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We study the phenomenon of weak ergodicity breaking for a class of globally correlated random
walk dynamics defined over a finite set of states. The persistence in a given state or the transition
to another one depends on the whole previous temporal history of the system. A set of waiting
time distributions, associated to each state, set the random times between consecutive steps. Their
mean value is finite for all states. The probability density of time-averaged observables is obtained
for different memory mechanisms. This statistical object explicitly shows departures between time
and ensemble averages. While the mean residence time in each state may result divergent, we
demonstrate that this condition is in general not necessary for breaking ergodicity. Hence, global
memory effects are an alternative mechanism able to induce this property. Analytical and numerical
calculations support these results.

PACS numbers: 05.70.Ln, 05.40.-a, 89.75.-k

I. INTRODUCTION

Ergodicity plays a fundamental role in the formulation
of statistical physics. This property is usually stated by
saying that ensemble average and time average of ob-
servables are equals, the last one being taken in the long
time (infinite) limit. In contrast with thermodynami-
cal systems, where the lack or ergodicity is induced by
a spontaneous symmetry breaking [1], the disparity be-
tween ensemble and time averages may also be found
as an emergent property of complex systems. Named as
weak ergodicity breaking (EB) [2], this feature is induced
by the power-law nature of the statistical distributions
associated to the observables and their dynamics [2, 3].

Time averages in presence of weak EB remain random
even in the long time limit. Their statistics, termed as
weakly non-ergodic statistical physics [4, 5], define a still
very active line of research. Continuous time random
walk characterized by divergent trapping times is a nat-
ural frame where weak EB was studied [4–9]. In addi-
tion, diverse kinds of complex anomalous diffusion pro-
cesses are a natural partner of weak EB. Analysis were
performed for particles embedded in heterogenous media
[10], periodic potentials [11], and in homogeneous disor-
dered media [12]. Geometric [13], escaled [14] and ultra-
slow [15] Brownian motions, as well as diffusion induced
by the combined action of different driven noises [16–18],
convoluted memory processes [19] and Langevin dynam-
ics [20] also were characterized from a similar perspective.

In addition to its theoretical interest, weak EB was
also found in different physical systems such as determin-
istic dynamics [21–24] and blinking nanocrystals [25, 26];
also in molecular transport [27] and tracking of biolog-
ical single molecules [28–32] such as lipid granules [31],
and diffusion in the plasma membrane of living cells [32].
Weak EB also arises in complex networks [33, 34], fluid
turbulence [35] and brain dynamics [36].

Weak EB can be studied in systems that have asso-
ciated a stationary state, such as for example random
walks on finite domains, and also in non-stationary sys-
tems such as unbounded diffusive ones (see for example
Refs. [4] and [28] respectively). Independently of the
dimensionality, weak EB is in general associated or re-
lated to some underlying self-similiar (effective) mecha-
nism characterized by power-law distributions. The main
goal of this paper is to demonstrate that systems whose
dynamics involves global memory effects may also de-
velop EB. Furthermore, we establishes that the lack of
ergodicity may happens even in absence of statistical
properties (residence times) characterized by dominant
power-law distributions.

Global memory (or correlation) effects refer to systems
whose stochastic dynamics at a given time depends on
its whole previous temporal history (trajectory). These
kinds of dynamics has been studied previously [37–45],
mainly as a mechanism that induces superdiffusion. In
contrast, here we study random walk processes defined
over a finite set of states where the persistence in a given
state or the transition to another one depends on the
previous system trajectory. The random times between
consecutive steps is defined by a set of waiting time distri-
butions with finite average times. In addition, our main
results rely on alternative memory mechanisms. They
are related to a Pólya urn dynamics [46–50], which is
one of the simplest models of contagion process, being of
interest in various disciplines [47]. In contrast to other
global correlation mechanisms, the urn-like dynamics is
able to induce weak EB. Interestingly, the departure from
ergodicity arises even when the (average) residence times
in each state are finite.

The paper is organized as follows. In Sec. II, we in-
troduce the globally correlated random walk model. The
probability density of time-averaged observables is ob-
tained in general. In Sec. III, we study three different
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global memory mechanisms: the elephant random walk
model, a random walk driven by an urn-like dynamics,
and an imperfect case of the last one. In Sec. IV, for all
models, we obtain the probability density of the residence
times. Sec. V is devoted to the Conclusions. Analytical
calculations that support the main results are presented
in the Appendixes.

II. FINITE RANDOM WALK WITH GLOBAL

MEMORY EFFECTS

In this section we introduce the globally correlated ran-
dom walk model and study its properties. The probabil-
ity density of time-averaged observables is also obtained.

A. Model

The system is characterized by a finite set of states
µ = 1, · · ·L. To each state µ we assign a waiting time
distribution wµ(t), which gives the statistics of times be-
tween consecutive steps of the stochastic dynamics. We
assume that all average times

τµ ≡

∫ ∞

0

dtwµ(t)t, (1)

are finite, τµ < ∞.
The stochastic dynamics is as follows. At the begin-

ning (initial time), each state is selected in agreement
with a set of probabilities {pµ}Lµ=1, 0 ≤ pµ ≤ 1, normal-

ized as
∑L

µ=1 pµ = 1. Given that a state µ is selected,
the system remains in it during a random time selected
in agreement with the waiting time distribution wµ(t).
After this step, the system may remain in the same state
or jump to another one. Hence, it may persists in the
same state, remaining an extra time interval chosen in
agreement with the same waiting time distribution, or
jump to a different state with a different waiting time
distribution. This dynamic repeats itself in time after
each step, where step refers to the process of selecting
the next state.
The state corresponding to the next step is cho-

sen in agreement with a conditional probability
Tn({n1, n2 · · ·nL}|µ) [denoted as Tn({nν}|µ)]. Here, n in-
dicates the number of steps performed up to the present
time, while nν gives the number of times that each state

