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The natural composition of nutrients present in food is a key factor deter-

mining the immune function and stress responses in the honeybee (Apis
mellifera). We previously demonstrated that a supplement of abscisic acid

(ABA), a natural component of nectar, pollen, and honey, increases honey-

bee colony survival overwinter. Here we further explored the role of ABA

in in vitro-reared larvae exposed to low temperatures. Four-day-old larvae

(L4) exposed to 258C for 3 days showed lower survival rates and delayed

development compared to individuals growing at a standard temperature

(348C). Cold-stressed larvae maintained higher levels of ABA for longer

than do larvae reared at 348C, suggesting a biological significance for

ABA. Larvae fed with an ABA-supplemented diet completely prevent the

low survival rate due to cold stress and accelerate adult emergence. ABA

modulates the expression of genes involved in metabolic adjustments and

stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin, and

Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regu-

lated by cold stress and ABA. These results support a role for ABA increasing

the tolerance of honeybee larvae to low temperatures through priming effects.
1. Introduction
Honeybees pollinate around one third of the crops cultivated worldwide, but

their role in global food production has been threatened by unusually high

mortality rates of managed colonies [1]. Environmental, agrochemical, parasitic,

and pathogenic stressors have increased the frequency and intensity of colony

failure and collapse phenomena [2,3]. It has been shown that most honeybee

colony loss occurs during the winter season [4,5]. Khoury et al. [6] have estab-

lished, through mathematical predictive models, that if colony populations

become small, the colony’s death is accelerated. Small colonies are unable to incu-

bate brood or maintain nest temperature, increasing the colony’s chance of dying

[6]. It has also been shown that extreme cold events negatively impact on the

distribution and abundance of some bee species [7]. Thus, the colony temperature

is affected both by meteorological phenomena and colony size [5,6,8].

The honeybee regulates thermal homeostasis in the brood nest, keeping it

between 338C and 368C [9]. Deviations from normal brood temperatures

induce changes in the worker bee’s behaviour; they crowd tightly together in

clusters, reducing heat loss, and producing endothermic heat by the activation

of thoracic muscles [9–11]. Honeybee broods reared at temperatures below

328C shows delayed development, increased mortality, abnormal nervous

system development, and poor behavioural performance as adult bees [12,13].

Lately, the role of naturally occurring compounds present in nectar, pollen,

and honey is being revalued [14,15]. Through laboratory and field experiments,

we have demonstrated that the supplementation of hives with syrup containing
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abscisic acid (ABA) enhanced the innate immune response of

honeybees and the winter survival of the colony [15].

The phytohormone ABA is involved in plant responses to

environmental stresses such as extreme temperature, light,

and drought [16]. In animal systems, ABA is an endogenous

hormone acting in inflammatory responses [17,18]. ABA is a

natural constituent of pollen, nectar, and honey [19–21] and

because of that, we predicted that ABA would work as a

specific component of the honeybee’s food, enhancing the

bees’ capacity to confront winter temperatures. Here, we

demonstrate that honeybee larvae reared in vitro and fed

with an ABA-supplemented diet, showed improved develop-

mental behaviour and higher survival rates upon submitted

to cold stress.
oc.B
284:20162140
2. Material and methods
(a) In vitro rearing and cold stress treatment
Larvae of honeybee Apis mellifera (A. mellifera ligustica- A. mellifera
mellifera) of 1-day-old (1st instar, L1) were collected from colonies

of our experimental apiary at Santa Paula, route 226, km 10,

Mar del Plata, Argentina. The larvae were transferred from

brood comb to 48-well culture plates. The larval rearing plates

were placed into desiccators maintained at a relative humidity

of 96% (K2SO4 saturated) in a 348C incubator. Daily diet volumes

provided to the larvae and variation of the composition of the

diet was done according to Aupinel et al. [22] and is detailed

in electronic supplementary material, table S1. The diet was sup-

plemented or not with 50 mM of (R,S)-abscisic acid (ABA, Sigma

Aldrich). Larvae were fed from day 1 until day 6. We used

ecologically relevant doses of ABA supplementation based on

measurements of ABA in honey and royal jelly in our region

(0.211 and 0.119 mg g21 of fresh weight (FW), respectively),

and ABA measurements reported in honey from different origins

(between 0.1 and 360 mg g21 of FW) [20,21]. For some exper-

iments, diet was supplemented with 5, 50, and 500 mM of ABA

(equivalent to 1.32, 13.2, and 132 mg g21 FW, respectively).

