
Abilene Christian University
Digital Commons @ ACU

School of Information Technology and Computing College of Business Administration

8-2017

On Novices' Interaction with Compiler Error
Messages: A Human Factors Approach
James R. Prather
Abilene Christian University

Raymond Pettit

Kayla Holcomb McMurry

Alani Peters

John Homer

See next page for additional authors

Follow this and additional works at: https://digitalcommons.acu.edu/info_tech_computing

This Article is brought to you for free and open access by the College of Business Administration at Digital Commons @ ACU. It has been accepted for
inclusion in School of Information Technology and Computing by an authorized administrator of Digital Commons @ ACU.

Recommended Citation
Prather, James R.; Pettit, Raymond; McMurry, Kayla Holcomb; Peters, Alani; Homer, John; Simone, Nevan; and Cohen, Maxine, "On
Novices' Interaction with Compiler Error Messages: A Human Factors Approach" (2017). School of Information Technology and
Computing. 4.
https://digitalcommons.acu.edu/info_tech_computing/4

https://digitalcommons.acu.edu?utm_source=digitalcommons.acu.edu%2Finfo_tech_computing%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.acu.edu/info_tech_computing?utm_source=digitalcommons.acu.edu%2Finfo_tech_computing%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.acu.edu/college_business_administration?utm_source=digitalcommons.acu.edu%2Finfo_tech_computing%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.acu.edu/info_tech_computing?utm_source=digitalcommons.acu.edu%2Finfo_tech_computing%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.acu.edu/info_tech_computing/4?utm_source=digitalcommons.acu.edu%2Finfo_tech_computing%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors
James R. Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John Homer, Nevan Simone, and
Maxine Cohen

This article is available at Digital Commons @ ACU: https://digitalcommons.acu.edu/info_tech_computing/4

https://digitalcommons.acu.edu/info_tech_computing/4?utm_source=digitalcommons.acu.edu%2Finfo_tech_computing%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages

On Novices’ Interaction with Compiler Error Messages:
A Human Factors Approach

James Prather, Raymond Pettit, Kayla Holcomb
McMurry, Alani Peters, John Homer, Nevan

Simone
Abilene Christian University

ACU Box 28036
Abilene, TX 79601

jrp09a,rsp05a,kmh12c,alp13d,jdh08a,nfs13a@acu.edu

Maxine Cohen
Nova Southeastern University

3301 College Avenue
Fort Lauderdale, FL 33314

cohenm@nova.edu

ABSTRACT
The difficulty in understanding compiler error messages can be a
major impediment to novice student learning. To alleviate this is-
sue, multiple researchers have run experiments enhancing compiler
error messages in automated assessment tools for programming
assignments. The conclusions reached by these published experi-
ments appear to be conflicting. We examine these experiments and
propose five potential reasons for the inconsistent conclusions con-
cerning enhanced compiler error messages: (1) students do not read
them, (2) researchers are measuring the wrong thing, (3) the effects
are hard to measure, (4) the messages are not properly designed, (5)
the messages are properly designed, but students do not understand
them in context due to increased cognitive load. We constructed
mixed-methods experiments designed to address reasons 1 and 5
with a specific automated assessment tool, Athene, that previously
reported inconclusive results. Testing student comprehension of
the enhanced compiler error messages outside the context of an
automated assessment tool demonstrated their effectiveness over
standard compiler error messages. Quantitative results from a 60
minute one-on-one think-aloud study with 31 students did not
show substantial increase in student learning outcomes over the
control. However, qualitative results from the one-on-one think-
aloud study indicated that most students are reading the enhanced
compiler error messages and generally make effective changes after
encountering them.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
User studies; Usability testing; • Social and professional topics
→CS1; Student assessment; •Applied computing→Computer-
assisted instruction; Interactive learning environments;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICER ’17, August 18-20, 2017, Tacoma, WA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4968-0/17/08. . . $15.00
https://doi.org/10.1145/3105726.3106169

Table 1: Definition of Frequently Used Terms

Term Meaning
CEM Compiler Error Message
ECEM Enhanced Compiler Error Message
Athene Automated assessment tool used in this experiment

KEYWORDS
HCI, human factors, usability, automated assessment tools, educa-
tion, CS1, ethnography

ACM Reference format:
James Prather, Raymond Pettit, Kayla HolcombMcMurry, Alani Peters, John
Homer, Nevan Simone and Maxine Cohen. 2017. On Novices’ Interaction
with Compiler Error Messages: A Human Factors Approach. In Proceedings
of ICER ’17, Tacoma, WA, USA, August 18-20, 2017, 9 pages.
https://doi.org/10.1145/3105726.3106169

1 INTRODUCTION
It is well-documented that novice programmers often struggle in
understanding compiler error messages (CEMs) caused by incorrect
syntax [3, 7, 32, 42]. This is a motivating factor in the development
of automated assessment tools [36]. In one very popular tool, BlueJ,
students placed their difficulty in interpreting CEMs high amongst
their other concerns [16]. Bennedsen has suggested that this is
a contributing factor in the high failure rates in CS1 courses [5].
Specifically called out in 1976 [44] as an impediment to learning
syntax, CEMs are still just as cryptic and hard to understand as
they were forty years ago [4]. In an attempt to alleviate novice
frustration, several papers have recently attempted to improve
upon the design of standard CEMs in automated assessment tools
from an HCI perspective [2, 31, 33, 42], which we will call enhanced
compiler error messages (ECEMs).