ν was chosen previously. Then, n =
∑L

ν=1 nν . The de-
pendence of the process on the whole previous trajec-
tory (global correlation) is given by the dependence of
Tn({nν}|µ) on the set {nν}Lν=1. The previous definitions
completely characterize the stochastic dynamics in terms
of the initial probabilities {pµ}Lµ=1, the waiting time dis-

tributions {wµ(t)}Lµ=1 and the conditional (or transition)
probabilities Tn({nν}|µ).
For the studied models [see Eqs. (15), (16), and (21)],

as a consequence of the memory effects, the following

property is observed. In the long time limit (t → ∞),
which also correspond to a divergent number of steps
(n → ∞), the fractions

fµ = lim
n→∞

nµ

n
, (2)

∑L

µ=1 fµ = 1, may become random variables whose val-
ues depend on each particular realization. Their prob-
ability density is denoted by P({fµ}), which satisfies
the normalization condition

∫

Λ
df1 · · · dfL−1P({fµ}) = 1.

Here, Λ is the region defined by the condition
∑L

ν=1 fµ =
1. The average of fµ over an ensemble realizations, de-
noted by 〈· · · 〉, is

〈fµ〉 =

∫

Λ

df1 · · · dfL−1 fµP({fν}). (3)

At a given time t, with Pµ(t) we denote the (ensem-

ble) probability [
∑L

µ=1 Pµ(t) = 1] that the system is in

the (arbitrary) state µ. This object is characterized in
Appendix A from the dynamics defined previously. The
stationary probability reads P st

µ ≡ limt→∞ Pµ(t). It can
be written in terms of P({fν}) as

P st
µ =

〈

fµτµ
∑L

µ′=1 fµ′τµ′

〉

, (4)

where τµ is defined by Eq. (1). In Appendix A we also
derive this result. Basically it say us that in each real-
ization the system reaches a (random) stationary state

defined by the weights (fµτµ)/
∑L

µ′=1 fµ′τµ′ . In conse-

quence, P st
µ depends on which memory mechanism drives

the stochastic dynamics.

B. Time-averaged observables

To each state µ, we assign an observable with value
Oµ. Hence, each realization of the random walk de-
fines a corresponding trajectory O(t). In the stationary
regime, its ensemble average 〈O〉st ≡ limt→∞〈O(t)〉 =

limt→∞

∑L

µ=1 Pµ(t)Oµ, is

〈O〉st =
∑L

µ=1
P st
µ Oµ, (5)

where the weights follows from Eq. (4). On the
other hand, its time average is defined as O ≡

limt→∞(1/t)
∫ t

0
dt′O(t′), which leads to

O = lim
t→∞

L
∑

µ=1

( tu
t

)

Oµ. (6)

Here, tu is the total residence time in the state µ in the

interval (0, t). Hence,
∑L

µ=1 tu = t.
Even when a long time limit is present in the previous

definition, the observableO may be a random object that
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depends on each particular realization. Its probability
density can be written as

P (O) = lim
t→∞

〈

δ
(

O −
∑L

µ=1

tu
t
Oµ

)

〉

, (7)

where, as before, 〈· · · 〉 denotes average over an ensem-
ble of realizations and δ(x) is the Dirac delta function.
Now, our goal is to calculate this object for the dynamics
defined previously.
Given that the waiting time distributions are charac-

terized by a finite average time τµ, Eq. (1), after in-
voking the law of large numbers, in the long time limit
the total residence time tu in each state can be approx-
imated as tu ≃ nµτµ. Consistently, the present time is

t ≃
∑L

µ=1 nµτµ. Hence, we can write

lim
t→∞

tu
t

≃ lim
n→∞

nµτµ
∑L

µ′=1 nµ′τµ′

=
fµτµ

∑L

µ′=1 fµ′τµ′

, (8)

where the last relation follows from Eq. (2). Taking into
account that the fractions {fµ}Lµ=1 are characterized by
the distribution P({fµ}), Eq. (7) becomes

P (O) =

∫

Λ

df1 · · · dfL−1P({fµ})

×δ
(

O −
∑L

µ=1

fµτµ
∑L

µ′=1 fµ′τµ′

Oµ

)

. (9)

Therefore, P (O) can be completely characterized af-
ter knowing the distribution P({fµ}). Notice that the
specific structure of the waiting time distributions
{wµ(t)}Lµ=1 only appears through the average times

{τµ}Lµ=1, Eq. (1).

C. Ergodicity and localization

For an ergodic dynamics the fractions fµ [Eq. (2)]
must be characterized by their ensemble average, Eq. (3).
Hence,

P({fµ}) = δ(f1−〈f1〉)δ(f2−〈f2〉) · · · δ(fL−〈fL〉). (10)

Inserting this expression into Eq. (9), it follows the dis-
tribution

P (O) = δ(O−〈O〉st), (11)

where 〈O〉st is given by Eq. (5) with the weights

P st
µ =

〈fµ〉τµ
∑L

µ′=1〈fµ′〉τµ′

. (12)

From Eqs. (4) and (10), we note that these weights cor-
respond to the stationary probabilities of each state µ
in the ergodic case. Hence, time averages and ensemble
averages do in fact coincide.

The maximal departure with respect to ergodicity hap-
pens when the dynamics localize, that is, the system re-
mains in the initial condition. This case corresponds to

P({fµ}) =
L
∑

µ=1

pµδ(f1) · · · δ(fµ − 1) · · · δ(fL). (13)

Hence, Eq. (9) becomes

P (O) =

L
∑

µ=1

pµδ(O −Oµ). (14)

These limits are reached by the following memory mech-
anisms.