After 4 days growing at 348C, a group of larvae was trans-

ferred into an incubator at 258C for 3 days (cold-stressed

larvae) and then returned to 348C until they culminate the devel-

opment as newly emerged workers (NEW). All larvae (control

and cold stressed) received 160 ml as a total diet during a feeding

period of 6 days (see figure 1 and electronic supplementary

material, table S1).

(b) Abscisic acid extraction and quantification
For ABA quantification, individuals of 4, 6, and 8 days old were

entirely used, while in adults (NEW), the midguts were extracted

by pulling out from the sting and separated from the rest of the

body. Each sample was frozen in liquid nitrogen and ground to a

fine powder in a mortar. ABA extraction was performed follow-

ing the method described by Van Norman et al. [23] and using

the Phytodetek ABA Quantification Kit (Agdia) according to

the manufacturer’s instructions.

(c) Measurements of survival, fresh weight, and
developmental timing

Survival was measured as the percentage of NEW from an initial

number of L1 included in each experimental condition, con-

sidered as 100%. Dead individuals were counted daily and

removed from the rearing plates.

Fresh weight (FW) was measured in individuals of different

developmental stages: 4, 6, 8, 12 days old, and NEW, after dusting
them off with filter paper. Development was measured as the time

(days) between the larval stage L1 and adult emergence.

(d) Quantification of transcript level by real time PCR
(qPCR)

The total RNA from individuals was extracted, reverse transcribed,

and cDNA used as a template for qPCR analysis. The protocol is

detailed in the supplementary material and the primer sequences

listed in electronic supplementary material, table S2. The

expression levels of each gene were normalized to Actin. Lin-

RegPCR program was employed for the analysis of qPCR data

[24]. The transcript relative quantification results were determined

from the ratio between the starting concentration value of the

analysed mRNAs and the reference Actin mRNA in each sample.

The mean and standard error was calculated from values of the

transcript quantification obtained in each biological replicate.

(e) Statistical analysis
Statistical analyses were conducted with SigmaPlot v. 11.0 soft-

ware (Systat Software Inc., CA, USA). ABA content, survival,

and developmental time data were analysed using Student’s

t-test. A Mann–Whitney test was performed when the assump-

tions of normality and/or homogeneity of variances were

violated. Fresh weight and transcript quantification data were ana-

lysed using one-way ANOVA or two-way ANOVA, with post hoc
comparisons by the Holm-Sidak multiple comparison test.

Kruskal–Wallis test (with post hoc comparisons by the Dunn’s

multiple comparison test) was used when the assumptions of

normality and/or homogeneity of variances were violated.
3. Results
(a) Description of the experimental design
Figure 1 shows the experimental approach designed to inves-

tigate the role of ABA in cold stress tolerance in honeybee

larvae. We decided to study the effects of cold stress on hon-

eybee larvae at 258C, mainly due to two reasons: (i) it has

been established that brood reared at temperatures lower

than 348C increases pupal mortality, negatively influencing

the emergence of adults, and affecting the synaptic org-

anization of the adult honeybee brain [12,13,25] and

(ii) preliminary results obtained in our laboratory demon-

strated that larvae reared in vitro at temperatures below

238C were completely unstable and eventually died.