Several recent studies have enhanced default CEMs and per-
formed empirical experiments to determine if ECEMs have a posi-
tive impact on student learning in CS1 [4, 9, 37]. These studies all
provide quantitative data and analysis of student performance, but
stated conflicting conclusions. Denny et al. [9] and Pettit et al. [37]
could not find conclusive evidence that enhancing error messages
was helpful to students. Becker [4], however, was able to show that
ECEMs were more helpful for those in his study.

https://doi.org/10.1145/3105726.3106169
https://doi.org/10.1145/3105726.3106169

ICER ’17, August 18-20, 2017, Tacoma, WA, USA Prather, Pettit, Holcomb McMurry, Peters, Homer, Simone, Cohen

We postulate five possible explanations for these conflicting
results:

(1) students do not read ECEMs,
(2) researchers are measuring the wrong thing,
(3) the effects are hard to measure,
(4) the ECEMs are not properly designed, therefore students do

not understand them,
(5) the ECEMs are properly designed but students do not under-

stand ECEMs in context due to increased cognitive load.
For this study, we constructed experiments to test the possibili-

ties that (1) students do not read ECEMs or (5) the ECEMs already
implemented are properly designed but cognitive load in students
reduces the positive effects. Our research questions are therefore:

• RQ1: Do novice students read ECEMs?
• RQ2: Are ECEMs helpful for novice students in a setting
with low cognitive load?

• RQ3: Are the ECEMs helpful for novice students in a setting
with high cognitive load?

We begin by reviewing related work on automated assessment tools,
ECEMs in automated assessment tools, and the design of these
ECEMs. We next describe the methodology by which we attempt
to answer the research questions above. In section 4, we describe
both quantitative and qualitative results from our mixed-methods
study. In section 5 we summarize our conclusions.

2 RELATEDWORK
Automated assessment tools for programming assignments have
been around since at least 1960, when Hollingworth built a way
to automatically assess the programs that students submitted in
his course via punch cards [19]. Today, many different automated
assessment tools exist, some focused more on assessment and some
focused more on helping students learn to program. Still others are
focused on test-driven development, such as the popular automated
assessment tool Web-CAT [12]. For a general review of automated
assessment tools see Ala-Mutka [1], Douce [10], and Ihantola [21].

2.1 Error messages in automated assessment
tools

Many creators of automated assessment tools have attempted to
enhance the standard syntax/compiler error messages that stu-
dents receive. One of the earliest examples is CAP developed by
Schorsh in 1995 [39]. The intent of CAP was to provide students in
an introductory programming course with user-friendly feedback
pertaining to syntax, logic, and style errors. In 2012, Watson dis-
cussed the tool BlueFix, which applied his principle of adapting the
compiler messages to the level of the students [43]. Upon the first
encounter of a compiler error, students saw the standard error. If
the student generated the same error a second time in a row, they
received an enhanced version of the error message. After a third
consecutive generation of the same compiler error, the student re-
ceived a suggested fix to their code. This adaptive process involved
an extensive analysis of the student’s existing code and prediction
of the student’s intent. Students were then able to vote on whether
or not the suggested fix worked. In this way, Watson was able to
introduce crowdsourcing techniques into automated assessment

tools. Other examples of enhancing compiler error messages for
novice students include Thetis [15], HiC [18], Expresso [20], Gaunt-
let [14], a tool by Dy [11], LearnCS! [27], an IDE by Barik [3], and
ITS-Debug [6].

2.2 Students have trouble with CEMs
Syntax and compiler error messages have long been documented to
be a great source of confusion and frustration to students. Traver
addresses problems with compiler error messages, highlighting
some of the challenges in improving messages and showing many
actual examples of the misleading messages that compilers produce
[42]. He offers suggestions on improving these messages based
on HCI research and sound pedagogy. Murphy et al. were part of
a large multi-institution group analyzing debugging strategies of
novice programmers [32]. Observations from class sessions and
one-on-one interviews make apparent the frustrations student have
related to misunderstanding errors in programming code. Finally,
Marceau et al. discuss how poor error messages lead to student
frustrations, one issue researchers sought to address in creating
and improving DrRacket [30]. Furthermore, Marceau observes that
some languages used to teach introductory programming, such as
Alice [23] and Scratch [29] were created with a goal of protecting
students from any possibility of creating syntax errors in their early
programs.

2.3 Empirical evidence of helpfulness of ECEM
(Denny, Becker, Pettit)

In 2014, Denny et al. reported on the tool CodeWrite and the en-
hanced error messages the compiler generates [9]. Researchers used
the CodeWrite tool for Java programmers, intercepting the compiler
error messages that the tool returned. The researchers replaced ex-
isting compiler error messages with much more descriptive error
messages geared to the novice programmer. The conclusion of the
experiment was that there was no statistically significant difference
in the students’ behavior: students submitted as often as others
had before to get past the same compile errors. These results were
unexpected and seemed non-intuitive. In contrast, Becker [4] simi-
larly enhanced error messages in the automated assessment tool,
Decaf, also used for Java programming. His findings showed that
these enhanced messages actually did change student behavior.
After viewing an enhanced error message, students were less likely
to generate the same error in the future. Finally, Pettit et al. en-
hanced CEMs in an automated assessment tool, Athene, used for
C++ programming [37]. They could not find conclusive results that
the ECEMs were more helpful than standard CEMs.

2.4 Design of ECEMs in automated assessment
tools

Hartmann et al. [17] created their own automated assessment tool,
HelpMeOut, which provides students with feedback similar to
Denny et al. [9]. HelpMeOut queries a database of similar errors
and presents users with examples and how to fix them. Previous
approaches, such as those discussed above, have implemented en-
hanced feedback through a selection of top errors provided by
instructors. These lists of potential errors are driven by experts and
not user observation. A weakness to this approach is evidenced by

On Novices’ Interaction with Compiler Error Messages:
A Human Factors Approach ICER ’17, August 18-20, 2017, Tacoma, WA, USA

one such implementation discussed above, Gauntlet [14], that was
later found by Jackson et al. [22] to not contain the most commonly
encountered errors by novices. HelpMeOut overcomes this weak-
ness through a dynamic list of real student bugs that can better
reflect actual user experience. Furthermore, the suggestion that
appears at the top of the list is accomplished through crowdsourced
voting by students. In other words, the dominating metric of which
examples of similar bugs that students will see is based heavily on
user experience. While the solution is quite novel, Hartmann, et
al., do not attempt to measure whether their automated assessment
tool helped novice programmers create a better mental model of the
errors they received or whether it increased learnability for novice
programmers. Furthermore, as Traver et al. note, this requires a
large database of student suggestions and crowd-sourced data [42].