III. EXAMPLES

In the examples worked below, the stochastic dynam-
ics may reach both the ergodic and localized regimes Eqs.
(11) and (14) respectively. The distribution P({fµ}) can
be explicitly calculated and then the non-ergodic prop-
erties characterized through Eq. (9).

A. Elephant random walk model

This correlation model has been studied extensively
in the recent literature as a mechanism for inducing su-
perdiffusion [37–39]. In the present context, it is defined
by the transition probability

Tn({nν}|µ) = εqµ + (1 − ε)
nµ

n
. (15)

The positive weights 0 < qµ < 1 are extra parameters

normalized as
∑L

µ=1 qµ = 1. The parameter ε assumes

values in the interval [0, 1]. The stochastic dynamics can
be read as follows. With probability ε, and independently
of the previous history, the new state is chosen in agree-
ment with the probabilities {qµ}Lµ=1. On the other hand,
with probability (1−ε) each state is chosen in agreement
with the weights {nµ/n}Lµ=1, which in fact depend on the
whole previous history of the process.
For ε = 1, the selection of the new state is completely

random and independent of the previous history. There-
fore, the system is ergodic in this case, Eq. (11). On the
other hand, for ε = 0 the dynamics localize, that is, the
system remains in the initial condition, Eq. (14).
Even when the dynamics reaches the ergodic and lo-

calized regime, for intermediates values 0 < ε < 1 the
dynamics is ergodic. This property is demonstrated in
Appendix B. In fact, the distribution P({fµ}) is delta
distributed, Eq. (10), with 〈fµ〉 = qµ.

B. Random walk driven by an urn-like dynamics

In the Pólya urn dynamics [46, 47] (initially) an urn
contains many balls that, for example, are characterized
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by L different possible colors. At each step, one deter-
mine the color of one ball taken at random and put into
the urn one extra ball of the same color. A similar pro-
cess can be defined by starting the urn with only one
ball [48–50] (Blackwell-MacQueen urn). Its dynamics is
defined by the following conditional probability, which is
taken as the driving memory mechanism.
For the random walk over the µ = 1, · · ·L states, we

take the conditional probability [48, 49]

Tn({nν}|µ) =
λqµ + nµ

n+ λ
. (16)

As before, the set of parameters {qµ}Lµ=1 is normalized
to one. Instead, λ is a positive free parameter. For λ →
∞ the dynamics loses any dependence on the previous
history achieving in consequence an ergodic regime, Eq.
(11). On the other hand, for λ = 0, a localized regime
is achieved, Eq. (14). Hence, the intermediate values of
λ avoid this regime and in consequence one can define a
nontrivial dynamics starting from n = 1.
For arbitrary values of λ, the probability density of the

(asymptotic) fractions (2) is derived in Appendix C. It
can be written as

P({fµ}) =

{

L
∑

ν=1

pν
qν

fν

}

D({fµ}|{λqµ}), (17)

where D({fµ}|{λµ}) is a Dirichlet distribution [48, 49],

D({fµ}|{λµ}) ≡
Γ(λ)

∏

µ′ Γ(λµ′ )

∏

µ

fλµ−1
µ . (18)

Here, λ =
∑L

µ=1 λµ. The (ensemble) average fraction

reads 〈fµ〉 = (qµλ + pµ)/(λ + 1). When pν = qν , due

to the normalization
∑L

ν=1 fν = 1, the first factor in Eq.
(17) does not contribute, and 〈fµ〉 = qµ.
We notice that P({fµ}) [Eq. (17)] depends on the ini-

tial conditions {pµ}
L
µ=1. This property arises from the

strong memory effects that drive the underlying stochas-
tic dynamics. Nevertheless, this dependence is not able
to cancel any of the stationary fractions. In consequence,
the initial conditions are not relevant for breaking or not
ergodicity. In fact, given that P({fµ}) departs from Eq.
(10), this model leads to EB. The distribution P (O) [Eq.
(9)] can be evaluated from Eq. (17).
As an example, we consider a two-level system, where

the observable is defined by {Oµ} → (O2,O1), with O1 ≤
O ≤ O2. After integration, we get

P (O) =
1

N

[ω2(O2 −O)]λ1−1[ω1(O −O1)]
λ2−1

[ω2(O2 −O) + ω1(O −O1)]λ1+λ2

, (19)

where for shortening the expression we introduced the
parameters λ1 ≡ λq1, λ2 ≡ λq2, and the weights

ω1 ≡
τ1

τ1 + τ2
, ω2 ≡

τ2
τ1 + τ2

. (20)

Here, τ1 and τ2 are the average times corresponding to
the two waiting time distributions w1(t) and w2(t) re-
spectively [Eq. (1)]. The normalization constant reads
N−1 = (O2 −O1)ω1ω2Γ(α1 + α2)/Γ(α1)Γ(α2). For sim-
plicity, in the previous expressions we assumed the initial
condition pµ = qu. The case pµ 6= qu can be recovered
from these expressions [see Eqs. (17) and (18)].
The model (16) demonstrates that global memory ef-

fects may lead to EB. This result has a close relation with
the breakdown of the standard central limit theorem for
globally correlated random variables [50]. On the other
hand, as shown in Sec. IV, depending on the values of λ,
here EB arises because the residence times in each state
may be divergent, that is, their probability density is
characterized by power-law tails. The next modified dy-
namics also develops EB, but does not involve power-law
statistics.

