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We consider a quantum system continuously monitored in time which in turn is coupled to an
arbitrary dissipative classical system (diagonal reduced density matrix). The quantum and classical
dynamics can modify each other, being described by an arbitrary time-irreversible hybrid Lindblad
equation. Given a measurement trajectory, a conditional bipartite stochastic state can be inferred
by taking into account all previous recording information (filtering). Here, we demonstrate that
the joint quantum-classical state can also be inferred by taking into account both past and future
measurement results (smoothing). The smoothed hybrid state is estimated without involving infor-
mation from unobserved measurement channels. Its average over recording realizations recovers the
joint time-irreversible behavior. As an application we consider a fluorescent system monitored by an
inefficient photon detector. This feature is taken into account through a fictitious classical two-level
system. The average purity of the smoothed quantum state increases over that of the (mixed) state
obtained from the standard quantum jump approach.

PACS numbers: 03.65.Ta, 42.50.Lc, 42.50.Dv, 02.50.Tt

I. INTRODUCTION

In quantum mechanics the state of a system is de-
scribed by a state vector, or more generally, by a den-
sity matrix operator in the case of open systems [1]. The
environmental influence renders the system dynamics ir-
reversible in time. In addition, the environment may
be continuously monitored in time by some measuring
device. A fundamental problem solved by the quantum-
jump approach [114] is the estimation of the system state
conditioned on a given (single) measurement signal (tra-
jectory). Given the stochastic nature of the measurement
process, the system state inherits this property, while its
average over measurement trajectories recovers the irre-
versible system dynamics.

The quantum jump approach delivers a stochastic sys-
tem state that depends on all previous measurement re-
sults. The estimation is possible after knowing the sys-
tem initial condition and its dynamics. Different refine-
ments of this technique were known in a classical con-
text (classical estimation theory) [5, 6]. Filtering is a
Bayesian estimation technique where the system state
is conditioned on earlier measurements while smoothing
means that both earlier and later measurements are con-
sidered. Hence, the standard quantum jump approach
can be considered as a quantum extension of classical fil-
tering. Different formulations of a “quantum version” of
smoothing have been achieved recently [7-17].

The estimation of a classical parameter that affect the
evolution of a quantum system using the results of (both
earlier and later) measurements on that system were per-
formed by Tsang in Ref. [7]. Specific physical applica-
tions of this approach have been analyzed []]. Estima-
tion of the result of a quantum measurement using past
and future information was characterized by Gammel-

mark, Julsgaard and Mglmer in Ref. [9]. A past quan-
tum state, consisting in a pair of matrices, density matrix
and an “effect operator,” allows to achieving a better es-
timation of a non-selective measurement performed over
the system in the past. Extra analysis and specific im-
plementations were posteriorly characterized [10-16]. In
contrast with the previous results, a smoothed quantum
state (positive density operator) consistent with past and
future measurement information was introduced by Gue-
vara and Wiseman in Ref. |17]. They considered a par-
tially monitored optical quantum system. The smoothed
quantum state can be estimated after knowing a pure
state conditioned on both the observed (homodyne pho-
tocurrent) and unobserved (photon count) records. A
significant recovering of the purity lost due to the unob-
served signal is achieved.

Following the previous research lines, in this paper
we demonstrate that a smoothed quantum-classical state
can be consistently defined. It describes the estimated
joint state of a dissipative (time-irreversible) hybrid
quantum-classical arrange when past and future mea-
surement signals performed on the quantum subsystem
are taken into account.

In contrast with previous analysis [7, 9], a joint
smoothed state is explicitly defined. In addition, here the
quantum and classical dynamics are intrinsically entan-
gled (correlated). Each one may modify the other. Their
evolution is described by an arbitrary time-irreversible
(hybrid) Lindblad rate equation [1&, [19], which corre-
spond to the more general bipartite evolution restricted
by the requirements of Markovianicity and classicality
(one of the reduced density matrixes is diagonal in a fixed
basis at all times). The smoothed joint state can be esti-
mated after knowing a measurement trajectory, the ini-
tials conditions and the characteristic parameters of the
dynamics. By partial trace the bipartite smoothed state
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provides the partial (smoothed) states of the quantum
system and the classical counterpart. As in the standard
quantum jump approach, by averaging over realizations
(past and futures ones) the joint irreversible dynamics is
recovered.

As an application we consider a single fluorescent sys-
tem monitored by an inefficient photon detector. By in-
troducing a fictitious classical degree of freedom associ-
ated to the detector, the formalism applies to this situa-
tion. The purity of the smoothed state increases with re-
spect to that obtained from the standard quantum jump
approach. In contrast with previous approaches |17)], for
estimating the smoothed state it is not necessary to de-
termine the (past) unobserved signal trajectory. This is
a general feature of the present formalism.