Marceau et al. [31] questioned the computer science education
research community for investigating whether or not feedback
messages helped users learn without approaching it from the per-
spective of users. They provide both a quantitative and qualitative
human factors approach via a statistical analysis of user errors after
introducing enhanced feedback and follow-up interviews with four
of those same students. They discovered that students were grossly
misinterpreting the feedback messages and were confused at the
highly specialized vocabulary of their automated assessment tool,
DrRacket. They postulate that perhaps students do not take the
time to read the messages, but rather use it only as an "oracle" that
somehow knows how to fix their code or that students prefer to
read only the code highlights that indicate the necessary change. In
following work, Marceau et al. [30] provide a rubric for evaluating
the effectiveness of error messages based on student behavior after
encountering them. They recommend changes to error messages:
simplify vocabulary, be more explicit in pointing to the problem,
help students match terms in the error message to parts of their
code (e.g. using color coded highlighting), design the programming
course with error messages in mind (rather than an afterthought),
and teach students how to read and understand error messages
during class time.

Several other recent studies utilize aspects of a human factors
approach to an automated assessment tool. Traver et al. discuss
the theory behind error message design and propose eight spe-
cific principles for the design of ECEMs [42]. Lee and Ko discuss
personifying feedback in a game that teaches programming [25].
Their tool, Gidget, personifies feedback by accepting blame when a
program works incorrectly. Participants in the experimental group
where personification was increased completed more levels of the
game in a similar amount of time compared to the control group.
Barik et al. performed an experiment with eye tracking software to
determine if students read error messages [2]. These students were
a mix of undergraduate and graduate students who had an average
of 1.4 years of professional software engineering experience within
a company. While the study by Barik et al. is closely related to the
present study, we examine the problem from the perspective of
novice programmers in their very first programming course. Barik
et al. found that intermediate students do indeed read CEMs. They
also found that, as error messages becomemore difficult and cryptic,
programmers cycled between the error message and the offending

code more times, negatively correlating with success. Their find-
ings provide empirical justification for the necessity of enhancing
CEMs. Loksa et al. performed a study on a code camp where the
control group was taught to program and the experimental group
was additionally trained in the cognitive aspects of coding [28].
They suggest training students in metacognitive awareness, upon
the assumption that "programming is not merely about language
syntax and semantics, but more fundamentally about the iterative
process of refining mental representations of computational prob-
lems and solutions and expressing those representations as code,"
and report that students with this training were significantly bet-
ter able to understand error feedback. Loksa’s work suggests an
entirely different direction for this research, one that is beyond the
scope of this study.

2.5 Think-aloud studies in CS1
One research tool often employed in evaluating changes made to
CS1 classes is the think-aloud protocol where students are observed
writing code and asked to verbalize their thoughts while doing so.
Yuen performed a think-aloud study on his CS1 class to understand
the differences in how novices construct knowledge compared to
experts [46]. He collected data from four sources: an initial survey,
participants’ work on paper, transcripts of the interviews, and the
researcher’s field notes. Their results show three kinds of student
behavior in response to various levels of knowledge construction.
The least desirable response, "need to code," is when the student
does not seek to first understand and determine a solution, but
instead turns directly to the code. A better response is the second,
"generalizing the problem," where the novice is able to take what
they have previously learned and try to generalize it to the present
scenario, sometimes leading to a valid solution. The third and most
desirable behavior, "designing effective solutions," is when the stu-
dent is able to properly take their knowledge construction and
apply it to create a working solution. These three categories will
be useful in this study’s data analysis.

Teague et al. perform a think-aloud study watching novices trace
code and then attempt to explain in a single sentence what it does
[40]. They follow the classic think-aloud protocols by Ericsson and
Simon [13]. Teague’s results suggest that students who cannot trace
code cannot build appropriate abstractions to understand complex
programming tasks. One important contribution they make is in
noting that think-aloud studies are difficult for novices. The task of
programming is already cognitively overloading novices and there-
fore asking them to also think-aloud during a study could threaten
the ability to replicate the same silent attempt. To offset this, they
began their study with a short think-aloud practice session so the
participant could become familiar with the think-aloud protocol
and the interviewer. We follow Ericsson and Simon for think-aloud
protocol and follow Teague in adding a short practice session at
the beginning to hopefully offset cognitive load on novices.

Whalley and Kasto perform a think-aloud study watching
novices solve three programming challenges [45]. Researchers nar-
rated the problem-solving process and showed how some students
who might otherwise get stuck were able to solve the challenges
with some redirection and scaffolding. They also note that think-
aloud studies are difficult with novice programmers because the

ICER ’17, August 18-20, 2017, Tacoma, WA, USA Prather, Pettit, Holcomb McMurry, Peters, Homer, Simone, Cohen

cognitive load is already very high and so they have a difficult time
concentrating on solving the problem and can’t continually ver-
balize their thoughts. In order to offset this, they also used a short
practice session so participants could get used to the think-aloud
protocol.

Qualitative researchmethods complement our quantitative meth-
ods in this study. These qualitative methods will give us access to
information that submission data and quiz results do not, such as
the students motivations for behaving in a certain way, their beliefs
about what they are doing, and the feelings that they are having
when performing certain actions. All of these serve to give us a
better explanation of why students make certain choices. For a
thorough review of qualitative research approaches, see Lincoln
and Guba [26] or Patton [34]. For more information specifically on
mixed method approaches, see Creswell [8].

