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Causality is central to scientific inquiry. There is broad agreement on the

meaning of causal statements, such as “Smoking causes cancer”, or, “Applying

pesticides affects crop yields”. However, formalizing the intuition underlying such

statements and conducting rigorous inference is difficult in practice. Accordingly,

the overall goal of this dissertation is to reduce the difficulty of, and ambiguity

in, causal modeling and inference. In other words, the goal is to make it easy for

researchers to state precise causal assumptions, understand what they represent,

understand why they are necessary, and to yield precise causal conclusions with

minimal difficulty.

Using the framework of structural causal models, I introduce a causation coeffi-

cient as an analogue of the correlation coefficient, analyze its properties, and create

a taxonomy of correlation/causation relationships. Analyzing these relationships

provides insight into why correlation and causation are often conflated in practice,

as well as a principled argument as to why formal causal analysis is necessary. Next,

I introduce a theory of causal programming that unifies a large number of previ-



ously separate problems in causal modeling and inference. I describe the use and

implementation of a causal programming language as an embedded, domain-specific

language called ‘Whittemore’. Whittemore permits rigorously identifying and esti-

mating interventional queries without requiring the user to understand the details

of the underlying inference algorithms. Finally, I analyze the computational com-

plexity in determining the equilibrium distribution of cyclic causal models. I show

this is uncomputable in the general case, under mild assumptions about the distri-

butions of the model’s variables, suggesting that the structural causal model focus

on acyclic causal models is a ‘natural’ limitation. Further extensions of the concept

will have to give up either completeness or require the user to make additional —

likely parametric — model assumptions.

Together, this work supports the thesis that rigorous causal modeling and

inference can be effectively abstracted over, giving a researcher access to all of

the relevant details of causal modeling while encapsulating and automating the

irrelevant details of inference.
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Chapter 1: Introduction

Causality is simple.

—Judea Pearl

I have been studying this stuff for over a decade now, and it is often not

obvious to me.

—Ilya Shpitser

1.1 Causality

Causality is central to scientific inquiry. Unsurprisingly, there is an enormous

literature on the topic, with key contributions from philosophy [48], economics [34],

statistics [72], genetics [89], artificial intelligence [57], and other disciplines. There

is broad agreement on the meaning of statements such as, “Smoking causes can-

cer”, or, “Applying pesticides affects crop yields”, but the intuition underlying such

statements is often difficult to formalize.

Causality is implicit in ordinary language [8], which makes it easy to introduce

unwarranted assumptions, or fail to introduce necessary assumptions in analysis.

In practice, this leads to ambiguity in modeling and inference. Non-experimental

research is often presented as “indicative of” or “suggesting” causality. However,
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outside of randomized, controlled experiments, it is not uncommon for researchers

to disagree on what “causality” even means. When faced with the difficulty of

rigorous causal modeling and inference, without the assumption of randomization,

many researchers choose to make no causal claims at all.

Accordingly, the overarching goal of this dissertation is to reduce the ambiguity

in, and difficulty of, causal modeling and inference; in other words, to make it easy

for researchers to state precise causal assumptions, understand what they represent,

understand why they are necessary, and to yield precise causal conclusions with

minimal difficulty. Although concerned with all aspects of causal inference, this

dissertation primarily focuses on predicting the effect of interventions from non-

experimental data (i.e. data not drawn from a randomized, controlled trial), which

is impossible without making additional assumptions. This dissertation aims to

make these assumptions easy to state and understand, while being amenable to

automated analysis.

What this goal entails may not be immediately clear; I claim that one of the

reasons that “causality” is ambiguous in practice is because it is used to refer to

several distinct, but closely related concepts. To clarify this point, I make frequent

reference to two conceptual hierarchies that are useful in guiding understanding and

analysis of causality: the Causal Hierarchy [74] and the Heckman Hierarchy [33].
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1.2 The Causal Hierarchy and Heckman Hierarchy

The Causal Hierarchy, also referred to as the “Ladder of Causation” (Figure

1.1), distinguishes between the types of queries that can be made in analysis:

1. Associational / statistical, e.g. “If we observe that this patient has a particular

symptom, will they recover?”

2. Interventional / causal, e.g. “If we treat this patient, will they recover?”

3. Counterfactual / hypothetical, e.g. “Given that this patient was treated, had

they not been treated, would they have recovered?”

The Causal Hierarchy is a hierarchy in the sense that these are successively

more general classes of queries. Associational queries are limited to observations

from a single model; observing a patient’s symptoms may provide information, but

does not affect any outcome. Interventions change the original model; prescribing

a treatment may cause the patient to recover, because it changes the factors that

determine the health of the patient. Counterfactual queries are the most general,

and can consider multiple possible worlds. The question of whether a patient who,

in fact, recovered would have recovered, had they not been treated involves inter-

vention (the original treatment), observation (the patient recovered), and another

hypothetical world (where the patient was not treated). These alternative “possible

worlds” or “potential outcomes” are commonly called counterfactuals because they

may — but are not required to — include conditions contrary to fact.
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Figure 1.1: The Ladder of Causation [61], also called the Causal Hierarchy. Each
level represents successively more general questions, which require more sophisti-
cated modeling and inference to answer.

The Heckman Hierarchy (Table 1.1) distinguishes between the types of tasks

in causal inference:

1. Definition of the set of counterfactuals (potential outcomes)

2. Identification from population distributions

3. Selection given actual data

The Heckman Hierarchy is a hierarchy in the sense that each task depends on

the assumptions made in the previous task. The first task requires a scientific theory
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Task Description Requirements

1 Defining the set of counterfactuals A scientific theory
2 Identifying parameters Mathematical analysis of

from population distributions point or set identification
3 Selecting models from actual data Estimation and testing theory

Table 1.1: The Heckman Hierarchy, adapted from [33]

to define the set of potential outcomes and provide rules for determining them. In

other words, potential outcomes are generated by a function of their determining

factors and manipulating these factors may generate different outcomes. For exam-

ple, classical mechanics permits modeling an object’s trajectory as a function of its

initial velocity. With respect to the assumptions in the model, it becomes possible

to predict alternative trajectories, had the initial conditions been different. Science

is based on constructing and testing such models, whether they are based on the

laws of physics, biological assumptions, or the expected utility hypothesis, to name

a few examples. It is only meaningful to treat something as a cause if it could have

— at least, in principle — been different and produced a different outcome.

With respect to the assumptions in a scientific theory, it becomes possible to

analyze problems of identification. For example, an elementary model of mechanics

may be parameterized by g, the acceleration imparted to objects due to Earth’s

gravity. The data gathered from any actual experiment to determine g will be sub-

ject to random errors. However, a well-designed experiment, combined with proper

analysis of the data will permit identifying g in the limit of infinite data samples.

In other words, identification requires finding unique mappings from population

measures to model parameters.
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Finally, model selection is the problem of inference in practice. This task lies

in the domain of estimation and hypothesis testing theory. It is the question of

what may be reasonably concluded from the actual data available, i.e. real world

samples subject to sampling variation. For example, depending on their particular

goal, a researcher may wish to accept or reject a particular hypothesis at some level

of confidence, or to calculate point or interval estimates of a parameter. Effective

model selection depends on the analysis of identification; a consistent estimator is

one that is guaranteed to converge to the true value in the limit.

The different levels of the Causal and Heckman Hierarchies are easily conflated

in practice. For example, propensity score matching is a method to estimate average

treatment effect from non-experimental data. The method works by approximating

estimands of the form
∑

s P (y | s, x)P (s) over a high dimensional S, by calculating∑
l P (y | l, x)P (l), over a one dimensional L [69] [57]. This is an estimator (task 3 in

the Heckman Hierarchy) for a statistical quantity (level 1 in the Causal Hierarchy).

With respect to certain model assumptions (task 1), this quantity is asymptotically

equal to the average treatment effect of X on Y (level 2). In this sense, propensity

score matching solves an identification problem (task 2).

Unfortunately, all of these conceptually separate concerns are considered part

of the same method, leading to ambiguity. When the necessary model assumptions

hold, propsensity score matching accurately estimates treatment effect; informally,

if the necessary assumptions hold, the resulting estimate is ‘as good as’ an estimate

obtained from experimental data. However, propensity score matching is generally

performed without explicitly specifying a causal model, making it difficult to judge
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if the model assumptions are reasonable for the problem at hand. In the best case,

this is an attempt to conduct inference with minimal assumptions. In the worst

case, it is ‘blind’ empiricism. Science is based on constructing and testing models

and a scientific theory of causality must do the same. Data analysis, alone, leads

nowhere without theory to guide it.

1.3 Research goal

In computer science, the essence of effective abstraction is to preserve all of the

relevant details in a given context, while hiding/encapsulating the irrelevant details.

Abstractions can be made at a mostly mathematical/conceptual level; for example,

models of computation, such as the Turing machine or lambda calculus, capture the

essential notion of computation, abstracting over details of computer architecture.

Abstractions also refer to concepts designed to be implemented in code; for example,

garbage collection hides the problem of memory management from a programmer

by automatically allocating and freeing memory.

The work in this dissertation builds on the existing theory of structural causal

models (SCMs). An SCM is a system of manipulable/modifiable equations that

generate the set of potential outcomes (counterfactuals). This can be seen as the

nonparametric generalization of the structural equation modeling (SEM) approach

that is dominant in econometrics [1], as well as providing semantics for the Neyman-

Rubin-Holland potential outcomes approach that is dominant in statistics and epi-

demiology [38]. SCMs are also closely related to probabilistic graphical models,
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specifically, Bayesian networks. Probabilistic graphical models are statistical mod-

els (level 1), but the causal diagrams associated with SCMs can be seen as the

causal generalization. In this dissertation, I consider structural causal models as a

foundational theory of causality and present work to support the following thesis:

Rigorous causal modeling and inference can be effectively abstracted over, giv-

ing a researcher access to all of the relevant details of modeling, while encapsulating

and automating the details of causal inference.

The following specific objectives guide this work:

• Justify and clarify the necessity of formal causal analysis. The maxim

“Correlation is not causation” has reached the status of statistical cliche. How-

ever, it is generally accepted that correlation is indicative of causation, without

being conclusive evidence of such. This suggests the following goal: determine

in what sense correlation and causation are related by devising a means by

which they can be directly compared. Specifically, design a taxonomy of corre-

lation/causation relationships and visualize how these relationships may occur

in practice.

• Develop a (meta-)theory of causal programming. Essentially, design

another axis of abstraction, similar in scope to the Causal Hierarchy and

Heckman Hierarchy, covering the types of problems in causal modeling and

inference. Specifically, develop a set of abstractions that permit capturing a

wide variety of problems of interest, unifying them into a single theoretical

framework. This theoretical framework should provide a means to separate
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the definition of a causal inference problem from the methods used to solve it,

unify existing methods, and remain open to future extension.

• Demonstrate the feasibility of causal programming. Specifically, im-

plement a causal programming language powerful enough to perform identifi-

cation and estimation of interventional queries. Such a language should permit

a researcher to declare causal models and queries with syntax similar to the

underlying mathematics, and automatically perform inference. In addition,

the implementation should support interactive ‘notebook’ usage to make it

easy to iteratively refine models while viewing results, as well as remaining

open to future extension.

• Understand the limitations of the theory. The focus of this dissertation

is limited to nonparametric, recursive (acyclic) causal models. A related goal

is to determine in what sense this is a natural limitation. Specifically, prove

that the equilibrium distribution of cyclic causal models is, in general, uncom-

putable. From this, I argue that any further generalization is ‘fundamentally’

difficult and will likely need to give up either completeness or nonparametric-

ity.

1.4 Overview

The rest of this dissertation is organized as follows:

Chapter 2 surveys the theoretical approaches to causality relevant to this

dissertation. This includes Neyman-Rubin-Holland potential outcomes, structural
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equation modeling, structural causal models, causal diagrams and graphical models,

and means of inference. The relationship between these different approaches and

their relationships to the Causal and Heckman hierarchies is analyzed. In addition

surveying different methods in causal modeling and inference, this chapter argues

that structural causal models serve as an appropriate foundation for a general theory

of causality.

Chapter 3 introduces a causation coefficient as analogue to the correlation

coefficient. A taxonomy of correlation/causation relationships is developed and

analyzed. This provides a principled argument for the necessity of formal causal

analysis — informal causal analysis will fail unpredictably.

Chapter 4 introduces the (meta-)theory of causal programming and its core

abstractions: model distribution, query, and formula, defined in terms of structural

causal models. A large number of existing problems can be encompassed in this

framework, and several existing algorithms can be viewed as solving special cases of

causal programming problems.

Chapter 5 introduces Whittemore, an implementation of causal programming

as an embedded, domain specific language. The syntax, semantics and relevant

implementation details are described for Whittemore’s approach to solving identi-

fication and estimation problems. Whittemore provides a declarative, interactive

approach to causal modeling and inference. It is declarative in the sense that the

user does not have to be aware of the implementation of the underlying inference

algorithms, and interactive in the sense that it can be used in a computational

‘notebook’ interface, providing immediate feedback to the user.
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Chapter 6 explores a fundamental limit to the theory: the equilibrium distri-

bution of cyclic, nonparametric models is proven to be uncomputable, given mild

assumptions about the distributions of the model’s variables. This demonstrates

that causal programming’s focus on recursive, nonparametric models is, in some

sense, a natural limitation and suggests that further generalizations will encounter

fundamental difficulties.

Finally, Chapter 7 concludes with a discussion of the contributions and limi-

tations of the work described in this dissertation, as well as opportunities for future

research.
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Chapter 2: Background: structural causal models

A map is not the territory it represents, but, if correct, it has a similar

structure to the territory, which accounts for its usefulness.

—Alfred Korzybski

2.1 Introduction

The original work in this dissertation builds on the theory of structural causal

models. This chapter provides an overview of previously existing theory and analyzes

the relationship between the Neyman-Rubin-Holland potential outcome, structural

equation modeling, and structural causal model approaches to causal inference. The

relationship between causal diagrams and Bayesian networks is also discussed. Since

the primary focus of this dissertation is on recursive (acyclic) models, substantive

discussion of cyclic models is deferred to Chapter 6.

The core concept of a structural causal model is deceptively simple: an SCM

is a manipulable/modifiable system of equations that generates a joint probability

distribution over the variables under consideration. Setting variables to particular

values (as opposed to observing or conditioning on particular values), generates

new outcomes, i.e. new joint probability distributions that model the effect of an
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idealized external intervention.

This can be seen in a simple example.1 Consider the problem of a researcher

attempting to model the effect of applying fumigants to fields. The researcher

observes the level of fumigants applied by other farmers and their resulting crop

yields. However, the level of fumigants applied by each farmer depends on the

initial population of pests (e.g. a farmer is more inclined to apply fumigants if

they expect the population of pests to be higher that year), and both the initial

population of pests and the level of fumigants applied affect the final yield (i.e. the

observations were not from a randomized, controlled trial). These assumptions can

be captured in the following system of equations:

pests = f1(ε1)

fumigants = f2(pests, ε2)

yield = f3(pests, fumigants, ε3)

where each εi is an ‘error term’, accounting for factors outside of the model and

each fi is some function that determines each variable. One possible instantiation

of these assumptions is as a linear Gaussian model:

pests = ε1

fumigants = β1 pests + ε2

1This example is a simplified version of an agricultural example analyzed by Wainer [86] Pearl
[57].
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yield = β2 pests + β3 fumigants + ε3

where each εi is an independent, normally distributed (N(µi, σi)) random vari-

able, and each βi is a constant. This system of equations generates a joint proba-

bility distribution over pests, fumigants and yield, which is what the researcher

originally observes (the ‘observational distribution’).

With respect to this model, an idealized intervention can be represented by

replacing one or more of the generating equations. To model the action of applying

a particular level, x, of fumigants, the equation determining fumigants is replaced

by a constant, creating a new system of equations:

pests = ε1

fumigants = x

yield = β2 pests + β3 fumigants + ε3

which generates a new joint probability distribution representing the effect of

action (the ‘interventional distribution’).

Computing the interventional distribution acts as a prediction. In general —

assuming the model assumptions are correct — a researcher can predict a change to

a system, by calculating the probability distribution that arises from a corresponding

change to the model. The difficulty lies in making appropriate model assumptions.

As a rule, stronger model assumptions make inference easier, but weaker model

assumptions are more likely to correspond well to reality and be accepted by other
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researchers.

Linearity is a relatively strong assumption. An example of a weaker assump-

tion would be monotonicity, e.g. that an increase in the pest population always

results in a decrease in the crop yield. Weaker still is the assumption that yield is

a function of fumigants, pests and an independent error term, without committing

to any assumption of what that function is or how the error term is distributed. The

error term, or ‘background’ variable represents the factors that determine the final

yield, that are not explicitly accounted for in the model.2

It is this last class of model assumptions that is the main focus of this disser-

tation. The problem is to calculate the interventional distribution for every model

that is compatible with a given set of model assumptions. These model assumptions

can be compactly represented in graphical form: a vertex of a graph corresponds to

a variable, and a variable is assumed to be a function of its parents.

pests
fumigants

yield

Figure 2.1: A causal diagram, representing the assumptions that yield is a function
of pests and fumigants, and fumigants is a function of pests. Each variable is
also (implicitly) assumed to be a function of an independent, arbitrarily distributed
‘background’ variable, representing factors outside of the model.

Structural causal models are certainly not the only approach to causal model-

ing and inference. However — in addition to acting as a survey of existing approaches

— this chapter argues that structural causal models are an appropriate foundation

2In reality, there may be many such factors, but since there are no restrictions on the distribution
of the error term, nor the determining function, all of these ‘background’ factors can be represented
by a single variable.
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for a general theory of causation. This argument is made with respect to a partic-

ular set of requirements for such a theory. These requirements do not apply to all

scenarios of interest, but are argued to be necessary in the general case — a less

powerful theory will be unable to express certain concepts of scientific interest.

2.2 Desiderata for causal modeling and inference

The first task in the Heckman Hierarchy is to define the set of counterfactuals

or potential outcomes. This is directly related to a core concept in causality: vari-

ables are functions of their determining factors and manipulating/changing these

factors generates new outcomes.

This is readily seen in a simple example. Consider Newton’s second law, re-

lating force, mass and acceleration, which elementary algebra permits being written

in three different ways:

F = ma

m =
F

a

a =
F

m

Common intuition suggests that if the force applied to some object were in-

creased, it would experience greater acceleration; the mass of the object would not

spontaneously increase to compensate. In other words, force causes acceleration, but

does not causally effect changes in mass. This is not clear from the standard presen-
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tation of the equations, treating the equals sign as the equality relation, whereupon

all three equations are equivalent. Under this interpretation of the equals sign, the

equations specify a relationship that must be satisfied, but do not specify how the

system would respond to an external action.

The three equations are different if the equals sign is treated as an assignment

operator — this interpretation may be more familiar to programmers.3 In this

case, only the third equation captures the intuition that if force were increased,

then acceleration would increase proportionally, as long as no other changes to the

system were made. Likewise, if mass were increased, acceleration would decrease

proportionally. Assumptions of this kind are commonly referred to as ceteris paribus

assumptions, literally, “other things being equal”. In particular, ceteris paribus is a

mainstay of economic analysis [33].

This view of causality has its roots in neoclassical economics, especially in the

work of Mill [52] and Marshall [51] and was made more precise with Haavelmo’s

account of (linear) structural equation models [29]. Rubin and Holland [38] provide

a pithy motto that summarizes the main idea:

No causation without manipulation

This account of causality may not seem entirely satisfactory, depending on

how ‘manipulation’ is interpreted. For example, few would object to thinking of the

Sun’s gravity as a cause of Earth’s orbit, although, in practice, there are a number

of obstacles to significantly manipulating the Sun’s mass. This does not change the

3One might observe that the meaning would be clearer if a different symbol such as := or <- was
used to distinguish assignment from equality, but this convention has not been widely adopted.
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expectation that if the Sun’s mass were suddenly zero, then the Earth would not

continue to orbit, no matter how implausible actually implementing such a change

would be.

Implicit in such examples of causation is the idea that some effect (Y ), could

have been different if a cause (X) had been different, regardless of what was actually

observed. Such hypotheticals are usually referred to as ‘counterfactuals’. The idea of

defining causality in terms of counterfactuals originates with Hume, defining a cause

to be, “. . . where, if the first object had not been, the second never had existed” [40].

This idea was made more precise with Lewis’ account of counterfactuals, using the

possible world semantics of modal logic [48]:

If c and e are two distinct actual events such that e would not have

occurred without c, then c is a cause of e.

