
Abilene Christian University
Digital Commons @ ACU

School of Information Technology and Computing College of Business Administration

3-2017

Do Enhanced Compiler Error Messages Help
Students? Results Inconclusive.
Raymond Pettit

John Homer

Roger Gee

Follow this and additional works at: https://digitalcommons.acu.edu/info_tech_computing

This Article is brought to you for free and open access by the College of Business Administration at Digital Commons @ ACU. It has been accepted for
inclusion in School of Information Technology and Computing by an authorized administrator of Digital Commons @ ACU.

Recommended Citation
Pettit, Raymond; Homer, John; and Gee, Roger, "Do Enhanced Compiler Error Messages Help Students? Results Inconclusive."
(2017). School of Information Technology and Computing. 6.
https://digitalcommons.acu.edu/info_tech_computing/6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ ACU

https://core.ac.uk/display/212852141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.acu.edu?utm_source=digitalcommons.acu.edu%2Finfo_tech_computing%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.acu.edu/info_tech_computing?utm_source=digitalcommons.acu.edu%2Finfo_tech_computing%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.acu.edu/college_business_administration?utm_source=digitalcommons.acu.edu%2Finfo_tech_computing%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.acu.edu/info_tech_computing?utm_source=digitalcommons.acu.edu%2Finfo_tech_computing%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.acu.edu/info_tech_computing/6?utm_source=digitalcommons.acu.edu%2Finfo_tech_computing%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages

Do Enhanced Compiler Error Messages

Help Students? Results Inconclusive.
Raymond Pettit, John Homer, and Roger Gee

School of IT and Computing
Abilene Christian University

Abilene, TX
1-325-674-2070

{raymond.pettit,john.homer,rpg11a}@acu.edu

ABSTRACT
One common frustration students face when first learning to

program in a compiled language is the difficulty in

interpreting the compiler error messages they receive.

Attempts to improve error messages have produced differing

results. Two recently published papers showed conflicting

results, with one showing measurable change in student

behavior, and the other showing no measurable change. We

conducted an experiment comparable to these two over the

course of several semesters in a CS1 course. This paper

presents our results in the context of previous work in this

area. We improved the clarity of the compiler error messages

the students receive, so that they may more readily

understand their mistakes and be able to make effective

corrections. Our goal was to help students better understand

their syntax mistakes and, as a reasonable measure of our

success, we expected to document a decrease in the number

of times students made consecutive submissions with the

same compilation error. By doing this, we could demonstrate

that this enhancement is effective. After collecting and

thoroughly analyzing our own experimental data, we found

that—despite anecdotal stories, student survey responses, and

instructor opinions testifying to the tool’s helpfulness—

enhancing compiler error messages shows no measurable

benefit to students. Our results validate one of the existing

studies and contradict another. We discuss some of the

reasons for these results and conclude with projections for

future research.

CCS Concepts
• Social and professional topics~CS1

• Social and professional topics~Student assessment

• Applied computing~Computer-assisted instruction

• Applied computing~Interactive learning environments

Keywords
computer science education; computer aided instruction;

automated feedback; automated assessment tools; error

messages

1. INTRODUCTION
As automated tools for grading programming assignments

become more widely used, learning opportunities may be

leveraged by strategically modifying these tools to increase the

quality of feedback to students, particularly feedback

regarding their submission errors. Known enhancements

include software metrics and analyzing the contribution level

of each new submission for new features. We were

particularly interested in making the language of compiler

error messages more understandable for student users, who

can be confused by technical messages, particularly in an

introductory course. Several related papers have claimed

success in this endeavor, based on feedback from students

and faculty members, but without providing quantitative data

concerning student submission behavior.

We enhanced our current automated assessment tool (AAT),

named Athene, based on information from existing research

concerning compiler error frequency and ways that

researchers have tackled this problem in the past. We also

analyzed our own past data to inform our decisions in

improving our system, examining the frequency of compiler

error types, and focusing on the most common errors to

improve the messages students would receive when

submitting similar code. We rolled out our enhanced error

messages over the course of two semesters and have collected

four semesters worth of data. The improvement received

mostly positive verbal feedback from both students and

instructors.

In this paper, we show the ways in which we improved

Athene, consider several metrics of student behavior, and

discuss our analysis of the data. We also compare our results

to similar work and offer several possible explanations as to

the apparent ineffectiveness of enhanced compiler messages.