C. Imperfect urn-like Model

Here, we consider a model that can be seen as an im-
perfect case of the previous one. We consider the pos-
sibility of having random state selections that do not
depend on the previous system history. The transition
probability reads

Tn({nν}|µ) = εqµ + (1 − ε)
λqµ +Mµ

M + λ
. (21)

The set {qµ}Lµ=1 is normalized as before, 0 ≤ ε ≤ 1,
and λ ≥ 0. Hence, with probability ε each state µ, in-
dependently of the previous trajectory, is chosen with
weight qµ. Complementarily, with probability (1− ε) the
state is chosen in agreement with the urn mechanism Eq.
(16). In fact, here Mµ is the number of times that the
state µ was chosen with the urn dynamics. Furthermore,
M is the number of times that the urn mechanism was
applied, M =

∑L

µ=1 Mµ. In contrast with the elephant

model [Eq. (15)], here the contribution proportional to
ε can be think as an error in the application of the urn
dynamics.
In order to clarify the stochastic dynamics induced by

Eq. (21), in Fig. 1 we plot two realizations (upper pan-
els) for a two-level system with O2 = 1 and O1 = −1.
Hence, the observable realizations switch between these
two values. The waiting time distributions are exponen-
tial ones

wµ(t) = γµ exp[−γµt], (22)

with µ = 1, 2. In the lower panels we plotted the condi-
tional probability Tn({nν}|µ) as a function of n. For clar-
ity, each value is continued in the real interval (i − 1, i).
The left panels corresponds to ε = 0.1, Eq. (21), while
the right panels to ε = 0, that is, Eq. (16). In both cases
Tn({nν}|µ) attains stationary values for increasing n [Eq.
(2)]. Nevertheless, in the case ε = 0.1 at random values
of n the conditional probability collapses to the value qµ.
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FIG. 1: Realizations of a two-level systems (upper panels)
with observable {O2 = 1,O1 = −1} driven by an urn-like
dynamics, jointly with the corresponding conditional proba-
bilities Tn({nν}|µ) [Eqs. (16) and (21)] as a function of n
(lower panels). The parameters are λ = 2, p1 = q1 = 0.4, and
p2 = q2 = 0.6. The waiting time distributions are exponential
functions [Eq. (22)] with γ1 = γ2 = γ. In (a) and (b) ε = 0.1,
while in (c) and (d) we take ε = 0.

This effect gives the error or imperfection with respect
to the case ε = 0.
The probability distribution of the asymptotic frac-

tions [Eq. (2)] associated to Eq. (21) is given by

P({fµ}) =

{

L
∑

ν=1

pν
qν

fν − εqν
1− ε

}

1

(1− ε)L−1

D
({fµ − εqµ

1− ε

}

|{λqµ}
)

, (23)

where D({fµ}|{λµ}) is the Dirichlet distribution Eq.
(18). Furthermore, each fraction is restricted to the do-
main

εqµ ≤ fµ ≤ 1− ε(1− qµ). (24)

In this case, the average fraction reads

〈fµ〉 =
qµ(λ+ ε) + pµ(1− ε)

(λ+ 1)
. (25)

Eq. (23) is related to Eq. (17) by the change of vari-
ables fµ → εqµ + (1− ε)fµ. This relation follows by con-
sidering the asymptotic limits of Eqs. (21) and (16), and
by using that the law of large numbers applies to the
error mechanism. For ε = 0 the previous expressions re-
cover the previous case, Eq. (17). Interestingly, the effect
of introducing the imperfect mechanism is to reduce the
domain of each fraction fµ, Eq. (24).
From Eqs. (9) and (23) we can calculate the distribu-

tion of the time-averaged observable. Below we consider
a two-level system with O1 < O < O2 and initial con-
dition pµ = qu. This case straightforwardly allows us to
reconstruct the case pµ 6= qu. We get

P (O) =
1

Nε

[ω2(O2 −O)− ωε
1(O −O1)]

λ1−1

×[ω1(O −O1)− ωε
2(O2 −O)]λ2−1 (26)

×
1

[ω2(O2 −O) + ω1(O −O1)]λ1+λ2

.
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FIG. 2: Probability density of the time-averaged observable
O. We take a two-level system driven by an urn-like dynamics
with different values of λ and ε. The full lines correspond to
the analytical expressions Eqs. (19) and (26). The waiting
time distributions are exponential functions [Eq. (22)] with
γ1 = γ2 = γ. In all plots we take p1 = p2 = q1 = q2 =
1/2. The (red) circles (ε = 0.5) and (blue) squares (ε = 0)
correspond to numerical simulations. λ is indicated in each
plot.

The possible values of the time-averaged observable is
restricted to the domain Omin ≤ O ≤ Omax, where

Omax ≡
O2 +O1ω

ε
1ω

−1
2

1 + ωε
1ω

−1
2

, Omin ≡
O1 +O2ω

ε
2ω

−1
1

1 + ωε
2ω

−1
1

.

(27)
Furthermore, we introduced the parameters

ωε
1 ≡ ω1

εq1
1− εq1

, ωε
2 ≡ ω2

εq2
1− εq2

, (28)

while the normalization constant is N−1
ε = (O2 −

O1)ω1ω2[Γ(λ)/Γ(λ1)Γ(λ2)](1−ε)−(λ−1)(1−εq1)
λ1−1(1−

εq2)
λ2−1. Consistently, for ε = 0, Eq. (26) recovers the

previous case, Eq. (19). From the previous expression
it become clear that the error mechanism introduced in
Eq. (21) lead to a shrinking of the probability density of
the time-averaged observable.
In order to check these results, in Fig. 2, we plot the

distribution (26) for a two-level system where as before
we take O2 = 1, O1 = −1, and the exponential waiting
time distributions (22). For each value of λ, we plot the
cases ε = 0.5 [Eqs. (21) and (26)] and ε = 0 [Eqs. (16)
and (19)]. Consistently, a higher ε leads to a shrinking
of the density P (O), which confirms that for ε → 1 an
ergodic regime is achieved, P (O) = δ(O). The same hap-
pen for increasing λ. On the other hand, the plots show
that P (O) may develops different forms such as U and
bell shapes, or even uniform ones. Similar dependences
arise when studying renewal random walks with diver-
gent average trapping times [4].
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In all cases, the numerical simulations (circles and
squares) follows from a time average performed on a time
interval with n = 103 steps and 105 realizations. The
theoretical results fit very well the numerical ones.