A classic example of a counterfactual sentence is, “If Nixon had pressed the

button, there would have been a nuclear holocaust” [21], which features a number

of important characteristics of counterfactuals in general. It cannot (nor should) be

empirically tested, but it is still related to the observable world — note that Nixon

did not ever order a nuclear strike, nor is the world a nuclear wasteland. The sen-

tence also, indirectly, implies empirical consequences. If the original counterfactual

sentence is true, anyone acting in a sufficiently similar scenario who does ‘press the

button’ should expect a nuclear holocaust.

The ideas of manipulations and counterfactuals are related. One view is that

a manipulation changes the original system or, more abstractly, generates a new
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model that represents the effects of the change. Alternatively, the complete set

of counterfactuals can be thought of as existing a priori and related to observable

variables by consistency constraints. Whether or not counterfactuals ‘actually’ exist

need not be a concern. Heckman summarizes the relevant metaphysical concerns

as, “A model is in the mind. As a consequence, causality is in the mind” [33].

Crucially, the notion of counterfactuals is distinct from that of uncertainty —

note that there is no notation in probability theory for “would have been”. At the

same time, statements of causality often include a probabilistic aspect. For example,

most would interpret, “If the grass is wet, then it rained”, as a statement that it is

likely that rain caused grass to be wet, without committing to a fully deterministic

model such as Newton’s second law does.

To summarize: A satisfactory approach to causal modeling and inference re-

quires the distinct concepts of manipulation, counterfactuals and uncertainty; treat-

ing any one of these as the same concept is a category error.

2.3 Potential outcomes

The potential outcome approach to causal inference, also known as the Rubin

causal model, or the Neyman-Rubin-Holland model, provides a notation suitable for

representing counterfactual statements. The statement that “Y would have taken

on value y, if X had been x, for unit u” is written as:

Yx(u) = y
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Units are primitives in the potential outcomes approach, which does not define

them further [38]. Examples of units include individual patients in a clinical setting,

or individual plots of land in an agricultural study. Variables (e.g. X, Y ) are real-

valued functions defined for every unit; for example, X is commonly defined to be

treatment and Y defined to be response to treatment in a clinical setting.

A particular quantity of interest is treatment effect4, which is defined as the

difference in response when a particular unit is exposed to treatment (X = t) versus

control (X = c):

Yt(u)− Yc(u)

Causal inference is difficult because, although there are many potential out-

comes for any particular variable, it is only possible to observe one actual outcome.

For example, it is impossible to treat and not treat the same patient.5 Holland

summarizes this as the Fundamental Problem of Causal Inference [38]:

It is impossible to observe the value of Yt(u) and Yc(u) on the same unit

and, therefore, it is impossible to observe the effect of t on u.

Causal inference is impossible without making additional assumptions — data

alone provides no knowledge of how observations will generalize to other circum-

stances. An example of a simple assumption that makes causal inference possible

4This quantity is sometimes referred to as ‘causal effect’; this dissertation adopts the conven-
tion of referring to this as ‘treatment effect’ to avoid confusion with the structural causal model
definition of causal effect.

5One might object that it is possible to not treat a patient initially, and then treat the same
patient later, but these are different units. The patient’s condition after waiting long enough to
observe the effects of non-treatment is different than their initial condition.
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is unit homogeneity, which can be thought of as ‘laboratory conditions’. If different

units are carefully prepared, it may be reasonable to assume that they are equivalent

in all relevant aspects, i.e. Yt(u1) = Yt(u2) and Yc(u1) = Yc(u2). For example, it is

often assumed that any two samples of a given chemical element are effectively iden-

tical. In these cases, treatment effect can be calculated directly as Yt(u1)− Yc(u2).

However, it is often the case that such tightly controlled conditions are impossible

to maintain. Accordingly, the main focus of the potential outcomes approach is on

average effects.

A probability distribution over the universe of units, P (u), induces a proba-

bility distribution over the potential outcome variables. Formally [57]:

P (Yx = y) =
∑

{u | Yx(u)=y}

P (u)

Since the potential outcome variables are random variables, it is meaningful

to speak of average treatment effects. In particular, expected value (E) is a linear

operator which permits writing:

E(Yt − Yc) = E(Yt)− E(Yc)

In other words, it is possible to estimate average treatment effect by estimating

E(Yt) and E(Yc) individually. Unfortunately, it is not possible to sample from either

of these random variables directly. Yt is treatment over the entire universe of units, a

counterfactual world where every patient was exposed to treatment. Actual samples

would be from the random variable Y . Although these variables are different, they
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are still related to each other by the consistency axiom [23, 27]:

X(u) = x =⇒ Y (u) = Yx(u)

In other words, if the variable X is observed to take on value x, then the

potential response Yx is simply the current value of Y . An immediate consequence

of consistency is: P (Yx = y | X = x) = P (Y = y | X = x). Furthermore, if response

to treatment is independent of treatment (written as Yx ⊥⊥ X), then the following

equalities hold:

E(Y | X = t) = E(Yt)

E(Y | X = c) = E(Yc)

In this case, average treatment effect can be estimated directly from the col-

lected samples as E(Y | X = t) − E(Y | X = c). This expression is sometimes

referred to as the prima facie treatment effect [38].

However, there are many scenarios where selection of treatment is not inde-

pendent of response to treatment. Consider the question of whether smoking is a

cause of cancer. The prima facie effect may be significant. However, it is conceivable

that there exists a latent genetic factor that predisposes individuals to smoke, and

also makes them more susceptible to cancer.6 This is an example of the well-known

problem of confounding variables and the possibility of latent confounding variables

6Statistician Ronald Fisher is infamous for having spoke out against studies linking smoking
to cancer, while being ardent tobacco user himself. He later died of cancer. However, his actual
objections to the studies were not incorrect.
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is especially difficult to rule out.

The potential outcomes approach generally operates by making (conditional)

independence assumptions about potential outcome variables. Randomization, i.e.

the samples were obtained in a randomized controlled trial, makes the assumption7

Yx ⊥⊥ X especially plausible since — at least, theoretically — the selection of

treatment or non-treatment for each unit is determined entirely by an independent

source of randomness. In practice, there may be issues with imperfect compliance

(i.e. some patients may fail to take the drugs they are assigned), but randomized

controlled trials remain the ‘gold standard’ for causal evidence. [71]

Another common type of assumption that can permit causal inference is con-

ditional ignorability, (Yx ⊥⊥ X | Z), which is the statement that Yx and X are

conditionally independent given Z, a set of covariates that are being ‘adjusted’ or

‘controlled’ for. For example, if it were known that there was a genetic factor Z

(and no other such factors) that caused both smoking and cancer, then it would

be reasonable to assume conditional ignorability, which would permit the following

derivation [57]:

7This condition is referred as ‘no confounding’, ‘exogeneity’ or ‘ignorability’, depending on the
source [57, 69, 20].
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P (Yx = y) =
∑
z

P (Yx = y | z)P (z)

=
∑
z

P (Yx = y | x, z)P (z)

=
∑
z

P (Y = y | x, z)P (z)

=
∑
z

P (y | x, z)P (z)

The notation belies a fundamental shift in perspective: the formula computes

the probability of a potential outcome, P (Yx), entirely in terms of observable prob-

abilities, P (y | x, z) and P (z), with respect to the assumption of conditional ignor-

ability.

This is, in essence, the potential outcomes approach to the second causal

inference task of identification. The first task, defining the set of counterfactu-

als, is implicitly performed by making conditional independence assumptions, e.g.

(Yx ⊥⊥ X | Z). The second task, identification, is performed via algebraic ma-

nipulations, using the axioms of probability theory and the axioms associated with

potential outcome variables. The third task is performed by calculating the ap-

propriate probabilities, brining in the machinery of estimation and/or hypothesis

testing theory as appropriate.

However, despite the power of the potential outcomes approach, an important

practical issue has not been addressed: how is a researcher to determine if the

conditional independence assumptions are true? The fundamental problem is deeper
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than this: potential outcomes notation, alone, does not even provide a way to

determine what it means for such a statement to be true! In the language of formal

logic, potential outcomes notation provides syntax but not semantics for causal

statements. Giving these statements meaning requires formalizing the notion of a

causal model.

2.4 Causal models

Consider a simple economic model of propensity to consume, assuming all

prices are constant. As an example, Haavelmo suggests a model where, “if the

group of all consumers in society were repeatedly furnished with the total income

or purchasing power x per year, they would, on the average or ‘normally,’ spend a

total amount y equal to” [29]:

y = βx+ α

where α and β are constants. It would be unreasonable to expect that, in

any particular year, spending would be exactly equal to y. This is not merely

a consequence of measurement errors — presumably there are a large number of

additional factors that could affect spending that are not directly accounted for in

this simple model. These additional factors can be indirectly represented by adding

a residual or ‘error term’ to the original equation:
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y = βx+ α + ε

= βx+ ε

where ε is a (usually, normally distributed) random variable; note that since

α is a constant and ε is a random variable, α + ε can be replaced by just ε. This is

a simple example of a structural equation model (SEM).

Haavelmo is notable for being the first researcher to explicitly interpret such

equations as predicting the result of idealized experiments. It may be the case that

an analyst is merely trying to fit the equation to the past and hopes that the relation

holds in the future, assuming no significant changes to the underlying system. A

stronger assumption is that consumers will continue to respond in the same way to

income, regardless of the sources from which their income originates. With respect

to this assumption, it is possible to predict the result of an intervention (e.g. gov-

ernment spending or taxation) to set income at a given level. Pearl formalizes this

interpretation of structural equations:

Definition 2.4.1 (Structural Equations [57]) An equation y = βx + ε is said

to be structural if it is to be interpreted as follows: In an ideal experiment where we

control X to x and any other set Z of variables (not containing X or Y ) to z, the

value y of Y is given by βx+ ε where ε is not a function of the settings x and z.

Note that this definition assumes an idealized intervention to set X to a par-
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ticular value, as opposed to conditioning on X; it is the difference between passively

observing a particular value (level 1 in the Causal Hierarchy) and taking action to

set the value (level 2 in the Causal Hierarchy). In practice, many manipulations that

are theoretically simple can turn out to be difficult or impossible implement. This

is not a strike against the definition, but a warning to carefully model interventions

as well as the causal relationships themselves.

The philosophical underpinnings of this definition are that of Laplacian (quasi-

) determinism. The residual, ε, represents all of the additional factors that determine

Y that are not directly modeled. In principle, if these factors were completely known,

it would be possible to exactly determine how Y would respond to any change. In

this view, randomness is a statement of an analyst’s ignorance, not inherent to the

system itself.

Structural equations are related to the potential outcomes approach, which

considers potential outcome variables to be real-valued functions of ‘units’. Since

units are primitives and not defined further, these functions are implicit. In struc-

tural equation modeling, these functions are explicit, where variables are functions

of all of their determining factors.

One of the weaknesses of structural equation modeling is that it makes very

strong assumptions — usually, linearity and the assumption that all variables are

multivariate normal. It is perhaps unsurprising then that many analysts are reluc-

tant to assign causal meaning to the equations and consider them to be merely a

‘shorthand’ way to represent a joint probability distribution. The linearity assump-

tion, in particular, is very restrictive — the earlier example of Newton’s second

27



law violates it. Consider, also, the smoking/cancer example, where X is smoking,

Y is cancer, and Z is a possible genetic factor that predisposes one to smoke and

can cause cancer. These assumptions can be captured in the following system of

equations:

Example 2.4.1 (Smoking/cancer model)

Z = fZ(εZ)

X = fX(Z, εX)

Y = fY (X, Y, εY )

Each fi is some — possibly nonlinear – function. X, Y, Z are called ‘endogenous

variables’ since they are determined by factors in the model. εX , εY , εZ are called

‘background variables’ since they are determined by outside factors that are not

directly accounted for.8

There are many — in fact, an uncountably infinite number of — models that

are compatible with the smoking/cancer model assumptions. One instantiation of

the assumptions is as an SEM:

Example 2.4.2 (Linear smoking/cancer model)

Z = εZ

8These are sometimes referred to as ‘exogenous’ variables. Unfortunately, ‘exogeneity’ is often
used to refer to a number of subtly different conditions between sets of variables in a causal model.
To avoid confusion, the term ‘background variable’ will be used.
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X = Z + εX

Y = X + Y + εY

where each εi is an independently distributed normal random variable. Alter-

natively, Y could be modeled as a logistic function of X and Z:

Example 2.4.3 (Logistic smoking/cancer model)

Z = εZ

X = Z + εX

Y =
1

1 + e−(β0+β1Z+β2X)

The key point is that SCMs are not limited to any particular set of func-

tional dependencies or distribution of background variables; SCMs are fully non-

parametric. This nonlinear generalization of structural equation models with arbi-

trarily distributed background variables originates with Pearl and Verma [62] and

has been referred to by several different terms including ‘probabilistic causal mod-

els’, ‘graphical causal models’ and ‘structural causal models’. The term ‘structural

causal models’ is used throughout this dissertation, since it appears least likely to

name clash with other terms in the literature.

Definition 2.4.2 (Structural Causal Model [3]) A structural causal model M

is a tuple M = 〈U, V, F, P (u)〉, where:
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1. A set U of background (also called exogenous) variables, that are determined

by factors outside the model

2. A set V = {V1, . . . Vn} of variables, called endogenous, that are determined by

variables in the model — that is, variables in U ∪ V ;

3. F is a set of functions {f1, . . . , fn} such that each fi is a mapping from (the

respective domains of) Ui ∪ PAi to Vi, where Ui ⊆ U and PAi ⊆ V \ Vi and

the entire set F forms a mapping from U to V ;

4. P (u) is a probability function defined over the domain of U .

Note that the definition of structural causal models requires that the set of

equations, F , form a mapping from U to V . In other words, that F has a unique

solution for V as a function of U . A sufficient condition for this is that the system

is recursive, i.e. there are no cyclic dependencies in the parent (PAi) sets of the

endogenous variables. A key difficulty with nonrecursive systems in structural causal

models is that they may require solving systems of nonlinear equations.

2.5 Interventions and the do() operator

Structural causal models provide a straightforward definition of interventions.

Consider an action to force some set of variables X to take on particular values x;

this is represented using the do() operator.

Definition 2.5.1 (Effect of action [57]) Let M be a structural causal model, X

a set of variables in V , and x a particular realization of X. The effect of action
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do(X = x) on M is given by the submodel Mx.

Definition 2.5.2 (Submodel [57]) Let M be a structural causal model, X a set

of variables in V , and x a particular realization of X. A submodel Mx of M is the

causal model:

Mx = 〈U, V, Fx, P (u)〉

where:

Fx = {fi : vi /∈ X} ∪ {X = x}

A submodel produced by do(X = x) can be thought of as the result of ‘wiping

out’ each fi that determines each Xi, and replacing fi with the constant xi, a process

which Pearl colorfully refers to as performing “surgery on equations” [57]. As an

example, consider an idealized intervention to determine the causal effect of smoking

on cancer. In the original model, M , the decision to smoke (X) is a function of a

background variable (εX) and a genetic factor (Z) that both predisposes one to

smoke and affects cancer risk. The intervention, do(X = x), effectively ‘cuts out’

the confounding from the genetic factor and produces a new model, Mx, in which

the factors that determine Z and Y are unchanged, but X has been set to the value
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x:

Example 2.5.1 (Smoking/cancer submodel)

Z = fZ(εZ)

X = x

Y = fY (X, Y, εY )

Given the definitions of a submodel and effect of action, the relationship be-

tween potential outcomes and structural causal models is remarkably straightfor-

ward:

Definition 2.5.3 (Potential Response [57]) Let X and Y be two subsets of vari-

ables in V . The potential response of y to action do(X = x), denoted Yx(u), is the

solution for Y of the set of equations Fx, that is, Yx(u) = YMx(u).

The probability of y, given the action do(X = x) is denoted9 by either P (Yx)

or P (y | do(x)), and is induced by the probability distribution over the background

variables, P (u), and the submodel, Mx:

P (Yx = y) = P (y | do(x)) =
∑

{u | YMx (u)=y}

P (u)

Note that P (y | do(x)) is also referred to as the causal effect of X on Y , when

viewed as a function from X to the space of probability distributions on Y [57].

9Other notations, such as Px(y) or P (y | x̂) are in use.
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This establishes the theoretical connection between potential outcomes and

structural causal models. It also highlights the philosophical differences between tra-

ditional structural equation modeling and potential outcome analysis. In structural

equation modeling, equations are usually assumed to be linear, with the random

variables being multivariate normal. In other words, structural equation modeling

relies on strong and explicit model assumptions. Potential outcome analysis is ef-

fectively the opposite: the model assumptions are weak and implicit. Independence

assumptions between potential outcome variables implicitly constrain the set of pos-

sible models under consideration, but do not provide much guidance on determining

what that set is.

Do notation also establishes the demarcation line between each level of the

Causal Hierarchy. Syntactically, an associational/statistical query is any query that

does not contain do() or any potential outcome variables; this is exactly what is ex-

pressible with the syntax of ordinary probability theory. Semantically, such a query

is concerned with a pre-intervention model. Syntactically, interventional/causal

queries may contain do(). Semantically, such queries are questions about post-

intervention models.

Finally, counterfactual queries are the most general and include the full range

of what is expressible in potential outcomes notation. For example, the effect of

treatment on the treated, e.g. the outcome (Y ) of treating a patient with X = x,

given thatX attains value x′ naturally, is expressible as P (Yx = y | x′), which is inex-

pressible in the do() notation. It is a question of probabilities in a post-intervention

model, but involves conditioning on variables in a pre-intervention model.
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Structural causal models permit analyzing general counterfactual queries: the

key insight that permits doing so is that although counterfactual questions consider

multiple counterfactual worlds simultaneously, the corresponding models share the

same background variables (εi) and functional dependencies (fi), thus, conditioning

on an event in the ‘actual’ world provides information about counterfactuals and

vice-versa. Since the primary focus of this dissertation is on interventional queries,

this section will not consider the analysis of counterfactual queries further.

2.6 Marschak’s maxim and causal diagrams

Heckman coined ‘Marschak’s Maxim’, in honor of an insight by Marschak [50]:

Forecasting policies may require only partial knowledge of the system.

From the definition, a complete specification of a structural causal model re-

quires specifying the functions that determine each endogenous variable and the

probability distribution over the background variables. The former is often difficult

to know; the later is often impossible, considering that the background variables are

usually the very factors that cannot be directly accounted for.

Marschak’s maxim is a reminder that a partial specification of a model may

still be sufficient to conduct causal inference. A set of independence assumptions

made in a potential outcomes analysis implicitly denotes a set of possible models.

Causal diagrams are another approach.

Every causal model induces a causal diagram, where each vertex in the di-

agram corresponds to an endogenous variable, Vi, and directed edges point from

34



members of PAi to Vi. If the background variables are jointly independent and each

background variable appears in only one PAi set, the model is called Markovian [57].

Otherwise, the model is called semi-Markovian. Dependencies between endogenous

variables due to background variables are denoted by dashed, bidirectional edges.10

For example, if the genetic factor in the smoking/cancer example were known and

measurable, the model would be Markovian; otherwise, the model would be semi-

Markovian and X and Y would have a dashed, bidirectional edge between them to

denote the dependency (figure 2.2).

X Y

Z

(a)

X Y

(b)

Figure 2.2: Markovian (a) and semi-Markovian (b) causal diagrams. In (a), X,
Y , and Z are each functions of their parents and an independently distributed
background variable. In (b), X and Y share a background variable; equivalently, εX
and εY are not assumed to be independent.

There is a useful correspondence between causal diagrams and causal models.

Every causal model induces a causal diagram, and every causal diagram has at least

one model (in fact, infinitely many) that would induce it. A casual diagram can be

thought of as denoting a set of models where each endogenous variable is assumed to

be a function its parents, without committing to an assumption of what the function

is.

Causal diagrams are also closely related to probabilistic graphical models,

10An alternative convention is to enter observable variables as solid nodes and latent variables
as hollow nodes.
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specifically, Bayesian networks. The probably distribution P (v) induced by a Marko-

vian causal model respects the Markov condition.

Definition 2.6.1 (Markov condition [59]) If a probability function P admits the

factorization:

P (x1, . . . , xn) =
∏
i

P (xi | pai)

relative to DAG G, we say that G and P are Markov compatible.

Equivalently [4], variables are conditionally independent of their nondescen-

dants, given their parents. This is precisely the definition of (non-causal) Bayesian

networks. The crucial difference lies in the underlying assumptions. ‘Ordinary’

Bayesian networks are (level 1) associational/statistical models; they provide an ef-

ficient way to factor a joint probability distributions, but make no assumptions as

to how the distribution will change in response to an intervention. This can be seen

in a near-trivial example: consider the networks X → Y and Y → X; these have

identical factorizations under the Markov property, but different behavior under

intervention. In general, causal assumptions are necessary for causal conclusions.

This is concisely summarized in Cartwright’s maxim [10]:

No causes in, no causes out.

