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Black hole nonmodal linear stability: the Schwarzschild (A)dS cases
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The nonmodal linear stability of the Schwarzschild black hole established in Phys. Rev. Lett.
112 (2014) 191101 is generalized to the case of a nonnegative cosmological constant Λ. Two gauge
invariant combinations G± of perturbed scalars made out of the Weyl tensor and its first covariant
derivative are found such that the map [hαβ ] → (G− ([hαβ ]) , G+ ([hαβ ])) with domain the set
of equivalent classes [hαβ ] under gauge transformations of solutions of the linearized Einstein’s
equation, is invertible. The way to reconstruct a representative of [hαβ ] in terms of (G−, G+) is
given. It is proved that, for an arbitrary perturbation consistent with the background asymptote, G+

and G− are bounded in the the outer static region. At large times, the perturbation decays leaving a
linearized Kerr black hole around the Schwarzschild or Schwarschild de Sitter background solution.
For negative cosmological constant it is shown that there are choices of boundary conditions at the
time-like boundary under which the Schwarzschild anti de Sitter black hole is unstable. The root of
Chandrasekhar’s duality relating odd and even modes is exhibited, and some technicalities related
to this duality and omitted in the original proof of the Λ = 0 case are explained in detail.
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I. INTRODUCTION

One of the most salient open problems in classical General Relativity (GR) is proving the stability of the outer
region of the stationary electro-vacuum black holes in the Kerr-Newman family. A complete proof of stability in the
context of the non linear GR equations has only been given for Minkowski spacetime [6]; the stability problem of
more complex solutions of Einstein’s equation is usually approached by analyzing the behavior of linear test fields
satisfying appropriate boundary conditions in order to establish if unbounded solutions are allowed. Scalar test fields
provide a first clue, whereas gravitational waves, that is, metric perturbations hαβ propagating on the background
spacetime (M, gαβ), give a more realistic approach to the problem. For vacuum spacetimes, assuming a cosmological
constant Λ, the metric perturbation hαβ satisfies the linearized Einstein equation (LEE)

E [hαβ ] := − 1
2∇γ∇γhαβ − 1

2∇α∇β(g
γδhγδ) +∇γ∇(αhβ)γ − Λ hαβ = 0, (1)

obtained by assuming that on a fixed four dimensional manifold M (the spacetime) there is a mono-parametric family
of solutions gαβ(ǫ) of the vacuum Einstein field equation

Rαβ[g(ǫ)]− Λgαβ(ǫ) = 0 (2)

around the “unperturbed background” gαβ = gαβ(0), and Taylor expanding (2) at ǫ = 0. For tensor fields that depend
functionally on the metric we use a dot to denote the “perturbed field”, which is the field obtained by taking the first
derivative with respect to ǫ at ǫ = 0, e.g., for the Riemann tensor,

Ṙα
βγδ =

d

dǫ

∣∣∣∣
ǫ=0

Rα
βγδ[g(ǫ)]. (3)

We make an exception for the metric field itself by adopting the standard notation hαβ = ġαβ and, as usually done
in linear perturbation theory, defining hαβ = gαµhµβ , and h

αβ = gαµgβνhµν . Note that this convention implies that

ġαβ = −hαβ.

Equation (1) is the first order Taylor coefficient of (2) around ǫ = 0, that is E [hαβ ] = Ṙαβ − Λhαβ. Trivial solutions
of this equation are

hαβ = £ξgαβ = ∇αξβ +∇βξα, (4)

where ξα is an arbitrary vector field; these amount to the first order in ǫ change of the metric under the pullback by
the flow Φξ

ǫ : M → M generated by the vector field ξα. Any two solutions hαβ and h′αβ such that

h′αβ = hαβ +£ξgαβ, (5)

are related by this diffeomorphism and thus physically equivalent, this being the gauge freedom of linearized gravity. If
a tensor field T is a functional of the metric g, then Ṫ is a linear functional of hαβ and, under the gauge transformation
(5) we find that

Ṫ [h′] = Ṫ [h] +£ξT. (6)
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In particular, if T is a scalar field, Ṫ is gauge invariant iff 0 = £ξT = ξα∂αT for every vector field, that is, if T is
constant in the background.
Curvature related scalar fields (CS for short, not to be confused with the tetrad components of the Weyl tensor in the
Newman-Penrose formalism), are scalar fields obtained by a full contraction of a polynomial in the Riemann tensor
and its covariant derivatives, the metric and the volume form. Although these fields partially characterize the metric,
it is well known that the information they carry is limited, an extreme example of this fact being the vanishing scalar
invariants spacetimes, which have a nonzero Riemann tensor and yet every CS vanishes [24]. This fact may suggest
that the perturbation of CS under a given solution hαβ of the LEE provide very limited information on hαβ . It was
shown in [9], however, that for a Schwarzschild black hole background, there are two gauge invariant combinations
G± of perturbed CSs that fully characterize the gauge equivalence class [hαβ ] of the corresponding solution of the
LEE. More precisely, let Cα

βγδ be the Weyl tensor, εαβµν the volume form, and consider the CSs

Q− = 1
96C

αβγδεαβµνC
µν

γδ, Q+ = 1
48C

αβγδCαβγδ, X = 1
720 (∇ǫCαβγδ)

(
∇ǫCαβγδ

)
. (7)

The background values of these fields, that is, their value for the Λ = 0 Schwarzschild solution, are Q−
0
Schw = 0,

Q+
0
Schw =M2/r6 and X0

Schw =M2(r − 2M)/r9, where M is the mass and r the areal radius, then the fields

G− = Q̇−, G+ = (9M − 4r)Q̇+ + 3r3Ẋ, (8)

made out of the first order variations of these CS, are gauge invariant. It was shown in [9] that the linear map

[hαβ ] → (G− ([hαβ ]) , G+ ([hαβ ])) (9)

with domain the equivalence classes of smooth solutions of the LEE preserving the asymptotic flatness, is injective.
This implies that the scalars G±, beyond measuring the “amount of distortion” caused by the perturbation, encode
all the relevant information on the perturbation class [hαβ ]. A way to construct a class representative hαβ from the
fields G± ([hαβ ]) is indicated in [9].

The stability concept introduced in [9] is based on i) the existence of the CSs G± for which (9) is injective on
smooth solutions of the LEE that preserve the asymptotic flatness, and ii) the proof that for this class of solutions of
the LEE the scalar fields G± ([hαβ]) are bounded. More precisely, it is proved in [9] that in the outer region r ≥ 2M

|G−| <
K−

r6
, |G+| <

K+

r3
, (10)

where K± are constants that can be obtained from the perturbation field datum at a Cauchy slice. Given that the
scalars G± contain all the gauge invariant information on the perturbation, the fact that they remain bounded as the
perturbation evolves through spacetime gives a meaningful notion of linear stability.

This concept of stability, that we call nonmodal, should be compared with prior linear gravity stability notions
for the Schwarzschild black hole. To this end we review the results in a short list of papers that were crucial in the
development of this subject. It is important to stress that they all use the spherical symmetry of the Schwarzschild
spacetime to decompose a metric perturbation

hαβ =
∑

(ℓ,m,p=±)

h
(ℓ,m,p=±)
αβ (11)

into even (p = +) and odd (p = −) (ℓ,m) modes. Here ℓ refers to the eigenspace of the Laplace-Beltrami operator
acting on real scalar fields on S2 corresponding to the eigenvalue −ℓ(ℓ+ 1), m is an index labeling a particular basis

of this 2ℓ+1 dimensional space, and the parity p accounts for the way h
(ℓ,m,p=±)
αβ transforms when pull-backed by the

antipodal map on S2 (for details refer to Section IIA).
The first work on the linear stability of the Schwarzschild black hole is T. Regge and J. Wheeler 1957 paper [26], where
the decomposition (11) was proposed and the ℓ = 0, 1 modes where recognized to be non-dynamical. At the time the
very notion of black hole was unclear (the term “black hole” was coined by J. Wheeler some ten years later), and
Kerr’s solution had not yet been discovered. This is probably why, although the ℓ = 0 even piece of the perturbation
was readily identified as a mass shift in [26], the odd ℓ = 1 modes, which corresponds to perturbing along a Kerr
family gαβ(ǫ) with ǫ = J/M , was misunderstood (see the paragraph between equations (37) and (38) in [26]) and
the opportunity of producing a “slowly rotating” black hole at a time when there was no clue about a rotating black
hole solution was missed [? ]. The decomposition (11) in [26] was done in Schwarzschild coordinates (t, r, θ, φ) in
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what came to be called the Regge-Wheeler (RW, for short) gauge. The LEE in the even and odd sectors were shown
to decouple, and the dynamical odd sector of the LEE reduced to an infinite set of two dimensional wave equations,
individually know as the RW equation:

(∂2t − ∂2r∗ + fV RW
(ℓ,m))φ

−
(ℓ,m) = 0, ℓ ≥ 2, (RWE)

where (adding a cosmological constant Λ for future reference) ∂r∗ = f∂r, f = 1− 2M/r − Λr2/3, and

V RW
(ℓ,m) =

ℓ(ℓ+ 1)

r2
− 6M

r3
. (12)

The ℓ ≥ 2 even sector LEE, a much more intricate system of equations, was disentangled by F. Zerilli in his 1970
paper [32] and shown to be equivalent to the wave equations

(∂2t − ∂2r∗ + fV Z
(ℓ,m))φ

+
(ℓ,m) = 0, ℓ ≥ 2, (ZE)

with potentials

V Z
(ℓ,m) =

[µ2ℓ(ℓ+ 1)− 24M2Λ]r3 + 6µ2Mr2 + 36µM2r + 72M3

r3 (6M + µr)2
, µ = (ℓ− 1)(ℓ+ 2). (13)

For Λ 6= 0 the RW and Zerilli potentials first appeared in [17]. The solution of the LEE in the RW gauge is then given
in the form

(RW )h
(ℓ,m,p=±)
αβ = D(ℓ,m,p=±)

αβ

[
φ±(ℓ,m), S(ℓ,m)

]
(14)

where D(ℓ,m,p=±)
αβ is a bilinear differential operator acting on φ±(ℓ,m) and the spherical harmonics S(ℓ,m). Note that,

since focus is on non-stationary modes, only ℓ ≥ 2 enter this formulation. The non-stationary solution space of the
LEE is thus parametrized by the infinite set of scalar fields φ±(ℓ,m) that enter the series (11) through (14).

Every notion of gravitational linear stability of the Schwarzschild black hole prior to [9] was concerned with the
behavior of the potentials φ±(ℓ,m) of isolated (ℓ,m) modes (we call this “modal linear stability”). In particular:

• In [26] it was shown that separable solutions φ−(ℓ,m) = ℜ eiωtχ−
(ℓ,m)(r) that do not diverge as r → ∞ require

ω ∈ R, ruling out exponentially growing solutions in the odd sector.

• In [32] it was shown that separable solutions φ+(ℓ,m) = ℜ eiωtχ+
(ℓ,m)(r) that do not diverge as r → ∞ require

ω ∈ R, ruling out exponentially growing solutions in the even sector.

• In [25] it was shown that, for large t and fixed r, φ±(ℓ,m)(t, r) decays as t
−(2ℓ+2) (an effect known as “Price tails”).

• In [29], the conserved energy

∫ ∞

2M

[
(∂tφ

±
(ℓ,m))

2 + (∂r∗φ
±
(ℓ,m))

2 + φ±(ℓ,m)fV
RW/Z
(ℓ,m) φ±(ℓ,m)

]
fdr (15)

was used to rule out uniform exponential growth in time.

• Also in [29], a point wise bound on the RW and Zerilli potentials was found in the form

|φ±(ℓ,m)(t, r)| < C±
(ℓ,m), r > 2M, all t, (16)

where the constants C±
(ℓ,m) are given in terms of the initial data (φ±(ℓ,m)(to, r), ∂tφ

±
(ℓ,m)(to, r))

To understand the limitations of these results it is important to keep in mind that the φ±(ℓ,m) are an infinite set

of potentials defined on the (t, r) orbit space M/SO(3), whose first and second order derivatives φ±(ℓ,m) enter the

terms in the series (11) through (14), together with first and second derivatives of the spherical harmonics. Two
extra derivatives are required to calculate the perturbed Riemann tensor, as a first step to measure the effects of the
perturbation on the curvature. Thus, the relation of the potentials φ±(ℓ,m) to geometrically meaningful quantities is
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remote, and the usefulness of the bounds (16) to measure the strength of the perturbation is far from obvious.

The motivation of the nonmodal approach can be better understood if we put in perspective the progress made in
[29], equation (16). The fact that the two dimensional wave equations (RWE) and (ZE) can be solved by separating
variables (φ±(ℓ,m) = eiωtψ(r)) had previous works on linear stability focus on showing that ω must be real, a limited

notion of stability that does not even rule out, e.g., linear t growth [29]. To obtain the type of bounds (16) one must
“undo” the separation of variables and reconsider the original equations (RWE) and (ZE), as this allows to work out
results that are valid for generic, non separable solutions. The idea behind the non modal stability concept introduced
in this paper, is to go one step further and “undo” the separation of the (θ, φ) variables that antecedes the reduction
of the LEE to (RWE) and (ZE), in order to get bounds for truly four dimensional quantities. When trying to make
this idea more precise, one is immediately faced to the problem of which four dimensional quantity one should look
at. If this quantity is to measure the strength of the perturbation, it should be a field related to the curvature change,
and it should also be a scalar field, since there is no natural norm for a tensor field in a Lorentzian background. If
this scalar field does not obey a four dimensional wave equation (or some partial differential equation), we do not
have a clear tool to place bounds on it. Thus, we are naturally led to the question of the existence of scalar fields
made from perturbed CSs that, as a consequence of the LEE, obey some wave-like equation. This is the problem we
address in this paper. The name nonmodal stability is borrowed from fluid mechanics, where the limitations of the
normal mode analysis were realized some thirty years ago in experiments involving wall bounded shear flows [30]. In
that problem, the linearized Navier-Stokes operator is non normal, so their eigenfunctions are non orthogonal and, as
a consequence, even if they individually decay as eiwt,ℑ(w) > 0, a condition that assures large t stability, there may
be important transient growths [30]. Take, e.g., the following simple example (from [30], section 2.3 and figure 2) of a
system of two degrees of freedoms: ~v ∈ R

2 obeying the equation d~v/dt = −A~v, with [A,AT ] 6= 0 a matrix with (non
orthogonal!) eigenvectors ~e1, ~e2, say,

A =

(
1 γ
0 2

)
, ~e1 =

(
1
0

)
, ~e2 =

(
1
γ−1

)
(17)

Consider the case γ >> 1. Note that, although ω1 = i, ω2 = 2i, that is, normal modes decay exponentially, if
~v(0) = α(~e1 − ~e2), then ~v(t) = α~e1e

−t − α~e2e
−2t reaches a maximum norm ||~v|| ≃ (γ/4)||~v(0)|| at a finite time before

decaying to zero.