3 METHODOLOGY
3.1 Pilot Studies
Two usability pilot studies were conducted in fall 2016, each with
six participants in ten minute sessions that used a simple Fibonacci
problem requiring a while-loop to solve. The automated assessment
tool used in this study was Athene due to its adoption and use at
the university where the study was conducted [35, 37, 41]. Partici-
pants were provided with a code file that contained six bugs and
asked to submit the code, fixing errors as they found them, until
Athene accepted the program as complete. The program used a
method that takes n as a parameter and returns the nth Fibonacci
number, computed using a while loop. After the first pilot study,
the ECEMs in Athene were redesigned using the guidelines from
the literature [17, 31, 42]. The second pilot study performed the
same experiment with the redesigned ECEMs which led to a further
refining of their design. This included changing wording to better
match user expectations, streamlining the design, and removing
pieces that confused users. Perhaps the most interesting change
was to the text in the title of the enhanced portion of the message
from "Need More Help?" to "More Information." Most participants
in the second pilot study indicated that they did not want more
help - even the ones that struggled. The design of the button used
the words "Need More Help?" and most participants balked at that
phrasing as a threat to their ego. Follow-up questions about why
they felt this way revealed they thought that looking at something
titled "Need More Help?" was almost like cheating or like giving
up and they wanted to do it themselves without looking at the
answer. The phrasing was picked to be a neutral and clear label
about the button’s function, but it clearly was not perceived this
way by participants. Thus, it was changed to "More Information"
as in Figure 1 and Figure 2. The attitude among the participants
led to the creation of question #3 in the follow-up questions in the
think-aloud study.

3.2 Error Message Quizzes
Participants that were enrolled in CS1 for Spring 2017 at Abilene
Christian University were given six quizzes in class to determine
if the newly refined ECEMs were more helpful than the standard
compiler messages. This was done in an attempt to answer RQ2: are
ECEMs helpful for novice students in a setting with low cognitive

Figure 1: The error message from error message quiz 1B (en-
hanced) with the enhanced message expanded

Figure 2: The error message from error message quiz 4A (en-
hanced) with the enhanced message expanded

load. These quizzes all took place outside of the context of Athene
as part of a replacement for a daily quiz where cognitive load
would be much lower. In order to provide a control group and an
experimental group, the class of 31 was divided in to two groups of
similar demographics: A and B. Each quiz contained a code snippet
with a bug that would lead to a specific compile error, a feedback
message produced by Athene when that code is submitted, and
a short-answer question asking students to determine where the
error is, what the error is, and how they would fix it. In every case
students had seven minutes to solve the quiz. In odd-numbered
quizzes, the students in group A saw only the standard compiler

On Novices’ Interaction with Compiler Error Messages:
A Human Factors Approach ICER ’17, August 18-20, 2017, Tacoma, WA, USA

error message as feedback from Athene, while the students in group
B saw the standard compiler error message as well as the enhanced
error message from Athene. For the even-numbered quizzes, group
A saw the standard and enhanced messages while group B saw
only the standard messages. This was repeated for all six quizzes.
Thus, each student saw a standard message for three quizzes and
the enhanced message for three quizzes. Each quiz contained a
different code snippet with a different compile error and thus a
different feedback message fromAthene. The compile errors chosen
for the six quizzes were the six errors students encountered most
frequently while attempting the programming assignment used in
the think-aloud study below. The difficulty of the code snippets
that students were asked to analyze scaled along with the content
of the semester in an effort to make them consistently challenging.

3.3 Think-Alouds
As a classroom enhancement, the researcher canceled class and
instead held hour-long one-on-one sessions in CS1 during week
6 of classes for Spring 2017 at Abilene Christian University. All
31 students participated. Each student met one-on-one with a re-
searcher where the student was observed completing a "practical
quiz" and received feedback on their process. A practical quiz is sim-
ilar to a homework assignment - students receive a programming
problem in Athene, but must solve it in a proctored 35 minute time
window. Students were asked to verbalize their thoughts while
they solved the problem, especially when they encountered the
enhanced feedback messages. The primary researcher supervised
two researchers conducting these one-on-one studies. Occasionally
a second supervisor also observed these sessions. This was done to
ensure standardization of practices between observers. In an effort
to control for differing development environments and the help stu-
dents might or might not receive from certain ones, students were
only allowed to type their code in the default Windows notepad
application.

The general format of the think-aloud study follows the usability
testing guidelines found in Rubin and Chisnell [38] and Krug [24],
including pre- and post-testing checklists and scripts. At the begin-
ning of each session, the evaluator read from a script outlining the
reason for the session, the goal of the session, and what was ex-
pected of the student. Students were then given a very simple task
and asked to think-aloud so they can get used to verbalizing their
thoughts, the observer, and the process, as suggested by Teague et
al. [40] and Whalley and Kasto [45]. This simple task was to write
a program that would output "Hello, world." This particular task
was chosen because it was cognitively the easiest code to write for
any level of student at that point in the semester, so practicing the
think-aloud protocol would be easier during this time.

Students were then asked to complete a practical quiz, similar
to a simple homework assignment, with a time limit of 35 minutes.
The task was this: given n numbers, compute whether there were
more positive or negative integer numbers provided as input. Stu-
dents would need to understand the following concepts: console
input, console output, conditionals, and loops. This particular prob-
lem, rather than the Fibonacci problem used for the pilot studies,
was chosen because it has been used as an in-class assessment in

previous semesters and a majority of students from those previ-
ous semesters completed the problem within the same 35 minute
time limit. While solving the problem, a researcher took extensive
notes on what the student did and said. This study follows the
recommendations made by Ericsson and Simon [13] for carrying
out think-aloud studies, specifically minimizing social interaction
with participants and trying to gently keep them focused on the
task at hand. For instance, if the student stopped talking, then the
researcher would say, "Keep speaking," and not "Tell me what you’re
thinking." This encouraged speaking, but the participant was not
asked to formulate responses or socially interactive dialogue.

After the students successfully completed the problem or the
time limit expired, they were asked up to five interview questions
and their responses were recorded. They were asked up to five
because some questions may not have pertained to that particu-
lar student, depending on their experience solving the quiz. For
instance, students could not be asked about their perception of
the ECEMs if they did not encounter any of them. Below are the
questions that the students were (potentially) asked:

(1) When you encountered the enhanced feedback messages
(with the "More information" drop-down), were they helpful?
Why or why not?

(2) When you see a feedback message from Athene, how does
it make you feel?

(3) Would you rather read the enhanced message under "More
information" first, or would you rather wait until you can’t
figure it out yourself? Why?

