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The key components of a machine perception algorithm are feature extraction fol-

lowed by classification or regression. The features representing the input data should

have the following desirable properties: 1) they should contain the discriminative in-

formation required for accurate classification, 2) they should be robust and adaptive to

several variations in the input data due to illumination, translation/rotation, resolution,

and input noise, 3) they should lie on a simple manifold for easy classification or regres-

sion. Over the years, researchers have come up with various hand crafted techniques

to extract meaningful features. However, these features do not perform well for data col-

lected in unconstrained settings due to large variations in appearance and other nuisance

factors.

Recent developments in deep convolutional neural networks (DCNNs) have shown

impressive performance improvements on various machine perception tasks such as ob-

ject detection and recognition. DCNNs are highly non-linear regressors because of the

presence of hierarchical convolutional layers with non-linear activation. Unlike the hand

crafted features, DCNNs learn the feature extraction and feature classification/regression

modules from the data itself in an end-to-end fashion. This enables the DCNNs to be

robust to variations present in the data and at the same time improve their discrimina-

tive ability. Ever-increasing computation power and availability of large datasets have

led to significant performance gains from DCNNs. However, these developments in deep



learning are not directly applicable to the face analysis tasks due to large variations

in illumination, resolution, viewpoint, and attributes of faces acquired in unconstrained

settings. In this dissertation, we address this issue by developing efficient DCNN archi-

tectures and loss functions for multiple face analysis tasks such as face detection, pose

estimation, landmarks localization, and face recognition from unconstrained images and

videos.

In the first part of this dissertation, we present two face detection algorithms based

on deep pyramidal features. The first face detector, called DP2MFD, utilizes the concepts

of deformable parts model (DPM) in the context of deep learning. It is able to detect faces

of various sizes and poses in unconstrained conditions. It reduces the gap in training

and testing of DPM on deep features by adding a normalization layer to the DCNN.

The second face detector, called Deep Pyramid Single Shot Face Detector (DPSSD), is

fast and capable of detecting faces with large scale variations (especially tiny faces). It

makes use of the inbuilt pyramidal hierarchy present in a DCNN, instead of creating an

image pyramid. Extensive experiments on publicly available unconstrained face detection

datasets show that both these face detectors are able to capture the meaningful structure

of faces and perform significantly better than many traditional face detection algorithms.

In the second part of this dissertation, we present two algorithms for simultane-

ous face detection, landmarks localization, pose estimation and gender recognition using

DCNNs. The first method called, HyperFace, fuses the intermediate layers of a deep CNN

using a separate CNN followed by a multi-task learning algorithm that operates on the

fused features. The second approach extends HyperFace to incorporate additional tasks

of face verification, age estimation and smile detection, in All-In-One Face. HyperFace

and All-In-One Face exploit the synergy among the tasks which improves individual per-

formances.

In the third part of this dissertation, we focus on improving the task of face ver-

ification by designing a novel loss function that maximizes the inter-class distance and

minimizes the intra-class distance in the feature space. We propose a new loss function,

called Crystal Loss, that adds an L2-constraint to the feature descriptors which restricts



them to lie on a hypersphere of a fixed radius. This module can be easily implemented

using existing deep learning frameworks. We show that integrating this simple step in the

training pipeline significantly boosts the performance of face verification. We additionally

describe a deep learning pipeline for unconstrained face identification and verification

which achieves state-of-the-art performance on several benchmark datasets. We provide

the design details of the various modules involved in automatic face recognition: face

detection, landmark localization and alignment, and face identification/verification. We

present experimental results for end-to-end face verification and identification on IARPA

Janus Benchmarks A, B and C (IJB-A, IJB-B, IJB-C), and the Janus Challenge Set 5

(CS5).

Though DCNNs have surpassed human-level performance on tasks such as ob-

ject classification and face verification, they can easily be fooled by adversarial attacks.

These attacks add a small perturbation to the input image that causes the network to

mis-classify the sample. In the final part of this dissertation, we focus on safeguarding

the DCNNs and neutralizing adversarial attacks by compact feature learning. In par-

ticular, we show that learning features in a closed and bounded space improves the ro-

bustness of the network. We explore the effect of Crystal Loss, that enforces compactness

in the learned features, thus resulting in enhanced robustness to adversarial perturba-

tions. Additionally, we propose compact convolution, a novel method of convolution that

when incorporated in conventional CNNs improves their robustness. Compact convolu-

tion ensures feature compactness at every layer such that they are bounded and close to

each other. Extensive experiments show that Compact Convolutional Networks (CCNs)

neutralize multiple types of attacks, and perform better than existing methods in defend-

ing adversarial attacks, without incurring any additional training overhead compared to

CNNs.
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Chapter 1: Introduction

1.1 Motivation

Facial analytics is a challenging problem in computer vision and has been actively

researched for over two decades [221]. The goal is to extract as much information as

possible, such as key-point locations, pose, gender, ID, age, emotion, etc. from a face.

Applications of this technology include detecting and identifying a person of interest

from surveillance videos, active authentication of users cell phones, payment transactions

using face biometrics, smart car, etc. In addition, there has been a growing interest in face

recognition and verification from unconstrained images and videos which also involve

subtasks, such as face detection, facial landmark localization, etc.

Face identification and verification systems typically have three modules. First, a

face detector is needed for detecting and localizing faces in an image. Desirable properties

of a face detector are robustness to variations in pose, illumination, and scale. Also, a

good face detector should have consistent output and well localized bounding boxes. The

second module localizes facial landmarks such as eye centers, tip of the nose, corners of

the mouth, tips of ear lobes, etc. These landmarks are used to align faces which mitigates

the effects of in-plane rotation and scaling. Third, a feature extractor encodes the identity

information in a high-dimension descriptor. These descriptors are then used to compute
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a similarity score between two faces. An effective feature extractor needs to be robust to

errors introduced by previous steps in the pipeline: face detection, landmark localization,

and face alignment.

DCNNs have been shown to be very effective for several computer vision tasks

like image classification [88, 171, 62], and object detection [48, 148, 108]. Deep CNNs

(DCNNs) are highly non-linear regressors because of the presence of hierarchical convo-

lutional layers with non-linear activations. DCNNs have been used as building blocks for

all three modules of automatic face recognition: face detection [126, 145, 141, 143], fa-

cial keypoint localization [90, 145, 143], and face verification/identification [22, 7]. Ever-

increasing computation power and availability of large datasets like CASIA-WebFace [209],

UMDFaces [5, 6], MegaFace [81, 127], MS-Celeb-1M [57], VGGFace [136, 9], and

WIDER Face [206] have led to significant performance gains from DCNNs. This is be-

cause of the large variations in pose, illumination, and scale of faces present in these

datasets.

Existing approaches for the tasks of face detection, key-points localization and face

verification/recognition have their own limitations. Most of the available face detectors

are unable to detect tiny faces (face size less than 5% of the image size). The key challenge

in unconstrained face detection using hand crafted features like Haar wavelets and HOG

is that they do not capture the salient facial information at different resolution, poses

and illumination conditions. Although DCNNs overcome most of these limitations, they

are still below par in detecting very small faces which is crucial for an accurate face

recognition system.

Existing methods for facial key-points localization task have focused primarily on

2



detecting essential landmarks for frontal faces (pose yaw angles in between -60◦ and

60◦). Most of these methods fail to correctly localize key-points for off-frontal or profile

faces which occur frequently in images collected in unconstrained settings. Moreover,

manually annotating facial key-points locations is a tedious task and hence it is very

difficult to collect large number of training samples to train a DCNN for this task.

Face verification in unconstrained settings is a challenging problem. A typical

pipeline for face verification based on deep learning includes training a deep network

for subject classification with softmax loss, using the penultimate layer output as the fea-

ture descriptor, and generating a cosine similarity score given a pair of face images (see

Fig. 1.1). Despite the excellent performance of recent face verification systems on datasets

like Labeled Faces in the Wild (LFW) [70], it is still difficult to achieve similar accuracy

on faces with extreme variations in viewpoints, resolution, occlusion and image quality.

This is evident from the performance of traditional algorithms on the publicly available

IJB-A [84] dataset. Data quality imbalance in the training set is one of the reasons for

this performance gap. Existing face recognition training datasets contain large amount of

high quality and frontal faces, whereas the unconstrained and difficult faces occur rarely.

Most of the DCNN-based methods trained with softmax loss for classification tend to

over-fit to the high quality data and fail to correctly classify faces acquired in challenging

conditions.

Using the softmax loss function for training a face verification system has its own

advantages and disadvantages. On the one hand, it can be easily implemented using

inbuilt functions from the publicly available deep leaning toolboxes such as Caffe [75],

Torch [27] and TensorFlow [1]. Unlike triplet loss [157], it does not have any restrictions

3



Figure 1.1: A general pipeline for training and testing a face verification algorithm using DCNN.

on the input batch size and converges quickly. The learned features are discriminative

enough for efficient face verification without any metric learning. On the other hand,

the softmax loss is biased to the sample distribution. Unlike contrastive loss [168] and

triplet loss [157] which specifically attend to hard samples, the softmax loss maximizes

the conditional probability of all the samples in a given mini-batch. Hence, it is suited

to handle high quality faces, ignoring the rare difficult faces in a training mini-batch.

We observe that the L2-norm of features learned using softmax loss is informative of

the quality of the face [135]. Features for good quality frontal faces have a high L2-

norm while blurry faces with extreme pose have low L2-norm. Moreover, the softmax

loss does not optimize the verification requirement of keeping positive pairs closer and

negative pairs far from each other. In order to address this limitation, many methods

either apply metric learning on top of softmax features [154, 21, 136, 22] or train an

auxiliary loss [182, 168, 183] along with the softmax loss to achieve enhanced verification

performance.

In recent years, it has been shown that DCNNs are vulnerable to small adversarial

perturbations which, when added to the input image, can cause the network to mis-classify

4



with high confidence [172, 53, 123, 122]. Adversarial images thus generated are often

visually indistinguishable from the original images. Adversarial attacks have emerged as

a potential threat to DCNN-based systems. Adversarial images can be used by a suspect

to fool a face verification system, by letting the person go unidentified. These attacks can

also cause self-driving cars to mis-classify scene objects such as a stop sign leading to

adverse effects when these systems are deployed in real time. As networks move from

the research labs to the field, they need to be designed in a way that they are not only

accurate, but also robust to adversarial perturbations.

1.2 Proposed Approaches and Contributions

To solve the above mentioned issues present in the existing face recognition sys-

tems, and to safeguard them from adversarial attacks, we propose novel algorithms for

face detection, face key-points and attributes detection, face verification/recognition and

adversarial defense.

In the first part of this dissertation, we present two face detection algorithms based

on deep pyramidal features. The first method, called Deep Pyramid Deformable Parts

Model for Face Detection (DP2MFD), detects faces at multiple scales, poses and occlu-

sion by efficiently integrating deep pyramid features [49] with Deformable Parts Model

(DPM) [45]. It consists of two modules. The first one generates a seven level normalized

deep feature pyramid for any input image of arbitrary size. Fixed-length features from

each location in the pyramid are extracted using the sliding window approach. The sec-

ond module is a linear SVM which takes these features as input to classify each location
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as face or non-face, based on their scores. The second face detector, called Deep Pyramid

Single Shot Face Detector (DPSSD), improves upon DP2MFD and is faster and more ac-

curate. Similar to DP2MFD it provides the output in a single pass of the network. In order

to detect faces at different scales, we make use of the inbuilt pyramidal hierarchy present

in a DCNN, instead of creating an image pyramid. This further reduces the processing

time. We develop specific anchor filters for detecting tiny faces. We apply the bottom-up

approach to incorporate contextual information, by adding features from deeper layers to

the features from shallower layers. Our proposed face detectors are able to capture the

meaningful structure of faces and perform significantly better than many competitive face

detection algorithms.

In the second part of this dissertation, we present two multi-task learning (MTL)

DCNN frameworks for face analytics. The first one, called HyperFace, performs face

detection, landmarks localization, pose estimation and gender recognition by fusing the

intermediate layers of the network. The second one, called All-In-One Face, builds upon

HyperFace and performs additional tasks of smile detection, age estimation and face iden-

tification/verification. The MTL framework regularizes the shared parameter space using

multiple loss functions and training domains, which improves the individual performance

of each tasks altogether. We primarily use the key-points locations and the pose estimates

obtained from All-in-One Face network in our end-to-end face recognition pipeline. The

other attributes obtained from the network can be used for subsequent analysis.

In the third part of this dissertation, we explicitly focus on improving the tasks

of face verification and identification. A typical pipeline for face verification includes

training a deep network for subject classification with softmax loss, using the penultimate

6



layer output as the feature descriptor, and generating a cosine similarity score given a pair

of face images. The softmax loss function does not optimize the features to have higher

similarity score for positive pairs and lower similarity score for negative pairs, which

leads to a performance gap. We provide a symptomatic treatment to issues associated

with the softmax loss. We propose Crystal Loss that adds a constraint on the features

during training such that their L2-norm remain constant. In other words, we restrict the

features to lie on a hypersphere of a fixed radius. The proposed Crystal loss has two

advantages. Firstly, it provides equal attention to both good and bad quality faces since

all the features have the same L2-norm now, which is essential for improved performance

in unconstrained settings. Secondly, it strengthens the verification features by forcing

the features from the same subject to be closer and features from different subjects to be

far from each other in the normalized space. Therefore, it maximizes the margin for the

normalized L2 distance or cosine similarity score between negative and positive pairs. In

this way, the proposed Crystal loss overcomes the limitations of the regular softmax loss.

We also provide the design details for an end-to-end face recognition system containing

three major modules. First, our proposed DPSSD face detector is used for detecting and

localizing faces in an image. The second module localizes facial landmarks such using

All-In-One Face algorithm. These landmarks are used to align faces which mitigates the

effects of in-plane rotation and scaling. Third, a feature extractor encodes the identity

information in a high-dimension descriptor. These descriptors are then used to compute a

similarity score between two faces.

Additionally, we provide a comprehensive comparison of humans and computer

for face identification in forensic applications. We show that the latest face verifica-
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tion/identification network trained with Crystal Loss scores better than median of the

forensic facial examiners. We also show that fusing the judgments of single forensic

facial examiners with the latest face recognition algorithm is more accurate than the com-

bination of two examiners. Therefore, collaboration between humans and machines offers

tangible benefits to face identification accuracy in important applications.

In the last part of this dissertation, we impose constraints on the sensitivity of the

learned feature space and using our insight, propose a modified convolution operation

that can desensitize the learned mapping in the direction of adversarial perturbations. We

employ the property of compactness in the context of feature learning that would enhance

a network’s robustness to adversarial attacks. Compactness enforces the features to be

bounded and lie in a closed space. It reduces the degree of freedom for the features to

be learned. This restricts the extent to which a feature for perturbed image can move,

making it less likely to cross the class boundary. To enforce compactness in the feature

space, we explore the L2-Softmax Loss proposed by Ranjan et al. [142]. The L2-Softmax

Loss establishes compactness by constraining the features to lie on a hypersphere of fixed

radius, before applying the softmax loss. It brings the intra-class features close to each

other and separates the inter-class features far apart. In this way, features from the original

and the adversarial image are closer to each other using L2-Softmax Loss, compared to

training with regular softmax loss. Using these insights, we propose a novel convolution

method, called compact convolution, that significantly enhances a network’s robustness

by ensuring compact feature learning at every layer of the network. A compact convolu-

tion module applies the L2-normalization step and scaling operations to every input patch

before applying the convolutional kernel in a sliding window fashion. Compact Convo-
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lutional Networks (CCNs), built using these modules, are highly robust compared to a

typical CNN.

1.3 Organization

Chapter 2 discusses our DP2MFD and DPSSD for face detection algorithms in de-

tail. Chapter 3 presents our multi-task approaches, namely HyperFace and All-In-One

Face, for different face analytics tasks. In chapter 4, we introduce the Crystal loss func-

tion that significantly improves the performance of face verification task. We also dis-

cuss the end-to-end face verification/identification pipeline in this chapter. We present

Compact Convolutional Network for adversarial defense in chapter 5 , and conclude this

dissertation in chapter 6.
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Chapter 2: Face Detection

Face detection is the first step in any face recognition/verification pipeline. It is a

challenging problem that has been actively researched for over two decades [220], [213].

A face detection algorithm outputs the locations of all faces in a given input image, usu-

ally in the form of bounding boxes. A face detector needs to be robust to variations in

pose, illumination, view-point, expression, scale, skin-color, some occlusions, disguises,

make-up, etc. Current methods work well on images that are captured under user con-

trolled conditions. However, their performance degrades significantly on images that have

cluttered backgrounds and have large variations in face viewpoint, expression, skin color,

occlusions and cosmetics. Most recent DCNN-based face detectors are inspired by gen-

eral object detection approaches.

2.1 Previous Work

The seminal work of Viola and Jones [178] made face detection feasible in real

world applications. They used cascaded classifiers on Haar-like features to detect faces.

The cascade structure has been the subject of extensive research since then. Cascade

detectors work well on frontal faces, however, sometimes they fail to detect profile or

partially occluded faces. A recently developed joint cascade-based method [17] yields
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improved detection performance by incorporating a face alignment step in the cascade

structure. Headhunter [116] uses rigid templates along similar lines. The method based

on Aggregate Channel Features (ACF) [202] deploys a cascade of channel features while

Pixel Intensity Comparisons Organized (Pico) [114] uses a cascade of rejectors for im-

proved face detection.

Most of the hand-crafted face detectors are based on the DPM structure [46] where

a face is defined as a collection of parts. These parts are trained side-by-side with the face

using a spring-like constraint. They are fine-tuned to work efficiently with the HOG [30]

features. A unified approach for face detection, pose estimation and landmark localization

using the DPM framework was recently proposed in [225]. This approach defined a “part”

at each facial landmark and used mixture of tree-structured models resilient to viewpoint

changes. A properly trained simple DPM is shown to yield significant improvement for

face detection in [116].

The limitation of traditional face detectors is more due to the features used than

the classifiers. However, with recent advances in deep learning techniques and the avail-

ability of GPUs, it is becoming possible to use DCNNs for feature extraction. In has

been shown in [88] that a DCNN pretrained with a large generic dataset such as Imagenet

[31], can be used as a meaningful feature extractor. The deep features thus obtained have

been used extensively for object detection. For instance, Regions with CNN (R-CNN)

[48] computes region-based deep features and achieves state-of-art result on the Imagenet

challenge. Methods like Overfeat [159] and Densenet [71] adopt a sliding window ap-

proach to detect objects from the pool5 features. Deep Pyramid [49] and Spatial Pyramid

[63] remove the fixed-scale input dependency from DCNNs which makes them attractive
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to be integrated with DPMs. Although, a lot of research on deep learning has focused on

object detection and classification, very few have used deep features for face detection

which is equally challenging because of large variations in pose, ethnicity, occlusions,

etc. It was shown in [43] that DCNN features fine-tuned on faces are informative enough

for face detection, and hence do not require an SVM classifier. They detect faces based

on the heat map score obtained directly from the fifth convolutional layer. Although they

report competitive results, detection performance for faces of various sizes and occlusions

needs improvement. Most recent DCNN-based face detectors are inspired by general ob-

ject detection approaches. They can be divided into two sub-categories: 1) region-based,

and 2) sliding window-based.

Region-based approaches first generate a set of object-proposals and use a DCNN

classifier to classify each proposal as a face or non-face. The first step is usually an

off-the-shelf proposal generator like selective search [176]. Some recent detectors which

use this approach are HyperFace [143], and All-in-One Face [145]. Instead of generat-

ing object proposals by a generic method, Faster R-CNN [148] uses a Region Proposal

Network (RPN). Jiang and Learned-Miller use a Faster R-CNN network to detect faces

in [76]. Similarly, [103] proposes a multi-task face detector based on the Faster-RCNN

framework. Chen et al. [16] train a multi-task RPN for face detection and facial keypoint

localization. This allows them to reduce the number of redundant face proposals and im-

prove their quality. The Single Stage Headless face detector [126] is also based on an

RPN.

Sliding window-based methods output face detections at every location in a feature

map at a given scale. These detections are composed of a face detection score and a
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bounding box. This approach does not rely on a separate proposal generation step and

is, thus, much faster than region-based approaches. In some methods [43], multi-scale

detection is accomplished by creating an image pyramid at multiple scales. Similarly, Li

et al. [98] use a cascade architecture for multiple resolutions. The Single Shot Detector

(SSD) [108] is also a multi-scale sliding-window based object detector. However, instead

of using an object pyramid for multi-scale processing, it utilizes the hierarchal nature of

DCNNs. Methods like ScaleFace [207], and S3FD [217] use similar techniques for face

detection.

In addition to the development of improved detection algorithms, rapid progress

in face detection performance has been spurred by the availability of large annotated

datasets. FDDB [74] consists of 2,845 images containing a total of 5,171 faces. Similar

in scale is the MALF [203] dataset which contains 5,250 images with 11,931 faces. A

much larger dataset is WIDER Face [206]. It contains over 32,000 images containing

faces with large variations in expression, scale, pose, illumination, etc. Most state-of-the-

art face detectors are trained on the WIDER Face dataset. This dataset contains many tiny

faces. Several of the above mentioned face detectors still struggle with detecting these

small faces in images. Hu et al. [68] show that context is important for detecting such

faces.

2.2 Deep Pyramid Deformable Parts Model for Face Detection

Here, we propose a face detector which detects faces at multiple scales, poses and

occlusion by efficiently integrating deep pyramid features [49] with DPMs. We propose
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Figure 2.1: Overview of our approach. (1) An image pyramid is built from a color input im-

age with level 1 being the lowest size. (2) Each pyramid level is forward propagated

through a deep pyramid CNN [49] that ends at max variant of convolutional layer 5

(max5). (3) The result is a pyramid of max5 feature maps, each at 1/16th the spatial

resolution of its corresponding image pyramid level. (4) Each max5 level features is

normalized using z-score to form norm5 feature pyramid. (5) Each norm5 feature level

gets convoluted with every root-filter of a C-component DPM to generate a pyramid

of DPM score (6). The detector outputs a bounding box for face location (7) in the

image after non-maximum suppression and bounding box regression.
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Figure 2.2: Comparison between HOG, max5 and norm5 feature pyramids. In contrast to max5

features which are scale selective, norm5 features have almost uniform activation in-

tensities across all the levels.

adding a normalization layer to the deep CNN to reduce the bias in face sizes. Extensive

experiments show that we outperform traditional face detectors on four challenging face

detection datasets. Our proposed face detector, called Deep Pyramid Deformable Parts

Model for Face Detection (DP2MFD), consists of two modules. The first one generates a

seven level normalized deep feature pyramid for any input image of arbitrary size. Fixed-

length features from each location in the pyramid are extracted using the sliding window

approach. The second module is a linear SVM which takes these features as input to clas-

sify each location as face or non-face, based on their scores. In this section, we provide

the design details of our face detector and describe its training and testing processes.
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2.2.1 DPM Compatible Deep Feature Pyramid

We build our model using the feature pyramid network implementation provided

in [49]. It takes an input image of variable size and constructs an image pyramid with

seven levels. Each level is embedded in the upper left corner of a large (1713× 1713

pixels) image and maintains a scale factor of
√

2 with its next lower level in the hierarchy.

Using this image pyramid, the network generates a pyramid of 256 feature maps at the

fifth convolution layer (conv5). A 3× 3 max filter is applied to the feature pyramid at

a stride of one to obtain the max5 layer which essentially incorporates the conv5 “parts”

information. Hence, it suffices to train a root-only DPM on the max5 feature maps without

explicitly training on DPM parts. A cell at location ( j,k) in the max5 layer corresponds

to the pixel (16 j,16k) in the input image, with a highly overlapping receptive field of size

163×163 pixels. Despite having a large receptive field , the features are well localized to

be effective for sliding window detectors.

It has been suggested in [49] that deep feature pyramids can be used as a replace-

ment for HOG Pyramid in DPM implementation. However, this is not entirely obvious

as deep features are different than HOG features in many aspects. Firstly, the deep fea-

tures from max5 layer have a receptive field of size 163×163 pixels, unlike HOG where

the receptive region is localized to a bin of 8× 8 pixels. As a result, max5 features at

face locations in the test images would be substantially different from that of a cropped

face. This prohibits us from using the deep features of cropped faces as positive training

samples, which is usually the first step in training a HOG-based DPM. Hence, we take

a different approach of collecting positive and negative training samples from the deep
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feature pyramid itself. This procedure is described in detail in subsection 3.2.2.

Secondly, the deep pyramid features lack the normalization attribute associated with

HOG. The feature activations vary widely in magnitude across the seven pyramid levels as

shown in Figure 2.2. Typically, the activation magnitude for a face region decreases with

the size of pyramid level. As a result, a large face detected by a fixed-size sliding window

at a lower pyramid level will have a high detection score compared to a small face getting

detected at a higher pyramid level. In order to reduce this bias to face size, we apply

a z-score normalization step on the max5 features at each level. For a 256-dimensional

feature vector xi, j,k at the pyramid level i and location ( j,k), the normalized feature x̂i, j,k

is computed as:

x̂i, j,k =
xi, j,k−µi

σi
, (2.1)

where µi is the mean feature vector, and σi is the standard deviation for the pyramid level

i. We refer to the normalized max5 features as “norm5”. A root-only DPM is trained on

the norm5 feature pyramid using a linear SVM. Figure 2.1 shows the complete overview

of our model.

2.2.2 Testing

At test time, each image is fed to the model described above to obtain the norm5

feature pyramid. They are convolved with the fixed size root-filters for each component

of DPM in a sliding window fashion, to generate a detection score at every location of

the pyramid. Locations having scores above a certain threshold are mapped to their corre-

sponding regions in the image. These regions undergo a greedy non-maximum suppres-
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sion to prune low scoring detection regions with Intersection-Over-Union (IOU) overlap

above 0.3. In order to localize the face as accurately as possible, the selected boxes un-

dergo bounding box regression. Owing to the subsampling factor of 16 between the input

image and norm5 layer, the total number of sliding windows account to approximately

25k compared to approximately 250k for the HOG pyramid, which reduces the effective

test-time.

2.2.3 Training

For training, both positive and negative faces are sampled directly from the norm5

feature pyramid. The dimensions of root filters for DPM are decided by the aspect ratio

distribution for faces in the dataset. The root-filter sizes are scaled down by a factor of

8 to match the face size in the feature pyramid. Since, a given training face maps its

bounding box at each pyramid level, we choose the optimal level l for the corresponding

positive sample by minimizing the sum of absolute difference between the dimensions of

bounding box and the root filter at each level. For a root-filter of dimension (h,w) and

bounding box dimension of (by
i ,b

x
i ) for the pyramid level i, l is given by

l = argmin
i
|by

i −h|+ |bx
i −w|. (2.2)

The ground truth bounding box at level l is then resized to fit the DPM root-filter dimen-

sions. We finally extract the “norm5” feature of dimension h×w×256 from the shifted

ground truth position in the level l as a positive sample for training.

The negative samples are collected by randomly choosing root-filter sized boxes

from the normalized feature pyramid. Only those boxes having IOU less than 0.3 with
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the ground truth face at the particular level are considered as negative samples for training.

Once the training features are extracted, we optimize a linear SVM for each com-

ponent of the root-only DPM. Since the training data is large to fit in the memory, we

adopt the standard hard negative mining method [169, 46] to train the SVM. We also train

a bounding box regressor to localize the detected face accurately. The procedure is sim-

ilar to the bounding box regression used in R-CNN [48] , the only difference being our

bounding box regressor is trained on the norm5 features.