For the odd sector of the LEE, a four dimensional approach relating the metric perturbation with a scalar potential
Φ defined on M (instead ofM/SO(3)) was found in [9], where it was noticed that the sum over (ℓ,m) of (14) simplifies
to

RWh−αβ =
∑

(ℓ≥2,m)

D(ℓ,m,−)
αβ

[
φ−(ℓ,m), S(ℓ,m)

]
=

r2

3M
∗Cα

γδ
β∇γ∇δ

(
r3Φ

)
, (18)

where Φ is a field assembled using spherical harmonics and the RW potentials:

Φ =
∑

(ℓ≥2,m)

φ−(ℓ,m)

r
S(ℓ,m) : M → R. (19)

The odd sector LEE equations (RWE) for φ−(ℓ,m) : M/SO(3) → R combined to the spherical harmonic equations for

the spherical harmonics S(ℓ,m) : S
2 → R, turn out to be equivalent to what we call the four dimensional Regge-Wheeler

equation which, adding a cosmological constant, reads

∇α∇αΦ +

(
8M

r3
− 2Λ

3

)
Φ = 0. (4DRWE)

Note however that Φ is no more than the collection of φ−(ℓ,m)’s, so its connection to geometrically relevant fields is

loose. Much more important is the fact, also proved in [9] for Λ = 0, that the LEE implies that the field r5Q̇− = r5G−

also satisfies the 4DRWE, as this is what allows us to place a point wise bound on G− = Q̇−.
The even sector of the LEE is more difficult to approach. Is the simplicity of the RW potential (12), with the obvious
ℓ(ℓ+ 1)/r2 term, what suggested considering the field (19). The way ℓ appears in (13), instead, is a clear indication
that there is no natural 4D interpretation of (ZE). Is a map exchanging solutions of the RWE and ZE equations, found
by Chandrasekhar [4], what ultimately allows us to also reduce the even non stationary LEE equations to (4DRWE).



6

As a consequence, the entire set of non stationary LEE reduces to two fields satisfying equation (4DRWE), as stated
in Theorem 4 below.

The purpose of this paper is twofold: (i) to extend the results in [9] to Schwarzschild black holes in cosmological
backgrounds, and (ii) to explain in detail a number of technicalities omitted in [9] due to the space limitations imposed
by the letter format. For Λ ≥ 0 we give a proof of non-modal stability. We leave aside the treatment of stability
of the Schwarzschild anti de Sitter (SAdS) black hole, since the issue of non global hiperbolicity and ambiguous
dynamics due to the conformal timelike boundary takes us away from the core of the subjects addressed here. We
show however that there is (at least) one choice of Robin boundary condition at the time-like boundary for which
there is an instability, and we explicitly exhibit this instability and its effect on the background geometry. To the
best of our knowledge, this has not been informed before. A systematic study of the gravitational linear stability of
SAdS black holes under different boundary conditions is to be found in [33].

We have found that (G+, G−) defined in (8) are appropriate variables to study the most general gravitational linear
perturbations of Schwarzschild (A)dS black holes. The ℓ = 0, 1 pieces of these fields encode the relevant information
on the stationary modes, which are perturbations within the Kerr family (parametrized by mass M and the angular
momenta components), whereas the ℓ ≥ 2 terms encode the dynamics. More precisely:

• G− contains no ℓ = 0 term, time independent ℓ = 1 terms proportional to the first order angular momenta
components j(i), and a time dependent ℓ > 1 piece obeying the 4DRW equation.

• G+ contains no ℓ = 1 term, a time independent ℓ = 0 piece proportional to a mass shift Ṁ , and a time dependent
ℓ > 1 piece which, for Λ ≥ 0, can be written in terms of fields obeying the 4DRW equation.

Once the appropriate set of perturbation fields (G+, G−) is given, and their relation to the 4DRW equation established
for Λ ≥ 0, we may adapt to the 4DRW equation the techniques used to prove boundedness of solutions of the scalar
wave equation, in order to analyze the behavior of the G± fields. As an example, the result of Kay and Wald [21]
was used in [9] to prove (10) in the Schwarzschild case, and is adapted here to prove that (10) holds also for positive
Λ. We can go further and take advantage of the growing literature on decay of solutions of the scalar wave equation
on S(A)dS backgrounds, as many of these results are expected to hold also for (4DRWE). Specific time decay results
for the 4DRW equation, somewhat expected from Price’s result [25], can be found in [1] (see also the recent preprint
[7]). Putting together the bijection (9), the above description of the stationary (ℓ = 0, 1) and dynamic (ℓ ≥ 2) pieces
of G±, and the time decay results, the following picture emerges for a perturbed Schwarzschild (SdS) black hole: a
generic perturbation contains a mass shift, infinitesimal angular momenta j(i) and dynamical degrees of freedom; at
large times the dynamical degrees of freedom decay and what is left is a linearized Kerr (Kerr dS) black hole around
the background Schwarzschild (SdS) solution.

Through the paper, calculations are carried leaving Λ unspecified whenever possible, and specializing when neces-
sary. Among the many current treatments of linear perturbations of spherically symmetric spacetimes, we have made
heavy use of the excellent paper [5], which we found particularly well suited to our approach.

II. TENSOR FIELDS ON A SPHERICALLY SYMMETRIC SPACE-TIME

A spherically symmetric space-time is a warped product M = O ×r2 S
2 of a Lorentzian two-manifold (O, g̃) with

the unit sphere (S2, ĝ), for which we will use the standard angular coordinates ĝABdy
AdyB = dθ2 + sin2 θ dφ2:

gαβdz
αdzβ = g̃ab(x)dx

adxb + r2(x)ĝAB(y)dy
AdyB. (20)

The form of the metric (20) implies that (M, g) inherits the isometry group O(3) = SO(3) × P of (S2, ĝ) as an
isometry subgroup. Here SO(3) are the proper rotations and P is the antipodal map P (θ, φ) = (π − θ, φ+ π). Since
SO(3) acts transitively on S2, we find that O = M/SO(3), this is why (O, g̃) is called the (SO(3)) orbit space.

Equation (20) exhibits our index conventions, which we have adopted form ref [5]: lower case Latin indexes are
used for tensors on O, upper case Latin indexes for tensors on S2, and Greek indexes for space-time tensors. We will
furthermore assume that

α = (a,A), β = (b, B), γ = (c, C), δ = (d,D), ... (21)

Tensor fields introduced with a lower S2 index (say ZA) and then shown with an upper S2 index are assumed to
have been acted upon with the unit S2 metric inverse ĝAB, (i.e., ZA ≡ ĝABZB), and similarly for upper S2 indexes
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moving down. D̃a, ǫ̃ab and g̃ab are the covariant derivative, volume form (any chosen orientation) and metric inverse

for (O, g̃); D̂A and ǫ̂AB are the covariant derivative and volume form on the unit sphere, for which we assume the
standard orientation ǫ̂ = sin(θ)dθ ∧ dφ.
As an example, in terms of the differential operators D̃a and D̂A, the Laplacian on scalar fields reads

∇α∇αΦ = D̃aD̃
aΦ +

2

r
(D̃br)(D̃bΦ) +

1

r2
D̂AD̂

AΦ. (22)

A. Covector and symmetric tensor fields

The Einstein field equation, as well as its linearized version around a particular solution, is expressed as an equality
among symmetric tensor fields. The metric perturbation hαβ may be subjected to gauge transformations of the form
(5). This is why we are interested in the decomposition on a spherically symmetric spacetime of covector fields (such
as ζα) and symmetric rank two tensor fields such as hαβ .
We will assume all tensor fields on M are smooth. As a consequence their components will be square integrable on
S2 and can be expanded using a real orthonormal basis of scalar spherical harmonics

D̂AD̂AS(ℓ,m) + ℓ(ℓ+ 1)S(ℓ,m) = 0, (23)
∫

S2

S(ℓ′,m)S(ℓ,m)ǫ̂ = δℓℓ′δmm′ , (24)

where m numbers an orthonormal basis S(ℓ,m) of the (2ℓ+1)-dimensional eigenspace with eigenvalue −ℓ(ℓ+1) of the

Laplace-Beltrami operator D̂AD̂A on scalar functions (ℓ = 0, 1, 2, 3, ...). An explicit choice for the ℓ = 0, 1 subspaces

is S(0,0) =
√

1
4π , and

S(1,1) =

√
3

4π
sin θ cosφ

S(1,2) =

√
3

4π
sin θ sinφ

S(1,3) =

√
3

4π
cos θ.

(25)

We denote L2(S2)ℓ the ℓ subspace of L2(S2) and L2(S2)>j =
⊕

ℓ>j L
2(S2)ℓ.

A covector field on M

ξα = (ξa, ξA), (26)

contains the S2 covector ξA which, according to Proposition 2.1 in [20], can be uniquely decomposed as ξA = D̂Aa+VA
where D̂AVA = 0. This last condition implies that VA is dual to the differential of an S2−scalar, VA = ǫ̂A

CD̂Cb. It
then follows that, introducing a = r2X and b = r2Y for later convenience,

ξα = ξ(−)
α + ξ(+)

α , (27)

where the odd piece of ξα is

ξ(−)
α = (0, r2 ǫ̂A

CD̂CY ), (28)

and its even piece is

ξ(+)
α = (ξa, r

2 D̂AX). (29)

For a given covector field ξα, the scalar fields X,Y : M → R are unique up to an S2-constant, thus they are unique
if we require that they belong to L2(S2)>0

∫

S2

X ǫ̂ = 0 =

∫

S2

Y ǫ̂, (30)
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a condition that we will assume. The symmetric tensor field hαβ = hβα

hαβ =

(
hab haB
hAb hAB

)
, (31)

contains two S2 covector fields

haB = D̂Bqa + ǫ̂B
CD̂Cha (32)

and a symmetric S2 tensor field hAB. Note that qa and ha are covector fields on O parametrized on S2.
Using Proposition 2.2 in [20] and the fact that there are no transverse traceless symmetric tensor fields on S2 [18], we
find that the S2 symmetric tensor hAB in (31) can be uniquely decomposed into three terms:

hAB = 2D̂(A(ǫ̂B)CD̂
CL) +

(
2D̂AD̂B − ĝABD̂

CD̂C

)
S1 + ĝAB

S2

2
. (33)

Introducing J = S2/r
2, G = S1/r

2 and k = L/r2 we arrive at (c.f., [5], Section IV.A)

Lemma 1. A generic smooth metric perturbation admits the following decomposition:

hαβ = h
(−)
αβ + h

(+)
αβ (34)

where the odd piece of hαβ is

h
(−)
αβ =

(
0 ǫ̂B

CD̂Cha
ǫ̂A

CD̂Chb 2r2ǫ̂(A
CD̂B)D̂Ck

)
(35)

and the even piece is

h
(+)
αβ =

(
hab D̂Bqa

D̂Aqb r2
[
J
2 ĝAB + (2D̂AD̂B − ĝABD̂

CD̂C)G
]
)
. (36)

The proof of the following lemma follows from straightforward calculations:

Lemma 2.

(i) The kernel of the map (ha, k) → h
(−)
αβ defined in (35) is the set of ha and k of the form

ha = ha(x), k = k1(x) + k2(x) cos(θ) + sin(θ) (k3(x) cos(φ) + k4(x) sin(φ)) , (37)

This implies that ha and k are unique if they are required to belong to L2(S2)>0 and L2(S2)>1 respectively:

ha =
∑

ℓ≥1,m

h(ℓ,m)
a (x)S(ℓ,m)(θ, φ), k(x) =

∑

ℓ≥2,m

k(ℓ,m)(x)S(ℓ,m)(θ, φ). (38)

(ii) The kernel of the map (hab, qa, J,G) → h
(+)
αβ defined in (36) is characterized by hab = 0, J = 0,

qa = qa(x), G = G1(x) +G2(x) cos(θ) + sin(θ) (G3(x) cos(φ) +G4(x) sin(φ)) , (39)

thus, the fields (hab, qa, J,G) are uniquely defined if we require that qa ∈ L2(S2)>0 and G ∈ L2(S2)>1.

From now on we will assume the required conditions for uniqueness of k, J,G, ha, qa and hab.

The linearized Ricci tensor Ṙαβ admits a decomposition analogous to (31)-(36). Given that S2−scalar fields, diver-

gence free covector fields (which are all of the form ǫ̂A
BD̂BC) and transverse traceless symmetric tensors on S2 span

inequivalent O(3) representations, and that the linear map hαβ → Ṙαβ is O(3) invariant, this map cannot mix odd

and even sectors [20]. This implies that Ṙ
(+)
αβ is a linear functional of h

(+)
αβ only, and similarly Ṙ

(−)
αβ depends only on h

(−)
αβ .
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Note from (25) that

JA
(m) =

√
4π
3 ǫ̂ABD̂BS(1,m), (40)

m = 1, 2, 3, is a basis of Killing vector fields on S2 generating rotations around orthogonal axis, normalized such that
the maximum length of their orbits is 2π. The square angular momentum operator is the sum of the squares of the
Lie derivatives along these Killing vector fields:

J
2 =

3∑

m=1

(£J(m)
)2. (41)

This operator commutes with the maps (ha, k) → h
(−)
αβ and h

(−)
αβ → R

(−)
αβ (and similarly in the even sector). As a

consequence, the (ℓ,m) piece of R
(−)
αβ depends only on the (ℓ,m) piece of h

(−)
αβ (see equation (38)):

h
(ℓ,m,−)
αβ =

(
0 h

(ℓ,m)
a ǫ̂B

CD̂CS(ℓ,m)

h
(ℓ,m)
b ǫ̂A

CD̂CS(ℓ,m) 2r2k(ℓ,m)ǫ̂(A
CD̂B)D̂CS(ℓ,m)

)
, (42)

and similarly in the even sector. Note from (42) and (40) that the odd ℓ = 1 modes add up to

h
(ℓ=1,−)
αβ =


 0

∑3
m=1

√
3
4π h

(ℓ=1,m)
a J(m)B

∑3
m=1

√
3
4π h

(ℓ=1,m)
b J(m)A 0


 . (43)

These ℓ = 1 perturbations correspond to infinitesimal rotation, i.e., to deformations towards a stationary Kerr solution.

The (ℓ,m,+) mode is defined in a way analogous to (42), i.e., keeping a single term in the spherical harmonic
expansion of the even fields (hab, qa, J,G). It is important to note that

J
2h

(ℓ,m,±)
αβ = −ℓ(ℓ+ 1)h

(ℓ,m,±)
αβ , (44)

P∗h
(ℓ,m,±)
αβ = ±(−1)ℓh

(ℓ,m,±)
αβ . (45)

The different behavior under parity is the signature that distinguishes odd from even modes.

B. The Schwarzschild (A)dS solution

The Schwarzschild / Schwarzschild (anti) de-Sitter (S(A)dS) is the only spherically symmetric solution of the
vacuum Einstein equation with a cosmological constant Λ:

Rαβ = Λgαβ, (46)

Rαβ the Ricci tensor of the Lorentzian metric gαβ. The manifold is Rv × (0,∞)r ×S2, the metric (c.f. equation (20))

ds2 = −fdv2 + 2dv dr + r2
(
dθ2 + sin2 θ dφ2

)
, f = 1− 2M

r
− Λr2

3
. (47)

The constant M is the mass of the solution, M = 0 in (47) gives the Minkowski (Λ = 0), de Sitter (Λ > 0) and anti
de Sitter (Λ < 0) spacetimes. M > 0 in (47) corresponds to a Schwarzschild black hole if Λ = 0, a Schwarzschild de
Sitter (SdS) black hole if Λ > 0 and Λ < (3M)−2, and SAdS black hole if Λ < 0.

The Killing vector field ka∂a = ∂/∂v is timelike in the open sets defined by f > 0 and spacelike in the open sets
defined by f < 0. The null hypersurfaces of constant positive r where f = 0 are the horizons, they cover the curvature
singularity at r = 0.

