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Martı́n N. Garcia . Pamela V. Villalba .

Susana N. Marcucci Poltri

Received: 2 September 2015 / Accepted: 27 June 2016 / Published online: 8 July 2016

� Springer Science+Business Media Dordrecht 2016

Abstract Simple sequence repeats (SSR) are the

most widely used molecular markers for relatedness

inference due to their multi-allelic nature and high

informativeness. However, there is a growing trend

toward using high-throughput and inter-specific trans-

ferable single-nucleotide polymorphisms (SNP) and

Diversity Arrays Technology (DArT) in forest genet-

ics owing to their wide genome coverage. We

compared the efficiency of 15 SSRs, 181 SNPs and

2816 DArTs to estimate the relatedness coefficients,

and their effects on genetic parameters’ precision, in a

relatively small data set of an open-pollinated progeny

trial of Eucalyptus grandis (Hill ex Maiden) with

limited relationship from the pedigree. Both simula-

tions and real data of Eucalyptus grandis were used to

study the statistical performance of three relatedness

estimators based on co-dominant markers. Related-

ness estimates in pairs of individuals belonging to the

same family (related) were higher for DArTs than forElectronic supplementary material The online version of
this article (doi:10.1007/s11032-016-0522-7) contains supple-
mentary material, which is available to authorized users.
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SNPs and SSRs. DArTs performed better compared to

SSRs and SNPs in estimated relatedness coefficients in

pairs of individuals belonging to different families

(unrelated) and showed higher ability to discriminate

unrelated from related individuals. The likelihood-

based estimator exhibited the lowest root mean

squared error (RMSE); however, the differences in

RMSE among the three estimators studied were small.

For the growth traits, heritability estimates based on

SNPs yielded, on average, smaller standard errors

compared to those based on SSRs and DArTs.

Estimated relatedness in the realized relationship

matrix and heritabilities can be accurately inferred

from co-dominant or sufficiently dense dominant

markers in a relatively small E. grandis data set with

shallow pedigree.

Keywords Molecular markers � Marker-based

relationship matrix � Relatedness � Heritability �
Eucalyptus grandis

Introduction

Knowledge of the relationships between individuals in

a population is essential in many areas of genetics

(Santure et al. 2010). For example, relationships

between individuals are required to estimate heritabil-

ities, a key parameter in natural and breeding popula-

tions of animals and plants. Precision of genetic

parameter estimates, such as additive genetic variance

and heritability, requires accurate information of the

genetic relationship between individuals within the

population under study (Rodrı́guez-Ramilo et al. 2007).

In the classical individual-tree mixed model (i.e.,

animal model), the average numerator relationship

matrix (NRM) based on information from pedigrees

(Wright 1922) is used to appropriately consider additive

genetic relationship between any pair of individuals

(Henderson 1984). However, estimations based on

models using the average NRM suffer from some

potential limitations (Ødegård and Meuwissen 2012).

First, they ignore relationships beyond the known

pedigree (i.e., historical relatedness accumulated in

populations from which the base population is derived).

Additionally, the NRM contains only expected (based

on the expected proportion of alleles identical-by-

descent, IBD) rather than actual, or realized

relationships. Assuming unrelated parents, the relation-

ship coefficient between any pair of half-sibs will

always be 0.25 when estimated from pedigree (i.e., the

expected proportion of the genome that is IBD equals to

0.25). However, due to sampling during meiosis, two

half-sib individuals may actually share more or less

than 25 % of the genome by IBD. This means that the

expected relationship matrix derived from the pedigree

cannot capture the effect of Mendelian sampling

produced during meiosis (Hayes and Goddard 2008),

and estimates of genetic (co)variance component are

estimated based only on between-family variation.

The use of molecular marker information to infer

the realized relationship matrix was proved as an

efficient alternative to constructing the average NRM

when the pedigree is incomplete or missing (e.g.,

Kumar and Richardson 2005; Bessega et al. 2011; El-

Kassaby et al. 2012). A marker-based relationship

matrix may better estimate the exact (i.e., realized)

proportion of alleles IBD shared between individuals

with high degree of precision (Villanueva et al. 2005).

The idea of estimating quantitative genetic parameters

using relatedness estimates derived from molecular

markers has been initially investigated by Ritland

(1996) and further explored by a number of authors

(e.g., Mousseau et al. 1998; Thomas and Hill 2000;

Thomas 2005). Estimation of genetic parameters using

marker-based relationship matrix is especially useful

in studies of wild populations where pedigree infor-

mation is not known (Frentiu et al. 2008; Sillanpää

2011) or small breeding populations with limited

pedigree information and/or few available parents

(Ødegård and Meuwissen 2012).

There are numerous different types of molecular

markers used in plant genetic analyses to estimate the

coefficients of relatedness and infer the realized

relationship matrix. Genetic markers can be classified

as co-dominant or dominant, depending on their

ability to distinguish allelic status of a heterozygote

from a dominant homozygote. Microsatellites or

simple sequence repeats (SSR) are short tandem

repeated DNA sequences, widely distributed through-

out the eukaryotic genomes. SSRs are probably the

most widely used genetic markers for relatedness

inference because they typically display many alleles

per locus (i.e., are highly polymorphic) and are co-

dominant by their nature, resulting in highly informa-

tive markers (e.g., Hardy 2003). The single-nucleotide

polymorphisms (SNP) are a more recently alternative
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to SSR markers and represent single-point base muta-

tion. For a review of many technical and statistical uses

of SSRs and SNPs see Vignal et al. (2002). SNPs are bi-

allelic markers which may limit their resolving power

per locus (Glaubitz et al. 2003). However, lower single-

locus power can be compensated for by increase the

number of loci assayed using high-throughput next

generation sequencing technologies (e.g., ‘‘genotyping-

by-sequencing’’) (Elshire et al. 2011). Alternatively,

precise pairwise relatedness estimates might also be

obtained using large number of dominant markers

(Hardy 2003). Diversity Arrays Technology (DArT) is

a genotyping platform based on genome complexity

reduction, followed by hybridization to microarrays

that offer a rapid and efficient method for high-

throughput DNA marker analysis (Kilian et al. 2012).

Particularly, in Eucalyptus, DArTs have been devel-

oped with a wide genome coverage and inter-specific

transferability (Sansaloni et al. 2010). DArT dominant

bi-allelic markers are scored as either present or absent

(i.e., 1 or 0); therefore, DArTs provide less genetic

information for a given locus than the co-dominant

SSRs and SNPs (Simko et al. 2012). However,

dominant markers can be developed relatively easily

even for species for which no prior genomic informa-

tion is available, and the cost per sample is much lower

than current SNP genotyping platforms for an equiv-

alent number of markers (Sansaloni et al. 2010).

Therefore, these dominant markers may be viable

alternatives for the estimation of relatedness between

individuals (Hardy 2003).

Given the trend toward the increasing use of SNPs

and DArTs in forest genetics, it is of interest to

compare the performance of the multi-allelic co-

dominant SSR with the bi-allelic co-dominant SNP

and dominant DArT markers for estimating both

relatedness coefficients and genetic parameters on the

same set of individuals. DArT markers have been

applied in the estimation of pairwise relatedness in

cereal species such as barley (e.g., Wenzl et al. 2004)

and wheat (e.g., Crossa et al. 2007). However, they

have not been used to estimate pairwise relatedness in

forest tree species to date. We are aware that only two

other studies have explored the utility of DArT

markers for the study of relationships (Steane et al.

