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By means of the isoconfigurational method, we calculate the change in the propensity for motion
that the structure of a glass-forming system experiences during its relaxation dynamics. The
relaxation of such a system has been demonstrated to evolve by means of rapid crossings between
metabasins of its potential energy surface �a metabasin being a group of mutually similar, closely
related structures which differ markedly from other metabasins�, as collectively relaxing units
�d-clusters� take place. We now show that the spatial distribution of propensity in the system does
not change significantly until one of these d-clusters takes place. However, the occurrence of a
d-cluster clearly decorrelates the propensity of the particles, thus ending up with the dynamical
influence of the structural features proper of the local metabasin. We also show an important match
between particles that participate in d-clusters and that which show high changes in their
propensity. © 2009 American Institute of Physics. �DOI: 10.1063/1.3054359�

I. INTRODUCTION

The determination of the physical basis of the emergence
of glassy relaxation when a liquid is supercooled under its
melting point represents a subject of intense research.1–6

Striking aspects of such behavior are the fact that the dy-
namic observables change dramatically with the supercool-
ing �while static quantities show at most very mild differ-
ences� and that the dynamics varies by orders of magnitude
from one region of the system to another.1–6 The dynamics of
these systems slows down very fast in this regime �as tem-
perature is reduced� and the relaxation has been believed to
proceed by means of cooperatively relaxing regions whose
time scales and sizes grow considerably as the temperature is
decreased.1–7 This heterogeneous scenario has been corrobo-
rated by the discovery, both experimentally and theoretically,
of the existence of dynamical heterogeneities.8–15 Some stud-
ies identified cooperative motions of a small number of par-
ticles �a few percent� which move collectively, often in a
stringlike fashion, by a distance close to the particle
diameter.11–14 More recently, collective motions of a signifi-
cant fraction of the particles of different regions of these
systems which form relatively compact clusters have been
found.16 These very rapid and sporadic events, which were
termed “democratic motions,” drive the system from one me-
tabasin �MB� of its potential energy surface, a group of simi-
lar closely related structures,3,16,17 to another while the struc-
tural relaxation �the so-called �-relaxation� is performed by a
small number of such events. These relatively compact clus-
ters �“democratic” clusters or d-clusters16� have been identi-
fied in different glassy systems such as a binary Lennard-
Jones system and supercooled water18 and represent natural
candidates for the cooperatively relaxing regions proposed
long ago by Adam and Gibbs.7 A recent inhomogeneous

mode-coupling theory of dynamical heterogeneity has re-
lated them to the �fractal� geometrical structures carrying the
dynamical correlations at timescales commensurable with
that of the �-relaxation.19 Additionally, a recent experimental
and computational work in a glassy polymer provided ex-
perimental support to the MB-MB transitions and
d-clusters.20

Even when it would be intuitively expected that the dy-
namical heterogeneities are related to structural heterogene-
ities in the sample, the determination of the existence of a
causal link between structure and dynamics remains as an-
other main open problem in the field.2,21,22 A recent beautiful
idea holds the promise to shed some light in this regard.21,22

By means of the isoconfigurational �IC� ensemble, it has
been determined that the propensity of the particles �their
tendency to be mobile� is, in fact, determined by the initial
configuration of the sample and that the particles with the
higher propensity are not homogeneously distributed within
the sample but arranged in relatively compact clusters.21,22

The time extent of the influence of the local structure on the
dynamics has also been shown to be on the order of the MB
residence time, a timescale shorter than the �-relaxation time
����.23 In a previous work, it has been shown for the binary
Lennard-Jones system that the high-propensity regions of a
given initial configuration represent unblocked regions
wherein d-clusters occur in the subsequent dynamics �for any
given IC realization or trajectory initiated in such
configuration�.24

The aim of the present work is to complete this picture
by showing that while the local structure constraints the re-
sulting dynamics, the reciprocal is also valid. Thus, we shall
elucidate the role of the d-clusters in reformulating the spa-
tial variation of propensity for motion, making evident the
mutual transference of constraints between structure and dy-
namics. To this end, and by means of molecular dynamicsa�Electronic mail: rodriguezfris@plapiqui.edu.ar.
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�MD� simulations of the binary Lennard-Jones model, we
shall generate many ICs at different times over a given tra-
jectory �thus determining the spatial distribution of propen-
sity on configurations at different times of the trajectory� and
we shall show that at the times when the d-clusters occur the
system shows the greater changes in propensity, thus produc-
ing a clear propensity decorrelation.

