating 
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changes in plant-pathogen dynamics, a problem which has implications for food 

security and for environmental integrity.   New developments in biotechnology, 

however, offer the possibility of developing novel forms of disease resistance for both 

crops and endangered wild plants, and to protect and improve agricultural 

productivity and ecosystem integrity.  Realizing the potential of biotechnology to 

combat fungal disease threats will require a better understanding of the molecular 

interactions between pathogenic fungi and their plant hosts.   

 

The Arabidopsis-powdery mildew model pathosystem 
 

Many important discoveries about plant defenses against fungal and other microbial 

pathogens have been achieved through studies of model species, such as Arabidopsis, 

the first plant to have its genome fully sequenced.  In addition to the availability of a 

reference genome, Arabidopsis also offers the advantages of a short life cycle (as 

little as 6 weeks from seed to seed), being easy to self- or cross-pollinate, and 

amenability to genetic modification.   Arabidopsis is also susceptible to certain 

species of powdery mildew (PM) fungi, and there are mutant Arabidopsis lines that 

show either resistance to PM species that are well-adapted to Arabidopsis, or 

susceptibility to PM species that are poorly adapted to Arabidopsis wild-type plants.   

Forward genetic studies of Arabidopsis have thus enabled researchers to identify 

Arabidopsis genes associated with resistance or susceptibility to PM.  This has 

revealed important details about the molecular interactions that either allow or 

prevent PM infection in Arabidopsis, and homologues of such host components are 

found in other plant species. 
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Two important examples of discoveries that have emerged from examination of the 

PM-Arabidopsis pathosystem are RPW8-mediated broad-spectrum resistance, and 

loss-of-MLO (mlo)-mediated complete resistance against PM fungi.   RPW8.2, a 

member of a small family of broad-spectrum resistance genes identified and 

characterized by Xiao et al (1997 and 2001), encodes a resistance protein that is 

targeted to, and functions at the extrahaustorial membrane (EHM), a host-derived 

membrane that surrounds the PM feeding structure known as the haustorium.  The 

EHM is the principal interface between host and pathogen, and the primary place at 

which effector proteins enter host cell and nutrients are taken up by the fungus.   

RPW8-mediated resistance is SA-dependent, involves the accumulation of hydrogen 

peroxide, and can lead to HR response in the infected cell (Xiao et al 2001).   mlo-

mediated broad-spectrum and durable resistance to PM fungi in barley has been 

employed in agriculture for close to a century (Buschges et al 1997, Piffanelli et al 

2004). The Arabidopsis MLO2 gene, along with its close homologs MLO6 and 

MLO12 plays a similar role in PM penetration of host cells (Consonni et al 2006).  

Mutant plants with non-functional MLO2 or multiple non-functional MLO family 

genes show strong resistance to penetration by PM fungi (Kuhn et al 2016).    

However, the molecular basis of both RPW8- and mlo-mediated  resistance to PM 

fungi remains to be elucidated (Kuhn et al 2016).   

 

One of the main reasons that little is known about RPW8 and mlo-mediated resistance 

from the pathogen’s perspective is because PM fungi are genetically intractable.  To 
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date, no one has perfected any method to make stable, targeted mutations in the 

genomes of biotrophic fungi such as PM.   This means that reverse genetic methods, 

such as gene deletion and gene over-expression can only be applied to the host in the 

PM-Arabidopsis pathosystem.   Genetic exploration of the pathogen is very limited in 

the case of Arabidopsis-PM interaction, and the genetic basis of fungal virulence in 

PM fungi consequently remains poorly understood.    

 
 

The merits of the chestnut-Cp model system 
 
Unlike biotrophic PM fungi, Cp as a nectrotrophic pathogen is genetically tractable 

(Nuss 2011).  Reverse genetic studies with Cp have allowed researchers to conduct 

knockout studies for candidate genes and identify essential factors in fungal virulence 

in chestnut (table 1).  There are several advantages of using Cp as a model species for 

studying fungal virulence or pathogenicity. These include: (1) Cp can be easily 

cultured in vitro and stored at -20°C for many years; (2) the virulence of Cp fungal 

strains in chestnut can be quickly assessed through various types of controlled 

inoculations; (3) vegetative Cp spores and mycelia are haploid, resulting in 

phenotypic expression of relevant mutations; (4) Cp quickly produces uni-nucleate, 

haploid asexual spores in culture, making it possible to isolate monokaryon knockout 

strain mycelia through a variety of screening methods; and finally  (5) the availability 

of DK80, a mutant strain of Cp, which is highly virulent but has an impaired non-

homologous end joining capability, makes genetic transformation of the fungus by 

homologous recombination highly efficient (Nuss 2011).   In addition, a well-

annotated reference genome is available for the standard virulent Cp strain EP-155 
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(U.S. Department of Energy, Joint Genome Institute, 

https://genome.jgi.doe.gov/Crypa2).   By using this ascomycete fungus as a surrogate 

for related biotrophic fungi, such as PM species, we can overcome some of the 

limitations on performing reverse genetic studies with biotrophs, at least for the rapid 

screening of candidate genes with homologues present in both species.   

 

Defining pathogenicity broadly for target gene selection 
 

This study seeks to identify genes that are highly conserved in ascomycete plant 

pathogenic fungi and play a role in fungal pathogenesis in plant hosts.   Our focus 

goes beyond fungal gene products that act on the plant host, such as digestive 

enzymes, toxins and effector proteins, and covers a broader concept of pathogenicity 

that includes internally-acting fungal genes that enable fungi to survive in the well-

defended, hostile and often nutrient-poor environment of a live host.   We also 

emphasize candidate genes that are highly conserved across species, and we do so for 

two reasons: (1) that we will be able to use reverse genetic methods (particularly gene 

knockout) to explore the function of genes that exist in a genetically tractable fungus 

(Cp) to identify important virulence factors for further study in intractable biotrophic 

fungus (Gc); and (2) that it may lead to the development of novel forms of resistance 

that may be applicable to multiple plant-pathogenic fungi.   More immediately, the 

information we obtain from the Cp – chestnut pathosystem through genetic 

modification of the Cp fungus may be useful for us to functionally characterize 

candidate homologous PM genes through host-induced gene silencing (HIGS).  
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HIGS is a relatively recently developed method for engineering plants with resistance 

to specific pathogens.  HIGS relies on RNA interference (RNAi), a process that 

occurs in eukaryotic cells (Weiberg et al 2014.)   In RNAi, a host cell produces 

enzymes known as dicer-like proteins (DLPs), which cleave double stranded RNA 

(dsRNA) molecules into 21-22 base pair short fragments, known as small interfering 

RNAs (siRNAs).   These siRNA fragments are then incorporated into RNA-induced 

silencing complexes (RISCs), which are also produced by the host cell.  The siRNA 

fragments in the RISCs serve as template to bind complementary messenger RNA 

(mRNA) molecules and guide the RISCs to cleave the target mRNA and /or disrupt 

its translation, thus silencing expression of the gene from which the mRNA was 

transcribed (Weiberg et al 2014).   

Though RNAi was originally understood as a defense against dsRNA viruses and/or a 

process for regulating host gene expression, it is now known that there is also two-

way trafficking of dsRNA between pathogens and plants (Weiberg et al 2014, 

Baulcombe 2015, Han and Luan 2015). There are fungal pathogens that export 

dsRNA to plants where they silence host genes, and plants that export dsRNA to 

silence pathogen genes (Cai et al 2018).   HIGS technology involves the artificial 

insertion of genes into a host that encode dsRNA matching target genes from a 

pathogen’s genome.  These dsRNAs can be trafficked into the pathogen where they 

help silence the target gene.  Though the silencing is not always complete, HIGS can 

at least down-regulate target genes.   It can be used experimentally, as a substitute for 

gene knockout, or as a novel form of defense in genetically modified plants.  HIGS-

based defenses have been successfully demonstrated in several plant species, 
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including in papaya against ring spot virus (Gonsalves 1998), in barley against 

Fusarium head blight fungus (Fusarium graminearum) (Nowara et al 2010, Koch et 

al 2013), and in banana against Panama disease (Fusarium oxysporum f.sp. cubensis) 

(Ghag et al 2014). 

Research objectives 

This research examines the function of six highly conserved genes found in plant-

pathogenic fungi, focusing on the roles they play, with a view to discovering new 

targets for fungal gene disruption that could be employed in novel forms of defense.   

The six genes in this study have homologues in Cp and six PM species, including the 

Arabidopsis pathogen Gc, the genomes of which have been sequenced and annotated 

(Wu et al 2018).    We screened homologous genes found in Cp and Gc, emphasizing 

candidates whose PM homologues are upregulated in the haustorium and likely to be 

involved in pathogenicity.   (Note: gene selection methodology and results are 

discussed in greater detail in chapter 2).  We attempted to delete these genes, by 

homologous gene replacement in Cp, and observe the effect on the fungus in vitro 

and in planta.  After studying the selected genes in the Cp-chestnut pathosystem, we 

intend to silence their homologues in Arabidopsis by means of HIGS, and compare 

the effect on fungal virulence to that observed in Cp.  This research is exploratory in 

nature and is intended to generate additional testable hypotheses about specific genes 

or types of genes that may serve as targets for developing novel forms of defense 

against fungal pathogens in genetically modified plants.   
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The research presented in this thesis has 4 main objectives: 

1. To test the concept of using a genetically tractable necrotrophic pathogen as a 

surrogate for reverse genetic studies of homologous genes in a genetically 

intractable, biotrophic pathogen, 

2. To functionally characterize previously unstudied fungal genes for their 

potential roles in pathogenesis, 

3. To improve our understanding of molecular interactions between hosts and 

pathogens in the Arabidopsis-PM pathosystem, and 

4. To identify Cp genes as targets for HIGS-mediated resistance to Cp in 

American chestnut   
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Chapter 2: Genetic Study of six Highly-Conserved Genes in Cp 
 

Introduction 

The Chestnut-Cp interaction and Arabidopsis-Gc interaction, each have distinct 

features. While Cp is amenable to genetic manipulation (Nuss 2011), genetic 

modification of chestnut trees is difficult and time consuming (Newhouse et al 2014). 

Conversely, while Arabidopsis is genetically amenable, Gc is not.  In this work, we 

sought to use both pathosystems in a complementary.   To bypass technical barriers 

that prevent reverse genetic research on biotrophic fungi such as Gc, we targeted 

homologues of Gc genes found in the genetically transformable necrotrophic plant 

pathogen Cp.  Any of these homologous genes whose deletion in Cp results in 

reduced virulence in its host (chestnut) would not only be promising targets for novel 

forms of resistance to chestnut blight, but also candidates as possible pathogenicity 

genes in Gc.  While targeted mutagenesis/gene knockout is not possible in Gc, HIGS 

could be used to suppress gene expression.  The first step was to identify promising 

target genes. 

 

Materials and methods 

Identification of target genes 

Our criteria for selecting homologous gene pairs across the two ascomycete fungal 

species (Cp and Gc) included high-level protein sequence homology (E<10-6), the 

presence of a predicted N-terminal signal peptide, the absence of predicted 

transmembrane domains, and increased expression of the Gc homologues in haustoria 
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(Wu et al 2018).   We rejected genes whose homologues had been shown to be 

essential for survival (i.e. lethal when deleted) in the model ascomycete yeast 

Saccharomyces cerevisiae (Sc).  These criteria were designed to capture a broad 

range of secreted proteins involved in colonization of, and adaptation to, the host, 

rather than just those that resemble proteins involved in known pathogenesis 

pathways.  We did not include in our selection criteria information about putative 

gene function, or other characteristics generally considered typical of effector 

proteins or pathogenesis-related genes, such as short protein sequence, cysteine 

richness or lack of homologues outside of Gc and Cp (Kim et al 2016). 

 

Target gene selection began with browsing the genome of Gc strain UCSC1 

(Genbank accession number MCR00000000.1), using SignalP3.0 

(www.cbs.dtu.dk/services/SignalP-3.0/) to predict potential N-terminal secretion 

signal peptides and TMHMM 2.0 (www.cbs.dtu.dk/services/TMHMM) to predict 

transmembrane domains in the mature peptides.   We then did BlastP searches of the 

resulting list of Gc genes against the genome of Cp strain EP155 (U.S. Department of 

Energy Joint Genome Institute, genome.jgi.doe.gov/Crypa2).  The Cp EP155 strain is 

the parent strain of the Cp DK80 mutant strain used for transformation in this project.   

Simultaneously, we also did a BlastP search for homologues of the same genes in the 

genome of Sc strain S288C (GenBank accession number PRJNA128, 

ncbi.nlm.nih.gov/bioproject/128), to screen out genes found to be essential in this 

extensively studied genome.   
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Using the criteria above, we identified six potential pathogenicity genes with 

homologues in Cp and Gc.  The six genes were designated as Target Gene one 

through six (hereafter TG1-TG6), in priority order based on the degree to which 

homologues have been reported in plant-pathogenic fungi, and the levels of amino 

acid sequence identity between the Cp and Gc homologues.   None of these six genes 

appear to have been previously studied or characterized in either species.  However, 

BlastP searches of the predicted proteins in Cp produced numerous homologues for 

each, and several of the genes have been characterized or studied in Sc or other 

species of fungi.    

Creation of gene disruption constructs 

We attempted to develop knockout strains of Cp for each target gene using 

homologous gene replacement techniques described by Churchill et al (1990).  The 

Cp strain DK80, obtained from Dr. Dongxiu Zhang at the U.S. Department of 

Agriculture’s Agricultural Research Service in Beltsville, MD, is a mutant strain 

derived from the standard virulent research isolate of Cp, EP-155, with a gene 

essential for non-homologous end joining deleted (Lan et al 2008).  DK80 can be 

transformed by homologous recombination with up to 85 percent efficiency (Nuss 

2011) by incubating DK80 spheroplasts in an osmotic solution at room temperature 

with chimeric fragments of DNA whose flanking sequences match targeted portions 

of the DK80 genome (Churchill et al 1990).  