2011; Przyborowski et al. 2013). Nevertheless, these

studies were focused on relationships between species

of Eucalyptus (Steane et al. 2011) and Salix (Przy-

borowski et al. 2013). Additionally, limited studies

compared the dominant DArT markers with co-

dominant SSR and SNP. Simko et al. (2012) compared

different numbers of three types of markers: SSR, SNP

and DArT for estimating the genotype diversity,

clustering varieties into populations and assigning a

single variety into the expected population in a set of

54 hybrid varieties of sugar beet. Lamara et al. (2013)

used SSR and DArT markers for comparing different

genetic diversity estimation methods among 92 Cana-

dian barley cultivars. Similarly, Laidó et al. (2013)

compared DArT and SSR markers to evaluate genetic

diversity and population genetic structure of 230

accessions in seven tetraploid Triticum turgidum L.

subspecies.

Several estimators have been developed to measure

pairwise relatedness coefficients between individuals

for co-dominant (e.g., Queller and Goodnight 1989; Li

et al. 1993; Lynch and Ritland 1999; Wang

2002, 2007) and dominant (Hardy 2003) markers,

and have been used in different areas of research (see

review by Blouin 2003; Thomas 2005). The statistical

properties and performance of these estimators have

been studied using both empirical and simulated data

sets (e.g., Lynch and Ritland 1999; Van de Casteele

et al. 2001; Csilléry et al. 2006; Wang 2002, 2007).

These studies concluded that several aspects con-

tribute to the performance of these estimators and

resulting marker-based heritabilities. For example, the

true relatedness value being estimated, the informa-

tiveness of markers utilized in an analysis (number of

loci, number and frequencies of the alleles at each

locus), the size of the sample in estimating allele

frequencies (Wang 2007), selection at closely linked

loci, genotyping errors, mutation and recent inbreed-

ing (because of the small population size and/or the

mating system) (Glaubitz et al. 2003). Recent inbreed-

ing will result in elevated pairwise relatedness.

Eucalypts have a mixed mating system setting inbred,

originating from selfing and mating between close

relatives, as well as outcrossed seed. For example,

estimates of outcrossing rates of open-pollinated

families of Eucalyptus grandis (Hill ex Maiden) from

natural populations and plantations averaged 84 %

(Eldridge et al. 1993; Table 19.2). Therefore, depend-

ing on the proportion of offspring generated by self-

pollination, a particular open-pollinated family will

have a mixture of relatedness among individuals

ranging from selves to half-sibs (Cappa et al. 2010).

Moreover, self-fertilization in Eucalyptus may result
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in inflated heritability estimates (e.g., Griffin and

Cotterill 1988; Hodge et al. 1996; Lopez et al. 2002)

and biased additive genetic correlation estimates

across ages and sites (Hodge et al. 1996), without

proper consideration of the mixed mating system.

The objective of this study was to compare the

efficiency of two co-dominant (SSR and SNP) and one

dominant (DArT) genetic markers on the estimation of

relatedness coefficients between individuals, and their

effects on the genetic parameters’ precision, in a

relatively small data set from an open-pollinated

progeny trial of Eucalyptus grandis (Hill ex Maiden)

with limited relationship from the pedigree. This data

set could emulate small samples from natural popu-

lations with little relatedness. Furthermore, because

the precision of both relatedness coefficients and

genetic parameters estimated on the basis of the two

co-dominant markers (SSR and SNP) may partly

depend on the nature of the population under study and

used estimator, we also compared two widely recog-

nized moment-based methods, Lynch and Ritland

(1999) (LR) and Queller and Goodnight (1989) (QG),

and one likelihood-based method, Wang (2007) (W),

using both simulations and Eucalyptus grandis data

sets.

Materials and methods

Plant material and quantitative traits

A sample of 166 trees from an open-pollinated (OP)

progeny trial of Eucalyptus grandis (Hill ex Maiden)

(hereafter E. grandis) established at Gobernador

Virasoro (latitude 28�020S longitude 56�030W alt.

105 m), northern Corrientes Province, Argentina, was

used in this study. The trial comprised 148 OP families

from native forest: 101 families from New South

Wales and 47 from southeastern Queensland, Aus-

tralia; and 16 OP families from two local land race

sources from Concordia, Entre Rios Province, Argen-

tina. A detailed description of this genetic material can

be found in Marcó and White (2002). This trial

corresponds to one of four trials following a random-

ized complete block design with 17–20 replications

and single tree plots. The sampled population included

trees from 123 OP families, represented by one or two

trees per family. There were 81 families represented

by one and 42 families by two trees. Consequently,

expected relationships between trees from this breed-

ing population are very sparse; however, this could be

a common situation in wild forest populations.

All surviving trees were measured at 5 years after

planting for growth traits: diameter at breast height

over bark at 1.3 m above the ground level (DBH) and

total height, and the volume was calculated according

to Marcó and White (2002). Wood chemical traits

extractives in ethanol and total extractives, Klason and

total lignin, syringyl-to-guaiacyl ratio and wood basic

density (BD) were also measured. In total, two growth

(DBH and volume) and three wood property traits

(total lignin, Klason lignin and BD) were investigated

in this study.

Wood chemical components were estimated using

near-infrared (NIR) spectroscopy. Wood samples

were collected at 1.3 m above ground level and air-

dried for predicting wood chemical composition. The

wood sample was ground to pass through a 1-mm

screen, and NIR spectra were obtained by diffuse

reflectance using a Bruker Optics Co. MPA (Madison,

WI, USA). Partial least squares regression (PLSR) was

used for both evaluation of the NIR spectra (NIR-

PLSR models) and calculation of the prediction

models. These predictions were validated using

chemical assays from 15 to 22 independent samples

from those used to develop the model. All models

were at least good enough for screening in breeding

programs with a residual prediction deviation (RPD;

Williams and Sobering 1993) above 2.5 (e.g., Alves

et al. 2012). The RPD values were 3.2, 6.5 and 3.3 for

total lignin, Klason lignin and BD, respectively.

Normality of the five traits was evaluated using

PROC Univariate in SAS (SAS Institute Inc. 2002).

Molecular markers

The genomic DNA was extracted from young leaves

using the CTAB method (Hoisington et al. 1994).

Genetic variability was screened with three different

molecular markers: simple sequence repeat (SSR),

single-nucleotide polymorphisms (SNPs) and Diver-

sity Arrays Technology (DArT).

Fifteen SSRs belonging to the 11 linkage groups

(LG) defined in the Eucalyptus grandis genome

(Petroli et al. 2012) and showing high polymorphism

information content (PIC; PIC[ 0.542) were

selected: EMBRA11 (LG 1), EMBRA19 (LG 1),

EMBRA648 (LG 2), EG131 (LG 3), EMBRA179 (LG
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4), EMBRA36 (LG 4), EMBRA168 (LG 5), EMBRA5

(LG 5), EMBRA173 (LG 6), EMBRA51 (LG 6),

EMBRA46 (LG 7), EMBRA47 (LG 8), EMBRA18

(LG 9), EMBRA61 (LG 10), EG024 (LG 11).

EMBRA primers are described in Brondani et al.

(2006) and the EG in Thamarus et al. (2002). SSRs

were amplified with a fluorescent dye-labeled forward

primer and separated on an ABI3100 Genetic Ana-

lyzer (Applied Biosystems, Foster City, CA, USA).

Allele assignments were made by size comparison

with the standard allelic ladder, using the GeneMapper

ID software version 4.0 provided by Applied

Biosystems.