II. MODEL SYSTEM AND METHODS

A. The binary Lennard-Jones system

We performed a series of MD NVE simulations for a
widely used model of fragile glass former: the binary
Lennard-Jones system consisting of a three-dimensional
mixture of 80% A and 20% B particles, the size of the A
particles being 47% larger than the B ones.14,16,25 We shall
show the results from systems at temperatures T=0.50 and
T=0.446, density of 1.2, and N=150 particles.16 This system
size avoids the interference of results from many different
subsystems �MBs� while being free of finite size effects, as
shown in Ref. 16. We have also simulated a large system
�N=8000 particles� which yielded an equivalent dynamical
behavior �however, in order to look for MBs and d-clusters,
one has to study the behavior of subsystems of N=150 and
thus, the large system should be decomposed in many small
subsystems wherein to apply the concept of MB17,26�. Given
this fact, in the rest of this work, we shall refer to a system of
N=150. At low temperatures �close and above the critical
temperature predicted by the mode-coupling theory of the
glass transition, Tc=0.435�, this system presents dynamical
heterogeneities:14,16 a small number of particles move coop-
eratively, a distance that is comparable to the interparticle
distance. These “fast moving” �or “mobile”� particles are not
homogeneously distributed throughout the sample but are ar-
ranged in clusters usually made of stringlike groups of
particles.14,16 The dynamics is most heterogeneous at time t�

defined by the maximum in the non-Gaussian parameter
�2�t�, �2�t�=3�r4�t�� /5�r2�t��2−1, which measures the devia-
tion of the self-part of the van Hove function �the probability
at a given time of finding a particle at distance r from its
initial position� from a Brownian behavior.14 This quantity is
located at the end of the �-beginning of the �-relaxation �the
crossover from the caging to the diffusive regime in the
mean-squared displacement �r2�t�� plot� and constitutes the
characteristic time for dynamical heterogeneities �in this case
t�=400 for T=0.50 �Refs. 16 and 27��. Additionally, t� de-
pends strongly on temperature and grows quickly as we
move toward Tc.

27 However, not all the mobile particles
within a t� time span contribute decisively to the
�-relaxation, as we have recently demonstrated.16 Instead,
the �-relaxation is driven by a series of a few MB-MB tran-
sitions which are triggered by the occurrence of large com-
pact clusters of medium-range-mobility particles called
democratic particles.16 Additionally, the mean-residence time
in a MB has been estimated to be close to t�.16

B. The distance-matrix method, metabasins,
and d-clusters

We describe briefly the distance-matrix method to study
MB dynamics �see Refs. 16 and 23 for details�. This method
represents a natural implementation of Stillinger’s early
proposal28 and bears resemblance to the method by Büchner
and Heuer.29 However, it is based on structural information
�position of particles� rather than on potential energy data.

We perform a MD simulation and record equally spaced
configurations �for example, 101 configurations, as in Refs.
16 and 23� for an �-relaxation total run time ����T=0.50�
=4000, thus consecutively recorded configurations are sepa-
rated in time by �=10% t�=40� and build the following
distance matrix,16,30 �2�t� , t��=1 /N�i=1

N �ri�t��−ri�t���2, where
ri�t� is the position of particle i at time t �since �2�t� , t��
=�2�t� , t�� this is a triangular matrix�. Thus �2�t� , t�� gives
the system-averaged-squared displacement of a particle in
the time interval that starts at t� and ends at t�. In other
words, this distance matrix contains the averaged-squared
distances between each recorded configuration and all the
other ones. For this study �as all studies dealing with
MBs16,17,30�, we must investigate small systems, since for
large systems the results originated from different sub-
systems would obscure the conclusions.16,17,30 Thus, we used
150 particles. However, we also found the same qualitative
results for small subsystems immersed in a big one, thus
ruling out the possibility for finite size effects �we repeated
the study for subsystems of 150 particles within a large sys-
tem of 8000 particles, that is, we focused only on a portion
of the large system�.