 

Chimeric DNA fragments, to be used as gene disruption/knockout constructs, were 

designed using Benchling molecular cloning web tools (Benchling.com).  One type of 
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chimeric fragment was developed for each target gene.  Each included a common 

marker cassette from the pKAES173 plasmid that contains a hygromycin resistance 

enzyme (hygromycin phosphotransferase – hph) controlled by a constitutive fungal 

promoter from Aspergillus nidulans.  We obtained the pKAES173 plasmid from the 

Nuss lab at the University of Maryland’s Institute for Bioscience and Biotechnology 

Research (IBBR).   Flanking sequences matching those of the relevant target gene, 

were fused to the 5’ and 3’ ends of the marker cassette using overlapping PCR.   

 

Flanking sequences were cut from DK80 genomic DNA using outer forward (FSFPs) 

and reverse (FSRPs) primers matching 200-600 bp of the 5’ and 3’ flanking 

sequences of the target genes and overlapping primers that included one part 

matching the other flanking sequences fused to 20-22 bp segments complementing 

the relevant end of the marker cassette.   These PCRs resulted in the amplification of 

target gene flanking sequences with 20-22 bp overhangs matching the marker 

cassette.  The marker cassette itself was amplified from the pKAES173 plasmid by 

PCR with simple forward and reverse primers (Marker cassette forward and reverse 

primers – MCFP and MSRP).   All primers were designed with the web-based 

molecular biology platform Benchling (Benchling.com) and manufactured by 

Eurofins.   All PCR reactions were performed with Takara Extaq high fidelity 

polymerase and Extaq 10x PCR buffer.   Primer sequences and melting temperatures 

are provided in table 2. 
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Table 2.   Primers used in the amplification of chimeric gene disruption constructs for TG1-TG6, and 
their melting points.  FSFP and FSRP refer to flanking sequence forward and reverse primers.  MCFP 
and MCRP: marker cassette forward and reverse primers.  OFP and ORP: overlapping forward and 
reverse primers.   The common sequences between the OFPs/ORPs and the marker cassette¸ and 
melting points, are indicated in bold.  
 
 

Primer 5’ to 3’ sequence Tm 
MCFP TGCAGCCCGGGGGATCCATAA   62°C 
MCRP CGACGTTGTAAAACGACGGCCA 60°C 
TG1-FSFP AGACTTGCCATTTCTTCTCTCCT 61°C 
TG1-FSRP GCATATGAGTCTTTGAGCAAAACGA 61°C 
TG1-OFP TGGCCGTCGTTTTACAACGTCGGGGTACGGCATCAGCGA 60°C /54°C 
TG1-ORP TTATGGATCCCCCGGGCTGCAGAGTGATGTCGACGTGAAAAGA 62°C /55°C 
TG2-FSFP AAGTCAGAGAAGGGGAAAGTGA 64°C 
TG2-FSRP CGGTGGACTTCGGTTGACT 64°C 
TG2-OFP TGGCCGTCGTTTTACAACGTCGCTCAACTTCGTCCCTCCGT 60°C/55°C 
TG2-ORP TTATGGATCCCCCGGGCTGCAGAGTCGAACGGTGTGTCGT 62°C/57°C 
TG3-FSFP CCCTCGGTTGCTCAGTATATCA 65°C 
TG3-FSRP GGAAGAAGAGGTGGCGGTA 64°C 
TG3-OFP TGGCCGTCGTTTTACAACGTCGTCGCAGATCTCTGATGGTAAGTT 60°C /55°C 
TG3-ORP TTATGGATCCCCCGGGCTGCACGTTGTTGTTTTGTGGCGTTTA 62°C /55°C 
TG4-FSFP ACAAGATGTCGTGGTATTACTAGGA 62°C 
TG4-FSRP GCTTGGAATTTGGTGGTGGA 65°C 
TG4-OFP TGGCCGTCGTTTTACAACGTCGTGAAAGGAAAAAGCCAGGTTGA 60°C /55°C 
TG4-ORP TTATGGATCCCCCGGGCTGCAGCTCCTCCCAGATTGCAGAT 62°C /56°C 
TG5-FSFP GCAGGGTGAACCTGATTTCTCTACCACATCAAAAT 63°C 
TG5-FSRP CAGGCAAACAATGCCTGCCAGCTTAT 62°C 
TG5-OFP TGGCCGTCGTTTTACAACGTCGTTGGGGGAGGTGGGATCTCAAGTCA 60°C /63°C 
TG5-ORP TTATGGATCCCCCGGGCTGCACACCTGATGTTATACAAGACCAAGTGGTTGTCAA 62°C /62°C 
TG6-FSFP TAATGTGAGCAGGAGCATCTTGACGAAGTGTTT 63°C 
TG6-FSRP GTGGTTTTAACACTTTACTAGAGGCGCATATTTACCATCATATATTA 62°C 
TG6-OFP TGGCCGTCGTTTTACAACGTCGCTATGACTGACAAGTGGACGCCGCT 60°C /63°C 
TG6-ORP TTATGGATCCCCCGGGCTGCATTTCTATTGACTTTGAGCAAGTACTCGTGCA 62°C /60°C 

 
 

For each target gene, full chimeric fragments were generated by overlapping PCR 

using the forward primer of the 5’ flanking sequence as a forward primer and the 

reverse primer of the 3’ flanking sequence as a reverse primer.  During the PCR, 

denatured marker cassette segments annealed to the overlapping tails of the flanking 

sequences resulting in fusion and amplification of all three fragments.  A diagram of 

the chimeric fragment assembly is provided in figure 1.   The resulting PCR products 

were purified through gel electrophoresis in 1% agarose gel and measured with a 

standard 1 kb DNA ladder (Fermentas Generuler).   The bands corresponding to the 
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full length of the expected chimeric fragment were cut from the gel and purified using 

a ThermoScientific GeneJET Gel Extraction Kit.     

 

 
Figure 1.   Schematic of the overlapping PCR process to create chimeric gene disruption constructs 
from separate fragments of DNA. 
 
 
Concentrations of chimeric gene disruption constructs amplified by overlapping PCR 

for TG1-TG4 and TG6 ranged from 14.6 to 35.2 ng/μl, too low to efficiently produce 

the 5-10 mg required for fungal spheroplast transformation (Churchill et al 1990).   

To increase concentrations, chimeric fragments for TG1, TG2, TG3, TG4 and TG6 

were inserted into and amplified in E. coli bacteria, and plasmid DNA was extracted 

(ThermoScientific GeneJet miniprep kit).   Multiple attempts produced successful 

results for different target genes using different vectors, bacteria and extraction 

methods (table 3).   Because the DNA concentration of TG5 overlapping PCR product 

was relatively high, bacterial amplification was not necessary.  TG5 fragments were 

produced with overlapping PCR, using 5 cycles without primers to encourage the 

flanking sequences to anneal to the marker cassette fragments, followed by 30 cycles 

with the 5’ forward and 3’ reverse primers added.   
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Table 3.  Methods used for amplification of the TG1-TG6 gene disruption constructs. The  pGEM-T 
EasyVector and T-4 ligase were purchased from Promega.  The pGXT plasmid was obtained from Dr. 
Guoliang Wang, Ohio State University.   
 

Target 
Gene 

Initial 
DNA 
conc. 
(ng/μl) 

Plasmid used for 
transformation 

Bacteria type Amplification/Extraction 
method 

Final DNA 
conc. 

TG1 18 ng/μl pGEM-T EasyVector/T4 
ligase 

Invitrogen OneShot 
Top10 chemically 
competent cells 

Miniprep 441 ng/μl 

TG2 34 ng/μl pGEM-T EasyVector/T4 
ligase 

Invitrogen OneShot 
Top10 chemically 
competent cells 

Miniprep 287 ng/μl 

TG3 15 ng/μl pGEM-T EasyVector/T4 
ligase 

Invitrogen OneShot 
Top10 chemically 
competent cells 

Miniprep 278 ng/μl 

TG4 18 ng/μl pGXT plasmid/T4 ligase Invitrogen OneShot 
Top10 chemically 
competent cells 

Miniprep, followed by 35 
cycles of PCR amplification 
using ExTaq polymerase 

39 ng/μl 

TG5 107 ng/μl n/a n/a Overlapping PCR  107 ng/μl 
TG6 64 ng/μl pGXT plasmid/T4 ligase Invitrogen OnShot 

Top10 electro-
competent cells 

Miniprep 98 ng/μl 

 

Spheroplast preparation 

Spheroplasts of Cp strain DK80 were prepared following the protocol described in 

Appendix II.   DK80 was grown on PDA medium, and aerial hyphae were harvested 

by swirling through the aerial layer with a pipette tip, accumulating a small sphere 

(approximately 5 mm in diameter) of hyphal tissue.   The sphere was transferred to a 

1.5 mLcentrifuge tube, washed with distilled water, and ground with 50 twists of a 

small plastic micro-pestle.   The contents were transferred to 100 mL of  potato 

dextrose broth in a sterile 250 mL Erlenmeyer flask and incubated on a bench top 

over three days until about half the volume of the medium was occupied by white, 

cloudlike mycelial masses.  
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The mycelium was strained and transferred to sterile 50 mL falcon tube, and spun 

down at 3700 rcf for 5 minutes at room temperature.    The mycelial pellet was 

washed with distilled water, and spun down again at 3700 rcf for 3 minutes, after 

which the washing step was repeated one more time.   The mycelium was removed 

from the tube and gently blotted on sterile filter paper to remove excess water and 

then placed and re-suspended in a new sterile 50 mL falcon tube containing 25 mL of 

digestion buffer, freshly prepared in the same tube.   (The protocol for the preparation 

of digestion buffer, and other buffers and media used in the spheroplast preparation, 

transformation and regeneration steps is provided in Appendix II). 

 

The mycelium and digestion buffer was incubated horizontally overnight 

(approximately 16 hours) in a 30°C shaker at 50 rpm, resulting in a homogenous 

cloudy suspension.   After removal from the incubator, cold, sterile trapping buffer 

was added to overlay the spheroplast suspension until the tube was filled to 50 mL, 

with care taken not to disrupt the spheroplast layer.    The suspension and trapping 

buffer were spun down at 3,700 x g for 5 minutes at 4°C.   Spheroplasts were 

collected at the interface with a 1,000 μl pipette and transferred to a sterile 50 mL 

falcon tube, and diluted with two volumes of 1M sorbitol solution, and mixed gently 

but thoroughly.  The suspension was then evenly distributed to 1.5 mL centrifuge 

tubes, and spun down again at 6,000 rcf at 4°C for 5 minutes.  Supernatant was 

removed by pipette, and the spheroplasts were suspended in a single 200 μl volume of 

STC, which was transferred from tube to tube to resuspend all of the pellets in all of 

the tubes in a single volume. The final volume of spheroplasts suspended in STC was 
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spun down again at 6,000 rcf for 5 minutes.  The supernatant was removed and 

replaced with 1 mL of STC, which formed a slightly cloudy homogeneous solution.    

Approximately 10 μl of spheroplast suspension was observed on a hemocytometer 

under a dissecting microscope at 250x magnification.   Spheroplasts were counted 

and concentration was estimated at 2 x 106 spheroplasts per mL (figure 2).  The 

solution was then diluted with one part PTC and 0.05 parts DMSO per 4 parts STC, 

then aliquoted into 1.5 mL tubes and placed in a -80°C freezer for storage in 50 μl 

units.  (Appendix II provides formulations for all buffers related to spheroplast 

preparation and transformation.) 

 
 

 
 

Figure 2.  Cp spheroplasts under a hemocytometer. 
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Spheroplast transformation 
 

Genetic transformation to create Cp knockout strains was accomplished by incubation 

of freshly prepared or thawed spheroplasts in a polyethylene glycol (PEG)-based 

osmotic buffer containing high concentrations (~10 μg of gene disruption constructs 

per transformation) at room temperature, using methods described by Churchill et al 

(1990).    (The protocol and recipes for all buffers and solutions are provided in 

Appendix II.)   

 

For each transformation, a DNA solution containing the relevant gene disruption 

construct was placed in 1.5 mL centrifuge tubes with enough distilled water to reach a 

volume of 10 μl.   Fifty µl of spheroplast suspension was added to each tube, gently 

mixed and allowed to chill on ice for 30 minutes.  Then, 500 μl of PTC was added to 

each tube, mixed gently and incubated at room temperature for 25 minutes.  One mL 

of STC was then added to each tube to stabilize the osmotic pressure, stop the 

transformation process, and create a ready-to-use suspension of spheroplasts. 

 

Regeneration of putative transformants 
 

Following the transformation step, the spheroplast suspension was transferred to 

labelled 85 mm petri dishes in serial dilutions of 2 μl, 20 μl and 200 μl (for first 

transformation of TG1-TG4) or 5 ul, 20 μl and 80 μl (for second and third 

transformations of TG1-TG3, TG5-TG6).   One control dish was inoculated with the 

untransformed DK80 spheroplast suspension.   Ten mL of regeneration medium (see 

Appendix I) was added to each dish and mixed with the spheroplast suspension by 
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swirling.   Dishes were allowed to solidify under the laminar flow hood and covered.  