2. RELATED WORKS

2.1. Student Frustrations
Most instructors will readily agree that syntax and compiler

error messages are a great source of frustration to students.

Traver addresses problems with compiler error messages,

highlighting some of the challenges in improving messages

and showing many actual examples of the misleading

messages that compilers produce [18]. He offers suggestions

on improving these messages based on HCI research and

sound pedagogy. Murphy was part of a large multi-institution

group analyzing debugging strategies of novice programmers.

Observations from class sessions and one-on-one interviews

make apparent the frustrations student have, related to

misunderstanding errors in programming code [16]. Finally,

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned

by others than the author(s) must be honored. Abstracting with credit is permitted.

To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions

from Permissions@acm.org.

SIGCSE '17, March 8–11, 2017, Seattle, WA, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4698-6/17/03…$15.00 .

DOI: http://dx.doi.org/10.1145/3017680.3017768

465

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/3017680.3017768

Marceau discusses how poor error messages lead to student

frustrations, one issue researchers sought to address in

creating and improving DrRacket [15]. Furthermore, Marceau

observes that some languages used to teach introductory

programming, such as Alice [12] and Scratch [14] were

created with a goal of protecting students from any possibility

of creating syntax errors in their early programs.

2.2. Compile Error Frequency
An examination of compiler errors that students receive in

early programming courses shows that some errors occur

with much more frequency than others. This pattern becomes

especially important as we set priorities in improving

standard error messages.

Jadud reports on the most common error messages generated

in an introductory programming course using BlueJ to teach

Java programming [11]. Of the 1,926 errors generated during

the semester he examined, there were a total of 42 different

errors encountered, but 5 of these together accounted for 58%

of the total errors. The most common errors were (1) missing

semicolons, (2) unknown symbol: variable, (3) bracket

expected, (4) illegal start of expression, and (5) unknown

symbol: class.

Denny used CodeWrite in teaching a Java based course [4].

Most students worked on about 12 programming exercises,

and the median number of lines of code for submissions that

compiled was 8. For the semester Denny reported on for this

paper, students submitted to CodeWrite code containing

compiler errors in more than 60% of the attempts. Over 60%

of the students experienced at least 4 successive compilation

errors at least once during the course of the semester while

working within the CodeWrite tool. This repetition gives

some indication of the difficulty students have in

understanding a given error message and being able to fix the

related mistake within relatively small code fragments.

2.3. Similar Experiments
Previous experiments that are related to enhancing compile

messages for novice students include (in chronological

order): CAP [17], Thetis [8], HiC [9], Expresso [10],

Gauntlet [7], a tool by Dy [6], BlueFix [19], LearnCS! [13],

an IDE by Barik [1], CodeWrite [5], ITS-Debug [3], and

Decaf [2].

2.3.1. Review of CodeWrite/Denny Experiment
Denny reported the results of an experiment using CodeWrite [5].

This experiment took place over one semester in a Java-based

course and included 83 students. Students were randomly

assigned to an experimental or control group. An independent

recognizer was created to identify compiler errors which also

included regular expression checking to disambiguate certain

messages. By doing this, he was able to recognize the compiler

errors in about 92% of all submissions that included compiler

errors. During the course of the semester, each student

experienced about 70 submissions that failed to compile.

Although it was expected that these enhancements would increase

student performance, a thorough analysis of the data between the

two groups showed that there was no measurable effect in

decreasing student compilation errors.

2.3.2. Review of Decaf/Becker Experiment
In contrast to the study done by Denny, a recent study by Becker

[2] seems to indicate that enhancing compiler error messages can

be done in a way which produces positive empirical results. By

enhancing compiler error messages with Decaf, Becker was able

to show a significantly lower number of student errors per

compiler error message for the compiler error messages that had

been enhanced. Becker’s study also showed a significantly lower

number of student errors per compiler error message for the group

of students in the experimental group. Another finding was that

students were less likely to generate the same compiler error,

from the same line of code, on consecutive attempts. These

results run counter to those of Denny, and provide context for the

results that we are presenting.