Figure 1 shows a typical behavior for trajectories with
T=0.50. The gray level of the squares in �2�t� , t�� depicts the
distance between the corresponding configurations, the
darker the shading indicating the lower the distance between
them. If the dynamics were homogeneous in time, we would
get a distance matrix with a dark main diagonal and a con-
tinuous fading as we move away from such diagonal. How-
ever, from the island structure of this matrix a clear MB
structure of the landscape is evident. That is, islands are
made up of closely related configurations �low �2� which are

FIG. 1. Contour plot of the distance matrix �2�t� , t�� for T=0.50. The gray
levels correspond to the values that are given to the right �from Ref. 16�.
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separated from the configurations of other islands by large
distances. In other words, the dynamics of the system is in-
homogeneous in time. We can estimate the typical residence
time in the MBs for this T �from island sizes� as qualitatively
on the order of t�. Given the small system size we expect this
to be a good estimate �however, this timescale clearly de-
pends on system size, since for a large system different sub-
systems would be undergoing MB-MB-transition events at
different times�. Thus, MB-MB transitions �the crossings
from one island to another and which last 10%–20% of t��
are fast events compared to the times for the exploration of
the MBs. The study of MB-MB-transition events has been
done previously,16 revealing the decisive role of large com-
pact d-clusters of medium-range-mobility particles. These
clusters are responsible for the �-relaxation �completed after
five to ten such events� and represent potential candidates for
the cooperatively relaxing regions of Adam and Gibbs.16 The
compact nature of these events relevant to the �-relaxation
has been shown to be in accord with the geometrical struc-
ture of the dynamics correlations at large timescales on the
order of �� within an inhomogeneous mode-coupling theory
�at variance from the less dense structures, compatible with
stringlike motions, expected at the shorter timescales of
�-relaxation time�.19

The democratic particles that comprise the d-clusters
that trigger MB-MB transitions were defined as that whose
mobility was greater than rth=0.3 within the time interval
�=40, and its fraction is represented by the function
m�t ,��.16 Thus, for the system size under study we found
that on the order of 40–60 particles were involved in a
d-cluster.16

In Fig. 2, we show for the same trajectory and total run
time interval the function �2�t ,��, the system-averaged-
squared displacement of the particles within a time interval �
�black-solid curve�. This function is defined as

�2�t,�� = �2�t − �/2,t + �/2� =
1

N
�
i=1

N

�ri�t − �/2� − ri�t + �/2��2.

Thus �2�t ,�� is �2�t� , t�� measured along the diagonal t�
= t�+� and hence the average of this quantity over different
start times t gives the usual mean-squared displacement for
time lag �. For this plot we have chosen �=160, a value that
is significantly smaller than the �-relaxation time ���

=4000� but still sufficiently larger than the time of the mi-
croscopic vibrations �=O�1��. A comparison of this �2�t ,��
with Fig. 1 shows that �2�t ,�� is showing pronounced peaks
exactly than when the system leaves a MB. Thus we see that
changing the MB is indeed associated with a rapid motion as
measured in �2�t ,��. In Fig. 2, we have included the fraction
of democratic particles m�t ,�� �Ref. 16� as a function of
time �dark-gray-solid line�. The comparison with �2�t ,��
shows that the fraction of these particles is indeed large
whenever the �2�t ,�� increases rapidly. This fraction is on
the order of 30%–40% of all the particles16 and, thus, sig-
nificantly larger than one would expect from the self-part of
the van Hove function 4�r2Gs�r ,�� if one integrates this
distribution from rth to infinity �which gives 	0.16�.

C. The isoconfigurational method. The role of the
local structure: Dynamic propensity

To calculate the propensity for motion, we use the IC
method introduced in Ref. 22. In it one performs a series of
equal length MD runs �trajectories� from the same initial
configuration, that is, always the same structure �the same
particle positions� but each trajectory with different initial
particle momenta chosen at random from the appropriate
Maxwell–Boltzmann velocity distribution �that is, one builds
an IC ensemble�. For any given time, each run or trajectory
presents certain mobile particles or dynamical heterogene-
ities. However, the mobile particles and corresponding clus-
ters of mobile particles differ from run to run since the mo-
bility of the particles in a single run is not determined by the
initial configuration.22 Propensity of a particle for motion in
the configuration at time t �its tendency to be mobile at the
instantaneous time t in the trajectory given in Fig. 1� for a
fixed time interval of length � is defined as ��ri

2�t��IC

= Pi�t�, where �¯�IC indicates an average over the IC gener-
ated at time t and �ri