The paper is outlined as follows. In Sec. II we intro-
duce the underlying formalism that describes the hybrid
quantum-classical evolution |18]. The corresponding fil-
tered state, equivalent to the quantum jump approach
[20], is also reviewed. Over this basis, the smoothed
quantum-classical state is developed in Sec. III. As an
example, in Sec. IV the formalism is applied to a fluo-
rescent system monitored by an inefficient detector. The
Conclusions are provided in Sec. IV. Calculus details
that support the main results are provided in the Ap-
pendixes.

II. QUANTUM-CLASSICAL DYNAMICS

We consider a quantum system .S interacting with clas-
sical (time-irreversible) degrees of freedom, denoted by
C. The bipartite arrange can be described by an hybrid
quantum-classical density operator |p;) . It is written as

) = Z(R|Pt) |R). (1)
R

Here, the index R labels each state of C, which in turn has
assigned a (column) vector |R) = (0,---1,---0)T. The
(real) vectorial base {|R)} satisfy (R|R') = drr/. Each
(conditional) density operator (R |p;) is defined in the
Hilbert space of S. Introducing the vector (1| = Y~ p(R| =
(1,---,1), the unconditional density operator p; of S fol-
lows from the hybrid (vectorial) operator as [1§]

pe=(1pr) = Z(R|Pt)' (2)

R

The vector |P;) of classical probabilities { P,[R]} for the
set of states {|R)} can be written as

|P) =) RIRIR) =) T(Rlp)IR).  (3)
R

R

Tr[e] denotes trace operation in the Hilbert space of S.
With the previous definitions, the vectorial hybrid oper-
ator can be rewritten as

o0 = X PRI ) ()

R

Hence, (R|p:)/Tr[(R]|pt)] is the quantum state of S given
that C' is in the state |R).

The more general time-irreversible (Markovian) evolu-
tion equation describing the interaction between S and
C' is given by a (hybrid) Lindblad rate equation [18§],

d|Pt)
dt

where (separable) initial condition |pg) = po |Po) are as-
sumed. .

The (matrix) superoperator £ may adopts very differ-
ent structures [18, [19], which may be used, for example,
for describing radiation patterns in fluorescent systems
coupled to classically fluctuating reservoirs |20, 21] (see
also Eq. (3I)) below). The following analysis and results

are valid for arbitrary £ structures.

=Llpi), (5)

Filtered state

The quantum system S (or equivalently its environ-
ment) is continuously monitored in time. We assume
that, up to time t, each recorded measurement realiza-
tion consists in a set of random times ¢ = {t1,t2, - tn},
with 0 < ¢; < ¢. Each time ¢; can be associated to the
time at which S suffers a given transition. A filtered state
is an estimation |pf*) of the bipartite state conditioned
on a given (past) measurement trajectory. In addition
to the times ¢, the initial bipartite state |pg) and its
dynamics [Eq. (@)] are known. The quantum jump ap-
proach allows to define a filtered state |p5'), which relies
on the closure condition

H
o) = lpe) (6)

that is, the average of | p*) over measurement trajectories
(denoted with the over arrow <) recovers the dynamics
dictated by Eq. (G).

The filtered state can be written as (see Appendix A)

Ult,0, t] |po)

) = Te[(1[A[2,0, T ] [po)]

(7)

(
Here, the (unconditional) vectorial propagator U is de-
fined as

L?[t, ] = eﬁ(tf‘rn){ H jeb(Ti*Ti—l)}jeb(‘rlft’)'
=2
(8)

The vectorial superoperators D and J recover the bipar-
tite dynamics generator

L=D+J. (9)

The vectorial superoperator J is chosen such that the
transformation |p) — M|p), where

Tlp)

- _J 10
)= T 10



corresponds to the measurement transformation of the bi-
partite state given that a measurement record occurred.
Similarly, a propagator T (¢,7) associated to the super-
operator D=L— j,

eﬁ(t—r)|p)
Tr[(1]eP=7) |p))]

can be read as the (normalized) transformation of the
conditional state between recording events happening
successively at times 7 and t.

Given the property defined by Eq. (@) one can asso-
ciate a probability density P[] for the occurrence of a
given trajectory (defined by the set of times 7) It reads

T(t,7)lp) = ; (11)

RT] = T{(d1E,0. 7] o). (12)
This weight, jointly with the definition (@) allow to
demonstrate that the requirement () is in fact fulfilled
(Appendix A).

The joint filtered state |p5'), Eq. (1), through the re-
lations [see Eqs. ([2) and (B])]

o= (e, 1P = ZTY (Rlp)]IR),  (13)

also allows to estimate the partial states of S and C.