Inference in the structural causal model approach is generally performed with

respect to the assumptions entailed by a causal diagram. For example, calculating

the causal effect of X on Y in the smoking/cancer model is a simple adjustment for

direct causes.
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Theorem 2.6.2 (Adjustment for Direct Causes [57]) Let PAi denote the set

of direct causes of variable Xi and let Y be any set of variables disjoint of {Xi∪PAi}.

The effect of the intervention do(Xi = xi) on Y is given by:

P (Y | do(xi)) =
∑
pai

P (y | xi, pai)P (pai)

Applying this theorem to the smoking/cancer example (Figure 2.2 (a)) yields:

P (y | do(x)) =
∑
z

P (y | x, z)P (z)

Formally, it is said that the causal diagram and the probabilities P (y | x, z)

and P (z) identify P (y | do(x)). Note that if Z is latent, then P (y | do(x)) is not

identifiable. Intuitively, there is no way of knowing if correlation between X and Y

is due to the latent factor, or due to the effect of X on Y .

Unsurprisingly, this is the same result as from the potential outcomes analysis.

In the potential outcomes approach, the set of causal models under consideration is

implicitly specified by the conditional independence assumptions between potential

outcome variables. Causal diagrams more explicitly denote the set of models under

consideration, and consider properties like conditional independences to be a conse-

quence of the model assumptions entailed in the diagram. In both cases, Marschak’s

maxim is in play. A complete specification of the model is not needed to calculate

the causal effect; the formula correctly calculates P (y | do(x)) for all models under

consideration.

Note that incorrectly adjusting for variables can produce biased estimates
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of causal effect. Consider a model where the treatment affects recovery, but the

treatment also affects blood pressure, which, in turn, affects recovery (Figure 2.3).

An adjustment for direct causes, i.e.

∑
blood-pressure

P (recovery | treatment, blood-pressure)P (blood-pressure)

should not be performed in this case, since blood-pressure is not a direct cause

of treatment. Intuitively, adjusting for blood pressure would ‘block’ the causal effect

of the treatment that is mediated through blood pressure.

treatment
blood-pressure

recovery

Figure 2.3: A causal diagram where effect of treatment on recovery is mediated by
blood pressure. Estimating the treatment effect by adjusting for blood-pressure is
incorrect in this case.

2.7 Philosophical foundations

The philosophical underpinnings of structural causal models depend on a few

well-accepted principles: counterfactuals as the basis for a theory of causality, models

as the basis for a semantic theory of truth, and probability theory as the basis for

a theory of uncertainty. It is a futile exercise to argue that these principles are

somehow a priori correct; the practical question is to what degree these principles

are useful, generally accepted, and compatible with human intuition.

Probability theory’s pedigree is impeccable: in addition to Kolmogorv’s ax-
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iomatization, Cox’s theorem [84] provides a formal argument for probability theory

as the basis of analyzing uncertainty, and de Finetti’s Dutch Book argument requires

that wagers/prices obey the axioms of probability theory in order to be coherent

[17]. Empirically, probability theory has been an enormous success: it is effectively

the basis of all of statistics and machine learning. It may be the case that, for

specific scenarios, a researcher wishes to consider problems of causality without in-

troducing the notion of uncertainty. However, any general theory of causality needs

to formally consider uncertainty to be taken seriously.

The semantic theory of truth, i.e. the idea that models provide meaning

for sentences, is similarly well accepted in modern mathematics, philosophy and

computer science. The truth of a sentence in a formal language is judged relative

to a formal model that provides an interpretation of said sentence. This is the core

principle behind model theory in mathematics and formal methods in computer

science, and it would seem profoundly strange to not respect it in the domain of

causal analysis. It has been suggested that this is the main reason that the potential

outcomes approach has not been widely adopted outside of statistics [57] — it is

too difficult for most would-be users to judge if model assumptions are reasonable

without referring to actual examples of models. A rough analogy can be made with

Hoare logic, which provides axioms and inference rules to prove the correctness of

computer programs. Attempting causal inference without explicit models is like

trying to prove the correctness of programs while being unable to explicitly write

down a program.11

11Anecdotally, Elias Bareinboim reports being unable to find a single statistician capable of spec-
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The principle that a theory of causality falls out of a theory of counterfactuals

as a by-product lacks the essentially universal acceptance of probability theory and

model theory. In fact, some statisticians explicitly argue against counterfactuals

[16], citing them as untestable or metaphysical. However, counterfactual thinking

matches the intuitive way that human beings think of causality: for an event to be

a cause of another, it must have been possible, in principle, for the cause to have

been different. Mere untestability should not be grounds to disqualify questions

from analysis; science routinely considers questions that have no obvious means of

empirical validation, and tries to fit explanations to systems that cannot be directly

controlled. Notably, the idea that different possible outcomes are generated by ma-

nipulating the factors that determine them is essentially universally accepted in

economic analysis. Arguably, economics is the science most concerned with predict-

ing the effects of interventions, despite a general lack of ability to conduct controlled

experiments.

Given these principles, structural causal models are not merely one possible ap-

proach to causal modeling and inference; they are a foundation for a general theory

of causality. As an analogy, consider the lambda calculus as a foundational theory

of computation. The lambda calculus captures the essential notion of computation.

There are numerous extensions, e.g. type theory, and it remains unclear what it

means to prove that the Church-thesis is correct, but it provides (one possible)

foundation for a general theory of computation. In particular, the lambda calcu-

lus subsumed the existing notions of computability as special cases. Analogously,

ifying an example model where (Yz ⊥⊥ Zx | Z,X) and (Yz 6⊥⊥ Zx | Z) (personal communication).
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structural causal models unify and extend the potential outcomes and structural

equation modeling approaches.

These philosophical principles leave the actual problem of inference with struc-

tural causal models unaddressed. When a structural causal model is fully specified,

there is very little inference left to be done: calculating the effect of an intervention

can be done in a straightforward manner from definition of the do() operator. In

practice, fully specifying a structural causal model is generally impractical for prob-

lems of interest; modeling a real system involves considering possible equivalence

classes of models, since the full details remain unknown.

The core problem is to determine what kinds of equivalence classes of models

should be considered. The previous section introduces causal diagrams, which are

the main object of study in the rest of this dissertation. Compared to structural

causal models themselves, there are not strong philosophical principles to justify

causal diagrams as the canonical model representation.

One argument is that the assumptions entailed by a causal diagram are com-

pletely nonparametric — there are no model assumptions, other than that each

variable is a function of its parents. In this sense, the assumptions embodied in a

causal diagram are minimal, while remaining compatible with the requirement that

models be explicit — it is straightforward to fully specify an example compatible

structural causal model, given a diagram. However, it is not uncommon to use ad-

ditional semi-parametric assumptions in analysis. For example, the monotonicity

of a function in a model may permit identification, while completely nonparametric

assumptions do not [34]. Conversely, a researcher may wish to base their analysis
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on weaker assumptions, e.g. to enter the fact that either X causes Y or Y causes

X, without knowing which.

Ultimately, this dissertation focuses on causal diagrams as a matter of practi-

cality: the existence of a concise set of powerful inference rules for causal diagrams

makes inference particularly amenable to automated inference.

2.8 Inference with structural causal models

The best-studied set of inference rules for structural causal models are known

as the “causal calculus” or “do-calculus”, described by Pearl [56]. Along with the

axioms of probability theory, these rules form the theoretical foundation for much

of the analysis in the rest of this dissertation:

Theorem 2.8.1 (Causal calculus [56])

P (y | x̂, z, w) = P (y | x̂, w) if (Y ⊥⊥ Z | X,W )GX (Rule 1)

P (y | x̂, ẑ, w) = P (y | x̂, z, w) if (Y ⊥⊥ Z | X,W )GXZ (Rule 2)

P (y | x̂, z, w) = P (y | x̂, w) if (Y ⊥⊥ Z | X,W )G
X,Z(W )

(Rule 3)

Note that x̂ is used as an abbreviation for do(x) in this dissertation, whenever

the density of equations threatens to render the do notation unreadable.

In the causal calculus inference rules, W , X, Y , and Z are arbitrary disjoint
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sets of nodes in a causal DAG G. GX denotes the graph obtained by deleting from

G all arrows pointing into nodes in X. GX denotes the graph resulting from deleting

all arrows emanating from G. Z(W ) is the set of Z-nodes that are not ancestors of

any W -node. (Y ⊥⊥ Z|X,W )G denotes the conditional independence of Y and Z

given X and W in all models compatible with G.

Causal diagrams are particularly useful as equivalence classes of models be-

cause they permit determining conditional independences between (sets of) variables

via a simple criteria known as d-separation [26]:

Theorem 2.8.2 (d-seperation) A path p is said to be d-separated by a set of nodes

Z if and only if

• p contains a chain i→ m→ j or a fork i← m→ j such that the middle node

m is in Z, or

• p contains an inverted fork (collider) i→ m← j such that the middle node m

is not in Z and such that no descendants of m is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from

a node in X to a node in Y.

Theorem 2.8.3 (Probabilistic implications of d-separation) If sets X and Y

are d-separated by Z in a DAG G, then X is independent of Y conditioned on Z in

every distribution compatible with G. Conversely, if X and Y are not d-separated

by Z in a DAG g, then X and Y are dependent conditional on Z in at least one

distribution compatible with G.
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The converse is even stronger — the absence of d-separation implies depen-

dence in almost all distributions compatible with G [57].

X YZ

Figure 2.4: A semi-Markovian causal diagram that permits identification of P (y |
do(x)); the causal effect can be determined in terms of the observational probabil-
ity distribution by repeatedly applying rules of probability theory and the causal
calculus.

Causal inference can be performed by repeatedly applying these rules, in con-

junction with the rules of probability theory. For example [57], P (y | x̂) can be

identified for all models entailed by the assumptions in figure 2.4, in terms of the

observational probability distribution as follows:

P (y | x̂) =
∑
z

P (y | z, x̂)P (z | x̂) (law of total probability)

=
∑
z

P (y | ẑ, x̂)P (z | x̂) (rule 2)

=
∑
z

P (y | ẑ)P (z | x̂) (rule 3)

=
∑
z

[∑
x

P (y | x, ẑ)P (x | ẑ)

]
P (z | x̂) (law of total probability)

=
∑
z

[∑
x

P (y | x, ẑ)P (x)

]
P (z | x̂) (rule 3)

=
∑
z

[∑
x

P (y | x, z)P (x)

]
P (z | x̂) (rule 2)

=
∑
z

[∑
x

P (y | x, z)P (x)

]
P (z | x) (rule 2)
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The difficulty of applying these inference rules has prompted the development

of algorithms based on the causal calculus (discussed in Chapter 4). For certain

classes of problems, these algorithms automatically perform causal inference, and

have completeness guarantees — if they fail to yield an answer, it is because it is

impossible to calculate the given causal effect for every model entailed by the given

causal diagram. These algorithms can be thought of as an abstraction over the rules

of the causal calculus and probability theory; the algorithms are proven correct with

respect to these rules, but a researcher using the algorithms does not have to have

detailed knowledge of the rules to perform inference.

One of the main goals of this dissertation is to develop higher-order abstrac-

tions, making it possible to perform rigorous causal inference without having to

be aware of the underlying algorithms. In other words, the goal is to make causal

inference fully declarative; a researcher should be able to enumerate what they al-

ready know and what they wish to determine, with the actual inference performed

automatically.

It may not be immediately clear that the formalism of structural causal models

is even necessary in practice. Although it is generally understood that correlation

does not imply causation, it appears to act as useful guide in practice. A high degree

of correlation ‘suggests’ causality, with experimental evidence providing confirma-

tion. Why this may often appear to be the case, and an argument as to why it is

insufficient, is the topic of the next chapter.
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Chapter 3: A taxonomy of correlation/causation relationships

Correlation6=causation: the first thing taught in causal inference classes,

and the last thing learned.

—Gwern Branwen

3.1 Introduction

The maxim “Correlation is not causation” has reached the status of statistical

clich. The difference is readily apparent if the Causal Hierarchy is taken seriously:

correlation is an associational/statistical measure, i.e. a first-level query of the hier-

archy. Interventional/causal queries are second level. This emphasis on firewalling

the statistical from the causal leads directly to a new mystery: why do the two

remain so easily confused in practice?

Other maxims have been proposed, such as, “Correlation is not causation, but

it sure is a hint.” or “Correlation is necessary but not sufficient for causation.” [82].

The former is true, but underspecified. The latter is true in one sense, and demon-

strably false in another. To help clarify these questions, this chapter introduces a

causation coefficient, γ, to compare correlation and causation directly, a taxonomy

to classify all of the possible relationships, and ργ plots to visualize sets of causal
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models.

Both the proposed taxonomy and ργ plots are based on the causation coef-

ficient. The correlation/causation taxonomy outlines the different ways in which

correlation may (fail to) coincide with causation, with the goal of making it easier

for researchers to recognize these effects in practice. In addition, example models

of three variables are included with each classification in the taxonomy, rendering

the taxonomy a constructive proof that the existence, or lack thereof, of correlation

provides no guarantees about causation.

The ργ plots are accompanied with an analysis of how correlation and cau-

sation relate in the ‘average’ model; this recovers some of the intuition as to why

correlation ‘suggests’ causation and an explanation why they are so easily confused

in practice.

3.2 The causation coefficient

The Pearson product-moment correlation coefficient, ρ, is a standard measure

of correlation between random variables. This is commonly described as a measure

of how well the relationship between X and Y can be modeled by a linear relation-

ship with ρ = −1/ + 1 being a perfect negative/positive linear relationship and 0

representing no linear relationship at all. The population correlation coefficient is

defined as a normalized covariance [88]:
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ρX,Y =
cov(X, Y )√
V ar[X]V ar[Y ]

=
E[XY ]− E[X]E[Y ]√

(E[X2]− E[X]2)(E[Y 2]− E[Y ]2)

For discrete random variables, this is a function of the joint probability mass

function (for continuous random variables that admit a probability density function,

the summations are replaced with integrals):

ρX,Y =

∑
x

∑
y xyP (x, y)−∑

x xP (x)
∑

y yP (y)√
(
∑

x x
2P (x)− (

∑
x xP (x))2)(

∑
y y

2P (y)− (
∑

y yP (y))2)

The causation coefficient relies on the observation that the correlation coeffi-

cient can, by the law of total probability, be rewritten as a function of the conditional

distribution P (y | x), and marginal distribution, P (x), instead of in terms of the

joint density:

ρX,Y =

∑
x

∑
y xyP (y | x)P (x)−∑

x xP (x)
∑

x

∑
y yP (y | x)P (x)√

V ar[X](
∑

x

∑
y y

2P (y | x)P (x)− (
∑

x

∑
y yP (y | x)P (x))2)

Syntactically, the causation coefficient, γX→Y , is defined by replacing P (y | x)

with P (y | x̂) and P (x) with P̂ (x); note that P (y | x̂) is simply an alterna-

tive notation for the causal effect, P (y | do(x)). P̂ (x) is the distribution of in-

terventions, described below. As a convenience, the following terms are also de-
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fined: V ar[X̂] =
∑

x x
2P̂ (x)− (

∑
x xP̂ (x))2 and V ar[YX̂ ] =

∑
x

∑
y y

2P (y|x̂)P̂ (x)−

(
∑

x

∑
y yP (y|x̂)P̂ (x))2. The full definition of γX→Y is then:

γX→Y =

∑
x

∑
y xyP (y | x̂)P̂ (x)−∑

x xP̂ (x)
∑

x

∑
y yP (y | x̂)P̂ (x)√

V ar[X̂]V ar[YX̂ ]

Like the correlation coefficient, the causation coefficient assumes values in the

range [−1, 1]; intuitively, the causation coefficient can be thought of as what the cor-

relation coefficient would have been, had the data been drawn from a randomized

controlled trial. The distribution of interventions is, literally, a probability distribu-

tion over the independent variable, X. In the discrete case, it can be thought of as

a set of weights for averaging the possible causal effects. It may be distinct from the

marginal observational distribution of X, P (x), since the relative sizes of cohorts in

an observational study may be different than the relative sizes of different treatment

(and control) groups in an randomized controlled trial.

As an example, consider a scenario where patients decide for themselves whether

or not to take some treatment (X), and observe whether or not they recover (Y ).

This can be modeled with Bernoulli (binary) random variables for X and Y , with

0 representing no treatment / failure to recover and 1 representing treatment / re-

covery. The probability of patients deciding for themselves whether or not to take

the drug, in this observational study, is the marginal probability P (x). In clinical

terms, P (X = 0) and P (X = 1) are the relative sizes of the cohorts.

However, even in an idealized observational study, P (y | x) would not provide
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definitive information on whether treatment actually improves patient outcomes.

For example, a drug could cause unpleasant side effects in the patients that would

have received the greatest benefit, leading those patients to choose not to take the

drug. An idealized randomized controlled trial would permit an analyst to directly

measure P (y | x̂), as randomization explicitly cuts out confounding.

The relative sizes of the cohorts in an observational study may be different than

the relative sizes of the treatment and control groups in a corresponding randomized

controlled trial — this is the use of the distribution of interventions P̂ . Experiments

are often designed to have equal group sizes as this typically provides maximum

statistical power, but this is by no means universal. Also, it is not uncommon for

patients to drop out or otherwise be disqualified from studies, so the cohorts will

often be unequal in practice.

The natural causation coefficient, denoted γX→Y or γ, is defined for P̂ (x)

equal to the pre-intervention marginal distribution, P (x). This corresponds to an

experimental trial where the treatment groups are scaled to be proportional to the

relative sizes seen in the observational study.

The maximum entropy causation coefficient, denoted γH,X→Y or γH , is the

causation coefficient where P̂ (x) is a maximum entropy probability distribution.

For random variables with bounded support, this is the uniform distribution and

corresponds to equal treatment group sizes.

Other distributions of interventions are possible, to reweigh the effects of cer-

tain interventions relative to others in the computation of the causation coefficient.

These should be denoted explicitly as γP̂ . For example, a certain drug may be known
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to be helpful in certain small doses, but worse than no treatment at all in larger

doses, in which case both the natural and maximum entropy coefficients could be

misleading. In such cases, a distribution of interventions corresponding to current

best practices may be more informative.

3.3 Some properties of the causation coefficient

The causation coefficient is closely related to the average treatment effect and

invariance, the causal equivalent of independence. This makes the causation coef-

ficient particularly useful for building a taxonomy of possible correlation/causation

relationships later in this chapter.

Definition 3.3.1 (Average treatment effect [12]) The average treatment effect

is the average difference between the outcomes when a patient is treated and when a

patient is not treated. For Bernoulli random variables, this is:

ATE(X → Y ) = P (Y = 1 | do(X = 1))− P (Y = 1 | do(X = 0))

This is the probabilistic causal model equivalent of the Rubin-Neyman-Holland

definition of average treatment effect [37]. Positive ATE implies that treatment is,

on average, superior to non-treatment, while negative ATE implies the opposite.

Theorem 3.3.2 For Bernoulli distributed X and Y , γX→Y is equal to:
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γX→Y = ATE(X → Y )

√
V ar[X̂]

V arX̂ [Y ]

Proof. Consider the numerator of γ. For Bernoulli random variables:

P (y | do(x = 1))P̂ (x = 1)− P̂ (x = 1)(P (y = 1 | do(x = 1))P̂ (x = 1)

+ P (y = 1 | do(x = 0))P̂ (x = 0))

= P̂ (x = 1)(P (y = 1 | do(x = 1))− P̂ (x = 1)P (y = 1 | do(x = 1))

− P̂ (x = 0)P (y = 1 | do(x = 0)))

= P̂ (x = 1)(P (y = 1 | do(x = 1))− P̂ (x = 1)P (y = 1 | do(x = 1))

− (1− P̂ (x = 1))P (y = 1 | do(x = 0)))

= P̂ (x = 1)(P (y = 1 | do(x = 1))− P (y = 1 | do(x = 0))

− P̂ (x = 1)(P (y = 1 | do(x = 1))− P (y = 1 | do(x = 0))))

=(P (y = 1 | do(x = 1))− P (y = 1 | do(x = 0)))P̂ (x = 1)(1− P̂ (x = 1))

=ATE(X → Y )V ar[X̂]
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Therefore, γX→Y = ATE(X → Y )(V ar[X̂]/V arX̂ [Y ])1/2. �

Since variance is strictly positive for nondegenerate Bernoulli distributions,

this implies that γ has the same sign as the average treatment effect. In other

words, positive γ is equivalent to treatment causing, on average, a better outcome

than non-treatment, with the opposite being the case for negative γ.

The definition of the independence of random variablesX and Y is: ∀x, y P (x, y) =

P (x)P (y) or, equivalently: ∀x, y P (y | x) = P (y). In other words, observing X pro-

vides no information about Y (and vise-versa). The causal equivalent is invariance

of Y to X: ∀x, y P (y | x̂) = P (y); that is to say, no possible intervention on X can

affect Y [4]. Unlike independence, invariance is not symmetric. This dissertation

suggests the term mutually invariant for when both Y is invariant to X and X is

invariant to Y .