A panel of 384 SNPs developed by Grattapaglia

et al. (2011) using the Illumina GoldenGate Genotyp-

ing assay on an Illumina BeadXpress platform with

VeraCode technology was implemented for SNP

genotyping. All reagents, unless stated otherwise,

were provided by Illumina. Genotyping results were

analyzed by GenomeStudio Genotyping module ver-

sion 1.1 (Illumina, San Diego, CA, USA). SNP

markers were filtered and rejected according to the

following criteria: marker was monomorphic, pre-

sented GenTrain scoresB0.4 (number between 0 and 1

indicating how well the samples clustered for the loci),

GenCall scores B0.4 (number between 0 and 1

indicating the reliability of each genotype call) and

call rate values\0.25 (percentage of targets that could

be scored as 0 or 1). Finally, 181 out of 384 SNP

markers were selected for further analysis. An average

of 16 SNP markers per LG were assayed with a

minimum of 1 marker in linkage group 2 and a

maximum of 33 in linkage group 7.

A subset of 2816 DArT markers was selected after

screening the high-throughput array-based genotyping

system of 7680 DArT developed (Sansaloni et al.

2010). The selected markers showed call rate values

[0.8, reproducibility values[0.97 (reproducibility of

scoring between replicated target assays) and poly-

morphism with allele frequencies ranging from 0.95 to

0.05. From the Eucalyptus composite map (Hudson

et al. 2012), 1769 of the selected 2816 DArTs had a

known map location with a reasonable genome-wide

coverage was provided by these markers.

In summary, the final data set comprised 15 SSRs,

181 SNPs and 2816 polymorphic DArTs. These

markers were used to genotype the 166 selected trees

originating from 123 families of the OP progeny trial

of E. grandis.

Different diversity genetic parameters were esti-

mated for each SSR, SNP and DArT marker with

GenAlEx 6.5 software (Peakall and Smouse 2012)

including number of observed alleles per locus (Na;

calculated as the number of different alleles), effective

number of alleles per locus (Ne; calculated as 1=
P

p2
i ,

where pi is the frequency of the ith allele), Shannon’s

Information Index (I, calculated as I ¼ �
P

pi lnðpiÞ),
observed heterozygosity (Ho; calculated as the number

of heterozygotes per locus divided by the number of

individuals typed) and the expected heterozygosity

(He; calculated as: He ¼ 1 �
P

p2
i ).

Due to high computational cost, a subset of 800

random DArT markers and the 15 SSRs were

selected to study the population structure using the

Bayesian method in the STRUCTURE software

(Pritchard et al. 2000). STRUCTURE analyses were

performed assuming an admixture model with

default settings (i.e., no informative priors were

used). STRUCTURE was run from 1 to 30 genetic

clusters (K) with 10 replicates for each K, each run

starting with a burn-in period of 50,000 steps

followed by 100,000 Markov chain Monte Carlo

replicates. We selected K = 3 according to the

DK method (Evanno et al. 2005). Consequently, the

STRUCTURE analysis revealed three subpopula-

tions (Online Resource 1), which coincided with the

broad geographical origin in Australia. Only seven

from the 166 trees had membership probabilities set

below 0.6 and had to be assigned to more than one

subpopulation. Subpopulation 1 included 49 trees

(29.5 %), belonging to the seven natural prove-

nances in Queensland, Australia. Subpopulation 2

included 94 trees (56.6 %) belonging to the four

natural provenances in New South Wales, Australia.

Subpopulation 3 included 23 trees (13.9 %) belong-

ing to the two local land race sources from

Concordia, Entre Rios, Argentina. Population struc-

ture based on 800 random DArTs and 15 SSR did

not show significant differences (R2 = 0.86).

Estimation of relatedness coefficients

and inbreeding

The realized relationship matrices based on the co-

dominant SSRs and SNPs were calculated using the

moment-based estimators of Lynch and Ritland (1999)

and Queller and Goodnight (1989) implemented in

Mol Breeding (2016) 36:97 Page 5 of 19 97

123



SPAGeDi version 1.3a software (Hardy and Veke-

mans 2002), and the likelihood-based estimator of

Wang (2007) was obtained with the Coancestry

version 1.0.1.5 software (Wang 2011). Additionally,

due to the mixed mating system of eucalypt species,

the inbreeding should be accounted for in the estuation

of relatedness. Therefore, the inbreeding coefficients

for each individual of the E. grandis population were

estimated from the SSR markers and the Lynch and

Ritland (1999) and Wang (2007) estimators. Further-

more, we studied the impact of the inbreeding on the

relatedness coefficients. In order to do this, we

simulated marker and expected relationships classes

mimicking the E. grandis population (see next

section), and then, these simulations were analyzed

with and without accounting for inbreeding using the

Wang (2007) estimator.

Marker-based relationship matrices are often not

positive definite due to several reasons: internal

inconsistency resulting from lack of markers, geno-

typing errors or missing values. Therefore, the

‘‘nearPD’’ function implemented in R package ‘‘Ma-

trix’’ was used to compute the nearest positive definite

matrix from the original matrix. The ‘‘nearPD’’

function implements the algorithm of Higham (2002).

In the case of the dominant DArT markers, the

realized relationship matrices were constructed with

all (2816), 1500, 1000 and 500 randomly selected

DArTs to examine the effect of the smaller DArTs size

using the estimator defined by Hardy (2003) under the

SPAGeDi version 1.3a software (Hardy and Veke-

mans 2002). These four groups shared between 175

and 1000 DArT markers in common.

Product-moment correlation coefficient was used to

evaluate the connection between pairs of marker-

based relationship matrices using each combination of

marker (SSR, SNP and DArT) and estimator (LR, QG

and W).

Since a high proportion of unrelated pairs over half-

sib pairs of individuals were expected in our E. grandis

population according to the information from pedi-

gree, we investigated the discrimination of the unre-

lated from the related (expected) individuals.

Therefore, given that the two distributions of related-

ness (i.e., unrelated and related) are approximately

equally symmetric, further comparisons of the differ-

ent realized relationship matrices were performed

using the probability that an unrelated tree would be

misclassified as belonging to a related (and unrelated)

tree, i.e., using the number of unrelated individuals

that showed estimated relatedness coefficients above

the critical value of 0.125 (midpoint between the

expected means of unrelated and half-sib individuals;

i.e., 0.0 and 0.25) (Blouin et al. 1996). For each

combination of marker type and estimator, the amount

of the overlapping areas between the density distribu-

tions (i.e., density plots) of both groups of trees was

also investigated as an indicator of misclassification.

Simulations and measurement of performance

In studies of pairwise relatedness, Van de Casteele

et al. (2001) and Wang (2011) recommended deter-

mining the bias and precision of different estimators

using data simulated to emulate the empirical marker

system and data. Therefore, to further evaluate and

compare the performances of the co-dominant mark-

ers (SSR and SNP) and the different relatedness

estimators, a stochastic simulation study was carried

out. The effect of inbreeding was also investigated

through simulation using an average inbreeding coef-

ficient of 0.06 (i.e., the average inbreeding coefficient

obtained for the E. grandis population for most of the

SSR markers studied—11 out of 15; see below). Data

were generated according to the expected genetic

structure of E. grandis population (i.e., unrelated and

half-sib), and the allelic frequencies were emulated

from the empirical SSR and SNP markers. In all cases,

it was assumed that the allelic frequency distribution

was known without error. Simulated co-dominant

multi-allelic SSR and bi-allelic SNP markers were

generated and then analyzed using the LR, QG and W

estimators implemented in the Coancestry version

1.0.1.5 software (Wang 2011).