(4) (If they saw an enhanced message and did not click it) When
you saw the enhanced message, why did you choose not to
click on it?

(5) In this class, how often before the deadline do you usually
make your first attempt (uploading your program to Athene)
on your homework?

These questions were designed to get the student talking about
their experience with the ECEMs that they potentially encountered.
Getting at perception can be difficult, so the first three questions
were all designed to hit around the same issue. The fourth question
was for those students that we knew would see them and not
use them. The final question was added in an attempt to try and
correlate perceived work ethic with use of the ECEMs.

The think-aloud study with post-assessment interview was de-
signed to answer research questions (1) Do Students read ECEMs?
and (3) Are the ECEMs helpful for novice students in a setting with
high cognitive load?

3.4 Think-Aloud Analysis
The ethnographic portion of the study consisted of participant ob-
servation and post-assessment interview questions. This allowed us
to record the participants’ actions, thought process, problem solv-
ing process, reactions to error messages, and their answers to the
end-of-session interview questions. Because the participants were
asked to use the think-aloud protocol, we were better able to record
their thought-process as they solved the assessment. Participant-
specific data were separately recorded and then phenomena were
coded and grouped into categories. In this way, larger trends began
to emerge from the natural groupings of the qualitative data.

ICER ’17, August 18-20, 2017, Tacoma, WA, USA Prather, Pettit, Holcomb McMurry, Peters, Homer, Simone, Cohen

We put all of the data into ATLAS.ti and used it for the coding
process. We began the coding process by combing through each
document and creating quotations and adding codes for partici-
pants receiving error messages. For each error message, we coded
if it was or was not an enhanced error message. The ECEMs were
then broken down into a numbering system so that we could see
how many times students received each ECEM. The error messages
that were not enhanced were coded as "unenhanced," but were not
given a specific error message number. If the error message was
enhanced, we then coded if the participant expanded the "more
information" section (see Figure 1 and Figure 2 and note the collapsi-
ble "more information" section). If the "more information" section
was expanded, we then coded whether it proved to be helpful or
unhelpful based on their next code edit and submission. However, if
the "more information" section remained collapsed, we did not code
for that ECEM’s helpfulness. Next, we coded for completion time.
Completion time was divided into five groups: less than 10 minutes,
10-20 minutes, 20-30 minutes, 30-35 minutes, and incomplete. Each
participant document received one of the completion time codes,
which allowed us to analyze the progress of each student. At the
conclusion of each one-on-one session, the evaluator asked several
questions and then gave feedback on the participant’s performance
in the quiz. We therefore coded each participant’s response to these
follow-up questions in order to receive an overall perception for
the error messages. There were 28 unique codes and these codes
were used a total of 370 times.

3.5 Program Logs Analysis
The particular programming assignment that was given in our one-
on-one think-aloud sessions was given as an in-class assessment in
three other semesters of the same Programming 1 course. For each
submission, Athene logged the student’s information, a snapshot of
the code submitted, the test results or error message produced by
Athene, time submitted and current grade on the assessment. The
logs of these semesters were pulled and analyzed as a control to
compare against our one-on-one session results. For each semester,
we measured the number of students who completed the program-
ming assignment with a correct solution, average score, and average
time until completion in both the control and experimental groups.

4 RESULTS
4.1 Error Message Quizzes
The error message quizzes were given to students outside of the
context of an assessment in Athene to determine if the redesigned
ECEMs, on their own, were more helpful than the standard CEMs.
Twenty-seven students from the Spring 2017 CS1 class were present
for all six quizzes. The results of these quizzes (see Figure 3) show
that the experimental case (ECEMs) was more helpful than the
control (standard CEMs). The mean percent of incorrect answers
among participants in the control group was 17.28% while the mean
percent of incorrect answers in the experimental condition was
6.17%. Therefore, the experimental condition displayed a statisti-
cally significant improvement over the control (p < 0.035, n = 27,
paired two sample for means).

Out of the 27 participants present for all six quizzes, 13 students
gave an incorrect answer on at least one quiz. As shown in Figure

Figure 3: Number of incorrect responses for each condition
by quiz

Figure 4: Incorrect Understanding of CEM vs. ECEM

4 (rows 3, 5 and 6), 9 of the 13 students were helped more by the
ECEMs. One particularly interesting case is the student who incor-
rectly answered all three control quizzes, but correctly answered
all three in the experimental condition (row 6). Another outlier in
the opposite direction was the student who incorrectly answered
two experimental quizzes, but correctly answered all in the control
condition (row 2).

4.2 Program Logs
Data that can be pulled from Athene’s database on assessment
submissions has been previously reported by Pettit et al. [35, 37].
However, in previous studies, students were allowed to compile
offline and only submitted their code to Athene when making an
attempt at correctness. While other tools discussed above capture
all student compilations, the automated assessment tool used in
the present study, Athene, has previously not been able to report
that data. The one-on-one think-aloud study allowed this data to be
gathered using Athene for the first time. The difference in student
behavior when they can only use Athene to compile versus when
they can compile offline is an interesting subject for a future report,
but cannot be discussed fully here due to space limitations. We do
expect student behavior to change when the compiling constraints
change, such as an increase in the number of submissions and
therefore the number of errors encountered.

For those students in the experimental section that completed
the assessment during the 35 minute time limit, the average time

On Novices’ Interaction with Compiler Error Messages:
A Human Factors Approach ICER ’17, August 18-20, 2017, Tacoma, WA, USA

Figure 5: Average time to complete the problem by semester

to completion was 15:46 with a standard deviation of 7:03. In the
control, the previous three semesters when this assessment was
given the average completion times were: 16:44, 17:50, and 13:05
(Figure 5). This data indicates that the experiment did not adversely
affect student outcomes.