For Bernoulli random variables, X and Y are uncorrelated (ρ = 0) if and only

if they are independent. The analogous condition holds for the causation coefficient.

For Bernoulli distributed X and Y , γX→Y = 0 if and only if Y is invariant to X.

Theorem 3.3.3 For Bernoulli X, Y , γX→Y = 0 if and only if Y is invariant to X.

Proof. Consider the definition of average treatment effect, ATE(X → Y ) =

P (y = 1 | do(x = 1)) − P (y = 1 | do(x = 0)). Average treatment effect is zero if

and only if P (y = 1 | do(x = 1)) = P (y = 1 | do(x = 0)). Since the support of

a Bernoulli random variable is {0, 1}, both probabilities must be 0.5; therefore, Y

invariant to X. Since γ has the same sign as the average treatment effect, γX→Y = 0

if and only if Y is invariant to X. �
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Note that both the correlation and causation coefficients have difficulty cap-

turing nonlinear relationships between variables. In general, independence implies

ρ = 0 and invariance implies γ = 0, but the converse does not hold for many

distributions.

As a simple example, Table 3.1 contains interventional distributions where Y

is not invariant to X, but the maximum entropy causation coefficient γH = 0. The

natural causation coefficient may be positive, negative or zero depending on the

observational (pre-intervention) distribution P (x).

P (y | x̂) y=0 y=1

x=-1 1/3 2/3
x=0 2/3 1/3
x=1 1/3 2/3

Table 3.1: Non-invariant interventional distributions where γH = 0

3.4 Example: treatment of kidney stones

As noted in the Background chapter, randomization of an independent variable

effectively ‘cuts’ all incoming edges to that node in a causal diagram, removing

potential confounding variables. In the context of a randomized controlled trial, the

correlation coefficient and causation coefficient coincide; an estimate of one is an

estimate of the other.

When the available data is not from a randomized controlled trial, an estimate

of the causation coefficient can be thought of as an estimate of what the correlation

coefficient would be in a randomized controlled trial. As an example, Table 3.2 is a
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summary of data from a non-experimental study on the treatment of kidney stones

[11]. The subgroups (Z) refer to kidney stone size. The study can be modeled

with binary treatment (X) and response (Y ) variables, with the decision to perform

percutaneous nephrolithotomy (PCNL) as X = 0 and surgery as X = 1; similarly,

failure to recover and recovery are modeled as Y = 0 and Y = 1, respectively.

Small Large Overall

Open surgery 81/87 (0.93) 192/263 (0.73) 273/350 (0.78)
PCNL 234/270 (0.87) 55/80 (0.69) 289/350 (0.83)
Overall 315/357 (0.88) 247/343 (0.72) 562/700 (0.80)

Table 3.2: Success rate of treatment for kidney stones; successful/total (probability)

The naive model is that kidney stone size does not affect treatment or recovery;

this assumption corresponds to the causal diagram in Figure 3.1(a). In such a case,

the natural causation coefficient equals the population correlation coefficient; with

this dataset, the estimate of these coefficients would be ≈ −0.057. This is also

the case for Figure 3.1(b), where Z partially mediates the treatment’s effect on

recovery. Adjusting for Z would be incorrect; intuitively, this would ‘block’ Z’s

effect on recovery and result in biased estimates of causal effect.

X Y

Z

(a)

X Y

Z

(b)

X Y

Z

(c)

Figure 3.1: Some of the possible causal diagrams for modeling kidney stone treat-
ment. In (a), Z does not affect treatment or response. In (b) Z (partially) mediates
the treatments effect on recovery. In (c), Z causally effects treatment and recovery,
and an adjustment for direct causes should be performed.

In reality, the size of kidney stones (Z) affected which treatment was per-
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formed; that is to say, Figure 3.1(c) is the correct causal diagram. Correctly esti-

mating P (y | do(x)) requires an adjustment for direct causes (Theorem 2.6.2), i.e.

P (y | do(x)) =
∑

z P (y | x, z)P (z). For this dataset, the estimate of the causation

coefficient is ≈ 0.068. Since the cohorts are equal in size, the natural causation

coefficient and maximum entropy causation coefficient are identical.

Note that this is the opposite sign as the correlation coefficient (equal to the

causation coefficient in the ‘naive’ model). Since the causation coefficient has the

same sign as the average causal effect, this suggests that open surgery (X = 1) is

the superior treatment.

This ‘reversal’ effect caused by conditioning on a subgroup is well-known as

Simpson’s paradox and requires causal information to resolve correctly [58]. There

is a subtlety worth addressing: Simpson’s paradox refers the phenomena where the

association between a pair of variables (X, Y ) reverses sign upon conditioning on

a third variable, Z, regardless of the value of Z. However, the existence of such a

variable does not imply that it should be conditioned on. This is closely related to

the problems of ‘p-hacking’ in the scientific literature, in which researchers selectively

analyze or collect data until a publishable result is found, which is a misreporting

of the true effect sizes [32].

3.5 Taxonomy of correlation/causation relationships

For Bernoulli random variables, it is possible to exhaustively characterize the

possible relationships betweenX and Y , given the sign of ρ and γ. These have impor-
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tant interpretations: positive ρ is positive correlation, i.e. X and Y have a positive

relationship in observational studies, and positive γ is positive causation, which has

the interpretation that treatment, on average, is superior to non-treatment.

The causation coefficient provides a unified way to consider all of the possible

relationships at once. ρ and γ can each be positive, negative or zero which implies 9

possible relationships. These are grouped under 5 categories in the following table.

ρ γ

invariant and independent 0 0
common causation +/- 0
inverse causation +/- -/+
unfaithful 0 +/-
genuine causation +/- +/-

Table 3.3: Correlation/causation relationship by sign of coefficients

In this table, “+/-” refers the coefficient taking on a positive or a negative

value, e.g. inverse causation refers to a model producing positive ρ and negative γ

or negative ρ and positive γ. Many of the relationships described in the following

section are well-known and existing names are used whenever appropriate, along

with examples from existing studies. In addition, for each possible relationship, a

simple causal model including 3 Bernoulli distributed variables (treatment X, re-

sponse Y and confounder Z) that produce the described relationship to demonstrate

that all of these outcomes are possible, even for the simplest confounded models.

All of the following models are compatible with the causal diagram in Figure 3.1(c).

Note that the taxonomy is based on population coefficients, i.e. the relation-

ships that will persist, even in the limit of infinite data samples. Other corre-

lation/causation relationships that lie outside this taxonomy are discussed at the
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summary at the end of this chapter.

3.5.1 Invariant and independent

Two variables that are invariant and independent are completely unrelated —

neither observing nor manipulating one can provide information about or change

the other. Invariance and independence is usually the default assumption when

studying a system; in hypothesis testing, the null hypothesis is “no effect”. The

notion of light cone provides an example familiar to physicists - the principle of

locality and the theory of special relativity imply that no object outside of our light

cone can ever affect us.

Invariant and independent variables can be trivially mathematically modeled.

I introduce such an example to demonstrate how I will model the other possible

relationships between correlation and causation. Let εX , εY , εZ be fair coins.1 These

are the model’s background variables, i.e. the random factors outside of the model

that determine the variables within the model.

X will generally model a cause or treatment and Y an effect or response. An

example model with invariant and independent X and Y is simply:

Z = εZ

X = εX

1A ‘fair coin’ is commonly used in probability and statistics to refer to independent Bernoulli
distributed random variables with p = 0.5
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Y = εY

P (x, y) y=0 y=1 P (x)

x=0 1/4 1/4 1/2
x=1 1/4 1/4 1/2
P (y) 1/2 1/2

Table 3.4: Observational distribution of invariant and independent model

P (y|x̂) y=0 y=1

x=0 1/2 1/2
x=1 1/2 1/2

Table 3.5: Interventional distributions of invariant and independent model

X and Y are clearly invariant and independent and the correlation and cau-

sation coefficients are 0. In other models, Z will act as a confounding variable, but

in this case, none of the variables causally effect each other.

3.5.2 Common causation

Hans Reichenbach appears to be the first to propose the “Principle of the Com-

mon Cause” claiming, “If an improbable coincidence has occurred, there must exist

a common cause” [68]. Elaborating on this, he suggests that correlation between

events A and B indicates either that A causes B, B causes A or A and B have a

common cause2 This philosophical claim naturally suggests the following definition:

2There are systems with correlated variables that do not have a common cause. For example,
Bell’s theorem states that a theory of local hidden variables is incompatible with quantum me-
chanics. These systems do not respect the causal Markov condition and are excluded from analysis
here. Arguably, this correlation without causation is why these systems are so often considered
counterintuitive.

59



Common Causation X and Y are said to experience common causation when X

and Y are mutually invariant but not independent.

This effect is sometimes referred to as a ‘spurious relationship’ or ‘spurious

correlation’ — a term Pearson originally coined in [63]. This risks conflating three

distinct concepts: the interventional distribution from which γ is calculated, the

population observational distribution from which ρ is calculated, and the finite-

sample observational distribution, from which the sample correlation coefficient, r

is computed. Consider the following scenarios:

• A small number of samples are taken from statistically independent X and Y ,

but due to random sampling errors, the sample correlation coefficient suggests

that X and Y are correlated.

• A large number of samples are taken from causally independent X and Y , but

due to a latent confounding variable, X and Y are correlated.

The second scenario is common causation. The first scenario is spurious cor-

relation due to random sampling error, informally, ‘coincidental correlation’. To

report such results as indicative of causality is to make two critical errors: conflat-

ing the finite-sample observational distribution with the population observational

distribution and conflating the observational distribution with the interventional

distribution.

An example of a common cause can be found in a study on myopia and ambient

lighting at night [65]. Development of myopia (short-sightedness) is correlated with
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night-time light exposure in children, although the latter does not cause the former.

The common cause is that short-sighted parents are likely to have short-sighted

children, and also more likely to set up night-lights.

As a simple example of common causation, consider the following model: Let

εX , εY , εZ be fair coins and X, Y and Z be defined by the following three equations:

Z = εZ

X = Z ∧ εX

Y = Z ∧ εY

P (x, y) y=0 y=1 P (x)

x=0 5/8 1/8 3/4
x=1 1/8 1/8 1/4
P (y) 3/4 1/4

Table 3.6: Observational distribution of common cause model

P (y|x̂) y=0 y=1

x=0 3/4 1/4
x=1 3/4 1/4

Table 3.7: Interventional distributions of common cause model

From the observational distribution, it is clear that X and Y are correlated

(ρ = 1/3) and from the interventional distributions, X and Y are invariant (γ = 0).

61



3.5.3 Inverse causation

A classic veridical paradox observed by Martin Gardner is the relationship

between tuberculosis and dry climate [25]. At one point, Arizona, with one of the

driest climates in the United States was found to also have the largest share of

tuberculosis deaths. This is because tuberculosis patients greatly benefit from a dry

climate, and many moved there. This is isomorphic to the treatment of kidney stones

example, but with X as location (Arizona vs. not-Arizona), Y as tuberculosis death,

and Z as having tuberculosis. The following definition is proposed to characterize

this type of scenario.

Inverse causation X and Y are said to experience inverse causation when the corre-

lation coefficient ρ and natural causation coefficient γ have the opposite sign.

Inverse causation is of special importance when considering clinical treatment;

γ has the same sign as the average causal effect. A case of inverse causation is a case

where the correct treatment option is the opposite of what a naive interpretation of

correlation would suggest.

As a simple example of inverse causation, consider the following model: Let

εZ be a fair coin and εY be Bernoulli distributed with p = 3/4. The following model

exhibits inverse causation with ρ = −1/2 and γ = 1/4:

Z = εZ

X = Z

62



Y =


¬Z if εY = 1

X if εY = 0

P (x, y) y=0 y=1 P (x)

x=0 1/8 3/8 1/2
x=1 3/8 1/8 1/2
P (y) 1/2 1/2

Table 3.8: Observational distribution of inverse causation model

P (y|do(x)) y=0 y=1

x=0 5/8 3/8
x=1 3/8 5/8

Table 3.9: Interventional distributions of inverse causation model

“Inverse causation” is not a standard term. It is suggested here to avoid

confusion with other, similar sounding terms. ‘Anti-causation’ is inappropriate, as

‘anti-causal filters’ in digital signal processing are filters whose output depend on

future inputs. ‘Reverse causation’ is also inappropriate - this is already in popular

use to refer to mistakenly believing that Y has a causal effect on X, when X actually

causes Y .

3.5.4 Unfaithfulness

As discussed in the Background chapter, the causal Markov condition entails

a set of conditional independences between variables corresponding to nodes in a

DAG G. Sprites [79] introduced the faithfulness assumption (also referred to as

stability [57]) as the converse.
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Definition 3.5.1 (Faithfulness condition [79]) A distribution P is faithful to a

DAG G if no conditional independence relations other than the ones entailed by the

Markov property are present.

This is a global condition, applying to a joint probability distribution and

a DAG. I suggest the following condition as the local analogue for two random

variables X and Y in a causal model, which can only occur if the (global) faithfulness

condition is violated:

Unfaithful X and Y are said to be unfaithful if they are independent but not in-

variant.

Theorem 3.5.2 If X and Y are unfaithful in causal model M , then the observa-

tional distribution P and causal diagram G associated with M violate the faithfulness

condition.

Proof. Assume without loss of generality that Y is not invariant to X,

then P (y | x̂ is a non-constant function of x. Therefore, X is an ancestor of Y in

the associated causal diagram and X and Y are d-connected. However, X and Y

are independent, an independence relation not entailed by the Markov condition.

Therefore the observational distribution P is not faithful to G. �

For Bernoulli random variables, X and Y are unfaithful if and only if ρ = 0

and γ 6= 0.

The following model is a simple example where X and Y are unfaithful. Let

εZ , εY be fair coins. Then in the following model, ρ = 0 and γ = 1/2:
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Z = εZ

X = Z

Y =


¬Z, if εY = 1

X, if εY = 0

P (x, y) y=0 y=1 P (x)

x=0 1/4 1/4 1/2
x=1 1/4 1/4 1/2
P (y) 1/2 1/2

Table 3.10: Observational distribution of unfaithful X and Y

P (y|do(x)) y=0 y=1

x=0 3/4 1/4
x=1 1/4 3/4

Table 3.11: Interventional distributions of unfaithful X and Y

3.5.4.1 Friedman’s thermostat and the traitorous lieutenant

As an example of a model that exhibits unfaithfulness, consider “Friedman’s

Thermostat”, comparing a central bank to a thermostat. A correctly functioning

thermostat would keep the indoor temperature constant, regardless of the external

temperature by adjusting the furnace settings.3 Observation would show external

temperature and furnace settings to be anti-correlated with each other and internal

3Friedman introduced the thermostat analogy in the context of a central bank controlling money
supply [22]. Its use as a general analogy for correlation and causation has been popularized by
Rowe [70].
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Figure 3.2: The traitorous lieutenant problem

temperature to be uncorrelated with both. This does not correspond to the true

causal effect that external temperature and furnace settings have on internal tem-

perature and the lack of a direct causal effect between external temperature and

furnace settings. Friedman argued analogously that from the mid 1980s to early

2000s, the Federal reserve successfully controlled money supply to stabilize prices,

despite changes in demand for money [22].

The sharp-eyed reader will note that Freidman’s thermostat is not a recur-

sive (acyclic) causal model. An example of unfaithfulness with a recursive (acyclic)

causal model can be seen in the following “Traitorous Lieutenant” problem. Con-

sider the problem of a general trying to send a one-bit message. The general has

two lieutenants available to act as messengers, however, one of them is a traitor and

will leak whatever information they have to the enemy. The general observes the

following protocol: to send a 1, the general either gives the first lieutenant a 1 and

the other a 0, or the first a 0 and the second a 1, with equal probability. To send a

0, the general either gives both lieutenants a 0, or both lieutenants a 1, with equal

probability. The recipient of the message XORs both lieutenants’ bits to recover

the original message.
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3.5.4.2 The measure of unfaithful models

Arguably, X and Y being unfaithful is the worst possible case - further study

on the relationship between two variables may be considered unwarranted due to the

lack of any detectable correlation, despite the existence of a causal effect between

the two.

Unfaithful models serves as a counterexample to Tufte’s maxim, “Correlation

is necessary but not sufficient for causation”. However, there is a sense in which it

is true. Almost all models are faithful in a formal sense - models that do not respect

the faithfulness condition have Lebeguse measure zero in probability spaces where

model parameters have continuous support and are independently distributed [79].

However, this does not mean that such models can be dismissed out of hand; they

are vanishingly unlikely to occur by chance, but can be deliberately engineered, as

seen with Freidman’s Thermostat and the Traitorous Lieutenant examples.

It may be tempting to conclude that Tufte’s maxim holds in practice; that,

since unfaithful models have measure zero, they can be considered ‘pathological’ and

reasonably excluded from most analysis. However, there is still an important sense

in which this fails; nearly unfaithful distributions have nonzero ‘surprisingly large’

measure4 [83]. In the limit of infinite samples (i.e. the population distribution),

correlation in such models will be nonzero but with a finite number of samples, the

level of correlation will be statistically indistinguishable from zero.

4Formally, the measure of λ-strong-unfaithful distributions converges to 1 exponentially in the
number of nodes.
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3.5.5 Genuine causation and confounding bias

The remaining possibility is that the causation and correlation coefficient share

the same sign. A special case is when they are equal, which, for Bernoulli random

variables is equivalent to no-confounding ; the definition of no-confounding is pro-

vided by Pearl [60].

Definition 3.5.3 (No-confounding) X and Y are not confounded if and only if

P (y|x̂) = P (y|x)

By the definition of the natural causal coefficient, no-confounding implies ρ =

γ. For Bernoulli random variables, the converse also holds.

When γ and ρ are not equal, but share the same sign, then correlation in-

dicates a genuine causal effect, although the strength of the causal effect may be

greater or weaker than the magnitude of the correlation coefficient. This disserta-

tion suggests that this class of models be referred to as showing genuine causation

(with confounding bias).

Genuine causation with negative confounding bias corresponds to γ > ρ and

can be thought of as a weaker version of a confounding effect that can produce

unfaithfulness or inverse causation. In such cases, the true causal effect will be

stronger than correlation suggests. As an example, consider the following model

ρ = 1/2 and γ = 3/4. Given εZ is a fair coin and εY is Bernoulli with p = 1/4

Z = εZ
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X = Z

Y =


¬Z, if εY = 1

X, if εY = 0

P (x, y) y=0 y=1 P (x)

x=0 3/8 1/8 1/2
x=1 1/8 3/8 1/2
P (y) 1/2 1/2

Table 3.12: Observational distribution for genuine causation with negative bias
model

P (y|do(x)) y=0 y=1

x=0 7/8 1/8
x=1 1/8 7/8

Table 3.13: Interventional distributions for genuine causation with negative bias
model

Genuine causation with positive confounding bias example can be thought of

as a common cause effect, combined with genuine causation and therefore the true

causal effect will be weaker than the correlation suggests. In the following model,

ρ ≈ 0.745, the natural causation coefficient, γ ≈ 0.447 and the maximum entropy

causation coefficient, γH = 0.5. Given εX , εY , εZ are fair coins:

Z = εZ

X = Z ∧ εX
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Y =


Z, if εY = 1

X, if εY = 0

P (x, y) y=0 y=1 P (x)

x=0 5/8 1/8 3/4
x=1 0 1/4 1/4
P (y) 5/8 3/8

Table 3.14: Observational distribution for genuine causation with positive bias
model

P (y|do(x)) y=0 y=1

x=0 3/4 1/4
x=1 1/4 3/4

Table 3.15: Interventional distributions for genuine causation with positive bias
model

3.6 Visualizing and measuring γρ

Plotting γ against ρ provides a way to visualize and measure a distribution

of models, forms of meta-model analysis. A γρ plot is a graph where each point

represents a single model. The taxonomy of correlation/causation relationships can

be visually represented in such a graph. The origin, i.e. ρ = 0, γ = 0 corresponds

to independence and invariance. The horizontal line γ = 0 corresponds to common

causation. The vertical line ρ = 0 corresponds to unfaithful models. The upper left

and lower right quadrants are models that exhibit inverse causation. The other two

quadrants are models that exhibit genuine causation, with the line y = x denoting

no-confounding. All of these relationships are shown in Figure 3.3.
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(a) Common causation (b) Unfaithfulness

(c) Inverse causation (d) Genuine causation

Figure 3.3: γρ plots visualizing the correlation/causation taxonomy; each point
on a plot corresponds to a model. The vertical γ-axis can be seen as strength of
causation between two variables in the model, and the horizontal ρ-axis the strength
of correlation between two variables in the model. For models with Bernoulli random
variables, the line ρ = γ corresponds to no-confounding.
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The example models described in the correlation/causation taxonomy section

provide a constructive proof that correlation provides no guarantees about causation,

even for models with only three variables. Correlation is indeed not causation, but

this does not explain why this mistake is easy to make in practice.

