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a b s t r a c t

Sucrose synthase catalyzes the reversible conversion of sucrose and UDP into fructose and UDP-glu-
cose. In filamentous cyanobacteria, the sucrose cleavage direction plays a key physiological function
in carbon metabolism, nitrogen fixation, and stress tolerance. In unicellular strains, the function of
sucrose synthase has not been elucidated. We report a detailed biochemical characterization of
sucrose synthase from Thermosynechococcus elongatus after the gene was artificially synthesized
for optimal expression in Escherichia coli. The homogeneous recombinant sucrose synthase was
highly specific for ADP as substrate, constituting the first one with this unique characteristic, and
strongly suggesting an interaction between sucrose and glycogen metabolism.
� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction fixation. Therefore, export of carbon from vegetative cells is needed
Starch and sucrose (Suc) are the primary photosynthetic end
products in most plants [1]. Suc plays a key role for transporting
newly fixed carbon to heterotrophic tissues, is a major storage
compound and acts as a signalling molecule to regulate many met-
abolic and developmental processes. Under physiological and
stress conditions, Suc is important as a storage reserve in many
species and serves as compatible solute in response to abiotic
stress [2–5]. Its metabolism has been largely studied in plants;
whereas the role of Suc in cyanobacteria is still not fully under-
stood. In filamentous diazotrophic cyanobacteria, such as strains
from the genus Anabaena, research has shown that Suc is involved
in nitrogen fixation [6] and the biosynthesis of polysaccharides [7].
These cyanobacteria can differentiate a vegetative cell into a het-
erocyst for spatial separation of two incompatible processes:
oxygen-dependent photosynthesis and oxygen-sensitive nitrogen
to support nitrogen fixation in the heterocysts. Conversely, in
nitrogen-fixing unicellular cyanobacteria, the incompatibility be-
tween oxygenic photosynthesis and nitrogen fixation is solved by
temporal separation of both processes through circadian control
of gene expression. Thus, Suc could be accumulated as temporary
carbon storage during the day and used to fix nitrogen at night
[8,9].

In plants Suc synthesis occurs through the combined action of
Suc-phosphate synthase and Suc-phosphatase. Suc is converted
to glucose (Glc) and fructose (Fru) by invertases or, alternatively,
into UDP-Glc and Fru in a reaction catalyzed by Suc synthase (EC
2.4.1.13), a retaining glycosyl transferase with a GT-B fold
[10,11]. The reaction catalyzed by Suc synthase is freely reversible
in vitro; however, the physiological direction of the reaction seems
to be towards Suc cleavage. UDP-Glc produced by Suc synthase is
used for cell-wall biosynthesis and respiration, after its conversion
to Glc-6P by UDP-Glc pyrophosphorylase and phosphoglucomu-
tase [2,4]. Cyanobacteria metabolize Suc by a similar set of en-
zymes but they are capable of utilizing not only UDP-Glc but also
ADP-Glc as substrates for Suc synthesis [3]. Regarding cyanobacte-
rial Suc synthase, it has been purified and characterized from both
recombinant and the original source from Anabaena sp. PCC 7119,
7120, and Anabaena variabilis, with similar properties [7,12,13]. Re-
cently, Kolman et al. [14] showed the presence of Suc synthase in
three unicellular cyanobacteria strains (Microcystis aeruginosa
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PCC 7806, Gloebacter violaceus PCC 7421, and Thermosynechococcus
elongatus BP-1). Following functional characterization of Suc syn-
thase encoding genes (susA) by heterologous expression in Esche-
richia coli, the authors proved an increase in their transcript
levels after a salt treatment or hypoxic stress [14]. However, in this
study these enzymes were not studied in detail.

T. elongatus is a rod-shaped unicellular cyanobacterium that
inhabits hot springs and has an optimum growth temperature of
55 �C [15]. In 2002, the complete genome sequence of T. elongatus
strain BP-1 was published [16] and, based on a 16S rRNA phyloge-
netic analysis, has been located on a branch very close to the origin
of cyanobacteria [17]. T. elongatus is an obligate photoautotrophic
organism and has been used largely as a model organism for the
study of photosynthesis. To better understand Suc metabolism in
unicellular cyanobacteria, we have synthesized the sequence
encoding T. elongatus Suc synthase and characterized the recombi-
nant protein. In this work we show for the first time a Suc synthase
that prefers ADP rather than UDP, which has important implica-
tions in the carbohydrate metabolism of these organisms.

