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We investigate the ground-state phase diagram of an anisotropic Heisenberg model on the honeycomb lattice
with competing interactions. We use quantum Monte Carlo simulations, as well as linear spin-wave and Ising
series expansions, to determine the phase boundaries of the ordered magnetic phases. We find a region without
any classical order in the vicinity of a highly frustrated point. Higher-order correlation functions in this region
give no signal for long-range valence-bond order. The low-energy spectrum is derived via exact diagonalization
to check for topological order on small-size periodic lattices.
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I. INTRODUCTION

The honeycomb lattice has received much attention in
recent years because of its relevance to graphene, whose elec-
tronic structure gives rise to many unusual features.1 However,
this two-dimensional bipartite lattice with its two-site unit
cell was investigated long before it was realized in a real
material. It is particularly interesting for quantum-mechanical
models of strongly correlated electrons since its coordination
number n = 3 is the lowest allowed in a two-dimensional
system.2,3 Hence the influence of quantum fluctuations on
the ground-state properties is expected to be more important
than, e.g., in the also bipartite square lattice. Recently, it was
found that the half-filled Hubbard model on the honeycomb
lattice exhibits a spin liquid state at the border of the metal-
insulator transition for an intermediate value of the on-site
repulsion U .4,5 Since then the investigation of spin models
that can be derived perturbatively from the Hubbard model,6

or stated directly inside the insulating phase, has yielded
many interesting features including disordered and valence
bond solid phases in the ground-state phase diagram.7–12

Furthermore, in the context of iridium compounds, systems
have been investigated that may be described by frustrated spin
models on the honeycomb lattice and exhibit antiferromagnetic
order.13

Quantum Monte Carlo (QMC) simulations are rather
difficult to apply for these spin models due to the sign problem
that appears in relation to frustrating quantum spin fluctuations
and thermalization problems accompanying the competition
between different ground states. The latter can be overcome
by additional exchange Monte Carlo updates, as was shown
in previous work for frustrated spin models14 and in particular
for an anisotropic J1-J2 Heisenberg model on the square
lattice.15 To avoid the sign problem completely and allow
for the investigation of ground-state properties of reasonably
large systems it is necessary to lift the frustration for some
interactions in such a way that the isotropy of the model is
lost.

In the present work we investigate a spin model on
the honeycomb lattice, including nearest-, next-nearest-, and
third-nearest-neighbor anisotropic Heisenberg interactions, a
geometry analyzed in previous works for the isotropic Heisen-
berg model.2,8,10 We start from the limit of small quantum

fluctuations, where classical antiferromagnetic Sz interactions
along a preferred direction are all antiferromagnetic, leading
to frustration. However, we choose the quantum fluctuations
in the transversal plane to be ferromagnetic and hence
nonfrustrating. Such an anisotropic version of the Heisenberg
model can be interpreted as a system of hard-core bosons16

with nonfrustrating kinetic energy and repulsive interactions.
In consequence, an application might be realized in optical
lattices.17,18

Applying different techniques, we find the ground-state
phase diagram of the anisotropic spin model. We analyze
the boundaries of the ordered phases and explore the region
between them. Using QMC simulations and exact diagonal-
ization (ED), we identify a finite parameter region where
a disordered ground state cannot be excluded. Very similar
behavior was observed for the anisotropic J1-J2 Heisenberg
model on the square lattice.15 The paper is structured as
follows. In Sec. II we introduce the spin model and its
equivalent hard-core boson realization. We briefly present in
Sec. III the different methods that will be applied to derive
the phase diagram. The results for different limiting cases and
from the various approaches are compared and discussed in
the main part of the paper in Sec. IV. The possibility of a
spin liquid phase, as well as advantages and drawbacks of the
different methods, is discussed in the concluding Sec. V.