Some insight can be found by considering the space of all linear models with

a single confounding variable Z. Given jointly independent error terms, εX , εY , εZ

with finite variance and support over the entire real line, this class of linear causal

models can be parameterized by σ2
εX
, σ2

εY
, σ2

εZ
, αZ , βX , βZ

Z = εZ

X = αZZ + εX

Y = βXX + βZZ + εY

Since these models are linear, and covariance is bilinear, the population corre-

lation coefficient can be calculated analytically, regardless of the underlying distri-

bution of the error terms:

ρX,Y =
βXσ

2
εX

+ (α2
ZβX + αZβZ)σ2

εZ√
(σ2

εX
+ α2

Zσ
2
εZ

)(β2
Xσ

2
εX

+ σ2
εY

+ (αZβX + βZ)2σ2
εZ

)

The natural causation coefficient can also be calculated directly from the def-

initions of the causation coefficient and causal effect:
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γX→Y =
βXσ

2
εX

+ α2
ZβXσ

2
εZ√

(σ2
εX

+ α2
Zσ

2
εX

)(β2
Xσ

2
εX

+ σ2
εY

+ (α2
Zβ

2
X + β2

Z)σ2
εZ

)

The “typical” relationship between correlation and causation can be analyzed

by constructing a probability distribution for the parameters of the linear model.

αZ , βX , βZ have support over the entire real line; σ2
εX
, σ2

εY
, σ2

εZ
have support over

(0,∞). Assuming mean 0 and variance 1, the maximum entropy distributions are

N(0, 1) and exp(1), respectively.

Given these jointly independent distributions over the parameter space, it is

possible to sample random linear models. This is not drawing random samples of

X and Y from a linear model, but rather, drawing random linear models from the

space of possible linear models of X, Y and Z, as described above.

Monte Carlo integration yields estimates of the probability of encountering

the possible relationships between correlation and causation, in the class of models

being sampled. Specifically, given a random model, the probability that it shows

inverse causation ≈ 0.122, genuine causation with negative bias ≈ 0.364 and genuine

causation with positive bias ≈ 0.514. A kernel density estimation plot of this model

space can be seen in Figure 3.4.

This matches closely to intuition. One would expect that, on average, a strong

positive correlation indicates a strong positive causal effect - this can be seen in the

upper right quadrant, where the (smooth) density estimation is darkest. Inverse

causation is possible, although less likely, and unfaithful models have measure 0,

which accounts for their unintuitive nature. It is vanishingly unlikely to encounter
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Figure 3.4: A smoothed plot of γ vs. ρ calculated for random linear models of 3
variables (treatment X, response Y and confounder Z). In the majority of models,
correlation and causation nearly coincide, especially in the high-density regions in
the upper-right and lower-left quadrants. However, there remains a non-trivial per-
centage of models where correlation and causation do not coincide; in particular,
the fraction of models exhibiting inverse causation ≈ 0.122
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an unfaithful model unless it was deliberately created. However, more pessimisti-

cally, the measure of models that are almost unfaithful is not zero. This is an

analysis of population coefficients; finite-sample errors mean that we cannot dismiss

unfaithfulness as being irrelevant.

The choice of a maximum entropy distribution in this analysis is based on the

principle of maximum entropy, which states that the appropriate prior distribution,

given the absence of any other information, is the maximum entropy distribution.

This is supported by arguments Jaynes and Wallis [41] [42], although these argu-

ments are by no means universally accepted. However, the important result is not

that inverse causation only occurs in ≈ 12% of models but that these results are

consistent with intuition that correlation is ‘usually’ indicative of causation.

γρ plots are not limited to this particular analysis — they can be used in any

analysis where a distribution over model space is available.

3.7 Summary of correlation/causation fallacies

Correlation does not imply causation, and, contrary to popular belief, the

converse holds as well. Yet, in practice, the two measures are often compatible with

each other. The taxonomy presented in this chapter, and the visualization of model

space suggests that no single epigram that will suffice to warn researchers about

how they can be confused in practice.

Cases of genuine causation (and invariance and independence) correspond to

the naive notion that correlation and causation approximately coincide. The rest
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of the taxonomy captures the scenarios in which they are not: inverse causation,

common causation and, albeit with a vanishingly small measure of models, unfaith-

fulness; these are the population (Heckman task 2) ways in which correlation and

causation fail to coincide. Taking estimation (Heckman task 3) into account adds

coincidental/spurious correlation and a non-trivial measure of unfaithfulness to the

menagerie. Finally, outside of this taxonomy entirely, the existing term ‘reverse

causation’ refers to those scenarios in which the causal effect of X on Y is mistaken

for Y on X or vise-versa.

Tufte’s maxim, “Correlation is not causation, but it sure is a hint” is tempting.

It is true in the sense that a random model will likely have ρ ≈ γ. However,

there remains a nontrivial possibility of encountering other correlation/causation

relationships such as inverse causation, a problem that no amount of additional

data sampling will mitigate. Although it does not directly advance any methods

to solve causal inference in practice, the γρ plot serves the purpose of acting as a

visual description of the following principle: data is simply no substitute for accurate

causal assumptions.
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Chapter 4: Causal programming (theory)

The purpose of abstraction is not to be vague, but to create a new

semantic level in which one can be absolutely precise.

—Edsger W. Dijkstra

4.1 Introduction

Computer science, in general, and programming languages, in particular, are

built on abstractions. The essence of a good abstraction is one that isolates the

user from the irrelevant, while preserving access to the relevant details. Declarative

programming abstractions permit expressing the logic of computation without de-

scribing the control flow, separating the ‘what’ of computation from the ‘how’. This

is programming in the more ‘mathematical’ sense (e.g. logic programming, linear

programming). One indicator as to how successful such a language is in this regard is

how well the language corresponds to the mathematical theory it is based on, with-

out requiring any additional statements from the user about how the computation

is to be performed.

A related problem, but somewhat in opposition to the goal of declarative pro-

gramming, is providing performance and completeness guarantees. In general, it be-
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comes more difficult for the implementation of more powerful declarative languages

to guarantee an efficient runtime, or even guarantee that the underlying computa-

tion will terminate. For example, Prolog, despite being based on a restricted subset

of first-order logic, is still powerful enough to express arbitrary computation and is

thus unable to provide termination guarantees.

This chapter considers the issue of designing effective causal programming

abstractions, independent of implementation. One of the key problems is how to

group the different mathematical objects used in causal inference into distinct con-

cepts that are compatible with human intuition. This chapter presents baseline

abstractions of: model, data/distribution, query and formula, and considers causal

inference to be the problem of finding instances of a logical relation that satisfy

given criteria. This can be viewed as an axis of abstraction that builds on, but is

conceptually distinct from, the Heckman Hierarchy. The tasks in Heckman Hierar-

chy work ‘forward’ — starting with the definition of models and known probabilities

and identifying model parameters. By casting causal inference as a logical relation,

it is possible to consider inference in ‘any direction’, with the goal of unifying dif-

ferent causal inference problems in the same theoretical framework. In this sense,

causal programming is a meta-theory; this chapter introduces high-level abstrac-

tions, which can be instantiated to develop a theory of causal inference that can be

implemented in practice.
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4.2 Causal inference as a logical relation

The main contribution of this chapter is to introduce the causal inference

relation:

〈M,D,Q, F 〉V

where:

• M is a set of structural causal models

• D is a set of distributions ; specifically, a set of known probability functions

• Q is a query from the causal hierarchy

• F is a formula that computes Q as a function of D, for every model in M

• V is the set of endogenous variables under consideration

The causal inference relation is indexed by V ; there is a relation for each

set of endogenous variables. V can be thought of as the set of all variables under

consideration that can be potentially manipulated and/or measured.

M is a (possibly infinite) set of structural causal models, described by some

finite set of model assumptions. The main focus of this dissertation is on the use of

causal diagrams, typically denoted G, to denote such sets of models. For example,

a researcher might consider the set of all structural causal models of the form:

X = fX(εX)
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Y = fY (Z, εY )

Z = fZ(X, εZ)

where εX 6⊥⊥ εY , that is to say, εX and εY are not independent. This can

represent a variant of the smoking/cancer example, where X is smoking, Z is tar,

and Y is cancer, i.e. tar mediates the effect of smoking on cancer, but there may be

a latent factor that causally affects both smoking and cancer. This set of structural

causal models is represented by the causal diagram in Figure 4.1.

X YZ

Figure 4.1: A causal diagram where the effect of X on Y is mediated by Z. In addi-
tion, X and Y share a latent common cause; equivalently the background variables
for X and Y are not independent.

In principle, M could be described by any restriction on the set of all recursive

structural causal models; this includes such assumptions as conditional independence

assumptions between potential outcome variables (e.g. Yx ⊥⊥ X), or restrictions on

the functional relationships, such as the assumption that all fi’s are linear. However,

in this dissertation, the set of all causal diagrams over V will serve as the main

example of the domain of M .

D is a set of known population probability functions, e.g. the joint ‘obser-

vational’ probability function P (v) over all of the endogenous variables. For the

model in Figure 4.1, P (v) would be the joint probability function P (x, y, z). Unless

otherwise stated, it will be assumed that all probability distributions are strictly

positive, i.e. P (v) 6= 0,∀v, as this is required by many theorems in causal inference.
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D can be extended to include other types of population probabilities. For ex-

ample, it may be the case that, in addition to the observational probability function,

the interventional distributions for a limited subset of variables is available. Such a

D can be represented as P (v | do(z′)),∀Z ′ ⊆ Z, where Z is some subset of V that

can be directly manipulated. Note that this includes the observational probability

distribution, as P (v | do(z′)) = P (v) when Z ′ is the empty set.

Note that by definingD as a set of known probability functions, D also includes

information about conditional independences between variables (e.g. knowledge of

the probability function P (x, y) includes information about whetherX ⊥⊥ Y ). When

necessary to distinguish between symbolic information about the distribution (e.g.

P (v) is known) and the numerical probabilities, this dissertation refers to the former

as the signature and the latter as the distribution.

Q can be any query from the causal hierarchy: statistical/associational (e.g.

P (y | x)), interventional/causal (e.g. P (y | do(x))) or counterfactual (e.g. P (Yx |

Zw)). The main focus in this dissertation is on causal effect queries, queries of the

form P (y | do(x)), where y and x are disjoint subsets of V .

Finally, the formula, F , computes Q as a function of D, in all models entailed

by M . In principle, F could be extended to include bounds on probabilities, but

the focus of this dissertation is on exact results.

The simplest problem involving the causal inference relation, hereby dubbed

“causal checking”, is determining whether a given tuple 〈M,D,Q, F 〉 is an instance

of the causal inference relation. For example, M = (Figure 4.1), D = P (x, y, z),

Q = P (y | do(x)), and F =
∑

z P (y | x, z)P (z) is a valid instance of the relation.
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The same tuple, but with F = P (y | x) instead is not an instance the relation, since

this F does not correctly compute the query in all models entailed by M .

The causal inference relation provides a general framework for analyzing prob-

lems in causal inference. Many problems in causal inference can be seen as finding an

instance, or enumerating all the instances, of the causal inference relation that sat-

isfy given criteria. These problems can be broadly categorized by which of M,D,Q

are given:

• M,D,Q - Identification: the problem of finding a formula to compute a causal

query

• D,Q - Causal discovery: the problem of enumerating the models that are

compatible with given population probabilities distributions

• M,Q - Research design: the problem determining the observational and/or

experimental data that must be collected to answer a given query

• M,D - Query generation: the problem of enumerating identifiable queries

Note that problems where F is given are not considered, as they represent

methodologically suspect practices. For example, searching for M , given D, Q and

F is an attempt to find a post hoc rationalization for a calculation of a causal effect

that has already been performed.
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4.3 Identification

Consider the variant of the smoking/cancer model described in Figure 4.1.

Furthermore, suppose that an analyst knows the joint pre-intervention distribution,

P (x, y, z), and wishes to compute the causal effect of X on Y , P (y | do(x)).

This corresponds to the following problem: find one instance of the causal

inference relation such that M = (Figure 4.1), D = P (x, y, z), Q = P (y | do(x)).

An appropriate F can be identified using the rules of the causal calculus (Theorem

2.8.1). A full solution to this problem is 〈M,D,Q, F 〉 where M,D and Q are as

given, and F is:

∑
z

P (z | x)
∑
x′

P (y | x′, z)P (x′)

It is possible for there to be several instances of the causal inference rela-

tion that satisfy given criteria. For example, the instances of the causal inference

relation that satisfy M = (Figure 4.2), D = P (x, y, z), Q = P (y | do(x)) includes

solutions 〈M,D,Q, F1〉 and 〈M,D,Q, F2〉, where F1, again, is
∑

z P (z | x)
∑

x′ P (y |

x′, z)P (x′), and F2 is simply P (y | x). In an identification problem, the solutions

are equivalent in the sense that for a given D, they will all compute the same value

for the query. However, there are other causal inference problems where finding

multiple solutions is of interest.

Conversely, there may be no instances of the causal inference relation that

satisfy given criteria. Attempting to find an instance of the causal inference relation
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X YZ

Figure 4.2: A causal diagram without latent confounding. Unlike the causal diagram
in Figure 4.1, there is no latent common cause of X and Y . The causal effect
P (y | do(x)) is equal to the conditional probability P (y | x).

that satisfies M = (Figure 4.3), D = P (x, y, z), Q = P (y | do(x)) will fail; Q cannot

be uniquely computed in all models entailed by M .

X YZ

Figure 4.3: A causal diagram where P (y | do(x)) is not identifiable. Intuitively,
there is a latent common cause that affects X, Y and Z, so it is not possible to
determine if any observed covariation is due to the effect of X on Z on Y , or if the
common cause is responsible.

Treating the full tuple 〈M,D,Q, F 〉 as the solution, as opposed to just the

formula, F , may seem redundant for identification problems. The utility of this

approach becomes more apparent for less restrictive search criteria.

4.4 Causal discovery

If a causal diagram is not specified, then causal inference becomes a problem

of causal discovery. As a simple example, consider an analyst that is studying a

system with just two endogenous variables, X, and Y . Suppose the analyst knows

that the variables are dependent, knows the joint observational probability function,

i.e. D = P (x, y), where X 6⊥⊥ Y , and wishes to infer the causal effect of X on Y ,

i.e. Q = P (y | do(x)).

A causal diagram and probability function are said to be Markov compati-

ble if the probability function respects the conditional independences implied by
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X Y X Y X Y

X Y X Y

(a) (b) (c)

(d) (e)

Figure 4.4: Causal diagrams that are Markov compatible with X 6⊥⊥ Y .

the Markov condition (Definition 2.6.1). There are three causal diagrams that are

Markov compatible with D that also permit identification of Q: M1 = (Figure 4.4a),

M2 = (Figure 4.4b), M3 = (Figure 4.4c). This corresponds to the following in-

stances of the causal relation: 〈M1, D,Q, F1〉, 〈M2, D,Q, F2〉, 〈M3, D,Q, F3〉 where:

F1 = P (y | x)

F2 = F3 = P (y)

If the domain of M is limited to the space of Markovian causal diagrams,

then this set of solutions is also complete, in the sense that every causal diagram

that is Markov compatible with D is contained in one of the enumerated instances

of causal inference relation (〈M1, D,Q, F1〉 and 〈M2, D,Q, F2〉). However, if the

domain of M also includes semi-Markovian causal diagrams, then there are several

causal diagrams that are compatible with D that do not permit identification of Q.

Note that any causal diagram where all endogenous variables share a com-

mon, latent cause is Markov compatible with every joint observational probability

function P (v). This has consequences for interpreting the results of causal discov-
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ery. It is generally incorrect to treat causal discovery as definitively determining

the causes of variables in a system. Instead, a discovered model can be viewed as a

set of additional, compatible assumptions that will permit answering a given query.

Causal discovery will usually be incomplete, since non-identifiable models remain a

possibility, unless explicitly ruled out by domain knowledge.

Causal discovery algorithms generally rely on the assumption that P is faithful

to G (this condition is also called ‘stability’ [57]), which is the assumption that every

conditional independence relationship that is true in P is entailed by the Markov

condition [79]. For example, if I = P (x, y), where X ⊥⊥ Y , then P is Markov

compatible with every diagram in figure 4.4. However, P is not faithful to any

of these diagrams; intuitively, the edges between X and Y suggest a dependency

between the variables that is not present.

4.5 Research design

If the data/distribution is not specified, then causal inference becomes a prob-

lem of research design. As an example, consider a scenario where an analyst wishes

to calculate P (y | do(x)) with respect to the causal diagram in figure 4.5.

W1

W3

W4

W2

W5

YX W6

Figure 4.5: A causal diagram, adapted from [56], that permits identifying P (y |
do(x)) in multiple ways.
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The complete joint observational probability function P (v) is sufficient, but

unnecessary. In particular, an analyst may be interested in calculating causal ef-

fect from less information when it is expensive, or otherwise difficult to obtain the

complete joint observational probability function. P (y | do(x)) can be computed as

either:

F1 =
∑
w3,w4

P (y | w3, w4, x)P (w3, w4)

F2 =
∑
w4,w5

P (y | w4, w5, x)P (w4, w5)

Solutions are sensitive to the domain and representation of D. One possible

representation of D1 is P (y | w3, w4, x), P (w3, w4). However, this implies a some-

what cumbersome domain for D and can make it difficult to determine equivalent

distributions. For example, the probability functions P (y | x), P (x) are semanti-

cally, but not syntactically, equivalent to P (x, y). A less expressive, but simpler

domain for D is the set of joint observational probability functions over subsets of

V . This domain has a natural partial order: P (v1), is included in a more general

distribution, P (v2), if V1 ⊂ V2. In this context, minimal distributions to calculate

P (y | do(x)) are D1 = P (x, y, w3, w4) and D2 = P (x, y, w4, w5).
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4.6 Query generation

If the query is not specified, then causal inference becomes a problem of query

generation. Note that the number of identifiable queries has the potential to be

very large. For example, if D = P (v), and M is a Markovian causal diagram,

then all queries of the form P (y1, . . . , ym | do(x1, . . . , xn)) are identifiable, which is

exponential in |V |. Tractable query generation will generally require some restriction

on the space of queries or a willingness to accept an incomplete set of solutions.

As a simple example of query generation, consider the problem of generating

all queries that either involve the causal effect on Y , i.e. P (y | do(. . .)) or involve

manipulating x, i.e. P (. . . | do(x))), with M = (figure 4.6) and D = P (v). Two

such queries are identifiable: Q1 = P (y | do(x)), and Q2 = P (z | do(x)).

X Z Y

Figure 4.6: A semi-Markovian causal diagram that permits identifying P (y | do(x))
and P (z | do(x)) but not P (y | do(z))

Query generation can be combined with the other causal inference tasks. For

example, starting with a known joint probability function, causal discovery can enu-

merate Markov compatible models, with query generation to enumerate identifiable

queries for each Markov compatible model.
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4.7 The Causal and Heckman Hierarchies revisited

Much like how the Causal Hierarchy outlines the possible questions that may

be asked in the course of causal inference, and the Heckman Hierarchy outlines dis-

tinct tasks arising from the analysis of causal models, causal programming outlines

the different types of different causal inference goals. Causal programming acts as

a separate axis of abstraction, one that builds upon, unifies and extends existing

problems and concepts in causal modeling and inference.

The causal programming concept of a model corresponds precisely to the first

causal inference task in the Heckman Hierarchy and the causal programming concept

of a query corresponds precisely to the Causal Hierarchy. Identification (Heckman

task 2) problems are ‘forward’ inference in causal programming: starting with the

definition of a model, the signature of a distribution, and a query to infer a formula.

Evaluating the formula for a given empirical distribution corresponds to estimation

(Heckman task 3).

Causal programming’s formulation of causal discovery is named after the exist-

ing literature on causal discovery algorithms [66]. This roughly corresponds to two

‘backwards’ steps in the Heckman Hierarchy. First, using real data (part of Heck-

man task 3) to determine conditional independences (i.e. properties of population

distributions, part of Heckman task 2). Then, given these conditional indepen-

dence assumptions, generating a set of compatible causal models (i.e. Heckman

task 1). The traditional definition of causal discovery is simply the problem of find-

ing compatible causal models, given probability distributions. Causal programming
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further assumes that the ultimate goal is to actually answer some given query. Each

〈Mi, D,Q, Fi〉 tuple provides context to the solution; each compatible model Mi is

a model compatible with the given distribution, and the corresponding Fi identifies

the query for that set of compatible assumptions.