The average score for all students in the experimental section
was 67%. The average score for the previous three control semesters
was 90%, 88.2%, and 84.2%. This seems to indicate that students in
the experimental section may have been adversely affected. How-
ever, this may have been an artifact of the way the procedure was
performed. As mentioned above, students have previously been
able to compile offline and many students will use previous pro-
grams they have written as a bootstrap for any new program they
attempt. In the case of the experimental group, 10 students did not
complete the quiz at all, 6 of which suffered from problems with
the basic structure of their code. All of these 6 students could not
remember include statements and how to write their main func-
tion. If this assessment had been carried out in a previous semester,
these students would have had access to previous programs and
may have solved the problem. Instead, they could not move past
the structural compiler errors. Furthermore, none of the structural
compiler errors had been enhanced because we based our choices
about which messages to enhance on the frequency with which
a CEM was encountered in previous semesters. Since students in
previous semesters had access to their prior programs before start-
ing the quiz, none of these errors had been encountered in any
of the control semesters. Therefore, it is interesting to note that
removing these 6 students from the group brings the average score
up to 84.8%, which is in range of the control semesters.

The error message quiz results above indicate that the ECEMs
are more helpful than standard CEMs. However, the quantitative
data from the program logs seems to contract this conclusion, or is
inconclusive at best. This is where the qualitative data illuminates
a possible explanation.

4.3 Think-Alouds
With regard to the errors that participants received, observational
data - both spoken thought and behavior - allowed for the evaluator
to be certain when ECEMs were expanded and read. An ECEM was
marked as "helpful" in the observational data if the student solved
that specific error or made steps towards solving it after reading
the ECEM. Conversely, an ECEM was marked as "unhelpful" if the
student made changes after viewing the ECEM that were not on the

path to solving the error or the student read the message and didn’t
know how to proceed. Post-assessment ethnographic interviews
and reflection revealed participants’ feelings towards the ECEMs
in greater depth, from gratefulness to frustration.

4.3.1 Observational. Although there were 21 students who com-
pleted the quiz and 10 students who did not complete the quiz, the
total number of errors received was roughly equal at 56 for those
who completed the quiz and 60 errors for those who did not, making
116 total errors tagged by evaluators. The group of participants that
did not complete the quiz had a higher number of errors without
enhanced messages (31) and a lower number of enhanced error
messages (29), though this was dominated by a single participant
who encountered the most (15). The incomplete quiz participants
had under half of the number of read enhanced messages (9) when
compared to the participants that completed the quiz (23). From
this data it seems that encountering these messages really did prove
helpful for the completion of the quiz.

The incomplete quiz participants also had over double the
amount of unread enhanced messages (20) when compared to the
completed quiz participants (8). For the participants that completed
the quiz, there were 19 instances where the "more information"
section of the ECEM proved helpful. This is over six times the
amount of instances for those who did not complete the quiz (3).
The incomplete quiz participants also contained more instances of
unhelpful enhanced messages (6) when compared to the completed
quiz participants (4).

The data presented in Figure 6 summarizes these observations
and appears to indicate that the ECEMs helped students better
understand the errors they were encountering, fix those errors, and
ultimately complete the quiz.

4.3.2 Ethnographic: Perception of overall helpfulness comparing
complete and incomplete. Of the ten students that did not solve the
assessment in the 35 minute time limit, only two read the ECEMs
and believed they were unhelpful. Another two students that did
not complete the quiz read the ECEMs and believed them to helpful.
The other six students did not receive an enhanced error message
and were therefore unable to confirm whether or not the enhanced
messages were helpful. See Figure 7.

4.3.3 Ethnographic: Perception of helpfulness of students with
repeated error messages. There were four participants that received
a repeated ECEM at least once and did not finish the quiz. One of
them received three repeated ECEMs and thought that they were
unhelpful. However, another one received the same ECEM ten times
in succession, neglected to read the first nine, finally read it the
tenth time, and subsequently corrected the error. Even though this
participant did not finish the quiz, he still believed the ECEMs to
be helpful. The other two participants that received repeated error
messages and did not finish the quiz only received one repeated
message and they both found the enhanced messages helpful.

4.4 Discussion
The results of the error message quizzes compared with the quanti-
tative program log results from the assessment seem contradictory.
The observational and ethnographic data presented above tells a dif-
ferent story. The students who struggled, but ultimately succeeded

ICER ’17, August 18-20, 2017, Tacoma, WA, USA Prather, Pettit, Holcomb McMurry, Peters, Homer, Simone, Cohen

Figure 6: Student Perception of ECEMs in Complete vs. Incomplete Quizzes

Figure 7: Unique student groups based on quantitative and
qualitative data

in completing the problem, brought down the average score and
increased the average time to completion. However, these same stu-
dents were helped the most by the ECEMs and expounded on this
in great detail during the post-assessment interview. Although they
struggled with the assessment, observational and ethnographic
data shows that it was ultimately the ECEMs that helped them
across the finish line. This is precisely what we want. Furthermore,
a very small group of students who did not complete the quiz, and
therefore brought down the average score, were not helped by the
ECEMs and were frustrated by them in the post-assessment inter-
views. These two students were so unfamiliar with the material
and so fundamentally lost that the additional information provided
by the ECEMs only added insult to injury. We conjecture that the
increased cognitive load of the assessment may have tipped the
scales from helpful ECEMs to unhelpful.

From all of the data above, the students can be broken up into
six distinct groups as seen in Figure 7.

5 CONCLUSIONS
This study has made several important contributions. First, do
novice students read ECEMs? Observational and ethnographic data
seem to indicate that novices in CS1 do, in fact, read ECEMs. Stu-
dents also generally find the ECEMs more helpful than the standard
CEMs. The corroborating evidence by Barik et al. [2] on eye track-
ing with intermediate students lends more weight to our finding.
This helps to answer RQ1 and warrants further investigation.

Second, are ECEMs helpful for novice students in a setting with
low cognitive load? The results of the error message quizzes shows
a statistically significant decrease in incorrect understanding of
ECEMs when compared to standard CEMs in an independent envi-
ronment. This data answers RQ2.