(b) Cold-stressed honeybee larvae maintain high levels
of abscisic acid

Figure 2 shows that at the control growth temperature of

348C, ABA content in larvae decreased during development

from 4-day-old larvae to 8-day-old individuals (Mann–Whit-

ney test, U ¼ 0, p ¼ 0.001), while an increase was observed in

NEW compared to 8-day-old individuals (Mann–Whitney

test, U ¼ 0, p , 0.001). Figure 2 also shows that the ABA con-

tent decreased at a lower rate in 4- to 8-day-old cold-stressed

individuals compared with the control conditions (Mann–

Whitney test, U ¼ 0, p ¼ 0.006). This result suggests that the

higher ABA content in cold-stressed honeybee larvae might

play a role in cold stress responses. Thereby, the effect of

ABA supplementation in the diet of in vitro-reared larvae

was studied. We predicted an enhanced tolerance to cold

stress in ABA-supplemented honeybee larvae. Electronic
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Figure 1. Experimental design for the manipulation of A. mellifera during the development in standardized in vitro growth conditions. (I) First instar larvae were
collected from brood combs and transferred to 48-well culture plates. (II) In vitro rearing was carried out according to Aupinel et al. [22]. The standard diet during
the larval feeding period was supplemented or not with 0, 5, 50, or 500 mM abscisic acid (ABA). (III) Four-day-old larvae were treated as follows: a group of
individuals was continuously grown at the control temperature (348C) while another group was cold stressed (258C). (IV) After 3 days the group kept at 258C was
returned to the control temperature (348C) until adult emergence. (V) The number of newly emerged workers (NEW) and the developmental timing was registered
for each growing condition. (Online version in colour.)
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supplementary material, figure S1a shows that, between 5

and 500 mM, ABA does not alter the FW of honeybees at

any developmental stage (Kruskal–Wallis test, 4 days old:

H ¼ 4.894, d.f. ¼ 3, p ¼ 0.18; 6 days old: H ¼ 4.522, d.f. ¼ 3,

p ¼ 0.21; 8 days old: H ¼ 5.78, d.f. ¼ 3, p ¼ 0.09; NEW: H ¼
6.295, d.f. ¼ 3, p ¼ 0.098). We also determined that ABA con-

tent was 1.29+0.43 and 0.082+0.017 mg g21 FW (mean+
s.e.) in 4-day-old larvae and NEW, respectively, when the

diet was supplemented with 50 mM ABA. This represents a

significant increase of 35 and 9 times in 4-day-old larvae

and NEW, respectively, compared to larvae fed without

ABA (Student’s t-test, 4-day-old: t ¼ 22.921, d.f. ¼ 10, p ¼
0.015; NEW: t ¼ 24.569, d.f. ¼ 11, p , 0.001). High concen-

trations of ABA do not cause any adverse consequences to

honeybee health.

Larvae FW significantly diminished in 6- and 8-day-old indi-

viduals exposed to cold stress, compared to individuals grown at

348C (one-way ANOVA, 6 days old: F3,170 ¼ 190.761, p , 0.001;

Kruskal–Wallis test, 8 days old: H ¼ 63.727, d.f. ¼ 3, p , 0.001;

electronic supplementary material, figure S1b). However, indi-

viduals exposed to cold stress for 3 days that emerged as

adults (NEW) showed a similar FW to those that were grown

continuously at 348C (one-way ANOVA, F3,96 ¼ 0.933, p ¼
0.428; electronic supplementary material, figure S1b), indicating

that after returning to the standard temperature, the larvae were

able to recover. We observed that 4-day-old larvae transferred to

258C did not eat or did so slowly, which correlates with the lower

gain of weight detected in 6- and 8-day-old larvae (electronic

supplementary material, figure S1b). This was also confirmed

by the accumulation of food in the wells of the plate of cold-

stressed larvae. The survival rate and developmental timing

was then studied to understand the consequences of the altered

weight gain of larvae under cold stress.
(c) Abscisic acid prevents the decrease in the survival
rate and recovers partially the delayed development
of cold-stressed larvae

Survival rate is an indicator broadly used to study the

impact of cold stress in insects [26]. Figure 3a shows that
the exposure of honeybee larvae to 258C for 3 days dimin-

ished the survival rate, compared to individuals reared at

the standard temperature (348C) (Student’s t-test, t ¼
2.967, d.f. ¼ 6, p ¼ 0.025). Figure 3a also shows that the sur-

vival rate is 60.6% at 348C, while cold stress decreases it to

35.7%. However, when the diet was supplemented with

50 mM ABA, the survival rate of cold-stressed individuals

reaches a value of 57.4%, which is close to the rate of

non-stressed individuals (Student’s t-test, t ¼ 23.96,

d.f. ¼ 4, p ¼ 0.017). In addition, ABA supplementation in

the diet has no effect on the survival rate of non-stressed

individuals (Student’s t-test, t ¼ 21.15, d.f. ¼ 8, p ¼ 0.283,

figure 3a).