3. METHODOLOGY

3.1. Implementation
In our experiment, we sought to improve compiler error feedback

messages in a C++-based CS1 course by implementing changes to

our automated-assessment tool. We also implemented an error

message parser to analyze corresponding messages from the

compiler. The automated assessment tool targets the C++ front-

end to the GNU Compiler Collection (GCC).

We considered historical submission data from previous iterations

of the course to create a probability distribution for different error

message types. In this way, we were able to determine which error

cases occurred most frequently in the semesters we analyzed. For

the set of most frequently occurring error messages, we then

analyzed the source code to determine the most common cause for

particular error messages. Not every error can be handled based

upon the error message alone; some messages are either too

indirect or non-pertinent to the actual cause of the issue and

require independent analysis of the source code. At this stage,

some cases scan a parse tree representation of the student's

program, which is obtained from a context-free grammar parser

that interprets a subset of the C++ programming language.

However, most cases rely solely upon the original compiler error

message for error case recognition.

Figure 1 shows an example of a response that includes an

enhanced message. A student is still shown the original compiler

error message under the section “Compile Errors:”. As is the case

with the example shown, most compiler messages contain a

function context in which the error was found and a message line

that contains a number of user-defined elements from the parse

tree. We call these user-defined elements variable tokens. These

tokens are always enclosed in single-quote marks within the

message line. We created generic message strings by replacing

variable tokens with generic placeholder names. For example, we

reduce this error message generated by the compiler to the

following generic format:

%1 was not declared in this scope

Using these message strings allows the system to recognize a

general error case and then interpret the actual values of the

variable tokens to identify a specific sub-case. In other words, the

mapping from the compiler message to enhanced feedback

message is not entirely static. Variable tokens from the error

466

message are used to provide specific error feedback. You can see

the enhanced feedback under the section titled “Feedback for

submission file ‘test.cpp’ ”.

3.2. Data Gathering
We deployed the improvements to our automated-assessment tool

in the CS1 programming course. This course contains numerous

small assignments (around 75) that gradually progress in

difficulty. Students are presented an assignment description and a

simple input form for a file upload. The student is allowed and

encouraged to build and test his or her programs offline before

submitting to the tool. When the student submits a program, the

tool attempts to compile the program and, if successful, executes

the resulting program against a variety of problem-specific test

cases. The system shows the student the status of their

submission: compile errors, failed test cases, or successful

completion. Each time a student submits, a database records the

submit time, program code, score, and feedback given. Before our

improvements, the student simply received compile errors “as-is”

from the compiler. With the improvements, in response to

commonly occurring error messages, the student now sees the

compiler messages and the enhanced feedback messages. When

these new messages were added to the system, students were

shown examples of the message and were encouraged to read

them.

4. METRICS AND RESULTS

4.1. Our results
Our study focused on three kinds of measurements:

 likelihood of successive compilation errors

 occurrence of compiler errors within semesters

 student progress towards a successful completion of a

programming assignment

We expected that these measurements would demonstrate

significant change in relation to the (historical) control group.

Such a distinction would indicate that students learn more

effectively from enhanced feedback messages and thus perform

better with the tool overall.

We compared student use of the improved tool with enhanced

error messages against historical data from the tool that generated

only stock compiler error messages. We analyzed 4 semesters

worth of historical data and 4 semesters with partial or full

implementation of the enhancements. In all 8 semesters (36,050

submissions), students were presented generally the same set of

programming assignments. Although we show data collected

during all 8 semesters, the fall semesters (1210, 1310, 1410, and

1510) represent a larger number of students as well as a more

uniform student group from year-to-year. The fall semesters

typically are comprised mainly of computer science majors who

are taking the course for the first time.

Table 1 shows all data collected from student submissions. A

student submission is classified as either: correct, executing but

with a wrong answer, generating a runtime error, or generating a

compile error.

Over the 8 semester study, students using Athene in our CS1

course submitted programs that failed to compile 16.64% of the

time. This number is lower than reported with other tools [4,11]

due to students’ opportunity to write and debug offline. If the

enhanced messages help students avoid compiler errors over time,

we would expect to see some decrease in the overall percentage

of submissions that cause compiler errors as students learn how to

avoid causing them. Over the 4 fall semester, this metric varied

from 17%-14%, with no significant trend after enhanced

messages were introduced.

