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Abstract. In this paper, we study the problem of minimizing the first eigen-

value of the p−Laplacian plus a potential with weights, when the potential
and the weight are allowed to vary in the class of rearrangements of a given

fixed potential V0 and weight g0. Our results generalized those obtained in [9]

and [5].

1. Introduction

In this paper we consider the following nonlinear eigenvalue problem with weights

(1.1)

{
−∆pu+ V (x)|u|p−2u = λg(x)|u|p−2u in Ω,
u = 0 on ∂Ω,

where Ω is a smooth bounded open subset of RN . Here ∆pu := div(|∇u|p−2∇u) is
the well-known p−Laplace operator, V is a potential function and g is a weight.

Our aim is to study the following optimization problems:

(1.2) I := inf {λ(g, V ) : g ∈ R(g0), V ∈ R(V0)} .

where V0 and g0 are fixed potential and weight functions respectively with some
precise hypotheses that we state below (see (H1) and (H2)) and R(V0), R(g0) are
the classes of rearrangements of V0 and g0 respectively.

This type of optimization problems for eigenvalues of the p−Laplacian have
deserved a great deal of attention. We like to mentioned the work of [1] where the
problem was analyzed in the context of the classical Laplacian (p = 2) without
weights (g ≡ 1) and the potential was allowed to vary in the unit ball of some
Lq(Ω).

Later on, the results in [1] were extended to the nonlinear case in [9], again
without weights.

A related minimization problem when the minimization parameter was allowed
to vary in the class of rearrangements of a fixed function, was first considered by
[4]. See also [8].

The eigenvalue problem (1.1) was analyzed exhaustively in [7] where the authors
prove the existence of a principal eigenvalue and several properties of it. The results
of [7] closely related to our work are discussed in Section 2.

More recently, in [5], the authors analyze problem (1.2) but when the potential
function is zero. In that work the authors prove the existence of a minimizing
weight g∗ in the class of rearrangements of a fixed function g0 and, in the spirit of
[2] they found a sort of Euler-Lagrange formula for g∗. However, this formula does
not appear to be suitable for use in actual computations of these minimizers.
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In this work we first extend the results in [5] to (1.1) and prove the existence of
a minimizing weight and potential for (1.2). Also the same type of Euler-Lagrange
formula is proved for both the weight and potential. But, we go further and study
the dependence of the eigenvalue λ(g, V ) with respect to g and V and prove the
continuous dependence in Lq norm and, moreover, the differentiability with respect
to regular perturbations of the weight and the potential.

In the case when the perturbations are made inside the class of rearrangements,
we exhibit a simple formula for the derivative of the eigenvalue with respect to g
and V .

We believe that this formula can be used in actual computations of the optimal
eigenvalue, weight and potential, since this type of formulas have been used in sim-
ilar problems in the past with significant success, see [10, 11, 13, 14] and references
therein. This is what we think is the main contribution of our paper.

Organization of the paper. After finishing this introduction, the paper is orga-
nized as follows. In Section 2 we collect some preliminaries needed in the paper.
First we discuss the results of [6, 7] on the eigenvalue problem (1.1) and second we
recall some known results on rearrangements due to [2, 3]. In Section 3 we prove
the existence of a unique minimizer and give a characterization of it, similar to the
one found in [5] for the problem without potential. Finally, in Section 4 we study
the dependence of the eigenvalue with respect to the weight and the potential and
prove, first the continuous dependence in the Lq topology (Proposition 4.1) and
finally we show a simple formula for the derivative of the eigenvalue with respect to
regular variations of the weight and the potential within the class of rearrangements
(Theorem 4.12).

2. Preliminaries

2.1. Properties of the principal eigenvalue. Let Ω be a bounded smooth do-
main in RN with N ≥ 2 and 1 < p < ∞. Let g0 and V0 be measurable functions
that satisfy the following assumptions:

(H1) g0, V0 ∈ Lq(Ω) where

{
q > N

p if 1 < p ≤ N,
q = 1 if p > N,

(H2) ‖V −0 ‖Lq(Ω) < Spq′ or V ≥ −Sp + δ for some δ > 0 and g+
0 6≡ 0,

where f− = min{f, 0}, f+ = max{f, 0} and Sr (r = p, pq′) is the best (largest)
constant in the Sobolev–Poincaré inequality

S‖u‖pLr(Ω) ≤
∫

Ω

|∇u|p dx ∀u ∈W 1,p
0 (Ω),

i.e.,

Sr := inf
{∫

Ω

|∇u|p dx : u ∈W 1,p
0 (Ω), ‖u‖Lr(Ω) = 1

}
.