The root mean squared relative error (RMSE) was

used to measure the bias and precision of each marker–

estimator combination, according to the following

formula:

1

R

XR

l¼1

r̂l � rð Þ2

" #1=2

where r̂l is the relatedness estimate of the lth

relatedness classes (l = 1, 2,…, R) by a given

marker–estimator combination and r is the parametric

value of relatedness used to generating the R simulated

related pairs of trees. For each combination of marker

and relatedness estimator, a number of R = 10,000
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replicates with a given relatedness classes were

simulated.

Statistical analysis and estimation of heritability

The variance components and derived genetic param-

eters (i.e., heritabilities) were estimated by restricted

maximum likelihood (REML, Patterson and Thomp-

son 1971) implemented in the ASReml statistical

program (Gilmour et al. 2006), using the following

individual-tree mixed model with a total of 166 trees:

y ¼ X b þ Zr rþ Za a þ e ð1Þ

where the vector y contains the phenotypic data; the

vector b included three subpopulations formed accord-

ing to the results of the software program STRUC-

TURE 2.3 (see section ‘‘Molecular markers’’) as fixed

effect; r is the vector of random replicate effects, a is

the vector of random additive genetic effects of

individual trees (i.e., breeding values); and e is the

vector of random error; X, Zr and Za are incidence

matrices relating the observations (y) to the model

effects in b, r and a, respectively. The vector a was

assumed distributed as N * (0, G ra
2) where ra

2 is the

additive genetic variance and G is the marker-based

pairwise relationship matrix. Finally, the vector e is

distributed as e�N 0, Ir2
e

� �
and r2

e is the error

variance. Marker-based relationship matrices from

the SSR and SNP markers were corrected for the

estimator bias found in the simulation study, i.e.,

estimates of pairwise relatedness from each marker–

estimator combination were reduced (or increased) by

the corresponding bias (Bush and Thumma 2013).

Marker-based relationship matrices from the SSR

were also calculated accounting for the inbreeding

coefficient using the W estimator.

The variance component estimates relating to

additive genetic effects (r̂2
a) and error (r̂2

e) were

calculated using information from all 166 sampled

trees having information on both molecular markers

(i.e., SSR, SNP and DArT) and phenotypes. The

narrow-sense individual heritability ĥ2
� �

was esti-

mated as:

ĥ2 ¼ r̂2
a

r̂2
a þ r̂2

e

:

An important limitation of the REML (co)variance

estimates is that their distribution is unknown. Only an

approximate measure of precision of the estimates

based on asymptotic or large-sample theory can be

calculated. Approximate standard errors of the heri-

tabilities were computed with the ‘‘delta method,’’

using an ASReml post-processing program (Gilmour

et al. 2006). This asymptotic approach based on the

Taylor expansion (Lynch and Walsh 1998) forces the

confidence limits for (co)variances ratios to be

symmetric.

Results

Marker informativeness

A total of 3012 polymorphic markers were used to

genotype 166 E. grandis trees (Online Resource 2 and

Online Resource 3). The average number of alleles per

SSR locus was equal to 16.47. All SNP and DArT loci

were bi-allelic. The average gene diversity or expected

heterozygosity (He), of the SSR markers was equal to

0.82. There was high congruence between Ho and He

at all the SSR marker loci except EMBRA61,

EMBRA168, EMBRA19 and EMBRA173 (Online

Resource 3). These departures from He could have

been caused by the presence of null alleles at these

four loci. Estimated null allele frequency for these

markers were 0.32, 0.26, 0.24 and 0.21, respectively

(calculated by CERVUS, Marshall et al. 1998). Null

alleles in SSR markers (i.e., loci that fail to amplify to

detectable levels via the polymerase chain reaction)

are commonly encountered in population genetics

studies (Chapuis and Estoup 2007). Null alleles are

quite common when using SSR markers in one species

that were designed for another species (Dakin and

Avise 2004). The primer EMBRA19 was originally

designed for Eucalyptus urophylla. However, the

presence of null alleles for EMBRA61, EMBRA168

and EMBRA173 was unexpected given that these

primer pairs were designed specifically from E.

grandis sequences (Brondani et al. 2006). These

departures from He could also be consequence of

inbreeding. In such a case, the fraction of observed

heterozygosity will be less than the fraction expected

under random mating. The family-average inbreeding

estimated from the 15 SSR markers and using the LR

(and W) estimator in the E. grandis population was

0.140 (and 0.143). However, when these four SSR

markers loci (i.e., EMBRA61, EMBRA168,
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EMBRA19 and EMBRA173) were eliminated from

the analysis, the family-average inbreeding decreased

to 0.06. Similar inbreeding values were obtained for

other Eucalyptus species based on SSR markers and

trees sampled from progeny trials or native stand. For

example, in Eucalyptus cladocalyx, a specie that is

more inbred than most widely planted eucalypt

species, Bush and Thumma (2013) reported inbreed-

ing coefficient ranging from 0.06 to 0.27 and averag-

ing 0.17. In Eucalyptus camaldulensis, these values

ranged from 0.00 to 0.27 and averaging 0.10 (Butcher

et al. 2009), and in Eucalyptus obliqua averaged 0.04

(Bloomfield et al. 2011). The average He for the SNP

and DArT markers across all loci were 0.26 and 0.36,

respectively. Changes in the He values were not

observed when the number of DArTs was randomly

selected (results not shown). When markers were

grouped into ten classes according to their increasing

level of polymorphism (Online Resource 4), the

highest frequency of SSR, SNP and DArT markers

were found in the classes 0.81–0.90, 0.41–0.50 and

0.41–0.50, respectively. Mean Shannon’s Information

Indices were 2.16 (SSR), 0.39 (SNP) and 0.53 (DArT).

Results of relatedness from the simulations

In terms of RMSE, which takes both bias and sampling

variance into account, the likelihood-based W method

outperforms the two moment-based methods (i.e., LR

and QG), giving the lowest RMSE values across the two

relationship classes (i.e., unrelated and half-sib pairs)

and markers types (i.e., SSR and SNP) (results not

shown). However, the differences in RMSE among the

three estimators and two marker types were small (from

0.002 to 0.014). The higher differences were found in

unrelated (0.014 and 0.010 for SSRs and SNPs,

respectively) compared to half-sib (0.002 and 0.006

for SSRs and SNPs, respectively) pairwise relatedness.

The same simulated data were evaluated by the W

method with and without accounting for inbreeding. In

comparison, the RMSEs of the W estimator allowing

for inbreeding were higher, with differences between

the two approaches (i.e., W with and without allowing

inbreeding) varying from 0.002 to 0.018 (again higher

differences in half-sib than for unrelated pairwise

relatedness). Wang (2007) also showed that allowing

for inbreeding decreases the precision of the likeli-

hood estimator mainly due to the increase in the

number of parameters to be estimated from the same

simulated data. Based on the results obtained in the

simulation study and on the small family-average

inbreeding (0.06) calculated with most of the SSR

markers studied (11 out of 15), we carried out all

further analyses of relatedness and estimations of

heritabilities in the real data of E. grandis without

considering the inbreeding.

Results of relatedness from the empirical data of E.

grandis

Pairwise relatedness estimates for all pairs of individ-

uals were split into two groups (Bessega et al. 2011): (1)

both individuals within each pair belong to the same

family (related) and (2) individuals within each pair

belong to different families (unrelated). Overall, the

three estimators (LR, QG and W) and the three types of

markers (SSR, SNP and DArT) performed well in

differentiating between the expected relatives (i.e., half-

sibs) and unrelated individuals (Table 1; Fig. 1). As we

expected, the estimated average of the pairwise coeffi-

cients were consistently higher (0.233) for related pairs

of trees than for the unrelated pairs of trees (0.015).