Another analysis looked specifically at cases where a student

received the same compile error in consecutive submissions. This

measurement could indicate an improvement in student learning

from the enhanced messages by immediately applying that

knowledge to fix the error. After receiving a compile error, and

given a standard error message, the student’s next submission

produced the same compile error in 13.71% of cases. When given

an enhanced message, there was an insignificant increase to

13.99%.

Figure 1. Example feedback to student

467

Submitting the same error repeatedly is often a sign that a student

does not understand his or her error. However, there are other

explanations. We have witnessed students resubmitting a known

non-compiling program without making changes in the hope that

explanations. We have witnessed students resubmitting a known

non-compiling program without making changes in the hope that

resubmitting it will cause the tool to reconsider its previous

assessment of the program. This type of persistence often works

in real-life situations in dealings with other people. It may also

just be a sign of frustration.

Over the course of a semester, we would expect students to

encounter fewer compile errors as they learn from previous

mistakes. When many of their compile error messages were

enhanced, we expected to see fewer errors over the course of the

semester. However, the percentage of submissions that generated

errors did not significantly change after enhanced messages were

introduced.

We also analyzed students’ progress toward completing the

programming assignment. The average number of submissions

was used to determine the level of effort a student put forth to

correctly debug compile errors and eventually solve the

assignment. We counted attempts within each student-assignment

-- the sequence of submissions that a particular student makes

towards successful completion. Looking at the average number of

submission attempts per student-assignment within the 8

semesters, we found no statistically significant trend. Looking

deeper at just the failed compilation attempts, still showed no

significant trend. One explanation for not finding a decrease in

submission attempts could have been that students increasingly

used the tool as their primary compiler given the helpfulness of

the enhanced messages. But in this case, we would have expected

to see an increase in the values of failed compilation attempts.

Our final measurement attempted to gauge how the tool's

enhancements affect the amount of time that students spend

working on the program offline. A decrease in time between

submissions could indicate that students are benefitting from the

tool’s improved feedback. Once again, the data showed that there

was no evidence to suggest any significant learning from the

enhanced messages is taking place; in fact, the mean length of

time between submissions showed an increase from about 150

seconds to almost 250 seconds.

5. STUDENT PERCEPTIONS
We requested student feedback about the enhanced compile error

messages (from the semesters they were shown) and received 28

responses. The low number and the subjective nature of responses

make this data anecdotal, but it can provide indications of student

perspective on the enhanced messages.

Students were asked about the level of detail in the enhanced

messages, with possible responses ranging from 1 ("too simple")

to 5 ("too detailed") and the average response was 3.14, close to

the desired 3.0 balance between simplicity and detail. No

responses of 1 or 5 were given.

Most students (67%) indicated that they saw the enhanced

messages "occasionally" while others indicated that they saw the

messages at least once in a typical assignment; only one student

claimed to see the messages six or more times in a typical

assignment. When asked how often they read the enhanced

messages when they appeared, with possible responses ranging

from 1 ("never") to 4 ("always"), the average responses was 3.42.

Only one student selected 1, and that same student later seemed to

contradict themselves by admitting to submitting homework

occasionally just to see if a message helped.

When asked if the enhanced messages helped identify how to fix

the problem, 78% (22) of the students responded affirmatively.

When asked to identify what (if anything) made the enhanced

messages helpful or easier to understand than regular messages,

one student responded, "The messages accurately identified my

errors and reported them in concise, easily readable statements.

The suggestions on how to fix the errors were also helpful, even

when I knew from the error what to do." Most responses similarly

identified the clarity and comprehensibility of the enhanced

SUBMISSIONS 1210 1220 1310 1320 1410 1420 1510 1520 Totals

Correct 1716/7725 972/4159 1381/3870 699/1704 1729/4676 1114/3814 2923/7678 896/2424 14826/36050

22.21% 23.37% 35.68% 41.02% 36.98% 29.21% 38.07% 36.96% 31.71%

Program executed,

wrong answer
4264/7725 1967/4159 1783/3870 667/1704 2149/4676 1880/3814 3406/7678 1157/2424 17273/36050

55.20% 47.30% 46.07% 39.14% 45.96% 49.29% 44.36% 47.73% 47.91%

Generated runtime

error
421/7725 152/4159 151/3870 85/1704 123/4676 118/3814 231/7678 69/2424 1350/36050