Finally, are the ECEMs helpful for novice students in a setting
with high cognitive load? Even though the quantitative program
log data from the think-aloud study seems inconclusive, the qual-
itative data seems to indicate that ECEMs are also effective in an
environment with a higher cognitive load. Students that struggled
to complete the quiz successfully used the ECEMs to arrive at a
correct solution. Here the qualitative think-aloud data provided a
window into student behavior that the quantitative program log

data could not provide. This helps to answer RQ3 and warrants
further investigation.

There are several threats to validity of these findings. First, the
control groups for the think-aloud study took place over multiple
semesters and had two different professors. We attempted to mini-
mize this threat by keeping the curriculum (assignments, schedule,
the use of Athene, etc.) roughly the same from semester to semester.
Second, control groups for the think-aloud study took the practi-
cal quiz in class, were not asked to think-aloud, and had access to
previous code files to bootstrap their code. By contrast, students in
the think-aloud study were in a one-on-one setting, were asked to
think-aloud, and did not have access to previous code. It is possi-
ble that all of these factors increased student cognitive load in the
think-aloud study and therefore skewed the results. We attempted
to offset this by adding in the warm-up exercise as suggested by
Teague et al. [40].

6 FUTUREWORK
This study should be replicated to further strengthen the findings
presented here. Having more than one experimental group would
add weight to these findings. It should also be replicated by those
previous studies that found no evidence or inconclusive evidence
for the helpfulness of ECEMs.

As mentioned above, Barik et al. [2] use eye tracking software
to examine whether intermediate students read error messages. It
would be helpful to replicate their work with novices in CS1.

Finally, even though this study followed the design guidelines
by Marceau et al. [31] it would also be useful to use their rubric
[30] to evaluate the helpfulness of the EECMs used in this study.

7 ACKNOWLEDGMENTS
The authors would like to thank Abilene Christian University (ACU)
for providing necessary funding for this study. We would also like
to thank the reviewers for their careful and thorough feedback.

REFERENCES
[1] Kirsti M Ala-Mutka. 2005. A survey of automated assessment approaches for

programming assignments. Computer science education 15, 2 (2005), 83–102.
[2] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson

Murphy-Hill, and Chris Parnin. 2017. Do Developers Read Compiler Error
Messages?. In Proceedings of the International Conference of Software Engineering.
ACM.

[3] Titus Barik, Jim Witschey, Brittany Johnson, and Emerson Murphy-Hill. 2014.
Compiler error notifications revisited: an interaction-first approach for helping
developers more effectively comprehend and resolve error notifications. In Com-
panion Proceedings of the 36th International Conference on Software Engineering
(ICSE Companion 2014). ACM, 536–539.

[4] Brett A Becker. 2016. An effective approach to enhancing compiler error mes-
sages. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education. ACM, 126–131.

[5] Jens Bennedsen and Michael E. Caspersen. 2007. Failure rates in introductory
programming. ACM SIGCSE Bulletin 39, 2 (2007), 32–36.

[6] Elizabeth Carter. 2015. Its debug: practical results. Journal of Computing Sciences
in Colleges 30, 3 (2015), 9–15.

On Novices’ Interaction with Compiler Error Messages:
A Human Factors Approach ICER ’17, August 18-20, 2017, Tacoma, WA, USA

[7] Maria Christakis and Christian Bird. 2016. What developers want and need
from program analysis: An empirical study. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. ACM, 332–343.

[8] John W Creswell. 2013. Research design: Qualitative, quantitative, and mixed
methods approaches. Sage publications.

[9] Paul Denny, Andrew Luxton-Reilly, and Dave Carpenter. 2014. Enhancing syn-
tax error messages appears ineffectual. In Proceedings of the 2014 conference on
Innovation & technology in computer science education. ACM, 273–278.

[10] Christopher Douce, David Livingstone, and James Orwell. 2005. Automatic test-
based assessment of programming: A review. Journal on Educational Resources in
Computing (JERIC) 5, 3 (2005), 4.

[11] Thomas Dy andMaMercedes Rodrigo. 2010. A detector for non-literal Java errors.
In Proceedings of the 10th Koli Calling International Conference on Computing
Education Research. ACM, 118–122.

[12] Stephen H Edwards and Manuel A Perez-Quinones. 2008. Web-CAT: automati-
cally grading programming assignments. In ACM SIGCSE Bulletin, Vol. 40. ACM,
328–328.

[13] Karl Anders Ericsson and Herbert Alexander Simon. 1993. Protocol analysis. MIT
press Cambridge, MA.

[14] Thomas Flowers, Curtis A Carver, and James Jackson. 2004. Empowering students
and building confidence in novice programmers through Gauntlet. In Frontiers in
Education, 2004. FIE 2004. 34th Annual. IEEE, T3H–10.

[15] Stephen N Freund and Eric S Roberts. 1996. Thetis: an ANSI C programming
environment designed for introductory use. In SIGCSE, Vol. 96. 300–304.

[16] Dianne Hagan and Selby Markham. 2000. Teaching Java with the BlueJ environ-
ment. In Proceedings of Australasian Society for Computers in Learning in Tertiary
Education Conference ASCILITE 2000. Citeseer.

[17] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R Klemmer. 2010.
What would other programmers do: suggesting solutions to error messages. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 1019–1028.

[18] Robert W Hasker. 2002. HiC: a C++ compiler for CS1. Journal of Computing
Sciences in Colleges 18, 1 (2002), 56–64.

[19] Jack Hollingsworth. 1960. Automatic graders for programming classes. Commun.
ACM 3, 10 (1960), 528–529.

[20] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. 2003. Identi-
fying and correcting Java programming errors for introductory computer science
students. In ACM SIGCSE Bulletin, Vol. 35. ACM, 153–156.

[21] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review
of recent systems for automatic assessment of programming assignments. In Pro-
ceedings of the 10th Koli Calling International Conference on Computing Education
Research. ACM, 86–93.

[22] James Jackson, Michael Cobb, and Curtis Carver. 2005. Identifying top Java errors
for novice programmers. In Frontiers in Education, 2005. FIE’05. Proceedings 35th
Annual Conference. IEEE, T4C–T4C.

