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ABSTRACT Candida guilliermondii shows intrinsic reduced echinocandin susceptibil-
ity. It harbors two polymorphisms (L633M and T634A) in the Fks1p hot spot 1 re-
gion. Our objective was to confirm that the reduced echinocandin susceptibility of
C. guilliermondii is due to those naturally occurring substitutions. We constructed a
Saccharomyces cerevisiae mutant in which a region of the FKS1 gene (including hot
spot 1) was replaced with that from C. guilliermondii. The chimeric mutants showed
32-fold increases in echinocandin MIC values, confirming the hypothesis.
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Echinocandins are the treatment of choice for candidemia, since most Candida spp.
are susceptible to these drugs (1–4). However, some highly prevalent Candida spp.,

such as species of the Candida parapsilosis complex and Candida guilliermondii, show
natural reduced echinocandin susceptibility (RES) (5–7). Echinocandin drugs interact
with the Fksp subunits of the �-1,3-glucan synthase complex, inhibiting the biosyn-
thesis of the principal cell wall glucan. Clinical resistance was linked to hot spot
mutations in Fksp (5). It was molecularly confirmed that the C. parapsilosis sensu lato
RES phenotype is due to a naturally occurring substitution (P660A) in the hot spot 1
region of Fks1p (8). C. guilliermondii harbors two polymorphisms (L633M and T634A) in
the same Fks1p region; it was assumed that the RES in this species is attributable to
these amino acid substitutions, but the hypothesis was never confirmed (5).

The objective of this work was to verify that the intrinsic RES of C. guilliermondii is
due to the naturally occurring amino acid changes in the hot spot 1 region of Fks1p.
To reach this goal, we constructed a Saccharomyces cerevisiae strain with a hybrid FKS1
gene. A region of the FKS1 gene that includes hot spot 1 was replaced with that from
C. guilliermondii. We then evaluated the echinocandin susceptibility.

S. cerevisiae BY4742 was used as the parental strain to obtain S. cerevisiae LMDM 537
(BY4742 FKS1 deletant in which codons 453 to 649 were replaced with URA3, i.e.,
fks1Δ453– 649::URA3) (8). C. guilliermondii ATCC 6260 (Meyerozyma guilliermondii) was
used to obtain the 695-nucleotide (nt) region of the FKS1 gene, which was fused to
generate the chimeric FKS1 gene (S. cerevisiae-C. guilliermondii). DNA was extracted by
phenol-based extraction (9). Caspofungin (CSF) and anidulafungin (ANF) susceptibility
tests were performed following CLSI guidelines (10–12), with modifications. For S.
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cerevisiae susceptibility evaluations, RPMI 1640 broth and Mueller-Hinton 2% glucose-
methyl blue agar were replaced by YPD broth (1% yeast extract, 2% peptone, 2%
glucose) and YPD agar (YPD broth plus 1.5% agar), respectively. Also, the incubation
temperature was changed to 30°C. These modifications were necessary since S. cerevi-
siae strains did not grow properly with the CLSI-proposed culture media and temper-
ature (8).

A two-step method for PCR-based FKS1 mutagenesis was employed to generate a S.
cerevisiae FKS1 chimeric mutant (8, 13, 14). Briefly, the first step consisted of partial
deletion of the FKS1 gene of S. cerevisiae BY4742 using an URA3 cassette. The deletion
included the Fks1p hot spot 1 region (amino acid residues 453 to 649). This disruption
leads to FK506 (tacrolimus) and echinocandin hypersensitivity (8, 15). The transforma-
tion was performed and the deletion was confirmed using methodologies described
previously (8, 16). The second step of the method was the replacement of the partially
deleted S. cerevisiae FKS1 gene (fks1Δ453– 649::URA3) by a construction that included a
695-nt portion of the C. guilliermondii FKS1 gene (nt 1591 to nt 2286 of the sequence
reported in GenBank under accession number XM_001487741.1) surrounded by S.
cerevisiae FKS1 regions from nt 1123 to nt 1611 and from nt 2308 to nt 2548 (S.
cerevisiae FKS1 sequence reported in GenBank under accession number U12893.1). This
construction was designed to yield, after homologous recombination, a functional FKS1
gene encoding a chimeric Fks1p (S. cerevisiae fks1Δ537–762::C. guilliermondii fks1
531–762) (Fig. 1). The transformation vector was obtained by four PCRs, including
amplification of the C. guilliermondii FKS1 fragment (695 nt), the 488-nt portion of the
5= region of S. cerevisiae FKS1, and the 240 nt of the 3= fragment of S. cerevisiae FKS1
using the primer pairs Fus5-FKS1-Sc-CguiF/Fus3-FKS1-Sc-CguiR, Fus5-FKS1-Sc-CguiR/
FKS1-375, and Fus3-FKS1-Sc-CguiF/LMDM85, respectively. The last PCR was designed to
fuse the three fragments using FKS1-375 and LMDM85 primers (see Table 1 for primer
details). PCRs were performed in a 25-�l volume, following the manufacturer’s instruc-
tions for the Pegasus DNA polymerase (PBL, Buenos Aires, Argentina), in an Applied

