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We study the plasmonic energy transfer from a locally excited nanoparticle �LE-NP� to a linear array of
small NPs and we obtain the parametric dependence of the response function. An analytical expression allows
us to distinguish the extended resonant states and the localized ones, as well as an elusive regime of virtual
states. This last appears when the resonance width collapses and before it becomes a localized state. Contrary
to common wisdom, the highest excitation transfer does not occur when the system has a well defined extended
resonant state but just at the virtual-localized transition, where the main plasmonic modes have eigenfrequen-
cies at the passband edge. The slow group velocity at this critical frequency enables the excitation buffering
and hence favors a strong signal inside the chain. A similar situation should appear in many other physical
systems. The extreme sensitivity of this transition to the waveguide and LE-NP parameters provides new tools
for plasmonics.
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I. INTRODUCTION

Electromagnetic energy can be focused and guided below
the light diffraction limit by transforming it into a collective
plasmonic excitation, the surface plasmon polariton, that can
propagate along a one dimensional array of nanoparticles
�NPs�.1 This feature has attracted significant attention due to
its potential applications in optoelectronic devices, subwave-
length waveguides, random lasers, optical traps, and hot-spot
based plasmonic sensors for ultrasensitive spectroscopy.1–3

Previous works have already addressed the question of how
to achieve a high degree of localization of plasmonic
excitations4 and have studied the plasmon propagation on the
waveguide formed by an ordered NP chain.2,5However, a
fundamental question remains open: how to transform a lo-
calized excitation into a strong signal somewhere else inside
a finite chain. A natural idea, would be to exploit the diver-
gent local density of states of one-dimensional �1D� systems,
i.e., the vanishing group velocity at the band edge, as pro-
posed for light buffering in photonic waveguides.6 However,
such divergences are a bulk property absent in finite and
semi-infinite chains, where the local density of states near
the extremes cancels out at the passband edge. In a quantum
tight-binding model, this corresponds to a semielliptical den-
sity of states. Therefore, the only alternative would seem to
tailor the surface inhomogeneity to generate ad hoc
resonances7 that could easily be excited and transfer energy.
This poses a big challenge for both experiments and numeri-
cal simulations, since there is a broad range of parameters to
be explored. Thus, this work resorts to a model that, contain-
ing only essentials, could be solved analytically by using a
response function formalism. Besides the expected resonant
and localized eigenmodes, we find an elusive regime of vir-
tual states. This appears when the resonance width collapses
and before becoming a localized state, providing for a con-
tinuity between them. Quite surprisingly, we prove that vir-
tual to localized states transition provides the route to opti-
mal excitation transfer by recovering, at the chain extremes,
a divergent local density of states with slow group velocity.

The work is organized as follows: In Sections II and III we
present the model used to describe the system and develop a
response function formalism and a pole analysis for it. Then,
in Sec. IV we show and discuss the results, and finally, in
Sec. V we summarize the main conclusions of the work.

II. LINEAR RESPONSE IN NANOPARTICLE
WAVEGUIDES

The system studied, see Fig. 1, is a linear array of N metal
NPs coupled to a locally excited �LE� NP, described in the
coupled dipole approximation.2,5,8,9 The induced dipole mo-
ment P� i at ith NP satisfies:

��SPi
2 − �2 − i�i��P� i

=
1

3
ri

3�Pi
2 4��0�E� i

�ext� + �
j�i

N

E� j,i�P� j,d� j,i,k��� . �1�

Here, ri, �Pi, �SPi, and �i correspond to the radius, bulk and
surface plasmon frequencies, and electronic damping. �0 is
the free space permittivity. E� i

�ext� and E� j,i are, respectively, the
external field and the electric field at the ith site produced by
the jth NP. In general, E� j,i is a complex function that depends

on the separation vector d� j,i=dj,id̂j,i between NPs and the
wave vector k�. However, if d is small, E� j,i can be evaluated
in the near field approximation,

E� j,i�P� j,d� j,i,k�� �
kd→0 P� j − 3d̂j,i�P� j · d̂j,i�

4��0n2dj,i
3 , �2�

where n is the refractive index of the host material. For a
linear array of NPs, plasmon oscillations can only be trans-
verse �T� or longitudinal �L� to the chain axis, and due to the
cubic dependence of E on d, it is a good approximation to
neglect contributions beyond nearest neighbors.2 Arranging
all P� i and E� i