IV. PROBABILITY DENSITY OF RESIDENCE

TIMES

In contrast to the elephant random walk model, the
previous urn models develop weak EB. Here, we explore if
this property is induced, or not, by a power-law statistics.
In fact, for continuous-time random walks with renewal
events, EB is induced by the divergence of the average
residence time in each state [4]. The residence times are
the random times that the system stays or remains in a
given state before jumping to another one (see Fig. 1).
Here, for the models introduced previously, we calculate
their probability density. The calculations are valid for
arbitrary number of states L.

We consider a single trajectory in the long time limit,
such that the fractions {fµ}Lµ=1 [Eq. (2)] can be de-
scribed by their associated probability density P({fµ})
[see Eqs. (17) and (23)]. At the beginning of the resi-
dence in a given state µ the first time interval is chosen
in agreement with its waiting time distribution wµ(t). In
each step, the system remains in the same state with
probability fµ, which add a new random time inter-
val also defined from wµ(t). The residence time ends
when a different state ν 6= µ is chosen. This change
occurs with probability (1 − fµ). Therefore, the prob-
ability Wµ({f}|τ)dτ of leaving the state µ after a res-
idence time τ can be written in the Laplace domain
[g(s) =

∫∞

0 dτg(τ)e−sτ ] as

Wµ({f}|s) = (1 − fµ)wµ(s)

∞
∑

n=0

fn
µ wn

µ(s). (29)

Here, wµ(s) is the Laplace transform of the waiting time
distribution wµ(t) associated to the state µ. The previous
expression takes into account all possible way of leaving
the state µ after a given number of steps. It can be
rewritten as

Wµ({f}|s) = (1− fµ)
wµ(s)

1 − fµwµ(s)
. (30)

The density Wµ({f}|τ) is a conditional object. In fact,
it is defined for a particular realization with random val-
ues of the fraction fµ. Therefore, the probability density
of the residence time Wµ(t) is obtained after averaging
over realizations, Wµ(t) = 〈Wµ({f}|t)〉 , which is equiv-
alent to an average over the distribution P({fν}) of the
set of fractions {fν}Lν=1. Therefore, we get

Wµ(τ) =

∫

Λ

df1 · · · dfL−1P({fν})Wµ({f}|τ), (31)

where Wµ({f}|τ) follows from Eq. (30) after Laplace
inversion. The average persistence time Tµ is defined by

Tµ ≡

∫ ∞

0

dτ τWµ(τ). (32)

The previous two expressions can be evaluated for ar-
bitrary waiting time distributions and memory models.
For an exponential waiting time distribution wµ(t) =
γµ exp[−γµt] [Eq. (22)] with mean value τµ = 1/γµ [Eq.
(1)], it follows wµ(s) = γµ/(s + γµ). From Eq. (30), we
get Wµ({f}|s) = (1 − fµ)γµ/[s+ (1 − fµ)γµ], which can
be inverted as

Wµ({f}|τ) = (1− fµ)γµ exp[−(1− fµ)γµτ ]. (33)

For an ergodic system, characterized by the probability
density P({fν}) given by Eq. (10), from Eq. (31) we get

Wµ(τ) = (1− 〈fµ〉)γµ exp[−(1− 〈fµ〉)γµτ ]. (34)

This result is consistent with the definition of the under-
lying stochastic process that in each step allows the per-
sistence in the same state. In fact, the average persistence
time is Tµ = 1/[γµ(1− 〈fµ〉)], indicating an increasing of
the average persistence time with an increasing of the
weight 〈fµ〉 . On the other hand, in the localized regime
[Eq. (13)], due to the absence of transitions, it is not
possible to define Wµ(τ).
Taking exponential waiting time distributions Eq.

(22), for a two-level system [µ = 1, 2] characterized by
the conditional probability (21) (imperfect urn model),
after a simple change of variables, Eqs. (23) and (31)
deliver

W ε
µ(τ) =

1

N

∫ 1

0

df ϕε exp[−ϕε τ ]cµ fλµ−1(1 − f)λµ′−1,

(35)
where the super-index denotes the dependence on the pa-
rameter ε. λµ = λqµ [µ = 1, 2] while λµ′ [µ′ = 2, 1] corre-
sponds to the other system state, λµ′ = λqµ′ = λ(1−qµ).
The initial conditions appears through the contribution

cµ ≡
pµ
qµ

f +
1− pµ
1 − qµ

(1− f). (36)

The decay rate ϕε is

ϕε ≡ γµ[1− εqµ − (1− ε)f ], (37)

while the normalization constant reads N−1 = Γ(λ1 +
λ2)/Γ(λ1)Γ(λ2). Straightforwardly, the average persis-
tence time, T ε

µ =
∫∞

0
dτ τWε(τ), from Eq. (35) can then

be written as

T ε
µ =

1

N

∫ 1

0

df
1

ϕε

cµf
λµ−1(1− f)λµ′−1. (38)

Consistently, for ε = 1 Eq. (35) recovers Eq. (34) with
〈fµ〉 = qµ [Eq. (25)]. Hence, γµT

1
µ = 1/(1 − qµ). The

same results arise when λ → ∞. For arbitrary ε and λ,
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from Eqs. (35) and (38) explicit analytical expressions
can be found for both W ε

µ(τ) and T ε
µ [see Appendix D].