2.3 Deep Pyramid Single Shot Face Detector

We propose a novel DCNN-based face detector, called Deep Pyramid Single Shot

Face Detector (DPSSD), that is fast and capable of detecting faces at a large variety of

scales. It is especially good at detecting tiny faces (face size less than 5% of image size).

Since face detection is a special case of generic object detection, many researchers have

used an off-the-shelf object detector and fine-tuned it for the task of face detection [76].

However, in order to design an efficient face detector, it is crucial to address the follow-

ing differences between the tasks of face and object detection. First, faces can occur at a

much lower scale/size in an image compared to a general object. Typically, object detec-

tors are not designed to detect at such a low resolution which is required for the task of

face detection. Second, variations in the aspect ratio of faces are much less compared to

those in a typical object. As faces incur less structural deformations compared to objects,

they do not need any additional processing incorporated in object detection algorithms to

handle multiple aspect ratios. We design our face detector to address these points.
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We start with the Single Shot Detector (SSD) [108] trained on the truncated VGG-

16 [163] network for the task of object detection. SSD [108] has a speed advantage over

other object detectors like Faster R-CNN [148] since it is single stage and does not use

proposals. The SSD approach is fully convolutional and generates a fixed number of

bounding boxes and scores for inputs of fixed size. Additional convolutional layers are

added to the end of the truncated VGG-16 [163] to detect objects at multiple scales. The

objects are detected from multiple feature layers using different convolutional models for

each layer. We modify the SSD [108] architecture and the approach in such a way that

it is able to detect tiny faces efficiently. Fig. 2.3 shows the overall architecture of the

proposed DPSSD face detector.

2.3.1 Anchor pyramid with fixed aspect-ratio

In order to detect faces at multiple scales, we leverage the feature pyramid structure

inbuilt in the DCNN. We resize the input image such that the side with minimum length

has a dimension of 512. After every convolutional block, max pooling is performed which

reduces the dimension of feature maps by half and doubles the stride. For instance, the

feature maps at conv3 3 layer have a minimum spatial dimension of 128. Additionally, a

unit stride in this layer corresponds to 4 pixels stride in the original image. As shown in

Table 2.1, initial layers of a DCNN have low stride in feature maps, which is beneficial

for detecting tiny faces since small size anchors can be matched with high Jaccard overlap

of 0.5. However, features from these layers have less discriminative ability. On the other

20



hand, features from deeper layers are semantically stronger, but do not provide good spa-

tial localization because of the large stride value. Hence, we choose the anchor sizes and

the corresponding feature maps for generating detections with an optimal combination of

low spatial stride and highly discriminative features.

Layer Stride (pixels) Anchor-Sizes (pixels) #boxes

conv3 3 4 16/
√

2, 16 32768

conv4 3 8 32/
√

2, 32 8192

fc7 16 64/
√

2, 64 2048

conv6 2 32 128/
√

2, 128 512

conv7 2 64 256/
√

2, 256 128

conv8 2 128 512/
√

2, 512 32

Table 2.1: Statistics for different layers of DPSSD. The sizes of the two anchors and the stride are

measured in pixels.

We choose 12 anchor boxes, each at a different scale. The largest anchor box has a

size of 512. Each anchor box maintains a scale factor of
√

2 with its next lower level in the

hierarchy. We apply these anchor boxes to generate detections from 6 different feature

maps (see Table 2.1). Small-sized anchor boxes are applied to shallower feature maps

while large-sized anchor boxes are applied to deeper feature maps. Unlike SSD [108],

we make use of the conv3 3 layer for generating the detections since it has a high spatial

resolution of 128. This helps us in detecting tiny faces of size as low as 8 pixels.

We fix the aspect ratio of every anchor box to the mean aspect-ratio for face (0.8).

We compute this value from the WIDER Face [206] training dataset. For a given anchor
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size a, the anchor box m×n is calculated as:

m =
a√
0.8

, n = a×
√

0.8, (2.3)

where m is the width and n is the height of the anchor box. Detection scores and bound-

ing box offsets are provided at each location of the feature map for a given anchor box.

Feature maps with larger spatial resolution result in more detection boxes. The number

of detection boxes generated by every anchor layer for an image of size 512×512, is also

provided in Table 2.1. The conv3 3 layer outputs the largest number of boxes since it has

a spatial resolution of 128× 128. All of these generated boxes are passed through the

classifier network at the time of training.

2.3.2 Contextual Features from upsampling layers

It has been established that contextual information is useful for detecting tiny faces [68].

Although features from the conv3 3 layer have appropriate spatial resolution for tiny face

detection, they are neither semantically strong nor they contain contextual information.

In order to provide contextual information, we add a stack of bilinear upsampling and

convolution layer at the end of the SSD [108] network. The 6 chosen layers (Table 2.1)

are then added element-wise to these upsampled layers (see Fig. 2.3). Thus, the features

become rich in both semantics and localization. The final detection boxes are generated

from these upsampled layers using the anchor box matching technique.

Every output level generates two sets of detections, one for each anchor box cor-
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Figure 2.3: The network architecture for the proposed Deep Pyramid Single Shot Face Detector

(DPSSD). Starting from the base SSD [108] network, we add upsampling layers to

generate rich contextual features for face detection. The faces are pooled from six

different layers of the network, with 2 scales at each layer. The numbers on the red

arrows denote the anchor sizes for a given layer. The classifier network generates the

face detection probability scores as well as the normalized bounding box offsets for

every anchor (shown on right).
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responding to the given layer. A classifier network (see Fig. 2.3 right) is attached to all

the 6 output feature maps, that provides the classification probabilities and bounding box

offsets corresponding to each of the 12 anchor boxes. The classifier network is branched

into two to handle each anchor box separately. These branches are further subdivided into

classification and regression subnetworks.

2.3.3 Training

We use the training set of WIDER Face [206] dataset to train our face detector. The

network is initialized with the SSD [108] model for object detection. The new layers that

are added are initialized randomly. We use a batch size of 8. The initial learning rate is set

to 0.001 which is decreased by 0.5 after 30k, 50k and 60k iterations. Training is carried

out till 70k iterations. The matching strategy is similar to SSD [108]. A location in the

predictor feature map is labeled as positive class (yc = 1) if the anchor box for that location

has an Intersection-over-Union (IoU) overlap of 0.5 or more with any ground truth face.

All the other locations are labeled as negative class (yc = 0). For all the positive classes,

we also perform bounding box regression. We use the binary cross-entropy loss for face

classification and smooth-L1 loss for bounding box regression. The overall loss (L) is

a weighted sum of classification loss (Lcls) and regression loss (Lloc) as shown in (2.4),

(2.5) and (2.6). We use Caffe [75] library to train our network.

Lcls =−yc · log(pc)− (1− yc) · log(1− pc), (2.4)
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Lloc = ∑
i∈{x,y,w,h}

smoothL1 (ti− vi), (2.5)

L = Lcls +λ · yc ·Lloc, (2.6)

where yc is the class label, pc is the softmax probability obtained from the network,

v = {vx,vy,vw,vh} denote the ground-truth normalized bounding box regression targets

while t = {tx, ty, tw, th} are the bounding box offsets predicted by the network. The value

of λ is chosen to be 1. The smoothL1 loss is defined in (2.7).

smoothL1(x) =


0.5x2 if |x|< 1

|x|−0.5 otherwise

(2.7)

The total number of detection boxes generated from an image is 43,680. Out of

these, only a few boxes (around 10-50) correspond to the positive class while others form

the negative class. To avoid this large class imbalance we select only a few negative boxes

such that the ratio of positive to negative class is 1 : 3. We use hard negative mining to

select these negative boxes as proposed in [108]. We use the data augmentation technique

proposed in [108] to make the detector more robust to various face sizes.

2.3.4 Testing

At test time, the input image is resized such that the minimum side has the dimen-

sion of 512 pixels. The aspect ratio of the image is not changed. The image is then

passed through the trained DPSSD face detector to get the detection scores and bounding

box co-ordinates for different locations in the image. Non-maximum suppression (NMS)
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with threshold of 0.6 is used to filter out the redundant boxes. Since the outputs are gen-

erated in a single pass of the network, the total processing time is very low (100ms). To

further improve the detection performance, we construct the image pyramid as discussed

in HR [68] face detector. Performance evaluations on different face detection datasets are

discussed in the experiments section.

2.4 Experimental Results

2.4.1 Datasets

We evaluate the proposed DP2MFD face detector on the following unconstrained

face detection datasets - Annotated Face in-the-Wild (AFW) [225], Face Detection Dataset

and Benchmark (FDDB) [74], Multi-Attribute Labelled Faces (MALF) [203] and the

IARPA Janus Benchmark A (IJB-A) [84], [23] dataset. We train our DP2MFD face de-

tector on the FDDB images using Caffe [75] for both 1-component (DP2MFD-1c) and 2-

components (DP2MFD-2c) DPM. We evaluate the proposed DPSSD face detector on the

following unconstrained face detection datasets - WIDER Face [206], Unconstrained Face

Detection Dataset (UFDD) [125], Face Detection Dataset and Benchmark (FDDB) [74]

and Pascal Faces [200]. We train our DPSSD face detector on the WIDER Face training

set.

2.4.1.1 AFW Dataset

The AFW dataset [225] contains 205 images with 468 faces collected from Flickr.

Images in this dataset contain cluttered backgrounds with large variations in both face
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viewpoint and appearance.

2.4.1.2 FDDB Dataset

The FDDB dataset [74] is the most widely used benchmark for unconstrained face

detection. It consists of 2,845 images containing a total of 5,171 faces collected from news

articles on the Yahoo website. All images were manually localized for generating the

ground truth. The FDDB dataset has two evaluation protocols - discrete and continuous

which essentially correspond to coarse match and precise match between the detection

and the ground truth, respectively.

2.4.1.3 MALF Dataset

The MALF dataset [203] consists of 5,250 high-resolution images containing a

total of 11,931 faces. The images were collected from Flickr and image search service

provided by Baidu Inc. The average image size in this dataset is 573×638. On average,

each image contains 2.27 faces with 46.97% of the images contain one face, 43.41%

contain 2 to 4 faces, 8.30% contain 5 to 9 faces and 1.31% images contain more than

10 faces. Since this dataset comes with multiple annotated facial attributes, evaluations

on attribute-specific subsets are proposed. Different subsets are defined corresponding

to different combinations of attribute labels. In particular, ‘easy’ subset contains faces

without any large pose, occluded or exaggerated expression variations and are larger than

60× 60 in size and ‘hard’ subset contains faces that are larger than 60× 60 in size with

one of extreme pose or expression or occlusion variations. Furthermore, scale-specific
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evaluations are also proposed in which algorithms are evaluated on two subsets - ‘small’

and ‘large’. The ‘small’ subset contains images that have size smaller than 60× 60 and

the ‘’large’ subset contains images that have size larger than 90×90.

2.4.1.4 IJB-A Dataset

The IJB-A dataset contains images and videos from 500 subjects collected from

online media [84], [23]. In total, there are 67,183 faces of which 13,741 are from images

and the remaining are from videos. The locations of all faces in the IJB-A dataset were

manually ground truthed by human annotators. The subjects were captured so that the

dataset contains wide geographic distribution. All face bounding boxes are about 36

pixels or larger.

2.4.1.5 WIDER Face Dataset

The dataset contains 32,203 images with 393,703 face annotations, out of which

40% images are used for training, 10% for validation, and remaining 50% for test. It con-

tains rich annotations, including occlusions, poses, event categories, and face bounding

boxes. The faces possess large variations in scale, pose and occlusion. The dataset is

extremely challenging for the task of tiny face detection, since the face width can be as

low as 4 pixels.
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2.4.1.6 UFDD Dataset

UFDD is a recent face detection dataset that captures several realistic issues not

present in any existing dataset. It contains face images with weather-based degradations

(rain, snow and haze), motion blur, focus blur, etc. Additionally, it contains distractor

images that either contain non-human faces such as animal faces or no faces at all, which

makes this dataset extremely challenging. It contains a total of 6,425 images with 10,897

face annotations.

2.4.1.7 PASCAL Faces Dataset

The PASCAL faces [200] dataset was collected from the test set of the person layout

dataset which is a subset of PASCAL VOC [41]. The dataset contains 1,335 faces from

851 images with large variations in appearance and pose.

2.4.2 DP2MFD Results

2.4.2.1 AFW Dataset Results

The precision-recall curves ∗ of different academic as well as commercial methods

on the AFW dataset are shown in Figure 2.4. Some of the academic face detection meth-

ods compared in Figure 2.4 include OpenCV implementations of the 2-view Viola-Jones

algorithm, DPM [46], mixture of trees (Zhu et al.) [225], boosted multi-view face detec-

tor (Kalal et al.) [78], boosted exemplar [100] and the joint cascade methods [17]. As can
∗The results of the methods other than our DP2MFD methods compared in Figure 2.4 were provided

by the authors of [225], [17] and [100].
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Figure 2.4: Performance evaluation on the AFW dataset.

be seen from this figure, our method outperforms most of the academic detectors and per-

forms comparably to a recently introduced joint cascade-based method [17] and the best

commercial face detector Google Picassa. Note that the joint cascade-based method [17]

uses face alignment to make the detection better and trains the model on 20,000 images.

In contrast, we do not use any alignment procedure in our detection algorithm and train

on only 2,500 images.

2.4.2.2 FDDB Dataset Results

Figure 2.5 compares the performance of different academic and commercial detec-

tors using the Receiver Operating Characteristic (ROC) curves on the FDDB dataset. The

academic algorithms compared in Figure 2.5(a)-(b) include Yan et al. [198], boosted ex-

emplar [100], SURF frontal and multi-view [102], PEP adapt [99], XZJY [162], Zhu et

al. [225], Segui et al. [158], Koestinger et al. [87], Li et al. [101], Jain et al. [73], Subbu-

raman et al. [165], Viola-Jones [178], Mikolajczyk et al. [120], Kienzle et al. [82] and the

commercial algorithms compared in Figure 2.5(c)-(d) include Face++, the Olaworks face
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Figure 2.5: Performance evaluation on the FDDB dataset. (a) and (b) compare our method with

previously published methods under the discrete and continuous protocols, respec-

tively. Similarly, (c) and (d) compare our method with commercial systems under the

discrete and continuous protocols, respectively.
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detector, the IlluxTech frontal face detector and the Shenzhen University face detector †.

As can be seen from this figure, our method significantly outperforms all previous

academic and commercial detectors under the discrete protocol and performs comparably

to the previous state-of-the-art detectors under the continuous protocol. A decrease in

performance for the continuous case is mainly because of low IOU score obtained in

matching our detectors’ rectangular bounding box with elliptical ground truth mask for

the FDDB dataset.

We also implemented an R-CNN method for face detection and evaluated it on the

FDDB dataset. The R-CNN method basically selects face independent candidate regions

from the input image and computes a 4096 dimensional f c7 feature vector for each of

them. An SVM trained on f c7 features classifies each region as face or non-face based

on the detection score. The method represented by “RCNN-face” performs better than

most of the academic face detectors [225, 102, 99]. This shows the dominance of deep

CNN features over HOG, SURF. However, RCNN-Face’s performance is inferior to the

DP2MFD method as the region selection process might miss a face from the image.

2.4.2.3 MALF Dataset Results

The performance of different algorithms, both from academia and industry, are

compared in Figure 2.6 by plotting the True Positive Rate vs. False Positive Per Im-

ages curves ‡. Some of the academic methods compared in Figure 2.6 include ACF [202],

†http://vis-www.cs.umass.edu/fddb/results.html
‡The results of the methods other than our DP2MFD methods compared in Figure 2.6 were provided

by the authors of [203].
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Figure 2.6: Fine-grained performance evaluation on the MALF dataset. (a) on the whole test set,

(b) on the small faces sub-set, (c) on the large faces sub-set, (d) on the ‘easy’ faces

sub-set and (e) on the ‘hard’ faces sub-set.
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DPM [116], Exemplar method [100], Headhunter [116], TSM [225], Pico [114], NPD

[105] and W. S. Boost [78]. From Figure 2.6(a), we see that overall the performance of

our DP2MFD method is the best among the academic algorithms and is comparable to

the best commercial algorithms FacePP-v2 and Picasa.

In the ‘small’ subset, denoted by < 30 height in Figure 2.6(b), the performance

of all algorithms drop a little but our DP2MFD method still performs the best among

the other academic methods. On the ’large’, ’easy, and ’hard’ subsets, the DPM method

[116] performs the best and our DP2MFD method performs the second best as shown in

Figure 2.6(c), (d) and (e), respectively. The DPM and Headhunter [116] are better as they

train multiple models to fully capture faces in all orientations, apart from training on more

than 20,000 samples.

We provide the results of our method for the IOU of 0.35 as well as 0.5 in Figure 2.6.

Since the non-maximum suppression ensures that no two detections can have IOU> 0.3,

the decrease in performance for IOU of 0.5 is mainly due to improper bounding box

localization. One of the contributing factors might be the localization limitation of CNNs

due to high amount of sub-sampling. In future, we plan to analyze this issue in detail.

2.4.2.4 IJB-A Dataset Results

Nine different face detection algorithms were evaluated on this dataset in [23].

Some of the algorithms compared in [23] include one commercial off the shelf (COTS)

algorithm, three government off the shelf (GOTS) algorithms, two open source face de-

tection algorithms (OpenCV’s Viola Jones and the detector provided in the Dlib library),
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and PittPat ver 4 and 5. In Figure 2.7 (a) and (b) we show the prevision vs. recall curves

and the ROC curves, respectively corresponding to our method and one of the best re-

ported methods in [23]. As can be seen from this figure, our method outperforms the best

performing method reported in [23] by a large margin.
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Figure 2.7: Performance evaluation on the IJB-A dataset. (a) Precision vs. recall curves. (b) ROC

curves.

2.4.3 DPSSD Results

2.4.3.1 WIDER Face Dataset Results

Fig. 2.8 provides the comparison of recently published face detection algorithms

with the proposed DPSSD. We compare the performance of DPSSD with S3FD [217],

SSH [126], HR [68], CMS-RCNN [222], ScaleFace [207], Multitask Cascade [215],

LDCF+ [130], Faceness [205], Multiscale Cascade [206], Two-stage CNN [206], and

ACF [202]. We observe that DPSSD achieves competitive performance with state-of-the-

art methods (S3FD [217], SSH [126], and HR [68]). It achieves a mean average precision
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(a) Easy (b) Medium

(c) Hard

Figure 2.8: Performance evaluation on the WIDER Face [206] validation dataset for (a) Easy, (b)

Medium, and (c) Hard faces. The numbers in the legend represent the mean average

precision (mAP) for the corresponding method.
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(mAP) of 0.925 and 0.908 on easy and medium difficulty set, respectively. On the hard

set, it performs very close to the best performing method (S3FD [217]) with the mAP of

0.857.

We also compare our method with the baseline face detector trained by fine-tuning

SSD [20]. We outperform SSD [20] on easy, medium as well as hard set. Particularly on

the hard set, DPSSD improves the mAP by a factor of 44% over the SSD [20]. It shows

that redesigning anchor pyramid with fixed aspect ratio, and adding the upsampling layers

helps tremendously in boosting the performance of face detection.

2.4.3.2 UFDD Dataset Results

We compare our proposed method with S3FD [217], SSH [126], HR [68], and

Faster-RCNN [76] (see Fig. 2.9 (a)). Similar to WIDER Face [206] dataset, we achieve

competitive results with a mAP of 0.706. Note that our algorithm was not fine-tuned on

the UFDD dataset.

2.4.3.3 FDDB Dataset Results

We evaluate the performance of our method on the discrete protocol using the Re-

ceiver Operating Characteristic (ROC) curves, as shown in Fig. 2.9 (b). As can be seen

from the figure, our method exhibits competitive performance with state-of-the-art meth-

ods (S3FD [217] and HR [68]) and achieves a mAP of 0.969. It should be noted that our

method does not use any fine-tuning or bounding box regression specific to the FDDB

dataset.
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Figure 2.9: Performance evaluation (a) UFDD dataset [125], (b) FDDB dataset [74], and (c) PAS-

CAL Faces dataset [200]. The numbers in the legend represent the mean average

precision (mAP) for the corresponding dataset.
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2.4.3.4 PASCAL Faces Dataset Results

Fig. 2.9 (c) compares the performance of different face detectors on this dataset.

From the figure, we observe that our proposed DPSSD face detector achieves the best

mAP of 96.11% on this dataset.

2.5 Discussion and Runtime

Its clear from these results that our DP2MFD-2c method performs slightly better

than the DP2MFD-1c method. The DPSSD algorithm is better than DP2MFD because

of the following reasons: 1) DPSSD is trained with more number of samples and much

harder dataset compared to DP2MFD, 2) It is trained in an end-to-end manner while

DP2MFD uses the features from a pretrained network, and 3) DPSSD employs bottom

up feature aggregation which provides context information to detect tiny faces. Fig. 2.10

shows several detection results on the four datasets for DP2MFD. Fig. 2.11 shows a sam-

ple face detection output using DPSSD algorithm. It can be seen from this figures, that

both the methods are able to detect profile faces as well as faces with large scale variations

in images with cluttered background.

Our face detectors were tested on a machine with 4 cores, 12GB RAM, 1.6GHz

processing speed. We used GTX 1080 GPU for processing. DP2MFD takes 500ms to

generate the output while DPSSD takes less than 100ms for the same. This shows that

DPSSD is not only superior in accuracy but also in speed. Hence, we use DPSSD face

detector in our end-to-end face recognition pipeline.
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2.6 Conclusions

In this chapter, we presented two algorithms for unconstrained face detection. The

DP2MFD algorithm trains DPM for faces on deep feature pyramid. We add a normal-

ization layer to the deep CNN architecture which reduces the bias in the face sizes. The

DPSSD algorithm uses the inbuilt feature pyramid present in a DCNN to detect faces at

multiple scales. Bottom-up feature aggregation provides the context information to accu-

rately detect tiny faces. Extensive experiments on publicly available unconstrained face

detection datasets demonstrate the effectiveness of our proposed approaches.
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Figure 2.10: Qualitative results of DP2MFD face detector
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Figure 2.11: A sample output of DPSSD face detector.
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Chapter 3: Multi-Task Learning for Face Analytics

Face analysis is a challenging and actively researched problem with applications in

face recognition, emotion analysis, biometrics security, etc. Though the performance of

few challenging face analysis tasks such as unconstrained face detection and face verifi-

cation have greatly improved when DCNN-based methods are used, other tasks such as

face alignment, head-pose estimation, gender and smile recognition are still challenging

due to lack of large publicly available relevant training data. Furthermore, all these tasks

have been approached as separate problems, which makes their integration into end-to-

end systems inefficient. For example, a typical face recognition system needs to detect

and align a face from the given image before determining the identity. This results in

error accumulation across different modules. Even though the above mentioned tasks are

correlated, existing methods do not leverage the synergy among them. It has been shown

recently that jointly learning correlated tasks can boost the performance of individual

tasks [225, 17].

In this chapter, we present two novel DCNN models for multi-task face analytics.

The first one, called HyperFace, performs simultaneous face detection, facial landmarks

localization, head pose estimation and gender recognition from a given image (see Fig-

ure 3.1(a)). The second one, called All-In-One Face, simultaneously solves the tasks of
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Figure 3.1: Sample outputs from (a) HyperFace, and (b) All-In-One Face. HyperFace can simul-

taneously detect faces, predict their landmarks locations, pose angles and gender from

any unconstrained face image. All-In-One Face can additionally predict smile expres-

sion, age as well as the identity.

face detection, landmark localization, pose estimation, gender recognition, smile detec-

tion, age estimation and face verification and recognition (see Fig. 3.1(b)). We choose

this set of tasks since they span a wide range of applications. We train a DCNN jointly

in a multi-task learning (MTL) framework (Caruana [13]), such that parameters from

shallower layers of DCNN are shared among all the tasks. In this way, the shallower lay-

ers learn a general representation common to all the tasks, whereas the deeper layers are

more specific to the given task, which reduces over-fitting in the shared layers. Employing

multiple tasks enables the network to learn the correlations between data from different

distributions in an effective way. This approach saves both time and memory in an end-to-

end system, since it can simultaneously solve the tasks and requires the storage of a single

DCNN model instead of separate DCNN for each task. To the best of our knowledge, this

is the first work which simultaneously solves a diverse set of face analysis tasks using a

single DCNN in an end-to-end manner.

In HyperFace algorithm, we design a DCNN architecture to learn common fea-
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tures for multiple tasks and exploit the synergy among them. We exploit the fact that

information contained in features is hierarchically distributed throughout the network as

demonstrated in [212]. Lower layers respond to edges and corners, and hence contain

better localization properties. They are more suitable for learning landmarks localization

and pose estimation tasks. On the other hand, deeper layers are class-specific and suitable

for learning complex tasks such as face detection and gender recognition. It is evident that

we need to make use of all the intermediate layers of a DCNN in order to train different

tasks under consideration. We refer the set of intermediate layer features as hyperfea-

tures. We borrow this term from [3] which uses it to denote a stack of local histograms

for multilevel image coding.

Since a DCNN architecture contains multiple layers with hundreds of feature maps

in each layer, the overall dimension of hyperfeatures is too large to be efficient for learning

multiple tasks. Moreover, the hyperfeatures must be associated in a way that they effi-

ciently encode the features common to multiple tasks. This can be handled using feature

fusion techniques. Features fusion aims to transform the features to a common subspace

where they can be combined linearly or non-linearly. Recent advances in deep learning

have shown that DCNNs are capable of estimating an arbitrary complex function. Hence,

we add a fusion sub-network to fuse the hyperfeatures. In order to learn the tasks, we

train the feature sub-network and the fusion sub-network simultaneously in an end-to-end

fashion using multiple loss functions. In this way, the features get better at understanding

faces, which leads to improvements in the performances of individual tasks.

In All-In-One Face algorithm, we initialize our network with the DCNN model

trained for face recognition task by Sankaranarayanan et al. [154]. We argue that a net-
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work pre-trained on face recognition task possesses fine-grained information of a face

which can be used to train other face-related tasks efficiently. Task-specific sub-networks

are branched out from different layers of this network depending on whether they rely on

local or global information of the face. The complete network, when trained end-to-end,

significantly improves the face recognition performance as well as other face analysis

tasks.

3.1 Previous Work

Multi-Task Learning: Multi-task learning was first analyzed in detail by Caru-

ana [13]. Since then, several approaches have adopted MTL for solving different prob-

lems in computer vision. One of the earlier approaches for jointly addressing the tasks

of face detection, pose estimation, and landmark localization was proposed in [225] and

later extended in [226]. This method is based on a mixture of trees with a shared pool of

parts in the sense that every facial landmark is modeled as a part and uses global mixtures

to capture the topological changes due to viewpoint variations. A joint cascade-based

method was recently proposed in [17] for simultaneously detecting faces and landmark

points on a given image. This method yields improved detection performance by incor-

porating a face alignment step in the cascade structure.