In any open set where f 6= 0 we may define a “tortoise” radial coordinate r∗ by

dr∗

dr
=

1

f
, (48)
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and a coordinate t through

t = v − r∗. (49)

The metric in static coordinates (t, r, θ, φ) is

ds2 = −fdt2 + dr2

f
+ r2

(
dθ2 + sin2 θ dφ2

)
. (50)

1. Horizons and the static region

The Schwarzschild (Λ = 0) and the SAdS (Λ < 0) black holes have a single horizon at r = rh, satisfying

rh = 2M + 1
3Λrh

3 ≤ 2M, (51)

in terms of which

f = 1− (1− 1
3Λrh

2)rh

r
− Λr2

3
. (52)

These black holes have a non-static region I defined by 0 < r < rh and a static region II defined by rh < r <∞.

The SdS black holes are those for which 0 < Λ < (3M)−2 (f has single real root when Λ > (3M)−2, and this root is
negative). For SdS black holes f has one negative (ro) and two positive roots rh < rc, ro+ rh+ rc = 0, with rc → rh

+

as 9M2Λ → 1−, and [22]

2M < rh < 3M < rc. (53)

There is a non-static region I defined by 0 < r < rh adjacent to a static region II (rh < r < rc), and a further
non-static region III defined by r > rc.

This paper focuses on the stability of the static region II of Schwarzschild and S(A)dS black holes.

2. The bifurcation sphere at r = rh

Let g be the function

g(r) =
1

f(r)
− 1

f ′(rh)(r − rh)
. (54)

g is smooth in I ∪ II (i.e., 0 < r < rc for SdS, 0 < r for Schwarzschild and SAdS), since f is smooth with a simple
zero at r = rh and no zeros in I and II.
Consider the following solution of (48)

r∗ = G(r) +
1

f ′
h

ln

∣∣∣∣
r

rh
− 1

∣∣∣∣ ,
dG

dr
= g, f ′

h = f ′(rh) (55)

The most general solution is obtained by adding (possibly different) constants to the left and right of r = rh, however,
for r∗ as in (55), the function

s(r) = (r/rh − 1) ef
′

hG =

{
ef

′

hr
∗

, in II

−ef ′

hr
∗

, in I
(56)

is smooth in I ∪ II, and monotonically growing, so it has an inverse r = K(s). Introduce u = t − r∗ in addition to
v = t+ r∗ above, then

ds2 = −f(r)dudv + r2
(
dθ2 + sin2 θ dφ2

)
. (57)
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Now let

(U, V ) =

{
(−e−f ′

hu/2, ef
′

hv/2) , in II

(e−f ′

hu/2, ef
′

hv/2) , in I
(58)

Note that UV = −s(r) and dUdV = 1
4f

′
h
2
s(r) dudv, therefore (47) is equivalent to

ds2 =
4f(r)

f ′
h
2UV

dUdV + r2
(
dθ2 + sin2 θ dφ2

)
, r = k(−UV ), k(−UV ) > 0 (59)

and V > 0. We may now take two extra copies of I and II (call these I′ and II′) and define

(U, V ) =

{
(e−f ′

hu/2,−ef ′

hv/2) , in II′

(−e−f ′

hu/2,−ef ′

hv/2) , in I′
(60)

The black hole metric (47) in I′ ∪ II′ is again given by equation (59), except that now V < 0. It can be checked that
(59) is smooth on S2 times the open region of the (U, V ) plane defined by K(−UV ) > 0 (0 < K(−UV ) < rc for SdS).
This region contains two copies of I and two copies of II. Since r is a function of the product UV , the metric (59) has
the discrete Z2 symmetry (U, V ) → (−U,−V ) under which I ↔ I′ and II ↔ II′. The Z2 invariant set U = V = 0 is a
sphere of radius rh, called bifurcation sphere.

Integrating (48) in region II we find that, for Λ = 0, after choosing an integration constant,

r∗ = r + 2M ln
( r

2M
− 1
)
; (61)

for Λ < 0 the integration constant can be chosen such that

r∗ = −
∫ ∞

r

dr′

f(r′)
≃
{

rh
1−Λrh2 ln

(
r
rh

− 1
)

, r → r+h
3
Λr , r → ∞

, (62)

and for 0 < 9M2Λ < 1 and rh < r < rc,

r∗ ≃





rh(rhrc+rh
2+rc

2)
(rc−rh)(2rh+rc)

ln
(

r
rh

− 1
)

, r → r+h
rc(rhrc+rh

2+rc
2)

(rh−rc)(2rc+rh)
ln
(

r
rc

− 1
)

, r → r−c
. (63)

It follows that, in region II of a Schwarzschild or SdS black hole, −∞ < r∗ < ∞ (which corresponds to the entire
quadrants U < 0, V > 0 and U > 0, V < 0). For SAdS, on the other hand, −∞ < r∗ < 0, therefore U > −1/V in II,
and U < −1/V in II′.

The above construction gives the Penrose-Carter diagrams in Figure 1. In the AdS case (right side of the figure),
there is a conformal time like boundary corresponding to U > −1/V in II, and U < −1/V in II′. The conformal
boundary of region II is replaced in the Schwarzschild case by null infinity, and in the SdS case by the cosmological
horizon (left side of the figure). For the SdS black hole it is possible to follow a procedure similar to the one outlined
above that gives a further extension with a bifurcation sphere at r = rc, two copies of region III, and an extra copy
of II. The maximal analytic extension of SdS contains infinitely many copies of I, II, and III [15].

3. Hyperbolic equations and global hyperbolicity of the static region

If we use the coordinates (t, r∗, θ, φ), the scalar wave equation (22) acquires the simple form

∇α∇αΦ =
1

rf

[
−∂2t + ∂2r∗ + f

(
D̂AD̂A

r2
− 2M

r3
+

2Λ

3

)]
(rΦ), (64)

and (4DRWE) reduces to

0 = −rf
[
∇α∇αΦ+

(
8M

r3
− 2Λ

3

)
Φ

]
=

[
∂2t − ∂2r∗ − f

(
D̂AD̂A

r2
+

6M

r3

)]
(rΦ), (65)
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FIG. 1. Left: Penrose-Carter diagram for a Schwarzschild black hole (SdS black hole). The dotted lines are the r = 0
singularities, the thick lines are past and future event horizons -the U and V axis in (59)-, they intersect at the bifurcation
sphere. The thin lines correspond to null infinity (the cosmological horizon).
Right: Penrose-Carter diagram for a SAdS black hole. The dotted lines are the singularities at r = 0, the thick lines are the
past and future event horizons -the U and V axis intersecting at the bifurcation sphere-. The thin time-like lines correspond
to null infinity.

that is,

∂2

∂t2
(rΦ) +AΛ (rΦ) = 0, (66)

where

AΛ = − ∂2

∂r∗2
+

(
1− 2M

r
− Λ

3
r2
)(

−6M

r3
− D̂AD̂A

r2

)
=: − ∂2

∂r∗2
+ V1 − V2D̂

AD̂A, (67)

and

V1 =

(
1− 2M

r
− Λ

3
r2
)(

−6M

r3

)
and V2 =

(
1− 2M

r
− Λ

3
r2
)(

1

r2

)
. (68)

If we expand Φ in spherical harmonics,

Φ =
∑

(ℓ≥0,m)

φ(ℓ,m)

r
S(ℓ,m) : M → R (69)

and use this in equations (66)-(68), we find that (4DRWE) is indeed equivalent to the set of equations (RWE),
extended to include ℓ = 0, 1.

Note that, although the above equations are formally similar for different values of Λ, −∞ < r∗ < ∞ as r spans
region II of the Schwarzschild and SdS black holes, but is restricted to r∗ < 0 in region II of the SAdS black hole.
The reason why equation (4DRWE) for SAdS is equivalent to a system of wave equations with a potential in a half of
a two dimensional Minkowski space, is that region II of SAdS is not globally hyperbolic, but has a conformal timelike
boundary at r∗ = 0 (equation (62)). The problem of defining the dynamics imposed by hyperbolic equations (such
as (4DRWE), (RWE) and (ZE)) in a non globally hyperbolic static spacetime (either SAdS or its two dimensional
orbit space SAdS/SO(3)), that is, giving unique solutions from initial data at a surface Σo transverse to the timelike
Killing vector field ka, has been addressed in the series of articles [31], [19] and [20]. As expected, the dynamics is
unique only within the domain of dependence of the support of the initial datum; outside it, it depends on the self
adjoint extension that we choose for the operator A which is roughly our choice of boundary conditions at r∗ = 0.
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For the Zerilli equation (ZE) of an SAdS black hole, we have found that there is a choice of boundary conditions
at r∗ = 0 under which even perturbations that preserve the AdS asymptote, grow exponentially with time. For this
choice, SAdS is unstable. There is an infinite set of possible boundary conditions for equation (ZE) in SAdS/SO(3),
we are currently analyzing the dynamics and stability of SAdS black holes under different choices [33].

III. THE LINEARIZED EINSTEIN EQUATION: ODD SECTOR

There are many sources for the well know solution of the LEE around a Schwarzschild background. Two historically
relevant references are [23], where the gauge invariance of RW and Zerilli potentials was established, and [12], where
a “covariant” formulation using arbitrary coordinates for the orbit space in order to study, e.g., waves crossing the
horizon was developed (this should more properly be called “2D covariant approach”). More recently, the 2D covariant
approach was generalized to GR black holes with constant curvature horizons in arbitrary dimensions and including a
cosmological constant in a series of papers by Ishibashi and Kodama (see, e.g., [13] and [14]). We find the 2D covariant
approach in reference [27] particularly well adjusted to our purposes as, although restricted to the dynamical ℓ ≥ 2
perturbations, avoids unnecessary expansions in harmonic modes. Section V in [27] is devoted to the Schwarzschild
black hole, we generalize the exposition there to Λ 6= 0 below.

A. Gauge transformations and gauge invariants

The effect of the diffeomorphism generated by the vector field ξα on the first order variation of a tensor T is
Ṫ → Ṫ +£ξT . In particular, the effect on hαβ = ġαβ,

hαβ → £ξgαβ = hαβ +∇αξβ +∇βξα = h′αβ, (70)

defines an equivalence relation where hαβ ∼ h′αβ iff there exists a covector field ξα such that (70) holds. To measure

the strength of the perturbation we will analyze gauge invariant fields, i.e., fields that depend only on the class [hαβ ]
of a metric perturbation under the equivalence relation defined above. In this section we show how to parametrize
the set of classes [hαβ ] by means of gauge invariant fields and how to choose a class representative (gauge fixing).

Given a generic vector field (26)-(30) we find that

∇αξ
(−)
β +∇βξ

(−)
α =




0 ǫ̂B
CD̂C(r

2D̃aY )

ǫ̂A
CD̂C(r

2D̃bY ) 2r2ǫ̂(B
CD̂A)D̂CY


 (71)

and

∇αξ
(+)
β +∇βξ

(+)
α =




D̃aξb + D̃bξa D̂B(r
2D̃aX + ξa)

D̂A(r
2D̃bX + ξb) 2r2D̂AD̂BX + 2r(D̃ar)ξ

aĝAB


 (72)

where it should be kept in mind that X and Y belong to L2(S2)>0. These equations imply that the odd (even) piece
of ξα affects the odd (even) piece of hαβ in (70). Let us analyze the effect of gauge transformations in the odd sector.
Inserting Y = Y(ℓ=1) + Y >1,

Y(ℓ=1) =
3∑

m=1

Y(m)(x)S(ℓ=1,m)(θ, φ), Y >1 =
3∑

ℓ≥2,m

Y(ℓ,m)(x)S(ℓ=1,m)(θ, φ),

in (71) (x are coordinates of the orbit manifolds, S(ℓ,m) orthonormal real spherical harmonics), defining h
(−,>1)
αβ =

h
(−)
αβ − h

(ℓ=1,−)
αβ and splitting similarly all the other fields, we find from (43), (70) and (40) that

h′
(ℓ=1,−)
αβ =




0
∑3

m=1

√
3
4π

(
h
(ℓ=1,m)
a + r2D̃aY(m)

)
J(m)B

∑3
m=1

√
3
4π

(
h
(ℓ=1,m)
b + r2D̃bY(m)

)
J(m)A 0


 (73)
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and also that

h′
(−,>1)
αβ =




0 ǫ̂B
CD̂C

(
h>1
a + r2D̃aY

>1
)

ǫ̂A
CD̂C

(
h>1
b + r2D̃bY

>1
)

2r2ǫ̂(A
CD̂B)D̂C(k

>1 + Y >1)


 (74)

This last equation implies that: i) Ha = h>1
a − r2D̃ak

>1 is a gauge invariant field and ii) there is a gauge (commonly
known as the Regge-Wheeler gauge) where the ℓ > 1 piece of the odd metric perturbation assumes the form

h
(−,>1)
αβ =




0 ǫ̂B
CD̂CHa

ǫ̂A
CD̂CHb 0


 , Ha ∈ L2(S2)>1 (75)

B. Solution of the linearized Einstein equation

A calculation of the LEE (1) using (75) gives, in agreement with equations (31) in [5],

Ṙab − Λhab = 0 (76)

ṘaB − ΛhaB = − 1

2r2
ǫ̂B

CD̂C

[
ǫ̃a

cD̃c(r
2F)−Ha D̃

cD̃c(r
2) + D̂CD̂CHa + 2Λr2Ha

]
(77)

ṘAB − ΛhAB = ǫ̂(A
CD̂B)D̂C(D̃

aHa) (78)

where

F = r2ǫ̃abD̃a

(
Hb

r2

)
. (79)

In deriving equations (76)-(79) we have not made any assumptions on Ha in (75), so these calculations also hold for

the ℓ = 1 mode given in (43) and (40) if we replace Ha with
∑

m h
(ℓ=1,m)
a (x)S(1,m). In this case, however,

(
−D̃cD̃c(r

2) + D̂CD̂C + 2Λr2
)
h(ℓ=1,m)
a S(1,m) = 0,

and also ǫ̂(A
CD̂B)D̂C(S(1,m)) = 0, so the LEE for the odd ℓ = 1 modes can entirely be written in terms of the field

F1 = r2ǫ̃abD̃a

(
∑

m

h
(ℓ=1,m)
b

r2

)
S(1,m) (80)

which is invariant under the gauge transformation (73). Thus, for the odd ℓ = 1 mode we find

Ṙab − Λhab = 0 (81)

ṘaB − ΛhaB = − 1

2r2
ǫ̂B

CD̂C

[
ǫ̃a

cD̃c(r
2F1)

]
(82)

ṘAB − ΛhAB = 0. (83)

Using the facts that the kernel of the operator ǫ̂A
CD̂C is the ℓ = 0 mode and the kernel of ǫ̂(A

CD̂B)D̂C are the ℓ = 0, 1
modes, we arrive at

Lemma 3. The LEE (1) in the odd sector is equivalent to the system

D̃aHa = 0 (84)

ǫ̃b
cD̃c(r

2F)−Hb D̃
cD̃c(r

2) + D̂CD̂CHb + 2Λr2Hb = 0 (85)

D̃c(r
2F1) = 0. (86)
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Let us treat first the equations for ℓ = 1 modes. The general solution of equation (86) is [27]

h(ℓ=1,m)
a =

2j(m)

rN(r)
ǫ̃a

bD̃br + r2D̃a

(
Z(m)

r2

)
, N(r) = gab(D̃ar)(D̃br), (87)

j(m) a gauge invariant constant and Z(m) an arbitrary function that we recognize from (73) as “pure gauge”. For the
Schwarzschild-(A)dS space-time in Schwarzschild coordinates, gabdx

adxb = −f(r)dt2 + dr2/f(r), f(r) = 1− 2M/r −
Λr2/3 = N(r), and equation (87) reads

h(ℓ=1,m)
a dxa = −2j(m)

r
dt+ r2D̃a

(
Z(m)

r2

)
dxa. (88)

If we take, e.g., j(1) = j(2) = 0, j(3) = aM , choose the gauge Z(1) = Z(2) = 0, Z(3) = −Λ(a/3) r2t, and insert the
above equation in (43), we obtain

h
(ℓ=1,−)
αβ dxαdxβ = −2

(
2aM

r
+

Λa

3
r2
)

sin2(θ) dt dφ, (89)

which we recognize as the first order Taylor expansion around a = 0 of the Kerr-(A)dS metric with angular momentum
J = aM in Boyer-Lindquist coordinates. This proves our previous assertion that ℓ = 1 odd modes correspond to
displacements within the stationary Kerr family of black holes.