However, these averages exhibited differences across

the two estimators and the three types of markers.

Table 1 Mean and standard error (SE) values of pairwise

estimated relatedness for individuals from the same family

(related) and to different families (unrelated) obtained from the

three different markers (SSR, SNP and DArT) in E. grandis.

For co-dominant markers (SSR and SNP) relatedness was

estimated using: Lynch and Ritland (1999, LR), Queller and

Goodnight (1989, QG), and Wang (2007, W). The DArT

markers (DArTs) are followed by a number denoting the

number of markers used to calculate the realized relationship

matrix

Markers Related Unrelated

Mean SE Mean SE

SSR_LR 0.182 0.019 -0.007 0.001

SSR_QG 0.225 0.018 -0.007 0.001

SSR_W 0.166 0.015 0.031 0.001

SNP_LR 0.144 0.025 -0.007 0.001

SNP_QG 0.190 0.037 -0.007 0.002

SNP_W 0.294 0.026 0.153 0.001

DArTs_2816 0.280 0.015 -0.002 0.001

DArTs_1500 0.284 0.016 -0.002 0.001

DArTs_1000 0.291 0.015 -0.002 0.001

DArTs_500 0.275 0.016 -0.002 0.001

AVERAGE 0.233 0.020 0.015 0.001
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Table 1 shows that for pairs of individuals from the

same open-pollinated family (i.e., related individuals),

the QG and the W estimators yielded highest estimated

average of the pairwise coefficients for the SSR and

SNP markers, respectively. However, except for the W

estimator in combination with the SNP markers, the

SSR_LR SSR_QG SSR_W

SNP_LR SNP_QG SNP_W

DArTs_2816 DArTs_1500 DArTs_1000

DArTs_500

Fig. 1 Density plot of the pairwise estimated relatedness for

individuals from the same family (related, black line) and to

different families (unrelated, gray line) obtained from the three

different markers (SSR, SNP and DArT) in E. grandis. For co-

dominant markers (SSR and SNP) relatedness was estimated

using: Lynch and Ritland (1999, LR), Queller and Goodnight

(1989, QG) and Wang (2007, W). The DArT markers (DArTs)

are followed by a number denoting the number of markers used

to calculate the realized relationship matrix
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pairwise coefficient estimates were lower than those

expected for related half-sibs individuals (equal or

higher than 0.25), indicating either that the estimators

are biased and/or pedigree errors, i.e., some of the

supposedly open-pollinated families are in fact unre-

lated and driving the estimates downward. When the

estimator bias was corrected, the average of the

pairwise relatedness estimated for the related individ-

uals were slight (only differences in the third decimal

place) higher (SSR markers) or lower (SNP markers).

For the SSR markers, the estimated standard errors of

half-sib (i.e., related) were similar across all estima-

tors. Nevertheless, higher standard errors and, thus,

broadest distribution were obtained in combination

with the SNP markers and the QG estimator compared

to the LR and W estimators (Fig. 1). Similarly, the

averages of pairwise relatedness were computed for

unrelated individuals. Meanwhile, the average of

pairwise relatedness estimates obtained by LR and

QG estimators for SSR and SNP markers resulted in

similar values, the W estimator showed the highest

estimates. However, the LR and the W estimators

presented the smallest standard errors and narrower

distributions than the QG estimator.

In addition, pairwise relatedness coefficients were

estimated with dominant bi-allelic DArT markers

using the Hardy (2003) estimator. While SSR and SNP

based relationship coefficients within open-pollinated

families showed comparable average values across

estimators, DArT marker-based relationship coeffi-

cients reached higher average coefficients (0.280),

indicating that some particular open-pollinated fam-

ilies will have a mixture of relatedness among

individuals ranging from half-sibs to selfs. Addition-

ally, DArT markers showed smaller average standard

error (Table 1) and, in general, narrow distributions

(Fig. 1) for related individuals. Decrease in the

number of used DArT markers resulted in only a

slight effect on the average of relatedness with very

similar standard error. Our analysis showed that the

average pairwise relatedness estimated by 2816 DArT

markers was the closest to zero, and had a smaller

standard error for pairs of expected unrelated individ-

uals than those estimated by SSRs with the QG

estimators and SNPs. Decreasing the number of

DArTs produced only slight differences in estimated

pairwise relatedness within the unrelated individuals

(in the fifth decimal place) and no differences in its

standard error.

To test whether more relationship classes were

present within the unrelated individuals from the same

subpopulation, the unrelated group was split into two

subgroups (Bessega et al. 2011): pairs of individuals

from the same subpopulation (S_S) and pairs of

individuals from different subpopulation (D_S). Over-

all, the average marker-based pairwise relatedness

estimates were comparable and close to zero for the

S_S and D_S subgroups (Table 2), and showed some

non-overlapping areas between both subgroups

(Fig. 2). However, these averages and the areas of

the density plots exhibited difference across both

estimators and marker types. Specifically, in pairs of

individuals from S_S subpopulation, the LR (and W)

estimator produced the smallest (and the highest)

average of pairwise relatedness (i.e., closest to the

expected value of zero) for the SSR and SNP markers,

whereas DArT markers yielded higher values (average

across data set sizes 0.020) in comparison with SSR

and SNP markers for the LR and QG estimators.

However, DArT markers showed the highest mean

differences together with the highest non-overlapping

areas between the two subgroups of unrelated trees.

The number of unrelated pairs of individuals that

showed estimated pairwise relatedness greater than

0.125 varied from 1.58 to 52.57 % across the estima-

tors and markers. For unrelated pairs, the LR estimator

showed a smaller number for the SSR (4.86 %) and

Table 2 Comparison of average pairwise estimated related-

ness for individuals from different families (unrelated) split

into two subgroups: both members of the individual pair belong

to the same subpopulation (S_S) and both members of the

individual pair belong to different subpopulation (D_S).

Abbreviations used for the estimator and marker types were

described in the text and in the caption of Table 1

S_S D_S Mean difference

SSR_LR 0.006 -0.017 0.023

SSR_QG 0.015 -0.024 0.039

SSR_W 0.040 0.023 0.018

SNP_LR 0.002 -0.014 0.016

SNP_QG 0.006 -0.017 0.023

SNP_W 0.162 0.145 0.017

DArTs_2816 0.020 -0.021 0.041

DArTs_1500 0.019 -0.020 0.039

DArTs_1000 0.021 -0.021 0.041

DArTs_500 0.020 -0.021 0.041

AVERAGE 0.031 0.001 0.030
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SNP (12.63 %) markers compared to the QG (12.22

and 28.18 %, respectively) and the W (5.74 and

52.57 %, respectively) estimators. However, the

smallest numbers were found for the DArT markers

(average = 2.89 %), followed by SSR and SNP

markers, calculated using the pairwise LR values.

SSR_LR SSR_QG SSR_W

SNP_LR SNP_QG SNP_W

DArTs_2816 DArTs_1500 DArTs_1000

DArTs_500

Fig. 2 Density plot of the pairwise estimated relatedness for

individuals from different families (unrelated) split into two

subgroups: both members of the individual pair are from same

subpopulation (black line) and both members of the individual

pair are from different subpopulation (gray line). Abbreviations

used for the estimator and marker types were described in the

text and in the caption of Table 1
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Moreover, DArTs showed the smaller overlapping

areas between the distributions of related and unre-

lated individuals (Fig. 1). The number of unrelated

pairs of individuals that showed estimated pairwise

relatedness greater than 0.125 increased from 1.58 to

5.48 % with the decrease in the numbers of random

selected DArTs from 2816 to 500.