Observe that if g and V are measurable functions that satisfy there exists a
unique positive principal eigenvalue λ(g, V ) of (1.1) and it is characterized by
(2.1)

λ(g, V ) := min
{∫

Ω

|∇u|p + V (x)|u|p dx : u ∈W 1,p
0 (Ω),

∫
Ω

g(x)|u|p dx = 1
}
.

See [7]. Obviously, if u is a minimizer, so is |u|; therefore we may assume u ≥ 0.
The following Lemma is taken from [6] and gives us the positivity of eigenfunc-

tions associated to the principal eigenvalue.
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Lemma 2.1 ([6], Proposition 3.2). Let g and V be two measurable functions that
satisfy the assumption (H1). If u ∈W 1,p

0 (Ω) is a nonnegative weak solution to (1.1)
then either u ≡ 0 or u > 0 for all x ∈ Ω.

Proof. The proof is a direct consequence of Harnack’s inequality. See [15]. �

We therefore immediately obtain,

Corollary 2.2. Under the assumptions of the previous Lemma, every eigenfunction
associated to the principal positive eigenvalue has constant sign.

Furthermore, following [7], we have that the principal eigenvalue λ(g, V ) is sim-
ple.

Lemma 2.3. Let g and V be two measurable functions that satisfy the assumption
(H1). Let u and v be two eigenfunctions associated to λ(g, V ). Then, there exists
a constant c ∈ R such that u = cv.

Proof. The proof follows immediately from Lemma 4 in [7]. �

2.2. Results on Rearrangements. We will now give some well-known results
concerning the rearrangements of functions. They can be found, for instance, in
[2, 3].

Definition 2.4. Given two functions f, g : Ω → R measurable we say that f is a
rearrangement of g if

|{x ∈ Ω: f(x) ≥ α}| = |{x ∈ Ω: g(x) ≥ α}| ∀α ∈ R,

where | · | denotes the Lebesgue measure.

Now, given f0 ∈ Lp(Ω) the set of all rearrangements of f0 is denoted by R(f0)
andR(f0) denotes the clousure ofR(f0) in Lp(Ω) with respect to the weak topology.

Theorem 2.5. Let 1 ≤ p < ∞ and let p′ be the conjugate exponent of p. Let
f0 ∈ Lp(Ω), f0 6≡ 0 and let g ∈ Lp′(Ω). Then, there exists f∗, f∗ ∈ R(f0) such that∫

Ω

f∗g dx ≤
∫

Ω

fg dx ≤
∫

Ω

f∗g dx ∀f ∈ R(f).

Proof. The proof follows from Theorem 4 in [2]. �

Theorem 2.6. Let 1 ≤ p ≤ ∞ and let p′ be the conjugate of p. Let f0 ∈ Lp(Ω),
f0 6≡ 0 and let g ∈ Lp′(Ω).

If the linear functional L(f) =
∫

Ω
fg dx has a unique maximizer f∗ relative to

R(f0) then there exists an increasing function φ such that f∗ = φ ◦ g a.e. in Ω.
Furthermore, if the linear functional L(f) has a unique minimizer f∗ relative to

R(f0) then there exists a decreasing function ψ such that f∗ = ψ ◦ g a.e. in Ω.

Proof. The proof follows from Theorem 5 in [2]. �

3. Minimization and Characterization

Let Ω be a bounded smooth domain in RN with N ≥ 2 and 1 < p <∞. Given g0

and V0 measurable functions that satisfy the assumptions (H1) and (H2) our aim
in this section is to analyze the following problem

I = inf {λ(g, V ) : g ∈ R(g0), V ∈ R(V0)} ,
where R(g0) (resp. R(V0)) is the set of all rearrangements of g0 (resp. V0) and
λ(g, V ) is the first positive principal eigenvalue of problem (1.1).
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Remark 3.1. Observe that if g ∈ R(g0) and V ∈ R(V0) then g and V satisfy (H1)
and (H2).

We first need a lemma to show that, under hypotheses (H1) and (H2), the
functionals

JV (u) :=
∫

Ω

|∇u|p dx+
∫

Ω

V (x)|u|p dx

are uniformly coercive for V ∈ R(V0).

Lemma 3.2. Let V0 satisfies (H1) and (H2). Then, there exists δ0 > 0 such that

JV (u) ≥ δ0
∫

Ω

|∇u|p dx, for every V ∈ R(V0).

Proof. We prove the lemma assuming that ‖V −0 ‖Lq(Ω) < Spq′ . Also, we assume
that 1 < p ≤ N . The other cases are easier and are left to the reader.