Figure 3b demonstrates that while individuals growing at

348C reach adult emergence after 21.5+ 1.105 days (mean+
s.e.), cold-stressed individuals emerged after 24.8+0.422

days (mean+ s.e.), showing a significant developmental

delay (Mann–Whitney test: U ¼ 1, p , 0.001). Supplemen-

tation with ABA accelerated the emergence of cold-stressed

individuals, which achieved this phase after 23.7+0.92

days (mean+ s.e.) (Mann–Whitney test: U ¼ 32, p ¼ 0.004;

figure 3b). Again, the supplementation with ABA had no sig-

nificant effect on the development of individuals growing in

standard conditions (Mann–Whitney test: U ¼ 522.5, p ¼
0.262; figure 3b). Figure 3c shows representative pictures

of individuals at different developmental times growing

either in standard or cold stress conditions. Cold-stressed

6-day-old larvae are smaller than non-stressed ones and

this observation correlates with their lower FW (electronic

supplementary material, figure S1b). In addition, 11-day-old

individuals grown at standard conditions were found at

the pupae developmental stage while cold-stressed individ-

uals remained at the pre-pupae stage (figure 3c).

Individuals reared at standard temperatures started emer-

gence as adults after 20 days, while cold-stressed

individuals were found still at pupae stages (figure 3c).

Figure 3d shows that cold-stressed 17-day-old individuals

displayed pink eyes and non-pigmented body while the

ABA-supplemented individuals presented purple eyes and

light brown pigmented body, indicating that ABA accelerates

development.
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(d) Abscisic acid regulates the expression of genes
associated with metabolic adjustments and stress
responses

Since ABA supplementation has an impact on the survival

rate and the development of cold-stressed honeybees, we

studied the effect of ABA on the expression of genes involved

in metabolic, signalling and stress protection processes. The

effect of cold stress and ABA supplementation was studied

during and after the period of stress. Two time points

were chosen to analyse changes in gene expression: 2 days

of cold stress (6-day-old larvae) and 1 day after the stress

(8-day-old individuals) (see figure 1). First, we determined

the transcript accumulation of genes associated with meta-

bolic regulations: Hexamerin 70b (Hex70b), Cytochrome C
(CytC), Insulin Receptor Substrate (IRS), and Target of Rapamy-
cin (TOR) [27–29]. Figure 4a shows that Hex70b transcript

levels significantly increased in cold-stressed 8-day-old indi-

viduals when compared to control individuals, and that

this increase was higher in ABA-supplemented larvae (two-

way ANOVA, N348C,Control ¼ 11, N348C,ABA ¼ 9, N258C,Control ¼

6, N258C,ABA ¼ 6, temperature: F1,20 ¼ 144.19, p , 0.001; treat-

ment: F1,20 ¼ 21.756, p , 0.001; temperature x treatment:

F1,20 ¼ 21.877, p , 0.001). At the standard temperature

(348C), the highest Hex70b transcript level was found in

larval stages (electronic supplementary material, figure S2).

In contrast, the levels of CytC transcript were low in larvae

and pupae and notably higher in NEW (electronic sup-

plementary material, figure S2). Figure 4b shows that CytC
transcripts significantly increased in 6- and 8-day-old cold-

stressed individuals, compared to individuals reared at a

standard temperature (two-way ANOVA, 6 days old:

N348C,Control¼ 12, N258C,Control¼ 6, F1,32¼ 27.295, p , 0.001;

8 days old: N348C,Control¼ 12, N258C,Control¼ 6, F1, 31¼ 92.194,

p , 0.001). ABA supplementation itself had no effect on
CytC expression (two-way ANOVA, 6 days old: N348C,ABA ¼

12, N258C,ABA ¼ 6, F1,32¼ 0.891, p ¼ 0.352; 8 days old:

N348C,ABA ¼ 11, N258C,ABA ¼ 6, F1,31¼ 0.492, p ¼ 0.488).

Figure 4c,d show that IRS and TOR transcripts were higher in

6-day-old cold-stressed individuals compared to control

ones (two-way ANOVA, IRS: N348C,Control¼ 8, N258C,Control¼ 9,

F1,34¼ 14.356, p , 0.001; TOR: N348C,Control¼ 12, N258C,Control¼

6, F1,35¼ 28.496, p , 0.001), suggesting a role for these genes

in the response to low temperatures. At this time point,

ABA supplementation slightly reduced the effect of the stress

on the expression of IRS transcript (Kruskal–Wallis test,

N348C,Control¼ 8, N348C,ABA ¼ 9, N258C,Control¼ 9, N258C,ABA ¼ 9,

H ¼ 18.003, d.f. ¼ 3, p , 0.001; figure 4c).