Multi-task learning using DCNNs has also been studied recently. Eigen and Fer-

gus [37] proposed a multi-scale DCNN for simultaneously predicting depth, surface nor-

mals and semantic labels from an image. They apply DCNNs at three different scales

where the output of the smaller scale network is fed as input to the larger one. Uber-
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Net [85] adopts a similar concept of simultaneously training low-, mid- and high-level

vision tasks. It fuses all the intermediate layers of a DCNN at three different scales of

the image pyramid for multi-task training on diverse sets. Gkioxari et al. [50] train a

DCNN for person pose estimation and action detection, using features only from the last

layer. The use of MTL for face analysis is somewhat limited. Zhang et al. [219] used

MTL-based DCNN for facial landmark detection along with the tasks of discrete head

yaw estimation, gender recognition, smile and eye glass detection. In their method, the

predictions for all theses tasks were pooled from the same feature space. Instead, we

strategically design the network architecture such that the tasks exploit low level as well

as high level features of the network. We also jointly predict the task of face detection

and landmark localization. These two tasks always go hand-in-hand and are used in most

end-to-end face analysis systems.

Feature Fusion: Fusing intermediate layers from a DCNN to bring both geometry

and semantically rich features together has been used by quite a few methods. Hariharan

et al. [59] proposed Hypercolumns to fuse pool2, conv4 and fc7 layers of AlexNet [88]

for image segmentation. Yang and Ramanan [208] proposed DAG-CNNs, which extract

features from multiple layers to reason about high, mid and low-level features for image

classification. Sermanet et al. [160] merge the 1st stage output of DCNN to the classifier

input after sub-sampling, for the application of pedestrian detection.

Face detection: Viola-Jones detector [178] is a classic method which uses cascaded

classifiers on Haar-like features to detect faces. This method provides realtime face de-

tection, but works best for full, frontal, and well lit faces. Deformable Parts Model [46]-

based face detection methods have also been proposed in the literature where a face is
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essentially defined as a collection of parts [225], [116]. It has been shown that in un-

constrained face detection, features like HOG or Haar wavelets do not capture the dis-

criminative facial information at different illumination variations or poses. To overcome

these limitations, various DCNN-based face detection methods have been proposed in the

literature [141], [98], [205], [43], [201]. These methods have produced state-of-the-art

results on many challenging publicly available face detection datasets. Some of the other

recent face detection methods include NPDFaces [105], PEP-Adapt [99], and [17].

Landmarks localization: Fiducial points extraction or landmarks localization is

one of the most important steps in face recognition. Several approaches have been pro-

posed in the literature. These include both regression-based [10], [199], [197], [195],

[80], [175] and model-based [28], [117], [104] methods. While the former learns the

shape increment given a mean initial shape, the latter trains an appearance model to pre-

dict the keypoint locations. DCNN-based landmark localization methods have also been

proposed in recent years [166], [219],[90] and have achieved remarkable performance.

Although much work has been done for localizing landmarks for frontal faces, lim-

ited attention has been given to profile faces which occur more often in real world sce-

narios. Jourabloo and Liu recently proposed PIFA [77] that estimates 3D landmarks for

large pose face alignment by integrating a 3D point distribution model with a cascaded

coupled-regressor. Similarly, 3DDFA [227] fits a dense 3D model by estimating its pa-

rameters using a DCNN. Zhu et al. [223] proposed a cascaded compositional learning

approach that combines shape prediction from multiple domain specific regressors.

Pose estimation: The task of head pose estimation is to infer the orientation of

person’s head relative to the camera view. It is useful in face verification for matching
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face similarity across different orientations. Non-linear manifold-based methods have

been proposed in [4], [67], [164] to classify face images based on pose. A survey of

various head pose estimation methods is provided in [124].

Gender and Smile Classification: The tasks of gender and smile classification

from unconstrained images have been considered as a part of facial attribute inference.

Recently, Liu et al. [111] released CelebA dataset containing about 200,000 near-frontal

images with 40 attributes including gender and smile, which accelerated the research in

this field [180, 216, 36]. Faces of the world [40] challenge dataset further advanced the

research on these tasks for faces with varying scale, illumination and pose [97, 177, 214].

Age Estimation: Age Estimation is the task of estimating the real or apparent age

of a person based on their face image. Few methods have already surpassed human error

for the apparent age estimation challenge [39] using DCNNs [151, 19].

Face Verification: is the task of predicting whether a pair of faces belong to the

same person. Recent methods such as DeepFace [173], Facenet [157], VGG-Face [136]

have significantly improved the verification accuracy on the LFW [70] dataset by training

DCNN models on millions of annotated data. However, it is still a challenging problem

for unconstrained faces with large variations in viewpoint and illumination (IJB-A [84]

dataset). We address this issue by regularizing the DCNN parameters using the MTL

framework, with only half-a-million samples (CASIA [209]) for training.
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Figure 3.2: The architecture of the proposed HyperFace. The network is able to classify a given

image region as face or non-face, estimate the head pose, locate face landmarks and

recognize gender.

50



3.2 Proposed Method - HyperFace

In this section, we propose a single DCNN model for simultaneous face detection,

landmark localization, pose estimation and gender classification. The network architec-

ture is deep in both vertical and horizontal directions, i.e., it has both top-down and lateral

connections, as shown in Figure 4.4. In this section, we provide a brief overview of the

system and then discuss the different components in detail.

The proposed algorithm called HyperFace consists of three modules. The first one

generates class independent region-proposals from the given image and scales them to

227× 227 pixels. The second module is a DCNN which takes in the resized candidate

regions and classifies them as face or non-face. If a region gets classified as a face, the

network additionally provides facial landmarks locations, estimated head pose and gender

information. The third module is a post-processing step which involves Iterative Region

Proposals (IRP) and Landmarks-based Non-Maximum Suppression (L-NMS) to boost the

face detection score and improve the performance of individual tasks.

3.2.1 HyperFace Architecture

We start with Alexnet [88] for image classification. The network consists of five

convolutional layers along with three fully connected layers. We initialize the network

with the weights of R-CNN Face network trained for face detection task as described in

Section 3.3. All the fully connected layers are removed as they encode image-classification

specific information, which is not needed for pose estimation and landmarks extraction.

We exploit the following two observations to create our network. 1) The features in
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DCNN are distributed hierarchically in the network. While the lower layer features are

effective for landmarks localization and pose estimation, the higher layer features are suit-

able for more complex tasks such as detection or classification[212]. 2) Learning multiple

correlated tasks simultaneously builds a synergy and improves the performance of indi-

vidual tasks as shown in [17, 219]. Hence, in order to simultaneously learn face detection,

landmarks, pose and gender, we need to fuse the features from the intermediate layers of

the network (hyperfeatures), and learn multiple tasks on top of it. Since the adjacent

layers are highly correlated, we do not consider all the intermediate layers for fusion.

We fuse the max1, conv3 and pool5 layers of Alexnet, using a separate network.

A naive way for fusion is directly concatenating the features. Since the feature maps

for these layers have different dimensions 27× 27× 96, 13× 13× 384, 6× 6× 256, re-

spectively, they cannot be easily concatenated. We therefore add conv1a and conv3a con-

volutional layers to pool1, conv3 layers to obtain consistent feature maps of dimensions

6×6×256 at the output. We then concatenate the output of these layers along with pool5

to form a 6×6×768 dimensional feature map. The dimension is still quite high to train

a multi-task framework. Hence, a 1× 1 kernel convolution layer (convall) is added to

reduce the dimensions [171] to 6× 6× 192. We add a fully connected layer ( f call) to

convall , which outputs a 3072 dimensional feature vector. At this point, we split the net-

work into five separate branches corresponding to the different tasks. We add f cdetection,

f clandmarks, f cvisibility, f cpose and f cgender fully connected layers, each of dimension 512,

to f call . Finally, a fully connected layer is added to each of the branch to predict the

individual task labels. After every convolution or a fully connected layer, we deploy the

Rectified Linear Unit (ReLU). We do not include any pooling operation in the fusion net-
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work as it provides local invariance which is not desired for the face landmark localization

task. Task-specific loss functions are then used to learn the weights of the network.

3.2.2 Training

We use the AFLW[86] dataset for training the HyperFace network. It contains

25,993 faces in 21,997 real-world images with full pose, expression, ethnicity, age and

gender variations. It provides annotations for 21 landmark points per face, along with the

face bounding-box, face pose (yaw, pitch and roll) and gender information. We randomly

selected 1000 images for testing, and used the rest for training the network. Different loss

functions are used for training the tasks of face detection, landmark localization, pose

estimation and gender classification.

Face Detection: We use the Selective Search [176] algorithm in R-CNN [48] to

generate region proposals for faces in an image. A region having an Intersection over

Union (IOU) overlap of more than 0.5 with the ground truth bounding box is considered a

positive sample (l = 1). The candidate regions with IOU overlap less than 0.35 are treated

as negative instances (l = 0). All the other regions are ignored. We use the softmax loss

function given by (3.1) for training the face detection task.

lossD =−(1− l) · log(1− p)− l · log(p), (3.1)

where p is the probability that the candidate region is a face. The probability values p and

1− p are obtained from the last fully connected layer for the detection task.

Landmarks Localization: We use 21 point markups for face landmarks locations

as provided in the AFLW[86] dataset. Since the faces have full pose variations, some
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of the landmark points are invisible. The dataset provides the annotations for the visible

landmarks. We consider bounding-box regions with IOU overlap greater than 0.35 with

the ground truth for learning this task, while ignoring the rest. A region can be charac-

terized by {x,y,w,h} where (x,y) are the co-ordinates of the center of the region and w,h

are the width and height of the region respectively. Each visible landmark point is shifted

with respect to the region center (x,y), and normalized by (w,h) as given by (3.2)

(ai,bi) =

(
xi− x

w
,
yi− y

h

)
. (3.2)

where (xi,yi)’s are the given ground truth fiducial co-ordinates. The (ai,bi)’s are treated

as labels for training the landmark localization task using the Euclidean loss weighted by

the visibility factor. The loss in predicting the landmark location is computed from (3.3)

lossL =
1

2N

N

∑
i=1

vi((x̂i−ai)
2 +((ŷi−bi)

2), (3.3)

where (x̂i, ŷi) is the ith landmark location predicted by the network, relative to a given

region, N is the total number of landmark points (21 for AFLW[86]). The visibility factor

vi is 1 if the ith landmark is visible in the candidate region, else it is 0. This implies that

there is no loss corresponding to invisible points and hence they do not take part during

back-propagation.

Learning Visibility: We also learn the visibility factor in order to test the presence

of the predicted landmark. For a given region with overlap higher than 0.35, we use a

simple Euclidean loss to train the visibility as shown in (3.4)

lossV =
1
N

N

∑
i=1

(v̂i− vi)
2 , (3.4)
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where v̂i is the predicted visibility of ith landmark. The true visibility vi is 1 if the ith

landmark is visible in the candidate region, else it is 0.

Pose Estimation: We use the Euclidean loss to train the head pose estimates of

roll (p1), pitch (p2) and yaw (p3). We compute the loss for a candidate region having an

overlap more than 0.5 with the ground truth, from (3.5)

lossP =
(p̂1− p1)

2 +(p̂2− p2)
2 +(p̂3− p3)

2

3
, (3.5)

where (p̂1, p̂2, p̂3) are the estimated pose labels.

Gender Recognition: Predicting gender is a two class problem similar to face

detection. For a candidate region with overlap of 0.5 with the ground truth, we compute

the softmax loss given in (3.6)

lossG =−(1−g) · log(1− pg)−g · log(pg), (3.6)

where g = 0 if the gender is male, or else g = 1. Here, (p0, p1) is the two dimensional

probability vector computed from the network.

The total loss is computed as the weighted sum of the five individual losses as

shown in (3.7)

loss f ull =
i=5

∑
i=1

λtilossti, (3.7)

where ti is the ith element from the set of tasks T = {D,L,V,P,G}. The weight parameter

λti is decided based on the importance of the task in the overall loss. We choose (λD =

1,λL = 5,λV = 0.5,λP = 5,λG = 2) for our experiments. Higher weights are assigned to

landmark localization and pose estimation tasks as they need spatial accuracy.
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Figure 3.3: Candidate face region (red box on left) obtained using Selective Search gives a low

score for face detection, while landmarks are correctly localized. We generate a new

face region (red box on right) using the landmarks information and feed it through the

network to increase the detection score.
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3.2.3 Testing

From a given test image, we first extract the candidate region proposals using[176].

For each region, we predict the task labels by a forward-pass through the HyperFace

network. Only those regions, whose detection scores are above a certain threshold, are

classified as face and processed for subsequent tasks. The predicted landmark points are

scaled and shifted to the image co-ordinates using (3.8)

(xi,yi) = (x̂iw+ x, ŷih+ y), (3.8)

where (x̂i, ŷi) are the predicted locations of the ith landmark from the network, and {x,y,w,h}

are the region parameters defined in (3.2). Points obtained with predicted visibility less

than a certain threshold are marked invisible. The pose labels obtained from the network

are the estimated roll, pitch and yaw for the face region. The gender is assigned according

to the label with maximum predicted probability.

There are two major issues while using the proposal-based face detector. First,

the proposals might not be able to capture small and difficult faces, hence reducing the

overall recall of the system. Second, the proposal boxes might not be well localized with

the actual face region. It is a common practice to use bounding-box regression [48] as

a post processing step to improve the localization of the detected face box. This adds

an additional burden of training regressors to learn the transformation from the detected

candidate box to the annotated face box. Moreover, the localization is still weak since

the regressors are usually linear. Recently, Gidaris and Komodakis proposed LocNet [47]

which tries to solve these limitations by refining the detection bounding box. Given a set
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of initial bounding box proposals, it generates new sets of bounding boxes that maximize

the likelihood of each row and column within the box. It allows an accurate inference of

bounding box under a simple probabilistic framework.

Instead of using the probabilistic framework [47], we solve the above mentioned

issues in an iterative way using the predicted landmarks. The fact that we obtain land-

mark locations along with the detections, enables us to improve the post-processing step

so that all the tasks benefit from it. We propose two novel methods: Iterative Region Pro-

posals (IRP) and Landmarks-based Non-Maximum Suppression (L-NMS) to improve the

performance. IRP improves the recall by generating more candidate proposals by using

the predicted landmarks information from the initial set of region proposals. On the other

hand, L-NMS improves the localization by re-adjusting the detected bounding boxes ac-

cording to the predicted landmarks and performing NMS on top of them. No additional

training is required for these methods.

Iterative Region Proposals (IRP): We use a fast version of Selective Search[176]

which extracts around 2000 regions from an image. We call this version Fast SS. It is

quite possible that some faces with poor illumination or small size fail to get captured by

any candidate region with a high overlap. The network would fail to detect that face due

to low score. In these situations, it is desirable to have a candidate box which precisely

captures the face. Hence, we generate a new candidate bounding box from the predicted

landmark points using the FaceRectCalculator provided by [86], and pass it again through

the network. The new region, being more localized yields a higher detection score and

improves the corresponding tasks output, thus increasing the recall. This procedure can

be repeated (say T time), so that boxes at a given step will be more localized to faces
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as compared to the previous step. From our experiments, we found that the localization

component saturates in just one step (T = 1), which shows the strength of the predicted

landmarks. The pseudo-code of IRP is presented in Algorithm 1. The usefulness of IRP

can be seen in Figure 3.3, which shows a low-resolution face region cropped from the

top-right image in Figure 3.19.

Algorithm 1 Iterative Region Proposals

1: boxes← selective search(image)

2: scores← get hyper f ace scores(boxes)

3: detected boxes← boxes(scores≥ threshold)

4: new boxes← detected boxes

5: for stage = 1 to T do

6: fids← get hyper f ace f iducials(new boxes)

7: new boxes← FaceRectCalculator(fids)

8: deteced boxes← [deteced boxes|new boxes]

9: end

10: final scores← get hyper f ace scores(detected boxes)

Landmarks-based Non-Maximum Suppression (L-NMS): The traditional ap-

proach of non-maximum suppression involves selecting the top scoring region and dis-

carding all the other regions with overlap more than a certain threshold. This method

can fail in the following two scenarios: 1) If a region corresponding to the same detected

face has less overlap with the highest scoring region, it can be detected as a separate

face. 2) The highest scoring region might not always be localized well for the face, which
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can create some discrepancy if two faces are close together. To overcome these issues,

we perform NMS on a new region whose bounding box is defined by the boundary co-

ordinates as [mini xi,mini yi,maxi xi,maxi yi] of the landmarks for the given region. In this

way, the candidate regions would get close to each other, thus decreasing the ambiguity

of the overlap and improving the localization.

Algorithm 2 Landmarks-based NMS
1: Get detected boxes from Algorithm 1

2: fids← get hyper f ace f iducials(detected boxes)

3: precise boxes← [minx,miny,maxx,maxy](fids)

4: faces← nms(precise boxes,overlap)

5: for each face in faces do

6: top-k boxes← Get top-k scoring boxes

7: final fids← median( f ids(top-k boxes))

8: final pose← median(pose(top-k boxes))

9: final gender← median(gender(top-k boxes))

10: final visibility← median(visibility(top-k boxes))

11: final bounding box← FaceRectCalculator(final fids)

12: end

We apply landmarks-based NMS to keep the top-k boxes, based on the detection

scores. The detected face corresponds to the region with maximum score. The landmark

points, pose estimates and gender classification scores are decided by the median of the

top k boxes obtained. Hence, the predictions do not rely only on one face region, but con-

siders the votes from top-k regions for generating the final output. From our experiments,
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we found that the best results are obtained with the value of k being 5. The pseudo-code

for L-NMS is given in Algorithm 2.

(a) (b) (c) (d)

Figure 3.4: R-CNN-based network architectures for (a) Face Detection (R-CNN Face), (b) Land-

mark Localization (R-CNN Fiducial), (c) Pose Estimation (R-CNN Pose), and (d)

Gender Recognition (R-CNN Gender). The numbers on the left denote the kernel

size and the numbers on the right denote the cardinality of feature maps for a given

layer.
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3.3 Network Architectures

To emphasize the importance of multitask approach and fusion of the intermediate

layers of DCNN, we study the performance of simpler DCNNs devoid of such features.

We evaluate four R-CNN-based models, one for each task of face detection, landmark

localization, pose estimation and gender recognition. We also build a separate Multi-

task Face model which performs multitask learning just like HyperFace, but does not fuse

the information from the intermediate layers. These models are described as follows:

R-CNN Face: This model is used for face detection task. The network architecture

is shown in Figure 3.4(a). For training R-CNN Face, we use the region proposals from

AFLW[86] training set, each associated with a face label based on the overlap with the

ground truth. The loss is computed as per (3.1). The model parameters are initialized

using the Alexnet [88] weights trained on the Imagenet dataset [31]. Once trained, the

learned parameters from this network are used to initialize other models including Mul-

titask Face and HyperFace as the standard Imagenet initialization doesn’t converge well.

We also perform a linear bounding box regression to localize the face co-ordinates.

R-CNN Fiducial: This model is used for locating the facial landmarks. The net-

work architecture is shown in Figure 3.4(b). It simultaneously learns the visibility of the

points to account for the invisible points at test time, and thus can be used as a standalone

fiducial extractor. The loss functions for landmarks localization and visibility of points

are computed using (3.3) and (3.4), respectively. Only region proposals which have an

overlap> 0.5 with the ground truth bounding box are used for training. The model pa-

rameters are initialized from R-CNN Face.
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Figure 3.5: Network Architecture of Multitask Face. The numbers on the left denote the kernel

size and the numbers on the right denote the cardinality of feature maps for a given

layer.
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Figure 3.6: The architecture of the proposed HyperFace-Resnet (HF-ResNet). ResNet-101 model

is used as the backbone network, represented in color orange. The new layers added

are represented in color blue. The network is able to classify a given image region as

face or non-face, estimate the head pose, locate face landmarks and recognize gender.
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R-CNN Pose: This model is used for head pose estimation task. The outputs of

the network are roll, pitch and yaw of the face. Figure 3.4(c) presents the network archi-

tecture. Similar to R-CNN Fiducial, only region proposals with overlap> 0.5 with the

ground truth bounding box are used for training. The training loss is computed using

(3.5).

R-CNN Gender: This model is used for face gender recognition task. The network

architecture is shown in Figure 3.4(d). It has the same training set as R-CNN Fiducial and

R-CNN Pose. The training loss is computed using (3.6).

Multitask Face: Similar to HyperFace, this model is used to simultaneously de-

tect face, localize landmarks, estimate pose and predict its gender. The only difference

between Multitask Face and HyperFace is that HyperFace fuses the intermediate layers

of the network whereas Multitask Face combines the tasks using the common fully con-

nected layer at the end of the network as shown in Figure 3.5. Since it provides the land-

marks and face score, it leverages iterative region proposals and landmark-based NMS

post-processing algorithms during evaluation.

3.3.1 HyperFace-ResNet

The DCNN architectures have improved a lot over the years, mainly due to an

increase in number of layers [62], effective convolution kernel size [163], batch normal-

ization [72] and skip connections. Recently, He et al. [62] proposed a deep residual

network architecture with more than 100 layers, that achieves state-of-the-art results on

the ImageNet challenge [31]. Hence, we propose a variant of HyperFace that is built us-
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ing the ResNet-101 [62] model instead of AlexNet [88]. The proposed network called

HyperFace-ResNet (HF-ResNet) significantly improves upon its AlexNet baseline for all

the tasks of face detection, landmarks localization, pose estimation and gender recogni-

tion. Figure 3.6 shows the network architecture for HF-ResNet.

Similar to HyperFace, we fuse the geometrically rich features from the lower layers

and semantically strong features from the deeper layers of ResNet, such that multi-task

learning can leverage from their synergy. Taking inspiration from [68], we fuse the fea-

tures using hierarchical element-wise addition. Starting with ‘res2c’ features, we first

reduce its resolution using a 3× 3 convolution kernel with stride of 2. It is then passed

through the a 1×1 convolution layer that increases the number of channels to match the

next level features (‘res3b3’ in this case). Element-wise addition is applied between the

two to generate a new set of fused features. The same operation is applied in a cascaded

manner to fuse ‘res4b22’ and ‘res5c’ features of the ResNet-101 model. Finally, average

pooling is carried out to generate 2048-dimensional feature vector that is shared among

all the tasks. Task-specific sub-networks are branched out separately in a similar way as

HyperFace. Each convolution layer is followed by a Batch-Norm+Scale [72] layer and

ReLU activation unit. We do not use dropout in HF-ResNet. The training loss functions

are the same as described in Section 3.2.2.

HF-ResNet is slower than HyperFace since it performs more convolutions. This

makes it difficult to be used with Selective Search [176] algorithm which generates more

than 2000 region proposals to be processed. Hence, we use a faster version of region

proposals using high recall SSD [108] face detector. It produces 200 proposals, needing

just 0.05s. This considerably reduces the total runtime for HF-ResNet to less than 1s. The
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fast version of HyperFace is discussed in Section 3.5.6.

3.4 Proposed Method - All-In-One Face

We propose a multi-purpose DCNN which can simultaneously detect faces, extract

key-points and pose angles, determine smile expression and gender and estimate age from

any unconstrained image of a face. Additionally, it assigns an identity descriptor to each

face which can be used for face recognition and verification. The proposed algorithm is

trained in a MTL framework which builds a synergy among different face related tasks

improving the performance for each of them. In this section we discuss the advantages

of MTL in the context of face analysis and provide the details of network design, training

and testing procedures.

3.4.1 Multi-task Learning

Typically, a face analysis task requires a cropped face region as the input. The

DCNN processes the face to obtain a representation and extract meaningful information

related to the task. According to [212], lower layers of DCNN learn features common to

a general set of face analysis tasks whereas upper layers are more specific to individual

tasks. Therefore, we share the parameters of lower layers of DCNN among different

tasks to produce a generic face representation which is subsequently processed by the

task-specific layers to generate the required outputs (Fig. 3.7). Goodfellow et al. [51]

interprets MTL as a regularization methodology for DCNNs. The MTL approach used in

our framework can be explained by following two types of regularization.
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Figure 3.7: A general multitask learning framework for DCNN architecture. The lower layers are

shared among all tasks and input domains.

3.4.1.1 Task-based Regularization

Let the cost function for a given task ti with shared parameters θs and task-specific

parameters θti be Ji(θs,θti;D), where D is the input data. For isolated learning, the opti-

mum network parameters (θ ∗s ,θ
∗
ti ) can be computed using (3.9)

(θ ∗s ,θ
∗
ti ) = argmin

(θs,θti)

Ji(θs,θti;D) (3.9)

For MTL, the optimal parameters for the task ti can be obtained by minimizing the

weighted sum of loss functions for each task, as shown in (3.10). The loss weight for

task ti is denoted by αi.

(θ ∗s ,θ
∗
ti ) = argmin

(θs,θti)

αiJi(θs,θti;D)+
n

∑
j 6=i

α jJ j(θs,θt j ;D) (3.10)

Since other tasks contribute only to the learning of shared parameters, they can be inter-

preted as a regularizer Ri on θs with respect to the given task ti, as shown in (3.11). Thus,

MTL shrinks the solution space of θs such that the learned parameter vector is in consen-

sus with all the tasks, thus reducing over-fitting and enabling the optimization procedure

to find a more robust solution.

(θ ∗s ,θ
∗
ti ) = argmin

(θs,θti)

Ji(θs,θti;D)+λRi(θs;D) (3.11)
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Table 3.1: Datasets used for training

Dataset Face Analysis Tasks # training samples

CASIA [209] Identification, Gender 490,356

MORPH [150] Age, Gender 55,608

IMDB+WIKI [151] Age, Gender 224,840

Adience [96] Age 19,370

CelebA [111] Smile, Gender 182,637

AFLW [86] Detection, Pose, Fiducials 20,342

Total 993,153

3.4.1.2 Domain-based Regularization

For face analysis tasks, we do not have a large dataset with annotations for fiducial

points, pose, gender, age, smile and identity information available. Hence, we adopt the

approach of training multiple DCNNs with respect to task-related datasets Di, and share

the parameters among them. In this way, the shared parameter θs adapts to the complete

set of domains (D1,D2, ...Dd) instead of fitting to a task-specific domain. Additionally,

the total number of training samples increases to roughly one-million, which is advan-

tageous for training DCNNs. Table 3.1 lists the different datasets used for training our

all-in-one DCNN, along with their respective tasks and sample sizes.
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3.4.2 Network Architecture

The all-in-one DCNN architecture is shown in Fig. 4.7. We start with the pre-

trained face identification network from Sankaranarayanan et al. [154]. The network

consists of seven convolutional layers followed by three fully connected layers. We use it

as a backbone network for training the face identification task and sharing the parameters

from its first six convolution layers with other face-related tasks. Parametric Rectifier

Linear units (PReLUs) are used as the activation function. We argue that a DCNN pre-

trained on face identification task provides a better initialization for a generic face analysis

task, since the filters retain discriminative face information.

We divide the tasks into two groups: 1) subject-independent tasks which include

face detection, keypoints localization and visibility, pose estimation and smile prediction,

and 2) subject-dependent tasks which include age estimation, gender prediction and face

recognition. Similar to HyperFace [143] we fuse the first, third and fifth convolutional

layers for training the subject-independent tasks, as they rely more on local information

available from the lower layers of the network. We attach two convolution layers and

a pooling layer respectively to these layers, to obtain a consistent feature map size of

6×6. A dimensionality reduction layer is added to reduce the number of feature maps to

256. It is followed by a fully connected layer of dimension 2048, which forms a generic

representation for subject-independent tasks. At this point, the specific tasks are branched

into fully connected layers of dimension 512 each, which are followed by the output layers

respectively.