Consider now the ℓ > 1 odd LEE, equations (84) and (85). For the Schwarzschild-(A)dS background equation (85)
reads

Eb = ǫ̃b
cD̃c(r

2F) + (2 + D̂AD̂A)Hb = 0, (90)

and, as noticed in [5], implies (84) (proof: 0 = D̃bEb = (2 + D̂AD̂A)D̃
bHb implies D̃bHb = 0 since Hb ∈ L2(S2)>1).

On the other hand, equation (90) implies (but is not equivalent to!) ǫ̃abD̃a(r
−2Eb) = 0, a condition that, from the

definition of F , equations (22) and (79) and the background equation

D̃aD̃br =

(
M

r2
− Λ

3
r

)
g̃ab, (91)

is seen to be equivalent to

∇α∇αF +

(
8M

r3
− 2Λ

3

)
F = 0. (92)

Interestingly enough, (86) and (80) imply that F1 =
∑3

m=1 C(m)S(1,m)(θ, φ)/r
2 which, using (22) is easily seen to also

satisfy equation (92). We conclude that the LEE implies that

∇α∇αF +

(
8M

r3
− 2Λ

3

)
F = 0, (F = F1 + F). (93)

Back to (84)-(85), we note that the solution of (84) is

Ha = ǫ̃abD̃
b(r2Φ), (94)

for some scalar field Φ ∈ L2(S2)>1. This implies that

F = r2D̃c
(
r−2D̃c(r

2Φ)
)
. (95)

Inserting (94) in (90) gives

ǫ̃b
cD̃c

[
r2F + (2 + D̂AD̂A)r

2Φ
]
= 0. (96)

The general solution to this equation is

F
r2

+
2 + D̂AD̂A

r2
Φ = D̃c

(
r−2D̃c(r

2Φ)
)
+

2 + D̂AD̂A

r2
Φ =

z(θ, φ)

r4
, (97)
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and we may (and will) choose z(θ, φ) = 0, which gives

F = −[2 + D̂AD̂A]Φ = −[2 + J
2]Φ, (98)

together with

0 = D̃c
(
r−2D̃c(r

2Φ)
)
+

2 + D̂AD̂A

r2
Φ (99)

= D̃cD̃cΦ+
D̂AD̂A

r2
Φ +

2

r
D̃crD̃cΦ +

2

r2
(1− D̃crD̃cr + rD̃cD̃cr)Φ,

which, using again (22) and (91), is seen to be equivalent to the 4DRW equation

∇α∇αΦ +

(
8M

r3
− 2Λ

3

)
Φ = 0, Φ ∈ L2(S2)>1. (100)

Equation (100) is equivalent to the standard form (RWE) after decomposing Φ in modes as in (19).
We can gather our results concerning the odd sector of the LEE in the following:

Lemma 4. Consider the odd sector of the LEE around a Schwarzschild-(A)dS background:

(i) The solution of the ℓ > 1 piece of the metric perturbation in the Regge-Wheeler gauge is given by equation (75),
where the gauge invariant field Ha is as in equation (94) and Φ satisfies the 4DRW equation (100). Equations
(75) and (94) are equivalent to (18).

(ii) The solution of the ℓ = 1 piece is given in equations (43) and (88). In this last equation j(m) are three gauge
invariant constants and Z(m) three arbitrary gauge functions.

(iii) There is a bijection between the space L− of smooth odd solutions of the LEE mod gauge transformations and
the set

L− = {j(m),m = 1, 2, 3} ∪ {Φ | Φ is a smooth solution of equation (100)}.

(iv) The LEE implies that the gauge invariant field F = F1 + F (defined in equations (79) and (80)) satisfies the
4DRW equation (93).

The equivalence of (75) and (94) to (18) is checked by a straightforward calculation. (iii) follows immediately from
(i) and (ii). Note also that the relation (98) explains why the fields F and Φ, which belong to L2(S2)>1, satisfy the

same wave equation: the operators ∇α∇α +
(
8M
r3 − 2Λ

3

)
and [2 + D̂AD̂A] commute, and [2 + D̂AD̂A] is invertible in

L2(S2)>1 (on scalar fields, D̂AD̂A = J
2 and on arbitrary tensor fields [J2,∇α] = 0, since [£K ,∇α] = 0 for any Killing

vector field Kα).

C. Measurable effects of the perturbation on the geometry

For the purposes of a non-modal analysis, Lemma 4.(iii) offers a more appropriate parametrization of the dynamical
sector of the odd perturbations than the infinite set of φ−(ℓ,m)’s. However, unlike the ℓ = 1 parameters j(m), no clear

geometrical meaning can be attached to Φ in (100), beyond that of being a potential for solutions of the LEE, equation

(18). Consider now the curvature scalars in (7). In this section we show that the first order variation G− = Q̇− of

Q− associated to a perturbation [h
(−)
αβ ] ∈ L− contains all the gauge invariant information about h

(−)
αβ . In particular,

Φ and the j(m)can be recovered from G− = Q̇− which, unlike Φ, has a distinct geometrical meaning. Note that, since

Q− = 0 for the S(A)dS geometries, Q̇− is gauge invariant.

Q̇− can be obtained from the set of equations (3) and (29) in [5]. The calculations are tedious and not particularly
illuminating. The result is

Q̇− =
3M

r5
D̂AD̂AF =

3M

r5
J
2F, (F = F1 + F). (101)
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As an example, for the choice j(1) = j(2) = 0, j(3) = aM in (89), the ℓ = 1 piece of Q̇ in (101) is

Q̇
(ℓ=1)
− =

3M

r5
J
2F1 = −6M2a

r7
cos θ, (102)

which agrees with the first order Taylor expansion of Q− for the Kerr-(A)de-Sitter black hole in Boyer-Lindquist
coordinates around a = 0, as anticipated. For arbitrary j(m)’s, equation (102) generalizes to

Q̇
(ℓ=1)
− = −6M

r7

√
4π
3

3∑

m=1

j(m)S(1,m). (103)

Combining equations (98), (101) and (103) gives

Q̇− = −6M

r7

√
4π
3

3∑

m=1

j(m)S(1,m) −
3M

r5
J
2(J2 + 2)Φ, (104)

which generalizes to Λ 6= 0 equation (22) in [9].

Theorem 1. Let [h
(−)
αβ ] ∈ L− and Q̇−

(
[h

(−)
αβ ]
)
be the first order variation of Q− for the perturbation [h

(−)
αβ ]:

(i) The field r5Q̇− is in L2(S2)>0 and satisfies the 4DRW equation
[
∇α∇α +

(
8M

r3
− 2Λ

3

)]
(r5Q̇−) = 0 (105)

(ii) The map [h
(−)
αβ ] → Q̇−

(
[h

(−)
αβ ]
)

is invertible: it is possible to construct a representative of [h
(−)
αβ ] from

Q̇−

(
[h

(−)
αβ ]
)
.

Proof.

(i) Equation (104) proves that Q̇− ∈ L2(S2)>0. This is a consequence of the facts that there are no odd ℓ = 0 modes,

only odd modes contribute to Q̇−, and J
2Q̇−

(
[h

(−)
αβ ]
)
= Q̇−

(
J
2[h

(−)
αβ ]
)
. Alternatively, by Birkhoff’s theorem in

a cosmological background [28], the only possible spherically symmetric perturbation of a Schwarzschild-(A)dS
black hole amounts to a change of the black hole mass, and this does not affect the unperturbed value Q− = 0.

Since J
2 commutes with the wave operator in (93), it follows from (101) and Lemma 4.(iv) that r5Q̇− satisfies

(105).

(ii) According to equation (104), from the ℓ = 1 coefficients in the spherical harmonic expansion of Q̇− we obtain

the constants j(m). This allows us to construct the ℓ = 1 piece of the Z(m) = 0 representative of [h
(−)
αβ ] in (87)

and use it in (43). The orthogonal projection of r5

3M Q̇− onto L2(S2)>1 is related to Φ through the operator

J
2(J2 +2) (equation (104)). This operator is invertible in L2(S2)>1, so we can recover Φ from Q̇−

(
[h

(−)
αβ ]
)
and

use it in (94) or (18) to construct the Regge-Wheeler representative (75) of the ℓ > 1 piece of [h
(−)
αβ ].

Equation (104) defines a bijection between the set L− ∼ L−defined in Lemma 4.(iii) and the set

L̂− =

{
Q̇−

(
[h

(−)
αβ ]
) ∣∣∣∣ h

(−)
αβ is a solution of the LEE

}
(106)

This bijection implies that Q̇− contains all the relevant (i.e., gauge invariant) information on the metric perturbation
that gave rise to it. The invertible relations

Φ
−(2+J

2)−−−−−−→ F J
2

−→ r5Q̇>1
− (107)

and

F
J
2

−→ r5Q̇−, (108)

explain why all these fields obey the same way equation. Note that the addition of an ℓ = 1 piece Φ(ℓ=1) to the potential

Φ satisfying a 4DRW equation would be irrelevant, as its contribution to Ha would vanish: ǫ̃abD̃
b(r2Φ(ℓ=1)) = 0.
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D. Nonmodal linear stability of the Λ ≥ 0 black holes

Having found that the scalar gauge invariant field G− = Q̇− that measures the distortion of the curvature encodes all
the information on a given odd perturbation, it is natural to define the strength of the perturbation as the magnitude
of this field. A key additional feature of Q̇− is the fact r5Q̇− satisfies equation (4DRWE) (see (105) in Theorem 1.(i)).

This will be used to prove that the magnitude of Q̇−, and thus the strength of the perturbation, can be bounded on
the entire outer static region. This fulfills the requirements of our proposed notion of non-modal linear stability. It
is important to note that Theorem 1 applies to arbitrary smooth perturbations, whereas any boundedness or fall-off
condition will require a restriction to perturbations evolving from data that behave properly as r → ∞ (r → rc) in
the asymptotically flat (de Sitter) case.

1. The asymptotically flat case

In the Λ = 0 case, a simple pointwise boundedness statement for G− = Q̇− can be made by noting that the proof
of boundedness of a Klein Gordon field in [21] holds for the 4DRW equation:

Theorem 2. For any smooth solution of the odd LEE which has compact support on Cauchy surfaces of the
Kruskal extension I ∪ II ∪ I′ ∪ II′ of the Schwarzschild space-time (Figure 1), there exists a constant K− such that
|G−| < K− r−6 for r > 2M .

Proof. From (104), |Q̇−| ≤ C/r7 + |r5Q̇>1|/r5, where C > 0 is a constant that depends on the j(m)’s and the field

r5Q̇>1 satisfies the 4DRW equation (100), so we only need concentrate on this field. The similarities between the
4DRWE equation and the massive Klein Gordon equation dealt with in [21] allow us to proceed by adapting the proof
of Theorem 1 in [21]. The Z2 symmetry arguments in [21] showing that this theorem reduces to the intermediate case
(treated in the appendix in [21]) apply verbatim to equation (100). The intermediate case is defined by adding the

requirements that r5Q̇ and its T derivative (in coordinates (T,X, θ, φ), where T = (U + V )/2 and X = (V − U)/2)
vanish on the bifurcation sphere (refer to Section II B 2). There remains to check that the proof in the appendix in
[21] applies to the wave equation (100). To this end, we use (65)-(68) to cast (105) in the exterior Kruskal wedge as

∂2

∂t2

(
r6Q̇>1

)
+A

(
r6Q̇>1

)
= 0, (109)

where

A = − ∂2

∂r∗2
+

(
1− 2M

r

)(
−6M

r3
− D̂AD̂A

r2

)
=: − ∂2

∂r∗2
+ V1 − V2D̂

AD̂A, (110)

with r∗ defined in (48),

V1 =

(
1− 2M

r

)(
−6M

r3

)
and V2 =

(
1− 2M

r

)(
1

r2

)
. (111)

For the Klein Gordon equation dealt with in [21], the differential equation assumes this same form with

V KG
1 =

(
1− 2M

r

)(
2M

r3
+m2

)
, V KG

2 = V2, (112)

where m2 is the square of the mass of the Klein Gordon field (which appears with a wrong sign in equation (1) in
[21], but with the correct sign in the equations in the appendix). However, the proof in the appendix in [21] does
not make use of the explicit forms of V KG

1 and V KG
2 , but only on the facts that these functions are bounded on

the exterior wedge r ≥ 2M , and that A is a positive definite self adjoint operator on L2(R × S2, dr∗ sin θ dθ dφ).
Since V1 and V2 defined in (110)-(111) are bounded for r > 2M , and A is positive definite on the ℓ > 1 subspace

of L2(R × S2, dx sin θ dθ dφ), the proof in the appendix in [21] applies to the wave equation (105) for r5Q̇>1
− . The

intermediate case then follows, and so does the analogue of Theorem 1 in [21]. Note that the proof in [21] shows
that for the Klein Gordon field |ΦKG| < C/r holds on the domain of outer communications. Although the weaker
statement |ΦKG| < C has been made in [21], the stronger form was used in this proof.
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2. The asymptotically de Sitter case

Two key similarities between the extension (59) for Λ 6= 0 and the Kruskal extension of the Λ = 0 Schwarzschild
black hole (refer to Section II B 2 and Figure 1) are: i) the Z2 isometry exchanging I and I′ and II and II′, and ii) the
fact that rh is a simple root of f , which implies that the asymptotic behavior of fields vanishing at the bifurcation
sphere is that in equation (A1) in [21]. This allows us to prove the following

Theorem 3. For any smooth solution of the odd LEE which has compact support on Cauchy surfaces of the extended
I ∪ II ∪ I′ ∪ II′ SdS black hole, there exists a constant K− such that |G−| < K− r−6 (equivalently, |G−| < a constant)
for rh < r < rc.

Proof. As in the proof of Theorem 2, and in view of the above comments, we need only prove the intermediate case
for r5Q̇>1. This field obeys the equation

∂2

∂t2

(
r6Q̇>1

)
+AΛ

(
r6Q̇>1

)
= 0, (113)

where (see (67))

AΛ = − ∂2

∂r∗2
+

(
1− 2M

r
− 2Λ

3
r2
)(

−6M

r3
− D̂AD̂A

r2

)
=: − ∂2

∂r∗2
+ V Λ

1 − V Λ
2 D̂

AD̂A, (114)

with −∞ < r∗ <∞,

V Λ
1 =

(
1− 2M

r
− 2Λ

3
r2
)(

−6M

r3

)
and V Λ

2 =

(
1− 2M

r
− 2Λ

3
r2
)(

1

r2

)
. (115)

In view of (53) and the condition ℓ ≥ 2, V Λ
1 and V Λ

2 are bounded in region II (rh < r < rc) and V
Λ
1 −V Λ

2 D̂
AD̂A > 0, thus

AΛ is a positive definite self adjoint operator on L2(R×S2, dr∗ sin θ dθ dφ), and the proof follows as in Theorem 2.