III. QUANTUM-CLASSICAL SMOOTHED
STATE

The state estimation (7)) is conditioned on measure-
ment results previous to the time ¢, that is, the set t It
is also possible to take into account posterior (future of
t) recording events up to a given time 7' > ¢t. The events
between ¢ and T are denoted by 7= {tn+1,tnt2, I},
which satisfy ¢t < ¢; < T. The task now is to find the new
estimation for the joint state (smoothed state) taking into
account this extra information.

The joint probability density PTU | for a trajectory in
(0,T) with detection times v Ut = = {t;}¥, from
Eq. (I2), can be written as

PrT] = T[(UU(T, t, T, 0, ) |po)].  (14)

This object can also be expressed as

T1=Y PRy (15)
Ry

Here, Pr [?,Rt] is the joint probability density of the
random variables ¢ and R;. The last one labels the state
of the classical degrees of freedom at time ¢. From Eq.

(@) we write

Pr(T, Re] = TY[(AU[T, t, 71| Re) (Re|UAE, 0, T [po)].

(16)

This expression can be interpreted in terms of a (clas-
sical) measurement performed over C at time t. Using
that > [R:)(R:| is the identity matrix in the vectorial
space of C, it follows that the normalization (I3]) is sat-
isfied trivially.

By introducing the conditional probability Pr[R:| t ]
of R; given the set ?, Bayes rule gives the relation

< e
= Pr[Ri| t'|Pr[ t']. (17)
Hence, from Egs. ([I5) and (I6]) we get

—
PT[ t 7Rt]

~ — - —
Tf[(1|U[Ta i, 1 ]|Rt)(Rt|u[t7 0, ¢ ] |p0)]
~ ﬁ A~ & .
S r Tr[(UUT ¢, ¢]IR)(RIUIL,0, ¢ ] Ipo()] )
18
This expression allow us to estimate the state of the clas-
sical degrees of freedom C' at time ¢ given that we. know

e

e

Pr[R;|

both past and future measurement results ( t=Tu? )
performed on the quantum system .S in the time 1nterva1
(0,T).

Now, we introduce the unnormalized joint filtered state

U, 0, po) (19)

and the “effect vectorial-operator”

i) =
\ESY) = U1, t, 7)), (20)

Here |I) = I|1), where I is the identity matrix in the

Hilbert space of S. Furthermore, U# is the dual propa-
gator of U. It is defined by the relation [19]

Te[(AU|p)]

where |p) and |A) are arbitrary vectorial states and
operators respectively.  Using that Tr[(AlUV|p)] =
Tr[(p|V#U#| A)], from Eq. @®) it follows

eﬁ#(Tl—t/)j#{ H eﬁ#(n—n,l)j#}
=2

— Tx((plil*| A)], (21)

Z/A{# [tv tlv {71}711] =

x eD¥ (t=n) (22)

)

where D# and J# are the dual operators to D and J
respectively (see Ref. [19)]).
Given that

T[T, t, T1p)] = Trl(plf# [T, 6, T)D),  (23)

the probability (I8) can be written in terms of |g5') and
|EF") as

Tr[(pi" [Re) (R |EFY)]
>R Tr[(AF [R) (R B3]
The structure of this equation is similar to that obtained
in Refs. [7] and [9], where the pair {|g5'),|E5')} can be

named as a “vectorial past quantum state.” Trivially, un-
der the replacement |55') — |p5'), the smoothed probabil-

ity Pr[R| t'] can also be written in terms of the normal-
ized filtered state (7). Furthermore, for T — ¢ (filtering),

g
Pr[Ri 't'] =

(24)



Eq. (@) is recovered, limy_,; PT[Rt|<?] = Pt[Rt|<t_] =
TR

From Pr[R:| t'] it is possible to define a smoothed
quantum-classical state |p%), that is, an estimation of
the quantum-classical joiﬁt state taking into account
both past and future measurement results. From Eq. (@),
we write

st \ _ o (RIp7")

where |p5) is the filtered state defined in Eq. () while
Pr [R|<?] follows from Eq. (24)). This is the main result
of this section. Notice that |p}';) can be obtained after
knowing the measurement results, the joint initial state
and the quantum-classical dynamics [see Eqs. (8) and
).

The previous result relies on the fact that the state
of S given that C is in the state |R) at time t is given
by (R|p3")/Tr[(R|p5")]. Hence, the smoothed probability
Pr[R| t"] is the correct weight of each contribution given
that we know both past and future measurement results.