After 16 hours of incubation on the benchtop another layer of regeneration medium 

with hygromycin was added, allowed to solidify and cool, and then covered and 

moved to incubate on the benchtop.  (The hygromyicin concentration in the upper 

layer of regeneration medium was 50 mg/mL in the first set of transformations of 

TG1-TG4, and then attempted at 30, 40 and 50 mg/mL in subsequent attempts with 

TG1-TG3, TG5 and TG6 .  The plates were observed for 3-5 days for the emergence 

of hyphae on the surface of the regeneration medium.   Up to twelve small colonies 

per knockout strain were named with capital letters and then transferred to individual 

new petri dishes containing potato dextrose agar (Difco Bacto PD broth plus agar - 

PDA) medium amended with the selective dose of hygromycin (PDA+hyg) and 

allowed to grow out.   The putative transformant mycelia were labelled by knockout 

strain followed by the letter identifying the specific colony transferred (e.g. TG1A, 

TG2C).    

 

Plates containing putative transformed mycelia were allowed to grow out on the 

bench top until the mycelium was large enough to exhibit different morphology the 

center of the colony than at the growing margin.  Two 5 mm punches of each putative 

transformant and of the untransformed DK80 control were taken from the margin of 

the mycelium.  One of each was transferred to the center of a fresh 60 mm PDA+hyg 

plate, and another to the center of a 60 mm plate of hygromycin-free PDA.   This 

resulted in two cultures (+hyg and -hyg) of each putative transformant paired with 

two cultures of the DK80 control (+hyg and -hyg).  Each four-plate set was allowed 
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to grow out on the bench top until the most rapidly growing mycelium of the four 

approached the edge of the petri dish (generally 3 days).   At this point the 

transformants were photographed and phenotypic observations noted.    

 

  Isolation of monokaryon knockout strain mycelia 
 
Tissue from the +hyg culture for each putative transformant and from one DK80 -hyg 

culture was harvested when aerial hyphae were relatively abundant, and genomic 

DNA was separately extracted from these samples using a tissue grinder and SDS-

based DNA extraction method.   Separate PCR analyses were carried out using each 

sample of genomic DNA, using the forward and reverse primers for the hygromycin 

resistance marker cassette, and using the flanking sequence primers for each target 

gene as forward and reverse primers for the whole gene disruption construct.  

Electrophoresis of the PCR products was carried out in a 1% agarose gel, with a 1 kb 

ladder (Fermentas GeneRuler) used to gauge DNA fragment size.  DK80 samples 

were used as negative (non-transformed) controls.   The presence of a band for PCR 

reactions using marker cassette primers identified putative transformants.   

Differences in length between the original target genes and the gene disruption 

construct that replaced them revealed which samples were transformants, which were 

wild-type DK80 and which were heterokaryons, containing both the intact and 

knockout genomes.   Because of Cp’s propensity for anastomosis, wild-type spores 

that germinated in the regeneration medium fused with knockout spores.  No 

mononkaryon mutant colonies were expected or observed at this stage. 
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PDA and PDA+hyg plates containing heterokaryon colonies were incubated on the 

benchtop for up to 10 days to produce conidia.   The heterokaryon colonies generally 

did not produce fruiting bodies on PDA+hyg medium, so spores in most cases had to 

be harvested from colonies grown on PDA.   Spores were collected by pipetting 10 μl 

drops of sterile distilled water onto ripe fruiting bodies to allow spores to disperse 

into the water droplet, then drawing the droplet back into the pipette and transferring 

it to to a 1.5 μl tubes containing 1 mL of distilled water for dilution (figure 3).  Serial 

dilutions of suspension were transferred to fresh +hyg  plates and spread over the 

surface with sterilized a glass spreader.   Any mycelia that grew on these selective 

medium plates were subsequently transferred to fresh +hyg plates, allowed to grow 

out until DNA could again be extracted, and analyzed by PCR to identify true 

monokaryon knockout cultures.   

 

 

 
Figure 3.   Ripe Cp fruiting bodies at 340x magnification.   Black arrows indicate where pycnidia 
exude a water-soluble spore suspension that can be diluted and collected by pipette. 
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Examination of knockout strain phenotype  

 
To observe phenotypic changes resulting from the deletion of target genes, nine 5 mm 

plugs of monokaryon mycelia for each knockout strain were transferred from the 

+hyg media, where they were grown and maintained, to three types of petri dishes 

containing different –hyg media: Endothia parastica complete (EPC) medium to 

observe growth under nutrient-rich conditions, water-agar (WA) medium to observe 

growth under nutrient-poor conditions, and chestnut bark agar (CBA) medium to 

simulate the environment present in American chestnut bark.   (Formulas for these 

media are provided in appendix I.)  There were three replications for each type of 

medium.  

 

Mycelial diameters were measured daily with a ruler to chart the growth of the fungal 

strains, and observations made concerning the appearance of pigment and fruiting 

bodies.   Photographs containing one plate each, representing the medium mycelial 

diameter for each medium type, were taken at regular intervals.   

 

Because diameter increases faster for mycelia in nutrient-restrained conditions 

(Jennings and Lysek, pg. 13), diameter can be a poor indication of biomass 

accumulation.    To measure relative biomass accumulation, nine additional plugs of 

knockout strain and nine of untransformed DK80 mycelia were made on plates with 

cellophane layers placed over the three types of medium.   The cellophane was pre-

cut to have a uniform dry weight prior to inoculation, and was peeled off with the 
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mycelium at seven dpi, blotted with sterile filter paper to remove liquid that 

occasionally accumulates between the mycelium and the cellophane (this step was 

only necessary for CBA medium), and weighed in wet conditions (weight when 

peeled off the medium) and dry conditions (after the mycelium-laden cellophane was 

allowed to dry at least 24 hours in a 37°C incubator.  The average weight of the non-

inoculated cellophane controls was subtracted from the average weight for each 

mycelium type, and the results used to compare the relative accumulation of biomass 

by the knockout strain versus wild type DK80, using a Student’s t-test (α=0.05). 

 

 
Examination of knockout strain virulence in planta 

 
While in vitro observations can reveal some differences between the wild type and 

knockout strains, there may be other relevant environmental factors in the live bark of 

chestnut trees that can influence fungal growth and development.   In addition, 

inoculations into live American chestnut tissue are necessary to observe any effect of 

the gene knockouts on the virulence of Cp.   Inoculations into live mature American 

chestnut trees was not feasible due to the lack of available non-blighted trees, and due 

to restrictions on the release of genetically modified pathogens into the environment.   

Therefore two other types of in planta assays were used to observe fungal growth and 

development in American chestnut tissue: a detached stem assay widely used in Cp 

research (Elliston 1978, Jacob-wilk et al 2009, Levine-Double personal 

communication), and a small stem assay developed in cooperation between the author 

and the science staff of the American Chestnut Foundation (Saielli and Levine 2019). 
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The detached stem assay 
 
For the detached stem assay, non-blighted branches 4-8 cm in diameter and 0.5 – 1.0 

meters in length were harvested from dormant American chestnut trees in orchards 

maintained by the Maryland Chapter of the American Chestnut Foundation in January 

2019.  The ends of the branch segments were sealed with melted food grade wax to 

preserve moisture and put in a -20 freezer for storage until use.  When removed for 

inoculation, stems were left to thaw to room temperature, bathed in a 10% dilution of 

household bleach for 15 minutes, then allowed to dry on newspaper.  Inoculations 

sites were chosen at points along the stems that were away from branches or damaged 

bark, and at least 10 cm apart from each other.  Sites were marked with a randomly 

assigned site number with typing correction fluid.  Five mm plugs of inoculum grown 

on PDA were placed, mycelium side in, into holes drilled through the bark of the 

stems with an ethanol-sterilized 3/8 inch steel punch in a cordless drill.   Inoculum 

was sealed in place with segments of masking tape.  Inoculated stems were placed in 

sealed, translucent plastic boxes in a greenhouse at 25°C, with approximately 70% 

humidity and a natural daylight cycle.  The length and width of resulting Cp cankers 

were measured weekly, and estimates of a normalized canker length (NCL) were 

made.  NCL is the square root of the area of an ellipse calculated using the actual 

length and width of the canker (figure 4).  The NCL is a linear measurement that 

allows us to compensate for differences in the ratio of canker length to canker width 

that results from variance in diameter between stems.    
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𝑁𝑁𝑁𝑁𝑁𝑁 = �𝜋𝜋𝜋𝜋𝜋𝜋
4

 

 
Figure 4.   Formula for normalized canker length, where l = observed canker length and w = observed 
canker width. 
 
Observations were noted concerning the emergence and phenotype of fruiting bodies.  

Fifteen replicates for each knockout strain and for the inoculations with DK80 were 

randomly distributed among the available inoculation sites, along with 15 

inoculations with sterile agar medium as negative controls, 15 of the virulent Cp 

strain EP155 as positive controls and 15 of the confirmed weakly virulent Cp strain 

strain SG2,3.   EP155 and SG2,3 cultures were obtained from the American Chestnut 

Foundation under APHIS license.   Failed inoculations, or cankers affected by 

obvious contamination by naturally occurring fungi were deleted from the data set.   

The mean NCL for each strain and observations concerning the emergence of fruiting 

bodies were used as proxy measures for fungal virulence.  Differences in NCL 

between knockout strains and the DK80 parent strain were calculated using Student’s 

t-test (α=0.05).    

 
The small stem assay 

 
Detached stem assays have been shown to be good predictors of canker size resulting 

from inoculation in live trees (Elliston 1978, Jacob-Wilk et al 2009).  The cambium 

layer of stem segments preserved in this manner is made up of live cells with intact 

constitutive and induced defense capabilities.  The assay can be completed within one 

month and carried out at any time of year using frozen material.   However, the 

detached stem assay may be limited by the inability of live cells to draw on distal 
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resources as they might in a live tree.    This is the reason a second type of virulence 

assay was conducted in the bark of small seedlings in their first year of growth, the 

small stem assay. 

 

For the small stem assay, pure American chestnut seeds were obtained from a single 

pure American parent tree by the Maryland Chapter of the American Chestnut 

Foundation.   These seeds were stratified at 4°C and planted in a greenhouse in late 

2017, and again in late 2018.    Inoculations were carried out when enough seedlings 

had stems 6 mm or greater in diameter at the base.  Inoculations involved placement 

of plugs (approximately 1mm x 1 mmx 5 mm) of knockout strain or DK80 mycelia 

grown on PDA medium into 1 x 5 mm incisions made through the bark, but not into 

the heartwood of the stems, with one inoculation per stem.  The incision was made 

with a 2 mm cork borer cut at a 45° angle and sharpened with a scalpel.  At least five 

incisions were inoculated with sterile agar medium as negative controls.  All tools 

were sterilized with ethanol and flared between contact with different fungal strains.  

After placement of the mycelial plugs into the incisions, each inoculation site was 

wrapped tightly with a 2 cm wide piece of pre-stretched parafilm and twisted in place.   

The parafilm was left in place for seven days, and measurements of the length of 

resulting cankers were taken at 14-day intervals.   At each measurement, the length of 

each canker was recorded, and the trees were also assigned a qualitative score, using 

the decision tree in figure 5.   The qualitative score was designed to characterize 

stages of canker development, and to be used to compare the rate of canker 

development between weakly virulent strains that do not result in mortality.   
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Figure 5.  Decision tree for qualitative rankings of small stem assay cankers. 
 

Measurements continued for 14 weeks.  At the end of the period, mean canker length 

and the mean number of weeks until stem death were calculated for each fungal 

strain.   Comparisons of canker length, mean days of stem survival (days until the 

portion of the stem above the inoculation site dies) and qualitative scores (if 

necessary) were to be made in Excel using t-tests with unequal variance for pairwise 

comparisons between any given knockout strain and DK80 and negative controls, or 

by ANOVA if testing multiple knockout strains in one assay.    

 
 
Results and Discussion 

Profiles of target genes 

A comparison between the Cp strain EP-155 and Gc strain UCSC1 reference 

genomes, using the gene selection strategy described in chapter 2, yielded 33 

predicted homologous genes with E-values less than 10-6 .   Of these, three had been 

reported to be essential genes (lethal when impaired) in the model ascomycete yeast 

Is the stem distal to the inoculation site dead?    
If yes, Score=5 
If no, is there a canker that is sunken in the middle compared to the margins, or 
which has Cp fruiting bodies? 

If yes to either, Score=4 
If no, does the canker fully encircle the stem, or does it extend more than 5 
mm from either end of the inoculation site? 
 If yes to either, Score=3 

If no, is there any obvious sign of fungal infection around the 
inoculation site? 

  If yes, Score=2 
  If no,  Score=1 
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Sc.  Of the remaining 30, six had previously been shown to be up-regulated at least 2-

fold in Gc (UCSC1) haustoria, the feeding structures of the pathogen (Wu et al 2018).    

None of these six genes (TG1-TG6) have previously been characterized in Cp or Gc, 

and a literature search revealed no reference to the genes in studies of either species.   

However, BlastP searches of the predicted proteins in Cp produced over 100 

homologues for each, and homologues of each of the genes have been characterized 

or studied in Sc (table 4).   

 
Table 4.   Cp Target Genes 1 through 6 and their homologues in Gc and Sc.   
 
 

Target 
Gene 

Cp strain 
EP-155 
protein ID 1 

Cp 
gene 
length 

Cp amino 
acid 
sequence 
length 

Gc strain 
UCSC1 
protein ID 
number2 

S. cerevisiae 
homologous 
protein/gene3 

TG1 96843 2136 564 32023 YCR068W/ATG15 
TG2 355196 1003 110 210066 YDR382W/RPP2B 
TG3 242884 926 286 78010 YJL158C/CIS3 
TG4 347494 1086 234 120011 YBR171W/SEC66 
TG5 320126 1569 302 132010 YKL120W/OAC1 
TG6 334581 709 197 197034 YDL046W/NPC2 

 
1 From U.S. Department of Energy Joint Genome Institute (JGI) genome.jgi.doe.gov/Crypa2, 2 From 
Genbank accession number MCR00000000.1, 3 from www.yeastgenome.org.   
 