II. MODEL

We consider a spin model on a periodic honeycomb
lattice with N = 2 × (L × L) sites. The homogeneous
anisotropic Heisenberg interactions between spin operators
S = (Sx,Sy,Sz) at sites i,j , separated by a distance called r ,
are given by

Jr (Si ,Sj )r ≡ J z
r Sz

i S
z
j + J x,y

r

(
Sx

i Sx
j + S

y

i S
y

j

)
, (1)

where z refers to a preferred spin direction, x and y are the
transversal directions, and Jr ≡ (J z

r ,J
x,y
r ) is the anisotropic

exchange coupling strength. The Hamiltonian is given by
summing such interactions over all spin pairs on nearest-
neighbor (r = 1), next-nearest-neighbor (NNN) (r = 2), and
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FIG. 1. (Color online) (a) Classical ground states: Néel and
collinear order on the honeycomb lattice. (b) Schematic phase
diagram for the frustrated anisotropic Heisenberg model on the
honeycomb lattice. The axes represent the frustration V = V2/V1 =
V3/V1 and the relative amplitude of the quantum fluctuations t =
tr/Vr . Red circles refer to actual transition points calculated with
QMC simulations (see below).

third-nearest-neighbor (r = 3) bonds of the honeycomb lat-
tice:

H =
3∑

r=1

∑

〈i,j〉r
Jr (Si ,Sj )r . (2)

Note that J1 and J3 couple sites of the different sublattices
(say, A and B) of the bipartite honeycomb lattice, while the
NNN sites coupled via J2 lie in the same sublattice. We
choose the Sz interactions to be antiferromagnetic, J z

r > 0,
such that in the Ising limit (J x,y

r = 0) J z
1 and J z

3 favor a
Néel configuration, with opposite spin orientation in each
sublattice [see Fig. 1(a), left]. However, with J z

2 > 0 a
competing interaction is introduced, generating frustration in
the model. The sign of the exchange terms J

x,y

1 and J
x,y

3
does not matter since a sublattice rotation can change both
signs simultaneously. However, for the NNN exchange a
negative (ferromagnetic) sign has to be chosen to avoid the
sign problem in the QMC simulations. For convenience we
set all J

x,y
r < 0 so that the fluctuations are ferromagnetic and

hence nonfrustrating.

The present anisotropic Heisenberg model, for spin S =
1/2, can also be understood as a model of hard-core bosons.
For convenience we first fix an energy scale J , defining
dimensionless exchange couplings J z

r /J = Vr and J
x,y
r /J =

2 tr . We rewrite the spin model in terms of ladder operators
S±

i = Sx
i ± iS

y

i ,

H/J =
3∑

r=1

∑

〈i,j〉r

[
VrS

z
i S

z
j + tr (S+

i S−
j + S−

i S+
j )

]
(3)

and map spin operators onto hard-core bosons by (cf., e.g.,
Ref. 16)

S+
i → b

†
i , S−

i → bi , Sz
i → ni − 1/2, (4)

where

ni = b
†
i bi , (b(†)

i )2 = 0, (5)

so that the Hamiltonian (3) maps to

Hboson/J =
3∑

r=1

∑

〈i,j〉r
[tr (b†i bj + b

†
j bi ) + Vrninj ]

− 3

2
(V1 + 2V2+V3)

∑

i

ni + 3

8
(V1 + 2V2 + V3)N.

(6)

Here the (negative) tr describe nonfrustrating hopping of
the hard-core bosons up to third-nearest neighbors and the
(positive) Vr describe repulsion up to the same range. In
particular we are interested in the zero magnetization case,
mapping to a half-filled lattice, i.e., 〈ni〉 = 1/2. In this case
the last line in Eq. (6) only yields constant terms that will be
dropped in all following considerations.

For the remainder of this work, all three interactions will
have the same anisotropy ratio J

x,y
r /J z

r = 2t < 0, the relative
strength of the interactions is set to V2/V1 = V3/V1 = V > 0,
and the scale is set to J z

1 = J (i.e., V1 = 1, implying t1 = t

and t2 = t3 = V t). Thus the parameter space is reduced to a
two-dimensional area, which we will investigate for positive
V and negative t .

Ground-state configurations are readily obtained in some
limiting cases and a schematic phase diagram is anticipated in
Fig. 1(b). In the classical Ising limit (t → 0) of the spin model
in Eq. (3), two different ground states occur: for V < 1/2 a
Néel state [Fig. 1(a), left], with energy

ENéel/J = 3
2 (V − 1)S2N, (7)

and for V > 1/2 a collinear state [Fig. 1(a), right], with energy

Ecoll/J = 1
2 (1 − 5V )S2N. (8)

At the critical point V = 1/2 the two ground states compete
and the transition temperature is suppressed to zero. The
degenerate ground-state manifold at this point is expected
to give rise to interesting phenomena for nonzero quantum
fluctuations (t < 0) in the direct vicinity of the critical point.