Similarly to the filtering case [Eq. ([I3])], the relations

pir = (Alpir), |Pif7) = D Tr[(Rlpir)] |R), (26)
R

correspond to the smoothed estimations of the partial
states of S and C' respectively.

In Appendix B we demonstrate that by averaging the
smoothed joint state [p}';) over future measurement re-

sults, [pi'7) — |pi'), the filtered state [p;") is recovered,

—>
|P§TT) = |Pt) . (27)

In addition, the second equality follows straightforwardly
from the former one and Eq. (@). The over arrow <
means average over both past and future measurement
results. Thus, the average of both the joint smoothed
and filtered states recover the irreversible dynamics of
the quantum-classical arrange, Eq. (&)).

st st
|Pt,T) = 1p), =

IV. INEFFICIENT PHOTON-DETECTION

The formalism developed in the previous section may
have applications in different contexts. For example,
the dynamics of fluorescent systems coupled to classi-
cally self-fluctuating reservoirs |20, 21] can be described
through different Lindblad rate equations. The classical
degrees of freedom correspond to different configurational
states of the environment. In addition, as the formalism
can be applied independently of the physical origin of the
classical counterpart, here we apply the previous results
to a different physical situation.

We consider a single fluorescent two-level system (with
states |£)) coupled to a resonant laser field. The system-
laser (time-reversible) coupling is proportional to Rabi

frequency €, while its natural (time-irreversible) decay
rate is . The evolution of its density matrix p; is |1, 4]

d 10

L = — ool +(opo’ —{olop}e),  (28)
where o, is the a-Pauli matrix, while o = |—)(+|, and
of = |=)(+|. Furthermore, [p,q]- = pg — qp, while

{p,q}+ = (pq + qp)/2 denotes an anticommutator.

The scattered radiation field is measured by an ineffi-
cient photon detector whose efficiency is 7. The standard
quantum jump approach covers this situation [4]. Its de-
scription can be recovered from Sec. II in the limit in
which the classical system C has only one state. The
splitting defined by Eq. (@) is performed by introducing
the (unidimensional) superoperators 4]

J ol = ynopo’, D=L-J, (29)
where L follows from Eq. 28]), dp;/dt = L[p]. Given that

_ _Jlpl
Tr[T p]

M{pl ===, (30)

the system resets to its ground state in each detection
event. In consequence the emission process is a renewal
one. A waiting time distribution |2] gives the probability
density of the time interval between consecutive events
(see Appendix C). The filtered state p5' [Eq. (@)] is not
pure, 1/2 < Tr[(p5")?] < 1. Nevertheless, for n = 1 (per-
fect detector), a pure state is obtained, Tr[(p5')?] = 1
(strictly, this equality is valid in general after the first
detection event). Our goal here is to get a new estima-
tion of the system state using the smoothing technique
described previously.

A. Quantum-classical representation

The measurement trajectory is given by the detection
times obtained from the inefficient detector. Clearly, the
system [Eq. (28)] does not include any classical degree
of freedom. Nevertheless, one can introduce a fictitious
classical system that takes into account the imperfection
of the detector while the (quantum) system dynamics re-
mains the same. It is described by two (classical) states
denoted by |a), with a = d (detected) and a = u (unde-
tected) (Fig. 1). The joint vectorial state |p;) is defined
by the matrixes (a|p;) = p¢. Their evolution is given by
the Lindblad rate equation

dp? iQ @ a a
Wi By )+ vulontio’ — oo 0 )
—{oto, pity +va0piot, (31)

where the indexes are a = d, u while b = u, d. The decay
and coupling rates are

Ya =, Yu =1 —1). (32)
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FIG. 1: Scheme levels corresponding to the evolution (BIJ).
The quantum system is characterized by the states |+), while
the classical one by the states |d) and |u). The transition rates
are yn (blue full lines) and (1 —n) (red dotted lines). The
quantum system is coupled to an external laser field with Rabi
frequency (2.

The initial conditions are taken as pd = |-)(—|, and
po = 0.

The evolution [BI)) can be read as follows (see Fig. 1).
The quantum system can suffers the transition |+) — |—)
with rates yn and v(1 —n) when the classical system is in
the states |d) and |u) respectively. In addition, the tran-
sitions |4+)|d) — |—)|u) and |+)|u) — |—)|d) happen with
rates v(1 —n) and 7 respectively. Therefore, transitions
with rate yn (detected events) collapse C' to the state |d),
while transitions with rate v(1 — n) (undetected events)
collapse C' to the state |u). Independently of the state of
the classical system, the fluorescent one is coupled to the
external laser with Rabi frequency €.