The subject-dependent tasks of age estimation and gender classification are branched
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out from the sixth convolutional layer of the backbone network after performing the max

pooling operation. The global features thus obtained are fed to a 3-layered fully con-

nected network for each of these tasks. We keep the seventh convolutional layer unshared

to adapt it specifically to the face recognition task. Task-specific loss functions are used

to train the complete network end-to-end.

3.4.3 Training

The training DCNN model contains five sub-networks with parameters shared among

them. The tasks of face detection, key-points localization and visibility, and pose es-

timation are trained in a single sub-network, since all of them use a common dataset

(AFLW [86]) for training. The remaining tasks of smile detection, gender recognition,

age estimation and face recognition are trained using separate sub-networks. At test time,

these sub-networks are fused together into a single all-in-one DCNN (Fig. 4.7). All tasks

are simultaneously trained end-to-end using Caffe [75]. Here, we discuss the loss func-

tions and training dataset for each of them.

3.4.3.1 Face Detection, Key-points Localization and Pose Estimation

These tasks are trained in a similar manner as HyperFace [143], using AFLW [86]

dataset. We randomly select 1000 images from the dataset for testing, and use the remain-

ing images for training. We use the Selective Search [176] algorithm to generate region

proposals for faces from an image. Regions with Intersection-Over-Union (IOU) overlap

of more than 0.5 with the ground truth bounding-box are considered positive examples
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Figure 3.8: DCNN Architecture for the proposed method. Each layer is represented by filter kernel

size, type of layer, number of feature maps and the filter stride. Orange represents the

pre-trained network from Sankaranarayanan et al. [154], while blue represents added

layers for MTL.
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whereas regions with IOU<0.35 are chosen as negative examples for training the detec-

tion task using a softmax loss function. Facial landmarks, key-points visibility and pose

estimation tasks are treated as regression problems and trained with the Euclidean loss.

Only regions with IOU>0.35 contribute to back-propagation during their training.

3.4.3.2 Gender Recognition

It is a binary classification problem similar to face detection. The datasets used for

training gender are listed in Table 3.1. The training images are first aligned using facial

key-points which are either provided by the dataset or computed using HyperFace [143].

A cross-entropy loss LG is used for training as shown in (3.12)

LG =−(1−g) · log(1− pg)−g · log(pg), (3.12)

where g = 0 for male and 1 for female. pg is the predicted probability that the input

face is a female.

3.4.3.3 Smile Detection

The smile attribute is trained to make the network robust to expression variations

for face recognition. We use CelebA [111] dataset for training. Similar to the gender

classification task, the the images are aligned before passing them through the network.

The loss function LS is given by (3.13)

LS =−(1− s) · log(1− ps)− s · log(ps), (3.13)
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where s = 1 for a smiling face and 0 otherwise. ps is the predicted probability that

the input face is smiling.

3.4.3.4 Age Estimation

We formulate the age estimation task as a regression problem in which the network

learns to predict the age from a face image. We use IMDB+WIKI [151], Adience [96]

and MORPH [150] datasets for training. It has been shown by Ranjan et. al. [146] that

the Gaussian loss works better than the Euclidean loss for apparent age estimation when

the standard deviation of age is given. However, the gradient of Gaussian loss is close to

zero when the predicted age is far from the true age (Fig. 3.9), which slows the training

process. Hence, we use a linear combination of these two loss functions weighted by λ

as shown in (3.14)

LA = (1−λ )
1
2
(y−a)2 +λ

(
1− exp(−(y−a)2

2σ2 )

)
, (3.14)

where LA is the age loss, y is the predicted age, a is the ground-truth age and σ is

the standard deviation of the annotated age value. λ is initialized with 0 at the start of the

training, and increased to 1 subsequently. In our implementation, we keep λ = 0 initially

and switch it to 1 after 20k iterations. σ is fixed at 3 if not provided by the training set.

3.4.3.5 Face Recognition

We use 10,548 subjects from CASIA [209] dataset to train the network for the task

of face identification. The images are aligned using HyperFace [143] before passing them
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Figure 3.9: Euclidean and Gaussian loss functions.

through the network. We deploy a multi-class cross-entropy loss function LR for training

as shown in (3.15)

LR =
10547

∑
c=0
−yc · log(pc), (3.15)

where yc = 1 if the sample belongs to class c, otherwise 0. The predicted probability

that a sample belongs to class c is given by pc.

The final overall loss L is the weighted sum of individual loss functions, given

in (3.16)

L =
t=8

∑
t=1

λtLt , (3.16)

where Lt is the loss and λt is the loss-weight corresponding to task t. The loss-

weights are chosen empirically. We assign a higher weight to regression tasks as they

tend to have lower loss magnitude than classification tasks.

3.4.4 Testing

We deploy a two-stage process during test time as shown in Fig. 4.11. In the first

stage, we use the Selective Search [176] to generate region proposals from a test im-
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age, which are passed through our all-in-one network to obtain the detection scores,

pose estimates, fiducial points and their visibility. We use Iterative Region Proposals

and Landmarks-based NMS [143] to filter out non-faces and improve fiducials and pose

estimates.

Figure 3.10: The end-to-end pipeline for the proposed method during test time.

For the second stage, we use the extracted fiducial points to align each detected face

to a canonical view using similarity transform. The aligned faces, along with their flipped

versions are passed again through the network to get the smile, gender, age and identity

information. We use the 512-dimensional feature from the penultimate fully connected

layer of the identification network as the identity descriptor.

3.5 Experimental Results - HyperFace

We evaluated the proposed HyperFace method, along with HF-ResNet, Multask Face,

R-CNN Face, R-CNN Fiducial, R-CNN Pose and R-CNN Gender on six challenging
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datasets:

• Annotated Face in-the-Wild (AFW) [225] for evaluating face detection, landmarks

localization, and pose estimation tasks

• 300-W Faces in-the-wild (IBUG) [153] for evaluating 68-point landmarks localiza-

tion.

• Annotated Facial Landmarks in the Wild (AFLW) [86] for evaluating landmarks

localization and pose estimation tasks

• Face Detection Dataset and Benchmark (FDDB) [74] and PASCAL faces [200] for

evaluating the face detection results

• Large-scale CelebFaces Attributes (CelebA) [111] and LFWA [70] for evaluating

gender recognition results.

Our method was trained on randomly selected 20,997 images from the AFLW dataset

using Caffe [75]. The remaining 1000 images were used for testing.

(a) (b)

Figure 3.11: Face Detection performance evaluation on (a) the AFW dataset, (b) the PASCAL

faces dataset. The numbers in the legend are the mean average precision (mAP) for

the corresponding datasets.
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3.5.1 Face Detection

We present face detection results for AFW, PASCAL and FDDB datasets. The

AFW dataset [225] was collected from Flickr and the images in this dataset contain large

variations in appearance and viewpoint. In total there are 205 images with 468 faces in this

dataset. The FDDB dataset [74] consists of 2,845 images containing 5,171 faces collected

from news articles on the Yahoo website. This dataset is the most widely used benchmark

for unconstrained face detection. The PASCAL faces dataset [200] was collected from

the test set of PASCAL person layout dataset, which is a subset from PASCAL VOC [41].

This dataset contains 1335 faces from 851 images with large appearance variations. For

improved face detection performance, we learn a SVM classifier on top of f cdetection

features using the training splits from the FDDB dataset.

Some of the recent published methods compared in our evaluations include DP2MFD [141],

Faceness [205], HeadHunter [116], JointCascade [17], CCF [201], SquaresChnFtrs-5 [116],

CascadeCNN [98], Structured Models [200], DDFD [43], NPDFace [105], PEP-Adapt [99],

TSM [225], as well as three commercial systems Face++, Picasa and Face.com.

The precision-recall curves of different detectors corresponding to AFW and PAS-

CAL faces datasets are shown in Figures 3.20 (a) and (b), respectively. Figure 3.12 com-

pares the performance of different detectors using the Receiver Operating Characteristic

(ROC) curves on the FDDB dataset. As can be seen from these figures, both HyperFace

and HF-ResNet outperform all the reported academic and commercial detectors on the

AFW and PASCAL datasets. HyperFace achieves a high mean average precision (mAP)

of 97.9% and 92.46%, for AFW and PASCAL datasets respectively. HF-ResNet further
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Figure 3.12: Face Detection performance evaluation on the FDDB dataset. The numbers in the

legend are the mean average precision.

improves the mAP to 99.4% and 96.2% respectively.

The FDDB dataset is very challenging for HyperFace and any other R-CNN-based

face detection methods, as the dataset contains many small and blurred faces. First, some

of these faces do not get included in the region proposals from selective search. Second,

re-sizing small faces to the input size of 227× 227 adds distortion to the face resulting

in low detection score. In spite of these issues, HyperFace performance is comparable to

recently published deep learning-based face detection methods such as DP2MFD [141]

and Faceness [205] on the FDDB dataset ∗ with mAP of 90.1%.

It is interesting to note the performance differences between R-CNN Face, Mul-

titask Face and HyperFace for the face detection tasks. Figures 3.20, and 3.12 clearly

show that multitask DCNNs (Multitask Face and HyperFace) outperform R-CNN Face

by a wide margin. The boost in the performance gain is mainly due to the following two

reasons. First, multitask learning approach helps the network to learn improved features

∗http://vis-www.cs.umass.edu/fddb/results.html
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for face detection which is evident from their mAP values on the AFW dataset. Using

just the linear bounding box regression and traditional NMS, the HyperFace obtains a

mAP of 94% (Figure 3.17) while R-CNN Face achieves a mAP of 90.3%. Second, hav-

ing landmark information associated with detection boxes makes it easier to localize the

bounding box to a face, by using IRP and L-NMS algorithms. On the other hand, Hy-

perFace and Multi-task Face perform comparable to each other for all the face detection

datasets which suggests that the network does not gain much by fusing intermediate layers

for the face detection task.

Figure 3.13: Landmarks Localization cumulative error distribution curves on the AFW dataset.

The numbers in the legend are the fraction of testing faces that have average error

below (5%) of the face size.

3.5.2 Landmarks Localization

We evaluate the performance of different landmarks localization algorithms on

AFW [225] and AFLW [86] datasets. Both of these datasets contain faces with full pose

variations. Some of the methods compared include Multiview Active Appearance Model-

based method (Multi. AAM) [225], Constrained Local Model (CLM) [156], Oxford fa-
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cial landmark detector [42], Zhu [225], FaceDPL [226], JointCascade [17], CDM [210],

RCPR [8], ESR [10], SDM [197] and 3DDFA [227]. Although both of these datasets

provide ground truth bounding boxes, we do not use them for evaluating on HyperFace,

HF-ResNet, Multitask Face and R-CNN Fiducial. Instead we use the respective algo-

rithms to detect both the face and its fiducial points. Since, the R-CNN Fiducial cannot

detect faces, we provide it with the detections from the HyperFace.

Figure 3.13 compares the performance of different landmark localization methods

on the AFW dataset using the protocol defined in [226]. In this figure, (*) indicates

that models that are evaluated on near frontal faces or use hand-initialization [225]. The

dataset provides six keypoints for each face which are: left eye center, right eye center,

nose tip, mouth left, mouth center and mouth right. We compute the error as the mean

distance between the predicted and ground truth keypoints, normalized by the face size.

The plots for comparison were obtained from [226].

For the AFLW dataset, we calculate the error using all the visible keypoints. We

adopt the same protocol as defined in [227]. The only difference is that our AFLW test-

set consists of only 1000 images with 1132 face samples, since we use the rest of the

images for training. To be consistent with the protocol, we randomly create a subset of

450 samples from our testset whose absolute yaw angles within [0◦,30◦], [30◦,60◦] and

[60◦,90◦] are 1/3 each. Figure 3.14 compares the performance of different landmark

localization methods. We obtain the comparison plots from [227] where the evaluations

for RCPR, ESR and SDM are carried out after adapting the algorithms to face profiling.

Table 3.2 provides the Normalized Mean Error (NME) for AFLW dataset, for each of the

pose group.
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Figure 3.14: Landmarks Localization cumulative error distribution curves on the AFLW dataset.

The numbers in the legend are the average NME for the test images. The test samples

are chosen such that samples with absolute yaw angles between [0◦,30◦], [30◦,60◦]

and [60◦,90◦] are 1/3 each.

(a) (b) (c)

Figure 3.15: Pose Estimation performance evaluation on AFLW dataset for (a) roll (b) pitch and

(c) yaw angles. The numbers in the legend are the mean error in degrees for the

respective pose angles.
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Table 3.2: The NME(%) of face alignment results on AFLW test set with the best results high-

lighted.

AFLW Dataset (21 pts)

Method [0, 30] [30, 60] [60, 90] mean std

CDM [210] 8.15 13.02 16.17 12.44 4.04

RCPR [8] 5.43 6.58 11.53 7.85 3.24

ESR [10] 5.66 7.12 11.94 8.24 3.29

SDM [197] 4.75 5.55 9.34 6.55 2.45

3DDFA [227] 5.00 5.06 6.74 5.60 0.99

3DDFA [227]+SDM 4.75 4.83 6.38 5.32 0.92

R-CNN Fiducial 4.49 4.70 5.09 4.76 0.30

Multitask Face 4.20 4.93 5.23 4.79 0.53

HyperFace 3.93 4.14 4.71 4.26 0.41

HF-ResNet 2.71 2.88 3.19 2.93 0.25
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As can be seen from the figures, R-CNN Fiducial, Multitask Face, HyperFace and

HF-ResNet outperform many recent state-of-the-art landmark localization methods in-

cluding FaceDPL [226], 3DDFA [227] and SDM [197]. Table 3.2 shows that Hyper-

Face performs consistently accurate over all pose angles. This clearly suggests that while

most of the methods work well on frontal faces, HyperFace is able to predict landmarks

for faces with full pose variations. Moreover, we find that R-CNN Fiducial and Multi-

task Face attain similar performance. The HyperFace has an advantage over them as it

uses the intermediate layers for fusion. The local information is contained well in the

lower layers of DCNN and becomes invariant as depth increases. Fusing the layers brings

out that hidden information which boosts the performance for the landmark localization

task. Additionally, we observe that HF-ResNet significantly improves the performance

over HyperFace for both AFW and AFLW datasets. The large margin in performance can

be attributed to the larger depth for the HF-ResNet model.

We also evaluate our models on the challenging subset of the 300-W [153] land-

marks localization dataset (IBUG). The dataset contains 135 test images with wide varia-

tions in expression and illumination. The head-pose angle varies from−60◦ to 60◦ in yaw.

Since the dataset contains 68 landmarks points instead of 21 used in AFLW [86] training,

the model cannot be directly applied for evaluating IBUG. We retrain the network for

predicting 68 facial key-points as a separate task in conjunction with the proposed tasks

in hand. We implement it by adding two fully-connected layers in a cascade manner to

the shared feature space (fc-full), having dimensions 512 and 136, respectively.

Following the protocol described in [149], we use 3,148 faces with 68-point anno-

tations for training. The network is trained end-to-end for the localization of 68-points
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landmarks along with the other tasks mentioned in Section 3.2.2. We use the standard

Euclidean loss function for training. For evaluation, we compute the average error of all

68 landmarks normalized by the inter-pupil distance. Table 3.3 compares the Normalized

Mean Error (NME) obtained by HyperFace and HF-ResNet with other recently published

methods. We observe that HyperFace achieves a comparable NME of 10.88, while HF-

ResNet achieves the state-of-the-art result on IBUG [153] with NME of 8.18. This shows

the effectiveness of the proposed models for 68-point landmarks localization.

Table 3.3: Normalized Mean Error (in %) of 68-point landmarks localization on IBUG [153]

dataset.

Method Normalized Mean Error

CDM [210] 19.54

RCPR [8] 17.26

ESR [10] 17.00

SDM [197] 15.40

LBF [149] 11.98

LDDR [90] 11.49

CFSS [224] 9.98

3DDFA [227] 10.59

TCDCN [218] 8.60

HyperFace 10.88

HF-ResNet 8.18
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3.5.3 Pose Estimation

We evaluate R-CNN Pose, Multitask Face and HyperFace on the AFW [225] and

AFLW [86] datasets for the pose estimation task. The detection boxes used for eval-

uating the landmark localization task are used here as well for initialization. For the

AFW dataset, we compare our approach with Multi. AAM [225], Multiview HoG [225],

FaceDPL† [226] and face.com. Note that multiview AAMs are initialized using the

ground truth bounding boxes (denoted by *). Figure 3.16 shows the cumulative error dis-

tribution curves on AFW dataset. The curve provides the fraction of faces for which the

estimated pose is within some error tolerance. As can be seen from the figure, both Hy-

perFace and HF-ResNet outperform existing methods by a large margin. For the AFLW

dataset, we do not have pose estimation evaluation for any previous method. Hence, we

show the performance of our method for different pose angles: roll, pitch and yaw in

Figure 3.15 (a), (b) and (c) respectively. It can be seen that the network is able to learn

roll, and pitch information better than yaw.

The performance traits of R-CNN Pose, Multitask Face, HyperFace and HF-ResNet

for pose estimation task are similar to that of the landmarks localization task. R-CNN Pose

and Multitask Face perform comparable to each other whereas HyperFace achieves a

boosted performance due to the intermediate layers fusion. It shows that tasks which rely

on the structure and orientation of the face work well with features from lower layers of

the DCNN. HF-ResNet further improves the performance for roll, pitch as well as yaw.

†Available at: http://www.ics.uci.edu/˜dramanan/software/face/face_

journal.pdf
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Figure 3.16: Pose Estimation cumulative error distribution curves on AFW dataset. The numbers

in the legend are the percentage of faces that are labeled within±15◦ error tolerance.

3.5.4 Gender Recognition

We present the gender recognition performance on CelebA [111] and LFWA [70]

datasets since these datasets come with gender information. The CelebA and LFWA

datasets contain labeled images selected from the CelebFaces [167] and LFW [70] datasets,

respectively [111]. The CelebA dataset contains 10,000 identities and there are 200,000

images in total. The LFWA dataset has 13,233 images of 5,749 identities. We compare

our approach with FaceTracer [91], PANDA-w [216], PANDA-1 [216], [102] with ANet

and [111]. The gender recognition performance of different methods is reported in Ta-

ble 3.4. On the LFWA dataset, our method outperforms PANDA [216] and FaceTracer

[91], and is equal to [111]. On the CelebA dataset, our method performs comparably to

[111]. Unlike [111] which uses 180,000 images for training and validation, we only use

20,000 images from validation set of CelebA to fine-tune the network.

Similar to the face detection task, we find that gender recognition performs better
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Table 3.4: Performance comparison (in %) of gender recognition on CelebA and LFWA datasets.

Method CelebA LFWA

FaceTracer [91] 91 84

PANDA-w [216] 93 86

PANDA-1 [216] 97 92

[102]+ANet 95 91

LNets+ANet [111] 98 94

R-CNN Gender 95 91

Multitask Face 97 93

HyperFace 97 94

HF-ResNet 98 94
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for HyperFace and Multitask Face as compared to R-CNN Gender proving that learn-

ing related tasks together improves the discriminating capability of the individual tasks.

Again, we do not see much difference in the performance of Multitask Face and Hyper-

Face suggesting intermediate layers do not contribute much for the gender recognition

task. HF-ResNet achieves state-of-the-art results on both CelebA [111] and LFWA [70]

datasets.

3.5.5 Effect of Post-Processing

Figure 3.17 provides an experimental analysis of the post-processing methods: IRP

and L-NMS, for face detection task on the AFW dataset. Fast SS denotes the quick version

of selective search which produces around 2000 region proposals and takes 2s per image

to compute. On the other hand, Quality SS refers to its slow version which outputs more

than 10,000 region proposals consuming more than 10s for one image. The HyperFace

with a linear bounding box regression and traditional NMS achieves a mAP of 94%. Just

by replacing them with L-NMS provides a boost of 1.2%. In this case, bounding-box is

constructed using the landmarks information rather linear regression. Additionaly, we can

see from the figure that although Quality SS generates more region proposals, it performs

worse than Fast SS with ierative region proposals. IRP adds 300 new regions for a typical

image consuming less than 0.5s which makes it highly efficient as compared to Quality

SS.
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Figure 3.17: Variations in performance of HyperFace with respect to the Iterative Region Propos-

als and Landmarks-based NMS. The numbers in the legend are the mean average

precision.

3.5.6 Fast-HyperFace

The Hyperface method is tested on a machine with 8 cores and GTX TITAN-X

GPU. The overall time taken to perform all the four tasks is 3s per image. The limita-

tion is not because of DCNN, but due to Selective Search [176] algorithm which takes

approximately 2s to generate candidate region proposals. One forward pass through the

HyperFace network for 200 proposals takes merely 0.1s.

We also propose a fast version of HyperFace which uses a high recall fast face

detector instead of Selective Search [176] to generate candidate region proposals. We

implement a face detector using Single Shot Detector (SSD) [108] framework. The SSD-

based face detector takes a 512×512 dimensional input image and generates face boxes

in less than 0.05s, with confidence probability scores ranging from 0 to 1. We use a prob-

ability threshold of 0.01 to select high recall detection boxes. Unlike traditional SSD,

we do not use non-maximum suppression on the detector output, so that we have more
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Figure 3.18: Activations of selected feature maps from conv all layer of the HyperFace archi-

tecture. Green and yellow colors denote high activation whereas blue denotes low

activation units. These features depict the distinguishable face traits for the tasks of

face detection, landmarks localization, pose estimation and gender recognition.
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Figure 3.19: Qualitative results of our method. The blue boxes denote detected male faces, while

pink boxes denote female faces. The green dots provide the landmark locations. Pose

estimates for each face are shown on top of the boxes in the order of roll, pitch and

yaw.
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number of region proposals. Typically, the SSD face detector generates 200 proposals per

image. These proposals are directly passed through HyperFace to generate face detec-

tion scores, localize face landmarks, estimate pose and recognize gender for every face

in the image. Fast-HyperFace consumes a total time of 0.15s (0.05s for SSD face detec-

tor, and 0.1s for HyperFace) on a GTX TITAN X GPU. The Fast-HyperFace achieves a

mAP of 97.6% on AFW face detection task, which is comparable to the HyperFace mAP

of 97.9%. Thus, Fast-HyperFace improves the speed by a factor of 12 with negligible

degradation in performance.

3.6 Experimental Results - All-In-One Face

The proposed method is evaluated for all the tasks on which it was trained except

the key-points visibility, due to the lack of a proper evaluation protocol. We select Hy-

perFace [143] as a comparison baseline for the tasks of face detection, pose estimation,

landmarks localization and gender recognition. For face recognition task, the method

from Sankaranarayanan et. al. [154], which is used as the initialization, is used as the

baseline.

3.6.1 Face Detection

We evaluate the face detection task on Annotated Face in-the-Wild (AFW) [225],

PASCAL faces [200] and Face Detection Dataset and Benchmark (FDDB) [74] datasets.

All these datasets contain faces with wide variations in appearance, scale, viewpoint and

illumination. To evaluate on AFW and PASCAL datasets, we finetune the face detection
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Figure 3.20: Performance evaluation on (a) the AFW dataset, (b) the PASCAL faces dataset and

(c) FDDB dataset. The numbers in the legend are the mean average precision for the

corresponding datasets.
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branch of the network on FDDB. To evaluate on the FDDB dataset, we finetune according

to the 10-fold cross validation experiments [74].

The precision-recall curves for AFW and PASCAL datasets, and the Receiver Op-

erating Characteristic (ROC) curve for FDDB dataset are shown in Fig. 3.20. It can be

seen from the figures that our method achieves state-of-the-art performance on AFW and

PASCAL dataset with mean average precision (mAP) of 98.5% and 95.01% respectively.

On the FDDB dataset, our method performs better than most of the reported algorithms.

It gets lower recall than Faster-RCNN [76] and Zhang et al. [215], since small faces

of FDDB fail to get captured in any of the region proposals. Other recently published

methods compared in our detection evaluations include DP2MFD [141], Faceness [205],

Headhunter [116], Joint Cascade [17], Structured Models [200], Cascade CNN [98],

NDPFace [105], TSM [225], as well as three commercial systems Face++, Picasa and

Face.com.

3.6.2 Landmarks Localization

We evaluate our performance on AFW [225] and AFLW [86] datasets as they con-

tain large variations in viewpoints of faces. The landmarks location is computed as the

mean of the predicted landmarks corresponding to region proposals having IOU>0.5 with

the test face. For AFLW [86] evaluation, we follow the protocol given in [224]. We ran-

domly create a subset of 450 samples from our test set such that the absolute yaw angles

within [0◦,30◦], [30◦,60◦] and [60◦,90◦] are 1/3 each. Table 3.5 compares the Normal-

ized Mean Error (NME) for our method with recent face alignment method adapted to
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face profoling [224], for each of the yaw bins. Our method significantly outperforms the

previous best HyperFace [143], reducing the error by more than 30%. A low standard

deviation of 0.13 suggests that landmarks prediction is consistent as pose angles vary.

Table 3.5: The NME(%) of face alignment results on AFLW test set.

AFLW Dataset (21 pts)

Method [0, 30] [30, 60] [60, 90] mean std

RCPR [8] 5.43 6.58 11.53 7.85 3.24

ESR [10] 5.66 7.12 11.94 8.24 3.29

SDM [197] 4.75 5.55 9.34 6.55 2.45

3DDFA [224] 5.00 5.06 6.74 5.60 0.99

3DDFA+SDM 4.75 4.83 6.38 5.32 0.92

HyperFace [143] 3.93 4.14 4.71 4.26 0.41

Ours 2.84 2.94 3.09 2.96 0.13

For AFW [225] evaluation, we follow the protocol described in [223]. Fig. 3.21(a)

shows comparisons with recently published methods such as CCL [223], HyperFace [143],

LBF [149], SDM [197], ERT [80] and RCPR [8]. It is evident that the proposed algorithm

performs better than existing methods on unconstrained and profile faces since it predicts

landmarks with less than 5% NME on more than 95.5% of test faces. However, it lacks

in pixel-accurate precise localization of key-points for easy faces, which can be inferred

from the lower end of the curve. Most of these algorithms use cascade stage-wise regres-

sion to improve the localization, which is slower compared to a single forward pass of the

network.

96



3.6.3 Pose Estimation

We evaluate our method on AFW [225] dataset for the pose estimation task. Ac-

cording to the protocol defined in [225], we compute the absolute error only for the yaw

angles. Since, the ground-truth yaw angles are provided in multiples of 15◦, we round-off

our predicted yaw to the nearest 15◦ for evaluation. Fig. 3.21(b) shows the comparison of

our method with HyperFace [143], Face DPL [226], Multiview HoG [225] and face.com.

It is clear that the proposed algorithm performs better than competing methods and is able

to predict the yaw in the range of ±15◦ for more than 99% of the faces.
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Figure 3.21: Performance evaluation on AFW dataset for (a) landmarks localization task, (b) pose

estimation task. The numbers in the legend are the percentage of test faces with (a)

NME less than 5%, (b) absolute yaw error less than or equal to 15◦

3.6.4 Gender and Smile Recognition

We evaluate the smile and gender recognition performance on Large-scale Celeb-

Faces Attributes (CelebA) [111] and ChaLearn Faces of the World [40] datasets. While
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CelebA [111] has wide variety of subjects, they mostly contain frontal faces. Faces of

the World [40] has wide variations in scale and viewpoints of faces. We take the mean

of the predicted scores obtained from region proposals having IOU>0.5 with the given

face, as our final score for smile and gender attributes. Table 3.6 compares the gender and

smile accuracy with recently published methods. On CelebA [111], we outperform all the

methods for gender accuracy. Our smile accuracy is lower only to Walk and Learn [180]

which uses other contextual information to improve prediction. The gender and smile

branches of the network were finetuned on the training set of Faces of the World [40]

before its evaluation. We achieve state-of-the-art performance for both gender and smile

classification on their validation set.