The limit of large values of |t | can be easily understood
too as the noncompeting ferromagnetic interactions yield a
ferromagnetic correlation in the x-y plane [see Fig. 1(b)]: The
ground state will spontaneously break the rotation symmetry
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in the x-y plane, still with vanishing magnetization in the
z axis. The anisotropic Heisenberg interactions (1) can also
be understood in terms of Ising interactions between the, say,
Sx spin components, regarding the interactions between the
other spin components S̃± = Sy ± iSz as (not negligible) spin
fluctuations:

H =
3∑

r=1

∑

〈i,j〉r
2trS

x
i Sx

j

+
3∑

r=1

∑

〈i,j〉r

2tr − Vr

4
(S̃+

i S̃+
j + H.c.)

+
3∑

r=1

∑

〈i,j〉r

2tr + Vr

4
(S̃+

i S̃−
j + H.c.). (9)

Then, for large |t | a ferromagnetic product wave function in
the Sx basis serves as variational ansatz (VA), with energy

Eferro/J = 3 t(1 + 3V )S2N. (10)

In the bosonic language, the limits described above match
density waves at small |t | and a superfluid phase at large
|t |,19 corresponding to the condensation of ferromagnetic
magnons.16,20,21 Note that Néel and collinear phases are only
exact ground states for t = 0 or large S, i.e., in the classical
limit, while the bosonic treatment is valid for S = 1/2 and
will be studied at finite t . One should then expect that
fluctuations will reduce the magnetic order. To determine the
stability boundaries of these phases in the V -t plane [sketched
in Fig. 1(b)] and to analyze the intermediate region of the
phase diagram, we apply various methods, which are briefly
introduced in the following section.

III. METHODS

In this section we will briefly summarize the methods that
we have employed; results will be presented in Sec. IV. The
reader who is not interested in technical details may skip this
section.

The series expansion (SE) method will be applied in the
limit of small fluctuations to calculate energies and estimate the
phase boundaries of the antiferromagnetic phases. The same
holds for the derivation of linear spin waves (LSWs), which
will also be applied for the variational ferromagnetic state. The
QMC simulations are employed for the whole phase diagram to
calculate various order parameters and results for the energies
will be compared to the other methods. In addition, for a
particular parameter set, ED will be performed to calculate the
low-energy spectrum.

A. Series expansion

We have analyzed perturbatively the Hamiltonian (3)
starting from the Ising limit (tr = 0,r = 1, . . . ,3), around
classical Néel and collinear phases. Using standard (Rayleigh-
Schrödinger) perturbation theory22 on finite lattices, we have
obtained analytic expressions for the ground-state energy up
to O(t4

r ) around the two mentioned classical phases. We
have performed these calculations on finite lattices, large
enough to avoid finite-size effects at this order, using computer

algebra software for the implementation.23 The method is
straightforward but usually limited to low orders due to the
memory constraints imposed by the need of larger lattices to
achieve higher orders. Although our expansions are only fourth
order, they have the advantage of providing the coefficients of
the expansions in a closed analytical form. This allowed us to
determine a first-order critical line between Néel and collinear
phases, as discussed in the following sections.

Very recently, Oitmaa and Singh11 analyzed the isotropic
Heisenberg model applying a linked-cluster formalism24 and
calculated numerically series up to eighth order. For such
a purpose an Ising model is perturbed with an auxiliary
anisotropy parameter that in the end has to tend to one to
recover the isotropic Hamiltonian. This parameter is directly
related to the couplings tr in Eq. (3); thus their results are
useful in analyzing our model. We use here their numerical
eighth-order series for two purposes: First, we use the ground-
state energy results to estimate a range of validity of our series;
second and more importantly, we use the series provided for
order parameters to determine critical points in the phase
diagram of our model.