First, observe that

JV (u) ≥
∫

Ω

|∇u|p dx+
∫

Ω

V −(x)|u|p dx.

On the other hand, q > N/p implies that pq′ < p∗. So∫
Ω

|V −(x)||u|p dx ≤ ‖V −‖Lq(Ω)‖u‖pLpq′ (Ω)
= ‖V −0 ‖Lq(Ω)‖u‖pLpq′ (Ω)

.

Then, by (H2), there exists δ0 such that

‖V −0 ‖Lq(Ω) ≤ (1− δ0)Spq′ .

Therefore
JV (u) ≥ δ0

∫
Ω

|∇u|p dx,

as we wanted to prove. �

Remark 3.3. We remark that what is actually needed is the uniform coercitivity of
the functionals JV for V ∈ R(V0). Hypotheses (H1) and (H2) are a simple set of
hypotheses that guaranty that.

We now prove that the infimum is achieved.

Theorem 3.4. Let g0 and V0 be measurable functions that satisfy the assumptions
(H1) and (H2) and let R(g0) and R(V0) be the sets of all rearrangements of g0 and
V0 respectively. Then there exists g∗ ∈ R(g0) and V∗ ∈ R(V0) such that

I = λ(g∗, V∗).

Proof. Let {(gn, Vn)}n∈N be a minimizing sequence, i.e.,

gn ∈ R(g0) and Vn ∈ R(V0) ∀n ∈ N
and

I = lim
n→∞

λ(gn, Vn).

Let un be the positive eigenfunction corresponding to λ(gn, Vn) then

(3.1)
∫

Ω

gn(x)upn = 1 ∀n ∈ N,

and
λ(gn, Vn) =

∫
Ω

|∇un|p + Vn(x)upn dx ∀n ∈ N.

Hence

(3.2) I = lim
n→∞

∫
Ω

|∇un|p + Vn(x)upn dx.
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Thus, by Lemma 3.2, {un}n∈N is bounded in W 1,p
0 (Ω) and therefore there exists

u ∈ W 1,p
0 (Ω) and some subsequence of {un}n∈N (still denoted by {un}n∈N) such

that

un ⇀ u weakly in W 1,p(Ω),(3.3)

un → u strongly in Lpq
′
(Ω).(3.4)

Recall that our assumptions on q imply that pq′ < p∗.
On the other hand, gn ∈ R(g0) and Vn ∈ R(V0) for all n ∈ N then

‖gn‖Lq(Ω) = ‖g0‖Lq(Ω) and ‖Vn‖Lq(Ω) = ‖V0‖Lq(Ω) ∀n ∈ N.
Therefore there exists f , W ∈ Lq(Ω) and subsequences of {gn}n∈N and {Vn}n∈N
(still call by {gn}n∈N and {Vn}n∈N) such that

gn ⇀ f weakly in Lq(Ω),(3.5)
Vn ⇀ W weakly in Lq(Ω).(3.6)

Thus, by (3.2), (3.3), (3.4) and (3.6), we have that

I ≥
∫

Ω

|∇u|p +W (x)|u|p dx

and by (3.1), (3.4) and (3.5) we get∫
Ω

f(x)|u|p dx = 1.

Now, since f ∈ R(g0) and W ∈ R(V0), by Theorem 2.5, there exists g∗ ∈ R(g0)
and V∗ ∈ R(V0) such that

α =
∫

Ω

g∗(x)|u|p dx ≥
∫

Ω

f(x)up dx = 1

and ∫
Ω

V∗(x)up dx ≤
∫

Ω

W (x)|u|p dx.

Let v = α−1/p|u|, then ∫
Ω

g∗(x)vpdx = 1

and∫
Ω

|∇v|p + V∗(x)vp dx =
1
α

∫
Ω

|∇u|p + V∗(x)|u|p dx ≤ 1
α

∫
Ω

|∇u|p +W (x)|u|p dx.

Consequently
λ(g∗, V∗) ≤ I,

then
I = λ(g∗, V∗).

The proof is now complete. �

Now we give a characterization of g∗ and V∗.