2�t�= �ri��t ,��−ri�t��2. Here, ri�t� is the
position of particle i in the configuration at time t of the
trajectory given in Fig. 1 and where one of the ICs is started,
and ri��t ,�� is the position of the same particle at the end of
one of such IC trajectories of length �. This definition of
propensity is a generalization of the original definition22

since in this work we are interested in studying how propen-
sity evolves with time during a given MD trajectory and to
relate such propensity changes to the dynamical events that
occur in such trajectory. At low temperatures, propensities
for any given configuration at time t are not uniform
throughout the sample and high-propensity particles are con-
fined to certain �relatively compact� regions.22,23 Thus, while
particle mobility is not reproducible from run to run, the
spatial variation in the propensity is completely determined
by the initial configuration, reflecting the influence of struc-

FIG. 2. Solid-black line �right ordinate�: averaged-squared displacement
�2�t ,�� for the trajectory given in Fig. 1. Solid-dark-gray line �left ordinate�:
the function m�t ,�� which gives the fraction of democratic particles, i.e.,
particles that moved more than the threshold value rth=0.3 in the time in-
terval �t , t+��. Dashed-light-gray line �left ordinate�: the function m	�t ,��
which gives the fraction of particles with a great propensity change, i.e.,
particles that changed their propensity more than the threshold value 	
=0.21 in the time interval �t , t+��. Vertical bars �left ordinate�: the function
M�t ,�� which gives the fraction of particles that are both democratic and
have 	
0.21. The values of � and � are, respectively, 160 and 40.
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ture on dynamics.22,23 While the mean value of the propen-
sity ��P�t��=N−1�i=1

N Pi�t�� depends on the length of the time
interval in which it is calculated ���, the spatial variation of
propensity does not depend on it for times not too small
�down to 10% t� or even less�.21,31 In other words, if one
calculates the propensity at �= t� or higher �of course that for
very long times larger than �� when the system becomes
diffusive, the propensity distribution gets uniform� or if one
does it for a timescale of 10% t�, the particles with high and
low propensities are the same in any case. In this work we
chose a time �=40=10% t� to calculate propensity since at
this short-time the IC trajectories do not have time to aban-
don the local MB �perform a d-cluster� and we can safely say
that we are sampling the short-time vibrations �without inter-
ference of the dynamics at larger times�. A propensity much
greater than the mean value, a great tendency to be mobile, is
thus a clear indication that the particle is not “comfortable”
in its actual position, that is, it is structurally unjammed.

III. RESULTS

With the tools already described �Sec. II C� and in order
to elucidate the influence that the dynamical events �Sec.
II B� have on the local structure of the system, we generated
a single dynamical trajectory �Fig. 1� and started many ICs
over it. That is, we stored configurations from a MD run each
� time units �a total of 101 configurations, thus the run was
for a total length of ���T=0.50�=4000� and generated 101
different ICs of 500 trajectories from each of them. Thus, we
determined the propensities for each of the 101 equally
spaced configurations over the given MD run �we mention
that we have obtained similar values of propensity using 200
trajectories for each IC instead of 500�. The way the spatial
distribution of propensity �the values of the propensity for
each of the different particles� changes from one configura-
tion to another gives an idea of the time evolution of the
local structural constraints. To quantify how similar or dif-
ferent is the propensity of the different particles in configu-
rations at times t� and t�, we calculate the following cross-
correlation function R=�i=1

N Ri, where

Ri =
�Xi − �X��


�l=1
n �Xl − �X��2�1/2 ·

�Yi − �Y��

�l=1

n �Yl − �Y��2�1/2 .

In it, Xi and Yi are, respectively, Pi�t�� and Pi�t��. Pi�t� is the
propensity of particle i calculated over the IC generated from
the configuration at time t, in the trajectory seen in Fig. 1.
Besides �X� and �Y� are, respectively, �P�t��� and �P�t���.
Basically, R�t� , t��=1 indicates that Pi�t��= Pi�t��, while val-
ues of R�t� , t�� close to zero indicate that the propensity of
particle i has changed largely between t� and t�. Then, with
all pairs of times t� and t� we generate the squared matrix
R�t� , t��. Figure 3 depicts R�t� , t��, which shows a structure
that matches that of the MBs of Fig. 1. We can see that large
values of R �dark regions� occur at times when Fig. 1 shows
a MB structure. This means that the propensity of the par-
ticles within a MB are positively correlated, that is, the pro-
pensity of each particle is similar in all the corresponding
ICs. Since R is generally small for ICs not belonging to the
same MB, the propensity of the particles at such times do not

present a neat correlation. Moreover, the borders of the
squared islands of Figs. 1 and 3 show certain small negative
values, thus indicating a slight anticorrelation in propensity
once the system abandons the local MB �high-propensity
particles change to low propensity, or intermediate propen-
sity, and vice versa�. This fact means that MB-MB transi-
tions and d-clusters reformulate the propensity pattern, by
rearranging the regions of high, medium, and low propensi-
ties. This is also consistent with a rapid loss of the memory
of the local structure �the structural constraints of the present
MB� once the system escapes from the MB. We also note
that if we calculate propensities at larger times �say, for ex-
ample, at �= t� instead of �=40�, the results are consistent,
and even more conspicuous.