B. Linear spin waves

The phase boundaries of the conventional magnetic phases
can be estimated for large spin S, using a 1/S LSW expansion
of the model in Eq. (3). To this end one selects a classical
spin configuration to set local Cartesian frames with ži along
the classical direction and transversal components x̌i and y̌i

and represents spins in terms of Holstein-Primakoff bosons ai

satisfying [ai,a
†
j ] = δij .25 The spin component along the local

classical direction is represented by

S̃z
i = Si · ži = S − ni, (11)

where ni = a
†
i ai , while transversal fluctuations S̃±

i = Si · x̌i ±
iSi · y̌i are represented by

S̃+
i = (

√
2S − ni)ai, (12)

S̃−
i = a

†
i (

√
2S − ni). (13)

These equations ensure the correct spin component com-
mutation relations as well as −S � 〈S̃z

i 〉 � S. The LSW
expansion is then obtained by expanding the Hamiltonian up
to second order in a

(†)
i ; while this procedure usually breaks

SU(2) invariance, in the present case that symmetry is already
explicitly broken by the anisotropy.

The form of the bosonic action depends on the selected
classical configuration. In the present case we have explored
the Néel and collinear configurations as well as a ferromagnetic
phase in the x-y plane. In these three configurations the
local classical directions at different sites are either parallel
or antiparallel, simplifying the computations. For classically
parallel interacting sites the interaction terms in Eq. (3) are
expanded as

VrS
2 − VrS(ni + nj ) + 2Str (a†

i aj + a
†
j ai), (14)

while for antiparallel local frames they read

−VrS
2 + VrS(ni + nj ) + 2Str (a†

i a
†
j + aiaj ). (15)
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The quadratic Hamiltonian contains anomalous terms in
the fluctuations and must be diagonalized by a Bogoliubov
transformation. Within each momentum mode, the Bogoliubov
transformation is possible if the Hamiltonian quadratic form
has only positive eigenvalues. We searched such regions in the
V -t plane and after checking that fluctuations do not destroy
the classical order we adopted the possibility of diagonalizing
the Hamiltonian as a criterion for stability of the classical
phase. Notice that the ferromagnetic phase shows a Goldstone
mode at zero momentum, related to the explicit selection of a
classical direction in the x-y plane; in this phase, stability is
achieved if the remaining modes are positive.

Within each phase, we computed the ground-state energy
and the average magnetization along the classical directions as
order parameters. In the regions where more than one phase is
stable, we select the one with lowest ground-state energy. The
results are shown in Sec. IV.

C. Quantum Monte Carlo simulations

The simulation of frustrated spin models using QMC
simulations is usually limited by the sign problem that occurs
for competing quantum fluctuations. However, for the present
model we choose the interactions along the Sxy direction
of the spin operators to be ferromagnetic and hence have
negative amplitudes tr for the quantum fluctuations. This maps
onto bosonic hopping integrals [see Eq. (6)], which yield no
sign problem in QMC simulations. Thus we can simulate
the model for all parameters. Nevertheless, the remaining
frustration in the Sz direction of the spin interactions yields
a competition between different ground states for V ≈ 1/2.
Exactly at the critical point the classical ground state shows
a large degeneracy of linear order ∼22L and this results in
freezing and thermalization problems for simulations of the
quantum model at low temperatures.

The QMC simulations were performed at finite tem-
peratures using the implementation of the stochastic series
expansion26 of the Algorithms and Libraries for Physics
Simulations (ALPS) project.27–29 The use of directed loops30 in
the update step ensures a reliable scan of the whole phase space
even for the present model where several different operators
can act on the same site of the lattice. To overcome the freezing
problems that occur due to the degenerate ground-state
manifold at V = 1/2 we used an additional exchange Monte
Carlo update14,31,32 that allows for a better thermalization of
the simulation. Since in particular in the vicinity of the critical
point V ≈ 1/2 low temperatures are necessary to gain insight
into the ground-state properties of the system, simulations
were run in parallel on large-scale computer clusters.

D. Exact diagonalization

To gain further insight into the spectrum of the model
we also applied exact diagonalization techniques. This is
done for finite lattices up to N = 34 sites and only for
certain parameters where SE and LSWs are not applicable.
In particular we performed Lanczos iterations to calculate the
lowest eigenvalues of the system using an implementation
by Schulenburg.33 The finite-size analysis of the behavior of

the lowest excited states allows for a characterization of the
underlying ground state.

IV. RESULTS

In this section we present and compare results obtained by
the methods described above for three different cases of inter-
est. For small fluctuations the stability of the antiferromagnetic
states will be analyzed by means of SE, LSWs, and QMC
simulations. In the case of large fluctuations the emergence
of long-range ferromagnetic correlations in the x-y plane is
tested by means of LSWs and QMC simulations through the
spin stiffness of the Sz component. An intermediate region in
the vicinity of the critical point V = 1/2 will be investigated
via QMC calculations of higher-order correlation functions
and interpretation of the low-energy spectrum from ED.