Given the hybrid evolution (BI), the system dynam-
ics follows from Eq. @), pr = pf + p¥. It is simple to
check that (d/dt)p; obtained in this way obeys the Lind-
blad evolution (28]), while the previous initial conditions
implies that pg = pd + pi = |-)(—|. Therefore, the fic-
titious classical degrees of freedom C' associated to the
Lindblad rate equation (3I) do not affect the dynam-
ics of the quantum system S defined by Eq. ([28). We
remark that this property is valid for any value of the
characteristic parameters €2, v, and 7.

The dynamics of C' is strongly correlated with the be-
havior of S. It starts in the state |d). Transitions between
its states |d) <> |u) only may happen when S is in the
upper state |+). For n = 1 it remains in the initial con-
dition, that is, the state |d).

B. Quantum-classical filtered state

The filtered joint state |p5') [Eq. (@)] can be obtained
after defining the sphttlng @). We choose the vecto-
rial superoperator J such that M represents the mea-
surement transformation corresponding to the detected
photons, that is, the transitions with rate yn in Fig. 1.
Therefore, [|p) = p?|d) + p*|u)]

Jp) = yalop’o’ + op“at]|d), (33)
which in explicit form reads J|p) = ~a((+|p%+) +
(+]p“]4))|=)(=||d). The measurement transformation
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FIG. 2: Realizations for filtered (light blue lines) and smooth
(dark red lines) states associated to Eq. (3I)). (a) Upper sys-
tem population (+|pi’z|+). (b) System purity Tr[(p5'r)?]. (c)
Classical population (d|P%). (d) purity(d,u) = (d|P%)? +
(u| Pf%)?. The filtered states correspond to 7' = t. In all cases,
the parameter are /v = 1 and n = 0.8. For the smoothed
realizations, T is chosen such that v(7 —t) = 30. The vertical
dashed lines are the times of the undetected events.

[Eq. [IO)] becomes

Mip) = |=)(~ld)- (34)

Hence, S and C' are reseted to the states |—)(—| and |d)
respectwely On the other hand, the conditional evolu-
tion () is defined with D = E J, where £ follows
from the Lindblad rate equation (3I)). With these defi-
nitions (J and D), the joint filtered state [p5*) [Eq. ()]
can be determine after knowing the times of the detection
events.

In a realistic experimental situation, the measurement
trajectory is provided by the (inefficient) photon detec-
tor. Here, they are numerically implemented from a wait-
ing time distribution |2] that gives the probability density
for the time intervals between consecutive events (Ap-
pendix C).

In Fig. 2 we show a realization of the S and C filtered
states (light blue lines) [Eq. (I3))] through the upper
system population (+|p5*|+) and the population (d|P:").
The disruptive changes in the states are associated to the
detection times. Furthermore, the corresponding purities
are also shown, Tr[(p;*)?] and purity(d,u) = (d|Ps')?
(u|PfY)2. For a perfect detector n = 1, at any time these
last two objects are equal to one.

A fundamental property of the quantum system real-
izations shown in Fig. 2 is that they are exactly the
same than those obtained from the standard quantum
jump approach applied to the Lindblad evolution (28]).
In fact, it is straightforward to demonstrate that

(11Dlp) = D(1]p) = D(p" + p*), (35)



where |p) = p?|d) + p*|u) and D is defined by Eq. 29).
Given that p? + p* gives the state of S, and given that
(IM|p) = |=-){—]| [Eq. BD)] it follows that the realiza-
tions of (1|p5*) = p§* coincide with the realizations of the
standard quantum jump approach defined from the mea-
surement superoperator (29) and [B0). The measurement
statistics is also the same (Appendix C). Thus, not only
the irreversible evolution of the S, but also the filtered
state obtained from the Lindblad rate equation (31 is
the same than that obtained from Eq. (28]). This is the
main property that sustains the ansatz given by Eq. (31)).

C. Quantum-classical smoothed state

The representation of the fluorescent system monitored
by an inefficient detector in terms of a Lindblad rate
equation allows us to define a joint smoothed state. In
fact, given the detection times, it follows from Eq. (28],
while the partial states from Eq. (24]).

In Fig. 2, for the same realization of measurement
events, we also plot the smoothed states through the
upper system population <+|p§fT|—|—> and the popula-
tion (d|P%;). The plotted purities are Tr[(pj';)?] and
purity(d, u) = (d|PtS,¥r)2 + (U|Pts,tT)2-

The filtered and smoothed realizations develop disrup-
tive events at the same (detection) times. Nevertheless,
for both S and C, the smoothed purities are higher than
the filtered purities. The increment of the smoothed pu-
rities is a consequence of the general result (27)), that is,
averaging the smoothed states over future measurements
events one recover the filtered states.