We recall that the function R�t� , t�� of Fig. 3 is built upon
“structural information” while �2�t� , t�� of Fig. 1 relies on
dynamical facts. R�t� , t�� is based on the propensity for mo-
tion of the particles calculated at very short-time intervals
�=40 �at times t� and t�� and thus reflects the cross correla-
tions between the local structural constraints of the configu-
rations at the corresponding times. This result is consistent
with the previous finding that the waiting times of consecu-
tive MBs are uncorrelated.32 This should imply that the prob-
ability to move changes after a MB-MB transition event.
However, no direct quantitative link is evident between this
uncorrelation of waiting times and the change in propensity
experienced by the particles. Here we directly relate MB-MB
transitions and propensity change. Moreover, in the follow-
ing we shall show how the events relevant to the MB-MB
transitions are related to the change of the propensity pattern
at the particle level. Thus, we shall show that both demo-
cratic particles and particles with high-propensity change be-
long to the same spatial region.

In order to better quantify the role of d-clusters and
MB-MB transitions in changing the propensity map, we cal-
culate the distribution of �root-squared� changes in the par-
ticle propensities, 	i= �Pi�t+��− Pi�t��1/2. A large value of 	i

implies that particle i has significantly changed its tendency
to be mobile at the time t+� with respect to its tendency at

FIG. 3. Cross-correlation function R�t� , t�� between propensities calculated
over ICs generated from configurations at times t� and t� that belong to the
trajectory given in Fig. 1. The propensities are calculated for a �=40 time
interval. The gray levels correspond to the values that are given to the right.
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time t. The average of the distribution function of 	i for all
the 100 time intervals �4�	2Gs�	 ,���, as depicted by the
solid line in Fig. 4, would represent an analog of the self-part
of the van Hove function in the dynamics of the system. If
we restrict this calculation to the times when the system is
within a MB �and thus to the squared islands of Figs. 1 and
3�, we get a similar curve �as shown in Fig. 4 in line with
circles�, since the system spends most of the time within
MBs and thus this behavior dominates the whole distribu-
tion. However, if instead we calculate 	 for the time intervals
where a MB-MB transition occurs �the times when the sys-
tem shows the crossings between islands in Figs. 1 and 3�,
the distribution �line with squares� is clearly displaced to the
right, thus indicating that a great enhancement in the changes
in particle propensity occurs at such times �as can also be
learned from Fig. 4�.

We also calculated the fraction of particles that display
large changes in 	 and denoted this function as m	�t ,��. As a
threshold we use 	
0.21 in order to have values comparable
with the function m�t ,�� �that is, �0.3

� r2Gs�r ,��dr
=�0.21

� 	2Gs�	 ,��d	=0.16 / �4���. In Fig. 2, we have included
this function �light-gray-dashed line�. Direct inspection of
such plot shows the clear correlation that m	�t ,�� exhibits
with �2�t ,�� and the function m�t ,��. The fraction of
matches �function M�t ,��, vertical bars� between particles
that are both democratic and that exhibit a large propensity
change �in a � time interval� is also indicated. Finally, to
further show the good homology between democratic par-
ticles �which displacements are greater than 0.3 in a � time
interval� and particles that change significantly their propen-
sity �particles with 	
0.21 in a � time interval� in a typical
MB-MB transition, we show in Fig. 5 the spatial distribution
of both kinds of particles for the MB-MB transition that
occurs in the time interval �680,720� in the trajectory seen in
Fig. 1. Like the d-cluster consisting of democratic particles
�light- and dark-gray spheres�, the particles with high 	
�black- and dark-gray spheres� are arranged in relatively
compact clusters. Both clusters occupy the same region in

space and many particles are both democratic and also have
	
0.21 in the �680,720� time interval as can be seen in the
figure �represented by dark-gray spheres�.