A. Ising limit

The Ising limit is given by setting all quantum fluctuations
tr = 0 and exhibits two antiferromagnetic ground states for
V2 = V3 that were described in Sec. II. For small values of |tr |
the quantum-mechanical ground states are expected to consist
of those classical states plus some quantum fluctuations that
reduce the overall energy and order parameters.

A comparison of the overall energies from SE, LSWs, and
QMC simulation is given in Fig. 2 for fluctuations governed
by t = −0.05 and −0.10. The agreement for small V < 0.45
and large V > 0.7 is very good. Only in the intermediate
regime can discrepancies be observed, which will be discussed
below.

From our fourth-order SE calculations we evaluated
ground-state energies for the Néel (V < 1/2) and collinear
states (V > 1/2). Series for these two states are given in
Ref. 34 . These results agree with the recent work by Oitmaa
and Singh11 up to the given order.
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FIG. 2. (Color online) Comparison of energies calculated from
the different methods introduced in Sec. III, at small quantum
fluctuations t = −0.10 (top) and t = −0.05 (bottom). For the SE
two different calculations up to fourth order (this work) and up to
eighth order (Ref. 11) are shown. In the direct vicinity of the critical
point V = 1/2 both expansions become rather unreliable due to an
increasing number of divergences. The LSW results underestimate
the influence of quantum fluctuations, as also observed for larger |t |.
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FIG. 3. (Color online) Ground-state phase diagram for the
anisotropic Heisenberg model on the honeycomb lattice by means
of QMC simulations (red circles and interpolation by red dashed
lines). The Ising ground states survive separated by a direct first-order
transition for small fluctuations |t |. Only for values of |t | > 0.175(25)
can ferromagnetic order in the x-y plane be detected. The solid
blue line represents the first-order transition line between the
antiferromagnetic states [Eq. (16)], determined from fourth-order
SE. Magenta crosses represent phase boundaries determined by the
condition of vanishing order parameters, provided as eighth-order
SE (Ref. 11) (see the text for more details). Inset: The LSWs
(green dash-dotted lines) yield phase transition lines due to stability
arguments and a comparison of energies between antiferromagnetic
states. The overall scenario is very similar.

The LSW approximations yield comparable results for
the energies that are shown in Fig. 2 for t = −0.05 and
−0.10, computed on a lattice with 2 × 104 sites. The intrinsic
breakdown of the method for a particular starting configuration
as described in Sec. III B provides an estimate of the upper
phase boundary for both antiferromagnetic states: The Néel
configuration is stable for −t < 1−V

1+3V
and the collinear one

is stable for −t < − 1−5V
1+11V

. Both antiferromagnetic config-
urations support LSW fluctuations for V ≈ 1/2, where the
phase boundary is estimated by energy comparison. The three
approximate LSW boundaries are plotted in the inset of Fig. 3.

Our most accurate results were obtained by extensive QMC
simulations for the energies and magnetic order parameters. To
identify the regions with different magnetic orders we calculate
the structure factors for the Néel and collinear order. The
Cartesian wave vector is given by k = (0,0) and antiparallel
spins on the A and B sites of the unit cell for the Néel
state, i.e., each sublattice is ferromagnetically ordered but they
are aligned antiparallel to each other. The collinear state is
sixfold degenerate with three wave vectors: k = π√

3
(
√

3,1)

and k = π√
3
(
√

3,−1) with A and B parallel and k = 2π√
3
(0,1)

with A and B antiparallel. Additionally all spins can be flipped
in the ordered states, which gives a twofold degeneracy. An
example of the behavior of the order parameter as a function
of temperature is shown in Fig. 4(a) for the Néel state.

As expected from SE for small |t |, we obtain a direct
transition between the two antiferromagnetic states that is
probably of first order since both states exhibit different

(a) Neel order at V = and t = −0.1
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FIG. 4. (Color online) Evolution of QMC results for energies and
magnetic order parameters shown for decreasing temperatures in two
different points of the phase diagram, exhibiting (a) Néel order (NO)
and (b) ferromagnetic order (FO), respectively.

symmetries. From QMC simulations we observe that this
transition line splits into two for a small value of 0.025 <

|t | < 0.05 and a new ground state emerges in between.

