

Butler University Digital Commons @ Butler University

Scholarship and Professional Work -Communication

College of Communication

2016

Effects of familiarity and presentation mode on auditory-visual speech recognition in adults with aphasia

Rachel Hahn Arkenberg

Mary Gospel Butler University, mgospel@butler.edu

Follow this and additional works at: https://digitalcommons.butler.edu/ccom_papers

Part of the Communication Commons

Recommended Citation

Hahn, R. and Gospel, M. (2016). Effects of familiarity and presentation mode on auditory-visual speech recognition in adults with aphasia. Poster presented at the American Speech-Language-Hearing Association convention in Philadelphia, PA.

This Presentation is brought to you for free and open access by the College of Communication at Digital Commons @ Butler University. It has been accepted for inclusion in Scholarship and Professional Work - Communication by an authorized administrator of Digital Commons @ Butler University. For more information, please contact digitalscholarship@butler.edu.

Effects of familiarity and presentation mode on auditoryvisual speech recognition in adults with aphasia

Rachel Hahn Arkenberg, B.A.* and Mary Gospel, PhD SLP

Introduction

- Research demonstrates that adults with aphasia can continue improving their speech and language for years after their stroke with therapy.
- People with aphasia and their loved ones are searching for ways to continue speech and language improvements even after insurance runs out, and many are turning to technological therapy programs.
- There is little research on the skills people with aphasia need to benefit from these technological therapy programs. The current study reports on one of these skills, auditory visual speech perception.

Technological Therapy

Interest since 1992

Therapy programs focused on naming, sentences, conversational scripts.

Lack of studies on the fundamental skills needed for these programs.

Petheram (1992, 2004)

Crerar et al. 1996, Linebarger et al. 2001, Mortley et al. 2001, Cherney et al. 2008, Abad et al. 2013; Palmer et al. 2012, Raymer et al. 2006; Laganaro et al. 2006; Fink et al. 2005; Doesborgh et al. 2004; Mortley et al. 2004

Choe and Stanton (2011)

Auditory Visual Speech Perception

- Maximize communication with visual cues Choe and Stanton 2011, Youse, Cienkowski, and Coelho (2004) Shindo, Kimitaka, and Tanaka (1991)
- Familiarity Flude, Ellis, and Kay (1989), Stimley and Noll (1994), and Dressler, Buder, and Cannito (2009)
- Presentation Mode (live v. recorded speech) Haley et al. (2011)

Participants				
Recruitment: Aphasia support groups in Indianapolis	Age: 44-70 years old			
Number: 6 adults with aphasia	Cause: 5 from a stroke, 1 from infection			
Gender: 4 male, 2 female	Chronic Phase: 6 months to 6 years			

Butler University (Indianapolis IN), Current Address: Purdue University (West Lafayette, IN)

Methods

First Visit

Caregivers introduced to the study (informed consent) and videotaped speaking sentences.

Second Visit

Informed consent, Screening Tests Speech Recognition Tests

Screening Tests

History, vision, hearing, reaction time, short-term memory test, Western Aphasia Battery

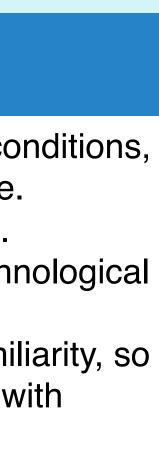
	Live voice	Recorded voice
Familiar speaker (Caregiver)	Caregiver reads CID sentences -	Recording of caregiver reading words – Set B Recording of caregiver reading sentences – Set B
Unfamiliar speaker (Researcher)	Set C Researcher reads CID sentences	NU-6 words from Butler Auditor Visual corpus – Set D (Richie, Warburton, and Carter 2009) CID sentences from Butler Aud Visual corpus –Set D (Richie, Warburton, and Carter 2009)

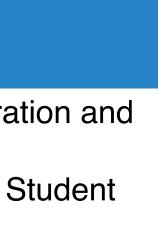
Results

		Live Familiar	Recorded Familiar	Live Unfamiliar	Recorded Unfamiliar
Visual Digit Span	Pearson Correlation	-0.095	-0.307	-0.179	-0.401
	Sig. (2-tailed)	0.858	0.554	0.735	0.431
Auditory Digit Span	Pearson Correlation	-0.873 *	-0.753	-0.8	-0.801
	Sig. (2-tailed)	0.023	0.084	0.056	0.055
WAB - R Repetition Score	Pearson Correlation	0.225	0.24	0.171	0.132
	Sig. (2-tailed)	0.669	0.647	0.746	0.803

Pearson's Correlation: In word tasks, only auditory digit span was correlated. In sentence tasks, there were significant correlations between repetition and performance in all four conditions. This high correlation was consistent, so it does not explain the differences between conditions.

Conclusions


- There is a statistically significant difference between the four conditions, and the live familiar condition appears to be the most favorable.
- These differences were not explained by memory or repetition.
- Clinical Application: Incorporate a live, familiar person into technological therapy.
- Note: The live condition may be even more important than familiarity, so avenues could be explored for volunteers to work with people with aphasia on technological therapy.


Acknowledgements

Special thanks to Dr. Carrie Richie for input and guidance in the preparation and development of this project.

This project was made possible thanks to the Holcomb Undergraduate Student Research Program at Butler University.

ces
ir
nted
onship
nlo with
ple with
neir