As a final remark, we should like to mention that the
behavior above expounded is characteristic of dynamical het-
erogeneities and thus emerges within the temperature inter-
val where these heterogeneities are present. At temperatures
lower than T=0.50 the behavior is very similar �in fact, the
results are a bit neater since the dynamical heterogeneities
are more conspicuous� but the timescales grow since t� in-
creases with decreasing temperature �400 for T=0.50 and
5000 for T=0.446�. In Figs. 6–8, we show the situation for
T=0.446. We mention that the functions in Fig. 4 �T=0.50�
are very similar to those for T=0.446, and the threshold rth

=0.3 for democratic particles in a �=40 time interval for T
=0.50 �10% t��T�� is also reasonable in a �=500 time inter-
val for T=0.446 �10% t��T��. Thus, we kept using the value
	
0.21 for a criterion of high-propensity change in a �
=500 time interval for T=0.446.

FIG. 4. Radial probability density 4�	2Gs�	 ,�� of finding a particle with a
�root-squared� propensity change of magnitude 	 in a �=40 time interval.
Solid line: average over the whole run. Line with circles: average over time
intervals within four selected MBs. Line with squares: average over four
selected MB-MB transitions. Selected times are the same as in Ref. 16.
Because of the noise in the data, these functions have been smoothed.

FIG. 5. Cluster of democratic particles �light- and dark-gray spheres� and
cluster of particles with high-propensity change �black and dark-gray
spheres� for the MB-MB transition in the time interval �680,720� in the
trajectory seen in Fig. 1. Dark-gray particles are both democratic and have a
high-propensity change.

FIG. 6. Contour plot of the distance matrix �2�t� , t�� for 101 equally spaced
�500 time units� configurations of a trajectory at T=0.446. The gray levels
correspond to the values that are given to the right.
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On the other hand, at higher temperatures �higher than
approximately T=0.6�, the system loses the dynamical het-
erogeneities and becomes homogeneous and diffusive. Con-
sequently, the distance matrix �2 lacks the island structure
�as the non-Gaussian parameter �2 begins to vanish� and the
relaxation becomes diffusive, without the presence of
d-clusters.33 Additionally, as shown in Ref. 22, the propensi-
ties also get uniform at high temperature.

IV. CONCLUSIONS

The IC ensemble has provided us with a means of deter-
mining regions of the sample that present different tenden-
cies for mobility, thus enabling to measure the influence that
the local structure exerts on the dynamics.21,22 The presence
of relatively compact regions with high propensity for mo-
tion indicates domains made up of particles with high ten-
dency to be mobile wherein the events responsible for the

�-relaxation occur.23,24,31 The fact that the spatial distribution
of the very short-time propensity21,31 is sufficient to signal
such regions and that some of such high-propensity particles
will take part of a d-cluster in the different IC trajectories at
a later time24,31 would mean that these particles are not at
ease �not blocked� in the local structure and try for some
time without success to relax their condition until eventually,
a collective motion of many of them is able to perform a
large scale relaxation event. While a rigorous complete com-
parison is not possible at this stage, this behavior seems to be
in accord with an appealing very recently proposed soft
mode explanation of glassy dynamics.34 In such scenario,34

the high-propensity regions present at a given configuration
and the irreversible reorganization regions that occur later on
are causally correlated with the localized low-frequency nor-
mal modes of such configuration and which persist for times-
cales on the order of t�. We note that the black islands of
Figs. 3 and 8 indicate that the spatial distribution of propen-
sity �the tendency of the particles to move when evaluated at
very short times� persists for times �t�− t��	 t�. Within such
timescales, the system changes many times the inherent
structure �IS, local minimum, or basin of attraction in the
potential energy surface�, an event that entails a small local-
ized particle rearrangement, but has not been able to perform
a collective long-range rearrangement characteristic of a
d-cluster since it has been confined within the local MB, a
collection of structurally very similar configurations. The
d-cluster, which brings the system out of such MB, occurs
within the high-propensity region24,31 and has been related to
the soft modes present in the system at such times.19,35,36 To
summarize, in this work we have shown that not only the
local structure poses its constraints on the dynamics of glassy
systems but that the opposite is also valid, that is, the dy-
namical events responsible for the �-relaxation clearly
modify the propensity pattern. Our results demonstrate that
when a d-cluster �and the corresponding MB-MB transition�
occurs, the spatial variation of propensity is reformulated
�high- and low-propensity regions clearly decorrelate�, thus
making evident the mutual interplay between structure and
dynamics.
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