B. Ferromagnetic limit

In the opposite limiting case with large |t | the situation is
not as simple as for the Ising limit. Linear spin waves can be
expanded around the product state that yields the energy given
in Eq. (10) and again the breakdown will yield an estimation
of a lower phase boundary. However, the coupling strength
of the quantum fluctuations, scaling with |t |, is not small
compared to the Ising exchange and the position of this phase
boundary is not very reliable. In the inset of Fig. 3 we show the
ferromagnetic phase boundary obtained by LSWs in a large
lattice, well fitted by −t > 1+1.83V

1+4V
. Then LSWs cannot be

applied in the unidentified region in the inset of Fig. 3. The
energies obtained by this calculation are compared below to
the results of QMC simulations.

The appropriate order parameter in the QMC simulations
for the ferromagnetic state is given by the spin stiffness, which
can be estimated on behalf of the winding number within
the QMC algorithm.16,35 As an example, the convergence
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(a) fixed t = −0.05 and varying frustration V , L = 12
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(b) fixed V = 0.45 and varying fluctuations t, L = 12
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FIG. 5. (Color online) Energy and order parameters (FO, fer-
romagnetic in-plane order; NO, Néel order; CO, collinear order)
shown for (a) a horizontal cut through the phase diagram (Fig. 3)
at t = −0.05 (classical order is absent for 0.48 � V � 0.54) and
(b) a vertical cut at V = 0.45 (no finite-order parameter for 0.075 �
−t � 0.15).

of energies and this order parameter is shown in Fig. 4(b).
Careful calculations of this observable for the not antifer-
romagnetically ordered regions of the phase diagram show
only a nonvanishing signal for |t | > 0.15. Figure 5 shows
two different parameter scans. In Fig. 5(a) order parameters
and energies from QMC simulations and SE are shown for
t = −0.05 and varying frustration V from Néel to collinear
behavior: A finite region without any magnetic order is
identified, which also explains the discrepancy of the energies
shown here and in Fig. 2. In Fig. 5(b) a similar scan is
presented, here for fixed V = 0.45 and t varying from Néel
to ferromagnetic behavior, where the QMC energy is also
compared with the classical variational ansatz [Eq. (10)] and
LSW calculations. The agreement with the LSW energy is
remarkably good.

As a result from the QMC, SE, and LSW calculations
we show a phase diagram for the V -t parameter space in
Fig. 3. The three methods uncover a finite region without
magnetic order around the critical point V = 1/2 and finite
fluctuations −t , which will be analyzed in the following
section. The Ising ground states survive separated by a direct
first-order transition for small fluctuations |t |. Only for values
of |t | > 0.175(25) is ferromagnetic order in the x-y plane
detected by means of QMC simulations. A direct comparison
of energies for V ≈ 1/2 yields a phase transition line between
the two antiferromagnetic states. We give here the approximate
result as a function V (t), obtained by equating our fourth-order
SE of energies for both Néel and collinear states and expanding

up to linear order in V , around V = 1/2:

V (t) = 1 278 676t4 − 69 750t3 + 6300t2 − 225

2 665 577t4 − 148 050t3 + 13 950t2 − 450
. (16)

This function is shown as solid blue line in the ground-state
phase diagram in Fig. 3.

As we have mentioned, Oitmaa and Singh11 have presented
SE data for the magnetic order parameters, i.e., Néel and
collinear magnetization, that can be directly translated to our
model. We used these data to determine the upper phase
boundaries of the antiferromagnetic phases by detecting the
point in V -t space where order parameters (more precisely,
their Padé approximants) vanish. The result is also shown in the
phase diagram (Fig. 3, magenta crosses). The corresponding
error bars are confidence limits obtained by considering the
dispersion of predicted critical points for different Padé ap-
proximants. Note that the antiferromagnetic phase boundaries
estimated by SE are generally slightly above the numerical
QMC results. A possible explanation is the presence of
first-order transitions at these phase boundaries.

