
Butler University Butler University

Digital Commons @ Butler University Digital Commons @ Butler University

Undergraduate Honors Thesis Collection Undergraduate Scholarship

2017

Complexities of Bi-Colored Rubik's Cubes Complexities of Bi-Colored Rubik's Cubes

Taylor Pieper

Follow this and additional works at: https://digitalcommons.butler.edu/ugtheses

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Pieper, Taylor, "Complexities of Bi-Colored Rubik's Cubes" (2017). Undergraduate Honors Thesis
Collection. 421.
https://digitalcommons.butler.edu/ugtheses/421

This Thesis is brought to you for free and open access by the Undergraduate Scholarship at Digital Commons @
Butler University. It has been accepted for inclusion in Undergraduate Honors Thesis Collection by an authorized
administrator of Digital Commons @ Butler University. For more information, please contact
digitalscholarship@butler.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ Butler University

https://core.ac.uk/display/212824326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.butler.edu/
https://digitalcommons.butler.edu/ugtheses
https://digitalcommons.butler.edu/ugscholarship
https://digitalcommons.butler.edu/ugtheses?utm_source=digitalcommons.butler.edu%2Fugtheses%2F421&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.butler.edu%2Fugtheses%2F421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.butler.edu/ugtheses/421?utm_source=digitalcommons.butler.edu%2Fugtheses%2F421&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@butler.edu

Complexities of Bi-Colored Rubik’s Cubes

Taylor Pieper

Contents

Complexities of Bi-colored Rubik’s Cube 2
Abstract . 2
History of the Rubik’s Cube . 2
God’s Number . 3
Group Theory and the Rubik’s Cube 4
Group Structuring in the Bi-colored Cubes 12
Counting Arguments . 13
Red and Blue Cube . 14
Computing God’s Number . 16

Results . 17
Code . 18

1

Complexities of Bi-colored Rubik’s Cube

Abstract

Which of two bi-colored cubes is the simpler puzzle? The differences in
the coloring of the cubes creates different symmetries that dramatically reduce
the number of states each cube can reach. Which of the symmetries is most
reductive? The answer to these questions can be achieved by discovering and
comparing the ”’God’s Number”’ for these cubes. By analyzing the bi-colored
cubes as subgroups of the original cube, the answer can be found by comparing
the number of solvable states, as well as the minimum number of moves it takes
to solve every state of the cubes. By simple discrete analysis, we found that
the Green and Yellow (GY) cube has fewer states than the Red and Blue (RB)
cube. Then, we created a computer code that worked from the solved state of
each cube, and figured out many moves it takes to get to the state in order to
find a God’s Number for each cube. Whichever has the lower number could be
argued as the simpler puzzle.

History of the Rubik’s Cube

Released in 1974 by Erno Rubik, the Rubik’s Cube captivated the minds of
mathematicians due to its group structuring. God’s number was sought after,
and was reduced and reduced until it was proved by Tomas Rokicki and col-
leagues that there existed cube states that needed 20 moves in order to be solved.
[2] Not only are mathematicians enamored with the cube, but the public is as
well.There are now competitions to see who can solve cubes the fastest. Some
cube experts can solve a cube with their eyes closed, or even while juggling!.In
order to learn how to solve a cube, many people memorize sets of moves, and
can apply those sets over and over again to solve the cube. While one objective
is to find the distinct sets of moves for our unique cubes, it is important to fully
understand the original Rubik’s Cube fully first. We began by understanding
the number of solvable states the cube could reach.

We begin counting the possible states of the Original Rubik’s cube by first
thinking as if we had dismantled the cube, and are counting the ways we could
reconstruct it again. We started by determining the number of placements the

2

corner pieces could take. Since there are 8 corner pieces, we count the placement
of the corner cubies as 8! = 40, 320. We then must account for the orientations
of the corners. Since each of the eight corner pieces can be oriented in three
distinct ways within each placement, we count the orientation of the corner
pieces as 38 = 6561. Now accounting for the 12 edge pieces, we must start by
counting the number of ways we can place them on the cube. We can count
the number of placements of these edge pieces by taking the number of possible
orientations, 12! = 479, 001, 600.

Taking into consideration the orientation of these pieces, Since each cubie
can only be situated in two ways within a certain spot, we have 212 = 4, 096
orientations of the edge pieces. Combining all of the previous arguments, we
find that there are 8! · 38 · 12! · 212 = 519, 024, 039, 293, 878, 272, 000 possible
constructions of the Rubik’s Cube.

God’s Number

God’s Number is the maximum number of moves required to optimally solve any
of the 43,252,003,274,489,856,000 combinations of the original cube. The term
“God’s Number” was coined because in order for a cube to be solved optimally
in 20 moves, the cube would need to be handed to an all knowing being, which
would know how to solve the cube optimally.