Table 3.6: Accuray (%) for Gender and Smile classification on CelebA [111] (left) and Faces of

the World [40] (right)

Method Gender Smile

PANDA-1 [216] 97 92

MT-RBM [36] 90 88

LNets+ANet [111] 98 92

HyperFace [143] 97 -

Walk & Learn [180] 96 98

Ours 99 93

Method Gender Smile

MT-RBM [36] 71.7 80.8

CMP+ETH [177] 89.15 79.03

DeepBE [97] 90.44 88.43

SIAT MMLAB [214] 91.66 89.34

Ours 93.12 90.83
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3.6.5 Age Estimation

We use Chalearn LAP2015 [39] apparent age estimation challenge dataset and FG-

NET [58] Aging Database for evaluating our age estimation task. We fine-tune the age-

task branch of the network on the training set of the challenge dataset, and show the

results on the validation set. The error is computed according to the protocol described

in [39]. For FG-Net [58], we follow the standard Leave-One-Out-Protocol (LOPO). Ta-

ble 3.7 lists the evaluation error for both these datasets. We surpass human error of

0.34 and perform comparable to state-of-the-art methods, obtaining an error of 0.293

on Chalearn LAP2015 [39] dataset. On FG-Net [58], we significantly outperform other

methods, achieving an average error of 2 years.

Table 3.7: Age Estimation error on LAP2015(left) and FG-NET(right)

Method Error

UMD [146] 0.359

Human 0.34

CascadeAge [19] 0.297

CVL ETHZ [151] 0.278

ICT-VIPL [110] 0.292

Ours 0.293

Method Error

Han2013 [58] 4.6

Chao2013 [15] 4.38

Hong2013 [65] 4.18

El Dib2010 [38] 3.17

CascadeAge [19] 3.49

Ours 2.00
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Table 3.8: Face Identification and Verification Evaluation on IJB-A dataset

IJB-A Verification (TAR@FAR) IJB-A Identification

Method 0.001 0.01 0.1 FPIR=0.01 FPIR=0.1 Rank=1 Rank=10

GOTS [84] 0.2(0.008) 0.41(0.014) 0.63(0.023) 0.047(0.02) 0.235(0.03) 0.443(0.02) -

VGG-Face [136] 0.604(0.06) 0.805(0.03) 0.937(0.01) 0.46(0.07) 0.67(0.03) 0.913(0.01) 0.981(0.005)

Chen et al. [21] - 0.838(0.042) 0.967(0.009) - - 0.903(0.012) 0.977(0.007)

Masi et al. [115] 0.725 0.886 - - - 0.906 0.977

NAN [204] 0.785(0.03) 0.897(0.01) 0.959(0.005) - - - -

Sankaranarayanan et al. [154] w/o TPE 0.766(0.02) 0.871(0.01) 0.952(0.005) 0.67(0.05) 0.82(0.013) 0.925(0.01) 0.978(0.005)

Sankaranarayanan et al. [154] 0.813(0.02) 0.90(0.01) 0.964(0.005) 0.753(0.03) 0.863(0.014) 0.932(0.01) 0.977(0.005)

Crosswhite et al. [29] - 0.939(0.013) - 0.774(0.049) 0.882(0.016) 0.928(0.01) 0.986(0.003)

Ours 0.787(0.04) 0.893(0.01) 0.968(0.006) 0.704(0.04) 0.836(0.014) 0.941(0.008) 0.988(0.003)

Ours + TPE [154] 0.823(0.02) 0.922(0.01) 0.976(0.004) 0.792(0.02) 0.887(0.014) 0.947(0.008) 0.988(0.003)

Table 3.9: Comparison of End-to-End face recognition systems on IJB-A

Face Detection Face Alignment Identity Descriptor Metric Learning Verif @FAR=0.01 Ident Rank=1

DP2MFD [141] LDDR [90] Chen et al. [18] Joint Bayesian [18] 0.776(0.033) 0.834(0.017)

HyperFace [143] Sankaranarayanan et al [154] cosine 0.871(0.01) 0.925(0.01)

HyperFace [143] Sankaranarayanan et al [154] TPE [154] 0.90(0.01) 0.932(0.01)

HyperFace [143] Ours cosine 0.889(0.01) 0.939(0.01)

Ours cosine 0.893(0.01) 0.941(0.008)

Ours TPE [154] 0.922(0.01) 0.947(0.008)

3.6.6 Face Identification/Verification

We evaluate the tasks of face recognition and verification on the IARPA Janus

Benchmark-A (IJB-A) [84] dataset. The dataset contains 500 subjects with a total of

25,813 images including 5,399 still images and 20,414 video frames. It contains faces

with extreme viewpoints, resolution and illumination which makes it more challenging

than the commonly used LFW [70] dataset.

For IJB-A dataset, given a template containing multiple faces, we generate a com-

mon vector representation by media pooling the individual face descriptors, as explained

in [154]. A naive way to measure the similarity of a template pair, is by taking the cosine
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distance between their descriptors. A better way is to learn an embedding space where

features corresponding to similar pairs are close to each other while dissimilar pairs are

far away. We train a Triplet Probabilistic Embedding (TPE) [154] using the training splits

provided by the dataset. Table 3.8 compares with recently published methods on IJB-

A. We achieve state-of-the-results for the face identification task. Although we perform

comparable to template-adaptaion learning (Crosswhite et al. [29]) on verification task,

we achieve a significantly faster query time (0.1s after face detection per image pair). We

get a consistent improvement of 2% to 3% over the baseline network [154] for all metrics.

We also compare our performance with end-to-end face recognition methods in Ta-

ble 3.9. Our method outperforms existing end-to-end systems which shows that training

all the tasks in the pipeline simultaneously, reduces the error. We see a two-fold improve-

ment, i.e., about 80% performance gain is a result of improved identity descriptor and

20% gain is due to improved face alignment.

3.7 Conclusions

We present some observations based on our experiments. First, all the face related

tasks benefit from using the multi-task learning framework. The gain is mainly due to

the network’s ability to learn more discriminative features, and post-processing methods

which can be leveraged by having landmarks as well as detection scores for a region.

Secondly, fusing intermediate layers improves the performance for structure dependent

tasks of pose estimation and landmarks localization, as the features become invariant

to geometry in deeper layers of DCNN. The HyperFace exploits these observations to
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improve the performance for all the four tasks.

We also visualize the features learned by the HyperFace network. Figure 3.18

shows the network activation for a few selected feature maps out of 192 from the convall

layer. It can be seen that some feature maps are dedicated solely for a single task while

others can be used to predict different tasks. For example, feature map 27 and 186 can be

used for face detection and gender recognition, respectively. The former distinguishes the

face and non-face regions whereas the latter outputs high activation for the female faces.

Similarly, feature map 19 shows high activation near eyes and mouth regions, while fea-

ture map 96 gives a rough contour of the face orientation. These features can be used for

landmark localization and pose estimation tasks.

Additionally, we presented a multi-task DCNN-based method for simultaneous face

detection, face alignment, pose estimation, gender and smile classification, age estima-

tion and face verification and recognition. Our method performs significantly better than

HyperFace, even though both of them use the MTL framework. This work demonstrates

that subject-independent tasks benefit from domain-based regularization and network ini-

tialization from face recognition task. Also, the improvement in face verification and

recognition performance compared to [154] clearly suggests that MTL helps in learning

robust feature descriptors.
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Chapter 4: Crystal Loss for Discriminative Face Verification

In this chapter, we provide a symptomatic treatment of issues associated with us-

ing softmax loss for the task of unconstrained face verification. We propose the Crystal

loss function that adds a constraint on the features during training such that their L2-norm

remains constant. In other words, we restrict the features to lie on a hypersphere of a

fixed radius. The proposed Crystal loss has two advantages. Firstly, it provides equal

attention to both good and bad quality faces since all the features have the same L2-norm

now, which is essential for improved performance in unconstrained settings. Secondly, it

strengthens the verification features by forcing the same subject features to be closer and

features from different subjects to be far from each other in the normalized space. There-

fore, it maximizes the margin for the normalized L2 distance or cosine similarity score

between negative and positive pairs. In this way, the proposed Crystal loss overcomes the

limitations of the regular softmax loss.

The Crystal loss also retains the advantages of the regular softmax loss. Similar to

the softmax loss, it is a one network, one loss system. It doesn’t necessarily require any

joint supervision as used by many recent methods [182, 136, 183, 168]. It can be easily

implemented using inbuilt functions from Caffe [75], Torch [27] and TensorFlow [1],

and converges very fast. It introduces just a single scaling parameter to the network.
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Compared to the regular softmax loss, the Crystal loss gains a significant improvement in

the performance. It achieves new state-of-the-art results on IJB-A, IJB-B, IJB-C and LFW

datasets, and competitive results on YouTube Face datasets. It surpasses the performance

of several state-of-the-art systems, which use multiple networks or multiple loss functions

or both. Moreover, the gains from Crystal Loss are complementary to metric learning (eg:

TPE [154], joint-Bayes [21]) or auxiliary loss functions (eg: center loss [182], contrastive

loss [168]). We show that applying these techniques on top of the Crystal Loss can further

improve the verification performance. Combining with TPE [154], Crystal loss achieves

a record True Accept Rate (TAR) of 0.921 at False Accept Rate (FAR) of 0.0001 on the

challenging IJB-A [84] dataset, and a TAR of 0.606 at FAR of 1e-8 on the challenging

IJB-C [118] dataset.

4.1 Related Work

In recent years, there has been significant improvements in the accuracy of face

verification using deep learning methods [157, 173, 136, 154, 196, 168, 182, 144]. Most

of these methods have even surpassed human performance on the LFW [70] dataset. Al-

though these methods use DCNNs, they differ from each other by the type of loss function

used for training. For face verification, it is essential for the features of positive subject

pair to be closer and features of negative subject pair to be far apart. To solve this problem,

researchers have adopted two major approaches.

In the first approach, pairs of face images are input to the training algorithm to learn

a feature embedding where positive pairs are closer and negative pairs are far apart. In this
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direction, Chopra et al. [24] proposed siamese networks with contrastive loss for training.

Hu et al. [66] designed a discriminative deep metric with a margin between positive and

negative face pairs. FaceNet [157] introduced triplet loss to learn the metric using hard

triplet face samples.

In the second approach, the face images along with their subject labels are used

to learn discriminative identification features in a classification framework. Most of the

recent methods [168, 173, 136, 204, 144] train a DCNN with softmax loss to learn these

features which are later used either to directly compute the similarity score for a pair of

faces or to train a discriminative metric embedding [154, 21]. Another strategy is to train

the network for joint identification-verification task [168, 183, 182]. Xiong et al. [194]

proposed transferred deep feature fusion (TDFF) which involves two-stage fusion of fea-

tures trained with different networks and datasets. Template adaptation [29] is applied to

further boost the performance.

A recent approach [182] introduced center loss to learn face embeddings which have

better discriminative ability. Our proposed method is different from the center loss in the

following aspects. First, we use one loss function (i.e., Crystal Loss) whereas [182] uses

center loss jointly with the softmax loss during training. Second, center loss introduces

C×D additional parameters during training where C is the number of classes and D is the

feature dimension. On the other hand, the Crystal Loss introduces just a single parameter

that defines the fixed L2-norm of the features. Moreover, the center loss can also be used

in conjunction with Crystal Loss, which performs better than center loss trained with

regular softmax loss (see Section 4.4.1.4).

Recently, some algorithms have used feature normalization during training to im-
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prove performance. Hasnat et al. [60] uses class-conditional von Mises-Fisher distribu-

tion to model the feature representation. SphereFace [109] proposes angular softmax

(A-softmax) loss that enables DCNNs to learn angularly discriminative features. Another

method called DeepVisage [61] uses a special case of batch normalization [72] technique

to normalize the feature descriptor before applying softmax loss. Our proposed method

is different as it applies an L2-constraint on the feature descriptors enforcing them to lie

on a hypersphere of a given radius.

4.2 Motivation

We first summarize the general pipeline for training a face verification system using

DCNN as shown in Figure 4.11. Given a training dataset with face images and corre-

sponding identity labels, a DCNN is trained as a classification task where the network

learns to classify a given face image to its correct identity label. A softmax loss function

is used for training the network, given by (4.1)

LS =−
1
M

M

∑
i=1

log
eW T

yi
f (xi)+byi

∑
C
j=1 eW T

j f (xi)+b j
, (4.1)

where M is the training batch size, xi is the ith input face image in the batch, f (xi)

is the corresponding output of the penultimate layer of the DCNN, yi is the corresponding

class label, and W and b are the weights and bias for the last layer of the network which

acts as a classifier.

At test time, feature descriptors f (xg) and f (xp) are extracted for the pair of test

face images xg and xp respectively using the trained DCNN, and normalized to unit
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(a)

(b)

Figure 4.1: (a) Face Verification Performance on the IJB-A dataset. The templates are divided

into 3 sets based on their L2-norm. ‘1’ denotes the set with low L2-norm while ‘3’

represents high L2-norm. The legend ‘x-y’ denote the evaluation pairs where one

template is from set ‘x’ and another from set ‘y’. (b) Sample template images from

IJB-A dataset with high, medium and low L2-norm
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length. Then, a similarity score is computed on the feature vectors which provides a

measure of distance or how close the features lie in the embedded space. If the sim-

ilarity score is greater than a threshold, the face pairs are decided to be of the same

person. Usually, the similarity score is computed as the L2-distance between the nor-

malized features [157, 136] or by using the cosine similarity score s, as given by (4.2)

[182, 21, 145, 154]. Both these similarity measures are equivalent and produce same

results.

s =
f (xg)

T f (xp)

‖ f (xg)‖2‖ f (xp)‖2
(4.2)

There are two major issues with this pipeline. First, the training and testing steps

for face verification task are decoupled. Training with softmax loss doesn’t necessarily

ensure the positive pairs to be closer and the negative pairs to be far apart in the normalized

or angular space.

Secondly, the softmax classifier is weak in modeling difficult or extreme samples.

In a typical training batch with data quality imbalance, the softmax loss gets minimized

by increasing the L2-norm of the features for easy samples, and ignoring the hard samples.

The network thus learns to respond to the quality of the face by the L2-norm of its feature

descriptor. To validate this claim, we perform a simple experiment on the IJB-A [84]

dataset where we divide the templates (groups of images/frames of the same subject)

into three different sets based on the L2-norm of their feature descriptors. The features

were computed using Face-Resnet [182] trained with regular softmax loss. Templates

with descriptors’ L2-norm <90 are assigned to set1. Templates with L2-norm >90 but
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<150 are assigned to set2, while templates with L2-norm >150 are assigned to set3. In

total, they form six sets of evaluation pairs. Figure 4.1(a) shows the performance of the

these six different sets for the IJB-A face verification protocol. It can be clearly seen

that pairs having low L2-norm for both templates perform very poorly, while pairs with

high L2-norm perform the best. The difference in performance between each set is quite

significant. Figure 4.1(b) shows some sample templates from set1, set2 and set3 which

confirms that the L2-norm of the feature descriptor is informative of its quality.

To solve these issues, we enforce the L2-norm of the features to be fixed for every

face image. Specifically, we add an L2-constraint to the feature descriptor such that it

lies on a hypersphere of a fixed radius. This approach has two advantages. Firstly, on a

hypersphere, minimizing the softmax loss is equivalent to maximizing the cosine similar-

ity for the positive pairs and minimizing it for the negative pairs, which strengthens the

verification signal of the features. Secondly, the softmax loss is able to model the extreme

and difficult faces better, since all the face features have the same L2-norm.

4.3 Proposed Method

The proposed Crystal Loss is given by (4.3)

minimize − 1
M

M

∑
i=1

log
eW T

yi
f (xi)+byi

∑
C
j=1 eW T

j f (xi)+b j

subject to ‖ f (xi)‖2 = α, ∀i = 1,2, ...M,

(4.3)

where xi is the input image in a mini-batch of size M, yi is the corresponding class

label, f (xi) is the feature descriptor obtained from the penultimate layer of DCNN, C is
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the number of subject classes, and W and b are the weights and bias for the last layer

of the network which acts as a classifier. Equation (4.3) adds an additional L2-constraint

to the softmax loss defined in (4.1). We show the effectiveness of this constraint using

MNIST [95] data.

4.3.1 MNIST Example

(a) (b)

Figure 4.2: Vizualization of 2-dimensional features for MNIST digit classification test set using

(a) Softmax Loss. (b) Crystal Loss

We study the effect of Crystal Loss on the MNIST dataset [95]. We use a deeper

and wider version of LeNet mentioned in [182], where the last hidden layer output is

restricted to 2-dimensional space for easy visualization. For the first setup, we train the

network end-to-end using the regular softmax loss for digit classification with the number

of classes equal to 10. For the second setup, we add an L2-normalize layer and a scale

layer to the 2-dimensional features which enforces the L2-constraint described in (4.3)

(seen Section 4.3.2 for details). Figure 4.2 depicts the 2-D features for different classes

for the MNIST test set containing 10,000 digit images. Each of the lobes shown in the

figure represents 2-D features of unique digits classes. The features for the second setup
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were obtained before the L2-normalization layer.

Table 4.1: Accuracy on MNIST test set in (%)

Softmax Loss Crystal Loss

Accuracy 98.88 99.05

We find two clear differences between the features learned using the two setups

discussed above. First, the intra-class angular variance is large when using the regular

softmax loss, which can be estimated by the average width of the lobes for each class.

On the other hand, the features obtained with crystal loss have lower intra-class angular

variability, and are represented by thinner lobes. Second, the magnitudes of the features

are much higher with the softmax loss (ranging upto 150), since larger feature norms

result in a higher probability for a correctly classified class. In contrast, the feature norm

has minimal effect on the crystal loss since every feature is normalized to a circle of fixed

radius before computing the loss. Hence, the network focuses on bringing the features

from the same class closer to each other and separating the features from different classes

in the normalized or angular space. Table 4.1 lists the accuracy obtained with the two

setups on MNIST test set. Crystal loss achieves a higher performance, reducing the error

by more than 15%. Note that these accuracy numbers are lower compared to a typical

DCNN since we are using only 2-dimensional features for classification.
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(a) (b)

Figure 4.3: Three-dimensional normalized features for three different identities, obtained from (a)

network trained with Softmax Loss. (b) network trained with Crystal Loss. The intra-

class cosine distance reduces while the inter-class cosine distance increases by using

the Crystal Loss.

4.3.2 Implementation Details

Here, we provide the details of implementing the L2-constraint described in (4.3)

in the framework of DCNNs. The constraint is enforced by adding an L2-normalization

layer followed by a scale layer as shown in Figure 4.4.

Figure 4.4: We add an L2-normalization layer and a scale layer to constrain the feature descriptor

to lie on a hypersphere of radius α .

This module is added just after the penultimate layer of DCNN which acts as a

feature descriptor. The L2-normalization layer normalizes the input feature x to a unit

vector given by (4.4). The scale layer scales the input unit vector to a fixed radius given
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by the parameter α (4.5). In total, we just introduce one scalar parameter (α) which can

be trained along with the other parameters of the network.

y =
x
‖x‖2

(4.4)

z = α ·y (4.5)

The module is fully differentiable and can be used in the end-to-end training of the

network. At test time, the proposed module is redundant, since the features are eventually

normalized to unit length while computing the cosine similarity. At training time, we

backpropagate the gradients through the L2-normalization and the scale layer, as well as

compute the gradients with respect to the scaling parameter α using the chain rule as

given below.

∂ l
∂yi

=
∂ l
∂ zi
·α

∂ l
∂α

=
D

∑
j=1

∂ l
∂ z j
· y j

∂ l
∂xi

=
D

∑
j=1

∂ l
∂y j
·

∂y j

∂xi

∂yi

∂xi
=
‖x‖2

2− x2
i

‖x‖3
2

∂y j

∂xi
=
−xi · x j

‖x‖3
2

(4.6)

The features learned using Softmax Loss and Crystal Loss are shown in Figure 4.3.

We train two networks, one with Softmax Loss and another with Crystal Loss, using
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100 training identities. We restrict the feature dimension to three for better visualization

on a sphere. The blue, green and red points depict the L2-normalized features for three

different identities. It is clear from the figure that Crystal Loss forces the features to

have a low intra-class angular variability and higher inter-class angular variability, which

improves the face verification accuracy.

4.3.3 Bounds on Parameter α

The scaling parameter α plays a crucial role in deciding the performance of L2-

softmax loss. There are two ways to enforce the L2-constraint: 1) by keeping α fixed

throughout the training, and 2) by letting the network to learn the parameter α . The

second way is elegant and always improves over the regular softmax loss. But, the α

parameter learned by the network is high which results in a relaxed L2-constraint. The

softmax classifier aimed at increasing the feature norm for minimizing the overall loss,

increases the α parameter instead, allowing it more freedom to fit to the easy samples.

Hence, the α learned by the network forms an upper bound for the parameter. Improved

performance is obtained by fixing α to a lower constant value.

On the other hand, with a very low value of α , the training algorithm does not

converge. For instance, α = 1 performs poorly on the LFW [70] dataset, achieving an

accuracy of 86.37% (see Figure 4.8). The reason being that a hypersphere with small

radius (α) has limited surface area for embedding features from the same class together

and those from different classes far from each other.

Here, we formulate a theoretical lower bound on α . Assuming the number of

114



classes C to be lower than twice the feature dimension D, we can distribute the classes

on a hypersphere of dimension D such that the centers of any two classes are at least 90◦

apart. Figure 4.5(a) represents this case for C = 4 class centers distributed on a circle

of radius α . We assume the classifier weights (Wi) to be a unit vector pointing in the

direction of their respective class centers. We ignore the bias term. The average softmax

probability p for correctly classifying a feature is given by (4.7)

p =
eW T

i Xi

∑
4
j=1 eW T

j Xi

=
eα

eα +2+ e−α

(4.7)

Ignoring the term e−α and generalizing it for C classes, the average probability

becomes:

p =
eα

eα +C−2
(4.8)

(a) (b)

Figure 4.5: (a) 2-D vizualization of the assumed distribution of features (b) Variation in Softmax

probability with respect to α for different number of classes C
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Figure 4.5(b) plots the probability score as a function of the parameter α for various

number of classes C. We can infer that to achieve a given classification probability (say

p = 0.9), we need to have a higher α for larger C. Given the number of classes C for

a dataset, we can obtain the lower bound on α to achieve a probability score of p by

using (4.9).

αlow = log
p(C−2)

1− p
(4.9)

4.3.4 Relation to von Mises-Fisher Distribution

The distribution of features learned using Crystal Loss can be characterized as a spe-

cial case of von Mises-Fisher distribution [60]. In directional statistics, von Mises-Fisher

distribution is a probability distribution on a hypersphere, whose probability density func-

tion is represented using (4.10)

fp(x,µ,κ) =Cp exp(κµ
T x), (4.10)

where κ ≥ 0 is the concentration parameter, ‖µ‖2 = 1, ‖x‖2 = 1, and Cp is the

normalization constant dependent on κ and the feature dimension p. Keeping the concen-

tration parameter κ same for all the C classes, the log maximum a posteriori estimate for

the parameters of von Mises-Fisher distribution results in the formulation of Crystal Loss
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(L) as shown in (4.11)

L = maximize log
fp(xi,µi,κ)

∑
C
j=1 fp(x j,µ j,κ)

= minimize − log
exp(κµT

i xi)

∑
C
j=1 exp(κµT

j x j)

(4.11)

The concentration parameter κ corresponds to the scale factor in the Crystal Loss.

The κ value decides the spread of the features on the hypersphere, as shown in Fig-

ure 4.6 ∗. A low value of κ results in high intra-class angular variability, while a high

value of κ decreases the inter-class angular distance. Hence, an optimal value of κ or

the scale factor for Crystal Loss is required (see Section 4.3.3) so that features from same

class are close together and features from different classes are far from each other in an-

gular space. We do not normalize the classifier weight vectors since it significantly slows

down the training process for large number of classes.

Figure 4.6: Visualization of features on a sphere sampled from von Mises-Fisher distribution. The

blue, green and red color represents features for different concentration parameters

κ = 1, κ = 10 and κ = 100 respectively.

∗https://en.wikipedia.org/wiki/Von MisesFisher distribution
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4.4 Results

Figure 4.7: The Face-Resnet architecture [182] used for the experiments. C denotes Convolution

Layer followed by PReLU [64] while P denotes Max Pooling Layer. Each pooling

layer is followed by a set of residual connections, the count for which is denoted

alongside. After the fully-connected layer (FC), we add an L2-Normalize layer and

Scale Layer which is followed by the softmax loss.

We use the publicly available Face-Resnet [182] DCNN for our experiments. Fig-

ure 4.7 shows the architecture of the network. It contains 27 convolutional layers and

2 fully-connected layers. The dimension of the feature descriptor is 512. It utilizes the

widely used residual skip-connections [62]. We add an L2-normalization layer and a scale

layer after the fully-connected layer to enforce the L2-constraint on the descriptor. All our

experiments are carried out in Caffe [75].

4.4.1 Baseline experiments

In this subsection, we experimentally validate the usefulness of the L2-softmax loss

for face verification. We form two subsets of training dataset from the MS-Celeb-1M [57]

dataset: 1) MS-small containing 0.5 million face images with the number of subjects

being 13403, and 2) MS-large containing 3.7 million images of 58207 subjects. The
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dataset was cleaned using the clustering algorithm presented in [106]. We train the Face-

Resnet network with softmax loss as well as Crystal loss for various α . While training

with MS-small, we start with a base learning rate of 0.1 and decrease it by 1/10th after

16K and 24K iterations, upto a maximum of 28K iterations. For training on MS-large, we

use the same learning rate but decrease it after 50K and 80K iterations upto a maximum

of 100K iterations. A training batch size of 256 was used. Both softmax and Crystal

loss functions consume the same amount of training time which is around 9 hours for

MS-small and 32 hours for MS-large training set respectively, on two TITAN X GPUs.

We set the learning multiplier and decay multiplier for the scale layer to 1 for trainable

α , and 0 for fixed α during the network training. We evaluate our baselines on the widely

used LFW dataset [70] for the unrestricted setting, and the challenging IJB-A dataset [84]

for the 1:1 face verification protocol. The faces were cropped and aligned to the size

of 128×128 in both training and testing phases by implementing the face detection and

alignment algorithm presented in [145] .

4.4.1.1 Experiment with small training set

Here, we compare the network trained on MS-small dataset using the proposed

Crystal loss, against the one trained with regular softmax loss. Figure 4.8 shows that the

softmax loss attains an accuracy of 98.1% whereas the proposed Crystal loss achieves the

best accuracy of 99.28%, thereby reducing the error by more than 62%. It also shows the

variations in performance with the scale parameter α . The performance is poor when α

is below a certain threshold and stable with α higher than the threshold. This behavior
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is consistent with the theoretical analysis presented in Section 4.3.3. From the figure,

the performance of Crystal loss is better for α >12 which is close to its lower bound

computed using equation 4.9 for C = 13403 with a probability score of 0.9.