Secondly, we studied the expression of a gene set associated

with stress responses: Vitellogenin (Vg), Mn-Superoxide Dismu-
tase (MnSOD), Heat-shock 70 (HSP70), and Heat-shock 90
(HSP90) [26,30,31]. Figure 5a shows that Vg transcript levels sig-

nificantly increased in 6- and 8-day-old individuals exposed to

cold stress, compared with individuals grown at the control

temperature (two-way ANOVA, 6 days old: N348C,Control ¼ 9,

N258C,Control ¼ 9, F1,26¼ 6.433, p ¼ 0.018; 8 days old:

N348C,Control ¼ 6, N258C,Control ¼ 6, F1,22¼ 6.183, p ¼ 0.022).

Interestingly, ABA supplementation induced the expression

of Vg in 6-day-old individuals, growing at either control or

low temperatures (Kruskal–Wallis test, N348C,Control ¼ 9,

N348C,ABA ¼ 9, N258C,Control ¼ 9, N258C,ABA ¼ 9, H ¼ 11.23,

d.f. ¼ 3, p ¼ 0.011; figure 5a). Figure 5a also indicates that Vg
expression was maintained high in 8-day-old individuals that

returned to standard temperature, independently of

ABA supplementation (two-way ANOVA, N348C,Control ¼ 6,

N348C,ABA ¼ 6, N258C,Control ¼ 6, N258C,ABA ¼ 6, temperature:

F1,22¼ 6.183, p ¼ 0.022; treatment: F1,22 ¼ 0.365, p ¼ 0.561).

The levels of Vg transcript are particularly low during develop-

mental stages previous to adult emergence (electronic

supplementary material, figure S2).

The expression of MnSOD and HSP90 was also high in

8-day-old individuals exposed to cold stress that were

returned to the control temperature (two-way ANOVA,

MnSOD: N348C,Control ¼ 6, N258C,Control ¼ 6, F1,20 ¼ 13.358,

p ¼ 0.002; figure 5b, and HSP90: N348C,Control ¼ 6,

N258C,Control ¼ 6, F1,20 ¼ 8.037, p ¼ 0.01; figure 5d ). In contrast,

the level of HSP70 transcripts increased in 6-day-old cold-

stressed individuals and those growing at 348C that were

ABA-supplemented (Kruskal–Wallis test, N348C,Control ¼ 6,

N348C,ABA ¼ 6, N258C,Control ¼ 6, N258C,ABA ¼ 6, H ¼ 10, d.f. ¼

3, p ¼ 0.019; figure 5c). In 8-day-old individuals that were

either growing at 348C or submitted to cold stress, ABA sup-

plementation induced a decrease of HSP70 transcript levels,

suggesting that ABA-supplemented individuals might be

sensing a less severe stress (two-way ANOVA, N348C,Control ¼

6, N348C,ABA ¼ 6, N258C,Control ¼ 6, N258C,ABA ¼ 6, temperature:

F1, 20 ¼ 1.016, p ¼ 0.326; treatment: F1, 20 ¼ 4.906, p ¼ 0.039;

figure 5c).

Lanthionine synthetase C-like protein (LANCL2) has been

established as a G protein-coupled peripheral membrane

protein and a key component of the ABA signal transduction

pathway in mammalian cells [32,33]. Sequence alignment of

human and A. mellifera LANCL2 shows 41.3% amino acid

identity and 71% similarity (electronic supplementary

material, figure S3). Electronic supplementary material,

figure S4a, shows a specific and saturated binding of

[3H]ABA to recombinant AmLANCL2, with an affinity similar

to that observed with human LANCL2. Protein purity was
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determined by SDS-PAGE analysis (electronic supplementary

material, figure S4b). The expression of AmLANCL2 presents

slight changes between larvae to pupae stages with a signifi-

cant increase in NEW (electronic supplementary material,

figure S2). Figure 6 shows that AmLANCL2 transcript levels

significantly increased in 6-day-old cold-stressed individuals

(one-way ANOVA, N348C,Control ¼ 12, N348C,ABA ¼ 12,

N258C,Control ¼ 6, N258C,ABA ¼ 6, F3,32 ¼ 18.881, p , 0.001),

while ABA supplementation slightly reduced the transcript

level of AmLANCL2. Actin gene expression used to normalize

the expression of the studied genes is not altered by treatments

(electronic supplementary material, figure S5).
4. Discussion
Phytochemicals present in the natural bee diet impact on the