Causal programming’s formulation of research design is inspired by the existing

problem of experimental design, which is usually considered part of the third causal

inference task: considering problems of sensitivity and statistical power. Causal

programming’s research design is the rough equivalent, but for Heckman’s second

task. Instead of experimental design’s consideration of how to most effectively use

existing data, research design is the question of what data a researcher should try

to obtain.

Finally, query generation can be seen as an extension of determining the sta-

tistical implications of a model, e.g. reading conditional independence properties

from a graph via the d-separation criterion. Causal programming’s formulation of

query generation extends this to the problem of generating identifiable queries, in

general.

4.8 Restricted causal inference relation

The causal inference relation can be useful as a conceptual framework, but it

is not a practical way of analyzing causal inference problems unless the domains

of M , D and Q are appropriately restricted. Note that if M can include arbitrary

model assumptions, then conducting causal inference may require invoking arbitrary
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mathematical theorems!

Several previously studied problems can be cleanly expressed as special cases

of finding instances of the causal inference relation. In particular, identification

has several subproblems that permit complete algorithms, in the sense that if it

is possible to identify Q from M and D, then the algorithm is guaranteed to find

an appropriate F . This is illustrated as follows: Let G be a Markovian or semi-

Markovian causal diagram, P (v) be the joint observational probability function,

and W , X, Y , and Z each be subsets of V :

• Causal effect identification (ID) [39, 76]: M = G, D = P (v), Q = P (y | do(x))

• Conditional causal effect identification (IDC) [75]: M = G, D = P (v), Q =

P (y | w, do(x))

• Causal effect identification via surrogate experiments (zID) [5]: M = G, D =

P (v | do(z′)),∀Z ′ ⊆ Z, Q = P (y | do(x))

A zIDC algorithm, combining the capabilities of IDC and zID, would corre-

spond to M = G, D = P (v | do(z′)),∀Z ′ ⊆ Z, Q = P (y | w, do(x)). Finding a

complete algorithm for zIDC appears to be an open problem.

Causal discovery can be performed with Inductive Causation (IC) [62]. Given

a probability distribution P and assuming faithfulness, IC outputs a pattern, which

denotes an equivalence class of causal diagrams. If the underlying model is known

to be Markovian, then IC is also complete, in that the resulting pattern will corre-

spond to the complete set of causal diagrams that are Markov compatible with P .
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Otherwise, IC will produce a pattern that includes many, but not all, compatible

semi-Markovian models.

a

b c

d

e
�

Figure 4.7: A marked pattern [57]. Marked edges denoted by an asterisk, e.g.
d→ e, signify a directed edge in the underlying model. Directed edges, e.g. b→ d,
represent either b→ d or a latent common cause of both b and d. Undirected edges,
e.g. a — b, represent either a← b, a→ b, or a latent common cause.

Inductive Causation leaves the details of some its steps unspecified. In par-

ticular, IC requires searching for a set Sab such that (a ⊥⊥ b | Sab) for every pair of

variables a and b in V , but does not specify how such sets should be found. The PC

algorithm [78] is a refinement of IC that runs in polynomial time on fixed-degree

graphs. The combination of IC-based algorithms and identification algorithms per-

mit finding instances of the causal inference relation that correspond to known D

and Q. For example, the combination of PC and ID would permit finding instances

of the causal inference relation that correspond to D = P (v), Q = P (y | do(x))

Problems related to research design have been discussed in the structural

causal model literature; for example, Pearl notes that the front-door and back-door

criteria permit an analyst a degree of freedom in selecting which set of covariates to

adjust for when calculating causal effect [57]. However, the more general problem

of finding instances of the causal inference relation corresponding to given M and
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Q does not appear to have an existing, standard formulation. Similarly, query gen-

eration is implicitly considered in the analysis of identification, but does not appear

to have been formulated as a problem in its own right.

All of these problems can be unified as special cases of finding instances of the

causal inference relation, with the following domains for M , D and Q:

• M : Markovian and semi-Markovian causal diagrams over V . Causal diagrams

can be represented as G = (V,E,C) where (V,E) forms a directed acyclic

graph and C is a confounding family of V , corresponding to the dashed edges

that represent latent confounding. A Sperner family is a collection of subsets

of a given set, such that none of the subsets contain any of the others [87].

This dissertation defines a confounding family of V to be a Sperner family of

V , with the further requirement that none of the subsets of V are singleton.

• D: Distributions that can be represented as P (w | do(z′)),∀Z ′ ⊆ Z, for a

given Z ⊆ W and W ⊆ V . Note that this is simply P (v) when W = V and

Z = ∅. This representation has a natural partial order: a distribution D1 is

said to be contained in another distribution D2 if W1 ⊆ W2 and Z1 ⊆ Z2.

• Q: Queries that can be represented as P (y | w, do(x)) for a given w ⊆ V, x ⊆

V, y ⊆ V , such that w, x and y are disjoint sets.

With respect to these domains, this dissertation suggests the following as

canonical formulations of causal inference problems:

• Identification (zIDC): Given M,D,Q, find one instance of the causal inference
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relation 〈M,D,Q, F 〉.

• Causal discovery: GivenD,Q, enumerate 〈Mi, D,Q, Fi〉 for distinctMi, i.e. for

any two enumerated instances of the causal inference relation, 〈M1, D,Q, F1〉

and 〈M2, D,Q, F2〉, M1 6= M2

• Research design: Given M,Q, enumerate 〈M,Di, Q, Fi〉, for distinct, mini-

mal Di, i.e. for any enumerated instance of the causal inference relation,

〈M,Di, Q, Fi〉, there does not exist another instance 〈M,Dj, Q, Fj〉 such that

Di is contained in Dj

• Query generation: Given M,D, enumerate 〈M,D,Qi, Fi〉 for distinct Qi

The combination of the axioms of probability theory and the inference rules

of Pearl’s causal calculus [56] are known to be complete for the ID, IDC and zID

problems [39, 75, 5]. I conjecture that they are complete for all of the problems

above as well. Furthermore, if a complete zIDC algorithm exists, it would con-

stitute a complete — albeit intractable, for larger |V | — solution for all of these

problems. Causal discovery, research design and query generation problems can be

reduced to identification problems by instantiating all possible Markov compatible

causal diagrams, distributions, or queries, respectively, and running an identification

algorithm for each instantiation.
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4.9 Other domains for the causal inference relation

Other problems in causal inference can be represented in the causal inference

relation framework by modifying the domain of the relation appropriately. In par-

ticular, the problems of identification of counterfactuals and recovery from selection

bias require only minor extensions to Q and D, respectively.

Identification of counterfactuals can be represented by extending the domain

of possible queries. Let G be a causal diagram, α and β be conjunctions of coun-

terfactual events, e.g. Yx, Zw, in the potential outcomes notation, and P∗ be the set

of all experiments, i.e. P (v | do(z′)),∀Z ′ ⊆ V . With respect to these domains, the

following problems are known to have complete algorithms [74]:

• Counterfactual identification (ID*): M = G, D = P∗, Q = P (α)

• Conditional counterfactual identification (IDC*): M = G, D = P∗, Q = P (α |

β)

Selection bias can be represented by extending distributions to include “s-

biased” data [6], i.e. P (v | S = 1), where S represents a binary indicator of entry

into the data pool. For example [3], in studying the effect of a training program on

earnings, subjects achieving higher incomes may tend to report their earnings more

frequently than those who earn less. Recovery from selection bias is the problem

of answering queries about the general population, despite the data being collected

under selection bias. This data may be accompanied by unbiased data, P (t), over

some subset T ⊂ V . Bareinboim [3] outlines several problems related to selection
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bias:

• Selection without external data: M = G, D = P (v | S = 1), Q = P (y | x)

• Selection with external data: M = G, D = P (v | S = 1), P (t), Q = P (y | x)

• Selection in causal inferences: M = G, D = P (v | S = 1), P (t), Q = P (y |

do(x))

Complete identification criteria exist for selection without external data. Suf-

ficient criteria and a valid algorithm for selection with external data and selection

in causal inferences exist, but are not known to be complete. In particular, iden-

tification in the presence of both selection bias and latent confounding (i.e. in

semi-Markovian models) is particularly difficult [3].

This formulation of the causal inference relation does not act as an exhaustive

survey of existing causal inference methods and algorithms for SCMs. There is no

notion of providing bounds for query, when an exact result cannot be computed [12].

Causal diagrams are the only form of model assumptions considered, which excludes

parametric assumptions and nonrecursive (i.e. cyclic) systems. And the problem of

external validity, i.e. generalizing results to a different environment from which the

original data was collected, is not considered [7].

In principle, the relation could be modified to represent these problems, but

this would add considerable complexity. Introducing problems into the framework

requires careful selection of the domains of M , D, Q and F to represent the problem

of interest, while still permitting a small set of complete inference rules.
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4.10 Causal programming (optimization)

The causal inference relation casts problems in causal inference as the problem

of finding instances of a logical relation. A further generalization is casting causal

inference as an optimization problem. The generalized problem is to find optimal

instances of the causal inference relation with respect to a cost function:

minimize g(M,D,Q)

subject to ∃F : 〈M,D,Q, F 〉

and M ∈M∗, D ∈ D∗, Q ∈ Q∗

Where g is a cost function, ∃F : 〈M,D,Q, F 〉 is the statement that there exists

a formula such that 〈M,D,Q, F 〉 constitutes an instance of the causal inference

relation, and M∗, D∗, and Q∗ are the given domains for models, distributions and

queries under consideration.

A natural problem to consider in this framework is the problem of optimal

research design. For example, consider a scenario where an analyst wishes to calcu-

late P (y | do(x)) with respect to the causal diagram in figure 4.5. Since M and Q

are given, the only degree of freedom is in the domain of distributions; M∗ is just

a single causal diagram, i.e. M∗ = (figure 4.5) and Q∗ is just a single query, i.e.

Q∗ = P (y | do(x)).

Let the domain of distributions be all joint probability functions over subsets

of V , i.e. D∗ = P (w),∀W ⊆ V , and the cost function, g(D), be a linear cost
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function where including each wi in the joint probability function costs i, e.g. the

cost of P (v) = P (x, y, w1, w2, . . . w6) is 21. In this example, the solution would be

the instance of the causal inference relation: 〈M,D,Q, F 〉, where M and Q are as

given, D = P (x, y, w3, w4), and F =
∑

x3,x4
P (y | x,w3, w4)P (w3, w4), with a cost of

7.

As a function of D, g can be interpreted as the cost of performing observational

and/or experimental research, with the optimal instance of the causal inference rela-

tion representing the least expensive way to answer the original query. As a function

of M , g can be interpreted as the complexity of a model, with the optimal solution

representing the simplest set of additional assumptions that permit answering the

original query — a formalization of Occam’s razor. Finally, as a function of Q, g can

be interpreted as the (inverse, when minimizing g) value of being able to identify

a particular query, which can be combined with other causal inference tasks. For

example, given a causal model, but not an distribution or query, finding an opti-

mal instance of the causal inference relation would represent the finding the most

valuable, identifiable query, and the distribution required to compute it.

4.11 Relationship to the scientific method

Consider the steps involved in an idealized, simplified scientific method: Ob-

serve. Hypothesize. Predict. Experiment. (Repeat.) This corresponds well to tasks

associated with the causal inference relation. Observation corresponds to obtaining

a set of observational probabilities functions (D). Hypothesizing corresponds to
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causal discovery of compatible models (M). Prediction requires generating identifi-

able queries (Q). Finally, experimentation corresponds to obtaining interventional

probabilities that confirm or deny the prediction. This process can be repeated with

the interventional probabilities included in D.

In this sense, causal programming is framework for formalizing (part of) the

scientific method. At a high level, the abstractions of model, distribution, query

and formula are a guide to grouping different mathematical objects used in causal

inference. Defining precise domains for each of these abstractions makes it possible

rigorously consider questions regarding the soundness and completeness of corre-

sponding causal inference algorithms. What the causal programming framework

introduces is a unified way of considering a large class of different problems, a foun-

dation for building automated causal inference systems.

It is worth noting that causal programming does not — and is not designed

to — consider questions of ontology, i.e. the question of which factors, and how

these factors should be entered into formal analysis as model variables. The causal

inference relation assumes a known, fixed set of endogenous variables V . The ques-

tion of whether or not these variables adequately capture the relevant aspects of

a system being studied is beyond the scope of causal programming. In this sense,

causal programming is clearly not a complete framework for formalizing the scientific

process.

This limitation suggests an additional desideratum for any implementation of

causal programming: the resulting system should be interactive, to make it easy

for users to iteratively analyze and refine their models. The implementation of the
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identification portion of causal programming is the subject of the next chapter.
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Chapter 5: Causal programming (implementation)

When someone says: ‘I want a programming language in which I need

only say what I wish done’, give him a lollipop.

—Alan J. Perlis

5.1 Whittemore

This chapter introduces Whittemore,1 an implementation of causal program-

ming, focusing on the identification and estimation of interventional queries. Whitte-

more is implemented as an embedded, domain-specific language in Clojure, a dialect

of Lisp. The main significance of Whittemore is that it provides a declarative pro-

gramming language and interactive system for the full ‘pipeline’ of causal modeling

and inference. A user can start with ‘raw’ data, declare how it is to be interpreted as

a probability distribution, declare their model assumptions and calculate estimates

1The Yale shooting problem [31] is a scenario that is difficult to correctly formalize in first-
order logic. In the problem, Fred (later identified as a turkey) is initially alive and a gun is initially
unloaded. Loading the gun, waiting for a moment, and then shooting the gun is expected to kill
Fred. In one solution, Fred indeed dies. In another — also logically correct — solution, the gun
counterintuitively becomes unloaded and Fred survives. Similar ‘shooting’ problems are have been
used as examples when describing theories of causality [57] [30].

Samuel Whittemore was an early American farmer and soldier. A monument in Massachusetts
is inscribed: “Near this spot, Samuel Whittemore, then 80 years old, killed three British soldiers,
April 19, 1775. He was shot, bayoneted, beaten and left for dead, but recovered and lived to be
98 years of age.”
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of causal effect, all within the same system.

Several of the components that comprise the implementation of Whittemore

have been previously implemented elsewhere. I argue Whittemore is unique in its

strong emphasis on declarative programming: a user can specify what it is they want

computed, without having to specify details of program control flow. In addition,

the syntax of the programming language was designed to mimic the corresponding

mathematical syntax as closely as possible. The ultimate goal is to make conducting

causal inference no more difficult than writing down the corresponding mathematical

statements.

Whittemore is similar to other declarative programming languages that are

closely based on a mathematical theory. For example, logic/relational programming

languages (e.g. Prolog) are largely based on defining formulas in first-order logic

[9]. Probabilistic programming can be seen as a language for defining probabil-

ity distributions, with an operator that implements conditional sampling [49]. As

an implementation of the theory of causal programming, Whittemore can be seen

as being based on the theory of structural causal models, and comprised of two

operators: identification, which finds formulas that compute a causal query of in-

terest, and estimation which applies formulas to transform probability distributions

to other probability distributions. The goal of this chapter is to demonstrate the

viability of causal programming as a paradigm.

In particular, this required the (new) implementation of a purely functional

version of Shpitser’s ID algorithm [73] and designing a protocol/interface for prob-

ability distributions to enable seamless transitions between identification and esti-
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mation tasks. Since Whittemore is based on the ID algorithm, it is complete for the

class of queries it supports. If it fails to identify a causal effect, it is because it is

impossible to uniquely calculate the causal effect for the given model assumptions.

5.2 A motivating example

Before describing the design and implementation of the language, this section

presents a motivating example. The implementation of Whittemore has built-in

support for use in a Jupyter notebook [44]. The notebook interface automatically

renders certain objects as rich output, e.g. as tables or graphs instead of plain text.

This provides a user much faster feedback than a typical write-compile-run cycle,

or even a read-eval-print-loop interface; a user can type code and immediately be

presented with rich output. All code examples in this section are shown with their

automatically rendered outputs.

These examples use some additional functions that are not part of ‘core’ Whit-

temore. To load data, read-csv parses and processes a comma-separated values file;

head returns the first n samples for inspection. To visualize a probability distribu-

tion, plot-univariate returns a plot of a marginal distribution.

The example in this section is an analysis of the treatment of renal calculi

(i.e. kidney stones), using data from a real study [11]. This is the same example as

discussed in Chapter 3; renal-calculi.csv is a comma-separated value file that

contains the relevant data. The first step of analysis is to parse and process the

dataset:
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(define kidney-dataset

(read-csv "data/renal-calculi.csv"))

(head kidney-dataset 5)

The kidney-dataset is a dataset of 3 variables, each with two possible values.

The possible treatments were either open surgery or nephrolithotomy, the possible

kidney stone sizes were either large or small, and the final result of treatment was

either determined to be success, or failure. This dataset naturally lends to being

modeled as a joint categorical distribution.

The kidney-distribution (Figure 5.1) is the empirical probability distri-

bution associated with this study. This distribution exhibits Simpson’s paradox,

which despite being well known in the statistical literature, continues to “trap the

unwary” [15] [58]. In this distribution, the probability of success given surgery, i.e.

P (success = “yes” | treatment = “surgery”), is clearly less than the probability of

success given nephrolithotomy2:

2Note that (q ...) is used to represent P (...); q stands for “query”.
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(define kidney-distribution

(categorical kidney-dataset))

(plot-univariate

kidney-distribution :success)

Figure 5.1: The definition of the joint categorical kidney-distribution and plot
of the marginal distribution of the success variable.

(estimate kidney-distribution

(q {:success "yes"} :given {:treatment "surgery"}))

0.78

(estimate kidney-distribution

(q {:success "yes"} :given {:treatment "nephrolithotomy"}))

0.8257142857142857

However, a reversal appears when conditioning on subgroups. When restricted

to observing patients with small kidney stones, surgery appears to be the superior

treatment:
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(estimate kidney-distribution

(q {:success "yes"} :given {:size "small"

:treatment "surgery"}))

0.9310344827586207

(estimate kidney-distribution

(q {:success "yes"} :given {:size "small"

:treatment "nephrolithotomy"}))

0.8666666666666667

When restricted to observing patients with large kidney stones, surgery, again,

appears to be the superior treatment:

(estimate kidney-distribution

(q {:success "yes"} :given {:size "large"

:treatment "surgery"}))

0.7300380228136882

(estimate kidney-distribution

(q {:success "yes"} :given {:size "large"

:treatment "nephrolithotomy"}))

0.6875

In other words, when looking at small or large kidney stones, surgery ap-

pears to be the superior treatment, but when looking at the overall distribution,

nephrolithotomy appears to be the superior treatment. Resolving the paradox relies

on recognizing that deciding on a superior treatment involves answering interven-
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tional (level 2 of the Causal Hierarchy) queries, not associational queries (level 1).

The data in this study was drawn from an observational study, not a randomized

controlled trial. Specifically, the data was collected under circumstances where doc-

tors were more likely to send patients with larger kidney stones to surgery; in other

words, treatment was a function of kidney stone size. Success, in turn, was a func-

tion of both treatment and size. Given these circumstances, this distribution3 can

be viewed as being generated by the following model:

size = f1(ε1)

treatment = f2(size, ε2)

success = f3(treatment, size, ε3)

where each fi is some (unknown) function and each εi is an independent arbi-

trarily distributed background variable, representing factors outside of the model.

For example, success is not solely determined by treatment and kidney stone size.

Other factors (e.g. the skill of the surgeon) determine the final outcome, all of which

are agglomerated and represented by a single background variable.

Declaring these model assumptions as the charig1986 model in Whittemore is

straightforward. Note that Whittemore automatically generates and renders causal

diagram that corresponds to the given model assumptions:

3There is a subtlety: It is more accurate to say that the original kidney dataset was drawn
from some unknown (and unknowable) population distribution of medical outcomes, i.e. the
kidney-dataset is a collection of samples. The kidney-distribution is the empirical distri-
bution associated with these samples and an approximation of the original distribution.
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(define charig1986

(model

{:size []

:treatment [:size]

:success [:treatment :size]}))

size
treatment

success

Determining the superior treatment is an interventional query, P (success |

do(treatment)). Given the model assumptions in charig1986, this can be deter-

mined as a function of the kidney-distribution, that is to say, a function of the

joint probability distribution over size, success, treatment. Whittemore readily

identifies the causal effect:

(identify charig1986

(q [:success] :do [:treatment]))

∑
size

P (size)P (success | size, treatment)

The output of identify is a Formula object. (Note that Whittemore au-

tomatically generates and renders LATEX math.) The formula correctly calculates

P (success | do(treatment)), for every structural causal model compatible with the

given causal diagram. In other words, it solves the corresponding identification

problem. An identification problem may be of interest in and of itself, however, the

goal in this example is not merely find such a formula. The goal is to determine
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which treatment is superior. This requires determining the actual interventional

probabilities. This is an identification task, followed by an estimation task.