Figure 4.8: The red curve shows the variations in LFW accuracy with the parameter α for Crystal

loss. The green line is the accuracy using softmax loss.

A similar trend is observed for 1:1 verification protocol on IJB-A [84] as shown

in Table 4.2, where the numbers denote True Accept Rate (TAR) at False Accept Rates

(FAR) of 0.0001, 0.001, 0.01 and 0.1. Our proposed approach improves the TAR@FAR=0.0001

by 19% compared to the baseline softmax loss. The performance is consistent with α

ranging between 16 to 32. Another point to note is that by allowing the network to learn

the scale parameter α by itself results in a slight decrease in performance, which shows

that having a tighter constraint is a better choice.

4.4.1.2 Experiment with large training set

We train the network on the MS-large dataset for this experiment. Figure 4.9 shows

the performance on the LFW dataset. Similar to the small training set, the Crystal loss
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Table 4.2: TAR on IJB-A 1:1 Verification Protocol @FAR

0.0001 0.001 0.01 0.1

Softmax Loss 0.553 0.730 0.881 0.957

Crystal Loss (α=8) 0.257 0.433 0.746 0.953

Crystal Loss (α=12) 0.620 0.721 0.875 0.970

Crystal Loss (α=16) 0.734 0.834 0.924 0.974

Crystal Loss (α=20) 0.740 0.820 0.922 0.973

Crystal Loss (α=24) 0.744 0.831 0.912 0.974

Crystal Loss (α=28) 0.740 0.834 0.922 0.975

Crystal Loss (α=32) 0.727 0.831 0.921 0.972

Crystal Loss (α trained) 0.698 0.817 0.914 0.971
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significantly improves over the baseline, reducing the error by 60% and achieving an

accuracy of 99.6%. Similarly, it improves the TAR@FAR=0.0001 on IJB-A by more

than 10% (Table 4.3). The performance of Crystal loss is consistent with α in the range

40 and beyond. Unlike, the small set training, the self-trained α performs equally good

compared to fixed α of 40 and 50. The theoretical lower bound on α is not of much use in

this case since improved performance is achieved for α >30. We can deduce that as the

number of subjects increases, the lower bound on α is less reliable, and the self-trained

α is more reliable with performance. This experiment clearly suggests that the proposed

Crystal loss is consistent across the training and testing datasets.

Figure 4.9: The red curve shows the variations in LFW accuracy with the parameter α for Crystal

loss. The green line is the accuracy using the Softmax loss.

4.4.1.3 Experiment with a different DCNN

To check the consistency of our proposed Crystal loss, we apply it on the All-In-One

Face [145] instead of the Face-Resnet. We use the recognition branch of the All-In-One

Face to fine-tune on the MS-small training set. The recognition branch of All-In-One
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Table 4.3: TAR on IJB-A 1:1 Verification Protocol @FAR

0.0001 0.001 0.01 0.1

Softmax Loss 0.730 0.851 0.926 0.972

Crystal Loss (α=30) 0.775 0.871 0.938 0.978

Crystal Loss (α=40) 0.827 0.900 0.951 0.982

Crystal Loss (α=50) 0.832 0.906 0.952 0.981

Crystal Loss (α trained) 0.832 0.903 0.950 0.980

Face consists of 7 convolution layers followed by 3 fully-connected layers and a softmax

loss. We add an L2-normalize and a scale layer after the 512 dimension feature descriptor.

Figure 4.10 shows the comparison of Crystal loss and the Softmax loss on LFW dataset.

Similar to the Face-Resnet, All-In-One Face with Crystal loss improves over the Softmax

performance, reducing the error by 40%, and achieving an accuracy of 98.82%. The

improvement obtained by using All-In-One Face is smaller compared to the Face-Resnet.

This shows that residual connections and depth of the network generate better feature

embedding on a hypersphere. The performance variation with scaling parameter α is

similar to that of Face-Resnet, indicating that the optimal scale parameter does not depend

on the choice of the network.

4.4.1.4 Experiment with auxiliary loss

Similar to softmax loss, the Crystal loss can be coupled with auxiliary losses such

as center loss, contrastive loss, triplet loss, etc. to further improve the performance. Here
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Table 4.4: Accuracy on LFW (%)

Softmax loss 98.10

Center loss [182] + Softmax loss 99.23

Crystal loss 99.28

Center loss [182] + Crystal loss 99.33

Figure 4.10: The red curve shows the variations in LFW accuracy with the parameter α for Crystal

loss. The green line is the accuracy using the Softmax loss.

124



we study the performance variation of Crystal loss when coupled with the center loss. We

use the MS-small dataset for training the networks. Table 4.4 lists the accuracy obtained

on the LFW dataset by different loss functions. The softmax loss performs the worst. The

center loss improves the performance significantly when trained in conjunction with the

softmax loss, and is comparable to the Crystal loss. Training center loss with Crystal loss

gives the best performance of 99.33% accuracy. This shows that Crystal loss is as versatile

as the softmax loss and can be used efficiently with other auxiliary loss functions.

4.4.2 Experiments on LFW and YTF Datasets

We compare our algorithm with recently reported face verification methods on

LFW [70] and YouTube Face [189] datasets. We crop and align the images for all these

datasets by implementing the algorithm mentioned in [145]. We train the Face-Resnet

(FR) with Crystal loss (CrL) as well as Softmax loss using the MS-large training set. Ad-

ditionally, we train ResNet-101(R101) [62] and ResNeXt-101(RX101) [191] deep net-

works for face recognition using MS-large training set with Crystal loss. Both R101 and

RX101 models were initialized with parameters pre-trained on ImageNet [152] dataset.

A fully-connected layer of dimension 512 was added before the Crystal loss classifier.

The scaling parameter was kept fixed with a value of α = 50. Experimental results on

different datasets show that Crystal loss works efficiently with deeper models.

The LFW dataset [70] contains 13,233 web-collected images from 5749 different

identities. We evaluate our model following the standard protocol of unrestricted with

labeled outside data. We test on 6,000 face pairs and report the experiment results in
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Table 4.5: Verification accuracy (in %) of different methods on LFW and YTF datasets.

Method Images #nets One loss LFW YTF

Deep Face [173] 4M 3 No 97.35 91.4

DeepID-2+ [168] - 25 No 99.47 93.2

FaceNet [157] 200M 1 Yes 99.63 95.12

VGG Face [136] 2.6M 1 No 98.95 97.3

Baidu [107] 1.3M 1 No 99.13 -

Wen et al. [182] 0.7M 1 No 99.28 94.9

NAN [204] 3M 1 No − 95.72

DeepVisage [61] 4.48M 1 Yes 99.62 96.24

SphereFace [109] 0.5M 1 Yes 99.42 95.0

Softmax(FR) 3.7M 1 Yes 99.0 93.82

CrL (FR) 3.7M 1 Yes 99.60 95.54

CrL (R101) 3.7M 1 Yes 99.67 96.02

CrL (RX101) 3.7M 1 Yes 99.78 96.08
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Table 4.5. Along with the accuracy values, we also compare with the number of images,

networks and loss functions used by the methods for their overall training. The proposed

method attains state-of-the-art performance with the RX101 model, achieving an accuracy

of 99.78%. Unlike other methods which use auxiliary loss functions such as center loss

and contrastive loss along with the primary softmax loss, our method uses a single loss

training paradigm which makes it easier and faster to train.

YouTube Face (YTF) [189] dataset contains 3425 videos of 1595 different people,

with an average length of 181.3 frames per video. It contains 10 folds of 500 video pairs.

We follow the standard verification protocol and report the average accuracy on splits with

cross-validation in Table 4.5. We achieve the accuracy of 96.08% using Crystal loss with

RX101 network. Our method outperforms many recent algorithms and is only behind

DeepVisage [61] which uses larger number of training samples, and VGG Face [136]

which further uses a discriminative metric learning on YTF.

4.5 A State-of-the-art Face Verification and Recognition Pipeline

In this section, we discuss a state-of-the-art end-to-end pipeline for face identifi-

cation and verification, built by authors over the last eighteen months. An overview of

the pipeline is given in Fig. 4.11. Given an image, we first detect all the faces using the

DPSSD face detector described in chapter 2. Then, we crop out all the detected faces

from the image and pass them through the All-In-One face [145] network to extract facial

key-points (described in chapter 3). These key-points are used to align the corresponding

faces in canonical coordinates. The aligned faces are then passed through face DCNNs,
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Input Image Face Detection 

All-In-One 
Face 

Detected Fiducial Points 

Face DCNNs 

Face DCNNs 
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Figure 4.11: Our face recognition pipeline. We detect faces using our proposed DPSSD face de-

tector (chapter 2). These detections are passed to the All-in-One Face network [145]

which outputs facial keypoints for each face. These are used to align faces to canoni-

cal views. We pass these aligned faces through our face representation networks and

obtain the similarity between two faces using cosine similarity.
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trained using Crystal Loss, to generate feature descriptors which are later used for verify-

ing or identifying a face.

4.5.1 Training Datasets

We use the Universe face dataset from [7] for training our face representation net-

works. This is a combination of UMDFaces images [6], UMDFaces video frames [5],

and curated MS-Celeb-1M [57]. The Universe dataset contains about 5.6 million images

of about 58,000 identities. This includes about 3.5 million images from MS-Celeb-1M,

1.8 million video frames from UMDFaces videos, and 300,000 images from UMDFaces.

This dataset has the advantage of being a combination of different datasets which makes

networks trained using this dataset generalize better. Another advantage is that it contains

both still images and video frames which makes the networks more robust to test datasets

that contain both images and videos.

4.5.2 Face Representation

We use two networks for feature representation and perform fusion by averaging

the similarity scores obtained from each of them. Using an ensemble of networks leads to

more robust representations and better performance. We next describe the two networks

along with their respective training details. These two networks are based on a ResNet-

101 [62], and Inception ResNet-v2 [170]. For pre-processing the detected faces, we crop

and resize the aligned faces to each network’s input dimensions. For data augmentation,

we apply random horizontal flips to the input images.
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ResNet-101 (R) : We train a ResNet-101 deep convolutional neural network with PReLU

activations after every convolution layer. Since we use the Universe dataset for training

the network, we use a 58,000-way classification layer with crystal loss. For this network,

we set the α parameter to 50 and the batch size at 128. The learning rate is set to 0.1 and

is reduced by a factor of 0.2 after every 50k iterations. The network is trained for a total

of 250k iterations. We use a 512-D layer as the feature layer and use TPE [154] to find a

128-D embedding which was trained with the UMDFaces dataset.

Inception ResNet-v2 (A) : The Inception ResNet-v2 network is also trained with the

Universe dataset. This network has 244 convolution layers. We add a 512-D feature layer

after these and then a final classification layer. We again use crystal loss with α = 40.

The initial learning rate is set to 0.1 and is reduced by a factor of 0.2 after every 50k

iterations. We train the network for 120k iterations with a batch-size of 120 on 8 NVIDIA

Quadro P6000 GPUs. We resize the inputs to 299× 299. Similar to the ResNet, we use

UMDFaces to train a final 128-D embedding with TPE.

4.5.3 Feature Fusion

Template Feature: For both face verification and identification, we need to compare tem-

plate features. To obtain feature vectors for a template, we first average all the features

for a media in the template. We further average these media-averaged features to get the

final template feature.

Score-level Fusion: To get the similarity between two templates, we average the similar-

ities obtained by our two networks.
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4.5.4 Experimental Results

In this section, ROC curves are used to measure the performance of face verification

(1:1 matching) methods and CMC scores are used for evaluating face identification (1:N

search). The IJB-A [84], IJB-B [187], IJB-C [118], and CS5 datasets contain a gallery and

a probe which leads to evaluation using all positive and negative pairs. This is different

from LFW [70] and YTF [189] where only a few negative pairs are used to evaluate veri-

fication performance. Another difference between LFW/YTF and the evaluation datasets

here is the inclusion of templates instead of only single images. A template is a collection

of images and video frames of a subject. These datasets are much more challenging than

older datasets due to extreme variations in pose, illumination, and expression. We evalu-

ate our models for the following four protocols on the IJB and CS5 datasets:

1:1 Verification: Verify if the given pair of templates belong to the same subject. Tem-

plates are comprised of mixed media (frames and stills).

1:N Mixed Search: Open set identification protocol using mixed media (frames and

stills) as probe and galleries.

Wild Probe Search: Identify subjects of interest from a collection of faces detected from

still images and frames.

1:N end-to-end Still Image: Identify identity clusters of interest from a collection of still

images.
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4.5.4.1 IJB-A

The IJB-A dataset contains 500 subjects with 5,397 images and 2,042 videos split

into 20,412 frames. This dataset is a very difficult dataset owing to the presence of ex-

treme pose, viewpoint, resolution, and illumination variations. Additionally, mixing still

images and video frames causes difficulties for models trained with only one of these

modalities due to domain shift. An identity in this dataset is represented as a template.

Also note that each subject can have multiple templates in the dataset. The evaluation

protocol for this dataset contains for 1:1 verification and 1:N mixed search. The dataset

is divided into 10 splits, each with 333 randomly selected subjects for training and 167

subjects for testing. We generate a common template representation by fusing features of

all the faces in the template. We compute the similarity scores using the two networks

(R and A) and then do a score-level fusion as described in 4.5.3. Table 4.6 provides the

results from our system for the verification task and Table 4.7 provides the results for

1:N mixed search for the IJB-A dataset. We achieve the state-of-the-art results for every

setting.

4.5.4.2 IJB-B

The IJB-B dataset [187], which extends IJB-A, contains about 22,000 still images

and 55,000 video frames spread over 1,845 subjects. Evaluation is done for the same

tasks as IJB-A, viz., 1:1 verification, and 1:N identification. The IJB-B verification pro-

tocol consists of 8,010,270 pairs between templates in the galleries (G1 and G2) and

the probe templates. Out of these, 8 million are impostor pairs and the rest 10,270 are
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True Accept Rate (%) @ False Accept Rate

Method 0.0001 0.001 0.01 0.1

Casia [179] - 51.4 73.2 89.5

Pose [2] - - 78.7 91.1

NAN [204] - 88.1 94.1 97.8

3D [115] - 72.5 88.6 -

DCNN f usion [22] - 76.0 88.9 96.8

DCNNt pe [154] - 81.3 90.0 96.4

DCNNall [145] - 78.7 89.3 96.8

All + TPE [145] - 82.3 92.2 97.6

TP [29] - - 93.9 -

RX101l2+t pe [142] 90.9 94.3 97.0 98.4

OursA 91.7 95.3 96.8 98.3

OursR 91.4 94.8 97.1 98.5

Fusion (Ours) 92.1 95.2 96.9 98.4

Table 4.6: IJB-A Verification. OursA is the Inception ResNet-v2 model and OursR is the ResNet-

101 model. The best results are in bold and the second best results are underlined.
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TPIR (%) @ FPIR Retrieval Rate (%)

Method 0.01 0.1 Rank=1 Rank=5 Rank=10

Casia [179] 38.3 61.3 82.0 92.9 -

Pose [2] 52.0 75.0 84.6 92.7 94.7

BL [25] - - 89.5 96.3 -

NAN [204] 81.7 91.7 95.8 98 98.6

3D [115] - - 90.6 96.2 97.7

DCNN f usion [22] 65.4 83.6 94.2 98.0 98.8

DCNNt pe [154] 75.3 83.6 93.2 - 97.7

DCNNall [145] 70.4 83.6 94.1 - 98.8

ALL + TPE [145] 79.2 88.7 94.7 - 98.8

TP [29] 77.4 88.2 92.8 - 98.6

RX101l2+t pe [142] 91.5 95.6 97.3 - 98.8

OursA 91.4 96.1 97.3 98.2 98.5

OursR 91.6 96.0 97.4 98.5 98.9

Fusion (Ours) 92.0 96.2 97.5 98.6 98.9

Table 4.7: IJB-A 1:N Mixed Search. OursA is the Inception ResNet-v2 model and OursR is the

ResNet-101 model. The best results are in bold and the second best results are under-

lined.
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genuine comparisons. Table 4.8 and Table 4.9 provide the verification and identification

results respectively.

4.5.4.3 IJB-C

The IJB-C evaluation dataset [118] further extends IJB-B. It contains 31,334 still

images and 117,542 video frames of 3,531 subjects. In addition to the evaluations from

IJB-B, this dataset evaluates end-to-end recognition. There are about 20,000 genuine

comparisons, and about 15.6 million impostor pairs in the verification protocol. For the

1:N mixed search protocol, there are about 20,000 probe templates. In Table 4.10 we list

the results of our system for 1:1 verification. Similarly, in Table 4.11 we give results for

1:N mixed search. We also report the 1:N wild probe search results in Table 4.12.

4.5.4.4 CS5

We evaluate on the (as-yet-unreleased to public) JANUS Challenge Set 5 dataset

as well. This dataset consists of 2,875,950 still images. It also provides a training set

consisting of 235,616 identity clusters and 981,753 images. Note that we did not use this

training set to train our networks. The still image verification protocol contains 547,131

templates with 332,574 genuine matches, and 822,354,805 imposter matches. For the

1:N identification task, there are 332,574 probe templates. Gallery, G1 has 1,106,778

identity clusters and G2 has 1,107,779 identity clusters. The major differences be-

tween CS5 and IJB datasets are: 1) CS5 contains much more templates and verifica-

tion pairs compared to IJB datasets, 2) CS5 gallery contains 1 million distractor faces
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True Accept Rate (%) @ False Accept Rate

Method 10−6 10−5 10−4 10−3 10−2 10−1

GOTS [187] - - 16.0 33.0 60.0 -

VGGFaces [136] - - 55.0 72.0 86.0 -

FPN [14] - - 83.2 91.6 96.5 -

Light CNN-29 [190] - - 87.7 92.0 95.3 -

VGGFace2 [9] - 70.5 83.1 90.8 95.6 -

Center Loss [182] 31.0 63.6 80.7 90.0 95.1 98.4

MN-vc [193] - - 83.1 90.9 95.8 98.5

SENet50+DCN [192] - - 84.9 93.7 97.5 99.7

ArcFace [32] 37.5 89.0 94.2 96.0 97.5 98.4

OursA 27.7 61.6 89.1 94.3 97.0 98.7

OursR 48.4 80.4 89.8 94.4 97.2 98.9

Fusion (Ours) 45.6 77.8 90.3 94.6 97.3 98.9

Table 4.8: IJB-B Verification. OursA, OursR, and Fusion are the Inception ResNet-v2, ResNet-

101, and Fused features respectively. The best results are in bold and the second best

results are underlined.
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TPIR (%) @ FPIR (For G1, G2) Retrieval Rate (%) (For G1, G2)

Method 0.01 0.1 Rank=1 Rank=5 Rank=10

GOTS [187] - - 42.0 - 62.0

VGGFace [136] - - 78.0 - 89.0

FPN [14] - - 91.1 - 96.5

Light CNN-29 [190] - - 91.9 94.8 -

VGGFace2 [9] 74.3 86.3 90.2 94.6 95.9

Center Loss [182] 75.5, 67.7 87.5, 82.8 92.2, 86.0 95.4, 92.5 96.2, 94.4

OursA 83.1, 75.5 93.6, 89.3 95.5, 90.8 97.5, 94.2 98.0, 95.8

OursR 86.9, 78.6 94.0, 89.1 95.6, 91.5 97.7, 95.4 98.0, 96.5

Fusion (Ours) 88.2, 79.4 94.3, 89.7 95.8, 91.8 97.7, 95.2 98.1, 96.4

Table 4.9: IJB-B 1:N Mixed Search. OursA and OursR are our Inception ResNet-v2 and ResNet-

101 models respectively. Note that the retrieval rates for some past methods are average

over G1 and G2. The best results are in bold and the second best results are underlined.
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True Accept Rate (%) @ False Accept Rate

Method 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Center Loss [182] 36.0 37.6 66.1 78.1 85.3 91.2 95.3 98.2

MN-vc [193] - - - - 86.2 92.7 96.8 98.9

SENet50+DCN [192] - - - - 88.5 94.7 98.3 99.8

ArcFace [32] - - 85.4 92.8 95.6 97.2 98.0 98.8

OursA 16.5 19.5 43.6 77.6 91.9 95.6 97.8 99.0

OursR 60.6 67.4 76.4 86.2 91.9 95.7 97.9 99.2

Fusion (Ours) 54.1 55.9 69.5 86.9 92.5 95.9 97.9 99.2

Table 4.10: IJB-C Verification. OursA is the Inception ResNet-v2 model and OursR is the ResNet-

101 model. Fusion is the fusion of the two features. The best results are in bold and

the second best results are underlined.

TPIR (%) @ FPIR (For G1, G2) Retrieval Rate (%) (For G1, G2)

Method 0.01 0.1 Rank=1 Rank=5 Rank=10

Center Loss [182] 79.1, 75.3 86.4, 84.2 91.7, 89.8 94.6, 93.6 95.6, 94.9

OursA 87.7, 82.4 93.5, 91.0 95.7, 92.8 97.4, 95.4 97.9, 96.4

OursR 88.0, 84.2 93.2, 90.6 95.9, 93.2 97.6, 96.1 98.1, 97.0

Fusion (Ours) 89.6, 85.0 93.8, 91.3 96.2, 93.6 97.7, 96.2 98.2, 96.9

Table 4.11: IJB-C 1:N Mixed Search. OursA and OursR are the models described in section 4.5.2.
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Retrieval Rate (%) (For G1, G2)

Method Rank=1 Rank=2 Rank=5 Rank=10 Rank=20 Rank=50

OursA 91.1, 86.9 93.0, 89.0 94.8, 91.1 95.8, 92.5 96.5, 93.8 97.4, 95.3

OursR 90.8, 86.3 93.0, 88.8 95.0, 91.1 96.0, 92.6 96.7, 93.9 97.5, 95.5

Fusion (Ours) 91.8, 87.5 93.6, 89.7 95.3, 91.6 96.3, 93.0 97.0, 94.4 97.7, 95.8

Table 4.12: IJB-C Wild Probe Search. Our models and fusion method are described in sections

4.5.2 and 4.5.3.

True Accept Rate (%) @ False Accept Rate

Method 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

OursA 52.44 78.99 94.88 97.34 98.18 98.74 99.28 99.75

OursR 71.52 89.68 95.20 97.28 98.19 98.79 99.36 99.78

Fusion (Ours) 70.72 90.74 95.80 97.49 98.25 98.80 99.35 99.78

Table 4.13: CS5 1:1 Verification. OursA and OursR are the Inception ResNet-v2 and ResNet-101

models respectively.

from MegaFace dataset [81] which increases the difficulty level for the open-set 1:N face

identification task. Tables 4.13, 4.14, and 4.15 give results for 1:1 verification, 1:N iden-

tification, and 1:N end-to-end identification respectively.
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TPIR (%) @ FPIR Retrieval Rate (%)

(Average for G1 and G2) (Average for G1 and G2)

Method 0.0001 0.001 0.01 0.1 Rank=1 Rank=5 Rank=10 Rank=20

Fusion (Ours) 29.96 75.90 86.76 95.59 96.99 97.76 97.92 98.06

Table 4.14: CS5 1:N Identification

Retrieval Rate (%) (Average for G1 and G2)

Method Rank=1 Rank=2 Rank=5 Rank=10 Rank=20 Rank=50

Fusion (Ours) 97.18 97.65 97.90 98.04 98.16 98.31

Table 4.15: CS5 1:N end-to-end still image identification

4.5.5 Timing

The proposed end-to-end face recognition system can detect, align, and extract

identity feature descriptors at a rate of 4 frames/second using NVIDIA K40 GPU. The

DPSSD face detector takes about 100ms to detect faces with an input image size of 512

pixels. The face alignment part is the fastest step and takes only 20ms. The two face DC-

NNs (R and A) take 50ms and 85ms respectively. Since the proposed system is modular,

we can improve its speed at the cost of minor reduction in accuracy by just replacing the

algorithms for each modules independently. For example, if the dataset contains a single

large face per image (LFW [70]), we can replace DPSSD with SSD [20] face detector.

Similarly, to improve the speed, we can just use a single face DCNN model R to extract
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feature descriptor. In this scenario, our system can attain a speed of 11 frames/second.

4.6 Face recognition accuracy of examiners and face recognition algo-

rithms

4.6.1 Introduction

∗Societies rely on the expertise and training of professional forensic facial examin-

ers, because decisions by professionals are thought to assure the highest possible level of

face identification accuracy. If accuracy is the goal, however, the scientific literature in

psychology and computer vision points to three additional approaches that merit consider-

ation. First, untrained superrecognizers from the general public perform surprisingly well

on laboratory-based face recognition studies [129]. Second, wisdom-of-crowds effects

for face recognition, implemented by averaging individuals judgments, can boost perfor-

mance substantially over the performance of a person working alone [184, 186, 34, 131].

Third, computer-based face recognition algorithms over the last decade have steadily

closed the gap between human and machine performance on increasingly challenging

face recognition tasks [140, 138].

∗This section contains an extract of a co-authored paper entitled “Face recognition accuracy of forensic

examiners, superrecognizers, and face recognition algorithms” that was published in Proceedings of the

National Academy of Sciences. The co-authors are: P Jonathon Phillips, Amy N Yates, Ying Hu, Carina A

Hahn, Eilidh Noyes, Kelsey Jackson, Jacqueline G Cavazos, Graldine Jeckeln, Swami Sankaranarayanan,

Jun-Cheng Chen, Carlos D Castillo, Rama Chellappa, David White, and Alice J OToole. The study uses

the features from the All-In-One Face model (chapter 3) and the ResNet model trained with Crystal Loss

(chapter 4).
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Computer-based face recognition systems now assist forensic face examiners by

searching databases of images to generate potential identity matches for human review [185].

Direct comparisons between human and machine accuracy have been based on algorithms

developed before 2013. At that time, algorithms performed well with high-quality frontal

images of faces with minimal changes in illumination and expression. Since then, deep

learning and deep convolutional neural networks (DCNNs) have become the state of the

art for face recognition [136, 21, 145, 142, 173]. DCNNs can recognize faces from highly

variable, low-quality images. These algorithms are often trained with millions of face im-

ages of thousands of people.

Figure 4.12: Examples highlighting the face region in the images used in this study. (Left) This

pair is a same identity pair, and (Right) this pair shows a different identity pair.

Our goal was to achieve the most accurate face identification using people and/or

machines working alone or in collaboration. The task was to determine whether pairs of

face images showed the same person or different people. Image pairs were prescreened

to be highly challenging based on data from humans and computer algorithms. Images

were taken with limited control of illumination, expression, and appearance. Fig. 4.12
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shows two example pairs. To provide a comprehensive assessment of human accuracy,

we tested three face specialist groups (forensic facial examiners, forensic facial reviewers,

and superrecognizers) and two control groups (fingerprint examiners and undergraduate

students). Humans responded on a 7-point scale that varied from high confidence that

the pair showed the same person (+3) to high confidence that the pair showed different

people (-3). We also tested four face recognition algorithms based on DCNNs developed

between 2015 and 2017. Algorithm responses were real-valued similarity scores indicat-

ing the likelihood that the images showed the same person. The five subject groups and

four algorithms were tested on the same image pairs. Facial examiners, reviewers, super-

recognizers, and fingerprint examiners had 3 months to complete the test. Students took

the test in a single session.