In an experimental situation it is impossible to deter-
mine when the detector fails. Nevertheless, given that
here we are determining the measurement events in a
numerical way (see Appendix C), it is possible to know
when the undetected events happen. In Fig. 2 they
are indicated by the vertical dashed lines. These times
are not necessary for defining the joint smoothed state
@3). Nevertheless, they allow us to understand some
features of the smoothed states. While (+|p5';|+) does
not develops any special characteristic, around vt ~ 20
the smoothed realization of (d|P;%.) anticipates the be-

havior of the filtered population (d|P;*). This signature
is also observed in other quantum optical arranges [17].
In addition, here the smoothed realization almost van-
ishes, property consistent with the fact that undetected
measurement events leads to the (unobserved) transition
|P) — |u) (see Fig. 1).

The recovering of the purity lost due to the ineffi-
cient detector can be quantified by averaging over an
ensemble of measurement events. In Fig. 3 we plot the
smoothed and filtered averaged purities of S, Tr[(pifT)2]

%
and Tr[(p;*)?] respectively. The plots were obtained by
averaging 5 x 103 realizations. Under smoothing, with
n = 0.8, about 10% of the purity lost is recovered when
compared with the filtered purity. For n = 0.9 the re-

1.00
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< 0.96
20.94]
F 0.92]
0.901
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FIG. 3: Purities of the smoothed and filtered partial states
when averaged over 5 x 10° realizations (see Fig. 2). (a)

R ;
and (b) correspond to Tr[(p;'s)?] (smoothed) and Tr[(pi*)?]
(filtered). (c) and (d) to (d|p;'r)* + (u|p§fT)é (smoothed) and
(d|p5*)? + (ulpi®)? (filtered), both objects being denoted as

purity(d,u). The parameters are 2/ = 1, while 7 is indicated
in each plot.

covering is around 15%. These results are similar to that
obtained in Ref. [17] with a different measurement ar-
range.

In Fig. 3 it is also shown the filtered and smoothed
purities of C. While these objects refer to the fictitious
classical system associated to the imperfection of the de-
tector, the graphics consistently show similar properties
to that of the quantum counterpart S.

D. Ensemble behavior

When averaged over an ensemble of realizations [Eq.
() and [27))] both the joint filtered and smoothed states
must to recover the dynamics given by the Lindblad rate
equation (B3II). For the quantum subsystem, the evolution
is exactly the same as that obtained from the standard
Lindblad equation (28]).

In order to check these properties, in Fig. 4 we plot the

%

averaged smoothed (+|p5';|+) and filtered (+|p5*|+) sys-
tem populations. Consisfently, both averages recover the
analytical solution (+|p:|+) that follows from Eq. (2])
[idem Eq. (BI))], which is independent of n. The curves
are indistinguishable in the scale of the plots. The same

property is valid for the smoothed (d|P;%) and filtered

%
(d|P?*) averaged classical populations. The analytical so-
lution of these objects follows from Eq. (&)).

From Eq. @I), it is simple to check that
lim; o0 (d]pt) = NMpoo and limyeo(ulpe) = (1 = 1)poc
where po, = limy_ o p; is the stationary solution of
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FIG. 4: Analytical solutions and average over realizations of
the filtered and smoothed states. (a) Upper system popula-
tion, (+]|p¢|+) analytical solution, jointly with the smoothed
— —

(+]p3'r|+) and filtered (+[p5*|+) averaged populations. (b)
Classical population, (d|P;) analytical solution, jointly with

——
the smoothed (dP;%) and filtered (d|P;") averaged popula-

tions. In all cases the averages were performed with 5 x 10°
realizations. The parameters are /v = 1 and n = 0.8.

BEq. @), poo = {{Q° v}, {ivQ,7* + Q}}/(4* +
20?). In Fig. 4, the (analytical) stationary val-
ues limy oo (+lpe|+) = Q%/(7% + 20%) = 1/3, and
lim; o (d|P;) = n = 0.8 are also correctly achieved.

V. SUMMARY AND CONCLUSIONS

An extra class of smoothed quantum state was intro-
duced. It describes a hybrid quantum-classical arrange
conditioned not only on earlier (filtering) but also later
measurements results (smoothing). The joint evolution
is given by an arbitrary hybrid Lindblad rate equation.
Hence, mutual influence between the quantum and clas-
sical subsystems is allowed. The measurement process is
performed on the quantum system.

The results relies on a Bayesian analysis, which pro-
vides a better estimation of the classical system state
[Eq. @4)], which in turn lead to an improved estima-
tion of the joint state [Eq. (2H)]. Partial smoothed
states follows by tracing the partner system information
[Eq. 26)]. The hybrid smoothed state can be determined
after knowing the initial joint state, the hybrid evolu-
tion and the measurement results. The estimation does
not rely on unobserved information such as for example
that provided by measurement processes performed on
the classical subsystem.