5.45% 3.65% 3.90% 4.99% 2.63% 3.09% 3.01% 2.85% 3.74%

Generated compile

error
1324/7725 1068/4159 555/3870 253/1704 675/4676 702/3814 1118/7678 302/2424 5997/36050

17.14% 25.68% 14.34% 14.85% 14.44% 18.41% 14.56% 12.46% 16.64%

Given previous

compile error, failed

compile again with

same error

125/1324 118/1068 91/555 32/253 105/675 103/702 183/1118 69/302 826/5997

9.44% 11.05% 16.40% 12.65% 15.56% 14.67% 16.37% 22.85% 13.77%

… and had

advanced feedback
10/125 53/395 100/696 30/164 193/1380

8.00% 13.42% 14.37% 18.29% 13.99%

… and did not have

advanced feedback
125/1324 118/1068 91/555 32/253 95/550 50/307 83/422 39/138 633/4617

9.44% 11.05% 16.40% 12.65% 17.27% 16.29% 19.69% 28.26% 13.71%

Table 1. Data from 8 semesters of student submissions

468

messages, describing them as "more readable," "human

language," "more familiar wording," "clearly worded and in

complete sentences," "in simpler language," "without using too

much computer language," etc. A few responses were ambivalent,

stating "I think it is the same to me" or "The original ones are

easy to pretty easy once you ignore all the stuff that doesn't make

sense." Only one survey response was negative, stating a desire

for "a simple sentence [rather] than some complex rant from the

computer about it not wanting to do my program because I have

some type of error."

When asked how often they submitted a program specifically

to see an enhanced message, 60% (17) of students

acknowledged that they had done this at least once. Of these,

many claimed that they had done this only occasionally (1-10

times in the semester) while only a few admitted to following

this path often (more than 20 times in semester). Referring to

this behavior, students said, "Sometimes when I kept getting

an error after compiling, I would send it in to see if it could

point out what my error was" and "I couldn't understand what

my computer was trying to tell me was wrong."

Corresponding to this belief in the helpfulness of the enhanced

messages, 75% (21) of students agreed that the enhanced

messages helped them to "prevent making those mistakes in other

programs."

6. CONCLUSION AND FUTURE WORK

6.1. Conclusions and Questions Raised
Given the data that we collected and analyzed, it appears that

enhancing compiler error messages does not make students

less likely to repeat the same compiler errors. Despite a

difference in the language, number of assignments, and the

automated assessment tool that we used, we were able to

reproduce the same counterintuitive lack of significant effect

demonstrated by Denny [5].

These results, however, do not support the work done by Becker

[2]. At this time, we are looking more closely at the details of

Becker’s work to see how his experiment differed from our

experiment and Denny’s experiment. For example, not all of our

compiler messages were enhanced, and it may be that expanding

coverage of messages that are enhanced would produce a

measurable effect. There are also differences in the way that

enhanced messages were displayed to students.

It is interesting to note that even in our experiment, students

generally believe the enhanced messages to be helpful, although

the quantitative data shows no significant improvement against

similar course sections where these messages were not delivered.

There are some possible explanations for this apparent

contradiction.

Perhaps students don't attentively read the standard compiler

messages or our new enhanced error messages. Although students

overwhelmingly reported reading these enhanced messages, this

may be just bad reporting or wishful thinking on the students’

part. Since there were no reports of attempting to measure a

quantitative learning effect for students using CAP [17] or

Gauntlet [7], we don’t know if these tools produced positive

measurable effects or not. But it could be that their use of humor

contributed to greater student attention to these messages.

Another explanation of the apparent contradiction may be that the

higher achieving students who would be the best at understanding

enhanced messages and then applying the appropriate fixes don’t

often submit non-compilable programs to our tool. Perhaps the

majority of the submitted non-compilable code is from the lower

achieving students who are not conscientious and thus are less

likely to spend time reading any error message.

We recognized that we had certain students who are outliers,

accounting for a disproportionate number of the compiler errors.

For example, we have discovered that in every semester for

which we have data, the single student who generates the most

enhanced messages sees more than 15% of the total enhanced

messages for that class. Given an average class size of 35, a few

outlying data points could significantly skew the data concerning

the benefit of these messages.