 
Though all six target genes were predicted by analysis with SignalP v. 3.0 to encode 

proteins with an N-terminal signal peptide, and analysis with TMHMM did not 

predict transmembrane domains in any of the six, an examination of the most similar 

proteins discovered by BlastP search suggested that TG1, TG2, TG4 and TG5 encode 

proteins that are predicted to be targeted to intracellular membrane compartments, 

and that the TG3 protein may be a components of the cell wall.  A BlastP search of 
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TG6 homologues provided no clues regarding the subcellular localization of these 

proteins, suggesting it may be a secreted effector protein.    

 

Barakat et al  (2009 and 2012) examined the transcriptome of Cp-infected and non-

infected Chinese and American chestnut.  We accessed the cDNA reads from these 

studies (available at https://www.hardwoodgenomics.org) and used Hisat2 to map the 

reads to the Cp genome.  However, only 2,924 reads out of a total of 129,508 mapped 

to the Cp genome rather than to the chestnut genome.   There were five reads 

corresponding to TG2, and none corresponding to any of the others.  We believe the 

RNA extraction methods used by Barakat et al must have been optimized for plant 

tissue, which was the subject of their study.   

 

We also examined two other studies that looked at the differential expression of Cp 

genes.   Kim et al (2012) did a proteomic analysis of Cp, comparing growth of an 

uninfected strain and an isogenic hypovirulent (infected with hypovirus CHV1) in 

PDA medium and PDA amended with tannic acid, which has been shown to induce 

expression of certain pathogenesis-related genes in Cp.   Wang et al (2016) also 

studied the influence of hypovirus on gene expression in Cp.  Neither identified any 

of our target genes among the genes up- or down-regulated under the conditions of 

their respective studies.   
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TG1: a putative autophagy-related protein  
 
A BlastP search of the predicted protein from the Cp TG1 gene generated 92 non-

duplicate hits from the NCBI non-redundant protein sequences database, all 

corresponding to fungi, and with an average amino acid sequence identity of 76%.   

Seventy percent of the TG1 hits were in plant-pathogenic fungi, with the closest 

homologues found in fungi of the Sordariomycete class, which also includes Cp, 

within the phylum Ascomycotina.  TG1 homologues are generally annotated as 

“predicted lipases, or autophagy lipase protein Atg15.”    While we have found no 

reference in available literature to research on the TG1 gene in Cp or any powdery 

mildew species, its homologue in Sc has been well-studied. 

 

Atg15 is one of several highly-conserved autophagy related protein genes found in 

eukaryotic cells.  Autophagy is a process by which damaged or unnecessary 

cytoplasmic components and toxic aggregates can be degraded within the vacuole (in 

fungi and plants) or lysosome (in animals) and recycled (Delorme-Axford et al 2018).   

Atg proteins mediate a process by which specialized structures capture target 

substrates and deliver them to the vacuole/lysosome, where they are broken down 

into raw materials that can be exported back to the cytosol for re-use (Epple et al 

2001).   Autophagy is essential for cell growth and development and occurs at a low 

level in all cells.  It increases significantly during nutrient starvation, pathogen 

infection or other stress conditions, and helps maintain homeostasis (Delorme-Axford 

2018, Ramya et al 2016).     
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Epple (2001) reports that the Sc ATG15 gene is essential for the breakdown of 

autophagic bodies in the vacuole.  Ramya et al (2016) describe Atg15 as the only 

lipase among Atg proteins in Sc and report that it preferentially hydrolyses the 

cellular membrane component phosphatidyl serine.   Parzych et al (2018) report that 

one role of Atg15 in the vacuole is to break down liquid droplets, specialized 

organelles that can store neutral lipids and sequester toxic compounds such as fatty.   

They further report that yeast cells lacking the Atg15 protein do not entirely lose the 

ability to break down lipids through autophagy, but that such cells lose viability in 

nitrogen starvation conditions within six days, sooner than is the case for wild-type 

cells (Parzych et al 2018). 

 

While the exact roles of TG1 in Gc and Cp are not known, the studies of Sc discussed 

above suggest that it may help plant-pathogenic fungal cells cope with the nutrient-

poor conditions that exist within host tissue by recycling nutrients.    Also, in the case 

of Cp, fatty acid molecules produced by host plants have been shown to inhibit fungal 

growth (Samann et al 1978), and TG1 may form part of the fungal pathway that 

sequesters, traffics and breaks down these anti-fungal compounds, among other 

lipids. 

 
TG2: a putative 60s ribosomal subunit P2 acidic protein 

 
A BlastP search of the predicted protein from the Cp TG2 gene generated 91 non-

duplicate hits from the NCBI database, all corresponding to fungi, and with an 

average amino acid sequence identity of 76%.    The closest homologues of the TG2 

protein were reported in other ascomycete fungi of the Pezizomycete subphylum, to 
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which Cp also belongs.   Compared to the other target genes in this study, TG2 

homologues were less concentrated among plant pathogens, with a greater percentage 

of hits corresponding to saprophytes or animal/insect pathogens.  The high amino 

acid sequence conservation of the TG2 protein in fungi of various classes and 

lifestyles suggests that the protein is ancient, and that it likely plays an important 

housekeeping or regulatory function.  BlastP hits were generally annotated as 

“putative 60s ribosomal subunit proteins,” or “P2 acidic proteins.”  A literature search 

produced no previous research into the TG2 gene in powdery mildew or Cp, but the 

gene has been the subject of several studies in Sc, in which it is characterized as a P2 

acidic protein.     

 

In Eukaryotic species, P1 and P2 acidic proteins interact with the P0 protein to form 

the ribosomal stalk, a structure which is involved in translation elongation (Remacha 

1995).  Remacha reports that there are genes encoding two forms each of the P1 and 

P2 acidic proteins in Sc, and an analysis of P1/P2 mutants suggested that their 

absence affected the rate of cell growth, but not cell viability.   The absence of 

different P1/P2 proteins from the ribosome did not affect expression of different 

metabolic pathways in the same way, and Remacha (1995) hypothesized that the 

different acidic proteins play different roles in the translation of different mRNAs.   

Cardenas (2019), studying P1/P2 mutants in Sc found the absence of certain acidic 

proteins affects the translation of specific mRNAs, and to leads to certain phenotypic 

traits, such as cold-sensitivity.  Cardenas describes P1 and P2 proteins as part of a 

stalk assembly mechanism that can produce heterogeneous ribosomal stalks.   
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Cellular expression of various proportions of P1 and P2 proteins appears to function 

as a regulatory mechanism moderating the relative efficiency of translation of 

different mRNAs (Cardenas, 2019).  Such a regulatory mechanism may play a role in 

enabling fungi to adapt to changing environmental conditions associated with changes 

in internal or environmental conditions at different points in their lifecycles. 

 
TG3: a putative cell wall mannoprotein 

 
The annotation of the TG3 gene changed significantly between the first and second 

versions of the Cp genome published.   A reannotation of the Cp genome was 

performed at the University of Southern Mississippi in 2017, and included a third 

annotation for the TG3 gene, but has not yet published (Levine-Dawe personal 

communication).   BlastP searches were carried out on the proteins predicted by all 

three annotations, and all three produced a highly similar set of hits from the NCBI 

non-redundant proteins database.  After removing duplicate species, we obtained a 

list of 96 fungal proteins with an average amino acid sequence homology of 52%.  Of 

these, 75 were found in plant, animal or insect pathogens.  Hits with the highest 

similarity scores were all plant pathogens in the fungal order Diaporthales, to which 

Cp also belongs.    Annotations of the putative homologues included “covalently 

linked cell wall protein,” “cell wall mannoprotein,” “cell wall Cis3 Protein,” “Pir3 

protein,”  and “Pir5 protein.”  All of these refer to a family of glycosylated proteins 

found in the outer cell walls of certain fungi.  (Hsu et al 2015, Klis et al 2006, 

DeGroot et al 2005).   TG3 is the only member of this protein family that has been 

annotated as such in Cp. 
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A literature search found no previous reference to the TG3 gene, or any genes bearing 

the same annotations, for Cp or Gc, but there has been extensive research into the 

localization and possible roles for such glycoproteins in Sc, and some discussion of 

homologues in filamentous fungi, especially ascomycetes (DeGroot et al 2005).  The 

PIR (proteins with internal repeats) family consists of mannose-containing 

glycoprotein constituents of the fungal cell wall.  DeGroot et al (2005) describe the 

cell walls of fungi from which such proteins have been isolated as consisting of an 

internal skeleton of  1-3 beta-glucan chains, surrounded by a denser layer rich in 

proteins.    DeGroot and others speculate that the repeats in PIR proteins allow them 

to bind to multiple 1-3 beta-glucan molecules and stabilize the otherwise highly 

flexible and porous cell wall (Hsu et al 2015, Klis et al 2006, DeGroot et al 2005.)  

PIR proteins appear to have more than a passive reinforcement function, however.  

The incorporation of PIR proteins and other proteins into the cell wall is tightly 

regulated, based on location and on what stage of the cell cycle the cell is in.   Cell 

wall protein composition is also influenced by osmotic pressure and physical 

stress/damage and other environmental conditions, through a variety of signaling 

pathways (Hsu et al 2015). 

 

Possible functions for PIR proteins enumerated by DeGroot et al (2015) include: 

water retention, maintaining cell wall integrity in response to stress and/or growth and 

development, adhesion to the host and protection from host defenses.  It has been 

observed that yeast cells lacking multiple PIR proteins swell, and grow slowly.  The 

absence of individual PIR proteins have been shown in yeast to increase sensitivity to 
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plant antifungal defensive chemicals such as osmotin, and antibiotics such as 

hygromycin  (DeGroot et al 2015).   

 

For both Cp and powdery mildew species, TG3 may help the fungi adapt to live 

inside living host tissue by strengthening the cell walls of invasive structures and 

protecting the fungi from host defensive proteins.   It is also possible that the TG3 

mannoprotein may migrate into host tissues and play a role there, in which case it 

would be a bona fide secreted effector protein.  Early studies of mannoproteins in Sc 

found that about 5% of mannonprotein migrated into the growth medium, and that 

this happened at a constant rate throughout the cell cycle.    The researchers believed 

that the released mannoprotein was either synthesized de-novo or represented 

mannorproteins that were non-structural in nature (Kratky et al 1975). 

 
TG4:  a putative pre-protein translocase 
 

A BlastP search for homologues of the TG4 protein produced 96 non-duplicate fungal 

hits with an average amino acid sequence identity of 70%.  Homologous proteins in 

other plant pathogens in the fungal order Diaporthales were especially highly-

conserved, with identities over 80%.  Analysis of the TG4 sequence with TMHMM 

2.0 suggested one transmembrane domain located within the first 30 amino acid 

residues of the protein, which we initially discounted as coinciding with the N-

terminal signal peptide.   However, annotations of TG4 homologues, where provided, 

consistently referred to the Sec66 translocase, a subunit of the Sec62/63 translocation 

complex, which is an integral membrane protein of the endoplasmic reticulum.   A 

literature search found no references to the TG4 being previously studied in Cp or 
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powdery mildew, but the protein was extensively examined in Sc, and its possible 

role and functions have been reported in some other yeasts and filamentous fungi. 

The Sec66 protein , also known in Sc as Sec71 and Kar7, interacts in an auxiliary 

manner with the Sec62/63 complex, membrane proteins which, in turn,  interact with 

the Sec61 pore in the endoplasmic reticulum (ER) membrane.  It is part of a 

heteromer associated with post-translational translocation, especially of secreted 

proteins (Rapaport 2007).   The role of TG4 may not be entirely restricted to secreted 

proteins, however.  Jung et al (2014) report evidence that the Sec66 protein also helps 

regulate topogenesis of membrane proteins in eukaryotic cells.   

 

The Sec66 protein is not essential for yeast cell growth or survival (Feldheim 1993).  

Sc sec66-null mutants were found to be viable at 30°C but not at 37°C (Feldheim 

1993) but the role of the protein is clearly more than just to stabilize translocation 

functions at high temperatures.   Sec66 has been shown to be important in several 

disparate cellular functions in yeast, and in other fungi.  For example, Nishikawa et al 

(2008) found that sec66-null mutants were unable to accomplish the karyogamy 

associated with sexual reproduction in yeast due a failure of outer nuclear envelopes 

to fuse.   Katta et al (2015) found that the absence of a functioning Sec66 gene led to 

defects in spindle pole body duplication during mitosis in yeast.  Both Nishikawa and 

Katta noted that the defects they observed occurred at moderate temperatures (30°C) 

as well as at high temperatures (37°C).   Lee and Heitman (2012) reported that sec66 

was necessary for the completion of opposite sex and unisex mating in the 

dimorphous yeast Cryptococcus neoformans.  Kang and Jiang (2005) found Sec66 to 
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be one of several protein secretion-related genes upregulated during the transition to 

filamentous growth in dimorphic yeast.   It is notable that all of these cellular 

functions are, in turn, induced by chemical (e.g. mating pheromones) or 

environmental (temperature, nutrient deprivation) signals. 

 

Whether SEC66 affects the various cellular functions described above through its role 

as a translocator of other proteins, or in a manner entirely separate from its 

translocation function remains unclear.   What the examples provided in the literature 

have in common, however, is that TG4 homologues come into play when fungal cells 

are experiencing environmental stress or developmental change, suggesting that this 

otherwise dispensable protein may be an important regulator of cellular responses 

necessary to cope with such changes.   