To compare humans with face recognition algorithms, four DCNNs were tested

on the same stimuli judged by humans. We refer to the algorithms as A2015 [136],

A2016 [21], A2017a [145], and A2017b [142]. A2017a is the All-In-One Face algorithm

described in chapter 3 while A2017b is a ResNet-based DCNN trained using Crystal Loss.

The inclusion of multiple algorithms provides a robust sample of the state of the art for

automatic face recognition. To make the test comparable with humans as an “unfamiliar”

face matching test, we verified that none of the algorithms had been trained on images

from the dataset used for the human test. Note that A2015 can be downloaded from the

web and therefore, provides a public benchmark algorithm.
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Figure 4.13: Human and machine accuracy. Black dots indicate AUCs of individual participants;

red dots are group medians. In the algorithms column, red dots indicate algorithm

accuracy. Face specialists (facial examiners, facial reviewers, and superrecognizers)

surpassed fingerprint examiners, who surpassed the students. The violin plot outlines

are estimates of the density for the AUC distribution for the subject groups. The

dashed horizontal line marks the accuracy of a 95th percentile student. All algorithms

perform in the range of human performance. The best algorithm places slightly above

the forensic examiners median.
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4.6.2 Results

4.6.2.1 Accuracy

Fig. 4.13 shows performance of the subject groups and algorithms using the area

under the receiver operating characteristic curve (AUC) as a measure of accuracy. The

groups are ordered by AUC median from the most to least accurate: facial examiners

(0.93), facial reviewers (0.87), superrecognizers (0.83), fingerprint examiners (0.76), and

students (0.68). Algorithm performance increased monotonically from the oldest algo-

rithm (A2015) to the newest algorithm (A2017b). Comparing the algorithms with the

human groups, the publicly available algorithm (A2015) performed at a level similar to

the students (0.68). Algorithm A2016 performed at the level of fingerprint examiners

(0.76). Algorithm A2017a performed at a level (0.85) comparable with the superrecog-

nizers (0.83) and reviewers (0.87). The performance of A2017b (0.96) was slightly higher

than the median of the facial examiners (0.93).

4.6.2.2 Performance Distributions

For the algorithms, the accuracy of A2017b was higher than the majority (73%)

of participants in the face specialist groups. Conversely, 35% of examiners, 13% of re-

viewers, and 23% of superrecognizers were more accurate than A2017b. Compared with

students, the accuracy of A2017b was equivalent to a student at the 98th percentile (z

score = 2.090), A2017a was at the 91st percentile (z score = 1.346), A2016 was at the

76th percentile (z score = 0.676), and A2015 was at the 53rd percentile (z score = 0.082).
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These results show a steady increase in algorithm accuracy from a level comparable with

students in 2015 to a level comparable with the forensic facial examiners in 2017.

4.6.2.3 Fusing Humans and Machines

We examined the effectiveness of combining examiners, reviewers, and superrec-

ognizers with algorithms. Human judgments were fused with each of the four algorithms

as follows. For each face image pair, an algorithm returned a similarity score that is an

estimate of how likely it is that the images show the same person. Because the similarity

score scales differ across algorithms, we rescaled the scores to the range of human ratings.

For each face pair, the human rating and scaled algorithm score were averaged, and the

AUC was computed for each participantalgorithm fusion.

Fig. 4.14 shows the results of fusing humans and algorithms. The most effective fu-

sion was the fusion of individual facial examiners with algorithm A2017b, which yielded

a median AUC score of 1.0. This score was superior to the combination of two facial ex-

aminers (MannWhitney U test = 2 : 82×104, n1 =1,596, n2 =57, P=8.37×10−7). Fusing

individual examiners with A2017a and A2016 yielded performance equivalent to the fu-

sion of two examiners (MannWhitney U test = 4.53×104, n1 = 1,596, n2 =57, P=0:956;

MannWhitney U test = 4.33× 104, n1 =1,596, n2 =57, P=0:526, respectively). Fusing

one examiner with A2015 did not improve accuracy over a single examiner (MannWhit-

ney U test=1,592, n1 =57, n2 =57, P=0:86). Fusing one examiner with A2017b proved

more accurate than fusing one examiner with either A2017a or A2016 (Mann Whitney

U test=1,054, n1 =57, n2 =57, P=7.92× 10−4; MannWhitney U test=942, n1 =57, n2
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=57, P=7.28× 10−5, respectively). Finally, fusing one examiner with both A2017b and

A2017a did not improved accuracy over fusing one examiner with A2017b (MannWhit-

ney U test=1,414, n1 =57, n2 =57, P=0:21). This analysis was repeated for fusing al-

gorithms and facial reviewers and for fusing algorithms and superrecognizers. Similar

results were found for both groups.

4.6.3 Discussion

The results of the study point to tangible ways to maximize face identification

accuracy by exploiting the strengths of humans and machines working collaboratively.

First, to optimize the accuracy of face identification, the best approach is to combine

human and machine expertise. Fusing the most accurate machine with individual foren-

sic facial examiners produced decisions that were more accurate than those arrived at by

any pair of human and/or machine judges. This human-machine combination yielded

higher accuracy than the fusion of two individual forensic facial examiners. Compu-

tational theory indicates that fusing systems works best when their decision strategies

differ [83, 69]. Therefore, the superiority of human-machine fusion over human-human

fusion suggests that humans and machines have different strengths and weaknesses that

can be exploited/mitigated by cross-fusion.

Second, the results indicate the potential for machines to contribute beneficially to

the forensic process. Accuracy of the publicly available algorithm that we tested (A2015)

was at the level of median accuracy of the studentsmodestly above chance. The other

algorithms follow a rapid upward performance trajectory: from parity with a median fin-
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Figure 4.14: Fusion of examiners and algorithms. Violin plots show the distribution of AUCs for

each fusion test. Red dots indicate median AUCs. The distribution of individual ex-

aminers and the fusion of two examiners appear in columns 1 and 2. Also, algorithm

performance appears in column 7. In between, plots show the forensic facial exam-

iners fused with each of the four algorithms. Fusing one examiner and A2017b is

more accurate than fusing two examiners, fusing examiners and A2017a or A2016

is equivalent to fusing two examiners, and fusing examiners with A2015 does not

improve accuracy over a single examiner.
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gerprint examiner (A2016) to parity with a median superrecognizer (A2017a) and finally,

to parity with median forensic facial examiners (A2017b). There is now a decade-long

effort to compare the accuracy of face recognition algorithms with humans [140]. In

the earliest tests [139], the face matching tasks presented relatively controlled images.

As these tests progressed, algorithms and humans were compared on progressively more

challenging image pairs. In this study, image pairs were selected to be extremely chal-

lenging based on both human and algorithm performance. The difficulty of these items

for humans was supported by the accuracy of students, who represent a general popula-

tion of untrained humans. Students performed poorly on these challenging image pairs.

All four of the algorithms performed at or above median student performance. Two al-

gorithms performed in the range of the facial specialists, and one algorithm matched the

performance of forensic facial examiners.

4.7 Conclusions

In this chapter, we proposed Crystal Loss that adds a simple, yet effective, L2-

constraint to the regular softmax loss for training a face verification system. The con-

straint enforces the features to lie on a hypersphere of a fixed radius characterized by

parameter α . We also provided bounds on the value of α for achieving a consistent per-

formance. We also presented an overview of modern face recognition systems based on

DCNNs. We discussed the major components of our end-to-end face recognition pipeline.

Face detection is carried out by the proposed DPSSD face detector while keypoint lo-

calization is done using the All-in-One CNN. We also presented the details of our face
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verification/identification module which uses an ensemble of two networks for feature

representation. We discussed training and datasets details for our system and how it re-

lates to existing works on face recognition. We presented the results of our system for

four challenging datasets, viz., IJB-A, IJB-B, IJB-C, and IARPA Janus Challenge Set 5

(CS5). We show that our ensemble-based system achieves near state-of-the-art results.

Our face verification accuracy for IJB-C is lower only to ArcFace [32] at FAR of 1e-6 to

1e-1. ArcFace uses a larger training dataset (5.8 million images with 85k identities) and

a more sophisticated loss function which builds on Crystal Loss function. However, Arc-

Face does not report results for FARs of 10-7 or 10-8. Our pipeline produces reasonable

numbers even at these extreme FARs. In conclusion, Crystal loss is a valuable replace-

ment for the existing softmax loss, for the task of face recognition. In the future, we

would further explore the possibility of exploiting the geometric structure of the feature

encoding using manifold-based metric learning.

Additionally, we performed the most comprehensive examination to date of face

identification performance across groups of humans with variable levels of training, ex-

perience, talent, and motivation. We compared the accuracy of state-of-the-art face recog-

nition algorithms with humans and show the benefits of a collaborative effort that com-

bines the judgments of humans and machines. The work draws on previous cornerstone

findings on human expertise and talent with faces, strategies for fusing human judgments,

and computational advances in face recognition. The study provides an evidence-based

roadmap for achieving highly accurate face identification. These methods should be ex-

tended in future work to test humans and machines on a wider range of face recognition

tasks, including recognition across viewpoint and with low-quality images and video as
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well as recognition of faces from diverse demographic categories.
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Chapter 5: Compact Convolutional Networks for Adversarial Defense

5.1 Introduction

Adversarial attacks have emerged as a potential threat to CNN-based systems. Ad-

versarial images can be used by a suspect to fool a face verification system, by letting

the person go unidentified. These attacks can also cause self-driving cars to mis-classify

scene objects such as a stop sign leading to adverse effects when these systems are de-

ployed in real time. As networks move from the research labs to the field, they need to be

designed in a way that they are not only accurate, but also robust to adversarial perturba-

tions. Several recent works have been proposed to improve robustness, such as adversarial

training [53, 155], gradient masking [174], etc. In this work, we impose constraints on

the sensitivity of the learned feature space and propose a modified convolution operation

that can desensitize the learned mapping in the direction of adversarial perturbations.

It has been hypothesized that CNNs learn a highly non-linear manifold on which the

images of same class lie together, while images from different class are separated. Hence,

the original image and the adversarial image lying close to each other in Euclidean space,

are far separated on the manifold or in feature space. When designing a robust classifier,

we would like to address the following question: Can we bring the original and perturbed

images closer in the feature space of a learned mapping to improve its robustness? To
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Figure 5.1: Five test samples from CIFAR10 [89] dataset (top) that are correctly classified by

both CNN and CCN. Corresponding adversarial images crafted using DeepFool [123]

attack and misclassified by CNN (middle) and CCN (bottom). The adversarial attacks

on CCN can be detected trivially by a human observer.

address this question, we employ the property of compactness in the context of feature

learning that would enhance a network’s robustness to adversarial attacks. Compactness

enforces the features to be bounded and lie in a closed space. It reduces the degree of

freedom for the features to be learned. This restricts the extent to which a feature for

perturbed image can move, making it less likely to cross the class boundary.

To enforce compactness in the feature space, we explore the L2-Softmax Loss pro-

posed in [142]. The L2-Softmax Loss establishes compactness by constraining the fea-

tures to lie on a hypersphere of fixed radius, before applying the softmax loss. It brings

the intra-class features close to each other and separates the inter-class features far apart.
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In this way, features from the original and the adversarial image are closer to each other

using L2-Softmax Loss, compared to training with regular softmax loss (see Fig. 5.2).

Using these insights, we propose a novel convolution method, called compact con-

volution, that significantly enhances a network’s robustness by ensuring compact fea-

ture learning at every layer of the network. A compact convolution module applies the

L2-normalization step and scaling operations to every input patch before applying the

convolutional kernel in a sliding window fashion. Compact Convolutional Networks

(CCNs), built using these modules, are highly robust compared to a typical CNN. Fig. 5.1

shows some sample images and corresponding adversarial attacks generated using Deep-

Fool [123] to fool a CNN and a CCN. The adversarial samples for CCN can easily be

distinguished from the original samples by a human observer. The figure shows that

CCNs are robust to small adversarial perturbations such that to fool a CCN the magnitude

of perturbations required is much higher, which completely distorts the image and can be

detected easily.

5.2 Related Works

A lot of research has gone into generating adversarial perturbations to fool a deep

network. Szegedy et al. [172] first showed the existence of adversarial perturbations in

CNNs and proposed a L-BFGS based optimization scheme to generate the same. Later,

Goodfellow et al. [53] proposed Fast Gradient Sign Method (FGSM) to generate adver-

sarial samples. DeepFool [123] attack iteratively finds a minimal perturbation required

to cause a network to mis-classify. Other recently proposed adversarial attacks include
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Jacobian-based Saliency Map Approach (JSMA) [133], Carlini-Wagner (CW) attack [12],

Universal Perturbations [122], etc.

To safeguard the network from adversarial attacks, researchers have focused on two

approaches: 1) Adversarial Detection, and 2) Adversarial Defense. Methods based on

adversarial detection [112, 119, 54, 44] attempt to detect an adversarial sample before

passing it through the network for inference. These methods put an extra effort in de-

signing a separate adversarial detector which itself has the risk of being fooled by the

attacker. Recently, Carlini and Wagner [11] showed that most of the adversarial detectors

are ineffective and can be fooled.

Methods based on adversarial defense aim at improving the network’s robustness

to classify adversarial samples correctly. One way to achieve robustness is by simultane-

ously training the network with clean and adversarial samples [53, 121, 161, 92]. These

methods are stable to the attack on which they are trained, but ineffective against a dif-

ferent attack. Preprocessing the input to nullify the adversarial effect is another way to

defend the network [35, 56]. Few methods have focused on modifying the network topol-

ogy or optimization procedure for adversarial defense. Gu and Rigazio [55] proposed

Deep Contractive Network that adds a smoothness penalty on the partial derivatives at

every layer. Cisse et al. [26] proposed Parseval Networks that improves robustness by en-

forcing the weight matrices of convolutional and linear layers to be Parseval tight frames.

Papernot et al. [134] showed that knowledge distillation with high temperature parame-

ter can be used as defense against adversarial samples. Warde et al. [181] showed that a

similar robustness as defensive distillation can be obtained by training the network with

smooth labels. Zantedeschi et al. [211] used Bounded ReLU activations to enhance net-
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work’s robustness to adversarial perturbations.

While these methods have focused on improving defense to adversarial attacks in

general, most of them have focused on white box attacks and incur additional computa-

tional overhead during training. In this work, we propose an approach to achieve adversar-

ial defense in CNNs using compact convolutions which can be seamlessly integrated into

any existing deep network architecture. We further demonstrate its effectiveness against

both white box and black box adversarial attacks.

5.3 Compact Learning for Adversarial Defense

5.3.1 Compactness

Compactness is a property associated with a subset of Euclidean space which is

closed and bounded. A space is closed when it contains all its limiting points. A space is

bounded when all its points lie within a fixed distance of each other. Euclidean space in

itself is not compact, since it is not bounded.

The features obtained from a typical CNN are not compact, since the softmax loss

does not constrain them to lie in a closed or bounded space. It distributes the features in

the Euclidean space such that the overall training loss is minimized. In a way, it over-

fits to the training domain. Thus an adversarially perturbed image, although close to the

original image in input space, can lie very far away in the Euclidean feature space. On

the other hand, features learned on a compact space have restricted degrees of freedom

which does not allow the adversarial features to move far away from the original features.

A given perturbed image would lie farther from the original image in the Euclidean space
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compared to a compact space. Thus compact feature learning helps in improving the

robustness of the network.

One way to enforce compactness on the CNN features is to restrict them to lie on

a compact space during training. A simple example of a compact space is a hypersphere

manifold, which is both closed and bounded. L2-Softmax Loss [142] (discussed in Sec-

tion 5.3.2), performs compact feature learning by constraining the features to lie on a

hypersphere of a fixed radius.

5.3.2 L2-Softmax Loss

L2-Softmax loss was recently proposed in [142] for improving the task of face ver-

ification. The loss imposes a constraint on the deep features to lie on a hypersphere of a

fixed radius, before applying the softmax penalty. The loss is defined as:

LS =−
m

∑
i=1

log
eW T

yi
(

αxi
‖xi‖2

)+byi

∑
n
j=1 eW T

j (
αxi
‖xi‖2

)+b j
, (5.1)

where xi is the ith deep feature for the class label yi, Wj is the weight and b j is

the bias corresponding to the class j, α is a positive scalar parameter, and m, n are the

batch-size and number of classes respectively. The features are first normalized to unit

length and then scaled by α before passing it through the softmax classifier. Constraining

the features to lie on a hypersphere reduces the intra-class variations and enhances the

inter-class separability.

From Fig. 5.2(a), we can see that the features trained using softmax loss do not

satisfy the compactness property since the feature space is not closed or bounded. The
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(a) (c)

Figure 5.2: Feature vizualization from the last layer (dimension=2) of CNN trained on

MNIST [95] with (a) Softmax Loss, (b) L2-Softmax Loss [142].

L2-Softmax Loss constrains the features to lie on a hypersphere manifold which is a closed

space. Also, the L2-norm of the feature vectors is always constant and equal to α , which

makes the feature space bounded. Hence, the L2-Softmax Loss obeys the compactness

property (Fig. 5.2(b)). Experimental analysis (see section 5.5) shows that L2-Softmax

Loss is more robust to adversarial attacks than softmax loss. To the best of our knowledge,

L2-Softmax loss has not been used for adversarial defense before.

5.3.3 Sub-linearity of Adversarial Examples with Compact Learning

In this section, we show that compact feature learning restricts the change in acti-

vation due to perturbation η to grow sub-linearly with the input dimension. Consider a

linear model with weight vector w and input vector x with dimension n. Let the adver-

sarial example be represented as x̃ = x + η . The activation is given by the dot product:

wT x̃ = wT x+wT
η (5.2)
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It was shown by Goodfellow et al. [53] that the change in activation wT η will grow with

εmn, where m is the average magnitude of the weight vector, and ‖η‖∞ < ε . Thus, the

effect of adversarial perturbation increases linearly with the input dimension. Now, with

compact feature learning using L2-Softmax loss with α = 1, (5.2) can be rewritten as:

wT x̃
‖x̃‖2

= wT x
‖x+η‖2

+wT η

‖x+η‖2
. (5.3)

The second term in (5.3) is the change in activation due to adversarial perturbation.

The denominator in this term, which is the L2-norm of the perturbed signal (‖x+η‖2),

changes proportional to the square root of the dimension of x. This can be intuitively

thought of as follows. Let the average absolute activation of x be p. Then the L2-norm

of the signal x can be well approximated by p
√

n. While the scaling factor (p) depends

on the actual variations in the feature value, the dependency on the dimension is clear.

Applying this insight to ( 5.3), we see that the change in the activation now grows at the

rate of
√

n instead of n, due to the normalizing factor in the denominator. Thus, for a

given input dimension, the change in activation due to adversarial perturbation would be

smaller for compact features compared to the typical CNN features, which makes it ideal

for training a robust network.

5.4 Compact Convolution

The L2-Softmax loss [142] enforces compactness only to deep features from the

last layer of CNN. It was motivated by efficient representation of normalized feature at

the output space, whereas in this paper we want to reduce the sensitivity of the activations
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at each layer to spurious perturbations. Hence, we propose to extend the compactness

property to features from the intermediate layers of CNNs as well. A typical CNN is a

hierarchy of convolutional and fully-connected layers stacked with non-linear activation

functions after every layer. A discrete convolution is a linear function applied on a patch

of a signal in a sliding window fashion. Let W be the convolution kernel of size 2k+ 1,

xn,k be an input patch defined as:

xn,k = [x(n− k),x(n− k+1), ...,x(n+ k)], (5.4)

where x(n) is the nth element of input vector x. The convolution operation is repre-

sented as:

y(n) =W T xn,k, (5.5)

where y(n) is the nth element of the output vector y. To enforce compactness in

convolutional layers, we need to ensure that every input patch at a given location is first

L2-normalized and scaled before multiplying with the convolutional kernel W . Formally,

we want the convolution output (ỹ(n)) at position n to be:

ỹ(n) =W T (αxn,k)

‖xn,k‖2 +δ
, (5.6)

where δ is a small constant added to avoid division by zero. We call this new

method of patch-normalized convolution as compact convolution. A toy example de-

picting the difference between typical convolution and compact convolution is shown in

Fig. 5.3.
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Figure 5.3: A toy example for convolution (left) and compact convolution (right).

In a deep CNN, the convolution kernel is typically applied to high dimensional

feature maps. Normalizing every feature patch before multiplying with the convolutional

kernel is computationally expensive and redundant, since the patches are overlapping.

To implement compact convolution efficiently in a deep network, we propose a compact

convolution module (shown in Fig. 5.4). We split the input feature map into two branches.

The first branch carries out the traditional convolution operation with parameters of size

k× k, without bias addition. The second branch first computes the sum of squares along

the channel dimension of the input. Subsequently, it is convolved with a k× k kernel

containing fixed value of all ones. This step provides the squared L2-Norm of sliding-

window patches for every output location in a feature map. We perform element-wise

square-root on top of it and add a small constant δ = 0.01. Lastly, each channel of the

convolutional output from the first branch is divided element-wise with the output from

the second branch. We then scale the final output with a learnable scalar parameter α

and add the bias term. The compact convolution module uses just one extra learnable

parameter (α) compared to the traditional convolutional layer.

Since the linear operation in fully-connected layers is a special case of convolution,
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Figure 5.4: Block diagram of a compact convolution module.

the compact convolution operation for these layers results in L2-normalization and scaling

of the feature vectors. It constrains the features to lie on a hypersphere of fixed radius (α),

before applying the dot product with the layer parameters. We call the deep networks

with compact convolution modules as Compact Convolutional Networks (CCNs). They

follow the compactness property at every layer of the network, which greatly enhances

their robustness against multiple kinds of adversarial attacks. The L2-Softmax Loss [142]

inherently gets applied in CCNs.

5.5 Experiments

We evaluate the effectiveness of the proposed defense methods on MNIST [95],

CIFAR10 [89] and ImageNet [152] datasets. The MNIST [95] dataset contains 60,000

training and 10,000 test images of handwritten digits. The images are 28× 28 dimen-

sional with values in [0,1]. CIFAR10 [89] dataset contains 50,000 training and 10,000

test images of 10 classes. The images are 32× 32× 3 dimensional, with values scaled

between 0 and 1.

We use two well-known methods for crafting adversarial attacks: Fast Gradient

Sign Method [53] (FGSM) and DeepFool [123]. The FGSM attack adds the sign of the
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gradient to the input, scaled by the factor ε as shown in (5.7)

x̃ = x+ ε sign(∇xJ(θ ,x,y)), (5.7)

where x is the input image, x̃ is the crafted adversarial image, ∇xJ(θ ,x,y)) is the

gradient of the cost function with respect to the input. This method is very fast, since it

uses a single backward step to generate the attack. On the other hand, DeepFool [123]

iteratively finds the minimal perturbation required to mis-classify the input in the direc-

tion of the nearest class boundary. Though slower than FGSM [53], DeepFool [123] can

generate adversarial images with smaller magnitude of perturbations, which are indistin-

guishable to human observer. We use the Foolbox [147] library to generate these attacks.

Table 5.1 provides the network architectures used for training. For training on

MNIST [95], we use the architecture proposed by Papernot et al. [134]. The learning

rate is set to 0.1 for the first thirty epochs, and decreased by a factor of 0.1 after every ten

epochs. We train the network for fifty epochs. For training on CIFAR10 [89], we use the

standard VGG11 [163] network. The convolutional layers use 3×3 kernels with padding

of one. We start with a learning rate of 0.1 which is decreased by a factor of 0.2 after 60,

120 and 160 epochs. We train the network for 200 epochs. We use SGD with momentum

(0.9) and weight decay (5×10−4) for all our training. We use mean subtraction of 0.5 as

a pre-processing step.

We compare and evaluate the following defense methods against adversarial at-

tacks:

• SM - The baseline model trained using the typical Softmax loss function.
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Table 5.1: Overview of network architectures for MNIST [95] and CIFAR10 [89] datasets

Layer MNIST CIFAR10

Conv+ReLU 32 filters (3x3) 64 filters (3x3)

Conv+ReLU 32 filters (3x3) 128 filters (3x3)

MaxPool 2x2 2x2

Conv+ReLU 64 filters (3x3) 256 filters (3x3)

Conv+ReLU 64 filters (3x3) 256 filters (3x3)

MaxPool 2x2 2x2

Conv+ReLU - 512 filters (3x3)

Conv+ReLU - 512 filters (3x3)

MaxPool - 2x2

Conv+ReLU - 512 filters (3x3)

Conv+ReLU - 512 filters (3x3)

MaxPool - 2x2

FC+ReLU 200 units 512 units

FC+ReLU 200 units 512 units

Softmax 10 units 10 units
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•LS (Label Smoothing) - The model trained using Softmax Loss with soft labels { 1
90 ,0.9} [181]

instead of discrete labels {0,1}

• BReLU (Bounded ReLU) - The model trained using bounded ReLU [211] activation

function instead of ReLU. The activations are clipped between [0,1].

• L2SM (L2-Softmax) - The model trained using L2-Softmax Loss [142] as discussed in

Section 5.3.2.

• CCN (Compact Convolutional Network) - The model trained with compact convolution

modules instead of traditional convolutional and fully-connected layers, as discussed in

Section 5.4.

• CCN+LS (Compact Convolutional Network with Label Smoothing) - A CCN trained

using soft labels { 1
90 ,0.9}

The experiments are organized as follows. Section 5.5.1 evaluates the proposed

models on MNIST [95], CIFAR10 [89] and ImageNet [152] datasets, against FGSM and

DeepFool attacks in a white-box setting. It also analyzes the effect of adversarial training

on different models. Section 5.5.2 evaluates the robustness in a black-box setting, and

discusses the transferability of various attacks. Section 5.5.3 compares the robustness

using other feature normalization methods such as Local Response Normalization [88]

and batch-normalization [72].
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5.5.1 White-Box Attacks

In a white-box attack, the attacker has full access to the network to be attacked.

For each of the defense methods, we generate FGSM [53] and DeepFool [123] attack for

MNIST [95] and CIFAR10 [89] testset.

Table 5.2 provides the classification accuracy of various defense methods on adver-

sarial examples crafted using FGSM [53] for MNIST [95] and CIFAR10 [89] testset. We

perform evaluations for four different ε values {0.1,0.2,0.3,0.4}. Higher values of ε lead

to larger perturbation, thus decreasing accuracy. Note that ε = 0 corresponds to the clean

test samples without any adversarial perturbation. From the table, we find that both CCN

and CCN+LS are highly robust to FGSM attack, with minimal degradation in accuracy.

Specifically, for ε = 0.3, CCN achieves an accuracy of 81.38% on MNIST [95] which is

more than 2× factor improvement over the baseline model with accuracy 31.76%. La-

bel Smoothing along with CCN (CCN+LS) further enhances the robustness to achieve

an accuracy of 89.73%. The L2SM model shows significant improvement over the base-

line, which establishes its robustness. A similar trend is observed with FGSM [53] attack

on CIFAR10 [89] testset. Since CIFAR10 is a harder dataset, we use the ε values of

{ 2
255 , 4

255 , 8
255 , 16

255} to craft the FGSM attack. For ε = 8
255 , we observe 5× improvement

using CCN and CCN+LS, compared to the baseline model.