Theorem 3.5. Let g0 and V0 be measurable functions that satisfy the assumptions
(H1) and (H2). Let g∗ ∈ R(g0) and V∗ ∈ R(V0) be such that λ(g∗, V∗) = I are
the ones given by Theorem 3.4. Then there exist an increasing function φ and a
decreasing function ψ such that

g∗ = φ(u∗) a.e. in Ω,

V∗ = ψ(u∗) a.e. in Ω,

where u∗ is the positive eigenfunction associated to λ(g∗, V∗).
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Proof. We proceed in four steps
Step 1. First we show that V∗ is a minimizer of the linear functional

L(V ) :=
∫

Ω

V (x)up∗ dx

relative to V ∈ R(V0).
We have that ∫

Ω

g∗(x)up∗ dx = 1

and

I = λ(g∗, V∗) =
∫

Ω

|∇u∗|p + V∗(x)up∗ dx,

then, for all V ∈ R(V0),∫
Ω

|∇u∗|p + V∗(x)up∗ dx ≤ λ(g∗, V ) ≤
∫

Ω

|∇u∗|p + V (x)up∗ dx

and therefore ∫
Ω

V∗(x)up∗ dx ≤
∫

Ω

V (x)up∗ dx ∀V ∈ R(V0).

Thus, we can conclude that∫
Ω

V∗(x)up∗ dx = inf
{
L(V ) : V ∈ R(V0)

}
.

Step 2. We show that V∗ is the unique minimizer of L(V ) relative to R(V0).
Suppose that W is another minimizer of L(V ) relative to R(V0), then∫

Ω

V∗(x)up∗ dx =
∫

Ω

W (x)up∗ dx.

Thus

I =λ(g∗, V∗)

=
∫

Ω

|∇u∗|p + V∗(x)up∗ dx

=
∫

Ω

|∇u∗|p +W (x)up∗ dx

≥λ(g∗,W )
≥I.

Hence u∗ is the positive eigenfunction associated to λ(g∗, V∗) = λ(g∗,W ). Then

−∆pu∗ + V∗(x)up−1
∗ = λ(g∗, V∗)g∗(x)up−1 in Ω,(3.7)

−∆pu∗ +W (x)up−1
∗ = λ(g∗, V∗)g∗(x)up−1 in Ω.(3.8)

Subtracting (3.8) from (3.7), we get

(V∗(x)−W (x))up−1
∗ = 0 a.e. in Ω,

then V∗ = W a.e. in Ω.
Thus, by Theorem 2.6, there exists decreasing function ψ such that

V∗ = ψ(u∗) a.e. in Ω.

Step 3. Now, we show that g∗ is a maximizer of the linear functional

H(g) :=
∫

Ω

g(x)up∗ dx

relative to g ∈ R(g0).
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We argue by contradiction, so assume that there exists g ∈ R(g0) such that

α =
∫

Ω

g(x)up∗ dx >
∫

Ω

g∗(x)up∗ dx = 1

and take v = α−1/pu∗. Then ∫
Ω

g(x)vp dx = 1

and∫
Ω

|∇v|p + V∗(x)vp dx =
1
α

∫
Ω

|∇u∗|p + V∗(x)up∗ dx =
1
α
λ(g∗, V∗) < λ(g∗, V∗).

Therefore
λ(g, V∗) < λ(g∗, V∗),

which contradicts the minimality of λ(g∗, V∗).
Step 4. Finally, we show that g∗ is the unique maximizer of H(g) relative to

R(g0).
Assume that there exists another maximizer f of H(g) relative to R(g0). Then∫

Ω

f(x)up∗ dx =
∫

Ω

g∗(x)up∗ dx = 1

and therefore

I = λ(g∗, V∗) ≤ λ(f, V∗) ≤
∫

Ω

|∇u|p + V∗(x)up∗ dx = I,

then λ(g∗, V∗) = λ(f, V∗) and hence u∗ is the eigenfunction associated to λ(g∗, V∗) =
λ(f, V∗). Thus

−∆pu∗ + V∗(x)up−1
∗ = λ(g∗, V∗)g∗(x)up−1 in Ω,(3.9)

−∆pu∗ + V∗(x)up−1
∗ = λ(g∗, V∗)f(x)up−1 in Ω.(3.10)

Subtracting (3.10) from (3.9), we get

λ(g∗, V∗) (g∗(x)− f(x))up∗ = 0 a.e. in Ω,

thus g∗ = f a.e. in Ω.
Then, by Theorem 2.6, there exist increasing function φ such that

g∗ = φ(u∗) a.e. in Ω.

This finishes the proof. �

4. Differentiation of λ(g, V )

The first aim of this section is prove the continuity of the first positive eigenvalue
λ(g, V ) respect to g and V. Then we proceed further and compute the derivative of
λ(g, V ) with respect to perturbations in g and V .