�ext� as vectors P and E, Eq. �1� reads:
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P = �I�2 − M�−1RE 	 �E , �3�

where R is a diagonal matrix with Ri,i=−�4 /3��ri
3�Pi

2 �0 and
M is a tridiagonal matrix, with

M0,0 	 �̃SP0
2 = �SP0

2 − i�0� �4�

for the LE-NP, while for any of the equidistant identical NPs
along the chain

Mi,i 	 �̃SP
2 = �SP

2 − i��, �∀i � 0� . �5�

The dipole-dipole coupling strengths are

Mi,j 	 �Xi,j
2 =

�T,L�Pi
2

3n2 
 ri

di,j
�3

, �6�

with �T=1, and �L=−2. Since we are interested in the par-
ticular case where only the LE-NP is different from the rest,
it is convenient adopt the nearest-neighbor coupling as
�Xi,j

2 =�X
2 for i and j�0.

This description is accurate for: �1� kd�1 and �2�
r /d�1 /3, where higher order multipoles are negligible.10

These conditions require small r’s and hence a negligible
radiation damping correction.8

Clearly, � is a response function �RF�, hence excitation
dynamics between the different sites i and j is determined by
the corresponding matrix elements of �. In this way, the
square dipole moment of the mth NP, �Pm�2, produced when
the LE-NP is externally excited with an electric field E0, is

�Pm�2 = ��m0�2�E0�2. �7�

Notice that �I�2−M�−1 can be identified with a Green’s
function.11,12 The precise correspondence is presented in
Table I and serves to exploit the analytical tools developed in
this context. Compare this with the equivalence between
electrons in a crystal and an array of coupled pendula as
described in Sec. 5.2 of Ref. 11 and other textbooks.

III. POLE ANALYSIS OF THE RESPONSE FUNCTION

Since M is tridiagonal, �ij��2� admits exact analytical ex-
pressions as continued fractions.12,13 For finite systems,
�ij��2� has a set of isolated poles at the eigenvalues of M
whose real and imaginary parts are, respectively, the eigen-
frequencies and their damping. Extending M to an infinite
case enabled us to find an explicit expression for the re-
sponse of our system at an arbitrary position m given an
excitation at position i=0,

�m0��� = �00���	1,0
1/2e−m/
���, �8�

where

	1,0 = �X1,0
4 /�X

4 , �9�

accounts for the surface asymmetry, while


−1��� = ln��X
2 /�� = � 
 ik �10�

is a generalized wave vector. The term �00 is the RF of the
LE-NP,

�00 =
R00

��2 − �̃SP0
2 � − 	����

. �11�

where the factor

	 = 
	1,0	0,1 �12�

accounts for the effective coupling strengths, i.e., 	=0 de-
scribes an isolated LE-NP. For small 	, the peak at �̃SP0

2 is
further shifted and broadened by 	����, a complex “self-
energy” accounting for the linear array. When N, the number
of NPs, goes to infinite:

���� =
1

2
��2 − �̃SP

2 � − sgn��2 − �SP
2 �

1

2

��2 − �̃SP

2 �2 − 4�X
4 .

�13�

In the weak damping limit �WDL�, i.e., �→0+, the propa-
gating frequencies are given by the usual dispersion
relation,2

�2�k� = �SP
2 − 2�X

2 cos�kd� , �14�

with wave number k� �−� /d ,� /d�. Within the “passband”
��2−�SP

2 ��2�X
2 , each frequency component of the excitation

propagates with group velocity

vg =
d

2�

4�X

4 − ��2 − �SP
2 �2. �15�

Components outside the passband decay exponentially along
the chain within the localization length �−1. The inclusion of
electronic damping � adds a further decay and smears out
the dispersion relation. The overall behavior of Eq. �8� is
consistent with the numerical solutions including full retar-
dation effects under similar conditions.9

The local density of plasmonic states �LDPS� at site i=0
is given by Im��00�. In the WDL, LDPS quantifies the par-
ticipation of this site on the different eigenfrequencies in a
range d� around �. More generally, for finite �, � Im��00� is
proportional to the power absorbed when site 0 is irradiated
with frequency �.