FIG 1 (A) Clustal alignment of the deduced Fks1p sequences of S. cerevisiae BY4742, S. cerevisiae harboring the chimeric FKS1, and C. guilliermondii
ATCC 6260. Black lines show where the C. guilliermondii FKS1 fragment was fused with the S. cerevisiae gene. The black box shows the FKS1 hot
spot 1 region. (B) PCR confirmation of the FKS1 reconstitution. Lane 1, markers; lanes 2 to 7, 872-nt PCR fragment of the chimeric FKS1 gene
obtained by using the FKS1-305F and Cg/h-R primers and DNA isolated from uracil-auxotrophic and CSF- and FK506-resistant S. cerevisiae
transformants. (C, D, and E) Diffusion susceptibility testing using caspofungin disks, following CLSI guidelines (11), for S. cerevisiae BY4742 (C), S.
cerevisiae harboring the chimeric FKS1 (D), and C. guilliermondii ATCC 6260 (E).
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Biosystems thermocycler (Tecnolab-AB, Buenos Aires, Argentina). The construction was
cloned into a PGEM-T Easy vector (Promega; Biodynamics, Buenos Aires, Argentina) to
yield the plasmid LMDM-P113. S. cerevisiae LMDM 537 (BY4742 fks1Δ453– 649::URA3)
was transformed with 1 �g of the LMDM-P113 plasmid, following the protocol (lithium
acetate) described by Geitz et al. (17). Transformants were selected on FK506 plates and
screened for the loss of URA3 as described previously (8). The RES phenotype was
screened for using YPD agar with 0.25 �g/ml CSF. Seven chimeric mutants showing the
expected phenotype, i.e., uracil auxotrophic, FK506 resistant, and able to grow in the
presence of 0.25 �g/ml CSF, were obtained. The FKS1 reconstitution was assessed in all
seven mutants by PCR using the primers FKS1-305F and Cg/h-R. These primers hybrid-
ize to the S. cerevisiae FKS1 gene (around 900 nt upstream of the start codon) and C.
guilliermondii FKS (near hot spot 1). The expected PCR band of 872 nt would be
obtained only if the chimeric FKS1 gene was present (Fig. 1). The FKS1 reconstitution
was confirmed by sequencing. A revertant control strain (LMDM 537R) was obtained
by transforming a 1,000-bp PCR fragment into the S. cerevisiae LMDM 537 strain
(17). This fragment was amplified using S. cerevisiae BY4742 DNA and the primers
FKS1-375 and FKS1-707R (Table 1). The amplified fragment included the S. cerevisiae
FKS1 hot spot 1 region. Homologous recombination produced a strain with a
functional FKS1 that was FK506 resistant.

Parental and revertant S. cerevisiae strains (BY4742 and LMDM 537R, respectively)
showed very low CSF and ANF MIC values (0.008 �g/ml), while the seven chimeric
strains showed 32-fold higher MICs for both echinocandins (0.25 �g/ml). These values
mimicked the C. guilliermondii ATCC 6260 RES phenotype (MICs of 0.25 �g/ml).

C. guilliermondii causes 1.4% of all Candida infections worldwide but is more
prevalent in South America (�4%) (6, 18–20). Despite the RES phenotype, most of these
infections are treated with echinocandins, since this yeast is also less susceptible to
fluconazole than other Candida spp. (21). Most of these infections respond well to
echinocandin therapy. However, C. guilliermondii breakthrough infections during
caspofungin therapy have been reported (22). Under such circumstances, there is a
concern that the use of echinocandins would contribute to an increased prevalence of
this species.

It is well known that echinocandin clinical resistance is linked to FKS hot spot
substitutions (5). The 32-fold increases in echinocandins MICs observed for the seven
chimeric S. cerevisiae mutants support the assumption that L633M and T634A poly-
morphisms at C. guilliermondii Fks1p hot spot 1 are responsible for the observed RES in
this species.
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