 
TG5:  a putative mitochondrial carrier protein 
 

A BlastP search of the TG5 protein revealed strong amino acid sequence identity 

among homologues in the highest scoring fungal hits.  Sequence identity averaged 

84% with coverage ranging from 95 to 100%.   The closest homologues to TG5 were 

found in other plant pathogenic fungi of the order Diaporthales, to which Cp also 

belongs.  Numerous animal and insect pathogens were represented, but relatively few 

saprophytes.   Most hits were annotated as “mitochondrial carrier protein,” 

“mitochondrial inner membrane protein,” or “mitochondrial oxaloacetate carrier 

protein.”  A literature search found no previous examination of the TG5 gene in Cp or 

any powdery mildew species.  The characterization of the protein as a mitochondrial 

carrier is based on the discovery of a homologous gene, OAC1 in Sc. 
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The Sc gene OAC1 has been localized to the mitochondrial inner membrane (Palmieri 

1999).   Analysis of the TG5 protein with TMHMM 2.0 initially predicted no 

transmembrane domains, but a graphical analysis shows up to five predicted 

transmembrane domains with varying degrees of probability.   Annotations of the Sc 

OAC1 gene report three transmembrane domains that correspond to repetitions of the 

carrier protein sequence.   

 

OAC1 has been shown to transport oxaloacetate, sulfate and malonate into 

mitochondria, and to transport α-isopropylmalate (IPM) from the mitochondria to the 

cytosol.   IPM is used in leucine biosynthesis (Palmieri 2016).   There is some debate 

in the literature about the relative importance of transport into versus out of 

mitochondria, given that other pathways exist in Sc for transporting these compounds 

in each direction.   

 

The OAC1 gene in Sc is not essential for growth or survival.  Yeast cells lacking 

OAC1 showed a slightly reduced growth, due to partial auxotrophy for leucine, which 

was correctable by the complementation of the OAC1 knockout with a plasmid 

carrying the OAC1 gene or by growing the yeast in media containing leucine 

(Marrobio 2008).   The OAC1 gene’s expression is downregulated by and inhibited by 

α-ketoisocaproate (KIC), a precursor and metabolite of leucine produced by the 

mitochondria (Marrobio 2008).  How these regulatory relationships are connected is 

not clear, but OAC1 does appear to be subject to an overarching regulatory 

mechanism.  The fact that the TG5 homologue in powdery mildew is upregulated in 
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haustoria, and the fact that OAC1 supplies raw materials for leucine biosynthesis 

when leucine is scarce have a common thread--in both cases the TG5 homologues 

play a role in helping cells adapt to changes in the availability of nitrogen.   

 
TG6:  a possible effector protein with an ML domain 

 
A BlastP search for homologues of the TG6 protein produced 83 non-duplicate hits in 

fungi with an average amino acid sequence identity of 27%, far lower than any of the 

other five target genes.   Like TG1 (at 70%), most TG6 hits (60%) were among plant 

pathogenic fungi.  Annotations of homologous proteins included “ML-domain 

containing protein” and “phosphatidylglycerol /phosphatidylinositol transfer protein 

(PG/PI-TP).”    

 

ML-proteins (MD-2-related lipid recognition proteins) were first characterized by 

Inohara and Nunez in 2002, who described them as “single-domain proteins predicted 

to form a β-rich fold containing multiple strands, and to mediate diverse biological 

functions through interacting with specific lipids.”  The highest scoring TG6 hit was a 

putative PG/PI-TP transfer protein in Gc, but the Cp TG6 protein only shared 28% 

amino acid sequence identity with this protein.   A BlastP search beginning at residue 

65 of the Cp TG6 gene, the point where the predicted ML-domain begins, produced a 

nearly identical set of hits to the whole protein.   A separate BlastP search for the first 

65 amino acid residues (without the ML-domain) produced only one significant hit, a 

deltaproteobacterium found in marine sediment with 35% sequence identity.  This 

appears unrelated to TG6.    
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ML proteins are found in numerous animal, plant and fungal genomes.  They show no 

sequence homology to non-specific lipid interacting proteins, leading Inohara and 

Nunez (2002) to the hypothesis that they interact only with specific lipids with a 

diverse range of biological functions.  Subsequent research has produced results 

consistent with this hypothesis.  For example, the TG6 homologue in Aspergillis 

oryzae, previously characterized as a membrane-targeted lipid transfer protein with a 

specific affinity for phosphatidylglycerol /phosphatidylinositol, is an ML-protein of 

unknown function.   In animals, the MD-1 and MD-2 proteins, from which the ML-

domain was first characterized, are co-factors with Toll-like receptors in 

lipopolysaccharide signaling-based anti-bacterial immune responses (Inohara and 

Nunez, 2002).  Berger et al (2005) observed a strong homology between the Sc gene 

NPC2 and the human hNPC2 gene, defects of which are implicated in the hereditary 

lipid storage/cholesterol metabolism disorder Niemann-Pick disease type C.  Berger 

et al (2005) were able to restore normal cholesterol transport in hNPC2-null mutant 

animal cells by complementing them with NPC2 from yeast, and speculated that the 

gene’s function in yeast is to maintain lipid homeostasis.    

 

Menardo et al found six ML proteins among suspected effector proteins produced by 

the barley PM fungus Blumeria graminis (Menardo et al 2017).  Research on 

arbuscular mychorrizal (Zeng et al 2006) and ectomycorrhizal (Sebastiana, 2017) 

fungi suggests that ML proteins play a role in lipid signaling in the host-symbiont 

interaction.   
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Information available about Cp TG6 is not sufficient to suggest where this protein 

localizes in the cell after entering the ER lumen, or whether it is secreted, or whether 

it interacts with cellular or extracellular lipids.  However, TG6 appears to be the most 

likely of the six target genes that may encode an effector protein.    With less than 300 

amino acid residues, it meets criteria commonly used to screen for candidate effector 

proteins, including short protein length, and lack of close homologues or homology to 

proteins with known functions (Kim et al 2016, Sperschneider 2018).  With respect to 

cysteine-richness, the TG6 protein is at the extreme low end (2%) of the 2%-20% 

range considered typical of fungal effector proteins (Lu and Edwards 2016).   When 

we analyzed each of the target gene proteins using EffectorP v2.0 

(effectorp.csiro.au/software.html), a machine learning-based platform for predicting 

effector proteins (Sperschneider 2018), it gave TG6 a 0.828 probability of being an 

effector protein.  TG4 received a 0.531 probability, but its homologues are thought to 

be integral proteins of the ER.   The other target gene proteins were assigned 

probabilities close to zero. 

 

The Generation and Characterization of Knockout Strains 

Multiple attempts at transformation 

Transformation was carried out on three occasions, in February 2018 (TG1-TG4 

only), August 2018 (all six target genes) and November 2018 (all six target genes).  

At each attempt at transformation, one sample of spheroplasts was also put through 
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the transformation process without any gene disruption constructs as a positive 

control, in each case confirming that the spheroplasts were viable.   

 

During the February 2018 round of transformations, we were able to recover 

heterokaryon mycelia for each attempted knockout.   These could grow on PDA + 

hyg medium, but development of fruiting bodies was very delayed.  Each isolate was 

also grown on plain PDA until it produced oozing fruiting bodies, and the spores 

were collected in droplets of water with a 10 μl pipette.   Ten μl of spore suspension 

was diluted in 1 mL of distilled water, and serial dilutions, ranging from 2 μl to 200 

μl of this suspension were spread on PDA+hyg medium.   We were only able to 

recover monokaryon knockout colonies for the TG4 knockout.   Spores from TG1, 

TG2, and TG3 heterokaryon strains did not germinate on PDA+hyg medium.    

We attempted hyphal tip cultures for TG1, TG2 and TG3 in case spore germination 

was suppressed more than vegetative growth by the hygromycin.   Heterokaryon 

mycelia from these isolates were grown in plates with WA+hyg medium, where they 

formed sparse and branchy mycelia, from which we excised hyphal tips under a 

dissecting scope and transferred them to PDA+hyg plates.   While some of these 

hyphal tip cultures subsequently grew well, PCR visualization of the DNA segments 

corresponding to the target genes showed that all of the hyphal tip cultures that 

survived on the PDA+hyg plates were still heterokaryons.  We found it not feasible 

with the equipment available to cut hyphal tips that did not contain multiple nuclei. 

The failure to generate monokaryon colonies by either single spore or hyphal tip 

cultures raised the question of whether the deleted wild-type genes were essential.  
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However, we also noted that the TG4 knockout was the only strain to be developed 

during the first transformation with a final PCR-amplification step.  The TG1-TG3  

knockouts were made with non-linearized plasmid DNA.   When the transformation 

and regeneration process was repeated in August 2018, we added a final PCR 

amplification step for all gene disruption constructs to ensure that all of the DNA 

used in the transformation was linearized. 

 

The August round of transformations also added TG5 and TG6, for which gene 

disruption constructs had not been available in February.  We also used a lower 

dosage of hygromycin (30 mg/mL instead of the 50 mg/mL recommended by 

Churchill et al) in the regeneration and selection media, in case the failure of TG1-

TG3 spores to germinate was due to a naturally lower expression of those genes 

compared to TG4, resulting in less production of the hph enzyme.    However, at 30 

mg/mL, we observed that untransformed mycelia could survive and grow on solid 

(but not in liquid) media, making it difficult to screen out wild-type colonies.   We 

obtained heterokaryon colonies for TG1 and TG6 at this dosage, as confirmed by 

PCR measurement of DNA fragments corresponding to the target genes, but we could 

not isolate monokaryon colonies from single spore inoculation of PDA or EPC 

medium amended with 30 mg/mL of hygromycin.  

  

The third round of transformations, beginning in November 2018, repeated the 

transformation and regeneration process for TG1, TG2, TG3, TG5 and TG6, at a 

hygromycin dosage of 40 mg/mL of hygromycin, based on the previous successful 
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practices of other researchers (Levine-Zhang personal communication).  However, we 

continued to observe untransformed, wild-type colonies growing on selection 

medium.   

 

Use of a novel growth medium to induce spore germination 

The failure of spores from the TG1, TG2, TG3 and TG5 knockout strains to germinate 

on solid media at any hygromycin dosage, including dosages on which heterokaryon 

and wild-type mycelia could grow, was puzzling.   We did not consider it likely that 

all of these genes were essential for cell survival, as none of the homologues of the 

target genes were found to be essential in yeast, and one possible explanation may lie 

in what has been observed about how some of these genes are regulated in yeast.  For 

example, the ATG15 gene in yeast (the TG1 homologue), was found to be up-

regulated during starvation-induced autophagy (Delorme-Axford 2018).  The OAC1 

gene (the TG5 homologue) is down-regulated by leucine (Marrobio 2008), a 

downstream byproduct of the OAC1 gene’s activity.   The Gc homologues of all six 

genes are also up-regulated in the haustoria of Gc (Wu et al 2018).  All of this is 

consistent with the hypothesis that the target genes are induced by the conditions that 

prevail in live plant tissue, and enable the fungus to survive there.   

 

The hygromycin resistance marker cassette we introduced includes its own 

constitutive fungal promoter, but some or all of the target gene loci may be subject to 

higher-level regulation, and the genes may only be expressed when induced by 

specific stimuli.   For this reason, we decided to attempt a final round of single spore 
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inoculations, using heterokaryon cultures created in previous transformation rounds.  

Table 5 indicates the heterokaryon strains we had available.   None were available for 

TG5.  We collected asexual spores from these isolates, and spread them on two types 

of selection medium-- EPC medium and a chestnut induction medium (CIM)--each 

dosed with 50 mg/mL of hygromycin.  CIM contains the trace ingredients and malt 

extract as EPC, but is amended with a water extract of American chestnut bark, uses 

sucrose in place of glucose to force the induction of digestive enzymes (Griffin 1994, 

pg. 135), and omits yeast extract to deprive the fungus of an exogenous source of 

nitrogen.  (See Appendix I for the formula for CIM.)    

 
 
Table 5.  Heterokaryon and monokaryon isolates produced in attempts to knock out TG1-TG6 by 
homologous gene replacement.  
 
Target Gene Heterokaryon isolates Monokaryon isolates 
TG1 1C, 1BB None 
TG2 2A None 
TG3 3A, 3C None 
TG4 4A, 4B, 4C, 4D 4A-5,4A-8,4B-1, 4B-2, 4B-3, 4B-4  
TG5 None None 
TG6 6P, 6Q, 6R None 

 
 

In the final round of single spore inoculations, only spores from the TG6 knockout 

germinated and produced mycelia on EPC+Hyg50 medium, but fewer and more 

slowly than on CIM+Hyg50.   The spores of all other knockout strains completely 

failed to germinate on EPC+Hyg50, but produced abundant mycelia on CIM+Hyg50.  

TG1 knockout colonies grew more slowly than the other knockout strains, taking 

about twice as long to produce equivalent biomass.   TG3 knockouts were also 
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notable, producing significantly fewer single spore colonies than the other knockout 

strains.    

 

PCR visualization of the target gene segments of isolates grown from spores that 

germinated on CIM, however, showed that they were all either heterokaryon (likely 

growing from hyphal fragments picked up with the spores) or wild-type colonies.   A 

subsequent test found that untransformed DK80 could also grow on CIM+Hyg50, 

albeit somewhat impaired.   Evidently some property or component of CIM 

neutralizes the effect of hygromycin. 

 

At the end of three rounds of transformation, we were only successful in knocking out 

TG4. 

  

Observations of the TG4 knockout strain, in vitro. 
 
The TG4 knockout strain generated four heterokaryon isolates, TG4A-D.   Eight 

single spore colonies grown from isolates TG4A and TG4B were cultured on 

PDA+hyg40 medium, and all showed normal growth rates and high resistance to 

hygromycin.    