3. A comment on the asymptotically anti de Sitter case

The stability proofs above use the facts that the operators (110) and (114) are self adjoint and positive definite
in the region of interest. For negative cosmological constant, the operator acts as (114) but on functions defined for
−∞ < r∗ < 0, which is the outer static region in this case. This operator is only formally self adjoint (i.e., if we
ignore boundary terms when integrating by parts), we need to specify boundary conditions at r∗ = 0 to properly
define a domain where the operator is self adjoint. There are different options, and the positivity or not of the
resulting operator depends on the chosen boundary condition [33]. The stability for Dirichlet boundary conditions
was established in [13].

IV. THE LINEARIZED EINSTEIN EQUATION: EVEN SECTOR

A. Gauge transformations and gauge invariants

The effect of the gauge transformation (70)-(72) in the even sector (36) is

h′
(+)
αβ =




hab + D̃aξb + D̃bξa D̂B(qa + r2D̃aX + ξ>0
a )

D̂A(qb + r2D̃bX + ξ>0
b ) r2

[
1
2 (J + 2D̂CD̂CX + 4

r ξ
aD̃ar)ĝAB + (2D̂AD̂B − ĝABD̂

CD̂C)(G+X>1)
]


 .

(116)
Since X and qa belong to L2(S2)>0, and G ∈ L2(S2)>1, the ℓ = 0, 1 modes require a separate treatment.
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1. ℓ = 0 mode

For the ℓ = 0 mode

h′
(ℓ=0,+)
αβ =



h
(ℓ=0)
ab + D̃aξ

(ℓ=0)
b + D̃bξ

(ℓ=0)
a 0

0 ĝAB(J
(ℓ=0) + 4

r ξ
a
(ℓ=0)D̃ar)

r2

2


 , (117)

we partially fix a gauge by requiring J ′(ℓ=0)
= 0 together with the transverse condition g̃abh′

(ℓ=0)
ab = 0 [27] (note that

a further gauge transformation with a gauge field

ξ(ℓ=0)
a = ǫ̃abD̃

bZ(r), (118)

would preserve these two conditions.) Dropping the primes, the perturbation in such a traceless gauge reads

h
(ℓ=0,+,T )
αβ =



h
(ℓ=0,T )
ab 0

0 0


 , g̃abh

(ℓ=0,T )
ab = 0. (119)

For the traceless symmetric orbit space tensor h
(ℓ=0,T )
ab we use the identity [27]

h
(ℓ=0,T )
ab =

1

f

[
C(ℓ=0)

a D̃br + C
(ℓ=0)
b D̃ar − g̃abC

(ℓ=0)
d D̃dr

]
, C(ℓ=0)

a = h
(ℓ=0,T )
ab D̃br, (120)

in terms of which, the residual gauge transformation along the field (118) gives

C(ℓ=0)
a → C′(ℓ=0)

a = C(ℓ=0)
a + fZ ′′(r)ǫ̃abD̃

br. (121)

In conclusion, we assume the form (119)-(120) for the metric perturbation, where C
(ℓ=0)
a is equivalent to C′(ℓ=0)

a

defined in (121).

2. ℓ = 1 modes

For ℓ = 1 modes

h′
(ℓ=1,+)
αβ =




h
(ℓ=1)
ab + D̃aξ

(ℓ=1)
b + D̃bξ

(ℓ=1)
a D̂B(q

(ℓ=1)
a + r2D̃aX

(ℓ=1) + ξ
(ℓ=1)
a )

D̂A(q
(ℓ=1)
b + r2D̃bX

(ℓ=1) + ξ
(ℓ=1)
b ) ĝAB(J

(ℓ=1) − 4X(ℓ=1) + 4
r ξ

a
(ℓ=1)D̃ar)

r2

2


 . (122)

We may choose the gauge field such that r2D̃aX
(ℓ=1) + ξ

(ℓ=1)
a = −q(ℓ=1)

a and 2D̃bξ
(ℓ=1)
b = −g̃abh(ℓ=1)

ab . This will
partially fix an orbit space transverse gauge, leaving a perturbation of the form

h
(ℓ=1,+,T )
αβ =



h
(ℓ=1,T )
ab 0

0 r2

2 ĝABJ
(ℓ=1)


 , g̃abh

(ℓ=1,T )
ab = 0. (123)

where, as in the ℓ = 0 sector,

h
(ℓ=1,T )
ab =

1

f

[
C(ℓ=1)

a D̃br + C
(ℓ=1)
b D̃ar − g̃abC

(ℓ=1)
d D̃dr

]
, C(ℓ=1)

a = h
(ℓ=1,T )
ab D̃br, (124)

A residual gauge transformation along a field (29) satisfying

r2D̃aX
(ℓ=1) + ξ(ℓ=1)

a = 0, D̃aξ(ℓ=1)
a = 0, (125)

preserves the form (123)-(124).
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3. ℓ > 1 modes

For ℓ > 1, equation (116)

h′
>1
ab = h>1

ab + D̃aξ
>1
b + D̃bξ

>1
a

q′
>1
a = q>1

a + r2D̃aX
>1 + ξ>1

a

J ′>1
= J + 2D̂CD̂CX

>1 +
4

r
ξ>1
a D̃ar

G′ = G+X>1,

(126)

has two implications (compare with the discussion following (74)): i) the fields

Hab = hℓ>1
ab − D̃apb − D̃bpa, (pa ≡ q>1

a − r2D̃aG) (127)

J = J − 4

r
paD̃

ar − 2D̂CD̂CG, (128)

are gauge invariants; and (ii) there is a (unique) gauge (the Regge-Wheeler gauge) where the ℓ > 1 piece of the even
metric perturbation assumes the form

h
(+,>1)
αβ =



Hab 0

0 r2

2 ĝAB J


 . (129)

B. The linearized Einstein equation

1. ℓ > 1 modes

A calculation of the LEE (1) using (129) gives, in agreement with equations (31) in [5], the following components

for Ṙαβ − Λhαβ:

Ṙab − Λhab =
D̃cr

r

(
D̃aHbc + D̃bHac − D̃cHab

)
− 1

2r2
D̂CD̂CHab +

R̃

2
Hab

+
1

2
g̃ab

(
D̃cD̃dHcd − D̃cD̃cH − R̃

2
H

)
− 1

2r2
D̃(a

(
r2D̃b)J

)
− ΛHab, (130)

ṘaB − ΛhaB =
1

2
D̂B

[
D̃bHab − rD̃a

(
H

r

)
− 1

2
D̃aJ

]
(131)

ṘAB − ΛhAB = −1

2

(
D̂AD̂BH − 1

2 ĝABD̂
CD̂CH

)
+ ĝAB

[
D̃a(rHabD̃

br)

− r
2
(D̃ar)D̃aH − 1

4
D̃cD̃c(r

2J )− 1

4
D̂CD̂C(H + J )− Λ

r2

2
J
]
, (132)

where R̃ is the Ricci scalar of the orbit manifold and

H = g̃abHab. (133)

From part ii) of Lemma 2 (applied now to the symmetric tensor Ṙαβ −Λhαβ) we conclude that (132) implies H = 0,
then as in (120) we introduce

C>1
a = HabD̃

br, (134)

which gives

Hab =
1

f

[
C>1

a D̃br + C>1
b D̃ar − g̃abC

>1
d D̃dr

]
. (135)
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and

ǫ̃ac(D̃cr)D̃
bHab = ǫ̃acD̃cCa. (136)

For ℓ > 0, equation (131) is equivalent to D̃bHab − 1
2D̃aJ = 0. Contracting this equation with the orthogonal vectors

D̃ar and ǫ̃abD̃br and using (91) gives [5]:

0 = D̃ar

(
D̃bHab −

1

2
D̃aJ

)
= D̃b

(
HabD̃

ar
)
−HabD̃

bD̃ar − 1

2
(D̃ar)(D̃aJ )

= D̃bC>1
b − 1

2
(D̃br)(D̃bJ ), (137)

0 = ǫ̃ac(D̃cr)

(
D̃bHab −

1

2
D̃aJ

)

= ǫ̃ac
(
D̃cC

>1
a − 1

2
(D̃cr)D̃aJ

)
. (138)

Introducing

Za ≡ C>1
a − r

2
D̃aJ , (139)

we write (138) as

D̃[aZb] = 0 (140)

and equation (137) as

D̃bZb +
r

2
D̃bD̃bJ = 0. (141)

Now contract (132) with ĝAB, this gives

4D̃a (rZa) + r2D̃cD̃cJ −
[
D̂CD̂C + 2

]
J = 0. (142)

Finally, contracting the g̃ab trace-free part of (130) with D̃ar and using (142) we arrive at

D̃a

[
2r(D̃br)Zb + (3M − r)J − r

2
D̂CD̂CJ

]
− D̂CD̂CZa = 0 (143)

It is interesting to note that equations (140)-(143) look formally identical to the Λ = 0 case, equations (41a)-(41d) in

[5], Λ appears only implicitly through g̃ab and its Levi-Civita derivative D̃a.

2. ℓ = 0 mode

In deriving equations (130)-(132) we made no assumptions on Hab and J in (75), so these calculations apply to

the ℓ = 0 mode (119) if we replace Hab with h
(ℓ=0,T )
ab and set J = 0. Equation (131) is void in this case, whereas

equation (132) reduces to D̃a(rC
(ℓ=0)
a ) = 0, whose solution is

C(ℓ=0)
a =

1

r
ǫ̃abD̃

bz, z : O → R. (144)

In Schwarschild coordinates (t, r) the residual gauge freedom (121) implies that z(t, r) is defined up to an arbitrary
additive function x(r) (choose x′ = rfZ ′′ to match (121)). Replacing (144) in (130) and (132) we find that,working in
(t, r) coordinates, z(t, r) = At+B(r). This gives htt = A/r, hrr = (2A/r)/f2 and htr = B′(r)/r. Choosing the gauge

B(r) = 0 we recognize this perturbation as a shift M → M + A/2 in the mass treated to first order in A/2 = Ṁ .
This was to be expected from Birkhoff’s theorem. In conclusion, we can choose a gauge such that

C(ℓ=0)
a =

2 Ṁ

rf
D̃ar. (145)

The perturbation class is characterized by the parameter Ṁ .
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3. ℓ = 1 modes

We use again equations (130)-(132) with the replacements Hab → h
(ℓ=1,T )
ab and J → J (ℓ=1), and find that the

general solution to these equations can be set to zero using the residual gauge freedom (125) (see [27]). This implies
that the even ℓ = 1 sector is void.

C. Solution of the linearized Einstein equation

The results of the previous section are gathered in the following

Lemma 5. The LEE (1) in the even sector is equivalent to the system of equations (139)-(143) and (145).

The system (140)-(143) of LEE for the ℓ > 1 sector was first solved by Zerilli in [32], the addition of a cosmological
constant was considered in [17]. In this section we generalize to the case Λ 6= 0 the derivation in [5] of the Zerilli
equation.
Equation (140) implies that there is a scalar field ζ : M → R, defined up to an additive function z : S2 → R,
ζ = ζo + z, such that

Za = D̃aζ. (146)

From (141) and (142)

D̃bZb +
2D̃br

r
Zb −

(D̂CD̂C + 2)

2r
J = 0. (147)

From (143) (146) and the above equation

D̃bD̃bζo +
D̂CD̂C

r2
ζo −

3M

r2
J =

h− D̂CD̂Cz

r2
, h : S2 → R. (148)

Since all fields above belong to L2(S2)>1, we may choose z such that the term on the right vanishes. From now on
we assume this choice, which gives

D̃bD̃bζ +
D̂CD̂C

r2
ζ − 3M

r2
J = 0. (149)

Applying (D̂CD̂C + 2) to (149) and combining with (147) yields

(
D̂CD̂C + 2− 6M

r

)
D̃bD̃bζ −

12M

r2
D̃brD̃bζ +

(D̂BD̂B)(D̂
CD̂C + 2)

r2
ζ = 0. (150)

The Zerilli field

Ψ =

(
D̂CD̂C + 2− 6M

r

)−1

ζ (151)

is introduced to eliminate first derivatives from (150) and reduce it to a two dimensional wave equation:

D̃bD̃b Ψ+
1

r2

(
D̂BD̂B + 2− 6M

r

)−2 [
(D̂BD̂B + 2)2

(
D̂BD̂B − 6M

r

)

+
36M2

r2

(
D̂BD̂B + 2− 2M

r
+

2

3
Λr2

)]
Ψ = 0. (152)

This is the Zerilli equation, first obtained for Λ = 0 in [32], and generalized to Schwarzschild-(A)dS in [17]. The

non-local operator (D̂BD̂B + 2 − 6M/r)−2 is well defined on L2(S2)>1; the Zerilli equation was derived within the
context of a modal approach to the problem, in which Ψ is expanded in spherical harmonics

Ψ =
∑

(ℓ,m)

φ+(ℓ,m)S(ℓ,m), (153)
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and this operator reduces to
(
(ℓ + 2)(ℓ− 1)− 6M

r

)−2
in the ℓ subspace, and it is therefore suitable to perform explicit

calculations. If we use a tortoise radial coordinate r∗, we find that (152) is equivalent to the standard form (ZE)-(13)
of the equation in the original references [32] [17]. From the ζ field (and therefore from the Zerilli field) it is possible
to reconstruct Hab and J by tracing back the above equations. The result is [2] [5]:

J = 2

(
D̂CD̂C + 2− 6M

r

)−1 [
2D̃brD̃bζ −

1

r
D̂BD̂Bζ

]
(154)

Hab = 2

(
D̂CD̂C + 2− 6M

r

)−1 [
D̃aD̃b(rζ) −

g̃ab
2
D̃cD̃c(rζ)

]
(155)

The even sector LEE is equivalent to the set (150), (154)-(155).

D. The ubiquitous Regge-Wheeler equation

Let us consider the field [5]

Φ = −rD̃bD̃bζ. (156)

Applying D̃aD̃a to r2 times equation (149), and eliminating D̃bD̃bJ using (141), we find that Φ satisfies

D̃cD̃cΦ+
2

r
D̃crD̃cΦ+

1

r2
D̂AD̂

AΦ+

(
6M

r3
+

1

r
D̃cD̃cr

)
Φ = 0, (157)

which is the Regge-Wheeler equation (100)! We have found a scalar field Φ, related to the even metric perturbation
potential ζ through (156), that satisfies the fundamental equation to which the odd LEE reduces.

Replacing D̃bD̃bζ with −Φ/r in (150) gives the following relation between ζ and Φ:

[
12M (D̃ar) D̃a − (D̂CD̂C + 2)(D̂CD̂C)

]
ζ =

[
6M

r
− (D̂CD̂C + 2)

]
(rΦ). (158)

Since ζ (or Ψ) contains all the information on equivalence classes of ℓ > 1 solutions of the even LEE, but does not admit
a four dimensional translation, whereas Φ satisfies the 4DRW equation, one is tempted to treat even perturbations in
terms of Φ, using the relationship (158). This possibility was disregarded in [5] due to the fact that the operator on
the left hand side in (158) has a non trivial kernel, suggesting that information is lost when switching from ζ to Φ.
There is, however, a loophole in this argument, as we now proceed to explain:

Expand Φ and ζ in spherical harmonics (we choose to call φ
(−)
(ℓ,m) the components of Φ in (156) since this field satisfies

(4DRWE), therefore the components (19) satisfy (RWE))

Φ =
∑

ℓ≥2,m

φ
(−)
(ℓ,m)

r
S(ℓ,m), ζ =

∑

ℓ≥2,m

ζ(ℓ,m)S(ℓ,m) = −
∑

ℓ≥2,m

[
[(ℓ+ 2)(ℓ− 1) +

6M

r

]
φ+(ℓ,m)S(ℓ,m) (159)

In (t, r) coordinates, equation (158) with the replacements (159) reads

[
f
∂

∂r
− wℓ

]
ζ(ℓ,m) =

[
1

2r
+

(ℓ+ 2)(ℓ− 1)

12M

]
φ
(−)
(ℓ,m), (160)

where

wℓ =
1

12M

(ℓ+ 2)!