Referring back to the student survey, we want to highlight one

student anecdote to describe in a bit more detail to show another

possible question raised by our research. This student describes a

working session in which she was first attempting to write a given

assigned program and achieve some level of functionality before

submitting it to the tool. Although some students use the tool as

their compiler, most students write the program with their own

local compiler and try to create a running program before

submitting their program to the tool. She stated that she was

having difficulty in understanding a compiler error message that

she was receiving from the compiler on her personal machine, but

she knew that the enhanced compiler messages given by our tool

were usually more helpful, so she purposely submitted non-

compilable code simply to receive a better quality error message.

And she indeed reported receiving a better message that helped

her get past the present error and continue the assignment. As our

tool is not normally used as a student’s default compiler, we are

attempting to find ways to test to see if this student’s behavior

may be skewing some of the data from the experimental group

that is now expecting better compiler error messages from the

tool. Perhaps students in this group are now more likely to submit

known non-compilable code than the (historical) control group,

who would receive no extra benefit from doing this.

6.2. Future Work
Each time a student receives feedback from the tool, we should

measure how long he or she views the page with or without an

enhanced error message. This may give us some indication of

whether or not a typical student is really reading the error

messages. With this information we could check for a correlation

between reading the enhanced messages and successful resolution

of error. Eye movement tracking may also be a possibility in

determining if students are reading the enhanced messages.

Alternatively, after being given an enhanced compiler error

message, we could ask the student a simple question to see if he

or she did indeed read and understand the message. A single

multiple choice question related to the given error could be used.

Answering this question could tell us two things: did the student

really read the message, and did he or she understand what the

message said. The student’s success at answering the question

could be used in conjunction with the above mentioned timing

data to further correlate with his or her success at fixing the error.

Perhaps interjecting humor into the error messages does have an

effect on how much students will read them. For the given

database of error messages that we have produced already, we

could make alternative forms of the existing enhanced messages

469

which added humor. Analysis could then be performed to look for

measurable difference in student behaviors and performance.

7. REFERENCES
[1] Titus Barik, Jim Witschey, Brittany Johnson, and Emerson

Murphy-Hill. 2014. Compiler error notifications revisited:

an interaction-first approach for helping developers more

effectively comprehend and resolve error notifications.

In Companion Proceedings of the 36th International

Conference on Software Engineering (ICSE Companion

2014). ACM, New York, NY, USA, 536-539. DOI=

http://doi.acm.org/10.1145/2591062.2591124

[2] Brett A. Becker. 2016. An Effective Approach to Enhancing

Compiler Error Messages. In Proceedings of the 47th ACM

Technical Symposium on Computing Science

Education (SIGCSE '16). ACM, New York, NY, USA, 126-

131. DOI=http://dx.doi.org/10.1145/2839509.2844584

[3] Elizabeth Carter. 2015. ITS debug: practical results. J.

Comput. Sci. Coll. 30, 3 (January 2015), 9-15.

[4] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and

Jacob Hendrickx. 2011. Understanding the syntax barrier for

novices. In Proceedings of the 16th annual joint conference

on Innovation and technology in computer science

education (ITiCSE '11). ACM, New York, NY, USA, 208-

212. DOI= http://doi.acm.org/10.1145/1999747.1999807

[5] Paul Denny, Andrew Luxton-Reilly, and Dave Carpenter.

2014. Enhancing syntax error messages appears ineffectual.

In Proceedings of the 2014 conference on Innovation &

technology in computer science education (ITiCSE '14).

ACM, New York, NY, USA, 273-278. DOI=

http://doi.acm.org/10.1145/2591708.2591748

[6] Thomas Dy and Ma. Mercedes Rodrigo. 2010. A detector

for non-literal Java errors. In Proceedings of the 10th Koli

Calling International Conference on Computing Education

Research (Koli Calling '10). ACM, New York, NY, USA,

118-122. DOI=

http://doi.acm.org/10.1145/1930464.1930485

[7] T. Flowers, C. A. Carver, and J. Jackson. 2004. Empowering

students and building confidence in novice programmers

through Gauntlet. In Frontiers in Education, 2004 (FIE

2004). Vol. 1, 20-23. DOI=

http://dx.doi.org/10.1109/FIE.2004.1408551

[8] Stephen N. Freund and Eric S. Roberts. 1996. Thetis: an

ANSI C programming environment designed for

introductory use. SIGCSE Bull. 28, 1 (March 1996), 300-

304. DOI= http://doi.acm.org/10.1145/236462.236560

[9] Robert W. Hasker. 2002. HiC: a C++ compiler for CS1. J.