 

Hyphae from eight of these single spore colonies, and from one sample of the wild-

type EP155 strain of Cp (the wild-type parent strain of DK80) were transferred into 

separate flasks containing liquid EPC medium and allowed to incubate for several 

days.   DNA was extracted, and used as template DNA in PCR reactions with TG4 
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flanking sequence primers.    All TG4 knockouts showed bands corresponding to the 

predicted longer length of the TG4 gene disruption construct, while the EP155 sample 

showed a band corresponding the predicted length of the wild-type target gene plus 

flanking sequences (figure 6). 

 
    

 
 

Figure 6.   As predicted, the segment amplified between TG4 flanking sequence primers is longer than 
the wild-type segment in isolate EP155 (identical to DK80). 
 
Isolate dTG4A-8 (“d” indicates deletion) was chosen as a representative sample of the 

TG4 knockout strain, and grown on EPC, CBA and WA media, as described in 

chapter 2.   In vitro, dTG4A-8 exhibited consistently different growth rates and 

phenotype than DK80.    

 

Radial growth measures were taken twice on CBA, EPC and WA media, once 

directly on media in March 2018, and once on cellophane over media in March 2019.  

The most notable difference between dTG4A-8 and DK80 was the former’s relatively 

fast but sparse radial growth on synthetic media.   Comparisons by Student’s t-test on 

both occasions, each of which involved three replicates of each fungus type on all 

three types of media, showed that the diameter of dTG4A-8 mycelium was 

significantly larger (α=0.05) than that of DK80 on nutrient rich (EPC) and nutrient 

poor (WA) media (table 6), but not on CBA medium.  
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Table 6.  In vitro comparison of DK80 and dTG4A-8 by radial growth and weight at final day of 
measurement (6-7 dpi).  Bold indicates the isolate with greater measurement.  
 

Medium 
 

Diameter on medium (mm) 
DK80    dTG4A-8       P-value 

Diam. on cellophane (mm) 
DK80    dTG4A-8       P-value 

Mycelium weight (mg) 
DK80    dTG4A-8       P-value 

CBA 80.33    84.0         P=0.2756 62.7      58.5           P=0.0247   10.0      7.6          P=0.007 
EPC 73.7      81.3         P=0.0203 57.0      65.0           P=3.0x10-4 107.3     80.5        P=8.5x10-5 
WA 54.0      60.7         P=5.0x10-4 46.5      51.7           P=5.1x10-5     2.8        1.2        P=0.026 

 
 

The rapid radial growth of dTG4A-8 appears to reflect poor fitness rather than vigor.   

Rapid sparse mycelial expansion is a normal response of filamentous to poor nutrition 

(Jennings and Lysek, 1999, pg. 13).   The less vigorous growth of dTG4A-8 was 

substantiated by comparing the weights of dTG4A-8 and DK80 mycelia grown on 

layers of cellophane over the same three types of media, which showed that despite 

its rapid radial growth (figure 7), dTG4A-8 accumulated significantly less biomass 

than DK80 (figure 8).  Notably, dTG4A-8 showed both less radial growth and less 

biomass accumulation than DK80 on CBA medium. 

 

 
 
 

Figure 7.  Comparison of mycelial diameter of DK80 and dTG4A-8 on three types of media, at seven 
dpi.  Error bars indicate standard error. 
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Figure 8.   Comparison of accumulated weight of DK80 and dTG4A-8 mycelia grown on cellophane 
over three types of media, at seven dpi.  Error bars indicate standard error. 
 
 

In addition to different growth rates, there were also observable phenotypic 

differences between dTG4A-8 and DK80 (figure 9), including:  

• dTG4A-8 reached each stage of development (e.g. appearance of pigment and 

fruiting bodies) later than DK80; 

• dTG4 A-8 hyphae  grew in disorderly, meandering manner compared to DK80 

(figure  10); 

• dTG4 A-8 produced less pigment than DK80 and the pigment was more 

tan/less orange than DK80 (figure 10); 

• dTG4A-8 had fewer fruiting bodies, which appeared randomly within the 

mycelium, while DK80’s more numerous fruiting bodies appeared mainly in 

concentric rings; fruiting bodies of both strains produced numerous, normal 

looking, viable conidiospores; 
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• dTG4A-8 showed no zonal growth, while zonal patterns corresponding to 

light cycle were distinct in DK80.  

 

 
Figure 9.   DK80 (upper row) and dTG4A-8 (lower row) on three media, left to right: EPC, CBA and 
WA.  

 

 
 
Figure 10.   Side by side comparison of dTG4A-8 (left) and DK80 (right) inoculated on the same day, 
as seen from underneath shows that DK80 is denser, more pigmented and organized more distinctly 
into zones than dTG4A-8. 
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Light generally plays a role in regulating zonal growth and conidiation in filamentous 

fungi (Griffin 1994, pg. 345), so the difference between dTG4A-8 and DK80 in zonal 

growth may be due to a difference in light sensitivity.  To test whether this was the 

case, we prepared six petri dishes with PDA medium, inoculated three with each Cp 

strain, and incubated them for eight days at room temperature in a dark box.   When 

removed for observation, neither strain had yet developed fruiting bodies, which 

normally appear as early as day two in bench-top cultures.  The darkness also 

abolished zonal growth in DK80, but dTG4A-8 grown in darkness appeared roughly 

identical to dTG4A-8 grown on the benchtop, with the exception of having almost no 

pigment (figure 10). 

 

 
Figure 11.   Growth in darkness abolished zonal growth in DK80 but did not change the morphology of 
dTG4A-8 mycelium. 
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Detached stem assay of the TG4 knockout strain  

 
The dTG4A-8 strain was less virulent than DK80 against live American chestnut stem 

tissue in a detached stem assay conducted in March 2019.  The assay used live, 

dormant American chestnut branch sections 2-5 cm in diameter, which were collected 

in January 2019 from orchards operated by the Maryland Chapter of the American 

Chestnut Foundation.   Fifteen inoculations with 5 mm plugs of each of the following 

Cp strains, grown on PDA medium, were used in the assay: 

• EP155: a standard virulent strain, used as a positive control; 

• DK80: a virulent mutant derivative of EP155, and the parent strain of  

dTG4A-8; 

• dTG4A-8: the TG4 knockout strain produced in this research; 

• SG2,3: a standard weakly virulent strain of Cp; and  

• Sterile PDA: a negative control. 

Cankers produced by dTG4A-8 were significantly smaller (P=0.03) at 24 days post-

inoculation (dpi) than those produced by wild-type DK80.   Figure 12 below shows 

photographs of DK80, dTG4A-8 and control inoculations on the same stem at 24 dpi.  

Figure 13, below, shows mean NCL for each type of inoculum.  The Cp strains 

clustered into two groups, with the letter B representing the two statistically similar 

virulent strains (EP155 and DK80) and C representing the statistically similar weak 

strains (SG2,3 and dTG4A-8).    
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Figure 12.    Photographs of DK80 (left), dTG4A-8 (center) and control inoculations (right) on the 
same stem, 24 dpi. 
 
  

 
Figure 13.   Mean normalized canker lengths for each type of inoculum used in the detached stem 
assay 
 
 

Small stem assay of the TG4 knockout strain  
 
A small stem assay was conducted in summer 2018 on 80 American first-year 

chestnut seedlings from the same mother tree, using fungal strains available at that 

time.  These included dTG4A-8, and four heterokaryon knockout strains, TG1C(h), 
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TG2A(h), TG3C(h) and TG6P(h).   DK80 was used as a positive control and sterile 

agar as a negative control.  Unfortunately, the DK80 culture used for this inoculation 

had been sub-cultured too many times and had lost virulence.  Only one out of 12 

seedlings produced a canker.  The small stem assay will be repeated with new 

seedlings and fresh inoculum in summer 2019.   Nevertheless, data collected from the 

2018 small stem assay produced meaningful results.   The 11 seedlings inoculated 

with dTG4A-8 showed no stem mortality after 98 days of observation, the same result 

observed for the sterile agar control.   All of the heterokaryon strains, which were 

inoculated into 10-12 seedlings each, produced mortality in at least three.  Data for 

mean days of survival is shown in figure 14.   In terms of canker length, dTGA-8 

produced significantly) longer cankers (t-test, P=0.009) than the sterile control (the 

cankers of which were basically healed scars), but significantly shorter (t-test, 

P=7x10-5) than TG3C(h), the strain that produced the next shortest mean canker 

length.  

 
Figure 14.     Virulence as measured by days of survival post-inoculation, for the portion of the stem 
distal to the inoculation site.    
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Chapter 3: Conclusions, Reflection and Future Directions 

 

General Conclusions 

The objectives of this thesis research are laid out in Chapter 1.  Had all six target 

genes been as easy to disrupt in Cp as the TG4 gene, these objectives could have been 

accomplished over the past two and a half years.  However, unexpected challenges, 

particularly, in isolating monokaryon mutants from heterokaryon cultures, slowed the 

progress of the project.   So far, we were only completely successful in knocking out 

TG4 and analyzing impact of TG4 deletion on fungal phenotype and virulence.   As of 

April 2019, efforts to isolate additional Cp knockout strains continue.  In addition, 

ectopic expression and silencing (via HIGS) of these TG homologs from PM fungi 

(i.e. Gc) in Arabidopsis is also underway, but there are no results to report at this 

stage.   Nevertheless, the four objectives of this ambitious project have partially been 

accomplished, setting the stage for more thorough research in the future. 

 
The use of Cp as a surrogate for genetic study of conserved genes in 
biotrophic PM fungi 

 
The methods we used to select genes of interest that have homologues in Cp and Gc 

did yield six interesting candidate genes, which, based on detailed literature research 

and analysis, appear to potentially play roles in pathogenesis, either by acting on the 

plant host, or by enabling fungal adaptation to the host.  The genetic data we obtained 

for the one gene were successfully knocked out, TG4, demonstrates that the gene 

plays a role in Cp’s virulence against chestnut, as shown by reduced canker size 

caused by the TG4 knockout strain in the in planta assays (figures 12-14).   
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Whether the remaining five Cp target genes contribute to virulence remains unknown 

due to the lack of corresponding monokaryon Cp mutants.   Nor is it clear whether the 

TG4 homologue in Gc plays a similar role in virulence. If the results from the HIGS 

experiment underway are positive, it will provide more evidence that the “surrogate” 

approach taken in this research is useful for functional characterization of conserved 

fungal pathogenicity genes in genetically intractable biotrophic fungi such as PM. 

 

Identification of pathogenicity genes in plant-pathogenic fungi 
 

Although homologues of TG1-TG6 have been studied in yeast, they might have 

undergone functional diversification and play distinct and important roles in host 

colonization in plant pathogenic fungi.  TG1-TG5 all appear to serve as auxiliary 

regulatory genes that help pathogenic fungi adjust to conditions in a live host, while 

the exact function of TG6 remains a mystery.   If pathogenicity is broadly defined as 

the ability of a pathogen to overcome the defenses of its host, establish itself and 

obtain nutrients, and reproduce there, then the approach we have taken may help shed 

light on previously unstudied aspects of the host-pathogen relationship.  In this sense, 

TG1-TG6 warrant further study in other plant-fungal pathosystems.   

  

Improving our understanding of the Arabidopsis-Gc pathosystem 

As of April 2019, efforts were underway to overexpress and silence Gc homologues 

of target genes using genetically modified Arabidopsis plants.  Results, when 

available, may reveal new information about mechanisms of pathogenicity in Gc.  
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The nature of the six target genes, as genes that help the fungus respond to host-

induced stress, has improved our understanding of the types of genes involved in 

colonization of the host, and changes the scope of what we could define as a 

pathogenicity gene. 

 

Identifying new targets for HIGS in American chestnut 
 

This research has added six new potential targets in the Cp genome for silencing by 

means of HIGS in transgenic American chestnut.  TG4 apparently contributes to Cp 

virulence in chestnut, and the possibility that TG5 may be essential in Cp suggests 

that it may be an excellent target for silencing as well.  If results from ongoing HIGS 

experiments demonstrate that transgenic Arabidopsis plants expressing siRNA 

targeting any of the Gc TG1 to TG6 genes exhibit resistance to Gc, it may be 

worthwhile to direct future efforts towards engineering Cp resistance in American 

chestnut by targeting these target genes by HIGS. 

 

Specific conclusions concerning the role of TG4 in Cp 
 
 

The TG4 knockout strain showed a difference in phenotype compared to the wild-

type DK80 parent strain in vitro, as well as reduced virulence in planta.  The research 

conducted within the scope of this study does not point to an exact mechanism for 

TG4 protein’s activity, but these results, combined with the previous characterization 

of the TG4 homologue in Sc, SEC66, offer some clues.   
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Morphological differences between the TG4 knockout and DK80 in vitro, suggest that 

the gene is involved in multiple cellular processes.   For example, the lack of zonal 

growth in the TG4 knockout indicates that deletion of TG4 impairs Cp’s ability to 

sense or respond to light signals.  Given its localization in yeast at the ER membrane, 

it is more likely that TG4 is involved in the delivery of light-sensing proteins to the 

cell membrane or extracellular space than that it is involved in light sensing itself.  

The relative lack of pigment in the TG4 knockout may also result from impaired light 

sensing, or simply an inability to deliver pigments or the enzymes that produce them 

to the right cellular locations.  The disorderly growth of dTG4A-8 hyphae may also 

be due to sensory impairment of some kind.   In addition, the rapid but sparse radial 

growth of TG4 knockout mycelia compared to the wild-type is typical of how fungi 

respond to low-nutrient environments (Jennings and Lysek 1999, pg.13), suggesting 

that deletion of TG4 impairs Cp’s ability to sense or take up nutrients.  These 

disparate phenotypic changes may all be explained by the disruption of delivery of 

multiple specialized enzymes with a variety of functions.    

 

The reduction in fungal virulence against chestnut tissue resulting from the deletion 

of the TG4 gene may be the result of impairment in delivery of the same proteins that 

are responsible for the changes in phenotype, or in the delivery of other proteins.   