(ℓ− 2)!
(161)

are the frequencies of the Chandrasekhar algebraically special modes [3] [4]. The general solution of (160) can be
written as

ζ(ℓ,m)(t, r) = Fro(t) e
wℓr

∗ − ewℓr
∗

∫ r∗o

r∗
dr∗′ e−wℓr

∗′

[
φ
(−)
(ℓ,m)(t, r)

(
1

2r(r∗′)
+

(ℓ + 2)(ℓ− 1)

12M

)]

r=r(r∗′)

(162)
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where r(r∗) is the inverse of the function r∗(r) defined in (48), and ro is the radial coordinate of a point in the outer
static region. The non-trivial kernel of the operator on the left of equation (158) is the reason why there is an arbitrary
function of t in the first term in (166). Note that

Fro(t) = ζ(ℓ,m)(t, ro) e−wℓr
∗

o (163)

If we apply D̃bD̃b to ζ(ℓ,m) in (162) and use (RWE) we find that (compare with equations (156) and (159))

e−wℓr
∗

f
[
D̃bD̃bζ(ℓ,m) + r−2φ

(−)
(ℓ,m)

]
= (w2

ℓFro − F̈ro) + qro(t), (164)

where

qro(t) =

[(
wℓ(ℓ+ 2)(ℓ− 1)

12M
+
wℓ

2ro
+

1

2ro2
− M

ro3

)
φ
(−)
(ℓ,m)(t, ro)

+

(
(ℓ + 2)(ℓ− 1)

12M
− ℓ2 + ℓ− 5

6ro
− M

ro2

)
∂rφ

(−)
(ℓ,m)(t, ro)

]
e−wℓr

∗

o (165)

Let us consider equations (162)-(164) for different values of the cosmological constant:

• Λ = 0: in the asymptotically flat case (48) and (61) in (162) gives

ζ(ℓ,m)(t, r) = Fro(t) e
wℓr
( r

2M
− 1
)2Mwℓ

− ewℓr

2M

( r

2M
− 1
)2Mwℓ

∫ ro

r

r′e−wℓr
′

φ
(−)
(ℓ,m)

∣∣
(t,r′)

(
1

2r′
+

(ℓ+ 2)(ℓ− 1)

12M

)(
r′

2M
− 1

)−2Mwℓ−1

dr′, (166)

for some r0 > 2M .

According to Theorem 2, Φ in (158), being a solution of the Λ = 0 (4DRWE), satisfies |Φ| < C/r on the exterior
Kruskal wedge, then from (159) φ(ℓ,m) < constant [? ]. More generally, solutions of (RWE) behave either as

rℓ+1 or r−ℓ for large r, and the first type should be discarded to preserve asymptotic flatness (alternatively, to
assure the perturbative character of the initial datum). In any case, the integral in (166) converges if we take
ro = ∞ in (166),

ζ(ℓ,m)(t, r) = F∞(t) ewℓr
( r

2M
− 1
)2Mwℓ

− ewℓr

2M

( r

2M
− 1
)2Mwℓ

∫ ∞

r

r′e−wℓr
′

φ
(−)
(ℓ,m)

∣∣
(t,r′)

(
1

2r′
+

(ℓ+ 2)(ℓ− 1)

12M

)(
r′

2M
− 1

)−2Mwℓ−1

dr′, (167)

and the second term above is bounded for fixed t as r → ∞. Therefore, for metric perturbations that do not
diverge as r → ∞, it must be F∞(t) = 0, otherwise the ℓ pieces of J and Hab would behave for large r as ewℓr

times a rational function of r (see (154)-(155)). We conclude that the asymptotic condition as r → ∞ resolves
the ambiguity in (158) and yields a 1-1 relation between the ζ and Φ fields:

ζ(ℓ,m)(t, r) = −e
wℓr

2M

( r

2M
− 1
)2Mwℓ

∫ ∞

r

r′e−wℓr
′

φ
(−)
(ℓ,m)

∣∣
(t,r′)

(
1

2r′
+

(ℓ + 2)(ℓ− 1)

12M

)(
r′

2M
− 1

)−2Mwℓ−1

dr′

(168)

Had we used ro <∞ in (166), the non-trivial function Fro(t) could have been obtained by requiring that (166)
be a solution of (156) (or, equivalently, of equation (150)) for φ(ℓ,m) satisfying (RWE). As follows from equation
(164), this implies that Fro(t) must be a solution of the ordinary differential equation resulting by setting the
right hand side of this equation equal to zero. The ambiguity Aewℓt + Be−wℓt in the solution of this equation
is again fixed by adjusting A and B such that (162) remains bounded as r → ∞ (this gives A = B = 0 when
ro = ∞, in agreement with our previous paragraph).

Back to the case ro = ∞, if we we let F∞ 6= 0 in (167), allowing perturbations that diverge as r → ∞, but
require that

(∂2t − ∂2r∗)

[
F∞(t) ewℓr

( r

2M
− 1
)2Mwℓ

]
= (∂2t − ∂2r∗)[F∞(t) exp(wℓr

∗)] = 0 (169)
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to preserve (156), we obtain ζ∞ ≡ F∞(t) exp(wℓr
∗) = exp(wℓ(r

∗ ± t)) and, from (151), the following solutions
to the Zerilli equation

φ
(+)
(ℓ,m) =

r exp(wℓ(r
∗ ± t))

(ℓ + 2)(ℓ− 1)r + 6M
. (170)

The relevance of (170) (equivalently, the solutions ζ = exp(wℓ(r
∗ ± t)) of (150)) comes from the fact that these

are solutions of the Zerilli equation (respectively (150)) for any Λ (assuming the appropriate r∗(r) satisfying
(48) is used) and, although useless when Λ ≥ 0 for their behavior for large r∗, they are valid for Λ < 0 since
r∗ < 0 in this case, and show that there are unstable solutions in the asymptotically AdS case. This is discussed
in detail in section IVE 2.

• Λ > 0: in this case ro ∈ (rh, rc) in (162). According to Theorem 3, since Φ in (158) is a solution of the Λ > 0
(4DRWE), the φ(ℓ,m) in (160) are bounded for rh < r < rc (−∞ < r∗ < ∞). This implies that we can take
ro → rc (r∗o → ∞) in (162), and the resulting term involving the integral will be bounded for fixed t as r → rc.
Therefore, as in the previous case, we conclude that for metric perturbations that do not diverge as r → rc,
the only consistent choice is Frc(t) = 0. Otherwise the ℓ pieces of J and Hab would diverge as ewℓr

∗

as r → rc.
Once again, the asymptotic condition resolves the ambiguity in (158) and yields a 1-1 relation between the ζ
and Φ fields:

ζ(ℓ,m)(t, r) = −ewℓr
∗

∫ ∞

r∗
dr∗′ e−wℓr

∗′

[
φ
(−)
(ℓ,m)(t, r)

(
1

2r
+

(ℓ+ 2)(ℓ− 1)r

12M

)]

r=r(r∗′)

(171)

• Λ < 0: For asymptotically AdS black holes, we cannot use the argument above, since we have proven no analogue
of Theorems 2 and 3 in this case. This is connected to the fact that there are different consistent choices for
the behavior of the φ(ℓ,m) as r → ∞ (r∗ → 0−), and they lead to different dynamics [33]. As an example, a
boundary condition consistent with (170) gives a dynamics under which the asymptotically AdS Schwarzschild
black hole is unstable. The possibility of replacing the Zerilli equation (152) for the Regge-Wheeler equation
(157) depends on the choice of boundary conditions at r∗ = 0. This is further investigated in section IVE and
in [33].

We summarize below the results of this section:

Lemma 6. Consider the even sector of the LEE around a Schwarzschild-(A)dS background:

(i) The solution of the ℓ = 0 piece of the metric perturbation in a particular gauge is given by equations (119),
(120) and (145).

(ii) The ℓ = 1 sector of the LEE is trivial.

(iii) For Λ ≥ 0, the solution of the ℓ > 1 sector is given in equations (100), (159), (168)/(171) and (154)-(155).

(iv) For Λ ≥ 0 there is a bijection between the space L+ of smooth odd solutions of the LEE mod gauge transforma-
tions, and the set

L+ = {Ṁ} ∪ {Φ | Φ is a smooth solution of equation (100)}.

(v) For Λ ≥ 0 there is a bijection between L+ and the set

Lφ
+ = {Ṁ} ∪ {φ+(ℓ,m),m, ℓ ≥ 2 | φ+(ℓ,m) is a smooth solution of equation (ZE)}.

We gather Lemma 4.iii and Lemma 6.iv in

Theorem 4. For Λ ≥ 0 there is a bijection between the space L of smooth solutions of the LEE mod gauge transfor-
mations and the set

L = {Ṁ, j(m),m = 1, 2, 3} ∪ {(Φ−,Φ+) | Φ± smooth solutions of equation (100)}. (172)

The dynamical perturbations are parametrized by the two solutions Φ± of the 4DRW equation (100), and correspond

to ℓ ≥ 2 perturbations. The stationary perturbations are parametrized by the first order variation of the mass Ṁ
(ℓ = 0) and the angular momenta components j(m),m = 1, 2, 3 (ℓ = 1), these correspond to perturbations within the
Kerr/ Kerr-(A)dS family.
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E. Chandrasekhar’s duality

The modal approach to the linear perturbation problem is based on analyzing the evolution of isolated (ℓ,m) modes
using the Zerilli and Regge-Wheeler equations (ZE) and (RWE) respectively. In (t, r) coordinates, these equations
are separable, there are solutions of the form

φ+(ℓ,m) = ℜ eiωtψ+
(ℓ,m)(r), φ−(ℓ,m) = ℜ eiωtψ−

(ℓ,m)(r), (173)

where ψ±
(ℓ,m) satisfies a Schrödinger-like equation (note that H−

ℓ agrees with the operator AΛ introduced in (67))

H±
ℓ ψ

±
(ℓ,m) := [−∂2r∗ + U±

ℓ ]ψ±
(ℓ,m) = ω2ψ±

(ℓ,m), (174)

with potentials (see (12) (13))

U+
ℓ = fV Z

ℓ , U−
ℓ = fV RW

ℓ . (175)

It was noticed by Chandrasekhar [3] [4] (see also Appendix A in [34]) that the H±
ℓ = −∂2r∗ + U±

ℓ satisfy

H±
ℓ + wℓ

2 = D±D∓, (176)

where, generalizing Chandrasekhar’s equations to Λ 6= 0,

D±
ℓ = ± ∂

∂r∗
+Wℓ, (177)

Wℓ = wℓ +
6Mf

r (µr + 6M)
, (178)

and wℓ are the frequencies (161). A consequence of the factorization (176) is that

H−
ℓ ψ

−
(ℓ,m) = ω2ψ−

(ℓ,m) ⇒ H+
ℓ (D+

ℓ ψ
−
(ℓ,m)) = ω2(D+

ℓ ψ
−
(ℓ,m)) (179)

H+
ℓ ψ

+
(ℓ,m) = ω2ψ+

(ℓ,m) ⇒ H−
ℓ (D−

ℓ ψ
+
(ℓ,m)) = ω2(D−

ℓ ψ
+
(ℓ,m)) (180)

Similarly, solutions of the (RWE) and (ZE) are exchanged by D±
ℓ , e.g,

(∂2t − ∂2r∗ + fV RW
(ℓ,m))φ

−
(ℓ,m) = 0 ⇒ (∂2t − ∂2r∗ + fV Z

(ℓ,m))(D+
ℓ φ

−
(ℓ,m)) = 0, (181)

(∂2t − ∂2r∗ + fV Z
(ℓ,m))φ

+
(ℓ,m) = 0 ⇒ (∂2t − ∂2r∗ + fV RW

(ℓ,m))(D−
ℓ φ

+
(ℓ,m)) = 0. (182)

Chandrasekhar noticed the factorization (176) by casting the RW and Zerilli potentials in Riccati form, and finding
the unexpected symmetry U±

ℓ = ±∂r∗Wℓ +Wℓ
2 − wℓ

2. We can trace origin of this symmetry to the previous to last

equation in Section V of [5] , which is equivalent to our equation (158) which, combined with (151) gives the D−
ℓ

operator in (177)

1. Case Λ ≥ 0

For Λ ≥ 0, we have −∞ < r∗ < ∞, U±
ℓ → 0 as |r∗| → ∞, and we consider H±

ℓ as an operator in L2(Rr∗ , dr
∗),

where it is self-adjoint and positive. Since the general solution of the differential equation D−
ℓ χ = 0 is a constant

times

χ+
ℓ =

r exp(wℓ r
∗)

(ℓ+ 2)(ℓ − 1)r + 6M
, (183)

and the general solution of the differential equation D+
ℓ χ = 0 is a constant times

χ−
ℓ =

(ℓ + 2)(ℓ− 1)r + 6M

r
exp(−wℓ r

∗) =
1

χ+
ℓ

, (184)

both D± have trivial kernel in L2(Rr∗ , dr
∗). Since the evolution of initial data (φ±(ℓ,m), ∂tφ

±
(ℓ,m))|to in L2(Rr∗ , dr

∗)

gives φ±(ℓ,m)|t ∈ L2(Rr∗ , dr
∗) for all t, we may consider, in view of (181) (182), replacing solutions of (ZE) with

D−
ℓ times solutions of (RWE). This was already shown to be possible for Λ ≥ 0 in the previous section, equations

(168) and (171). The duality involving the (ZE) and (RWE) is now reconsidered from the perspective offered by the
factorization (176).
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Lemma 7. Assume Λ ≥ 0. For any solution φ+(ℓ,m) of (ZE) in L2(Rr∗ , dr
∗) there is a unique solution φ−(ℓ,m) of

(RWE) in L2(Rr∗ , dr
∗) such that

φ+(ℓ,m) = D+
ℓ φ

−
(ℓ,m). (185)

The same statement holds switching + and − and (RWE) and (ZE).