Table 5.3 provides the classification accuracies of different defense methods against

DeepFool [123] attack, on MNIST and CIFAR10 datasets. Since, DeepFool is an iterative

attack, it will mostly find a perturbation to fool the network. To evaluate using DeepFool,

the iterations are carried out until the adversarial perturbation (η) causes the network to
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Table 5.2: Accuracy (%) on MNIST [95] and CIFAR10 [89] for FGSM [53] attack. The best

accuracy is shown in bold and the second-best accuracy is underlined

MNIST CIFAR10

Method ε=0 ε=0.1 ε=0.2 ε=0.3 ε=0.4 ε=0 ε=2 ε=4 ε=8 ε=16

SM 99.50 92.61 63.71 31.76 19.39 91.14 60.82 34.62 14.30 8.57

LS [181] 99.53 95.62 85.13 44.25 15.57 91.03 66.7 58.4 54.07 51.05

BReLU [211] 99.54 95.29 74.83 42.51 19.41 90.87 61.49 35.02 18.01 13.73

L2SM 99.48 94.51 79.68 60.32 45.16 91.37 70.58 65.39 63.71 62.59

CCN 99.50 96.99 91.64 81.38 60.65 90.54 73.72 71.47 69.65 66.23

CCN+LS 99.43 97.26 93.68 89.73 75.95 90.51 80.93 79.2 76.8 71.38

mis-classify, or the ratio of L2-norm of the perturbation (η) and the input (x) reaches the

max-residue-ratio (d), as given in (5.8).

‖η‖2

‖x‖2
≤ d (5.8)

The evaluations are carried out with different values of d = {0.1,0.2,0.3,0.4,0.5}.

From Table 5.3, we find that LS and CCN perform comparably against DeepFool attack

on MNIST. The model CCN+LS achieves the best performance since it leverages the

qualities of both LS and CCN models. On CIFAR10 dataset, CCN performs better than

LS against DeepFool attack. The effect of label smoothing is less for CIFAR10, since the

probability scores are lower owing to the difficulty of the dataset. The models CCN and

CCN+LS significantly outperform other defense methods against DeepFool attack.

We also provide a quantitative measure of model’s robustness against DeepFool [123]
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Table 5.3: Accuracy (%) for DeepFool [123] attack (with different max-residue-ratio d) on

MNIST [95] and CIFAR10 [89] testset. The best accuracy is shown in bold and the

second-best accuracy is underlined

MNIST CIFAR10

Method d=0.1 d=0.2 d=0.3 d=0.4 d=0.5 d=0.1 d=0.2 d=0.3 d=0.4 d=0.5

SM 93.24 63.22 18.73 1.89 0.53 5.73 5.72 5.72 5.72 5.72

LS [181] 96.85 92.2 88.12 82.05 70.08 57.33 43.93 31.77 21.89 14.6

BReLU [211] 96.15 84.33 70.13 57.25 45.5 22.44 15.49 10.48 7.29 6.37

L2SM 96.5 88.22 75.94 59.47 40.31 66.63 56.93 47.89 38.52 28.85

CCN 97.06 92.18 83.46 69.25 48.54 73.17 71.78 70.24 68.13 64.02

CCN+LS 97.76 95.42 92.43 88.65 84.01 80.8 79.38 78.08 76.43 74.22

attack in Table 5.4. The robustness ρadv(k̂) is computed using (5.9).

ρadv(k̂) = Ex
‖rx,k̂‖2

‖x‖2
, (5.9)

where rx,k̂ is the generated perturbation, x is the input image, and Ex is the expectation

over the entire test data. Similar to the classification accuracy, the robustness of LS is

higher than CCN for MNIST but lower for CIFAR10. CCN+LS is the most robust model

for both the datasets.

5.5.1.1 Adversarial Training

Goodfellow et al. [53] proposed to train the network simultaneously with original

and crafted adversarial images to improve it’s stability. However, adversarial training is

sensitive to the value of ε that is used to train the network on. We train the models on real
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Table 5.4: Robustness of defense methods against DeepFool [123] attack for MNIST [95] (left)

and CIFAR10 [89] (right). The best robustness is shown in bold and the second-best

robustness is underlined

Method Robustness

SM 0.225

LS [181] 0.571

BReLU [211] 0.493

L2SM 0.441

CCN 0.479

CCN+LS 0.827

Method Robustness

SM 0.014

LS [181] 0.185

BReLU [211] 0.057

L2SM 0.285

CCN 0.549

CCN+LS 0.625

and adversarial images crafted from FGSM attack with ε = 0.3 for MNIST, and ε = 8
255

for CIFAR10 dataset. The classification accuracies of adversarially trained models are

reported in Table 5.5 for MNIST and CIFAR10 datasets. The results show that adversarial

training improves the robustness for all the models. The performances of the models on

MNIST dataset are comparable to each other with accuracy values above 95%. CIFAR10

results show better distinct between performance of various models. Most of the the

models perform well for the ε value with which they were trained, but the performance

degrades on other ε values. The models CCN and CCN+LS are are less sensitive to the

training perturbation amount, and consistently stable across all the ε values.
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Table 5.5: Accuracy (%) with adversarial training against FGSM [53] attack on MNIST [95] and

CIFAR10 [89] testset. The best accuracy is shown in bold and the second-best accuracy

is underlined

MNIST CIFAR10

Method ε=0 ε=0.1 ε=0.2 ε=0.3 ε=0.4 ε=0 ε=2 ε=4 ε=8 ε=16

SM 99.49 96.51 98.67 99.15 96.06 83.8 71.56 67.18 71.46 43.09

LS [181] 99.45 98.4 98.77 99.31 98.79 83.28 77.68 69.07 52.13 34.04

BReLU [211] 99.43 96.79 98.93 99.42 97.12 85.37 72.93 67.08 80.73 31.01

L2SM 99.47 96.88 98.7 99.32 84.03 84.8 73.08 68.31 74.95 49.64

CCN 99.44 98.18 98.71 99.09 96.9 87.08 73.27 75.8 76.78 61.97

CCN+LS 99.48 98.65 98.8 98.93 94.13 87.17 76.68 77.53 77.66 70.17

5.5.1.2 Evaluation on ImageNet dataset

We also analyze the adversarial robustness of the proposed methods on ILSVRC [152]

object classification dataset. The dataset contains 1.2M training images and 50k val-

idation images with 1000 class labels. The dataset is more challenging than MNIST

and CIFAR10 as it contains large images in real-world settings. We use off-the-shelf

VGG11 [163] network for training the models. Table 5.6 provides the classification ac-

curacy of various defense methods on adversarial examples crafted using FGSM [53] and

DeepFool [123] attacks. We use the ε values of {0.1,0.3,0.5,1.0} normalized by 255 to

craft the FGSM attack. From the table, we find that LS and CCN+LS are more robust to

FGSM attack. On DeepFool [123] attack, CCN+LS is the most robust model followed by

LS.
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Additionally, we see a significant improvement in top-1 accuracy(%) by using com-

pact learning framework. L2SM achieves a top-1 accuracy of 68.78% while CCN achieves

the accuracy of 68%, which is 8% gain over the baseline SM model. Having large number

of classes improves the discriminative capacity of compact learning leading to improved

accuracy. We intend to analyze the effect of compactness for large number of classes in

future work.

Table 5.6: Accuracy (%) on ILSVRC [152] validation set for FGSM [53] attack (left). Robustness

of defense methods against DeepFool [123] attack (right). The best accuracy is shown

in bold and the second-best accuracy is underlined

Method ε = 0 ε = 0.1 ε = 0.3 ε = 0.5 ε = 1.0

SM 60.52 47.19 25.72 17.02 10.14

LS 63.80 58.84 43.17 32.55 20.21

BReLU 67.08 53.05 27.35 17.50 10.75

L2SM 68.78 56.66 33.74 22.95 13.92

CCN 68.00 51.43 28.57 19.54 12.68

CCN+LS 66.64 53.22 36.63 29.90 23.53

Method Robustness (in %)

SM 0.1325

LS 0.2951

BReLU 0.1463

L2SM 0.1911

CCN 0.1439

CCN+LS 0.4027

5.5.2 Black-Box Attacks

In a typical black-box attack, the attacker has no information about the network

architecture, its parameters or the training dataset. The attacker can query the network

and can get the output class label for a given input. We use the black-box attack proposed

by Papernot et al. [132] to evaluate the proposed models. The model on which the attack
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has to be applied is the defense model, and the model learned to replicate the behavior

of defense model is the substitute model. We treat our defense models as oracle, and

train substitute models using LeNet [94] architecture as described in [132]. Table 5.7

reports the accuracy of the defense models against FGSM attack generated using the

corresponding substitute models. We observe that CCN and CCN+LS models are most

robust to practical black-box attacks, and are consistent across different ε values. Hence,

the results show that the proposed models are robust to both white box as well as black

box attacks.

Table 5.7: Accuracy (%) against practical black-box FGSM attack (with different ε) on

MNIST [95] testset. The best accuracy is shown in bold and the second-best accuracy

is underlined

Method ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4

SM 98.49 87.44 55.41 32.84

LS [181] 98.89 91.12 52.53 29.28

BReLU [211] 98.90 91.96 66.45 39.44

L2SM 98.99 93.37 56.67 26.63

CCN 99.15 96.76 77.27 28.19

CCN+LS 99.24 97.33 84.14 32.94

5.5.2.1 Transferability of Adversarial Samples

It has been shown in [132] that adversarial examples generated by one type of net-

work can be used to fool a different type of network. This makes it easier for the attackers
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to generate adversarial samples using their independently trained models. Our defense

model should be immune to the attacks generated by itself, as well to attacks generated

from a different network.

Tables 5.8 and 5.9 report the accuracies on transfered attacks between different

defense models. (∗) in the tables indicates that the adversarial attacks were crafted and

tested on the same network, causing maximum impact. We find that the networks are

more vulnerable to the transfered attacks generated using the baseline model SM. Among

all models, CCN and CCN+LS are most robust to transferred attacks. Also, the attacks

generated using these models are less likely to fool other models. This shows that CCN

and CCN+LS provide a two-way defense. Firstly, these models would be less vulnerable

to any unknown adversarial attacks. Secondly, the attacks generated using these models

would be less harmful for any unknown network.

Table 5.8: Accuracy (%) on MNIST [95] against transfer attacks crafted using FGSM (ε = 0.3).

The best accuracy is shown in bold and the second-best accuracy is underlined

Attack crafted on

Attack tested on SM LS [181] BReLU [211] L2SM CCN CCN+LS

SM 31.76∗ 61.41 54.22 77.88 91.22 93.84

LS [181] 49.48 44.25∗ 53.63 80.47 91.76 94.69

BReLU [211] 52.62 66.43 42.51∗ 79.69 90.82 93.77

L2SM 52.01 64.93 58.91 60.32∗ 90.65 93.59

CCN 64.15 75.7 66.55 82.7 81.38∗ 93.53

CCN+LS 70.18 80.83 71.49 85.29 90.49 89.73∗
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Table 5.9: Accuracy (%) on CIFAR10 [89] against transfer attacks crafted using FGSM (ε = 8
255 ).

The best accuracy is shown in bold and the second-best accuracy is underlined

Attack crafted on

Attack tested on SM LS [181] BReLU [211] L2SM CCN CCN+LS

SM 14.30∗ 59.14 33.63 67.13 77.77 82.91

LS [181] 31.16 54.07∗ 33.28 67.26 77.84 83.11

BReLU [211] 33.63 59.65 18.01∗ 67.96 77.85 82.95

L2SM 32.59 59.95 35.01 63.71∗ 77.76 82.78

CCN 41.33 63.6 42.37 69.63 69.65∗ 80.53

CCN+LS 41.48 63.48 42.29 69.98 73.74 76.8∗

5.5.3 Effect of Feature Normalization Methods

In this experiment, we analyze the effect of Local Response Normalization (LRN) [88]

and batch-normalization [72] on the robustness of the network and compare it to the pro-

posed approach. Although both these methods normalizes the features based on local

activations or input batch statistics, they do not ensure compactness. LRN layer imple-

ments a form of lateral inhibition given by (5.10)

bi
x,y = ai

x,y/

(
k+α

min(N−1,i+n/2)

∑
j=max(0,i−n/2)

(a j
x,y)

2

)β

, (5.10)

where ai
x,y is the input activation at location (x,y) and channel i, bi

x,y is the corre-

sponding output activation. The values of constants k, n, α and β are are set as provided

in [88]. On the other hand, batch-normalization [72] reduces the internal covariate shift,
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by normalizing the features across the input batch. We compare the performance of the

models trained with LRN and batch-normalization (BN) with the baseline model SM in

Table 5.10. We find from our experiments on MNIST and CIFAR-10 datasets that LRN

or batch-normalization either improves marginally or weakens the robustness of the net-

work. Our proposed models CCN and CCN+LS significantly outperforms LRN and BN

models for both MNIST [95] and CIFAR10 [89] datasets.

Table 5.10: Accuracy (%) on MNIST [95] and CIFAR10 [89] for FGSM [53] attack. The best

accuracy is shown in bold and the second-best accuracy is underlined

MNIST CIFAR10

Method ε=0 ε=0.1 ε=0.2 ε=0.3 ε=0.4 ε=0 ε=2 ε=4 ε=8 ε=16

SM 99.50 92.61 63.71 31.76 19.39 91.14 60.82 34.62 14.30 8.57

BN [72] 99.58 88.48 30.72 11.20 9.24 92.34 59.47 40.63 26.7 16.58

LRN [88] 99.28 88.59 52.52 25.61 13.21 91.33 60.68 34.82 14.99 9.08

CCN 99.50 96.99 91.64 81.38 60.65 90.54 73.72 71.47 69.65 66.23

CCN+LS 99.43 97.26 93.68 89.73 75.95 90.51 80.93 79.2 76.8 71.38

5.5.4 C&W Attack

We evaluate different network defense methods against the attack proposed by Car-

lini and Wagner [12] (C&W Attack). L2-distance metric of the adversarial perturbation is

optimized to generate the attack, as given by:

minimize ‖1
2
(tanh(w)+1)−x‖2

2 + c f (
1
2
(tanh(w)+1)), (5.11)
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where x is the input image, and w is the variable to be optimized. For the target class t,

the function f corresponding to input x̃ is given by:

f (x̃) = max(max{Z(x̃)i : i 6= t}−Z(x̃)t ,−κ), (5.12)

where Z(x̃)i is the logit value for the ith class, and κ is the confidence with which

the misclassification occurs. In our experiments, we set as the target class t to the class

with second-highest classification score. The confidence κ is set to zero. The maximum

number of iterations is set to 1000, and the search step is limited to 6. We observe that

C&W attack is approximately 100× slower than FGSM attack [53].

Table 5.11: Mean L2-distance between the input and perturbed image on MNIST dataset, along

with the success probability of generating the C&W attack. The best result is shown

in bold and the second-best result is underlined

Method Mean Distance Success Prob.

SM 1.393 100

LS [181] 1.626 100

BReLU [211] 1.473 100

L2SM 1.453 100

CCN 1.449 100

CCN+LS 2.079 96.54

Tables 5.11 and 5.12 show the performance of difference defense methods against

C&W attack [12], on MNIST and CIFAR10 datasets respectively. We report the mean

L2-distance between the original and the adversarial samples, along with the success
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Table 5.12: Mean L2-distance between the input and perturbed image on CIFAR10 dataset, along

with the success probability of generating the C&W attack. The best result is shown

in bold and the second-best result is underlined

Method Mean Distance Success Prob.

SM 0.277 100

LS [181] 0.413 100

BReLU [211] 0.312 99.13

L2SM 0.717 94.26

CCN 0.352 99.95

CCN+LS 0.471 99.08

probability of generating the C&W attack. A higher mean distance signifies that the

defense method is more robust. For MNIST dataset, we observe a behavior similar to the

DeepFool [123] attack. The CCN+LS model significantly outperforms the other defense

approaches, followed by LS model. For CIFAR10 dataset, we find that L2-softmax loss

(L2SM) achieves the best performance with a mean distance of 0.717. It is followed by

CCN+LS with a mean distance of 0.471.

5.5.5 Ablation Study

5.5.5.1 Robustness analysis of compactness for each layer

In this section, we analyze the layer-wise effect of compactness on the robustness

of a network. We replace one layer from a CNN with the proposed compact convolutional

module, and train the entire network on MNIST [95] dataset. We use the same network
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architecture as given in Table 5.1.

Table 5.13 provides the accuracy of different networks, where only one layer is im-

plemented using compact convolution, against FGSM [53] attack (ε = 0.3) on MNIST [95]

testset. We see that the effect of compactness on the network’s robustness decreases with

the depth of the network till a certain layer, after which it increases consistently. The net-

work without any compact layer is equivalent to the SM model, and achieves the accuracy

of 31.76%. Applying compact module only to the conv1 layer improves the accuracy to

44.38%. Each of the conv2, conv3 and conv4 layers decreases the accuracy marginally.

The behavior gets reversed in fully connected layers, for which the accuracy increases

when compact module is applied to a deeper layer. Applying compact module only to the

last fully connected layer (fc3) is equivalent to the L2SM model, and achieves the best

accuracy of 60.32%. This shows that compactness has moderate effect in the shallower

layers of the network, and has maximum effect in the deepest layer of the network.

5.5.5.2 t-SNE visualization of adversarial features

In this subsection, we analyze the effect of compactness on the separability of fea-

tures. Fig. 5.5 provides a two dimensional t-SNE [113] visualization of the features ob-

tained after conv1, fc1 and fc2 layers of the network, for SM, L2SM and CCN models re-

spectively. The features are computed for the adversarial images generated using FGSM

attack (ε = 0.3), for two randomly chosen classes from MNIST [95]. From the figure, it

is evident that the features from CCN and L2SM are more separable compared to features

from SM. The difference in separability is minimum for the initial layers of the network
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Table 5.13: Accuracy (%) against FGSM attack (with ε = 0 and ε = 0.3) on MNIST [95] testset.

The best accuracy is shown in bold and the second-best accuracy is underlined

Compact Layer ε = 0 ε = 0.3

None 99.50 31.76

conv1 99.50 44.38

conv2 99.51 42.34

conv3 99.50 39.80

conv4 99.54 39.04

fc1 99.58 44.19

fc2 99.57 58.71

fc3 99.48 60.32
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(such as conv1), and dominant for the deeper layers (such as fc1 and fc2).

Figure 5.5: t-SNE plots for the features of conv1, fc1 and fc2 for models SM, L2SM and CCN

respectively. The features are computed for the adversarial images generated using

FGSM attack (ε = 0.3), for two randomly chosen classes from MNIST [95]

5.5.5.3 Analysis of learned network filters

In this subsection, we analyze and compare the characteristics of the weight filters

learned for SM, L2SM and CCN models. We compute the top 50 singular values (SVs)

for the weight matrix of conv1, conv2, conv3, conv4, fc1 and fc2 layers, and plot their

magnitudes in Fig. 5.6. From the figure, we observe that the fc2 layer of CCN and L2SM

models has fewer dominant singular values that decay very rapidly compared to SVs of

SM model. This suggests that CCN and L2SM models have a strong suppression for the

trailing dimensions, which makes them stable to the adversarial variations in the data. For
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the initial layers of the networks, the SVs for CCN, L2SM and SM models are dominant

throughout, since they are less invariant to input deformations.

Figure 5.6: Average singular value (SV) spectrum showing top 50 SVs of the weight matrix for

each layer of the network.

5.6 Conclusion

In this chapter, we show that learning features by imposing compactness constraints

can improve a network’s robustness against adversarial attacks. The L2-Softmax Loss,

that ensures feature compactness, provide better robustness compared to naive softmax

loss. This property is applied to each layer of the network using compact convolutional

modules (CCN), which significantly reduces the network’s vulnerability to adversarial

perturbations. In future, we would further analyze the necessary properties for a network

to be robust, and build sophisticated architectures that are provably robust to adversarial

attacks.
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Chapter 6: Conclusions and Future Work

6.1 Summary

In this dissertation, we discussed an end-to-end pipeline for automatic face recogni-

tion and propose efficient deep learning algorithms for each of the individual modules of

face detection, facial key-points estimation and face verification/identification. Addition-

ally, we presented a new architecture for deep neural networks using feature compactness

which is more robust to adversarial attacks.

Chapter 2 presented two algorithms for unconstrained face detection. The DP2MFD

algorithm trains DPM for faces on deep feature pyramid. We add a normalization layer to

the deep CNN architecture which reduces the bias in the face sizes. The DPSSD algorithm

uses the inbuilt feature pyramid present in a DCNN to detect faces at multiple scales.

Bottom-up feature aggregation provides the context information to accurately detect tiny

faces. Extensive experiments on publicly available unconstrained face detection datasets

demonstrate the effectiveness of our proposed approaches.

Chapter 3 presented a multi-task deep learning method called HyperFace for si-

multaneously detecting faces, localizing landmarks, estimating head pose and identifying

gender. Extensive experiments using various publicly available unconstrained datasets

demonstrate the effectiveness of our method on all four tasks. Additionally, we pre-
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sented a multi-task CNN-based method for simultaneous face detection, face alignment,

pose estimation, gender and smile classification, age estimation and face verification and

recognition. This method performs significantly better than HyperFace, even though both

of them use the MTL framework. This work demonstrates that subject-independent tasks

benefit from domain-based regularization and network initialization from face recognition

task. Also, the improvement in face verification and recognition performance compared

to [154] clearly suggests that MTL helps in learning robust feature descriptors.

Chapter 4 proposed Crystal Loss that adds a simple, yet effective, L2-constraint to

the regular softmax loss for training a face verification system. The constraint enforces the

features to lie on a hypersphere of a fixed radius characterized by parameter α . We pro-

vided bounds on the value of α for achieving a consistent performance. We also presented

an overview of modern face recognition systems based on DCNNs. Then, we discussed

the major components of our end-to-end face recognition pipeline. Face detection is car-

ried out by the proposed DPSSD face detector while keypoint localization is done using

the All-in-One CNN. We also presented the details of our face verification/identification

module which uses an ensemble of two networks for feature representation. We discussed

training and datasets details for our system and how it relates to existing works on face

recognition. We presented the results of our system for four challenging datasets, viz.,

IJB-A, IJB-B, IJB-C, and IARPA Janus Challenge Set 5 (CS5). Additionally, we per-

formed the most comprehensive examination to date of face identification performance

across groups of humans with variable levels of training, experience, talent, and moti-

vation. We compared the accuracy of state-of-the-art face recognition algorithms with

humans and show the benefits of a collaborative effort that combines the judgments of
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humans and machines. The work draws on previous cornerstone findings on human ex-

pertise and talent with faces, strategies for fusing human judgments, and computational

advances in face recognition. The study provides an evidence-based roadmap for achiev-

ing highly accurate face identification. These methods should be extended in future work

to test humans and machines on a wider range of face recognition tasks, including recog-

nition across viewpoint and with low-quality images and video as well as recognition of

faces from diverse demographic categories.

Chapter 5 showed that learning features by imposing compactness constraints can

improve a network’s robustness against adversarial attacks. The L2-Softmax Loss, that

ensures feature compactness, provided better robustness compared to naive softmax loss.

This property was applied to each layer of the network using compact convolutional mod-

ules, which significantly reduced the network’s vulnerability to adversarial perturbations.

In future, we plan to further analyze the necessary properties for a network to be robust,

and build sophisticated architectures that are provably robust to adversarial attacks.

6.2 Open Issues and Future Direction

Although the proposed face recognition system surpasses human performance on

some existing datasets like LFW [70], there are still some open problems that needs to

be addressed to make the DCNN-based recognition systems robust and practical. We

discuss some of the existing issues with current face recognition pipeline and provide

some insights into how we can overcome them.

Reliance on large training data sets: One of the top performing networks in the MegaFace
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challenge needs 500 million faces of about 10 million subjects. Such large annotated

training set may not be always available (e.g. expression recognition, age estimation).

So networks that can perform well with reasonable sized training data are needed. It has

been shown that having more unconstrained data for training always improves the perfor-

mance. However, the increment in performance does not linearly scale with the increase

in training data. It is always desirable to achieve high accuracy with less training data

since it reduces the effort required for data collection. One way to solve this is by using

self-supervised learning to pre-train the face verification network. Self supervised learn-

ing does not require the input data to be annotated, and hence can use a large number

of training samples. Many methods have been proposed for self supervised learning us-

ing context, and spatial or temporal ordering [33, 128, 137]. Wiles et al. [188] recently

proposed a self-supervised framework for learning facial attributes by simply watching

videos of a human face speaking, laughing, and moving over time. A similar approach

can be used to pre-train a face recognition system.

Variations in Resolution: Existing face verification/identification algorithms based on

deep networks do not perform well on very low resolution faces. Evaluations on recently

released IJBS [79] dataset, that contains faces from surveillance videos collected by UAV

(see Fig. 6.1), show that the identification accuracy for state-of-the art face recognition

systems drops significantly . The faces are blurry and of low resolution which makes it

is extremely difficult to extract useful facial features for identification. A major cause for

this decrease in performance is the fixed input size used by the existing face identification

deep networks. Since the networks are trained on good resolution faces of size 224×224

pixels, they are unable to extract similar meaningful features when a low resolution face
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of 20×20 pixels is resized to the 224 input size. Moreover, the face alignment also gets

affected by resolution which propagates the error down the pipeline. One approach to

solve this issue would be to train the network with low resolution and blurry faces. We

can generate the training set for these faces using artificial blurring or GANs [52]. One

can also think of other techniques such as person re-identification to solve this problem.

Figure 6.1: Sample frames from the IJBS [79] dataset. The faces are of low resolution which

makes them extremely difficult to recognize.

Variations in Appearance: Humans are able to recognize a face even with extreme

variations in appearance. For example, if a person disguises himself/herself by wear-

ing a cap, glasses and a fake moustache, he/she can still be comfortably identified by

humans. However, the performance of existing deep learning-based face identification

systems decreases significantly while identifying disguised faces. The Disguised Faces

in the Wild [93] dataset contains genuine, disguise and imposter face pairs. Evaluation
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of different face recognition algorithms on this dataset reveals that there is still room for

improving the algorithms to capture the variations present in disguise and imposter faces.

Training the models with large number of disguise and samples will help in improving

their performance. Since these images are difficult to collect, we can use GANs [52] to

generate different disguised images and use them in training.

Figure 6.2: Sample genuine, cross-subject impostor, impersonator, and obfuscated face images for

a single subject.

Open-set Face Identification: Unlike 1:1 face verification task which requires a single

comparison of face feature pairs, 1:N face identification task is much more complex as

it requires identifying a given face/template from a set of enrolled subjects present in the

gallery. As the gallery size increases, it is more difficult to identify faces. Furthermore,

for open-set face identification, most subjects in the probe images are not contained in

the gallery which makes this task more challenging. Identity-specific face attributes can

be used to provide additional information in filtering out non-relevant subjects from the
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gallery.

Incorporating Domain Knowledge: Training the face recognition networks on one set

of data and evaluating it on a different set can cause performance gap. DCNNs are still

not domain invariant, and usually overfit to the domain of training data. For example,

training on high resolution faces does not perform as expected on low resolution faces.

Similary, training on mostly Caucasian subjects leads to a performance bias against faces

of different ethnicity. The current practice to solve this issue is to rely on fine-tuning. For

instance, one can train on a generic dataset with large number of samples, and then fine-

tune on the data of same domain as that of the test set. However, most of the time there

is no information available about the test domain. In such scenarios, domain adaptation

techniques for DCNNs can help in overcoming this issue.
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