The infer function is ‘syntactic sugar’, combining identification and estima-

tion into a single step:

(infer charig1986 kidney-distribution

(q {:success "yes"} :do {:treatment "surgery"}))

0.8325462173856037

(infer charig1986 kidney-distribution

(q {:success "yes"} :do {:treatment "nephrolithotomy"}))

0.778875

Despite the literature on resolving Simpson’s paradox, it continues to invoke

confusion or even outright disbelief [58]. Causal programming offers an alternative

solution: a user does not even have to be aware of the paradox to calculate the

correct causal effect. As seen in this example, causal programming, in general,

and Whittemore, specifically, encapsulates the underlying inference algorithms. It

provides a declarative language that only exposes those details that are necessary

to perform causal modeling and inference.

The rest of this chapter describes Whittemore’s syntax, semantics and imple-

mentation and includes additional usage examples.
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5.3 Syntax and semantics

Whittemore is defined as a total (i.e. always terminating), purely functional

subset of its host language. The reference implementation of Whittemore is in

Clojure, a dialect of Lisp [35]. Like Lisp, there are no statements; a causal program

is a sequence of expressions.

An expression in Whittemore is a constant, symbol, or (op expr *) where

op is a causal programming operator, and expr is an expression. Operators are

described using regular expression syntax: ? (optional), * (0 or more), + (1 or

more), with non-terminals denoted by italics.

〈expr〉 ::= 〈constant〉 | 〈symbol〉 | (〈op〉 〈expr〉∗)

〈op〉 ::= define | model | data | q | identify
| estimate | measure | signature | 〈distribution〉

Figure 5.2: Whittemore grammar

5.3.1 Constants

Constants in Whittemore are same as the host (Clojure) language. Con-

stants include standard atomic data types (e.g. integer and floating point numbers,

strings, booleans) as well as keywords, which are symbolic identifiers that evaluate

to themselves. Keywords begin with a colon and can contain alphanumeric char-

acters and special characters that are not reserved by the host language, e.g. :x,

:x’, :treatment, :z 1 are all valid keywords.
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In addition to the atomic data types, constants include the following collection

types, with literal syntax:

• Vectors are ordered collections of values, e.g. [:x :y]

• Maps are unordered collections that maps unique keys to values, e.g. {:x 0,

:y 1}

• Sets are unordered collection of unique values, e.g. #{:x :y}.

Keywords and sets are optional data types, in that strings can generally be used

in place of keywords, and vectors can be used in place of sets, without significantly

affecting the semantics of the program. This opens up the possibility of porting

Whittemore to other host languages that do not have the same built-in data types.

However, keywords and set notation are preferred in some cases where it is useful

to have a visual distinction.

5.3.2 Symbols

(define symbol docstring? value )

Symbols are identifiers that normally refer to another value. The define

operator binds a symbol to a value, and returns the value. ‘Pure’ Whittemore

cannot rebind symbols. This restriction is necessary for Whittemore to be a purely

functional language.

The implementation of Whittemore slightly relaxes this restriction — rebind-

ing a symbol is a warning rather than an error. Although this makes Whittemore

111



impure, in practice, it is convenient to be able to redefine symbols, especially for

interactive usage.

5.3.3 Model

(model dag confounding *)

A model corresponds precisely to the concept of a semi-Markovian causal dia-

gram, representing a class of structural causal models. The model operator returns

a new Model where dag is a map of variables to their parents, and each confounding

is a set of endogenous variables whose background variables are not independent

(Figure 5.3).

(define front-door

(model

{:x []

:z [:x]

:y [:z]}

#{:x :y}))

X = fX(εX)

Z = fZ(x, εZ)

Y = fY (z, εY )

εX 6⊥⊥ εY

x
z

y

Figure 5.3: An expression defining a model, the equivalent structural causal model
written as a system of equations, and the corresponding causal diagram. This set of
model assumptions corresponds to Z being a function of X and Y being a function
of Z. In addition, εX εY are not independent; equivalently, X and Y share some
latent common cause.

5.3.4 Data

(data joint )
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data produces a signature of a probability function, i.e. the symbolic in-

formation about a population probability distribution (Section 4.2). Whittemore

currently only supports representing knowledge of joint probability functions. For

example, knowledge of the joint probability function, P (x, y, z), is represented as

(data [:x :y :z]).

Note that this is not a representation of a particular probability distribution

or a particular dataset — it’s the symbolic representation of the joint probability

function a researcher expects to be able to obtain. Using Whittemore to conduct in-

ference with an explicit (data ...) can only yield symbolic formulas, not numerical

estimates.

5.3.5 Query

(q effect :do do ? :given given ?)

A Query is a statistical or causal query, such that the resulting value is a

probability distribution. For example, (q [:y] :given {:x 1}) corresponds to

P (y | X = 1), a statistical query. (q [:y 1 :y 2] :do {:x 0}) corresponds to

P (y1, y2 | do(X = 0)), a causal query. Whittemore does not currently support

counterfactual queries, although support is planned for a future release.

Note that since do and given are both optional, they are implemented as

keyword arguments in the host language. Their default values are the empty map.
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5.3.6 Formula

(identify model data ? query )

The identify operator returns a Formula that computes query, as a function

of data, in every SCM entailed by model, or a Fail, if such a Formula does not

exist. If unspecified, data defaults to the joint observational probability function

over all endogenous variables in model. For example, (identify front-door (q

[:y] :do {:x 0})), with implicit (data [:x :y :z]), returns the Formula:

∑
z

[∑
x

P (y | x, z)P (x)

]
P (z | x)

where: x = 0

Note that Formulas follow lexical scoping rules, e.g. only the ‘outer’ x is

bound to 0. The implementation of Formulas is discussed in the “Implementation”

section.

The same identify expression, but with (data [:x :y]) returns a Fail

describing the hedge [74] that renders identification impossible. Since identify is

based on the ID algorithm [76], it is complete; a Fail will be returned if and only if

no appropriate Formula exists.

5.4 Identification examples

Identification is a purely symbolic task; the resulting formulas map population

distributions to causal effects, but, by themselves, do not perform any numerical
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calculations. This can still be useful by itself. Identification can inform a researcher

if the model assumptions they are willing to make and the data they plan to collect

will be enough to infer the queries of interest.

Identification in the kidney stone example is a case of a back-door4 adjustment

[56]; note that the model is isomorphic to the following:

(define back-door

(model

{:z []

:x [:z]

:y [:x :z]}))

z
x

y

(identify back-door

(q [:y] :do [:x]))

P (y | do(x)) =
∑
z

P (y | x, z)P (z)

As expected, Whittemore does not try to adjust for variables when doing so

would bias the estimate of causal effect:

(define mediation

(model

{:z [:x]

:x []

:y [:x :z]}))

z
yx

4The back-door criterion is sufficient graphical criterion for adjustment; a set of variables Z
satisfies the back-door criterion relative to (X,Y ) if no node in Z is a descendant of X and Z
blocks (d-separates) every path between X and Y that contains an arrow into Y .
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(identify mediation

(q [:y] :do [:x]))

P (y | x)

By default, Whittemore assumes that the joint probability distribution func-

tion over all endogenous variables will be available, e.g. for endogenous variables

X, Y, Z, (data [:x :y :z]). If this is not the case, then Whittemore performs a

latent projection [79], converting the causal diagram to one that replaces the un-

known variables with latent variables (e.g. dashed, bidirected edges). For example,

if only the joint distribution of P (X, Y ) is available for the back-door model, then

identifying the causal effect of X on Y becomes impossible:

(identify back-door

(data [:x :y])

(q [:y] :do [:x]))

#whittemore.core.Fail{}

Identification fails (i.e. a Fail object is returned) in this case because it is

impossible to identify the causal effect P (y | do(x)) from just the joint probability

distribution P (y | do(x)).

Note that Whittemore is by no means limited to the special cases of back door

and front door adjustment [56]. Causal programming easily identifies formulas for

computing causal effect that involve non-standard adjustments:

(define concomitant-example

"Figure 1 (f) from (Shpitser 2008)"

(model

{:y [:x :z_1 :z_2]

:z_2 [:z_1]

:z_1 [:x]
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:x []}

#{:y :z_1}

#{:x :z_2}))

y

z_1

z_2x

(identify concomitant-example

(q [:y] :do [:x]))

∑
z1,z2

[∑
x

P (x)P (z2 | x, z1)
]
P (z1 | x)P (y | x, z1, z2)

This is example is notable in that identifying P (y | do(x) requires summing

over post treatment variables — identification will fail if Z1 or Z2 is not available.

This is in stark contrast to the recommendation that that one should avoid summing

over post-treatment variables to avoid introducing bias [53].

5.5 Implementation (identification)

The syntax of probability theory is weakly typed, and heavily overloaded. For

example, even when restricted to associational/statistical queries, the symbol P ()

has several meanings in mathematics. P (y | x) is a function from values of X to

probability distributions of Y ; P (y | X = x) is a particular probability distribution;

P (Y = y | X = x) is a particular probability value, i.e. a real number between 0

and 1. In each case, the syntax is identical, but each expression has a different type.

In addition to supporting this syntax, for an implementation of causal pro-

gramming to be fully declarative, it has to be purely functional — any portion
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of code that manipulates state is complected with every other piece of code that

manipulates the same state.

Clojure is well suited to implementing causal programming. The language has

literal syntax for (immutable) vectors and maps and is dynamically typed which

makes it possible for Whittemore to closely match the syntax of the corresponding

mathematics. Lisp dialects, in general, blur the line between an API/library and a

language. Whitemore is implemented as a library, but acts as a sublanguage — it’s

possible to code in ‘pure’ Whittemore, with strong termination and completeness

guarantees, while still being able to write more general code in the host language,

as necessary.

Currently, the identify operator is an implementation of Shpitser’s ID algo-

rithm. The ID algorithm and several related algorithms have been previously imple-

mented in the R programming language [81]. Unlike this previous implementation,5

Whittemore’s identify is purely functional. In addition, Whittemore natively sup-

ports estimation of causal effects (described later in this chapter) and has a strong

emphasis on interactive ‘notebook’ usage.

The Model, Data, Query and Formula types are all implemented as persistent

(immutable) hash array mapped tries (HAMT) [2] which support lookup and ‘mod-

ification’ — associating a key and value creates a new data structure (Figure 5.4)

— in log32N time.6 This provides good performance while remaining free of side

5Whittemore was designed independently; I became aware of Tikka and Karven’s implementa-
tion after beginning work on Whittemore.

6In asymptotic analysis, this is no different than the O(logN) performance of a binary tree.
Empirically, HAMTs enjoy performance that rivals other (mutable) implementations of the asso-
ciative array abstract data type.
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effects. A considerable advantage is that the data structures can be freely shared

with any other part of a program; it is impossible to corrupt a data structure since

none of them can be changed.

Figure 5.4: The HAMT is effectively an 32-tree, which can be used to implement a
map (associative array) data type. ‘Modifying’ (e.g. changing a value for one of the
key-value pairs) an existing map leaves the original map unchanged. A new map is
created, one that mostly shares structure with the original for efficiency [35].

Models, i.e. causal diagrams, are represented in a modified adjacency-list

format; models are a map, whose keys are :pa and :bi, and whose values are

another map, and a set of sets, respectively (Figure 5.5). These correspond to the

two type types of edges that must be kept track of: directed edges and bidirected

edges. Directed edges (:pa) are represented as a map of vertices to the set of their

parents. Bidirected edges (key :bi) are implemented as a set of sets representing

pairs of edges. When used in a Jupyter notebook, these are automatically rendered

as causal diagrams via the Graphviz [24] graph visualization software.

The ID algorithm relies on ‘modified’ graphs, e.g. GX , the graph where all of
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{:pa {:x #{}, :y #{:z}, :z #{:x}},

:bi #{#{:x :y}}}

Figure 5.5: The front-door model as a map. X has no parents, Y has the parent
Z, and Z has the parent X. In addition, there exists a bidirected edge between X
and Y . During interactive ‘notebook’ usage, models are automatically rendered as
causal diagrams (Figure 5.3).

the incoming edges to nodes X are removed. Since all Whittemore data structures

are immutable, the ‘modified’ graph can be safely created without affecting the

original.

Formulas are defined as a map of bindings of variables to values, and a form,

which is defined recursively:

• {:p #{vars } :given #{vars }}

• {:sum form :sub #{vars }}

• {:prod #{forms }}

• {:numer form :denom form }

These forms correspond to a probability expression, summation, product, and

fraction, respectively. Formulas follow lexical scoping rules, which obviates the need

to rename variables — variable bindings are determined the first surrounding :sum

that contains the variable as a subscript.

Additional keys can be added to the Model, Data, Query, and Formula types,

without changing the semantics of a program, permitting considerable future exten-

sibility.
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5.6 ‘Nanopass’ simplification of formulas

The ID algorithm produces formulas that identify causal effects. However,

there is no guarantee that the resulting formulas are particularly understandable or

efficient for estimation. Essentially, the ID algorithm is ‘unaware’ of the rules of

probability theory.

One approach to simplifying formulas is to add steps to the ID algorithm to

simplify formulas during identification. The ID algorithm is recursive; by interleav-

ing simplification and identification steps, it is possible to dramatically reduce the

complexity of the final formula [80].

The disadvantage of this approach is that it requires specific changes to the

implementation of the ID algorithm and intertwines identification and simplification.

This raises difficulties for future extensions. Instead, Whittemore’s approach is to

borrow the idea of a ‘nanopass’ compiler [43]. The ‘core’ inference performed by the

implementation of ID produces unsimplified, but valid formulas. These formulas

can then be sent through a pipeline of simplification steps, repeatedly applying

pattern-matching rules to reduce the complex formulas into simpler, but still valid

formulas. The requirement is that each ‘pass’ produces a simpler, but still valid

formula, preserving correctness, while leaving this process open to customization

and extension.

Whittemore’s implementation is especially amenable to this approach since

Formulas are ‘ordinary’ Clojure data structures and immutable. It is safe to ‘change’

a formula because it is not a true change — it produces a logically new formula data
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structure. The implementation shares structure for efficiency, but this is safe to do

so because the interface does not permit in-place modification. It is also easy to

take advantage of parallelism. There is no risk to sharing the same formula among

separate threads, because there is no state that can be corrupted via race conditions.

As an example, the formula P (x,y,z)∑
y P (x,y,z)

is represented by the following map:

{:numer {:p #{:x :y :z}},

:denom {:sub #{:y},

:sum {:p #{:x :y :z}}}}

This formula can be reduced to {:p #{:y} :given #{:x :z}} by applying

a marginalization rule on the :denom form, resulting in {:numer #{:y :z :x}

:denom :p #{:z :x}}. This, in turn, can be reduced to {:p #{:y} :given #{:x

:z}} by applying a conditional probability rule. This final formula is a representa-

tion of P (y | x, z).

The ‘nanopass’ approach respects separation of concerns in the implementa-

tion: the tasks of identification and simplification are kept entirely separate. An

advantage of this approach is that future extensions to causal programming that im-

plement additional identification algorithms will get any improvements on the com-

pilation pipeline for ‘free’. For example, to add support for for conditional causal ef-

fect queries (e.g. P (y | z, do(x))) and/or counterfactual queries (e.g. P (Yx | x′)), the

implementation of identify could be updated to the IDC or IDC* [74] algorithm.

The output of an updated identify can be sent through the same simplification

pipeline, requiring no additional changes to Whittemore.
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5.7 Estimation and the distribution protocol

Causal diagrams represent completely nonparametric model assumptions. Ac-

cordingly, the result of running an identification algorithm, given only the assump-

tions in a causal diagram, will also be nonparametric. A Formula calculates a causal

effect query as a function of probability functions. For example, in the front-door

model example, P (y | do(x)) is identified by the formula
∑

z P (y | x, z)P (z), which

is a function of the conditional probability function P (y | x, z) and the marginal

probability function P (z).

The structure of P (y | x, z) and P (z) depends on the type of probability

distribution being represented. Estimating causal effects, i.e. calculating numerical

probabilities, requires specific knowledge of this representation. This is at odds with

the nonparametric nature of a Formula.

To solve this ‘impedance mismatch’ between identification and estimation,

Whittemore treats the problem of evaluating a formula to be part of the defini-

tion of a probability distribution. There is no single piece of code describing how

a Formula evaluates probabilities, that would limit Whittemore to a single method

of estimation. The design relies on the definition and implementation of a prob-

ability distribution to describe how it applies a Formula to itself. Formula code

remains distribution-agnostic and the implementation of estimation methods and

the representation of probability distributions can be open to user extension.

Conceptually, formulas are treated as transformations from probability distri-

butions to probability distributions, not as a means of calculating the probability of
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an individual event. As a result, there’s no restrictions on how a probability distri-

bution has to be represented in a program. Whittemore merely defines a probability

distribution protocol. In Clojure, a protocol is a named set of methods and their

signatures; the resulting functions are polymorphic in their first argument.7 The

Distribution protocol is defined as the following methods:

• (estimate this formula )

Returns the result of applying a formula to this distribution, yielding a new

distribution.

• (measure this event )

Returns the probability of event, i.e. measure implements the mathemati-

cal concept of a probability measure. An event is expected to be a map of

keywords to values.

• (signature this )

Returns the Data ‘signature’ of the distribution.

Whittemore includes an implementation of a categorical distribution. Con-

structing a categorical distribution is done with the categorical function which

accepts a vector of samples (events) as it’s argument and automatically infers the

support of the joint distribution. As a simple example:

(define example-distribution

(categorical

[{:x 0, :y 0}

{:x 0, :y 1}

7Clojure protocols are analogous to a Java interface.
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{:x 1, :y 0}

{:x 1, :y 1}

{:x 1, :y 1}]))

creates a joint categorical distribution from a collection of five samples. The

resulting probability distribution has P (x = 1, y = 1) = 2/5 and P (x = 0, y =

1) = P (x = 1, y = 0) = P (x = 0, y = 0) = 1/5 and is represented as a map of the

distribution’s probability mass function. For categorical distributions, measure can

be implemented as a simple map lookup, e.g. (measure example-distribution

{:x 0, :y 0}) returns 2/5. The signature of this distribution is {:joint #{:x

:y}}, i.e. a representation that this is a joint distribution over the variablesX and Y .

Neither signature, nor measure is typically called from user code — Whittemore

provides higher-level functions and ‘syntactic sugar’.

The Distribution protocol is user extensible; other probability distributions

can be implemented in the host language without modification to Whittemore’s

implementation. The implementation of estimate for a new distribution only has to

specify how a formula transforms a probability distribution into another probability

distribution — the other use cases are also ‘syntactic sugar’.

5.8 Infer and ‘syntactic sugar’

The reference implementation of Whittemore provides some ‘syntactic sugar’

to make causal programming easier. In particular, the q operator has three versions

that mimic common usage of P () in probability theory:

• ‘Unbound’ query, e.g. (q [:y] :do [:x]), a query where do and given are
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vectors. An unbound query can still be provided as an argument to identify,

but the resulting formula cannot be used as an argument to estimate without

first providing the necessary variable bindings.

• ‘Bound’ query, e.g. (q [:y] :do {:x 0}), corresponding to a conditional

or interventional distribution (this is considered the canonical version of a

Query).

• ‘Event’ query, e.g. (q {:y 1} :do {:x 0}), corresponding to a specific prob-

ability, i.e. effect is an event.

Providing an event query to estimate implies measure. For example, assum-

ing that an appropriate probability distribution is bound to the symbol smoking8:

(estimate smoking

(q {:y 1} :given {:x 1}))

Returns the probability 0.8525.

In addition, Whittemore provides the infer operator, which combines the

functionality of identify, estimate and measure. For example:

(infer front-door smoking

(q {:y 1} :do {:x 1}))

Returns the probability 0.4975.

8These examples assume that smoking follows the probability distribution in [57, Table 3.1]
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Chapter 6: The computational power of dynamic Bayesian networks

Decidable problems are priceless; for everything else, there’s pattern-

matching.

—Meredith Patterson

6.1 Cyclic causal models

The theory of causal programming and the implementation in Whittemore

were designed to respect somewhat competing principles: a researcher should be

able to express a very general class of models, queries and data/distributions, while

still allowing implementations to guarantee completeness in inference. In particular,

the class of models that is supported is precisely that of acyclic causal diagrams,

essentially, the space of ‘fully’ nonparametric structural causal model assumptions.