Proposition 4.1. The first positive eigenvalue λ(g, V ) of (1.1) is continuous with
respect to (g, V ) ∈ A where

A := {(g, V ) ∈ Lq(Ω)× Lq(Ω): (g, V ) satisfies (H1) and (H2)}.

i.e.,
λ(gn, Vn)→ λ(g, V ),

when (gn, Vn)→ (g, V ) strongly in Lq(Ω)× Lq(Ω) and (gn, Vn), (g, V ) ∈ A.
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Proof. We know that

λ(gn, Vn) =
∫

Ω

|∇un|p + Vn(x)upn dx

and
λ(g, V ) =

∫
Ω

|∇u|p + V (x)up dx,

with ∫
Ω

gn(x)upn dx =
∫

Ω

g(x)up dx = 1,

where un and u are the positive eigenfunctions associated to λ(gn, Vn) and λ(g, V )
respectively.

We begin by observing that

H(gn) :=
∫

Ω

gn(x)up dx =
∫

Ω

(gn(x)− g(x))up dx+ 1→ 1,

as n→∞. Then there exists n0 ∈ N such that

H(gn) > 0 ∀n ≥ n0.

Thus we take vn := H(gn)−1/pu and by (2.1) we have

λ(gn, Vn) ≤
∫

Ω

|∇vn|p + Vn(x)vpn dx =
1

H(gn)

∫
Ω

|∇u|p + Vn(x)up dx.

Therefore, taking limits when gn → g and Vn → V in Lq(Ω), we get that

lim sup
n→∞

λ(gn, Vn) ≤
∫

Ω

|∇u|p + V (x)up dx = λ(g, V ).

On the other hand, as Vn → V strongly in Lq(Ω) it is easy to see that there
exists δ0 > 0 such that

‖V −n ‖Lq(Ω), ‖V −‖Lq(Ω) < Spq′(1− δ0) ∀n ∈ N,
or

Vn, V > −Sp + δ0 ∀n ∈ N.
Therefore, as {λ(gn, Vn)}n∈N is bounded, arguing as in Lemma 3.2 we have that
{un}n∈N is bounded in W 1,p

0 (Ω). Therefore there exists v ∈ W 1,p
0 (Ω) and a subse-

quence of {un}n∈N (that we still denote by {un}n∈N) such that

un ⇀ v weakly in W 1,p
0 (Ω),(4.1)

un → v strongly in Lpq
′
(Ω).(4.2)

By (4.2) and as gn → g in Lq(Ω) we have that

1 = lim
n→∞

∫
Ω

gn(x)|un|p dx =
∫

Ω

g(x)|v|p dx.

Finally, by (4.1), (4.2) and, as Vn → V in Lq(Ω) we arrive at

lim inf
n→∞

λ(gn, Vn) = lim inf
n→∞

∫
Ω

|∇un|p + Vn(x)upn dx

≥
∫

Ω

|∇v|p + V (x)|v|p dx

≥ λ(g, V )

and the result follows. �

Remark 4.2. Observe that if instead of (H2) we required only that V > −Sp + δ,
the exact same proof of Proposition 4.1 gives the continuity of λ(g, V ) with respect
to weak convergence.
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Now we arrive at the main result of the section, namely we compute the derivative
of the first positive eigenvalue λ(g, V ) with respect to perturbations in g and V .

We begin by describing the kind of variations that we are going to consider. Let
W be a regular (smooth) vector field, globally Lipschitz, with support in Ω and let
ϕt : RN → RN be the flow defined by

(4.3)

{
d
dtϕt(x) = W (ϕt(x)) t > 0,
ϕ0(x) = x x ∈ RN .

We have
ϕt(x) = x+ tW (x) + o(t) ∀x ∈ RN .

Thus, if g and V are measurable functions that satisfy the assumptions (H1) and
(H2), we define gt := g ◦ ϕ−1

t and Vt := V ◦ ϕ−1
t . Now, let

λ(t) := λ(gt, Vt) =
∫

Ω

|∇ut|p + Vt(x)|ut|p dx,

with ∫
Ω

gt(x)upt dx = 1,

where ut is the eigenfunction associated to λ(t).

Remark 4.3. In order to this approach to be usefull for the optimization problem of
the previous section, we need to guaranty that gt ∈ R(g0) and Vt ∈ R(V0) whenever
g ∈ R(g0) and V ∈ R(V0).

It is not difficult to check that this is true for incompressible deformation fields,
i.e., for those W ’s such that

divW = 0.

Lemma 4.4. Given f ∈ Lq(Ω) then

ft := f ◦ ϕ−1
t → f in Lq(Ω), as t→ 0+.

Proof. Let ε > 0 and let g ∈ C∞c (Ω) fixed such that ‖f −g‖Lq(Ω) < ε. By the usual
change of variables formula, we have,

‖ft − gt‖qLq(Ω) =
∫

Ω

|f − g|qJϕt dx,

where gt = g ◦ ϕ−1
t and Jϕt is the Jacobian of ϕt. We know that

Jϕt = 1 + tdivW + o(t).