Interestingly, for 0 < ε ≤ 1 (and any initial condition)
the average residence time T ε

µ is finite [see Eq. (D4)].
This is the main result of this section. In fact, this re-
sult demonstrates that weak EB may arise even in the
absence of power-law statistical distributions with diver-
gent average residence times. On the other hand, for the
case ε = 0, that is, the dynamics defined by the condi-
tional probabilities (16), the average residence time T 0

µ ,
depending on the parameter values, may be finite or in-
finite. From Eqs. (38) and Eq. (D4) we get

γµT
0
µ =

λ−
(

1−pµ

1−qµ

)

λ(1 − qµ)− 1
, λ >

1

(1− qµ)
> 1. (39)

Consistently, for increasing λ this expression recovers the
ergodic case [Eq. (34)], limλ→∞ γµT

0
µ = 1/(1−qµ). In the

complementary region of possible values of λ, the average
residence time is divergent,

γµT
0
µ = ∞, λ ≤

1

(1− qµ)
. (40)

This last regime indicates that the density W ε
µ(τ) devel-

ops power-law tails. In fact, for long residence times,
γµτ ≫ 1, from Eqs. (35) and (D1) it can be approxi-
mated as

W 0
µ(τ) ≈ γµC

0
µ

( 1

γµτ

)λ(1−qµ)+1

, (41)

which defines the previous finite and infinite aver-
age time regimes. The dimensionless constant reads
C0

µ = (pµ/qµ)(1 − qµ)Γ(1 + λ)/Γ(qµλ). When pµ = 0

(pµ′ = 1) the asymptotic behavior becomes W 0
µ(τ) ≈

(1/γµτ)
λ(1−qµ)+2, while for W 0

µ′(τ) is given by Eq. (41).

We remark that in general W ε
µ(τ) (ε > 0) may also de-

velop power-law behaviors. Nevertheless, a multiplicative
exponential factor always leads to finite averages times
[see for example Eq. (42) below].
For particular values of the characteristic parameters,

the integral results Eqs. (35) and (38) lead to simple
expressions. Taking p1 = q1 = 1/2, p2 = q2 = 1/2, and
λ = 2 [Fig. (2b)] the density of residence times becomes

W ε
µ(τ) =

exp(−γ+
ε τ)(1 + γ+

ε τ) − exp(−γ−
ε τ)(1 + γ−

ε τ)

γµτ2(1− ε)
,

(42)
where for shortening the expression we introduced the
rates γ+

ε ≡ γµε/2 and γ−
ε ≡ γµ(1 − ε/2). In the

case ε = 1 (ergodic dynamics), we get W ε
µ(τ) =

(γµ/2)T
1
µ exp[−(γµ/2)τ ]. Hence, T

1
µ = 2/γµ. In the case

ε = 0 it reduces to

W 0
µ(τ) =

1

γµτ2
[1− (1 + γµτ) exp(−γµτ)], (43)

which explicitly shows the presence of dominant power-
law tails. The average residence time [Eq. (38)], for
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100
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100
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0 (
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FIG. 3: Probability distribution W ε

µ(τ ) [µ = 1, 2] of the resi-
dence times for a two-level system. The full lines correspond
to the analytical result Eq. (42). The waiting time distribu-
tions are exponential functions [Eq. (22)] with γ1 = γ2 = γ. In
both curves, p1 = p2 = q1 = q2 = 1/2, and λ = 2. The (red)
circles correspond to a numerical simulation with ε = 0.5,
while the (blue) squares to ε = 0. The dotted line is the
asymptotic power-law behavior (41) of Eq. (43).

arbitrary ε reads

γµT
ε
µ =

2arctanh(1 − ε)

(1− ε)
=

ln
(

2−ε
ε

)

(1− ε)
, (44)

where arctanh[x] = ln
√

1+x
1−x

for x ∈ (−1, 1). Thus, T ε
µ

is finite for 0 < ε ≤ 1. Consistently with Eqs. (40) and
(43), it diverges for ε = 0, T 0

µ = limε→0 T
ε
µ = ∞.

In order to check the previous results we determined
the distribution W ε

µ(τ) from a set of realizations such
as those shown in Fig. 1. For the same system than
in Fig. 2, the results are shown in Fig. 3. Further-
more, we take w1(t) = w2(t) = γ exp(−γt), which im-
plies W ε

1 (τ) = W ε
2 (τ). Consistently with the previous

analytical results [Eq. (42)], for ε = 0.5 [Fig. 3(a)]
asymptotically the density of residence times W ε

µ(τ) is
not dominated by power-law behaviors. Instead for ε = 0
[Fig. 3(b)] an asymptotic power-law behavior is clearly
observed [Eq. (43)]. The numerical and theoretical re-
sults are consistent between them.
The numerical probability densities of Fig. 3 were ob-
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tained from a set of equally sampled realizations. This
means that the same number of data for the random res-
idence times are taken from each realization. We took
5 × 103 realizations with a total length of n = 5 × 105

steps. Furthermore, after running the dynamics during
103 steps (long time limit), 5 × 103 random residence
times were taken from each realization.

V. SUMMARY AND CONCLUSIONS

We have introduced a random walk dynamics charac-
terized by global memory mechanisms. Given a finite
set of states, in each step the system may remain in the
same state of jump to another one. These alternative
events are chosen from a conditional probability that de-
pends on the whole previous history of the system. The
time between consecutive steps is determinate by a set of
waiting time distributions, all of them characterized by
a finite average time.
We focused the analysis on the ergodic properties of the

stochastic dynamics. Hence, we characterized the prob-
ability density of time-averaged observables, [Eq. (9)].
By analyzing different memory mechanisms, we conclude
that global correlations are not a sufficient condition for
breaking ergodicity, such as for example in the elephant
random walk model [Eq. (15)]. On the other hand, alter-
native urn-like memory mechanisms [Eqs. (16) and (21)]
do in fact break ergodicity. In these cases, considering
a two-level dynamics, the distribution of time-averaged
observables can be found in an explicit analytical way
[Eqs. (19) and (26)].
For random walks dynamics over a finite set of states,