2. Materials and methods

2.1. Chemicals, enzymes and bacterial strains

Restriction enzymes were purchased from New England Biolabs
(Ipswich, MA, USA). For cloning procedures, E. coli NEB Turbo cells
(New England Biolabs) were used. Proteins were expressed using
E. coli Tuner (DE3) cells (Merck, Darmstadt, Germany). Substrates
and coupled enzymes used for Suc synthase activity assays were
from Sigma–Aldrich (Saint Louis, MO, USA). All the other reagents
were of the highest quality available.

2.2. Synthesis and sub-cloning of the Suc synthase encoding sequence
from T. elongatus

The T. elongatus Suc synthase encoding sequence, based in the
report of Nakamura et al. [16] (GenBank ID: BAC08600), was syn-
thesized de novo using oligonucleotides designed by reverse tran-
scription of the amino acid sequence with optimized codon usage
for E. coli, as previously described [18]. We added a His6-tag at the
C-terminus to facilitate protein purification by immobilized metal
ion affinity chromatography (IMAC). The full gene was cloned into
the StrataClone vector (Agilent Technologies, Santa Clara, CA, USA)
and sequenced (CRC DNA Sequencing Facility, University of Chi-
cago, Chicago, IL, USA). Finally, it was subcloned into the pET24a
vector (Merck) between NdeI and SacI sites, and the resulting con-
struction was used for expressing the recombinant protein in E. coli
Tuner (DE3) cells.

2.3. Protein expression and purification

Recombinant T. elongatus Suc synthase was expressed in E. coli
cells grown in a 2.8 l flask containing 1 l of Luria–Bertani (LB) med-
ium with 50 lg/ml kanamycin, at 37 �C and 250 rpm until OD600 nm

�0.6, and induced for 16 h at 25 �C with 0.5 mM isopropyl-b-D-1-
thiogalactopyranoside. All purification steps were performed at
4 �C. Cells were harvested by centrifugation at 5000�g for
10 min, resuspended with Buffer C [20 mM Tris–HCl pH 8.0,
200 mM NaCl, 10 mM imidazole, 10% (v/v) glycerol] and disrupted
by sonication. The resulting suspension was centrifuged twice at
30000�g for 15 min and the supernatant (crude extract) was
loaded onto a 1 ml His-Trap column (GE Healthcare, Piscataway,
NJ, USA) previously equilibrated with Buffer C. The recombinant
protein was eluted with a linear gradient from 10 to 200 mM imid-
azole in Buffer C (40 ml), and fractions containing Suc synthase
activity were pooled and concentrated to 2 ml. The sample was
then loaded onto a Superdex 200 16/60 column (GE Healthcare)
equilibrated with 50 mM HEPES-NaOH pH 8.0 and 300 mM NaCl.
Fractions containing Suc synthase activity were pooled, concen-
trated, supplemented with 10% (v/v) glycerol and stored at
�80 �C. Under these conditions the enzyme was stable for at least
3 months.

2.4. Protein methods

Denaturing protein electrophoresis was conducted as described
by Laemmli [19]. Prestained molecular mass markers were from
Bio-Rad. Protein concentration of the purified enzyme was deter-
mined by absorbance at 280 nm with a NanoDrop 1000 (Thermo
Scientific, Wilmington, DE, USA) using an extinction coefficient of
1.273 ml mg�1 cm�1, which was determined from the amino acid
sequence by using the ProtParam server (http://web.expasy.org/
protparam/) [20].