Here divW is the divergence of W . Then

‖ft − gt‖qLq(Ω) =
∫

Ω

|f − g|q(1 + tdivW + o(t)) dx.

Then, there exist t1 > 0 such that if 0 < t < t1 then

‖ft − gt‖Lq(Ω) < Cε,

where C is a constant independent of t. Moreover, since ϕ−1
t → Id in the C1

topology when t→ 0 then gt = g ◦ϕ−1
t → g in the C1 topology and therefore there

exist t2 > 0 such that if 0 < t < t2 then

‖gt − g‖Lq(Ω) < ε.

Finally, we have for all 0 < t < t0 = min{t1, t2} then

‖ft − f‖Lq(Ω) ≤ ‖ft − gt‖Lq(Ω) + ‖gt − g‖Lq(Ω) + ‖f − g‖Lq(Ω) ≤ Cε,
where C is a constant independent to t. �

By Proposition 4.1 and Lemma 4.4 we have that
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Corollary 4.5. Let g and V be measurable functions that satisfy the assumptions
(H1) and (H2). Then, with the previous notation, λ(t) is continuous at t = 0, i.e.,

λ(t)→ λ(0) = λ(g, V ) as t→ 0+.

Lemma 4.6. Let g and V be measurable functions that satisfy the assumptions
(H1) and (H2). Let ut be the normalized positive eigenfunction associated to λ(t)
with t > 0. Then

lim
t→0+

ut = u0 strongly in W 1,p
0 (Ω).

where u0 is the unique normalized positive eigenfunction associated to λ(g, V ).

Proof. Form the previous corollary we deduce that λ(t) is bounded and, as in the
proof of Proposition 4.1, we further deduce that {ut} is bounded in W 1,p

0 (Ω).
So, given {tn}n∈N, we have that {utn}n∈N is bounded in W 1,p

0 (Ω) and therefore
there exists u0 ∈ W 1,p

0 (Ω) and some subsequence (still denoted by {utn}n∈N) such
that

utn ⇀ u0 weakly in W 1,p
0 (Ω),(4.4)

utn → u0 strongly in Lpq
′
(Ω).(4.5)

Since (gtn , Vtn)→ (g, V ) strongly in Lq(Ω)× Lq(Ω) as n→∞ and by (4.5) we get

1 = lim
n→∞

∫
Ω

gtn(x)|utn |p dx =
∫

Ω

g(x)|u0|p dx

and

lim
n→∞

∫
Ω

Vtn(x)|utn |p dx =
∫

Ω

V (x)|u0|p dx.

Thus, using (4.4),

λ(0) = lim
n→∞

λ(tn)

= lim
n→∞

∫
Ω

|∇utn |p + Vtn(x)|utn |p dx

≥
∫

Ω

|∇u0|p + V (x)|u0|p dx

≥λ(0),

then u0 is the a normalized eigenfunction associated to λ(0) and, as {utn}n∈N are
positive, it follows that u0 is positive.

Moreover
‖∇utn‖Lp(Ω) → ‖∇u0‖Lp(Ω) as n→∞.

Then, using again (4.4), we have

utn → u0 in W 1,p
0 (Ω) as n→∞.

as we wanted to show. �

Remark 4.7. It is easy to see that, as ϕt → Id in the C1 topology, then from Lemma
4.6 it follows that

ut ◦ ϕt → u0 strongly in W 1,p
0 (Ω) as t→ 0,

when ut → u0 strongly in W 1,p
0 (Ω).

Now, we arrive at the main result of the section
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Theorem 4.8. With the previous notation, if g and V are measurable functions
that satisfy the assumptions (H1) and (H2), we have that λ(t) is differentiable at
t = 0 and

dλ(t)
dt

∣∣∣
t=0

=
∫

Ω

(|∇u0|p + V (x)|u0|p) divW dx− p
∫

Ω

|∇u0|p−2〈∇u0,
T W ′∇uT0 〉dx

− λ(0)
∫

Ω

g(x)|u0|p divW dx,

where W ′ denotes the differential matrix of W, TA is the transpose of the matrix A
and u0 is the eigenfunction associated to λ(0) = λ(g, V ).