physiology, behaviour, and health of honeybees. In this

work, we report that ABA is present in honeybees and its

concentration is kept high in cold-stressed individuals. More-

over, endogenous ABA concentration varies along the

different developmental stages of the honeybee. From

figure 2 and electronic supplementary material, figure S1b,

the concentration of ABA is calculated as 0.59 and
3.81 pmoles ABA individual21 at 8 days old and NEW,

respectively. Because individuals are not fed between these

two developmental stages, it is postulated that the sevenfold

increase of ABA content observed in NEW is a consequence

of genuine endogenous ABA synthesis, as was already dis-

cussed in Negri et al. [15]. More interestingly, the

endogenous ABA concentrations found in honeybees are in

the nanomolar range, the same concentration found in

human granulocytes and macrophages, where ABA levels

also increase under stress situations [18,34].

The harmful effects of cold stress in insects, and particu-

larly in honeybees, change with developmental stages,

temperature, and time of exposure [12,13,25,35]. Under

chronic or severe cold exposure insects experience loss of

neuromuscular function, caused by decreased membrane

potential and reduced excitability of the neuromuscular

system, decreased membrane fluidity, disruption of ion and

water homeostasis across membranes, impairment of cellular

metabolism, depletion of cellular ATP, protein denaturation

and ROS, among others. Several molecular and physiological

mechanisms have been identified to confront chill injuries

[35,36]. Here, we describe that an ABA dietary supplement

augments the survival rate of cold-stressed larvae (258C for

3 days) at levels of individuals reared at standard
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temperature conditions (348C) (figure 2a). ABA also acceler-

ates the development of individuals exposed to low

temperatures, allowing them to complete metamorphosis in

less time (figure 3b and electronic supplementary material,

figure S1b).

In animals, compensatory growth is related to the rapid

recovery when organisms accelerate their growth to catch

up after a period of low growth [37,38]. In this work, we

show that L4 larvae exposed to cold stress emerged as

adults with the same FW as individuals grown at 348C,

but they required 3.5 more days to reach emergence.

In contrast, cold-stressed individuals that were ABA-

supplemented showed an accelerated growth compared to

non ABA-supplemented, as they attained the same FW in a

shorter time (figure 3b). This may imply a putative function

for ABA in activating mechanisms related to compensatory

growth in honeybee.

The high ABA levels and delayed development observed

in cold-stressed honeybee larvae is reminiscent of what is

found in plant seeds. ABA helps seeds to overcome the

stress conditions and to germinate only when the environ-

mental parameters are conducive for germination and

growth [39]. In honeybees, like in plants, ABA could act as

a signal to adjust the metabolic rate until the growing con-

ditions become favourable. To study this possibility, the
expression of genes associated with metabolic adjustments

and stress responses was analysed. Hexamerins (Hex) are

amino acid storage proteins that are upregulated in the feed-

ing stage of larvae, when they gain weight before entering

metamorphosis. We demonstrate that 8-day-old individuals

that were exposed to cold stress retained high levels of

Hex70b transcript compared with individuals kept at the

standard temperature (figure 4a). ABA supplementation

slightly increased Hex70b transcript accumulation in

8-day-old individuals that were cold stressed, which could

represent an increase in nutrients stored for accelerating

growing processes in those individuals.

CytC is an electron carrier for mitochondrial complexes III

and IV. Cold-stressed individuals present CytC transcript

accumulation. It was reported that CytC expression is induced

under elevated metabolic rates occurring, for example, during

the queen development [28]. The cold-induced increase of

CytC transcript level observed in this study indicates a raise

in the mitochondrial metabolic rate and/or an increase of

the mitochondrial number per cell in cold-stressed larvae.

This might be associated with an effort to increase the meta-

bolic heat production in cold-stressed individuals to protect

themselves from temporary low temperatures.

IRS and TOR are central components of a conserved sig-

nalling pathway that regulates cell and organism growth in
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response to nutrient status [29]. Given that IRS and TOR tran-

script accumulation is high in cold-stressed 6-day-old

individuals, it is suggested their involvement in metabolic

adjustments is associated with early responses to lower

food intake [40]. It was reported that the ablation of the insu-

lin-like peptide-producers cells in the brain of Drosophila
melanogaster, leads to reduced tolerance of heat and cold

[41]. The insulin–insulin like signalling (IIS) associated with

the TOR branch has been linked to increased resistance to

some types of stress [42]. Thus, ABA could positively influ-

ence the honeybee metabolism through the IIS pathway

involving IRS.