EB may be induced by a divergent average residence time
in each state. In order to cheek this possibility for the
present models, we calculated the probability density of
the residence times [Eq. (31)], and the corresponding
average residence time [Eq. (32)]. In general, the dis-
tributions do not develop asymptotic power-law behav-
iors consistent with a divergent average residence time.
Hence, we conclude that global memory effects are in fact
an alternative mechanism that leads to EB. This main
conclusion was explicitly checked for two-level dynamics
[Eqs. (35 ) and (38)]. Only for a particular set of values,
the residence times have a divergent average. All previ-
ous results were confirmed by numerical simulations [see
Figs. (2) and (3)].
In conclusion, we established that weak EB may arise

in systems characterized by global memory effects. This
property may emerge even when the relevant variables
are not characterized by power-law statistical behaviors.
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Appendix A: Ensemble probabilities and stationary

state

Here, we obtain the ensemble probabilities {Pµ(t)}Lµ=1

and their corresponding long time limit, Eq. (4).
From the dynamics defined in Sec. II, the probability

Pµ(t) that the system is in the (arbitrary) state µ at
time t, can be written in the Laplace domain [g(s) =
∫∞

0 dτg(τ)e−sτ ] as

Pµ(s) = P1(µ)Φµ(s) +

∞
∑

n=1

∑

µ1,···µn

Pn+1(µ1, · · ·µn, µ)

×wµ1
(s) · · ·wµn

(s)Φµ(s), (A1)

where Φµ(s) = [1 − wµ(s)]/s is the Laplace transform

of the survival probability Φµ(t) = 1−
∫ t

0 dt
′wµ(t

′). Fur-
thermore, Pn(µ1, · · · , µn) is the probability of obtaining,
after n steps, the states {µ1, · · · , µn} from the globally
correlated mechanism. Hence, P1(µ) = pµ.
Eq. (A1) can be seen an addition over the ensemble

realizations, where each term gives the weight of all re-
alizations with n-selection events. Taking into account
that the variables µ1, · · · , µn−1 runs over the domain of
possible states 1, 2, · · ·L, Eq. (A1) can also be written as

Pµ(s) = pµΦµ(s) +

∞
∑

n=1

∑

{nν}

Pn(n1, · · ·nL) (A2)

×Tn({nν}|µ) w
n1

1 (s) · · ·wnL

L (s)Φµ(s).

Here, Pn(n1, · · ·nL) is the joint probability of getting
nν times the state ν after n-random steps, ν = 1, · · ·L.
Therefore, the sum

∑

{nν}
is restricted to the condition

∑L

ν=1 nν = n.
The expression (A2) is exact. Now, we perform a set

of approximations for getting the stationary state P st
µ =

limt→∞ Pµ(t). In the long time regime, t ≫ {τν}Lν=1, in
the Laplace domain we can approximate [46] the wait-
ing time distribution as wν(s) ≃ 1 − τνs, where τν
is the average time defined by Eq. (1). Therefore,

Φµ(s) ≃ τµ and also wn1

1 (s) · · ·wnL

L (s) =
∏L

ν=1 w
nν
ν (s) ≃

exp[−s
∑L

ν=1 τνnν ], which in the time domain leads to a

Dirac delta function, δ(t−
∑L

ν=1 τνnν).
In the long time regime, n increases unbounded. For

the studied models, the conditional probability can then
be approximated as Tn({nν}|µ) ≃ nµ/n ≃ fµ [Eq. (2)].
Consequently, Eq. (A2) leads to the approximation

Pµ(t) ≃
∞
∑

n=1

∑

{nν}

Pn(n1, · · ·nL)τµ
nµ

n
δ(t−

L
∑

ν=1

τνnν).

(A3)

By writing the delta contribution as δ(t−
∑L

ν=1 τνnν) =

δ(t − n
∑L

ν=1 τνfν), we realize that in the sum over

n the dominant term is that with n ≃ t/
∑L

ν=1 τνfν .
Using the properties of the delta distribution, δ(t −
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n
∑L

ν=1 τνfν) = (1/
∑L

ν=1 τν′fν′)δ(n − t/
∑L

ν=1 τνfν),
and after the change of variables nν → fν , Eq. (A3)
leads to the stationary state

P st
µ =

∫

Λ

df1 · · · dfL−1
τµfµ

∑L

ν=1 τνfν
P({fν}), (A4)

which in fact recovers Eq. (4). This result was also
checked by numerical calculations for the memory models
introduced in Sec. III.

Appendix B: Ergodicity of the elephant random

walk

The elephant random walk is defined by the transition
probability (15),

Tn({nν}|µ) = εqµ + (1− ε)
nµ

n
. (B1)

Here, we demonstrate that the fractions defined in Eq.
(2), fµ = limn→∞(nµ/n), converges to qµ, that is, the
distribution of the fractions is given by Eq. (10) with
〈fµ〉 = qµ (0 < ε ≤ 1).
At a given stage, the numbers nµ can be split as follows

nµ = m(1)
µ +M (1)

µ . (B2)

Here, m
(1)
µ gives the number of times that, with probabil-

ity ε, the state µ was chosen with probabilities {qµ}Lµ=1.