2.5. Enzyme assays

Assay A, reverse direction, synthesis of Suc. ADP formation was
continuously coupled with the production of pyruvate and further
oxidation of NADH. Unless otherwise stated, the standard reaction
mixture for the continuous coupled assay contained 50 mM HEP-
PS-NaOH pH 7.0, 10 mM MgCl2, 0.3 mM phosphoenolpyruvate,
0.3 mM NADH, 1 mM ADP-Glc, 20 mM Fru, 2 U pyruvate kinase
(PK), 2 U lactate dehydrogenase (LDH), 0.2 mg ml�1 BSA, and en-
zyme at an appropriate dilution, in a final volume of 200 ll. Alter-
natively, ADP-Glc was replaced by UDP-Glc and UDP production
was coupled to NADH oxidation. Reactions were incubated at
37 �C in a 96-well microplate and oxidation of NADH was followed
at 340 nm [21]. It has been reported that sugar-nucleotides are
unstable at alkaline pH values in presence of MgCl2 [22]. Therefore,
our assays were performed at pH 7.0 and started by adding the
NDP-Glc substrate. In addition, enzyme activity was determined
at initial velocity, which minimizes any possible instability of the
substrates.

Assay B, forward direction, cleavage of Suc. Unless otherwise
stated, the standard reaction mixture contained 50 mM HEPPS-
NaOH pH 7.0, 10 mM MgCl2, 1 mM ADP, 200 mM Suc, and enzyme
at an appropriate dilution, in a final volume of 50 ll. Alternatively,
ADP was replaced by CDP, GDP, UDP, and TDP. Reactions were
incubated at 37 �C for 10 min and stopped in a boiling water bath
for 1 min. Fru production was discontinuously coupled to NAD+

reduction by the addition of 1 mM ATP, 1 mM NAD+, 0.5 U hexoki-
nase, 0.5 U phosphoglucose isomerase, 0.5 U Glc-6P dehydroge-
nase, and 0.2 mg ml�1 BSA. Reduction of NAD+ was determined at
340 nm [23]. All activity measurements were determined at initial
velocities.

One unit of enzyme activity is defined as the amount of protein
catalyzing the conversion of 1 lmol of product in 1 min under the
specified conditions. The absorbance at 340 nm was followed
either in an ELx808 microplate reader (BioTek, Winooski, VT,
USA) or a Multiskan Ascent (Thermo Electron Corporation, Wal-
tham, MA, USA).

2.6. Kinetic characterization

Data of enzyme activity were plotted versus substrate concen-
tration and fitted to the Hill equation using the program Origin
8.0 (OriginLab Corporation). S0.5 is defined as the concentration
of substrate that produces 50% of the maximal velocity (Vmax)
and nH is the Hill coefficient. Alternatively, data were fitted to a
random bi–bi mechanism using the program previously reported
by Ziegler et al. [24]. Kinetic parameters shown were the mean
of two independent data sets reproducible within ±10%.
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2.7. Stability and temperature dependence of Suc synthase activity

The activity of T. elongatus Suc synthase was determined in the
Suc cleavage direction (Assay B) from 20 to 75 �C. Data of enzyme
activity were used to calculate the activation energy (Ea) by Arrhe-
nius plots [25]. Thermal stability of T. elongatus Suc synthase was
analyzed by incubating the enzyme for 10 min over a temperature
range of 45–72 �C in 50 mM HEPPS-NaOH pH 8.0 (control) and,
alternatively, with the addition of substrates for Suc cleavage
(1 mM ADP, 10 mM UDP, and 200 mM Suc). After incubation, ali-
quots were taken to determine the remaining activity in the direc-
tion of Suc cleavage (Assay B).

3. Results and discussion

3.1. Expression and purification of T. elongatus Suc synthase

Even though Suc synthase from plants and filamentous cyano-
bacteria have been previously studied [12,23,26–30], there is no
thorough kinetic characterization of the enzyme from unicellular
cyanobacteria. To shed light on Suc metabolism in T. elongatus,
we synthesized the sequence encoding T. elongatus Suc synthase
with the addition of a His6-tag at the C-terminus (Supplementary
Table S1). Because the gene was synthesized using the E. coli codon
usage, there was a very high level of expression (Fig. 1, lane 3). The
purified recombinant enzyme migrated in SDS–PAGE as a single
band of �95 kDa (Fig. 1, lanes 4 and 5), in accordance with the
molecular mass calculated from the primary sequence (94.8 kDa).
Purified T. elongatus Suc synthase eluted from the Superdex
200 gel filtration column as a 341 kDa protein (data not shown).
Fig. 1. Analysis of T. elongatus Suc synthase expression and purification by SDS–
PAGE. The recombinant enzyme was highly expressed in the soluble fraction and
purified by IMAC and gel filtration chromatography. Lane 1: prestained molecular
mass markers; lane 2: insoluble fraction; lane 3: soluble fraction (crude extract);
lane 4: IMAC fraction; lane 5: gel filtration fraction.