To identify the best combination of estimator and

marker used, we also calculated the product-moment

correlations between pairs of marker-based relation-

ship matrices generated by using each estimator

and marker type combination. We found high corre-

lations that were significantly different from zero

(p\ 0.0001) between the LR, QG and W estimators

for the SSR (from 0.64 to 0.73) and SNP (from 0.71 to

0.84) markers, and within DArTs comparisons when

the number of markers was reduced from 2816 to 500;

for example: DArTs_2816 vs. DArTs_1500 = 0.92,

DArTs_2816 vs. DArTs_1000 = 0.86, DArTs_2816

vs. DArTs_500 = 0.72. However, the marker-based

relationship matrices were significant but not well

correlated across marker types (SSRs vs. SNPs

averaged 0.04; SSR vs. DArTs_2816 averaged 0.21;

SNPs vs. DArTs_2816 averaged 0.08).

Heritability

When we compared the three types of markers, on

average, for the growth traits (DBH and Volume), the

heritabilities estimated based on co-dominant bi-

allelic SNPs were higher and with lower standard

errors compared to the estimates obtained from SSRs

and DArTs (Table 3). However, the total lignin and

BD traits heritability estimates based on DArTs were

higher than those based on SSRs and SNPs. For

Klason lignin, similar heritability estimates were

obtained with the DArTs and SSRs, but clearly

smaller with the SNPs.

Discussion

Over the last years, relatively easy access to highly

informative DNA markers has increased interest in

estimates of relationship matrix in wild populations

where pedigree information is not known, or in small

breeding populations with limited pedigree informa-

tion and/or few available parents. In this study, we

compared the effects of three types of markers (co-

dominant multi-allelic SSR, co-dominant bi-allelic

SNP and dominant bi-allelic DArT) on the estimation

of relatedness coefficients and their effects on the

precision of genetic parameter estimates, using three

estimators for co-dominant markers (i.e., Lynch and

Ritland 1999; Queller and Goodnight 1989 and Wang

2007) and one for dominant markers (Hardy 2003), in

both a simulated data set and a relatively small E.

grandis population data with limited relationships

from the pedigree.

Marker informativeness

One of the major drawbacks in relatedness and/or

genetic parameters estimation is the statistical bias

caused by small sample sizes, i.e., small number of

marker loci and/or small number of individuals

(Ritland 1996). Therefore, the precision with which

marker-based pairwise relatedness and heritability can

be estimated depends largely on the number of loci and

the number of alleles at each locus (e.g., Ritland 1996;

Hardy 2003; Rodrı́guez-Ramilo et al. 2007). The

number of loci and the average number of alleles per

locus in the three types of markers used in this study

would be considered as adequate for the reliable

estimation of relatedness, in accordance with the

prerequisites indicated by Ritland (1996). The author

suggested that n loci and m alleles per locus (i.e., the

quantity n 9 (m - 1)) should lie between 25 and 100

to give reliable results (i.e., SSR = 232, SNP = 181

and DArT = from 2816 to 500). However, due to the

different nature of the molecular markers used in this

study (co-dominant and dominant), the number of loci

and the different number of alleles per locus (multi-

and bi-allelic), the total number of effective alleles per

locus may be a better predictor of the marker

informativeness on precision of the relatedness coef-

ficient estimation. There were a total of 7.48 9

15 = 112.2 effective alleles for SSRs, 1.43 9 181 =

259.6 for SNPs and 1.62 9 2826 = 4557.5 for

DArTs. Therefore, the high number of the DArT

markers compensates for the low number of recog-

nizable alleles per locus (2) and demonstrates the

highest marker informativeness of these markers in

our data set, followed by the co-dominant bi-allelic

SNPs and co-dominant multi-allelic SSRs. Similar

findings were reported in sugar beet (Simko et al.

2012), wheat (Laidó et al. 2013) and barley (Lamara

et al. 2013), where more bi-allelic or dominant
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markers were necessary to compensate for the rela-

tively large amount of information per SSR locus.

Additionally, Ritland (1996) stressed that the number

of pairwise comparisons to obtain reasonable esti-

mates of relatedness coefficients and heritabilities

should be greater than 104 (and preferably 105), i.e.,

the sample size should range between a 150 and 450

individuals, which was the case with our data set: 166

trees (13,695 pairwise comparisons).

We found that the SSRs showed heterozygosity

more than three times higher than SNPs and more than

two times higher than DArTs. The average He for the

SSRs was similar to the result reported for E. grandis

by Brondani et al. (2006) and other Eucalyptus

species, such as in E. globulus (i.e., from 0.71 to

0.93; average 0.85, Ribeiro et al. 2011), E. urophylla

(i.e., from 0.74 to 0.93; average 0.86) and E. dunnii

(i.e., from 0.68 to 0.93; average 0.82, Zelener et al.

2005). In terms of expected heterozygosity, Blouin

et al. (1996) concluded that a set of 15 SSR loci with a

He of 0.75 would accurately discriminate more than

80 % of the half-sibs from unrelated individuals (see

Figure 3 in Blouin et al. 1996). It is commonly found

that higher He values for SSR markers than those for

SNP or DArT markers, because multi-allelic markers

can reach higher He values. However, the He values for

SNP markers were relatively low in our study.

Anderson and Garza (2006) showed in a simulation

study that SNPs with a minor allele frequency (MAF)

less than 0.2 (corresponding to a He\ 0.32), rapidly

lose power to estimate relationship using parentage

inference. Also, in a simulated scenario of 100

independent SNPs, each with a minor allele frequency

of 0.2 (corresponding to a He of 0.32), Glaubitz et al.

(2003) showed that about 18 % of unrelated individ-

uals would be misclassified as half-sibs, and this

percentage increased rapidly when the MAF was

smaller than 0.2 (see Figure 4B in Glaubitz et al.

2003). In particular, our study showed that 105 of the

181 loci had expected heterozygosity smaller than

0.32 (corresponding to a MAF\ 0.2).

Relatedness

In forest genetic studies, the pairwise relatedness

elements of the marker-based relationship matrix have

been estimated using observed relationship implied by

pedigree reconstruction (e.g., El-Kassaby et al. 2011;

Telfer et al. 2015) or relatedness estimates from

pairwise relatedness estimators (e.g., Kumar and

Richardson 2005; Bessega et al. 2011; El-Kassaby

et al. 2012). When we compared the two commonly

used pairwise relatedness estimators (LR and QG) and

the W estimator for the two co-dominant markers

(SSR and SNP), our results from the simulations

showed that the W estimator was the best. However,

Table 3 Heritabilities (ĥ2) and their approximate standard

error (SE) for diameter at breast height (DBH), volume, total

and Klason lignin and basic density estimated from marker-

based relationship matrices from the three estimators (LR, QG

and W) and three different types of markers (SSR, SNP and

DArT) in E. grandis. Marker-based relationship matrices from

the SSR and SNP markers were corrected for the estimator

bias. Abbreviations used for the estimator and marker types

were described in the text and in the caption of Table 1

DBH Volume Total Lignin Klason Lignin Basic Density

ĥ2 SE ĥ2 SE ĥ2 SE ĥ2 SE ĥ2 SE

SSR_LR 0.092 0.044 0.082 0.046 0.092 0.051 0.117 0.048 0.081 0.05

SSR_QG 0.087 0.038 0.074 0.041 0.092 0.045 0.121 0.040 0.047 0.049

SSR_W 0.082 0.049 0.067 0.050 0.100 0.052 0.110 0.052 0.123 0.048

SNP_LR 0.103 0.037 0.123 0.024 0.033 0.055 0.006 0.057 0.096 0.047

SNP_QG 0.065 0.021 0.074 0.014 0.016 0.049 0.009 0.050 0.029 0.034

SNP_W 0.132 0.011 0.112 0.017 0.029 0.059 0.000 – 0.087 0.045

DArTs_2816 0.063 0.064 0.043 0.066 0.132 0.059 0.130 0.060 0.132 0.056

DArTs_1500 0.081 0.061 0.064 0.063 0.123 0.059 0.126 0.059 0.139 0.053

DArTs_1000 0.049 0.065 0.019 0.068 0.117 0.057 0.111 0.058 0.101 0.057

DArTs_500 0.045 0.060 0.026 0.064 0.117 0.050 0.108 0.053 0.133 0.044
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when we compared the W estimator with the LR and

QG estimators in term of differences in RMSE for the

unrelated and half-sib simulated relatedness, the

lowest differences were founded for the combination

of LR and unrelated relationships (0.012 vs. 0.033 for

unrelated and related relationships, respectively), and

QG and half-sib relationships (0.004 vs. 0.046 for

related and unrelated relationships, respectively).