Complementarily, M
(1)
µ gives the number of times that,

with probability 1 − ε, the state µ was chosen with
probabilities {nµ/n}. In the limit of a diverging num-
ber of selections (steps), the law of large numbers gives

limn→∞ m
(1)
µ /n = εqµ. Thus, asymptotically we can ap-

proximate

Tn({nν}|µ) ≃ εqµ + (1− ε)
[

εqµ +
M

(1)
µ

n

]

. (B3)

Now, we can split M
(1)
µ in the same way as follows

M (1)
µ = m(2)

µ +M (2)
µ . (B4)

Here, m
(2)
µ is the number of times that, with proba-

bility (1 − ε)ε, the state µ was chosen with probabili-

ties {qµ}Lµ=1. Similarly, M
(2)
µ gives the number of times

that, with probability (1 − ε) × (1 − ε), the state µ

was chosen with probabilities {M
(1)
µ /n}. By using that

limn→∞ m
(2)
µ /n = (1 − ε)εqµ, it follows the approxima-

tion

Tn({nν}|µ) ≃ εqµ+(1−ε)
[

εqµ+εqµ(1−ε)+
M

(2)
µ

n

]

. (B5)

Performing the same splitting, at an arbitrary order we
can write

M (k−1)
µ = m(k)

µ +M (k)
µ , (B6)

where the law of large numbers gives limn→∞ m
(k)
µ /n =

(1− ε)k−1εqµ. Therefore, we get

Tn({nν}|µ) ≃ εqµ + (1− ε)εqµ

∞
∑

k=0

(1− ε)k = qµ. (B7)

This argument shows that in the asymptotic limit the
memory on the previous states is lost. Hence, the finite
random walk becomes ergodic, Eq. (10) with 〈fµ〉 = qµ.
Numerical simulations confirm this result. Notice that
the previous argument does not apply to the urn models
Eqs. (16) and (21). On the other hand, we checked that
for ε → 0 the rate of convergence to the regime defined
by Eq. (B7) is smaller, being infinite for ε = 0, that is,
in the localized regime. We remark that this result does
not contradict previous results for unbounded diffusion
processes [37–39].

Appendix C: Fraction probability density of the

urn-like dynamics

For the urn dynamics defined by Eq. (16), here we
obtain the probability density of the stationary fractions
Eq. (2).
By using Bayes rule, the joint probability

Pn(µ1, · · ·µn) of obtaining the values µ1, · · ·µn with the
dynamics Eq. (16) can be written as

Pn(µ1, · · ·µn)=P1(µ1)T1({nν1}|µ2) · · · Tn−1({nνn−1
}|µn).

By writing this expression in an explicit way, we real-
ize that the joint probability Pn(n1, · · ·nL) of getting nµ

times the state µ after n-random steps can be written as

Pn(n1, · · ·nL) =
L
∑

ν=1

(n− 1)!

n1! · · · (nν − 1)! · · ·nL!
(C1)

×pν
Γ(λ)

Γ(n+ λ)

1

qν

L
∏

µ=1

Γ(nµ + λµ)

Γ(λµ)
,

where λµ = λqµ. Each term in the sum
∑L

ν=1 corre-
sponds to all realizations with the same initial condi-
tion, which leads to the weight pν . The contributions
proportional to the Gamma functions follows straightfor-
wardly from the product of successive conditional proba-
bilities Tk({nk}|µk+1) and the property Γ(n+x)/Γ(x) =
x(1 + x)(2 + x) · · · (n − 1 + x). Furthermore, in the first
line the multinomial factor takes into account all realiza-
tions with the same numbers {nµ}Lµ=1. Eq. (C1) can be
rewritten as

Pn(n1, · · ·nL) =

L
∑

ν=1

pν
qν

nν

n
Dn(n1, · · ·nL), (C2)

where

Dn(n1, · · ·nL) ≡
n!

n1! · · ·nL!

Γ(λ)

Γ(n+ λ)

L
∏

µ=1

Γ(nµ + λµ)

Γ(λµ)
.

(C3)
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In the limit x → ∞ it is valid the Stirling approxima-
tion Γ(x) ≈

√

2π/xe−xxx. Hence, in the same limit, it
follows Γ(x + α)/Γ(x) ≈ xα. Using that n! = Γ(n + 1),
and applying the previous approximations to Eq. (C3),
in the limit n → ∞ it follows

Dn(n1, · · ·nL) ≈
Γ(λ)

nλ−1

L
∏

µ=1

n
λµ−1
µ

Γ(λµ)
. (C4)

By performing the change of variables nµ → nfµ, and by
using that (due to normalization) there are (L− 1) inde-
pendent variables fµ, the previous expression straightfor-
wardly leads to the Dirichlet distribution D({fµ}|{λµ}),
Eq. (18). Therefore, in the same limit, Eq. (C2) trivially
recovers Eq. (17).

Appendix D: Exact analytical results for two-level

systems

For two-levels systems driven by the imperfect urn dy-
namics, the integrals expressions for the probability den-
sity of residence times [Eq. (35 )] and the average resi-
dence time [Eq. (38)] can be explicitly evaluated. W ε

µ(τ)
reads

W ε
µ(τ) = γµ exp[−γµτ(1 − εqµ)]

{aµ(τ) 1F1[λqµ;λ; (1− ε)γµτ ] (D1)

+bµ(τ) 1F1[λqµ;λ+ 1; (1− ε)γµτ ]}.

The Kummer confluent hypergeometric function is

1F1[a; b; z] =
∑∞

k=0(a)k(b)kz
k/k! with (x)k =

∏k−1
j=0 (x +

j) = Γ(x+ k)/Γ(x). The auxiliary function aµ(τ) is

aµ(τ)≡
pµ
qµ

(1− qµ)ε+
(pµ − qµ)λ

qµγµτ
, (D2)

while bµ(τ) is

bµ(τ)≡(1−
pµ
qµ

ε)−(1−ε)pµ+(pµ−qµ)(ε−
λ

qµγµτ
). (D3)

Similarly, the average residence time is

γµT
ε
µ = aµ 2F1[1;λqµ;λ;

1− ε

1− εqµ
] (D4)

+bµ 2F1[1; 1 + λqµ; 1 + λ;
1− ε

1− εqµ
].

Here, the hypergeometric function is defined by

2F1[a; b; c; z] =
∑∞

k=0(a)k(b)k(c)kz
k/k!, while the coef-

ficients are

aµ ≡
1− pµ

(1− qµ)(1− εqµ)
, bµ ≡

pµ − qµ
(1− qµ)(1 − εqµ)

.
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