In honeybees, Vitellogenin (Vg) is thought to play a cen-

tral role in the extended lifespan of the winter bees [43]. Vg
transcript levels are upregulated in 6- and 8-day-old individ-

uals exposed to cold stress (figure 5a), suggesting that Vg

could be playing a protective role or mediating the recog-

nition of damaged cells as previously shown [30,44].

Moreover, ABA supplementation resulted in a higher induc-

tion of Vg expression in cold-stressed larvae (figure 5a),

indicating enhanced Vg-mediated protection.

In insects, low temperatures induce the expression of

genes of the antioxidant system and genes related with

the heat shock response [26,31,45]. MnSOD and HSP90
transcripts accumulation were increased in cold-stressed

8-day-old individuals, as expected (figure 5b–d). Recently,

Kharenko et al. [46] reported the interaction between ABA

and human HSP70 family members. In that paper, authors
highlight the implications of ABA-HSP70 interactions to the

intracellular protein folding activities. Given that HSP70
expression is increased in ABA-supplemented 6-day-old

larvae reared at 348C, it would be interesting to explore

whether the interaction of HSP70 and ABA is conserved

in honeybees.

Vg and HSP70 expression were induced by ABA sup-

plementation in 6-day-old individuals growing at 348C,

reaching similar levels to cold-stressed larvae. This indicates

that ABA could have a ‘priming’ effect in individuals that

might result in a stronger and faster response to confront

low temperatures. Insects are capable of cold-hardening; a

brief exposure to nonlethal low temperatures significantly

enhances the tolerance to a subsequent cold shock [35].

ABA treatment could act as a stimulus for cold-hardening

triggering physiological changes driving cold tolerance

processes. This is a very interesting point that deserves

further studies.

At 8 days old, ABA decreases HSP70 expression in both

control and cold-stressed larvae, suggesting a tight control

of ABA on HSP70 gene expression. Nevertheless, the analy-

sis of protein abundance and/or protein activity should

reinforce our study. Štětina et al. [47] showed that different

low-temperature treatments induce the accumulation of

Hsp70 mRNA in wild-type larvae of Drosophila melanogaster.

However, the Hsp70-null mutant lacking all six copies of

Hsp70 genes only showed a detrimental effect on survival

in the case of severe acute cold shock [47]. Even if ROS
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increase is a common consequence of cold stress exposure no

oxidative stress markers were found in cold-stressed Droso-
phila suzukii, suggesting that either only well protected

individuals survive or that oxidative balance is not involved

in the cold response in this species [48]. At the organizational

level, approaches at sub-organismal scale may also help to

determine the role of ABA in cold tolerance in honeybees,

in a way that is not attained by whole-body measurements.

Since the analyses of transcriptome, proteome, and meta-

bolome have become a core pillar to scan the molecular

changes during stress responses in insects [49], such

approaches would help our study providing a whole panor-

ama of responses activated by ABA in cold-stressed

honeybee larvae.
Some components of the mechanism underlying ABA

actions in mammals [32] have been identified in honeybees.

We demonstrated that recombinant AmLANCL2 binds

ABA and that endogenous ABA content increases in cold-

stressed larvae, thereby suggesting that ABA, ABA receptor,

and ABA signalling components could be regulating

responses to low temperatures in honeybees. Calcium signal-

ling has been established as an essential cold-sensing

mechanism mediating rapid responses in insects [50].

Because in plants and animals it has been demonstrated

that second messenger calcium takes part in ABA-mediated

signal transduction [17,51], it’s hypothesized that calcium

could also be implicated in ABA-mediated responses to

cold stress in honeybees.

Previous results have suggested that honeybees receive

nutritional components from honey that are not provided

by alternative food sources widely used in apiculture [52].

ABA is a natural constituent of honey and due to its beneficial

effects on the individual and colony fitness, beekeepers might

consider supplementing alternative foods with ABA when

they harvest the honey. ABA could be acting as a multitask

compound through the activation of different metabolic path-

ways, enhancing the immunological response and protecting

against stresses like low temperatures.
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