These results reflect our empirical results, where the

W and QG estimators performed better for the half-

sibs category (i.e., estimated relatedness were near or

higher than 0.25) and the LR was a better estimator for

the unrelated category (i.e., estimated relatedness were

closer to the expected value of zero, smaller standard

error and better discrimination of unrelated and half-

sib individuals). However, when we compared esti-

mated relatedness obtained using the method of QG,

LR and W, we found high correlations within SSR and

SNP markers. Additionally, in comparison with the

two moment-based estimators, our empirical results

showed that the W estimator estimated the highest

values of relatedness between the individuals from

different families (i.e., unrelated) when co-dominant

markers were used. In agreement with our findings,

Csilléry et al. (2006) concluded that the QG estimator

had smaller sampling variances for the high relation-

ship categories, while LR was better for the low

relationship categories in five natural outbreeding

populations that were less related than half-sibs. This

is also in agreement with the results obtained by

Ribeiro et al. (2011) in a simulation study. Van de

Casteele et al. (2001), using microsatellite markers,

showed that the LR estimator performs better in

populations with more than 60 or 70 % unrelated

pairs, while estimators with locus specific weights

(i.e., Li et al. (1993) and QG), perform better in

populations with more than 50 % related pairs. In

summary, given the shallow pedigree in our E. grandis

population (i.e., high proportion of expected unrelated

individuals over half-sib pairs of individuals), and the

need for a coefficient with higher precision for the

pairs of distantly related individuals, the LR estimator

is preferred.

The differences found between the three estimators

studied may also be a function of the variation in the

number of loci or marker informativeness. We also

compared three different types of markers with

different patterns of inheritance (dominant vs. co-

dominant) and different numbers of alleles per locus

(i.e., multi-vs. bi-allelic). The results showed that co-

dominant multi-allelic SSRs are much more informa-

tive than the co-dominant bi-allelic SNP markers, an

outcome previously discussed by Wang (2006), given

that SSRs can reach a higher number of alleles per

locus, and are often recognized as the most efficient

marker for relatedness estimation (Hardy 2003).

Likewise, SNPs are more informative than the dom-

inant bi-allelic DArT markers, which scored as either

present or absent, thus providing less genetic infor-

mation for a given locus. However, although the

dominant markers are individually less informative

than co-dominant ones, our analysis of 166 trees of E.

grandis revealed that a high number of dominant bi-

allelic DArT markers (in our case 2816) obtained with

a relatively simple technology and low cost (Sansaloni

et al. 2010), may yield comparable relatedness coef-

ficients and accuracies to co-dominant multi-allelic

(SSR) and bi-allelic markers (SNP). The effect of the

dominant DArT markers on the estimated relatedness

coefficients has not been extensively studied. In our

study, when we compared the estimated average of the

pairwise coefficients from the three studied markers,

DArT markers appeared to perform better than SSRs

and SNPs to estimate pairwise relatedness coefficients

from related (i.e., estimates higher than 0.25, smaller

standard error) and unrelated (i.e., estimates closer to

expectation value of zero, smaller standard error and,

in general, narrower distributions) individuals. More-

over, the dominant bi-allelic DArT marker panel

showed a higher ability than SSRs and SNPs to

discriminate unrelated from related half-sib individu-

als (Table 2; Fig. 2). Higher rates of unrelated indi-

viduals misclassified as half-sibs (18 %) were

obtained by Blouin et al. (1996) using a set of 20

SSR loci with an expected heterozygosity of 0.75 and

by Glaubitz et al. (2003), using 100 independent SNPs,

each with a MAF of 0.2 (corresponding to a

He\ 0.32). Glaubitz et al. (2003) concluded that

16–20 microsatellites with a He of 0.75 would be

expected to provide information equivalent to that

given by 100 independent SNPs, each with a minor

allele frequency of 0.2. Similarly, Yu et al. (2009)

suggested that an SSR-to-SNP ratio of 1:10 was

required to provide robust estimates of relatedness for

association mapping. Simulation performed by Wang

(2006) showed that about 89 bi-allelic SNPs (i.e., total

number of effective alleles equals to 178) are required

to achieve the same power as 13 10-allelic SSRs (i.e.,
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total number of effective alleles equals to 130) to

distinguish half-sib from unrelated pairs of

individuals.

We tested the effect of the number of DArT

markers on the precision of relatedness coefficients.

The correlations between pedigree- and marker-based

relatedness coefficients decreased with a reduction in

the number of DArTs from 2816 to 500 (DArTs_2816 =

0.27; DArTs_1500 = 0.25; DArTs_1000 = 0.25;

DArTs_500 = 0.19). Decrease in the number of

dominant bi-allelic DArT markers had only a slight

effect on estimated average relatedness. Though, in

general, the standard error of the estimator declines

with the number of loci (Milligan 2003), a random

reduction in the number of DArT markers yielded the

same standard error of the relatedness coefficients (at

the second decimal place) for related and unrelated

pairs of individuals. However, the correlation

between the average pairwise relatedness based on

different numbers of DArTs showed a reduction in the

estimated correlations when the number of markers

was reduced from 2816 to 500, particularly when the

number of markers decreased to 500 DArTs. More-

over, the density plot shows a broad distribution (i.e.,

high variance) when only 500 DArT markers were

used. Therefore, it appears that 1000 randomly

selected bi-allelic dominant DArT markers are

enough to achieve accurate relatedness coefficients

in our E. grandis population.

All moment-based estimators studied assume the

absence of inbreeding and genotyping errors, while

likelihood-based methods as that proposed by Wang

(2007) can account for both phenomena. Our simula-

tion analyses, which mimicked the expected relation-

ships classes (i.e., unrelated and half-sibs) in the E.

grandis population and emulated the allele frequency

characteristics of the SSR markers, showed that the

RMSEs were higher than those that did not accounting

for inbreeding. Moreover, our empirical data showed

that the average inbreeding coefficients estimated

from the 15 SSR markers were relatively low (0.140

and 0.143 for the LR and W estimators, respectively);

however, this coefficient declined significantly to 0.06

when the four SSR markers with highest deficit of the

heterozygosity were removed from the analysis. Wang

(2007), using simulation, concluded that it seems

unjustified to take inbreeding into account in the

likelihood-based methods for estimating relatedness,

when the inbreeding coefficients are lower than 0.15 or

in samples with high proportion of unrelated pairwise

relationships, except when there is ample marker

information (hundreds of SSR markers). Finally, we

did not consider the genotyping error in both simulated

and empirical data sets. However, Wang (2007)

showed that accounting for typing errors in the

estimator impairs the estimates when the pairwise of

relatedness in the sample are loosely related or

unrelated.