Comput. Sci. Coll. 18, 1 (October 2002), 56-64.

[10] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca

Mercuri. 2003. Identifying and correcting Java programming

errors for introductory computer science students. SIGCSE

Bull.35, 1 (January 2003), 153-156. DOI=

http://doi.acm.org/10.1145/792548.611956

[11] M. C. Jadud. A first look at novice compilation behaviour

using BlueJ. Computer Science Education 15,1 (2005),

25-40.

[12] Caitlin Kelleher, Randy Pausch, and Sara Kiesler. 2007.

Storytelling alice motivates middle school girls to learn

computer programming. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (CHI

'07). ACM, New York, NY, USA, 1455-1464. DOI=

http://doi.acm.org/10.1145/1240624.1240844

[13] Derrell Lipman. 2014. LearnCS!: a new, browser-based C

programming environment for CS1. J. Comput. Sci. Coll. 29,

6 (June 2014), 144-150.

[14] John Maloney, Mitchel Resnick, Natalie Rusk, Brian

Silverman, and Evelyn Eastmond. 2010. The Scratch

Programming Language and Environment. Trans. Comput.

Educ. 10, 4, Article 16 (November 2010), 15 pages. DOI=

http://doi.acm.org/10.1145/1868358.1868363

[15] Guillaume Marceau, Kathi Fisler, and Shriram

Krishnamurthi. 2011. Measuring the effectiveness of error

messages designed for novice programmers. In Proceedings

of the 42nd ACM technical symposium on Computer science

education (SIGCSE '11). ACM, New York, NY, USA, 499-

504. DOI= http://doi.acm.org/10.1145/1953163.1953308

[16] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth

Simon, Lynda Thomas, and Carol Zander. 2008. Debugging:

the good, the bad, and the quirky -- a qualitative analysis of

novices' strategies. SIGCSE Bull. 40, 1 (March 2008), 163-

167. DOI= http://doi.acm.org/10.1145/1352322.1352191

[17] Tom Schorsch. 1995. CAP: an automated self-assessment

tool to check Pascal programs for syntax, logic and style

errors. SIGCSE Bull. 27, 1 (March 1995), 168-172. DOI=

http://doi.acm.org/10.1145/199691.199769

[18] V. Javier Traver. 2010. On compiler error messages:

what they say and what they mean. Adv. in Hum.-Comp.

Int. 2010, Article 3 (January 2010), 26 pages. DOI=

http://dx.doi.org/10.1155/2010/602570

[19] Christopher Watson, Frederick W. B. Li, and Jamie L.

Godwin. 2012. BlueFix: using crowd-sourced feedback to

support programming students in error diagnosis and repair.

In Proceedings of the 11th international conference on

Advances in Web-Based Learning (ICWL'12), Elvira

Popescu, Qing Li, Ralf Klamma, Howard Leung, and

Marcus Specht (Eds.). Springer-Verlag, Berlin, Heidelberg,

228-239. DOI=

http://dx.doi.org/10.1007/978-3-642-33642-3_25

470

http://doi.acm.org/10.1145/2591062.2591124
http://doi.acm.org/10.1145/1999747.1999807
http://doi.acm.org/10.1145/2591708.2591748
http://doi.acm.org/10.1145/1930464.1930485
http://dx.doi.org/10.1109/FIE.2004.1408551
http://doi.acm.org/10.1145/236462.236560
http://doi.acm.org/10.1145/792548.611956
http://doi.acm.org/10.1145/1240624.1240844
http://doi.acm.org/10.1145/1868358.1868363
http://doi.acm.org/10.1145/1953163.1953308
http://doi.acm.org/10.1145/1352322.1352191
http://doi.acm.org/10.1145/199691.199769
http://dx.doi.org/10.1155/2010/602570
http://dx.doi.org/10.1007/978-3-642-33642-3_25

	Abilene Christian University
	Digital Commons @ ACU
	3-2017

	Do Enhanced Compiler Error Messages Help Students? Results Inconclusive.
	Raymond Pettit
	John Homer
	Roger Gee
	Recommended Citation

	Microsoft Word - PaperA_SIGSCE 2015_updated9.5.14_editedandclean.doc