The fact that dTG4A-8 could not even match DK80 in radial growth on CBA medium 

as it did on synthetic media is notable because it indicates that absence of the TG4 

gene impairs the fungus’s ability to overcome the effects of water-soluble, growth-
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inhibiting constituents of chestnut bark.   This is consistent with the idea that TG4 is 

important for adaptation to the host. 

 

Further study will be required to determine which TG4-interacting proteins are 

responsible for the loss of virulence.  However, the results of in vitro and in planta 

observations of the TG4 knockout strain suggest that TG4 would be a good target for 

engineering novel forms of resistance using HIGS in transgenic American chestnut.   

Impairment of the gene results in a reduction in virulence but does not fundamentally 

impair the fungus’s ability to grow as a saprophyte or to produce asexual spores. 

HIGS -based resistance targeting TG4 could help artificially establish a host-pathogen 

equilibrium between American chestnut and Cp.   

 

Further research and future directions 

Closing the loop on work underway 

The results of the research described in this thesis demonstrate that the method used 

to screen for candidate virulence-related genes in two related fungi was sound.   

Additional small stem assays to compare the TG4-knockout Cp strain to the parent 

strain, DK80, will be done in the coming summer.  Identification of the role of TG4 in 

virulence in Cp provides an opportunity to develop resistance against Cp in transgenic 

chestnut trees using HIGS.  These promising results encourage continued efforts to 

obtain monokaryon knockout strains for the remaining target genes, followed by in 

vitro and in planta assays. 
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Determining the role of TG4 and other target gene homologs in Gc  

We have made DNA constructs to overexpress Gc TG4 and GcTG6, fused with green 

fluorescent protein, and introduced them into Arabidopsis via Agrobactgerium-

mediated transformation.  We will observe the transformed plants using fluorescent 

microscopy to pinpoint the cellular location of Gc TG4 and Gc TG6 proteins, and to 

observe whether the proteins have a toxic effect on the plant host.   

We have also prepared another construct to test the HIGS efficacy against Gc TG5. A 

Gc TG5 gene fragment has been cloned in the binary vector pK7WlWG2(I) which is 

designed for RNAi applications such as HIGS.  HIGS transgenic Arabidopsis plants 

and isogenic wild-type plants will be inoculated with Gc spores to see if silencing Gc 

TG5 homologue results in resistance.  

  

 Exploring differential expression of Cp target genes 

While our selection criteria included upregulation by two-fold or greater in haustoria 

for the Gc homologues of the target genes, we do not know whether or how 

expression of the Cp target genes changes when the fungus is growing on its host.   

This could be accomplished by quantitative RT-PCR or RNA-seq.   This information 

would help clarify whether the target genes perform basic housekeeping functions, or 

whether they are specifically involved in adapting and colonizing the host. 
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Characterizing subcellular localization of target proteins in Cp  

Once we have successfully knocked out target genes, and know the right parameters 

for repeating the process, we can study the Cp target protein in situ.  For example, the 

best means to study the subcellular localization of a target Cp protein is to replace 

them with GFP-tagged versions and observe where they accumulate under a 

fluorescence microscope.    Using the same techniques, we can also replace the Cp 

target genes with their homologues from Gc and assess whether and to what degree 

the Gc genes can functionally complement the loss of their Cp homologues. 

  
On to transgenic chestnut 

 
A long-term goal of this project is to engineer Cp resistance via HIGS of key Cp 

pathogenicity or virulence genes in transgenic chestnut. The potential advantages of 

HIGS over the use of exotic transgenes in chestnut include the fact that, by targeting 

genetic sequences specific to the pathogen, there is a lower risk of off-target effects in 

the host or in the ecosystem.  In addition, multiple dsRNA constructs targeting 

different pathogen genes could be included in a single dsRNA-encoding gene, greatly 

reducing the possibility that the pathogen could adapt to overcome the resistance 

(Ghag et al, 2014; Nowara et al, 2010; and Weiberg et al, 2014). 

 

The State University of New York’s College of Environmental Science and Forestry 

(SUNY-ESF) has developed methods to genetically transform American chestnut, but 

they are complex and time-consuming (Newhouse et al, 2014; Welch et al, 2007).  To 

produce a single seedling from an embryonic chestnut cell, takes multiple 

simultaneous attempts over a period of 12-18 months (Bruce Levine – Linda 
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McGuigan personal communication, September 2018).  It is desirable to find ways to 

identify and test transgene constructs before undertaking such laborious efforts.    

 

The research described in this thesis has helped identify one promising gene for 

silencing in Cp, TG4.   Planned work to silence the Gc homologues of these genes by 

HIGS in Arabidopsis may provide confirmation of other promising targets.  The next 

step would be to test if Cp is susceptible to siRNA-mediated gene silencing, which 

has yet to be demonstrated by any laboratory.  A technique for exposing fungi in vitro 

to siRNAs is described in Ghag et al (2014), as a “fungal inhibition assay.”  Ghag et 

al designed dsRNA constructs based on exonic regions of genes of interest in the 

banana pathogen Fusarium oxysporum f.sp. cubensis.  The researchers had the 

dsRNA commercially synthesized, and then incubated Fusarium spores with the 

dsRNA in specialized buffers.   Mycelia grown from these spores were then examined 

in vitro, and showed the morphological and growth defects predicted.  This screening 

process allowed researchers to confirm that their genes of interest could be silenced 

by RNAi before going to the effort of developing transgenic plants.   It would be 

advisable to do a similar screening with Cp prior to developing HIGS transgenic 

chestnut tissue or trees.   Cp cultures silenced in this manner could be tested in vitro 

and in chestnut using the same assays used for knockout strains.   If in vitro silencing 

of specific Cp target genes results in reduced virulence, then it would make sense to 

try HIGS in transgenic Chestnut trees for developing a novel form of resistance to Cp. 
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Reflections on methodology 

 

The conclusions described in this chapter are based on results achieved over two and 

a half years.  It was relatively straightforward to delete and replace the TG4 gene in 

Cp and observe interesting and informative changes in phenotype and virulence.  For 

various reasons, we have not yet isolated pure knockout strains of Cp for any of the 

other target genes.  

 

The methods used are described in chapter 2 for the benefit of future researchers who 

may wish to follow up on this work or adapt it to some other purpose.   We have 

attempted to describe one or more approaches to achieve success at each step of both 

the genetic transformation of Cp and of the assays used to observe changes in fungal 

phenotype and virulence.  However, the reader will also see that the process was not 

always straightforward.  For that reason, this section highlights some of the pitfalls 

encountered so that future researchers will be best prepared for unexpected obstacles.     

 
DNA Amplification methods will vary by target gene 

 
The target genes and associated DNA fragments were idiosyncratic in their behavior.   

It was difficult to optimize PCR methods to create gene disruption constructs, and 

required significant, time-consuming trial and error.  The efficiency of amplification 

varied wildly depending on which target gene was being manipulated.   There was no 

universal PCR protocol that was effective for overlapping PCR or for final PCR 

amplification of the full-length gene disruption constructs for all target genes.  In fact, 

variation in results for different target genes seemed related to the genetic sequence 
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itself, as it was not possible to achieve uniform results simply by changing DNA 

concentration, temperature, reaction times or other parts of the PCR protocol.   For 

those gene disruption constructs which we chose to amplify as plasmid DNA in E. 

coli bacteria (i.e. all except TG5), we also achieved markedly different results using 

different combinations of vectors and competent cells for different target genes.   The 

amplification methods described in table 3 represent what worked for us, but further 

experimentation may produce better results.  

 
Selection methods for knockout strains must be optimized for the target gene 

 
It is unclear why the selection methods described in Churchill et al (1990) worked so 

readily for TG4 knockouts but failed for all others.  In all cases (except TG5, which 

we believe may be an essential gene in Cp spheroplasts), we remain optimistic that it 

is possible to produce monokaryon knockout mycelia, given enough time.   The 

spheroplast preparation, transformation and regeneration methods described in 

chapter 2 worked well, and readily produced heterokaryon mycelia, containing both 

wild-type and knockout nuclei, for all but TG5.   For TG1, TG2, TG3 and TG6, 

however, we got bogged down in attempts to recover monokaryon mycelia from 

single spore or hyphal tip cultures generated from the heterokaryon mycelia.   This 

final stage of the homologous gene replacement process, the isolation and culture of 

monokaryon knockout colonies, is the most challenging. 

 

Serial dilutions are important for both spheroplasts in regeneration medium, and spore 

suspension in the generation of single spore colonies.   Cells that produce the hph 

enzyme will create a hygromycin-free zone in the medium immediately around them 
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into which hyphae from neighboring spheroplasts or spores can grow.  It is important 

to find a dilution that will put spheroplasts far enough apart that wild-type hyphae 

will not find hygromycin-free zones.  We found that transferring mycelial plugs from 

solid medium to liquid media, in which hygromycin can diffuse better, enabled us to 

screen out wild-type mycelia, but we could not use it to distinguish between 

heterokaryon and monokaryon knockouts. 

 

Collecting spores for the production of single spore colonies also proved challenging.  

It is necessary to wait at least two weeks for Cp grown in vitro to produce fruiting 

bodies that ooze asexual spores.  Once they do, one can use a pipette to deliver a 

water droplet to the tips of oozing fruiting bodies and then transfer the droplet to a 

larger volume of water for dilution.   However, we recovered heterokaryon DNA 

from numerous TG2 and TG6 knockout colonies that had grown from such diluted 

spore suspension.  As Cp asexual spores carry only one nucleus, this should not have 

happened – unless either dilution was not sufficient, and wild-type spores were 

germinating in the hygromycin-free zones surrounding mutant spores and then fusing 

with them by anastamosis, or we were picking up small multinucleate hyphal 

fragments along with the spores, and these were growing into heterokaryon colonies.  

In either case, we would have expected to recover at least some monokaryon 

colonies, but we did not, leaving an open possibility that all of the target genes aside 

from TG4 are essential in Cp.  
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It is also possible that if a given target gene is not constitutively expressed, a 

knockout strain with the hph gene stably integrated into its genome may still not 

produce enough hph enzyme to grow in hyg+ medium unless the medium also 

contains the factors necessary to induce gene expression.   While the hph marker 

cassette contains its own constitutive promoter, the location of the target gene may 

also determine whether or not the whole cassette is actively transcribed.   Our limited 

efforts to experiment with induction media were inconclusive—the medium itself 

clearly inhibited hygromycin, and it was not clear whether the medium also induced 

spore germination better than EPC medium.  In any case, it may not always be 

feasible even to guess whether a particular target gene is constitutively expressed or 

needs to be induced, and if so, what induces it. 

 
Hygromycin may not be the ideal selective agent 

 
Other antibiotics or other selection methods may be less problematic than 

hygromycin.  We learned during the course of this research, that Cp naturally has 

some degree of tolerance for hygromycin.  We discovered this when we recovered 

TG5 wild-type mycelia from media containing 30 mg/mL of hygromycin.   Raising 

the hygromycin dosage to 50 mg/mL reduced the number of wild-type colonies but 

did not eliminate them.   The TG4 knockout, which grew perfectly well on EPC 

medium with 100 mg/mL of hygromycin when started from mycelial plugs, showed 

very delayed germination when inoculated in the form of spores.  No other Cp strain 

would grow on EPC+hyg100 at all.   This suggests that spores are more sensitive to 

hygromycin than hyphae.  Our only successful knockout used a dosage of 50 mg/mL, 
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but this may not be the right dosage for all potential targets.   As noted above, the 

selective dosage may depend on the expression level of the target gene. 

 

Cp tolerance for hygromycin also varies by strain.  Figure 15 shows several strains of 

Cp growing on medium with 50 mg/mL of hygromycin.   The weakly virulent 

standard Cp strain SG2,3 shows greater tolerance for hygromycin than DK80 or 

DK80’s parent strain EP155.   

 

 
 

Figure 15.   Four isolates of Cp growing on Chestnut Induction Medium with 50 mg/ml of 
hygromycin.  The dTG4A-8 isolate carries an introduced hygromycin resistance gene, while the others 
do not.   Wild type SG2,3 nevertheless shows an ability to survive and grow in the presence of 
hygromycin. 
 

 
Contamination can mimic hygromycin resistance 

 
Even following standard laboratory procedures and working under a laminar flow 

hood, hygromycin-resistant airborne bacterial and fungal contaminants frequently 

appeared in our cultures.  We were able to identify them by culturing them, extracting 
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genomic DNA, amplifying the ITS and RPB2 regions and searching the sequence ID 

by BlastN.   We identified Aspergillis nigra, Penicillium restrictum, Sporothrix and 

Lasiodiplodia species, and were unable to identify several other fungal or any 

bacterial contaminants.   Some contaminants, including the bacteria and the 

Penicillium fungi, were not just insensitive to hygromycin, but capable of neutralizing 

hygromycin in the media around them and allowing non-transformed Cp colonies to 

grow.  We spent considerable time attempting to separate Cp colonies from 

contaminants, culturing them, extracting DNA and performing genomic analysis via 

PCR only to learn that they were wild-type DK80 colonies.    

 

It was also quite difficult to separate some contaminants from Cp.   Several 

Penicillium isolates grew parasitically on Cp hyphae, rather than on the medium 

(figure 16), though they could also be cultured on nutrient-rich medium.  These fungi 

were not always visible until we attempted to grow single spore colonies, at which 

time we would discover that most of the spores which germinated were contaminants.   
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Figure 16.  Dark hyphae of Penicillium c.f. restrictum fungi growing parasitically on the larger clear 
hyphae of Cp. 
 