[23] Caitlin Kelleher, Randy Pausch, and Sara Kiesler. 2007. Storytelling alice motivates
middle school girls to learn computer programming. In Proceedings of the SIGCHI
conference on Human factors in computing systems. ACM, 1455–1464.

[24] Steve Krug. 2014. Don’t make me think revisited: A common sense approach to
web and mobile usability. (2014).

[25] Michael J Lee and Andrew J Ko. 2011. Personifying programming tool feedback
improves novice programmers’ learning. In Proceedings of the seventh interna-
tional workshop on Computing education research. ACM, 109–116.

[26] Yvonna S Lincoln and Egon G Guba. 1985. Naturalistic inquiry. Vol. 75. Sage.
[27] Derrell Lipman. 2014. LearnCS!: a new, browser-based C programming environ-

ment for CS1. Journal of Computing Sciences in Colleges 29, 6 (2014), 144–150.
[28] Dastyni Loksa, Andrew J Ko, Will Jernigan, Alannah Oleson, Christopher J

Mendez, and Margaret M Burnett. 2016. Programming, Problem Solving, and Self-
Awareness: Effects of Explicit Guidance. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems. ACM, 1449–1461.

[29] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The scratch programming language and environment. ACM Trans-
actions on Computing Education (TOCE) 10, 4 (2010), 16.

[30] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Measuring
the effectiveness of error messages designed for novice programmers. In Proceed-
ings of the 42nd ACM technical symposium on Computer science education. ACM,
499–504.

[31] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Mind your
language: on novices’ interactions with error messages. In Proceedings of the 10th
SIGPLAN symposium onNew ideas, new paradigms, and reflections on programming
and software. ACM, 3–18.

[32] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda
Thomas, and Carol Zander. 2008. Debugging: the good, the bad, and the quirky–a
qualitative analysis of novices’ strategies. In ACM SIGCSE Bulletin, Vol. 40. ACM,
163–167.

[33] Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer. 2008. Com-
piler error messages: What can help novices?. In ACM SIGCSE Bulletin, Vol. 40.

ACM, 168–172.
[34] Michael Quinn Patton. 2014. Qualitative research& evaluationmethods: Integrating

theory and practice. Sage.
[35] Raymond Pettit, John Homer, Roger Gee, SusanMengel, and Adam Starbuck. 2015.

An empirical study of iterative improvement in programming assignments. In
Proceedings of the 46th ACM Technical Symposium on Computer Science Education.
ACM, 410–415.

[36] Raymond Pettit and James Prather. 2017. Automated Assessment Tools: Too
Many Cooks, Not Enough Collaboration. J. Comput. Sci. Coll. 32, 4 (April 2017),
113–121. http://dl.acm.org/citation.cfm?id=3055338.3079060

[37] Raymond S Pettit, JohnHomer, and Roger Gee. 2017. Do Enhanced Compiler Error
Messages Help Students?: Results Inconclusive.. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education. ACM, 465–470.

[38] Jeffrey Rubin and Dana Chisnell. 2008. Handbook of usability testing: how to plan,
design and conduct effective tests (2 ed.). John Wiley & Sons.

[39] Tom Schorsch. 1995. CAP: an automated self-assessment tool to check Pascal
programs for syntax, logic and style errors. In ACM SIGCSE Bulletin, Vol. 27.
ACM, 168–172.

[40] Donna Teague, Malcolm Corney, Alireza Ahadi, and Raymond Lister. 2013. A
qualitative think aloud study of the early neo-piagetian stages of reasoning in
novice programmers. In Proceedings of the Fifteenth Australasian Computing
Education Conference-Volume 136. Australian Computer Society, Inc., 87–95.

[41] Dwayne Towell and Brent Reeves. 2009. From Walls to Steps: Using online
automatic homework checking tools to improve learning in introductory pro-
gramming courses. (2009).

[42] V Javier Traver. 2010. On compiler error messages: what they say and what they
mean. Advances in Human-Computer Interaction 2010 (2010).

[43] Christopher Watson, Frederick WB Li, and Jamie L Godwin. 2012. Bluefix: Using
crowd-sourced feedback to support programming students in error diagnosis and
repair. In International Conference on Web-Based Learning. Springer, 228–239.

[44] Richard L Wexelblat. 1976. Maxims for malfeasant designers, or how to design
languages to make programming as difficult as possible. In Proceedings of the 2nd
international conference on Software engineering. IEEE Computer Society Press,
331–336.

[45] Jacqueline Whalley and Nadia Kasto. 2014. A qualitative think-aloud study of
novice programmers’ code writing strategies. In Proceedings of the 2014 conference
on Innovation & technology in computer science education. ACM, 279–284.

[46] Timothy T Yuen. 2007. Novices’ knowledge construction of difficult concepts in
CS1. ACM SIGCSE Bulletin 39, 4 (2007), 49–53.

http://dl.acm.org/citation.cfm?id=3055338.3079060

	Abilene Christian University
	Digital Commons @ ACU
	8-2017

	On Novices' Interaction with Compiler Error Messages: A Human Factors Approach
	James R. Prather
	Raymond Pettit
	Kayla Holcomb McMurry
	Alani Peters
	John Homer
	See next page for additional authors
	Recommended Citation
	Authors

	Abstract
	1 INTRODUCTION
	2 Related Work
	2.1 Error messages in automated assessment tools
	2.2 Students have trouble with CEMs
	2.3 Empirical evidence of helpfulness of ECEM (Denny, Becker, Pettit)
	2.4 Design of ECEMs in automated assessment tools
	2.5 Think-aloud studies in CS1

	3 METHODOLOGY
	3.1 Pilot Studies
	3.2 Error Message Quizzes
	3.3 Think-Alouds
	3.4 Think-Aloud Analysis
	3.5 Program Logs Analysis

	4 RESULTS
	4.1 Error Message Quizzes
	4.2 Program Logs
	4.3 Think-Alouds
	4.4 Discussion

	5 Conclusions
	6 Future Work
	7 Acknowledgments
	References