Proof. First we consider vt := u0 ◦ ϕ−1
t . Then, by the change of variables formula

we get ∫
Ω

gt(x)|vt|p dx =
∫

Ω

g(x)|u0|pJϕt dx

=
∫

Ω

g(x)|u0|p(1 + tdivW + o(t)) dx

=1 + t

∫
Ω

g(x)|u0|p divW dx+ o(t),∫
Ω

Vt(x)|vt|p dx =
∫

Ω

V (x)|u0|pJϕt dx

=
∫

Ω

V (x)|u0|p(1 + tdivW + o(t)) dx

=
∫

Ω

V (x)|u0|p dx+ t

∫
Ω

V (x)|u0|p divW dx+ o(t)

and∫
Ω

|∇vt|p dx =
∫

Ω

|T [ϕ′t]
−1(x)∇uT0 |pJϕt dx

=
∫

Ω

|(I − tTW ′ + o(t))∇uT0 |p(1 + tdivW + o(t)) dx

=
∫

Ω

(|∇u0|p − tp|∇u0|p−2〈∇u0,
T W ′∇uT0 〉)(1 + tdivW ) dx+ o(t)

=
∫

Ω

|∇u0|p dx+ t

∫
Ω

|∇u0|p divW dx

− tp
∫

Ω

|∇u0|p−2〈∇u0,
T W ′∇uT0 〉dx+ o(t).

Then, for t small enough, ∫
Ω

gt(x)|vt|p dx > 0

and therefore

λ(t) ≤
∫

Ω
|∇vt|pVt(x) + |vt|p dx∫

Ω
gt(x)|vt|p dx

.

So

λ(t)
∫

Ω

gt(x)|vt|p dx ≤
∫

Ω

|∇vt|pVt(x)|vt|p dx,
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then we have that

λ(t)
(

1 + t

∫
Ω

g(x)|u0|p divW dx
)
≤
∫

Ω

|∇u0|p + V (x)|u0|p dx

+ t

∫
Ω

(|∇u0|p + V (x)|u0|p) divW dx

− tp
∫

Ω

|∇u0|p−2〈∇u0,
T W ′∇uT0 〉dx+ o(t)

=λ(0) + t

∫
Ω

(|∇u0|p + V (x)|u0|p) divW dx

− tp
∫

Ω

|∇u0|p−2〈∇u0,
T W ′∇uT0 〉dx+ o(t)

and we get that

λ(t)− λ(0)
t

≤
∫

Ω

(|∇u0|p + V (x)|u0|p) divW dx

− p
∫

Ω

|∇u0|p−2〈∇u0,
T W ′∇uT0 〉dx

− λ(t)
∫

Ω

g(x)|u0|p divW dx+O(t).

In a similar way, if we take wt = ut ◦ ϕt we have that

λ(t)− λ(0)
t

≥
∫

Ω

(|∇wt|p + V (x)|wt|p) divW dx

− p
∫

Ω

|∇wt|p−2〈∇wt,T W ′∇wTt 〉dx

− λ(0)
∫

Ω

g(x)|wt|p divW dx+O(t).

Thus, taking limit in the two last inequalities as t→ 0+, by the Corollary 4.5 and
Remark 4.7, we get that

lim
t→0+

λ(t)− λ(0)
t

=
∫

Ω

(|∇u0|p + V (x)|u0|p) divW dx

− p
∫

Ω

|∇u0|p−2〈∇u0,
T W ′∇uT0 〉dx

− λ(0)
∫

Ω

g(x)|u0|p divW dx.

This finishes the proof. �

Remark 4.9. When we work in the class of rearrangements of a fixed pair (g0, V0),
as was mentioned in Remark 4.3, we need the deformation field W to verified
divW = 0. So, in this case, the formula for λ′(0) reads,

dλ(t)
dt

∣∣∣
t=0

= −p
∫

Ω

|∇u0|p−2〈∇u0,
T W ′∇uT0 〉dx.

In order to improve the expression for the formula of λ′(0) we need a lemma that
will allow us to regularized problem (1.1) since solutions to (1.1) are C1,δ for some
δ > 0 but are not C2 nor W 2,q in general (see [16]).
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Lemma 4.10. Let V, g be measurable functions that satisfy the assumptions (H1)
and (H2) and let Vε, gε ∈ C∞0 (Ω) be such that Vε → V and gε → g in Lq(Ω). Let

λε := min
u∈W

1,p
0 (Ω)R

Ω gε(x)|v|p dx=1

∫
Ω

(|∇v|2 + ε2)(p−2)/2|∇v|2 + Vε(x)|v|p dx.

Finally, let uε be the unique normalized positive eigenfunction associated to λε.
Then, λε → λ(g, V ) and uε → u strongly in W 1,p

0 (Ω) where u0 is the unique
normalized positive eigenfunction associated to λ(g, V ).

Proof. First, observe that, as gε → g in Lq(Ω) if u0 is the normalized positive
eigenfunction associated to λ(g, V ) we have that∫

Ω

gε(x)|u0|p dx > 0.