Proof. We will only prove the first statement, as the proof of the second is completely analogous. Uniqueness follows
from D−

ℓ being injective. To prove existence, we use the fact, discovered by Price [25], that for Λ = 0, φ+(ℓ,m) decays

as t−(2ℓ+2) at large t (the decay is exponential in t if Λ > 0 [39]) The time reversal symmetry of (ZE) indicates that
this also happens for large negative t. This implies that φ+(ℓ,m) admits a Fourier representation

φ+(ℓ,m) =

∫ ∞

−∞

φ̂+(ℓ,m)(ω, r
∗) eiωt dω. (186)

Note that

φ̃+(ℓ,m) =

∫ ∞

−∞

φ̂+(ℓ,m)

ω2 + w2
ℓ

eiωt dω. (187)

is also a solution of (ZE), therefore D−
ℓ φ̃

+
(ℓ,m) is a solution of (RWE). It is easy to show that this the solution sent to

φ+(ℓ,m) by D+
ℓ :

φ+(ℓ,m) =
(
−∂2t + w2

ℓ

)
φ̃+(ℓ,m) =

(
H+

ℓ + w2
ℓ

)
φ̃+(ℓ,m) = D+

ℓ

(
D−

ℓ φ̃
+
(ℓ,m)

)
(188)

2. Case Λ < 0: instability of SAdS

For SAdS, −∞ < r∗ < 0 (equation (62)) and, from (183), χ+
ℓ ∈ L2(R−

r∗ , dr
∗) – the set of square integrable functions

on the half line r∗ < 0 – . Since D−
ℓ χ

+
ℓ = 0, we conclude that the operator D−

ℓ fails to be injective in L2(R−
r∗ , dr

∗).

Also, the potential or exponential decay of φ+(ℓ,m) for large |t| at fixed position, required in the proof of Lemma 7

(equation (186)) allowing to replace solutions of (ZE) with solutions of (RWE) fails in this case.
In fact, using D−

ℓ χ
+
ℓ = 0 together with (174) we get the solution (170) of (ZE) found by Chandrasekhar in [3]. The

choice of a plus sign in (170) gives

φ+ unst
(ℓ,m),Λ<0 = χ+

ℓ (r) exp(wℓt) =
r exp(wℓ (r

∗ + t))

(ℓ+ 2)(ℓ− 1)r + 6M
, (189)

which grows exponentially in time while remaining in L2(R−
r∗ , dr

∗) for every t, that is, is an unstable mode. In the
RW gauge and using the coordinates (v, r, θ, φ) in (47), the metric perturbation from (189) is given by a particularly
simple expression (note that this is is well behaved across the horizon):

h+ unst
(ℓ,m),Λ<0 = exp(wℓv) S(ℓ,m)

[
wℓ

6M
(rℓ(ℓ + 1)− 6M) dv ⊗ dv +

ℓ(ℓ+ 1)

6M
r2
(
dθ ⊗ dθ + sin2(θ) dφ⊗ dφ

)]
. (190)

As shown in [36], generic perturbations of a Schwarzschild black hole give a type I spacetime, whereas the solution
(189)-(190) splits one of the repeated principal null directions while preserving the degeneracy of the other one,
leaving a type II spacetime.

As explained in Section II B 3, different dynamics are possible in SAdS depending on the boundary conditions
imposed to the fields at the timelike boundary. Consider the Zerilli equation in the orbit space SAdS/SO(3)

(∂2t +H+
ℓ )φ

+
(ℓ,m) = 0. (191)

The operator H+
ℓ with domain the compactly supported functions on the half line C∞

o (R−
r∗) is symmetric, and it

admits different self adjoint extensions within L2(R−
r∗ , dr

∗). Heuristically, self-adjoint extensions of operators like H+
ℓ ,
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which have a potential U+
ℓ that is regular at the boundary, are found by demanding that when integrating by parts

the boundary terms do not spoil the transposition of the operator. As the following calculation shows,

(ψ2,H+
ℓ ψ1) =

∫ 0

−∞

ψ2(−∂2r∗ + U+
ℓ )ψ1dr

∗

= [(∂r∗ψ2) ψ1 − ψ2 (∂r∗ψ1)]
r∗=0
r∗=−∞ +

∫ 0

−∞

ψ1(−∂2r∗ + U+
ℓ )ψ2dr

∗

= [(∂r∗ψ2) ψ1 − ψ2 (∂r∗ψ1)]
r∗=0
r∗=−∞ + (H+

ℓ ψ2, ψ1),

(192)

this will be the case if we restrict L2(R−
r∗ , dr

∗) to the subspace L2
α(R

−
r∗ , dr

∗) of functions satisfying the boundary
condition (see the discussion around equation (168) in [20], which applies to our case)

∂r∗ψ
∣∣
r∗=0

= tan(α) ψ
∣∣
r∗=0

, (193)

α ∈ [−π, π], where α = ±π (to be identified) is understood as the Dirichlet boundary condition ψ
∣∣
r∗=0

= 0, α = 0

corresponds to the Neumann boundary condition (∂r∗ψ
∣∣
r∗=0

= 0) and the remaining cases to Robin boundary

conditions. We will call αH+
ℓ the self adjoint extension of H+

ℓ to the domain L2
α(R

−
r∗ , dr

∗). Once a self-adjoint

extension α is chosen, the dynamics is given by the curve in L2
α(R

−
r∗ , dr

∗) obtained by solving the equation [31]

∂2t φ+ αH+
ℓ φ = 0, φ ∈ L2

α(R
−
r∗ , dr

∗), (194)

with initial conditions

φ
∣∣
to

= p, ∂tφ
∣∣
to

= q, p, q ∈ L2
α(R

−
r∗ , dr

∗), (195)

and this is done by using the resolution of the identity for αH+
ℓ , i.e., by expanding in generalized eigenfunctions of

this operator. If E is a negative eigenvalue of αH+
ℓ , it belongs to the discrete part of the spectrum and, if pE and qE

are the projections of p and q onto the E−eigenspace, the projection φE of φ in (194) will be

φE(t) = qE cosh(
√
−E t) + pE (−E)−1/2 sinh(

√
−E t). (196)

Thus, there is an instability if the spectrum of αH+
ℓ contains negative eigenvalues, and whether this happens or

not may depend on α, so in general the issue of stability depends on what self adjoint extension αH+
ℓ (equivalently,

what boundary condition at the timelike boundary) we choose to define the dynamics. As an example, in [37] Robin
boundary conditions are enforced at a finite radius rD on the φ±(ℓ,m), as given in equations (2.32) and (2.42). This

condition assures that there is a gauge for which the induced perturbed metric at the timelike hypersurface r = rD
vanishes. One can check from the expressions in [37], however, that in the rD → ∞ limit (2.32) and (2.42) reduce to
a the Dirichlet condition φ±(ℓ,m)/∂r∗φ

±
(ℓ,m) = 0.

For the unstable mode χ+
ℓ we find that it belongs to αH+

ℓ with

tan(α) =
∂r∗χ

+
ℓ

χ+
ℓ

∣∣∣∣
r∗=0

= wℓ −
2MΛ

(ℓ − 1)(ℓ+ 2)
. (197)

SAdS is unstable under dynamics that allow this boundary condition for some ℓ. A systematic study of stability as a
function of α is being carried out [33].

Note that the even/odd symmetry valid for Λ ≥ 0 (equations (181)-(182)) and the related isospectrality of H+
ℓ and

H−
ℓ (equations (179)-(180)) are in general broken in SAdS for generic boundary conditions [35] [38].

Note also the similarity between SAdS and the negative mass Schwarzschild solution, for which we may choose
r∗ = 0 at r = 0 and

r∗ = r + 2M ln
(
1− r

2M

)
, (198)

will grow monotonically with 0 < r∗ < ∞. The similarity with SAdS is that r∗ is also restricted to a half-line. This
allows to consider the Chandrasekhar mode (the choice of a minus sign in (170))

φ+ unst
(ℓ,m),M<0 = χ+

ℓ (r) exp(−wℓt) =
r exp(wℓ (r

∗ − t))

(ℓ + 2)(ℓ− 1)r + 6M
, (199)
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as a possible solution of (ZE), as it belongs for every t to the relevant space L2(R+
r∗ , dr

∗) (note that wℓ < 0 if M < 0).
This solution grows exponentially in time, so it signals an instability. There is, however, a key difference between
the timelike boundary at r = 0 of the negative mass Schwarzschild solution and the conformal timelike boundary at
r = ∞ of SAdS, as for the former there is a unique boundary condition that makes the linear perturbation scheme
self-consistent, by no worsening the degree of the pole of the unperturbed curvature scalars [16] [10]. The solution
(199) of (ZE) satisfies precisely this boundary condition. This was used in [16] [10] to prove the instability of the
Schwarzschild naked singularity.

F. Measurable effects of the perturbation on the geometry

In this section we show that there is a gauge invariant combination G+ of first order variation of the CSs (7) that

contains all the gauge invariant information about the metric perturbation class [h
(+)
αβ ]. In particular, h

(+)
αβ in the RW

gauge can be obtained from G+. Following [9], we introduce the differential curvature scalars (7). The background
value of X in the S(A)dS geometry is

XS(A)dS =
M2

r9
(r − 2M)− ΛM2

3r6
, (200)

and the background value of Q+ in (7) is

Q+S(A)dS =
M2

r6
. (201)

It follows that the combination

G+ = (9M − 4r + Λr3)Q̇+ + 3r3Ẋ (202)

is gauge invariant since, under a gauge transformation along ζα,

G+ →G+ + (9M − 4r + Λr3) £ζQ+S(A)dS + 3r3 £ζXS(A)dS

=G+ + (9M − 4r + Λr3) ζr∂rQ+S(A)dS + 3r3 ζr∂rXS(A)dS

=G+

(203)

A lengthy calculation with the help of symbolic manipulation programs gives G+ for an arbitrary perturbation class

[h
(+)
αβ ] using the parametrization Lφ

+ in Lemma 6.v and Schwarzschild coordinates (t, r):

G+ = −2MṀ

r5
+
M

2r4

∑

ℓ≥2

(ℓ+ 2)!

(ℓ− 2)!
[f∂r + Zℓ]φ

+
(ℓ,m)S(ℓ,m), (204)

where

Zℓ =
2MΛr3 + µr(r − 3M)− 6M2

r2(µr + 6M)
, µ = (ℓ− 1)(ℓ+ 2). (205)

This generalizes the result equation (33) in [9] to the case Λ 6= 0.

Theorem 5. Let [h
(+)
αβ ] ∈ L+ and G+

(
[h

(+)
αβ ]
)
be the field (204) for the perturbation class [h

(+)
αβ ]. The map [h

(+)
αβ ] →

G+

(
[h

(+)
αβ ]
)
is invertible: it is possible to construct a representative of [h

(+)
αβ ] from G+

(
[h

(+)
αβ ]
)
.

Proof. We will prove that the linear map [h
(+)
αβ ] → G+

(
[h

(+)
αβ ]
)
has trivial kernel. Assume that (Ṁ(1), {φ+(ℓ,m)

(1)}) and
(Ṁ(2), {φ+(ℓ,m)

(2)}) give the same G+, then expanding G+ in spherical harmonics we find that Ṁ(1) = Ṁ(2) and also

[f∂r + Zℓ]χ(ℓ,m) = 0, (χ(ℓ,m) = φ+(ℓ,m)

(1) − φ+(ℓ,m)

(2)
). (206)
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The general solution of equation (206) is

χ(ℓ,m)(t, r) =
F (ℓ,m)(t)

(6M + µr)

√
1− 2M

r − Λr3

3 . (207)

Since χ(ℓ,m)(t, r) = φ+(ℓ,m)

(1) − φ+(ℓ,m)

(2)
, it must satisfy Zerilli’s equation. Inserting (207) in (ZE) gives

d2F (ℓ,m)

dt2
−
(
(µ+ 1)Λ

3
− µ

r2
+

2M(µ− 2)

r3
+

9M2

r4

)
F (ℓ,m) = 0, (µ = (L− 1)(L+ 2)), (208)

which only admits the trivial solution F (t) = 0.

To construct a representative of [h+αβ ] we need Ṁ and the φ+(ℓ,m), together with equations (119), (120), (145), (75),

(151), (153), (154) and (155). Expanding G+ in spherical harmonics

G+ =
∑

(ℓ,m)

G
(ℓ,m)
+ S(ℓ,m) (209)

we find that Ṁ = −r5G(ℓ=0)
+ /(2M) and φ+(ℓ,m) is the only solution of

[f∂r + Zℓ]φ
+
(ℓ,m) =

2r4

M

(ℓ − 2)!

(ℓ + 2)!
G

(ℓ,m)
+ (210)

that satisfies (ZE).

G. Non-modal linear stability of the Λ ≥ 0 black holes

In this section we establish the pointwise boundedness of G+, equation (204), on region II of a Schwarschild or SdS
black hole. For Λ < 0 and certain boundary conditions at the timelike boundary, this fails to be true. As an example,
for boundary conditions allowing the unstable mode (189), G+ contains a contribution proportional to

G+

(
[h+ unst

(ℓ,m) ]
)
= G+ unst

(ℓ,m) =
M

2r4
(ℓ+ 2)!

(ℓ− 2)!

(
ℓ(ℓ+ 1)

12M
− 1

2r

)
exp(wℓv) S(ℓ,m). (211)

where h+ unst
(ℓ,m) is given in (190).

Back to the Λ ≥ 0 case, we know from Lemma 7 that for a given a solution φ+(ℓ,m) of the (ZE), there exists a solution

φ−(ℓ,m) of the (RWE) such that φ+(ℓ,m) = D+φ−(ℓ,m). Using this replacement in (204) gives

[f∂r + Zℓ]φ
+
(ℓ,m) = [f∂r + Zℓ] [f∂r +Wℓ]φ

−
(ℓ,m)

= ∂2r∗φ
−
(ℓ,m) + (∂r∗Wℓ + ZℓWℓ)φ

−
(ℓ,m) + (Wℓ + Zℓ)∂r∗φ

−
(ℓ,m)

= ∂2t φ
−
(ℓ,m) + (fV RW

ℓ + ∂r∗Wℓ + ZℓWℓ)φ
−
(ℓ,m) + (Wℓ + Zℓ)∂r∗φ

−
(ℓ,m). (212)

Since

fV RW
ℓ +∂r∗Wℓ+ZℓWℓ = − 1

6Λℓ(ℓ+1)+
ΛM + wℓ

r
+
ℓ(ℓ+ 1)− 6Mwℓ

2r2
− (ℓ(ℓ+ 1) + 3)M

r3
+
6M2

r4
=:

4∑

j=0

Pj(ℓ)r
−j (213)

and

Wℓ + Zℓ = wℓ +
r − 3M

r2
, (214)

we can re write (204) as

G+ = −2MṀ

r5
+
M

2r3


∂2tΦ5 +

4∑

j=0

r−jΦj +
f(r − 3M)

r3
Φ5 +

f

r
Φ6


+

M

2r3
∂r∗Φ6 +

M(r − 3M)

2r5
∂r∗Φ5, (215)
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where

Φj =
∑

(ℓ≥2,m)

(ℓ+ 2)!

(ℓ− 2)!
Pj(ℓ)

φ(ℓ,m)

r
S(ℓ,m), j = 0, 1, 2, 3, 4 (216)

Φ5 =
∑

(ℓ≥2,m)

(ℓ+ 2)!

(ℓ− 2)!

φ(ℓ,m)

r
S(ℓ,m), (217)

Φ6 =
∑

(ℓ≥2,m)

(ℓ+ 2)!

(ℓ− 2)!
wℓ

φ(ℓ,m)

r
S(ℓ,m), (218)

are all solutions of (4DRWE), and therefore so is ∂2tΦ5. Note that the expression (215) for G+, written entirely in
terms of solutions of (4DRWE) is possible thanks to the cancellation in (213) of the ((ℓ+2)(ℓ−1)r+6M) denominators
in Zℓ and Wℓ.

Theorem 6.

(i) For any smooth solution of the even LEE which has compact support on Cauchy surfaces of the Kruskal extension
I ∪ II ∪ I′ ∪ II′ of the Schwarzschild space-time, there exists a constant K+ such that |G+| < K+ r−4 for r > 2M .