Heritability

A major motivation in estimation of relatedness

among individuals is to construct the additive rela-

tionship matrix, allowing the estimation of genetic

parameters such as the additive genetic variance or

heritability within the individual-tree mixed model

framework. Estimation of genetic parameters using

marker-based relationship matrices is especially use-

ful in studies of wild populations where pedigree

information is not known (Frentiu et al. 2008;

Sillanpää 2011), or in small breeding populations

with limited pedigree information and/or few avail-

able parents (i.e., reduced variation in the pedigree

relationship; Ødegård and Meuwissen 2012).

Very few published reports compare the estimated

heritabilities from different types of markers. Our

results show that, in general, for growth traits (DBH

and volume) co-dominant bi-allelic SNP markers

yielded higher heritabilities and more precise results

(i.e., smaller standard error) than co-dominant multi-

allelic SSR and dominant bi-allelic DArT markers.

Meanwhile, for wood properties traits: total lignin and

basic density, the dominant bi-allelic DArT markers

yielded the highest heritabilities and most precise

results. In contrast to our findings, Bessega et al.

(2011) showed that heritability estimates based on 128

dominant markers (57 AFLPs and 71 ISSR) were

clearly lower compared to those based on 6 SSR.

However, they concluded that more dominant markers

are required to compensate for the low number (2) of

detectable alleles in comparison with SSRs.

Generally, the decrease in the number of DArT

markers used to derive the relationship matrix resulted

in lower heritability estimates, except for the growth

and the BD traits from 2816 DArTs to 1500 DArTs.

Similar results were obtained by Hayes and Goddard

(2008), where the estimated heritability from simu-

lated data was 0.32, 0.30 and 0.21 when the marker-
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based relationship matrices were estimated with a

decreasing number of SNP markers: 9000, 5000 and

1000, respectively.

The low number of trees sampled and the low

number of trees per family used in this study could limit

the use of these estimates for practical applications in a

breeding population of E. grandis or for the compar-

isons with other studies. Moreover, our estimates of

heritability from the SSR markers for the tree estima-

tors studied and the SNP markers using the LR and QG

estimators could be inflated since the average of the

pairwise coefficients for related individuals were lower

than half-sib (i.e., 0.25; Table 1). However, our results

show that SNP marker-based heritabilities (the highest

across markers) for growth traits were 0.100 and 0.103

for DBH and Volume, respectively (average from LR,

QR and W estimators). In a review of seven traits of

Eucalyptus spp., conifers and other broadleaf forest

tree species from 67 published papers, Cornelius

(1994) reported higher values of heritabilities for

DBH (0.19) and volume (0.18). However, the values

reported by Cornelius (1994) could be overestimated,

since open-pollinated families were assumed to have a

coefficient of relationship equal to 0.25. Estimated

average DArT marker-based heritabilities (the highest

across markers) for wood properties are smaller (total

lignin = 0.132, Klason lignin = 0.130 and

BD = 0.139) than those previously published for other

Eucalyptus species. Gion et al. 2011 reviewed esti-

mates of genetic parameters of wood properties from

Eucalyptus species and concluded that wood property

traits had higher heritabilities compared to growth

traits. For example, in Eucalyptus globulus, Stackpole

et al. (2011) reported heritabilities for wood density of

0.51 and for Klason lignin of 0.27. Therefore, our

results show that 2816 DArT marker-based heritabil-

ities could be underestimated based on average

estimated heritabilities reported for other Eucalyptus

studies for wood properties traits. Ødegård and

Meuwissen (2012) indicated that when a fraction of

the genome is not covered by the markers, the total

genetic variance (and thus the heritability estimates)

will be underestimated. They suggested that this

underestimation may be completely covered by

including a polygenic effect in the mixed model,

which has a covariance structure equal to the NRM.

Including a polygenic effect in the mixed linear model

(1) such an effect led to higher estimated heritabilities,

except for the trait with the lowest pedigree-based

heritability such as Klason lignin. However, estimated

standard errors of heritabilities were higher and closer

to the pedigree-based approach (results not shown).

Conclusion

Though our empirical data is far from an ideal scenario

for marker-based in situ approaches because of the low

number of accessions and very sparse relationships

between individuals, the results demonstrated that the

marker-based relatedness estimates has clear advan-

tages over the expected categorical measure of relation-

ships. The marker-based methods allowed the

estimation of the actual relatedness between two

individuals, i.e., the realized relationships. The lower

standard error of the pairwise coefficients from DArT

markers would indicate that these markers are more

conservative to recover Mendelian sampling (likely due

to their nature) than the more polymorphic (informative)

co-dominant markers (SSR and SNP); however, all of

them could capture hidden relationships between indi-

viduals. Our work suggests that the relatedness coeffi-

cients (i.e., realized relationship matrix) and heritability

estimates can be accurately inferred from co-dominant

or sufficiently dense dominant molecular markers in a

relatively small E. grandis data set with a shallow

pedigree. Results from both simulated and empirical

data provided a premise to select between three

estimators for co-dominant markers, the type of molec-

ular markers and number of DArT markers that are

needed for estimated relatedness coefficients and her-

itabilities in this E. grandis data set.
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Csilléry K, Johnson T, Beraldi D, Clutton-Brock T, Coltman D,

Hansson B, Spong G, Pemberton JM (2006) Performance

of marker-based relatedness estimators in natural popula-

tions of outbred vertebrates. Genetics 173:2091–2101

Dakin EE, Avise JC (2004) Microsatellite null alleles in

parentage analysis. Heredity 93:504–509

Eldridge K, Davidson J, Hardwood C, van Wyk G (1993) Eu-

calyptus domestication and breeding. Oxford University

Press, New York

El-Kassaby YA, Cappa EP, Liewlaksaneeyanawin C, Klápšte J,
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El-Kassaby YA, Klápšte J, Guy RD (2012) Breeding without

Breeding: selection using the genomic best linear unbiased

predictor method (GBLUP). New For 43:631–637

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K et al

(2011) A robust, simple genotyping-by-sequencing (GBS)

approach for high diversity species. PLoS One

6(5):e19379. doi:10.1371/journal.pone.0019379

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of

clusters of individuals using the software structure: a

simulation study. Mol Ecol 14:2611–2620

Frentiu FD, Clegg SM, Chittock J, Burke T, Blows MW, Owens

IPF (2008) Pedigree-free animal models: the relatedness

matrix reloaded. Proc R Soc B 275:639–647

Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2006)

ASReml user guide release 2.0. VSN International Ltd,

Hemel Hempstead
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(2005) Selection strategy for a seedling seed orchard

design based on trait selection index and genomic analysis

by molecular markers: a case for Eucalyptus dunnii Mai-

den. Tree Physiol 25:1457–1467

Mol Breeding (2016) 36:97 Page 19 of 19 97

123


	SSRs, SNPs and DArTs comparison on estimation of relatedness and genetic parameters’ precision from a small half-sib sample population of Eucalyptus grandis
	Abstract
	Introduction
	Materials and methods
	Plant material and quantitative traits
	Molecular markers
	Estimation of relatedness coefficients and inbreeding
	Simulations and measurement of performance
	Statistical analysis and estimation of heritability

	Results
	Marker informativeness
	Results of relatedness from the simulations
	Results of relatedness from the empirical data of E. grandis
	Heritability

	Discussion
	Marker informativeness
	Relatedness
	Heritability

	Conclusion
	Acknowledgments
	References