Then, taking u0 in the characterization of λε we get

λε ≤
∫

Ω
(|∇u0|2 + ε2)(p−2)/2|∇u0|2 + Vε(x)|u0|p dx∫

Ω
gε(x)|u0|p dx

.

Hence, passing to the limit as ε→ 0+ we arrive at

lim sup
ε→0+

λε ≤ λ(g, V ).

Now, for any v ∈W 1,p
0 (Ω) normalized such that∫

Ω

gε(x)|v|p dx = 1,

we have that∫
Ω

(|∇v|2 + ε2)(p−2)/2|∇v|2 + Vε(x)|v|p dx ≥
∫

Ω

|∇v|p + Vε(x)|v|p dx ≥ λ(gε, Vε),

therefore λε ≥ λ(gε, Vε).
Now, by Proposition 4.1, we have that λ(gε, Vε)→ λ(g, V ) as ε→ 0+. So

lim inf
ε→0+

λε ≥ λ(g, V ).

Finally, from the convergence of the eigenvalues, it is easy to see that the nor-
malized eigenfunctions uε associated to λε are bounded in W 1,p

0 (Ω) uniformly in
ε > 0. Therefore, there exists a sequence, that we still call {uε}, and a function
u ∈W 1,p

0 (Ω) such that

uε ⇀ u weakly in W 1,p
0 (Ω),

uε → u strongly in Lpq
′
(Ω).

Recall that our assumptions on q imply that pq′ < p∗.
Hence, ∫

Ω

g(x)|u|p dx = lim
ε→0+

∫
Ω

gε(x)|uε|p dx = 1,

and so

λ(g, V ) = lim
ε→0+

λε

= lim
ε→0+

∫
Ω

(|∇uε|2 + ε2)(p−2)/2|∇uε|2 + Vε(x)|uε|p dx

≥
∫

Ω

|∇u|p + V (x)|u|p dx

≥λ(g, V ).
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These imply that u = u0 the unique normalized positive eigenfunction associated
to λ(g, V ) and that ‖uε‖W 1,p

0 (Ω) → ‖u‖W 1,p
0 (Ω) as ε→ 0+. So

uε → u0 strongly in W 1,p
0 (Ω).

This finishes the proof. �

Remark 4.11. Observe that the eigenfunctions uε are weak solutions to{
−div((|∇uε|2 + ε2)(p−2)/2∇uε) + Vε(x)|uε|p−2uε = λεgε(x)|uε|p−2uε in Ω,
u = 0 on ∂Ω.

Therefore, by the classical regularity theory (see [12]), the functions uε are C2,δ for
some δ > 0.

With these preparatives we can now prove the following Theorem.

Theorem 4.12. With the assumptions and notations of Theorem 4.8, we have that
dλ(t)

dt

∣∣∣
t=0

= λ′(0) =
∫

Ω

(V (x)− λ(0)g(x)) div(|u0|pW ) dx,

for every field W such that divW = 0.

Proof. During the proof of the Theorem, we will required the eigenfunction u0 to
be C2. As it is well known (see [16]), this is not true.

In order to overcome this difficulty, we regularize the problem and work with the
regularized eigenfunctions uε defined in Lemma 4.10.

Since in the resulting formula only appears up to the first derivatives of uε and
uε → u0 strongly in W 1,p

0 (Ω) the result will follows.
For the sake of simplicity, we choose to work formally with u0. The changes in

order to make this argument rigurouse are straight forward.
Let W ∈ C1

0 (Ω; RN ). Then, we have that∫
Ω

div(|∇u0|pW ) dx = 0.

So,

p

∫
Ω

|∇u0|p−2〈∇u0,
T W ′∇uT0 〉dx =p

∫
Ω

|∇u0|p−2〈∇u0,
T W ′∇uT0 〉dx

+
∫

Ω

div(|∇u0|pW ) dx

=p
∫

Ω

|∇u0|p−2〈∇u0,
T W ′∇uT0 〉dx

+ p

∫
Ω

|∇u0|p−2〈∇u0, D
2u0W

T 〉dx

=p
∫

Ω

|∇u0|p−2〈∇u0,
T W ′∇uT0 +D2u0W

T 〉dx

=p
∫

Ω

|∇u0|p−2〈∇u0,∇〈∇u0,W 〉〉dx.

Now, we use the fact that u0 is a weak solution to (1.1) to get

λ′(0) =p
∫

Ω

(V (x)− λ(0)g(x))|u0|p−2u0〈∇u0,W 〉dx

=
∫

Ω

(V (x)− λ(0)g(x)) div(|u0|pW ) dx.

The proof is now complete. �
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