The case 	=0 of Eq. �11� exemplifies the general behav-
ior of finite systems, where poles of the RP �zeros in the
denominator of �00� determine the frequencies of maximum
energy absorption. In this situation, dissipation occurs due to
the damping processes accounted by �. In an infinite system,
a new mechanism appears as Im��� also describes the irre-
versible energy spread through the chain. In this case, Eq.
�11� has “poles,” �pole, which solve:

FIG. 1. �Color online� An external source ���� excites the sur-
face plasmon ��SP0� of a NP which is coupled, through 	1/2�X

2 , to a
NP waveguide, of bandwidth ��2−�SP

2 ��2�X
2 , where detection

takes place.
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��pole
2 − �SP0

2 −
	

2
��pole

2 − �SP
2 ��2

=
	2

4
���pole

2 − �SP
2 �2 − 4�X

4 � . �16�

The solution of this equation is:

�̃pole
2 =

�� − 	�� + 1�/2�
�1 − 	�



	

2�1 − 	�

�1 − ��2 − 4V2�1 − 	� ,

�17�

where �̃pole
2 =

�pole
2

�̃SP
2 , �=

�̃SP0
2

�̃SP
2 , and V=

�X
2

�̃SP
2 . The analysis of the

different types of “poles” or solutions of Eq. �17� is simple in
the WDL. In this case, two types of nonphysical poles ap-
pear: �1� The pole has a positive imaginary part. �2� The pole
is real but it corresponds to a divergence of the original equa-
tion ��00� with a nonphysical self-energy �Im����0�. This
second alternative can appear because, in order to obtain a
closed expression for �pole, the denominator of �00 should be
squared �Eq. �16��. This makes physical and nonphysical
self-energies indistinguishable. Therefore, both solutions are
present in Eq. �17�. The second type of nonphysical poles are
associated with virtual states, because even though they do
not appear as resonances, they affect the LDPS within the
passband, in the same way as localized or “real” states.

Figure 2 shows the real part of the poles of the response
function, �pole, as function of 	1/2 for four different values of
�SP0. The figure also compares the case of the analytical
solution resulting from the WDL of Eq. �17� with its numeri-
cal evaluation for a case with realistic damping. Numerical
evaluation is required for ��0 because �, V, and �̃pole

2 de-
pend on � in this case. Notice the accuracy of the WDL
approximation. These poles provide for discrete localized
levels �L�, resonant levels �R�, and virtual states �V� accord-
ing to the parametric region.

In the WDL, when a pole is complex with a negative
imaginary part, its real part lies within the passband and
corresponds to the eigenfrequency of the LE-NP �Fig. 3�,
while its imaginary part roughly represents the decay rate.
This is the case of a resonant state. When the pole is real, the
usual situation is that the system has a localized eigenmode
whose eigenfrequency lies outside the passband �Fig. 3�. An
excitation at this frequency will remain indefinitely within
the localization length 1 /�. These two situations would typi-
cally exhaust the analysis. However, for quantum systems it
has recently become clear that the transition between these
two regimes, although covering a very narrow parametric
range, has subtle and unique properties: there is a real “pole”
which nevertheless does not correspond to an eigenstate of
the system �see Refs. 14 and 15�. As such, one might not
know what to expect. This situation worsens in a plasmonic
case where such parametric region broadens. Even though,
they are not physical poles, in fact they do not solve ��2

− �̃SP0
2 �−	�=0, they still affect the LDPS, and hence the

RF, within the passband �Fig. 3� in a similar way as localized
states. In both cases, the LDPS is modulated at the band
edges by a divergent factor 1 / ��2−�pole

2 �.