Fig. 2. Activity of T. elongatus Suc synthase with different NDPs. The activity of the enzym
and 10 mM (black bars) NDPs and 200 mM Suc. Values are the mean of three independen
7.0 to 9.0, as described under Section 2.
No significant changes in the migration pattern of the recombinant
enzyme were observed when run in 50 mM HEPPS pH 7.0, 8.0, and
9.0, suggesting a tetrameric quaternary conformation within this
pH range (data not shown), similar to what had been reported
for the Anabaena sp. PCC 7119 enzyme [12].

3.2. Nucleotide specificity

It has been reported that the main nucleotide used by Suc syn-
thase is UDP with a certain level of promiscuity [12,23,26–30] (see
Supplementary Tables S2–S8). Porchia et al. [12] reported that the
Km for Fru was lower when using ADP-Glc rather than UDP-Glc for
the Anabaena sp. PCC 7119 Suc synthase. We explored the specific-
ity of T. elongatus Suc synthase for different nucleotides from pH
7.0–9.0. With CDP, GDP, TDP, and UDP the activity was higher at
pH 7.0 (Fig. 2), in agreement with other cyanobacterial Suc syn-
thases [12,14]. The activities with 1 and 10 mM ADP were similar
at pH 7.0, suggesting that saturation had been already reached.
Conversely, the activity for the other nucleotides was considerably
higher at 10 mM, regardless of the pH (Fig. 2). At pH 7.0, and
10 mM concentration, the order of activity was CDP � GDP > UD-
P > ADP > TDP (Fig. 2). The calculated kinetic parameters of T.
elongatus Suc synthase for different NDPs at pH 7.0 indicated a sub-
strate preference for ADP (Table 1). In fact, at higher pH (9.0) the
preference for ADP is striking: the activity with 10 mM ADP is
14- to 100-fold higher than with the other NDPs tested (Fig. 2).
In agreement with Fig. 2, the smallest S0.5 was for ADP, whereas
those for CDP, GDP, TDP, and UDP were 5- to 8-fold higher (Table 1).
Consequently, the highest Vmax/S0.5 ratio, analogous to the catalytic
efficiency Vmax/Km for hyperbolic kinetics, was obtained with ADP
(Table 1). To the best of our knowledge, this is the first report of
a Suc synthase with a clear preference for ADP (see Supplementary
Tables S2–S8).

3.3. ADP-Glc is a better substrate than UDP-Glc

The distinctive nucleotide specificity observed led us to analyze
the preference for ADP-Glc or UDP-Glc of recombinant T. elongatus
Suc synthase in the Suc synthesis direction at pH 7.0 (Table 2). The
e was determined in the Suc cleavage direction (Assay B) using 1 mM (white bars)
t measurements ± standard error. Assays were performed at pH values ranging from

Table 1
Kinetic parameters of T. elongatus Suc synthase in the direction of Suc cleavage.
Reactions were performed at pH 7.0 using Assay B with varying NDP concentrations
and 200 mM Suc, as described under Section 2.

Substrate Vmax (U mg�1) S0.5 (mM) nH Vmax/S0.5

(U mg�1 mM�1)

ADP 1.28 ± 0.06 0.18 ± 0.02 1.1 ± 0.1 7.1
CDP 3.8 ± 0.2 0.9 ± 0.1 1.7 ± 0.4 4.2
GDP 3.9 ± 0.3 1.1 ± 0.2 1.5 ± 0.4 3.5
TDP 1.41 ± 0.05 1.4 ± 0.1 2.0 ± 0.3 1.0
UDP 2.2 ± 0.2 1.3 ± 0.3 1.1 ± 0.2 1.7



Table 2
Kinetic parameters of T. elongatus Suc synthase in the direction of Suc synthesis.
Reactions were performed at pH 7.0 using Assay A with both ADP-Glc and UDP-Glc, as
described under Section 2, to determine the specific activity (Vmax), Km, and the
catalytic efficiency per active site (kcat/Km).