The LSWs (green dash-dotted lines in the inset of Fig. 3)
yield phase transition lines as described in Sec. III B. From the
Monte Carlo simulations, the phase diagram is obtained by
identifying the regions where the different order parameters
show finite signals (red circles in Fig. 3). As shown in Fig. 5,
this leaves a finite region with a ground state that shows no
magnetic order. Since the energies calculated by LSWs were
slightly above the values of QMC simulations and SE, for
increasing −t it is not surprising that the phase boundaries are
shifted to higher values as well.

C. Intermediate regime

For the intermediate regime we find similar behavior as for
the square lattice,15 i.e., only small signals appear in the spin
stiffness for small lattices and intermediate temperatures that
scale to zero for larger lattices. The estimation of the second
critical value for t(V ), at which ferromagnetic order arises, is
rather difficult due to the two-dimensional parameter space and
the finite-size problems in the ferromagnetic order parameter.
In Fig. 3 we show a rough estimate for the phase transition line
separating the disordered state and the ferromagnetic phase as
a red dashed line.

So far we only checked the disordered region for classical
magnetic order. However, frustrated quantum models are
known to exhibit in certain cases more exotic quantum
ordered patterns such as dimer phases with long-range
order.36,37 To check for this kind of order we calculated
higher-order correlation functions of the spin variables, i.e.,
fourth-order correlations using improved estimators in the
QMC simulations:38

〈SiSj SkSl〉 − 〈SiSj 〉〈SkSl〉, (17)

where i and j index sites at one nearest-neighbor bond and k

and l at another nearest-neighbor bond.
Figure 6 shows these correlations on a representative lattice

where the strength of the correlation is given in a color code
(blue scale, top) and the distance of the two bonds i-j and
k-l is given by the distance of each bond to the top left
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(a) N el state at V = 0.2 and t = −0.1 (T = 0.05 J) (b) ferromagnetic state at V = 0.45 and t = −0.5 (T = 0.1 J)

(c) disordered state at V = 0.45 and t = −0.1 (T = 0.05 J)

  e ́

FIG. 6. (Color online) QMC results for correlation functions on an N = 288 lattice. Each bond (and site) represents the strength of the
correlation of a dimer (or spin) at the corresponding distance to the top left dimer (or spin) in a blue (dimers, top) or gray (spins, bottom) scale,
respectively.

reference bond. In addition, the Sz correlation functions are
shown in a gray scale (bottom scale) on the sites also with
respect to the top left site of the lattice. In Fig. 6(a) the
values of these correlations are shown for a Néel-ordered state
where the Sz correlations oscillate for different sublattices
and show a constant nearly maximal amplitude. The dimer
correlations are small and show no sign of ordering. For
parameters inside the in-plane ferromagnetic region [Fig. 6(b)]
neither in the Sz spin nor in the dimer correlations can any
signature be detected, i.e., spin correlations drop rapidly to zero
and dimer correlations adopt a constant distance-independent
value. The same applies for the disordered region [Fig. 6(c)]

and only a minor detail distinguishes the two calculations:
Apart from the different scales (cf. numbers at the upper scale),
which are explained by the different strength of the quantum
fluctuations (t = −0.1,−0.5), we identify a small difference
by comparing the relative values of the dimer correlations
inside the top left hexagon shown enlarged in Fig. 7. In
particular a slight enhancement of the dimer correlations on
the bonds neighboring the opposite bond of the reference bond
(top) compared to the correlation on the opposite bond itself
is seen. Thus an extremely short-ranged ordering of dimers
is observed in the disordered phase, which is absent in the
ferromagnetic state.
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FIG. 7. (Color online) Direct comparison of dimer correlations—
in an enlarged illustration of the top left hexagon of Figs. 6(b)
and 6(c)—shows a small relative enhancement of correlations on
two bonds for the disordered phase (V = 0.45 and original lattice
L = 12). The upper bond is again the reference bond for all dimer
correlations.

Since we have found no finite signal for any magnetic or
dimer order parameter we interpret the finite region in the
phase diagram as disordered. To learn more about the character
of this phase, an investigation of the low-energy spectrum is
necessary. Therefore, we performed an ED of the lattice model
for a set of parameters in the disordered region (V = 0.45 and
t = −0.1). In Fig. 8 we show the energy differences �Ek =
Ek − E0 in the Sz

total = 0 subspace. This measures the gap
from the ground-state energy E0 (which belongs to the k = 0
subspace and its scaling is shown in the top panel of Fig. 9) to
the lowest eigenvalues Ek in the different k 	= 0 subspaces or
to the first excited state in the k = 0 subspace. The smallest
gap in this same subspace stays finite according to a finite-size
analysis shown in Fig. 9 (middle, AF gap).