By averaging the smoothed state over future measure-
ment results the filtered state is recovered [Eq. (27))]. This
property guarantees that a purer estimation of the joint
state is always obtained. Furthermore, and similarly to
the standard quantum jump approach, here the time-
irreversible joint dynamics is recovered after averaging
over both past and future measurement results.

The formalism was applied to a standard fluorescent
system monitored by an inefficient photon detector. This
situation was covered by introducing fictitious classical
degrees of freedom (Fig. 1) associated to the imperfect
photon detector. The joint quantum-classical dynamics

[Eq. (3I)] leads to the same quantum system dynamics.
A significant recovering of the purity lost due to the ineffi-
cient recording process is achieved by taking into account
future measurement results (Fig. 2 and 3). Consistently,
the ensemble averages of both the filtered and smoothed
realizations recover the quantum irreversible system dy-
namics (Fig. 4).

The present results can be extended an applied in
different physical situations For example, many hybrid
measurement channels as well as application in single-
molecule spectroscopy [20, 21] can be straightforwardly
handled by using the developed theoretical formalism.
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Appendix A: Vectorial quantum jump approach

Here, we review the quantum jump approach for-
mulated for quantum-classical hybrid dynamics [20] de-
scribed through a Lindblad rate equation, Eq. ().

Given the relation (@), the evolution of the joint state
can be rewritten as

d|ﬂt)

— L =(D+J)lp)-

o (A1)

This evolution can be “unravelled” in terms of measure-
ments trajectories. By solving the previous Markovian
evolution as |p;) = eP|pg) + fot ePt=7) 7 |p,) dr, after
successive iterations, it follows

lo2) = G(B)lpo) = > Gu(t)]po)- (A2)
n=0
Here, Go(t) = eP*, while
6ot = [ 0,1, (43
0

where the propagator U is defined by Eq. (8). Fur-
thermore, 1, = {t;}/=7 are the integration vari-
ables corresponding to the nested integrals fot E =
[y dty - f37 dts [} dty.

Each contribution in Eq. (A2) can be rewritten as

; [t U,0, 1] |oo)
%WM—A%&E%meﬁWM,@Q
where P; [Tn], similarly to Eq. ([I2), is defined as
Pifta] = Te[(1A[t, 0, 2] o)) (A5)

This object can be read as the n-joint probability den-
sity of a measurement trajectory with n-events, each one



happening at times f Hence, from Eq. (A4]), the corre-
sponding conditional stochasmc joint state |p5') (associ-

ated to the set ? ) is
Uit 0, 1] po)

) = . A6
o) = .0, ) o) (A0)

which recovers Eq. (). In this way, Eq. (A2)) can be read
as an addition over all possible trajectories with n-events
happening at the arbitrary times t,,. By construction,
the fulfillment of condition (@) is guaranteed. Notice that
P, [?n] satisfies the normalization

7;)/0 dt, P[] = 1.

The previous associations are consistent with the def-
initions of the measurement transformation Eq. (I0)
and conditional evolution Eq. (). In fact, by using
the mathematical principle of induction, it is possible to

rewrite Eq. (A6) as
105Y) = T(ttn) M-+ T (ta, 1) MT (t1,0)[po).  (AS8)

Therefore, the conditional state can in fact be written as
successive applications of the measurement transforma-
tion M, while 7 gives the normalized conditional prop-
agation between measurement events.

Interestingly, by using the mathematical principle of
induction it is also possible to proof that the n-joint prob-
ability, Eq. (&), can be rewritten as

PEa] = Poltyta; M| ) Jwltn, tu1s M| )]

(A7)

wlta, tr; Mpi)wlts, 05 |po)].  (A9)
In this expression, for ¢ > 1
o5t = T(tiga, ti) M|pil), (A10)

while [pf') = T (t1,0)]po). The function wlt, 7;|p)] can
be read as a waiting time distribution |2], that is, given
that at time 7 the joint state is |p), it gives the prob-
ability density for a interval ¢ — 7 between consecutive
measurement events. It reads

wlt, 73 1p)] = Tr[(1|TeP|p)]. (A11)

On the other hand, Py[t, 7;|p)] is the associated survival
probability

t
Rolt,71p) = 1 — / wlt!, )]t (A12)
being defined as
Polt, 75 |p)] = Te[(1]eP¢7p)]. (A13)

Given an initial condition |pg), the dynamics defined
by Eq. (A8)) can be numerically implemented by getting
the random measurement times from the survival proba-
bility [20]. As in the standard quantum jump approach it
is also possible to write an explicit stochastic differential
equation for the state |pf*), whose average over realiza-
tions recovers the deterministic evolution (AT).