To manage the risk of contamination, we recommend growing isolates of all 

important strains developed during the course of research on filter paper, and storing 

the filter papers dry in a -20°C freezer, in case it is necessary to go back and make 

new inoculum from an uncontaminated source.   Standard cultures stored at 4°C are 

not reliable after more than 2-3 months, as they continue to grow, lose virulence and 

can get contaminated in storage.  For heterokaryon strains, we observed that the ratio 

of mutant to wild-type nuclei tended to decline over time in storage, as reflected in 

the relative brightness of bands appearing in gel electrophoresis.  

 
All inoculum should be the same age 

 
The morphology and virulence of Cp mycelia will change over time, and with 

successive subcultures.   During the course of this research, we learned that DK80, 

and presumably any daughter strains developed from it, ages and loses virulence 
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unusually fast.  Whether this is due to the impaired non-homologous end joining 

pathway that makes DK80 so efficient for transformation, or to some other factor is 

unknown.   DK80 begins to exhibit abnormal phenotype (wavy margins, intense 

pigmentation and slow growth – figure 17) only 2 – 3 subcultures after being started 

from spores.   Our use of an older DK80 subculture resulted in a near complete failure 

to produce cankers in a small stem assay attempted in summer 2018.  For all in vitro 

and in planta observations, Cp isolates should be started from spores on PDA or EPC 

medium, and subcultured 1-2 times before use in inoculation assays.   

 

 
 
Figure 17.   Two DK80 subcultures from the same parent culture, growing on PDA medium, 
inoculated on the same day.  The one on left was started with a mycelial plug, while the one on the 
right was started from spores collected from the parent colony. 
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Appendix I 
 

Fungal Growth Media Used in this Study 
(all recipes given for 1 liter volume) 

 
 
Water Agar 
20 g Difco Bacto Agar 
1 liter   dH20 
 
Autoclave at 120°C for 20 mins. 
 
 
Potato Dextrose Broth/Agar (PDB/PDA) 
24 g Difco Potato Dextrose Broth 
15 g Difco Bacto Agar (omit for broth) 
1 liter dH20 
 
Autoclave at 120°C for 20 mins. 
(To make acidified PDA, add 4.5 ml 25% lactic acid after medium cools to 50°C) 
 
 
Endothia trace elements solution: 
60 mg H3B03 
140 mg MnCl2 x 4H20 
400 mg ZnCl2 
40 mg Na2MoO4 x 2H20 
100 mg FeCl2 x 6H20 
400 mg CuSO4 x 5H20 
 
Autoclave at 120°C for 20 mins 
(FeCl2 will precipitate from solution.  Stir before using.) 
 
Endothia salt solution: 
24 g  NH4N03 
16 g KH2PO4 
4 g Na2SO4 
8 g  KCl 
2 g MgSO4 x 7H20 
1g CaCl2 
Add dH20 to volume of 1 liter 
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Autoclave at 120°C for 20 mins 
 
 
Endothia parasitica minimal (EPM) broth/agar: 
54.5 ml Endothia Salt Solution 
8 ml Endothia Trace Elements Solution 
10 g  Glucose 
15 g Difco Bacto Agar (omit for broth) 
 
Autoclave at 120°C for 20 mins 
2 mg Thiamine hydrocholoride (added as a filter-sterilize aqueous solution after 
autoclaving)  
 
 
Endothia parasitica complete (EPC) broth/agar: 
54.5 ml Endothia Salt Solution 
8 ml Endothia Trace Elements Solution 
10 g  Glucose 
25 g Difco yeast extract 
75 g Difco malt extract 
15 g Difco Bacto Agar (omit for broth) 
 
Autoclave at 120°C for 20 mins 
2 mg Thiamine hydrochloride (added as a filter-sterilize aqueous solution after 
autoclaving)  
 
 
Chestnut bark extract (CBE): 
100 g   dried bark strips, approximately 5 mm wide and 50mm long, stripped from 
washed, surface disinfested chestnut stems, 3-10 cm in diameter.   (Note: fungus 
grows better on winter harvested bark, and Cp grows better on bark from American 
chestnut than Chinese chestnut) 
1 liter  dH20 
Allow bark strips to steep at room temperature for 24 hours, then allow another 24-48 
hours at 4°C to prevent fermentation. 
Filter through paper filter, then autoclave at 120°C for 20 mins 
(can be pH adjusted with NaOH, HCl or lactic acid) 
 
 
Chestnut Bark Agar (CBA): 
Prepare 

500 ml dH20 
20 g Difco Bacto Agar  
 

And separately prepare 
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Chestnut Bark Extract 
Autoclave in separate flasks at 120°C for 20 mins.    Allow media to cool under hood 
to 50°C, then mix thoroughly by swirling and pour.  (Note: the tannic acid in CBE 
will hydrolyze the agar if autoclaved together, resulting in a soft, semi-solid medium.) 
 
 
Cp Induction Medium: 
Prepare 

500 ml dH20 
54.5 ml Endothia Salt Solution 
8 ml Endothia Trace Elements Solution 
5 g Sucrose (do not use glucose, which can inhibit induction of some 
genes) 
3.9 g Difco Malt Extract 
20 g Difco Bacto Agar 
 

and separately prepare 
 

Chestnut Bark Extract 
 

Autoclave in separate flasks at 120°C for 20 mins.    Allow media to cool under hood 
to 50°C, then mix thoroughly by swirling.  Then add: 
 

2 mg Thiamine  hydrochloride (added as a filter-sterilize aqueous solution 
after autoclaving)  

 
Pour before it solidifies.  (Note: thiamine is temperature sensitive and will break 
down if media is reheated in the microwave.   Also, the tannic acid in CBE will 
hydrolyze the agar if mixed and then brought to a high temperature, resulting in a 
soft, semi-solid medium.) 
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Appendix II 
Spheroplast Preparation, Transformation and Regeneration 

 
 
A. Buffers and media needed 
 
Osmotic Medium (for 500  ml): 

1.2M MgSO4 (use MgSO4•7H2O [148g /500ml] which dissolves easily in 
water, combining anhydrous MgSO4 with water is very exothermic) in 10mM 
NaH2PO4 (use NaH2PO4•H2O, 0.69g /500ml) ; adjust to pH 5.8 with 1M 
Na2HPO4 (0.5M Na2HPO4 is easier to prepare, add the chemical slowly to 
water).  Note that a precipitate forms while adjusting the pH so add the 0.5M 
Na2HPO4 slowly; 50-100ml may be necessary to reach pH 5.8.  Filter sterilize 
and store at 4°C. 

 
Digestion Buffer (for 50 ml) (Note: Prepare fresh for each use): 
 

50 ml osmotic medium 
500 mg bovine serum albumen 
100 mg lysing enzyme from Trichoderma harziana 
1,000 mg vintastepro enzyme (beta D glucanase)  
500 ul of beta-glucuronidase 

 
Add ingredients in order listed, and allow BSA to dissolve thoroughly before 
adding the next ingredients.   
 

Trapping Buffer 
 

0.4 M sorbitol (36.4 g/ 500ml, or 200ml of 1M sorbitol/500ml) in 100mM 
Tris-HCl, pH 7.0 (50ml of a 1M solution); autoclave and store at 4°C. 

 
STC 

1M sorbitol (91.1g/500ml) in 100mM Tris-HCl, pH 8.0 (50ml of a 1M 
solution) and 100mM CaCl2- dihydrate (7.35g/500ml); autoclave and store at 
4°C. 

 
 
PTC 

40% polyethylene glycol 4000MW  (80g / 200ml), 100mM Tris-Hcl, pH8.0 
(20ml of a 1M solution), 100mM CaCl2-dihydrate (2.94g /200ml); autoclave 
and store at room temperature. 
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Spheroplast Storage Buffer 
 
 4 parts STC, 1 part PTC, 0.05 parts DMSO 
 
Regeneration Medium (400 ml) 
 

390 ml dH20 
171 g   sucrose 
0.5 g    yeast extract 
0.5 g   casein hydrolysate 
8.9 g   Difco Bacto agar 
 
Dissolve the sucrose in the dH20, add the other ingredients, with agar added 
last.  Autoclave at 120°C for 20 minutes.. 

 
 
B. Cryphonectria parasitica spheroplast preparation: 
 
1) Use a pipette tip to “cotton ball” Cp hyphae from colonies grown on PDA 

medium.   Transfer to 1.5 ml centrifuge tubes.   Wash with dH20 and grind 
with plastic micro-pestle (about 50 twists of the pestle will create a suspension  
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of finely fragmented hyphal tissue).   Inoculate 100 ml PDB medium (1 good 
cotton ball from one fresh PDA culture should be enough). Incubate the 
culture on bench top over 3 days.  You should have white clouds of mycelia.   
If it coats the bottom of the flask, or turns orange, try again starting with the 
youngest hyphae you can get.   

 
2)   When ready for spheroplast preparation, make fresh Digestion Buffer 
 

When preparing, add osmotic medium to tube, add dry ingredients starting 
with BSA, and allow it to dissolve before adding the other dry ingredients.  
Add beta-glucuronidase last.  Mix by inversion.  
 

3)  Place mycelium suspension in sterile, 50 ml disposable centrifuge tubes and 
spin down at room temperature at 4000 rpm for 5 mins.  Pour off supernatant.  
Combine contents so that mycelia from 100 ml of media are in one 50 ml 
tube. Wash by gently adding ~25 ml of autoclaved dH20.  Spin down at 4000 
rpm for 3 min.  Repeat wash and spin.  If necessary to remove moisture, you 
can pour the mycelia onto autoclaved filter paper and blot.   

 
4)  Re-suspend pellet in 25-30 ml of Digestion Buffer, screw the lid on tight, and 

incubate horizontally at 30C overnight at a very low speed, e.g. 50 rpm.  At 
the end of about 16 hours, you should have homogenous cloudy suspension.  
If you have a lot of lumps or the mycelium appears unchanged, it has not 
digested properly.   

  
5) Very carefully add cold, sterile Trapping Buffer to overlay the spheroplast 

suspension (about 25 ml, or whatever amount is required to fill the tube).  Be 
careful not to disrupt the spheroplast layer, which should look like a cloudy 
area of trapping buffer that is densest closer to the margin with the digestion 
buffer..) Use a 25 ml pipette to gently add the trapping buffer to the side of the 
tilted 50 ml tube.  Spin down again at room temperature at about ~4000 rpm) 

 
6) Collect the spheroplasts (the cloudy layer) at the interface.  Transfer to a new 

50 ml tube, and dilute with 2 vols of 1M sorbitol.  Gently mix thoroughly.  
Pellet the  spheroplasts in rotor at 6,000 rpm, 4°C, 5 min.   

 
7) Remove supernatant by aspiration.  Suspend the spheroplast pellet in 100-200 

ul of STC.  If you have multiple tubes, you can use the same suspension over, 
transferring from tube to tube until everything is suspended and combined in 
one tube.  You can clean the last spheroplasts from the other tubes with 
additional fresh STC and transfer that to your main tube.  Pellet everything 
down again, as in step 4. 
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8) Remove supernatant by aspiration.  Suspend spheroplasts in STC on ice. Use 
enough STC (normally 200-1000 ul) so that you have a slightly cloudy 
homogeneous solution.   If very cloudy, dilute more. 

 
9) Observe up to 10 ul of suspension under dissecting scope with a 

hemacytometer.   Spheroplasts are spherical and about 5 um across, and will 
look under the scope like craters on the moon.  See picture below. If you have 
very high concentrations, you can dilute until you have a final concentration 
of 2 x 108  cells/ml. 

 
 
 

 
 
 

10) Dilute your spheroplast suspension with the following solution: 4 parts STC, 1 
part PTC and 0.05 parts DMSO.  For example: 4ml STC, 1ml PTC and 50µl DMSO.  
Freeze in 50 ul aliquots in cryovials and store at-80°C. 

 
C. Spheroplast transformation and regeneration 
 
1) If spheroplasts are frozen, quickly thaw in a 37º C water bath until a 2mm 

diameter ice crystal remains, then place on ice.  Spheroplasts should be at a 
concentration of ~ 2 x 107 cells/ml. 
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2) Pre-cool 1.5 ml tubes on ice, one for each transformation, plus a 
control.  Add 5-10µg of DNA in a volume of 10µl to each tube and 10µl of 
TE buffer to one other for a control. 

 
3) Add 50µl of spheroplasts to each tube, mix gently, and chill on ice for 30 min. 
 
4) Add 500 ul of PTC to each tube, mix gently and incubate at room temperature 

for 25 min.  THIS IS THE TRANFORMATION STEP. 
 
5) Add 1ml of STC to each tube, mix gently.   
 
6) Evenly distribute the reaction mixtures by droplets onto empty, labeled petri 

dishes.   Make serial dilutions to ensure the separation of individual 
transformants.  A suggested series is 2µl, 20µl and 200µl. Pipet 11 ml of 
Regeneration Medium at 48º C onto each plate and swirl to mix. 

 
Incubate on bench top for 16-18 hours, then add 11 ml of Regeneration 
Medium containing 100µg/ml Hygromycin B (or other antibiotic) at 48º C 
as a top layer.  Do not add the top layer to the cells mixed with the TE buffer 
unless you wish to test the antibiotic.  (The previous two steps can also be 
combined with one stem involving 22 mlRegeneration Medium+antibiotic.)  
Note that the regeneration medium is sticky and difficult to handle.   Keep it at 
48-50 C in a water bath near where you are doing the inoculations, to prevent 
it from congealing.   Especially if you are doing the two-layer method, gaps or 
bubbles can allow non-transformed fungus to grow around the selective 
medium layer.   

 
7) Incubate on bench top for 3-5 days until hyphae can be seen growing through 

the top layer.  Pick individual putative transformants to PDA plates containing 
antibiotic. Also transfer hyphae from TE control plates to PDA without 
antibiotic to compare the phenotype to that of the putative transformants. 
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