This relationship between the poles of RF and the LDPS
of the LE-NP, can be explicitly written in the WDL,

LDPS =
R00

�SP
2 � N��� � c � L��� , �18�

where c is a normalization constant

c =
2V2


4V2�1 − 	� − �1 − ��2
, �19�

L is a Lorentzian function �in a plot as function of �̃2

=�2 /�SP
2 �,

FIG. 2. �Color online� Real part of poles of � as function of 	1/2.
Here, �X

2 /�SP
2 =0.25. In �a� three different regimes are shown: dis-

crete localized levels �Ld and Lu�, resonant level �Ru� and virtual
states �Vd and Vu�. Subscript u and d stand for “up” and “down,”
the possible positions of Re��pole

2 � relative to �SP
2 . The numerical

solutions for finite � are compared with the analytical WDL. In
panel �b� we explore the dependence of the poles on �SP0. The
colored dots indicate the parameters used in the discussion of the
LDPS �see Fig. 3�.
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L��� =
�̃2

��̃2 − �̃0
2�2 + �̃4

, �20�

and N��� is proportional to the LDPS at the surface site of a
semi-infinite chain of identical NPs,

N��� =

4V2 − �1 − �̃2�2

2V2 . �21�

In the resonant state regime, the maximum and the width of
L��� are given by the real and imaginary part of �̃pole

2 ,

�̃0
2 = 
 �0

�SP
�2

=
�� − 	�� + 1�/2�

�1 − 	�
�22�

and

�̃2 = 
 �

�SP
�2

=
	

2�1 − 	�

4V2�1 − 	� − �1 − ��2. �23�

In the virtual and localized state regimes, these expressions
are still valid but L��� is no longer a Lorentzian function as

�̃2 is imaginary. In this case, it is better to write the LDPS at
the LE-NP as

LDPS =
R00

�SP
2 � N��� �

	V2

�1 − 	�
1

��̃2 − �̃pole+
2 ���̃2 − �̃pole−

2 �
.

�24�

Notice the divergences that appear at the virtual-localized
transition, i.e., when �pole reaches the passband edge. These
divergences will strongly favor the excitation transfer. Figure
4 illustrates the frequency dependent excitation transfer

along the chain for two cases: �a� a system with a resonant
state and �b� a system with both, a virtual and a localized
state.

As occurs for the oscillating-overdamped transition, and
many of the spectral bifurcations omnipresent in non-
Hermitian Hamiltonians,16 the critical parameters of Eq. �17�
occur when the argument under a square root vanishes and
they identify the phase transition in the dynamical

FIG. 5. �Color online� Color scale shows the maximum excita-
tion transfer to the 5th NP �max�P5����2 in arbitrary units� for �
=0.01�SP and �0=0.02�SP. Continuous line delimits the region of
resonant states �Eq. �25�� and dash lines mark the virtual-localized
transitions �Eq. �26��, both evaluated in the WDL.

FIG. 3. �Color online� LDPS as function of the excitation fre-
quency for different 	 values. Here, �SP0

2 /�SP
2 =1.1 and �X

2 /�SP
2

=0.25. Also, �=�0=0 except for the panel showing a localized
state case, where �=10−5. Notice the identical shape of the LDPS
near the passband edge for both virtual and localized states, and the
divergence at the virtual-localized transition.

FIG. 4. �Color online� Square dipolar moment �in arbitrary
units� as function of the NP position and excitation frequency. Here,
�=0.01�SP, �0=0.02�SP, �SP0

2 /�SP
2 =1.1, and �X

2 /�SP
2 =0.25. In

subpanel �a� 	1/2=0.63 and in subpanel �b� 	1/2=1.55. L, V, and R
stand for localized, virtual and resonant states, respectively, while u
and d stand for up and down, the position of the pole relative to
�SP.
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behavior.17 The transition resonant-virtual occurs for
Im��pole�=0:

	c1 =
2� + 4V2 − �2 − 1

4V2 , �25�

and the transition virtual-localized takes place when �pole
�R and �̃pole

2 =1
2V,

	c2�
� = 2 

�1 − ��

V
. �26�

These expressions, obtained in the WDL, are helpful to as-
sess the role of the poles in the excitation transfer.