Appendix B: Averaging over future measurements
results

Here, we demonstrate that the average of the joint
smoothed state pver future realizations recovers the fil-

tered state, |pi's) = [p}'), Eq. 7). Given the expression
[@3), this is equivalent to demonstrate that the average

of the smoothed conditional probability Pr[R:| t ] over
measurements performed in the future recovers the fil-

tered conditional probability P:[R:|t ] Tr[(R; |p5Y)]. In
an explicit way, the previous condition can be written as

- — e
PRy t]:/dtPT[RtH t1Pr[t]t]. (B1)
For clarity Pr [Rt|<?] was denoted as Pr [Rt|<t_?] Fur-

%
thermore, the integral [ di [see Eq. (BE]) below] is an ad-
dition over all possible measurement trajectories in (¢,T)
given that we know one trajectory in (0,t), which is de-

fined by the set of times ¢ . In what follows we demon-
strate the validity of Eq. (BI).

The conditional probability density PT[ t] t] for the
times t of f(liture measurements given the past measure-
ment times ¢ fulfills the Bayes relation

> =
Pr(T) = Po(TTIR(T). (B2)
Here, P] t] is defined by Eq. ([2) while PT[ ] from
Eq. ([I4), which lead to
Sy T[T, TN 0, T
(12,0, ] po)]
: : ——
By using this result and Eq. ([I8) for Pr[R:t t],

Eq. (BI)) becomes

PR T) = [ @i+
(B4)

_>
The integral [ dt is an addition over all possible mea-
surement trajectories in (¢, 7). Hence, it is given by

) T 00 T ts ta
/E%:Z/ H:Z/ dtN-~-/ dtg/ dt1,
N=0 t N=0 t t t

where the addition takes into account an arbitrary num-
ber of detection events in the time interval (¢,7). By
working in a Laplace domain, it is possible to demon-
strate that

[(LU(Tt, t]lRt)(Rtlu[t 0, f]lpo)]
Tr[(1A(t,0, F ] o))

/ dHUT,t, T = exp[(T — )L, (B6)
where U is the propagator ([8) and L defines the Lind-
blad rate equation (Bl). Using this result and the trace
conservation property

Tr[(1] exp[tL]| )]

= Tr[(1]p)], (B7)



Eq. (B4) becomes
PR|T] = TY[(RtIZ;l[t,O,T] 190)]
Te[(1)4[t, 0, F ] |po)]
= (R |p")], (B9)

(B8)

where the expression (7)) was used. The last equality
demonstrates the validity of Eq. (BI]) and in consequence
also the validity of Eq. (27).

Appendix C: Detection-times

In an experimental situation, the detection times are
determined from the photon detector. Instead, here they
are obtained from the quantum jump approach. In fact,
this formalism not only allows us to defining the filtered
state, but also allows to determining the measurement
statistics. A waiting time distribution |2] gives the prob-
ability density for the time interval between consecutive
events, Eq. (ATI).

For a fluorescent system monitored with an inefficient
detector n < 1 [Egs. (28), 29) and @B0)], by working
Eq. (AID) in a Laplace domain [f(u) = [;° dtf(t)e "]
we get [(t —7) = u, w[t, T;|p)] = wy(u)]

<22
u+7)2u+7y) + (2u +yn)Q?

(C1)

wy(u) = u(

Given that the reseted state (B0) does not depend on the

(previous) state of the system, wy,(u) inherits this prop-
erty leading to a renewal point process. Exactly the same
expression and property follows from Eq. (ATI) calcu-
lated over the basis of the Lindblad rate equation (BI))
and the vectorial superoperator ([B3]). This feature also
demonstrates that the quantum-classical representation
leads to the same quantum system dynamics.

Interestingly, the previous expression can be written
as

nws (u)
L= (L =n)wi(u)’

(C2)

wy(u) =

where wi (u) = wy(u)|y=1, that is, the waiting time dis-
tribution for perfect detection, n = 1. By using the geo-
metric series it follows

oo

wy(u) = i (u) Y [(1 = n)ws (w)]™.

n=0

(C3)

In this way, wy,(u) is determined from successive convo-
lution terms, each one representing a time interval where
n-fails detection events happen with probability (1 —7)"
and a detection event happen with probability n. Con-
sequently, one can determine the random events from
wy (u). Equivalently, each event is chosen in agreement
with wy (u) [perfect detection] and each event is accepted
or rejected with probabilities n and (1 — 1) respectively.
This last algorithm recover the expected definition of an
inefficient photon detector.
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