Nonparametricity in model specification is a ‘liberating’ assumption — it al-

lows a researcher to enter the assumption that X causes Y , while making no ad-

ditional claims as to the nature of that relationship. In contrast, requiring acyclic

causal diagrams is restrictive, removing a potentially interesting class of models from

analysis. This suggests the following related analysis: in what sense the restriction

to acyclic graphs is a ‘natural’ restriction?
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The definition of structural causal models (Definition 2.4.2) requires that each

fi equation forms a mapping from Ui∪PAi to Vi; each equation assigns a value to its

corresponding endogenous variable as a function of its direct causes and the entire

set of equations has a unique solution. The nonparametric nature of the equations

is essentially the source of problem. A system of nonlinear equations may have zero,

one, or multiple solutions — this last case is particularly problematic. In the case

of zero solutions, it is reasonable to claim that the model is simply inconsistent. In

the case of multiple solutions, a probability over the background variables no longer

uniquely induces a probability distribution over the endogenous variables.

It is illuminating to consider what cyclic models are generally designed to an-

alyze: the equilibrium distribution of variables evolving over time. Cases of mutual

causation, e.g. X causing Y and Y causing X can be broken down into cases of

variables affecting their next time-step: Xt causing Yt+1 and Yt causing Xt+1. A

cyclic causal model is ‘shorthand’ for a model unrolled over time.

This chapter argues that extending causal analysis to cyclic causal diagrams

is fundamentally difficult. In particular, it presents a proof that the equilibrium

distribution of dynamic Bayesian networks is uncomputable by showing that such

networks can simulate arbitrary computation.

This has consequences for any attempt to extend causal programming to sup-

port cyclic models: if the equilibrium distribution of such models in uncomputable,

then it is impossible to design complete algorithms for conducting inference. Infor-

mally, the causal programming abstraction ‘breaks’. With nonparametric, acyclic

models, it is possible to implement a programming language that is guaranteed to

128



find a formula that computes a given causal query, whenever such a formula exists.

When this process fails, it is because such a formula can not exist — the model

assumptions are provably too weak.

When the causal models, themselves, are capable of performing arbitrary com-

putation, it is impossible to design causal inference algorithms with such a property.

It may be the case that, for given model assumptions, a query has a definitive an-

swer. It will not be possible, in general, to design an algorithm that is guaranteed

to answer a query, because doing so is equivalent to solving the halting problem. In

other words, inference may fail, and it will be unknowable if the failure is because

the query has no answer, or if because the execution of the algorithm was simply

unable to find the answer. It may be the case that inference needs to be run longer,

but it may be the case that it will never succeed.

6.2 Dynamic Bayesian Networks

Dynamic Bayesian networks are the time-generalization of Bayesian networks

and relate variables to each other over adjacent time steps. Dynamic Bayesian

networks unify and extend a number of state-space models including hidden Markov

models, hierarchical hidden Markov models and Kalman filters. Dynamic Bayesian

networks (DBN) extend Bayesian networks to model a probability distribution over a

semi-infinite collection of random variables, with each collection of random variables

modeling the system at a point in time [18]. Following the conventions in [54], the

collections are denoted Z1, Z2, . . . and variables are partitioned Zt = (Ut, Xt, Yt) to

129



represent input, hidden and output variables of a state space model. Such a network

is “dynamic” in the sense that it can model a dynamic system, not that the network

topology changes over time.

A DBN is defined as a pair (B1, B→), where B1 is a Bayesian network that

defines the prior P (Z1) and B→ is a two-slice temporal Bayes net (2TBN) that

defines P (Zt|Zt−1) via a directed acyclic graph:

P (Zt|Zt−1) =
N∏
i=1

P (Zi
t |pa(Zi

t)) (6.1)

where Zi
t is the ith node at time t, and pa(Zi

t) are the parents of Zi
t in the graph.

A 2TBN is simply a Bayesian network where the nodes are partitioned into vertices

at time t and time t+ 1. The parents of a node can either be in the same time slice

or in the previous time slice (i.e. the model is first-order Markov).

The semantics of a DBN can be defined by “unrolling in time” the 2TBN until

there are T time-slices; the joint distribution is then given by:

P (Z1:T ) =
T∏
t=1

N∏
i=1

P (Zi
T |pa(Zi

t)) (6.2)

Analyzing the computational power of a DBN requires defining what it means

for a DBN to accept (and halt) or reject an input. Define an input sequence, {Ut} of

Bernoulli random variables to model the binary input. Similarly, define an output

sequence {Yt} (Yt ∈ {run, halt0, halt1}) to represent whether the machine has halted

and the answer that it gives. Given an input, in1, in2, . . . , int, to a decision problem,

the machine modeled by the DBN has halted and accepted at time t, if and only if
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P (Yt = halt1|U1 = in1, . . . , Un = int) > 0.5 and halted and rejected if and only if

P (Yt = halt0|U1 = in1, . . . , Un = int) > 0.5.

6.3 Discrete Dynamic Bayesian Networks Are Not Turing-complete

“Discrete” Bayesian networks are Bayesian networks where all random vari-

ables have some finite number of outcomes, i.e. Bernoulli or categorical random

variables. If dynamic Bayesian networks are permitted to increase the number of

random variables in the network over time, then simulating a Turing-machine be-

comes trivial: simply add a new variable each time step to model a newly reachable

cell on the Turing machine’s tape. However, this requires some ‘first-order’ features

in the language used to specify the network and the computational effort required

at each step of the simulation will grow without bound.

With a fixed number of random variables at each time step and the property

that DBNs are first-order Markov, the computational effort per step remains con-

stant. However, discrete DBNs have sub-Turing computational power. Intuitively,

a discrete DBN cannot possibly simulate a Turing machine since there is no way to

store the contents of the machine’s tape.

More formally, any discrete Bayesian network can be converted into a hidden

Markov model [54]. This is done by ‘collapsing’ the hidden variables (Xt) of the DBN

into a single random variable by taking the Cartesian product of their sample space.

The ‘collapsed’ DBN models a probability distribution over an exponentially larger,

but still finite sample space. Hidden Markov models are equivalent to probabilistic
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finite automata [19] which recognize the stochastic languages. Stochastic languages

are in the RP-complexity class and thus discrete DBNs are not Turing complete.

6.4 A Dynamic Bayesian Network with Continuous and Discrete

Variables

I present a construction for a 2TBN that can simulate the transitions of a

two stack push-down automaton (PDA), which is equivalent to the standard one

tape Turing machine. A two stack PDA consists of a finite control, two unbounded

binary stacks and an input tape. At each step of computation, the machine reads

and advances the input tape, reads the top element of each stack and can either

push a new element, pop the top element or leave each stack unchanged. The state

of the control can change as function of previous state and the read symbols. When

the control reaches one of two possible halt states ({halt0, halt1}), the machine stops

and its output to the decision problem it was computing is defined which of the halt

states it stops on.

A key part of the construction is using a Dirac distribution to simulate a

stack. A Dirac distribution centered at µ can be defined as the limit of normal

distributions:

δ(µ) ≡ lim
σ→0+

1

σ
√

2π
e
−x2
2σ2 (6.3)

A single Dirac distributed random variable is sufficient to simulate a stack.

The stack construction adapted from [77] encodes a binary string ω = ω1ω2 . . . ωn
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into the number:

q =
n∑
i=1

2ωi + 1

4i
(6.4)

Note that if the string begins with the value 1, then q has a value of at least

3/4 and if the string begins with 0, then q is less than 1/2 - there is never a need

to distinguish among two very close numbers to read the most significant digit. In

addition, the empty string is encoded as q = 0, but any non-empty string has value

at least 1/4.

All random variables, except for the stack random variables, are categorically

distributed - thus, the conditional probabilities densities between them can be rep-

resented using standard conditional probability tables.

Extracting the top value from a stack requires a conditional probability dis-

tribution for a Bernoulli random variable (Top ∈ {0, 1}), given a Dirac (Stack ∈ R)

distributed parent. The Heavyside step function meets this requirement and is

defined as the limit of logistic functions (or, more generally, softmax functions),

centered at 1/2:

H(x) ≡ lim
k→∞

1

1 + e−k(x−1/2)
(6.5)

The linear operation 4q− 2 transfers the range of q to at least 1 when the top

element of the stack is 1 and no more than 0 when the top element of the stack is

0. Then, the conditional probability density function:
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P (Top|Stack = q) = H(4q − 2) (6.6)

yields P (Top) = 1 whenever the top element of the stack is 1 and P (Top) = 0

whenever the top element of the stack is 0.

Similarly, a conditional probability distribution can be defined for Bernoulli

random variable Empty ∈ {0, 1}, as:

P (Empty|Stack = q) = 1−H(4q) (6.7)

to check if a stack is empty.

Finally, the linear operations q
4

+ 2b+1
4

and 4q − (2b + 1) push and pop b,

respectively, from a stack. The conditional probability density for a stack at time

t + 1, given a stack at time t, the top of the stack at time t, and action to be

performed on the stack (Actiont ∈ {push0, push1, pop, noop}) is fully described as

follows:

P (Stackt+1|Topt = p, Stackt = q, Actiont = push0) = δ(q/4 + 1/4)

P (Stackt+1|Topt = p, Stackt = q, Actiont = push1) = δ(q/4 + 3/4)

P (Stackt+1|Topt = p, Stackt = q, Actiont = pop) = δ(4q − (2p+ 1))

P (Stackt+1|Topt = p, Stackt = q, Actiont = noop) = δ(q) (6.8)

Since there are two stacks in the full construction, they are labeled, at time
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t, as Stacka,t and Stackb,t. The rest of the construction is straightforward. Statet,

Actiona and Actionb are functions of Statet−1, T opa,t, Emptya,t, T opb,t, Emptyb,t and

int. Since all of these are discrete random variables, the conditional probability

densities is simply the transition function of the PDA, written as a (0, 1) stochastic

matrix. As expected P (Y = halti|State) = 1 if State is that halt state, and 0

otherwise.

Finally, the priors for the dynamic Bayesian network are simply P (Stacka,1) =

P (Stackb,1) = δ(0), P (State1 = q0) = 1, where q0 is the initial state.

As described, this construction is somewhat of an abuse of the term ‘proba-

bilistic graphical model’ - all probability mass is concentrated into a single event

for every random variable in the system, for every time step. However, it is easy

to see this construction faithfully simulates a two stack machine, as each random

variable in the construction corresponds exactly to a component of the simulated

automaton.

6.5 Exact Inference in Continuous-discrete Bayesian Networks

This construction requires continuous random variables, which raise concerns

as to whether the marginal posterior probabilities can be effectively computed. The

original junction tree algorithm [46] and cut-set conditioning [59] approaches to

belief propagation compute exact marginals for arbitrary DAGs, but require discrete

random variables. Lauritzen’s algorithm [45] conducts inference in mixed graphical

models, but is limited to conditional linear Gaussian (CLG) continuous random
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variables. In a CLG model, let X be a continuous node, A be its discrete parents,

and Y1, . . . , Yk be continuous parents. Then

p(X|a,y) = N(wa,0 +
k∑
i=1

wa,iyi;σ
2
a) (6.9)

Lauritzen’s algorithm can only conduct approximate inference, since the true

posterior marginals may be some multimodal mix of Gaussians, while the algorithm

itself only supports CLG random variables. However, the algorithm is exact in the

sense that it computes exact first and second moments for the posterior marginals

which is sufficient for the Turing machine simulation.

Laurientz’s algorithm does not permit discrete random variables to be chil-

dren of continuous random variables. Lerner’s algorithm [47] extends Lauritzen’s

algorithm to support softmax conditional probability densities for discrete children

of continuous parents. Let A be a discrete node with the possible values a1, . . . , am

and let Y1, . . . , Yk be its parents. Then:

P (A = ai|y1, . . . , yk) =
exp(bi +

∑n
l=1w

i
lyl)∑m

j=1 exp(b
j +

∑n
l=1w

i
lyl)

(6.10)

Like Lauritzen’s algorithm, Lerner’s algorithm computes approximate poste-

rior marginals - relying on the observation that the product of a softmax and a

Gaussian is approximately Gaussian - but exact first and second moments, up to er-

rors in the numerical integration used to compute the best Gaussian approximation

of the product of a Gaussian and a softmax. This calculation is actually simpler in

the case where the softmax is replaced with a Heavyside and the Lerner algorithm
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can run essentially unmodified with a mixture of Heavyside and softmax conditional

probability densities. In the case of Dirac-distributed parents, with Heavyside con-

ditional probability densities, numeric integration is unnecessary and no errors are

introduced in computing the first and second moments of the posterior distribution.

Any non-zero variance for the continuous variables will ‘leak’ probability to

other values for the ‘stack’ random variables in the Turing machine simulation, even-

tually leading to errors. Lauritzen’s original algorithm assumes positive-definite co-

variance matrices for the continuous random variables, but can be extend to handle

degenerate Gaussians [67]. In summary: posterior marginals for the Turing ma-

chine simulation can be computed exactly, using a modified version of the Lerner

algorithm when restricted to Dirac distributed continuous random variables with

Heavside conditional probability densities. If Gaussian random variables and soft-

max conditional probability densities are also introduced, then the first and second

moments of the posterior marginals can be computed ‘exactly’, up to errors in

numerical integration, although this will slowly degrade the quality of the Turing

machine simulation in later time steps.

Inference in Bayesian networks is NP-hard [13]. However, assuming that arith-

metic operations can be computed in unit time over arbitrary-precision numbers (e.g.

the real RAM model), the work necessary at each time step is constant. Thus, dy-

namic Bayesian networks can simulate Turing-machines with only a constant time

overhead in the real RAM model, and slowdown proportional to the time complexity

of arbitrary precision arithmetic otherwise.
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6.6 Aside: comparison to neural networks

This result for dynamic Bayesian networks is analogous to Siegelmann and

Sontag’s proof that a recurrent neural network can simulate a Turing machine in

real time [77]. In fact, neural networks and Bayesian networks turn out to have very

similar expressive power:

1. Single perceptron ≈ Gaussian naive Bayes (Logistic regression) [55]

2. Multilayer perceptron ≈ Full Bayesian network (Universal function approxi-

mation) [14] [85]

3. Recurrent neural network ≈ Dynamic Bayesian network (Turing complete)

There is an interesting gap in decidability - it takes very little to turn a sub-

Turing framework for modeling into a Turing-complete one. In the case of neural

networks, a single recurrent layer, with arbitrary-precision rational weights and a

saturating linear transfer function is sufficient. With dynamic Bayesian networks,

two time-slices, continuous-valued random variables with a combination of linear

and step function conditional probability densities is sufficient.

Although such a simple recurrent neural network is theoretically capable of

performing arbitrary computations, practical extensions include higher-order con-

nections [64], ‘gates’ in long short-term memory [36], and even connections to an

‘external’ Turing machine [28]. These additions enrich the capabilities of standard

neural networks and make it easier to train them for complex algorithmic tasks.
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An interesting open question is to what degree dynamic Bayesian networks can

be similarly extended and how the ‘core’ dynamic Bayesian network being capable

of Turing-complete computation affects the overall performance of such networks.

6.7 Consequences for causal modeling

The main consequence of the uncomputability of dynamic Bayesian networks

for causal modeling can be summed up as “Nonparametric, cyclic, complete: pick

at most two”. The vast majority of this dissertation focused on nonparametric

models with completeness guarantees in inference. In comparison, linear structural

equation modeling is decidedly parametric, but guarantees a unique equilibrium,

even in cyclic models.

Unfortunately, the main result in this chapter suggests that preserving com-

pleteness for other classes of parametric models is fundamentally difficult: simu-

lating a Turing machine can be done with a combination of discrete and normally

distributed random variables, even if the only permitted conditional density func-

tion between continuous parents and discrete children is the logistic function. This

strongly suggests that semi-parametric classes of cyclic models will often be simi-

larly lacking in completeness guarantees, e.g. restricting the fis to monotonic func-

tions will be insufficient. Informally, it is too easy to render a system ‘accidentally’

Turing-complete.

This is not to suggest that cyclic causal modeling and inference is hopeless in

practice — many particular sets of model assumptions permit computing the equi-
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librium distribution of the system. What is unobtainable is the guarantee that the

query will either be identifiable or provably unidentifiable from the information at

hand. In a sense, this is no worse than most mathematical and scientific research —

the solution may be provable with more work, or forever unprovable. Nonparamet-

ric, acyclic models are profoundly unusual in the strong inference guarantees that

can be provided.

140



Chapter 7: Conclusions and future work

The really challenging problems are still ahead.

—Judea Pearl

7.1 Summary

The underlying goal of this dissertation was to reduce the ambiguity and dif-

ficulty of rigorous causal modeling and inference. To this end, this dissertation

explored the development of new abstractions, taxonomies and related analyses

based on structural causal models. The causation coefficient, taxonomy of correla-

tion/causation relationships and related analysis clarify how correlation and causa-

tion can fail to coincide and provide an argument for the necessity of formal causal

analysis. The causal programming abstractions of model, distribution, query and

formula unify a large number of different causal inference problems into a single the-

oretical framework. The implementation of causal programming demonstrates that

it is possible to provide a declarative programming language and interactive system

for the identification and estimation of interventional queries. Finally, the analysis of

the equilibrium distribution of cyclic models suggests that recursive, nonparametric

models are, in some sense, maximally powerful.

141



The ‘core’ of the work described in this dissertation is the design and imple-

mentation of causal programming. The analysis of the causation coefficient supports

the necessity of causal programming, and the analysis of cyclic models suggests that

further generalization is fundamentally difficult. Causal programming itself shows

that it is possible to abstract over problems of causality — making it easy to declare

and understand causal assumptions, while automating away the task of conducting

inference.

Ideally, a researcher should only need to formally declare what they know and

what they wish to know, and be guaranteed to either get the correct answer, or

rest assured that that reaching such a conclusion is impossible with the available

information. The implementation of causal programming is a first, concrete step

towards this goal.

7.2 Contributions

The specific contributions of the dissertation are as follows:

• The causation coefficient and related analyses introduce a taxonomy of correla-

tion / causation relationships and a new method for visualizing distributions

of causal models. I argue it is insufficient to merely say ‘correlation is not

causation’; no single epigram will suffice to convey the nature of the possible

interactions. The taxonomy outlines how correlation and causation may fail to

coincide. Introducing the γρ plot makes it possible to visualize where in this

taxonomy a distribution of models lie. This provides new possible intuition for
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understanding why, despite warnings, it is easy to fall into the trap of think-

ing correlation and causation are the same. For random models, drawn from

a distribution of simple causal models, correlation and causation mostly do

coincide. However, for models where this is not true, no amount of additional

data sampling will suffice to correct the misconception. There is simply no

substitute for proper causal analysis.

• The causal programming abstractions group the mathematical objects asso-

ciated with structural causal modeling into: model, data, query and formula.

This permits unifying a large number of (previously separate) problems in

causal inference and acts as a guide for formalizing new problems of interest.

• The implementation of causal programming demonstrates that the abstrac-

tions are amenable to automated inference. The chief significance is that this

demonstrates that it is possible to implement the identification and estima-

tion of interventional queries as a declarative (purely functional) programming

language. As an embedded, domain specific language, it is straightforward to

extend the language and embed it into a notebook interface for interactive

computing. Lisp syntax permits the syntax of the language to closely match

the underlying mathematics. Since the implementation is based on a new,

purely functional implementation of Shpitser’s ID algorithm, inference is com-

plete for identifying causal effect queries from joint observational probability

distributions.

• The analysis of the equilibrium distribution of cyclic models is centered around
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a proof that the equilibrium distribution of dynamic Bayesian networks is

noncomputable, given mild assumptions about the distribution of the random

variables in the model. This strongly suggests a fundamental limitation to

causal modeling and inference. Methods to analyze cyclic, nonparametric

models will be necessarily incomplete.

7.3 Future work

The current implementation of causal programming is limited in the types of

inference that can be performed. It should be relatively straightforward to imple-

ment support for counterfactual queries, surrogate experiments and transportabil-

ity problems — there exists efficient complete algorithms for these problems in the

structural causal model literature. In addition, sound, but incomplete support for

recovery from selection bias, causal discovery, research design and query generation

could be added.

The implementation of causal programming does not directly try to solve the

problem of estimation, effectively ‘offloading’ it to a protocol, to be implemented

by user code. This opens up the possibility to combine causal programming with

probabilistic programming. Causal programming generates formulas that trans-

form probability distribution to other probability distribution, but exact inference

is expensive in the general case. One of probabilistic programming’s key insights is

that intractable exact inference problems can be solved approximately by sampling.

Instead of computing the distribution directly, a large number of samples can be
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generated, from which measures of interest (e.g. expected value) can be efficiently

calculated. Probabilistic programming is an active area of research, and by combing

causal programming with probabilistic programming, advances in one will benefit

the other.

A more ambitious goal of automating scientific discovery likely remains far off.

Hopefully, causal programming represents one step towards that goal: as a guide

to designing languages and software systems that make it easy for researchers to

formalize and understand what their assumptions and data and enabling a virtuous

cycle between computer inference and human judgement.
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