(ii) For any mooth solution of the even LEE which has compact support on Cauchy surfaces of region I ∪ II ∪ I′ ∪ II′

of the extended SdS black hole, there exists a constant K+ such that |G+| < K+ r−4 (equivalently |G+| < some
constant) for rh < r < rc.

Proof. We treat simultaneously the Λ = 0 and Λ > 0 cases. For even solutions of the LEE with compact support on
Cauchy surfaces of the Kruskal extension, there is an open neighbourhood N of r∗ = ∞ where φ+(ℓ,m) = 0. This set

is of the form N = {(t, r∗, θ, φ) | r∗ > R∗(t)} where, for large t, R∗(t) = t+ constant, and there is a similar open
neighbourhood N ′ near the I+ boundary of the isometric region II′.
In (212), we replaced the φ+(ℓ,m) fields with φ

−
(ℓ,m) fields according to (185). Using φ+(ℓ,m)|N = 0, equations (177)-(178),

(176) and (184), and the fact that φ−(ℓ,m) satisfies (RWE), we find that, in N ,

φ−(ℓ,m) =
(ℓ + 2)(ℓ− 1)r + 6M

r
exp(−wℓ r

∗)[A(ℓ,m) exp(−wℓ t) +B(ℓ,m) exp(wℓ t)]. (219)

According to Theorems 2 and 3, solutions Φ of the 4DRWE with compact support on Cauchy slices of the Kruskal
extension satisfy |Φ| < C/r in region II. The 4DRW fields Φj, j = 0, ..., 6 in equation (215) do not have compact
support on Cauchy slices, their spherical harmonic components have the exponential tails (219). In what follows we
prove that the results in Theorems 2 and 3 hold also in this case. This will allow us to place a pointwise bound to
the term between square brackets in G+, equation (215).
Let Φ be any of the Φj , j = 0, ..., 6, and write Φ as a sum of three solutions of the 4DRWE, Φ = Φ(a) + Φ(b) + Φ(c),
where Φ(a) has compact support on Cauchy slices of the Kruskal extension and Φ(a) = 0 for r∗ > R∗(t) + ǫ for some

positive ǫ, Φ(b) is supported in r∗ ∈ (R∗(t) − ǫ,∞) and Φ(c) is similarly supported near the I+ boundary of region
II′ (this is done by writing the Φ datum on a t slice as a sum of three appropriate terms and letting them evolve).
In region II, Φ = Φ(a) + Φ(b) and Φ(a) < C(a)/r since its satisfies the hypothesis in Theorem 2 (3). On the other
hand, Φ(b) decays as in (219). Since this field is bounded away the bifurcation sphere, we can adapt the proof of
boundedness in the Appendix in [21]. This proof follows two steps: i) the use of the Sobolev-type inequality

∣∣rΦ|t
∣∣ ≤ K

(
||Φ||+ ||r−1∂2r∗(rΦ)||+ ||J2Φ||

)
, (220)

where the norm

||Φ|| = 〈Φ|Φ〉1/2 (221)

is given by the inner product

〈Φ|Ψ〉 =
∫

ΦΨ r2 dr∗ sin(θ) dθdφ, (222)

and ii) the replacement of each of the terms on the right hand side of (220) with t−independent quantities, which gives
|Φ| <constant/r. Since equation (220) holds for finite norm fields, we only need to prove that step ii) is feasible for
Φ(b). We will prove this avoiding the use of the operators A−1/2 and (AΛ)−1/2) introduced in [21], applying instead
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the equivalent time integral technique introduced in sections 3.4 and 3.5 of [8] for the similar problem of proving the
pointwise boundedness of ΦKG on the static region of an extreme Reissner-Nordström black hole, ΦKG a solution of
the Klein-Gordon equation (note that s is used in [8] for the tortoise coordinate r∗). The idea is the following: for
solutions Φ ∈ L2(S2)>1 of the 4DRWE with finite norm there is a conserved (i.e., time independent) energy given by

E [Φ] = 〈∂tΦ|∂tΦ〉+ 〈Φ|r−1AΛ(rΦ)〉. (223)

This is easily checked using the form (66) of the 4DRWE. Note that both terms contributing to E [Φ] are positive for

a finite norm Φ ∈ L2(S2)>1, since V1 − V2D̂
AD̂A > 0 as a consequence of (53) and (68) and ∂2r∗ > 0. Now assume

there is a finite energy time integral Φ̃ of Φ, that is, Φ̃ satisfies the 4DRWE and ∂tΦ̃ = Φ. Then J
2Φ̃ also satisfies the

4DRWE and

||Φ||2 ≤ E [Φ̃] (224)

||r−1∂2r∗(rΦ)||2 ≤ E [∂tΦ] (225)

||J2Φ||2 ≤ E [J2Φ̃]. (226)

(compare with the set of equations above (A2) in [21], and with equation (76) in [8]). This allows us to replace the
right hand side of equation (220) with a time independent constant, and get the desired bound Φ < C/r. Note that
(224) and (226) follow straightforwardly from the definition (223) and the comments below it, whereas (225) follows

from E [∂tΦ] ≥ ||∂2tΦ||2 = ||r−1AΛ(rΦ)||2 > ||r−1∂2r∗(rΦ)||2. The existence of time integrals Φ̃(a) of Φ(a) and Φ̃(b) of

Φ(b) can be proved following the steps in section 3.4 of [8], since these fields belong to the Hilbert space Ĥ introduced

in Lemma 2 of this reference (with the appropriate replacements of V1 and V2). To prove that Φ̃(a) has finite energy

we proceed as in Lemma 3 in [8], since Φ(a) supported away of r∗ = ∞. To prove that Φ̃(b) has finite energy, we use
(219) to show that, in N ,

φ̃(b)(ℓ,m) =
(ℓ+ 2)(ℓ − 1)r + 6M

wℓ r
exp(−wℓ r

∗) [−A(ℓ,m) exp(−wℓ t) + B(ℓ,m) exp(wℓ t)] + ψ−,o
(ℓ,m)(r) (227)

where ψ−,o
(ℓ,m)(r) is a zero mode (ω = 0) solution of equation (174), that is Aψ−,o

(ℓ,m) = 0 (AΛψ−,o
(ℓ,m) = 0). The asymptotic

form for large r∗ for a zero mode is

ψ−,o
(ℓ,m) ∼

{
A(ℓ,m)[r

∗−ℓ + ...] +B(ℓ,m)[r
∗ℓ+1 + ...] ,Λ = 0

A(ℓ,m)[e
−αr∗ + ...] +B(ℓ,m)[1 + ...] ,Λ > 0,

(228)

where α > 0 is defined by equation (63) together with e−αr∗ = (r − rc)/rc. For the unique time integral in Ĥ of
Lemma 2 in [8] it must be B(ℓ,m) = 0 in (228). This implies that the energy integrals (224) and (226) converge for

Φ = Φ̃(b). We conclude that Φ(b) < C(b)/r and that the sum of terms within square brackets in (215) is bounded by
C′/r for some positive C′.

To deal with the last two terms in (215) we need to prove the pointwise boundedness of ∂r∗Φ in region II for Φ
a solution of the 4DRW, Φ = Φ(a) + Φ(b) + Φ(c) as above. We do so by adapting the proof in section 3.6 in [8] of
the pointwise boundedness of ∂r∗(rΦKG). For Φ = Φ(a) or Φ = Φ(b) start from the Sobolev inequality (220) with Φ

replaced with r−1∂r∗(rΦ):

∣∣∂r∗(rΦ)|t
∣∣ ≤ K

(
||r−1∂r∗(rΦ)||+ ||r−1∂3r∗(rΦ)|| + ||J2r−1∂r∗(rΦ)||

)
(229)

The square of the first term on the right hand side is bounded by the time independent energy of Φ:

E [Φ] = 〈∂tΦ|∂tΦ〉+ 〈Φ|r−1AΛ(rΦ)〉
≥ 〈Φ|r−1AΛ(rΦ)〉
≥ 〈Φ| − r−1∂2r∗(rΦ)〉
= ||r−1∂r∗(rΦ)||2. (230)

The second inequality above follows from V1 − V2D̂
AD̂A being positive definite on fields in L2(S2)>1, the integration

by parts in the last line is trivial for the compactly supported Φ(a) and, in view of (227)-(228), holds for Φ(b). The
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third term in (229) is similarly bounded by E [J2Φ]. To treat the second term on the right hand side of (229) we
proceed as in [8], by taking the r∗ derivative of AΛ(rΦ) (see (67))

∂3r∗(rΦ) = −∂r∗AΛ(rΦ) + rΦ∂r∗V1 + V1∂r∗(rΦ) − (∂r∗V2)J
2(rΦ) − V2J

2∂r∗(rΦ) (231)

and using the facts that Φ′ = r−1AΛ(rΦ) is also a solution of the 4DRWE and that the Vi’s and their r∗ derivatives
are bounded in region II: |Vi| ≤ V max

i , |∂r∗Vi| ≤ V max
i,r∗ :

||r−1∂3r∗(rΦ)|| ≤ ||r−1∂r∗AΛ(rΦ)||+ ||Φ||V max
1,r∗ + V max

1 ||r−1∂r∗(rΦ)||+ V max
2,r∗ ||r−1

J
2(rΦ)||+ V max

2 ||r−1
J
2∂r∗(rΦ)||

≤
√
E [r−1AΛ(rΦ)] +

√
E [Φ̃] V max

1,r∗ + Vmax
1

√
E [Φ] + V max

2,r∗

√
E [r−1J2(rΦ̃)] + V max

2

√
E [r−1J2(rΦ)] (232)

The finiteness of the energy integrals above for Φ = Φ(b) can easily be checked. We conclude that there is a constant
K ′ such that, in region II,

K ′ ≥
∣∣∂r∗(rΦ)

∣∣ ≥ f |Φ|+ r|∂r∗Φ| (233)

and, since f and Φ are bounded in this region,

|∂r∗Φ| ≤
K ′′

r
(234)

for some constant K ′′. Thus, every term in (215) is bounded by a constant times r−4.

V. DISCUSSION

A. Evolution of perturbations

The large t decay of φ±(ℓ,m) [25, 39], together with equations

G− = −6M

r7

√
4π
3

3∑

m=1

j(m)S(1,m) −
3M

r5

∑

(ℓ≥2,m)

(ℓ+ 2)!

(ℓ− 2)!

φ−(ℓ,m)

r
S(ℓ,m), (104)

and

G+ = −2MṀ

r5
+
M

2r4

∑

ℓ≥2

(ℓ+ 2)!

(ℓ− 2)!
[f∂r + Zℓ]φ

+
(ℓ,m)S(ℓ,m), (204)

indicate that, at large t,

G− ∼ −6M

r7

√
4π
3

3∑

m=1

j(m)S(1,m), G+ ∼ −2MṀ

r5
, (235)

which, in view of the bijection (9), corresponds to a linearized Kerr (Kerr de Sitter) black hole around the Schwarzschild
(SdS) background. The picture that emerges from these considerations is that, for a generic perturbation, the black
hole ends up settling into a slowly rotating Kerr (Kerr dS) black hole. To make statements like these more precise,
all we need is quantitative information on the decay of solutions of the 4DRW equation. This is so because r5G− is
a solution of this equation, and G+ can be written entirely in terms of solutions of the 4DRW equation (see equation
(215)). Alternatively, in view of Theorem 4, there is a bijection between solutions of the LEE and a set containing the

constants Ṁ, j(m) and two fields Φ± that obey the 4DRW equation. The perturbed metric is linearized Kerr (Kerr
de Sitter) if Φ± = 0, which is the limit approached at large t. Quantitative results for the decay in time of solutions
of the 4DRW equation can be found in [1], [11] and more recently in [7] (in this last reference, as statements on a
symmetric tensor field made out of two scalar fields obeying (4DRWE)).
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B. Reduction of the LEE to the 4DRW equation

A natural question that arises from our results is: can we forget altogether metric perturbations and restrict
ourselves to the study of the 4DRW equation? The answer to this question is in the affirmative (Theorem 4 and
equations (104) and (215)), although some technical issues should be mentioned if one intends to study perturbations
using only the G± or similar perturbed curvature fields. One is related to the possibility of evolving perturbations from
initial G± data. Since r5G− obeys the 4DRW equation, initial data (e.g., ∂tG− and G− restricted to a t =constant
hypersurface) gives G− and, by expanding in spherical harmonics, the metric perturbation in the RW gauge uniquely
related to it. This does not happen, however, with G+ in the even sector. Since the operator f∂r + Zℓ in (204) has
a non trivial kernel, and G+ does not satisfy a wave equation (which would allow us to recover the lost information
by proceeding as in Section IVE), the set of ∂tφ

+
(ℓ,m) and φ+(ℓ,m) at t = to cannot be obtained from ∂tG+ and G+

at t = to. The reason why G+ does not obey a wave equation is, of course, that is made out of the perturbation
of curvature scalars involving both the Riemann tensor and its covariant derivative; the possibility of constructing
a gauge invariant curvature scalar field for the even sector that does not use derivatives of the Riemann tensor was
ruled out in [9].
We should mention, however, two alternatives to the use of G+ (or similar fields involving CSs). One is using the

potentials Φ± in Theorem 4: perturbations are entirely characterized by Ṁ, j(m) (stationary perturbations) and the
fields Φ± obeying the 4DRW equation (dynamical perturbations). This shows that we can do without the Zerilli
equation and that the LEE does reduce to the 4DRW equation. The other possibility to avoid scalar fields involving
higher metric derivatives (such as Ẋ in G+, equation (202)), is constructing gauge invariant combinations made out
of perturbed curvature scalars and the metric perturbation. We close this section by exhibiting an example of such a
construction: if we calculate the (gauge dependent) scalar field Q̇+ (see (7)) in the RW gauge, we find that

Q̇
(RW )
+ =

2MṀ

r6
− 6M2

r5

∑

(ℓ≥2,m)

D−
ℓ φ

+
(ℓ,m)

r
S(ℓ,m), (236)

thus r5Q̇
(RW )
+,>1 also satisfies the 4DRW equation! We might think of using Q̇+ to measure the strength of even

perturbations, but this field is gauge dependent due to the fact that Q+ 6= 0 for the background Schwarzschild or
S(A)dS black hole. Under the gauge transformation (70),

Q̇+ → Q̇+
′ = Q̇+ + ζr∂rQ+ = Q̇+ − ζr

6M2

r7
. (237)

This suggests searching for a gauge invariant field H+ that agrees with Q̇+ in the RW gauge. If we compare (237)
with equation (126), we find the following solution:

H+ =
6M2

r7
D̃ar

(
qa − r2D̃aG

)
+ Q̇+ (238)

Since this gauge invariant field reduces in the RW gauge to Q̇
(RW )
+ , and the φ+(ℓ,m) are gauge invariant,

H+ =
2MṀ

r6
− 6M2

r5

∑

(ℓ≥2,m)

D−φ+(ℓ,m)

r
S(ℓ,m). (239)

Note that the dynamical ℓ ≥ 2 piece of r5H+ satisfies the 4DRW equation, which gives H+ an advantage over G+:
it is possible to obtain H+ from the initial datum (r5H+, r

5∂tH+)|to . Once this is done, the corresponding metric

perturbation in the RW gauge can be obtained by expanding H+ in spherical harmonics, which gives us Ṁ and the
D−

ℓ φ
+
(ℓ,m) and then applying Lemma 7 to recover the Zerilli fields φ+(ℓ,m). Although the H+ looks more geometrical

than the potentials Φ± in Theorem 4, we have not found an obvious interpretation for this field.
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