We also calculated the lowest eigenvalues for higher Sz
total

subspaces and found that the gap between E0 and the lowest
eigenvalue in the Sz

total = 1 subspace vanishes in a finite-size
scaling analysis for system sizes N = 18–34 (plotted in
the bottom panel of Fig. 9). This indicates a ferromagnetic
correlation, which can also be seen in the correlation functions

ΔE
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FIG. 8. (Color online) Spectrum of energy gaps �Ek = Ek − E0

for the Sz
total = 0 subspace for N = 34 at V = 0.45 and t = −0.1.

The smallest gap at k = 0 is stable in a finite-size analysis.
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FIG. 9. (Color online) Scaling of the ground-state energy and two
gaps with the system size N from ED at V = 0.45 and t = −0.1. The
antiferromagnetic gap (AF, middle) inside the Sz

total = 0 subspace
stays finite; however, the ferromagnetic (FE, bottom) gap between
the ground-state energy and the lowest eigenvalue of the Sz

total = 1
subspace scales to zero.

of the Sxy components in the ED. However, from the scaling
of the ferromagnetic gap it is obvious that the ED suffers
from finite-size problems for the small lattices, which were
investigated since we could exclude ferromagnetic order from
the QMC simulations.

In spite of finite-size effects, the clearly finite gap in the
Sz

total = 0 subspace found by ED in the disordered phase
for the present model allows us to exclude a topologically
ordered state. The reason is that, on a two-dimensional periodic
lattice with an aspect ratio close to one (i.e., on a torus with
similar circumferences in both directions), a topologically
ordered state would be accompanied by a fourfold ground-state
degeneracy.39

V. CONCLUSION

We presented the phase diagram for an anisotropic Heisen-
berg model on the honeycomb lattice with up to third-nearest-
neighbor interactions. The quantum fluctuations in the present
model are chosen to be ferromagnetic in order to avoid the
sign problem in QMC simulations. Since apart from the
interaction J2 this sign can be absorbed by a sublattice rotation,
one may hope to nevertheless gain insight into the isotropic
model.

The frustrating next-nearest-neighbor interactions suppress
the Néel state, which is favored by the antiferromagnetic
Sz interactions between nearest and third-nearest neighbors.
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Thus a collinear state arises for large interactions between
the sites on the same sublattice. The schematic transition
lines were calculated by means of LSWs and the direct
transition between the competing antiferromagnetic states was
found to survive for small fluctuations by means of SE. In
addition, we also performed QMC simulations to determine
the phase diagram and in particular to gain insight into a
region of the phase diagram without any conventional order.
Since an earlier ED study of the isotropic model reported the
appearance of valence bond crystals10 for certain parameters
we calculated higher-order correlation functions and excluded
any long-range order of dimer configurations. This absence
of any finite-order parameter is in agreement with earlier
calculations for the isotropic model,8,10,11 although the stability
region of this disordered phase differs at a quantitative
level. A further investigation of the low-energy spectrum
using ED was hampered by finite-size effects but yielded a
finite antiferromagnetic gap, which indicates the absence of
topological order. For isotropic models the disordered state
with a finite gap would be referred to as a gapped spin-liquid
phase. In principle, similar finite-size effects as in ED are also
present in the QMC simulations, but here they can be overcome
by calculating larger systems. This underlines again the utility
of introducing ferromagnetic quantum fluctuations.

The phase diagram is very similar to the one found for
the square lattice with nearest- and next-nearest-neighbor
interactions, which was investigated for anisotropic exchange
terms in Ref. 15. However, the stability region of the

antiferromagnetic phases is reduced on the honeycomb lattice,
which is explained by the lower coordination number of the
lattice, thus the influence of quantum fluctuations is enhanced.
In particular, the critical value of the ratios tr/Vr obtained
by QMC simulations at which the antiferromagnetic phase
boundaries split and the disordered phase emerges is smaller
in the present case. Furthermore, the direct transition line
between the two antiferromagnetic states calculated via SE
shows a steeper slope for the square lattice, which also hints
at a larger stability of this direct transition in that case.15
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