IV. OPTIMAL EXCITATION TRANSFER

Figure 5 shows the maximum excitation transfer, �Pm�2,
enabled by a variation of � at each system configuration.
Superposed are the critical values resulting from Eqs. �25�
and �26�. Consistently with the above discussion, an appre-
ciable transfer occurs in the resonant state regime. However,
the maximum appears at the transition between virtual and
localized states. Note that the optimal configuration for ex-
citation transfer does not occur for �SP0=�SP and 	=1,
where the LE-NP is indistinguishable from the others, as one
might naïvely expect. Instead, it occurs for the highly asym-
metric configuration where a virtual-localized transition ap-
pears. In this case, an excitation of a local mode that is
coupled to collective excitations at the band edge, has com-
ponents with very slow group velocity. In consequence, un-
der a continuous irradiation, the excitation can build up. This
dynamical interpretation is consistent with the new strategy
developed in the context of photonic crystals. There,

waveguides with slow group velocities are used as a way of
buffering light.6 Alternatively, one sees that just at the
virtual-localized transition, the spectroscopic Eq. �8� favor-
ably combines its three factors: the response function on the
excited nanoparticle �00��� has a high intensity peak, this
peak is inside the passband, and the relative effective cou-
pling 	1,0

1/2 is strong. Notice that a high transfer efficiency
could be achieved even for �SP0 so different from �SP that
the system could never form a resonant state just by chang-
ing 	. In analogy with the adatom in an Anderson-Newns
model,14 a strong interaction with the substrate captures a
state from the continuum spectrum to build a second local-
ized state that would constitute the “antibonding” orbital of a
dimer.18 This occurs through a virtual-localized transition
and thus leads to the optimal excitation transfer shown in
Fig. 5. Experimentally, these critical points could be
achieved by properly tuning the distance, radius, shape and
material of the NPs. Additionally, this configuration acts as a
very narrow filter for the external frequency in resonance
with the passband edge �see Fig. 4�b��. The control of this
critical phenomenon opens up many possibilities for applica-
tions. For example, the extreme sensibility of excitation
transfer on d0,1 when the system is close to a critical transi-
tion, would enable a new form of plasmon ruler suitable for
biological and chemical applications.19 This occurs because
	 varies with d0,1

−6 and, depending on �SP0, �SP, and �X
2

which give the frequency offset of Fig. 5, the system re-
sponse sweeps through different regimes within a narrow
interval of 	. Similarly, as small changes on the refractive
index modify dramatically the coupling �X

2 and hence the
passband, the excitation transfer will also be extremely sen-
sitive to the dielectric environment in a system tuned with
the virtual-localized transition.

TABLE I. Equivalence between plasmonic and quantum mechanical magnitudes.

Plasmonics Quantum mechanics

�Near field approximation in the weak damping limit� �tight binding model�
Pi: dipole moment at ith NP ci: component of wave function at site ith

M: dynamical matrix H: Hamiltonian matrix

�SPi
2 	Mi,i: square of surface plasmon frequency of the ith

uncoupled NP Ei	Hi,i: isolated ith site energy

�2: excitation frequency �: propagation energy

Dii
�0�= ��2−�SPi

2 �−1: decoupled plasmonic Green’s function
�GF� Gii

�0�= ��−Ei�−1: local Green’s function �GF� �locator�
�Xi,j

2 	Mi,j: dipole-dipole coupling strength Vi,j 	Hi,j: hopping amplitude

D= ��2I−M�−1: plasmonic GF G= ��I−H�−1: GF

D00= ��2−�SP0
2 −	��−1: surface site GF G00= ��−E0−	��−1: surface site GF

�: plasmonic waveguide’s self energy �: linear chain’s self energy

�=
�X

4

�2−�SP1
2 −

�X
4

�2−�SP2
2 −

�X
4

¯¯−
�X

4

�2−�SPN
2

:finite system �= V2

�−E1− V2

�−E2− V2

¯¯− V2

�−EN

:finite system

�=
�X

4

�2−�SP
2 −�

:infinite system �= V2

�−E−� :infinite system
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V. CONCLUSIONS

We have demonstrated that, contrary to common wisdom,
the highest excitation transfer does not occur for a system
with a well defined resonance but when a virtual state is
transformed into a localized collective plasmonic mode
whose eigenfrequency is just at the passband edge. The slow
group velocity of an excitation with this critical frequency
enables the excitation buffering and hence favors a strong
signal inside the chain. The extreme sensitivity of this tran-
sition to the waveguide and LE-NP parameters should pro-

vide new tools for plasmonics. As the basic model is quite
general, our conclusions are universal in nature and apply to
any of the broad class of systems that can be mapped to a
linear array of damped oscillators.20
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