Substrate Vmax (U mg�1) Km (mM) kcat/Km (M�1 s�1)

ADP-Glc 1.1 0.033 70094
Fru(ADP-Glc) 5.6 406
UDP-Glc 2.9 1.7 2673
Fru(UDP-Glc) 12 380

Fig. 3. Activity and stability of T. elongatus Suc synthase at different temperatures.
Activity of the recombinant enzyme was assayed in the Suc cleavage direction
(Assay B) at temperatures ranging from 20 to 75 �C. (A) Enzyme activity was assayed
using 10 mM UDP (s) or 1 mM ADP (d). (B) Arrhenius plots for determining the Ea

using data from (A) with UDP (s) and ADP (d). (C) Activity of T. elongatus Suc
synthase after 10 min incubation at the stated temperatures in absence of
substrates (j) or in presence of 1 mM ADP (d), 10 mM UDP (N), and 200 mM Suc
(.). Enzyme activity assays were performed using the standard conditions, as
described under Section 2.
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Vmax with UDP-Glc was 2.6-fold higher than with ADP-Glc, whereas
the Km for ADP-Glc was 51-fold lower than for UDP-Glc (Table 2).
Remarkably, the Km of T. elongatus Suc synthase for ADP-Glc was
in the lM range, which was significantly lower than that observed
for other Suc synthase forms [12,23,26–30]. Interestingly, the Km

for Fru was smaller when using ADP-Glc instead of UDP-Glc (Ta-
ble 2), which is in good agreement to results obtained with the en-
zyme from Anabaena [12] (Table S2). The catalytic efficiency of T.
elongatus Suc synthase was 26-fold higher with ADP-Glc than with
UDP-Glc (Table 2). Conversely, no significant differences were ob-
served in the catalytic efficiency for Fru when the co-substrate
was either ADP-Glc or UDP-Glc (Table 2). A distinctive physiologi-
cal consequence of the unique usage of adenine nucleotides by T.
elongatus Suc synthase is that it could directly link both Suc and
glycogen metabolisms [1,31].

3.4. Temperature dependence of T. elongatus Suc synthase activity and
stability

Since T. elongatus is a thermophilic organism, we analyzed the
activity of T. elongatus Suc synthase between 20 and 75 �C
(Fig. 3A). In the direction of Suc degradation the activity reached
a maximum at 60 �C with UDP and 70 �C with ADP (Fig. 3A). The
maximal activity in both cases was �6 U mg�1. Interestingly, the
Ea for the reaction with UDP was higher than with ADP (64.8 and
39.2 kJ mol�1, respectively, Fig. 3B), which agrees with the prefer-
ence of the enzyme for the latter (Table 1). The enzyme remained
stable after 10 min incubation up to 50 �C, but it sharply decayed
beyond 55 �C (Fig. 3C). Addition of 1 mM ADP, 10 mM UDP, or
200 mM Suc enhanced thermal stability by almost 5 �C, indicating
that T. elongatus Suc synthase could bind separately both sub-
strates (Fig. 3C).

In conclusion, our data showed that T. elongatus Suc synthase is
highly specific for ADP and ADP-Glc, which constitutes the first re-
port of a Suc synthase with this distinctive specificity. To analyze
the nucleotide binding pocket of T. elongatus Suc synthase, we built
two different models of the C-terminal domain using the crystal
structure of Arabidopsis thaliana Suc synthase as template [11]
(see Supplementary data). Fig. S1 shows that UDP and ADP interact
differentially with residues close to the active site of the enzyme.
We hypothesize that H-bonds established by UDP and ADP could
lock the structure in different conformations, being the one with
ADP more favorable for catalysis. A similar result was obtained
when the C-terminal domain of the Anabaena sp. PCC 7119 Suc
synthase was modeled with UDP and ADP (data not shown). How-
ever, biochemical data previously reported for the Anabaena en-
zyme showed similar Km values for both UDP and ADP (Table S2)
[12]. Sequence identity between Suc synthases from T. elongatus
and Anabaena is 72%; therefore, other residues important for sub-
strate binding and/or catalysis could be responsible for the ob-
served differences in the kinetic parameters. Experiments to test
our hypothesis are currently under way.
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