However, God’s Number assumes the user is completing the cube in the half
turn metric, in which any turn of a face is considered to be one move. God’s
number varies depending on the turn metric being used. For example, it is 26 in
the quarter turn metric, which states that any 90o turn of a face is considered
to be one move. While the previous two metrics are the most studied, there is
another. The half-slice metric is the final metric that counts any turn of the
middle slices count as one move. In the quarter turn metric, where any turn of
a face counts as a valid move, the moves are named after faces, So F denotes a
90◦ clockwise turn of the front face, F 2 denotes a 180◦ turn, and F’ denotes the
inverse of F, or a 90◦ counterclockwise turn of the front face. The other face
turns are noted as R, L, U, D, B for right, left, up, down, and back, respectively.

It took 29 years for mathematicians to discover God’s number. In July 1981,
Morwen Thistlethwaite proved there is an upper bound of at most 52 moves to
solve every cube state, with a lower bound of 18 moves. In January 1995,
Michael Reid proved the ”superflip” position, which is where the corners are
correct but the edges placed are flipped, requires exactly 20 moves to optimally
solve, which raised the lower bound of God’s Number to 20. Then finally in July
2010, Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John Dethridge
proved that God’s Number for the Cube is exactly 20. [2]

Our particular problem is both pedagogical and practical. It helps us fur-
ther understand the cube by understanding its group structuring. It also allows
us to ask the question, ”‘Is there an intermediate version of this puzzle?”’ If

3

there is an intermediate version, how simple is it in practice, and will it still
make a challenging, but easier, puzzle to tackle? To evaluate this question, we
looked at the number of solvable states each bi-colored cube can reach, as well
as determinig the ”‘God’s Number”’ for them as well.

Group Theory and the Rubik’s Cube

From the beginning, the Rubik’s Cube was studied for its group structure. A
group consists of a set G of elements and a binary operation (called the group
operation) that together satisfy the four fundamental properties of closure, as-
sociativity, the identity property, and the inverse property. The operation with
respect to which a group is defined is often called the ”group operation,” and
a set is said to be a group ”under” this operation. We will now prove that the
Rubik’s Cube is a group.

Let the rotations of the cube’s faces, denoted as R, L, F, U, B, and D, be
the elements of G. We will now think of a Rubik’s Cube as a group (G, ∗). Two
moves are considered the same if they result in the same cube state, Therefore,
F ′ and (F 2 ∗ F) are the same move. The group operation is defined by if M1

and M2 are moves, then M1 ∗M2 means perform the move M1 first, followed
by the move M2. To prove this is a group, we must show that (G, ∗) is closed,
associative, has an identity element, and has inverses.

First, (G, ∗) is closed because any combination of moves is also a move, as it
produces a valid cube state. Next, the identity is the move that does nothing.
In this way, M1 ∗ e = M1, which says to do move M1 and then do nothing, is
the same as simply doing M1. Therefore, there exists a right identity and since
e ∗M1 = M1, (G, ∗) has a left identity as well.

Next, (G, ∗) has inverses because to undo any move M, one can reverse those
steps to get a move M−1. Then M∗M−1 = e, therefore M−1 is the inverse of M .
Therefore, every element in (G, ∗) has a right inverse. In the same way, if you
perform the ”undo move for M” on a cube, and then perform M , you will also
end up with the identity, and therefore every element of (G, ∗) has a left inverse.

Finally, we must prove ∗ is associative. Let C be a cube state. Then we
can write M(C) as the resulting state after performing the move M on C.
If M1 and M2 are two moves, then M1 ∗ M2 is the move where we do M1

first, denoted as M1(C) and then M2, written as M2(M1(C)). Therefore,
(M1 ∗ M2)(C) = M2(M1(C)). To show ∗ is associative, we must show that
(M1 ∗M2) ∗M3 = M1 ∗ (M2 ∗M3) for any moves M1,M2, and M3. We know
from our above calculation that [(M1 ∗M2) ∗M3](C) = M3 ∗ [(M1 ∗M2)](C) =
M3 ∗ (M2 ∗ (M1(C))). Therefore, (M1 ∗M2) ∗M3 = M1 ∗ (M2 ∗M3). Thus ∗ is
associative.

4

We have now proven that (G, ∗), and therefore the Rubik’s Cube is in fact
a group.

Since the cube is a group, it can be described by using group properties. We
have defined a few that are regularly used below.

• Generators-We say that S, a subset of G, generates G if G = 〈S〉; that
is, every element of G can be written as a finite product under the group
operation of elements of S and their inverses. In this case, the subset that
generates G is the set of all face turns.

• Cyclic- A group is cyclic if there ∃M ∈ G such that G = 〈M〉. Let G be
a finite group and M ∈ G, then M−1 = Mn for some n ∈ Z+. You can
see this in the Rubik’s cube by noting how turning the Front face counter
clockwise once is the same as turning it clockwise three times. Therefore,
F−1 = F 3.

• Face turns are bijections, which is a function that is both one to one and
onto. Face turns are one to one because no two cubies can be in the same
cubicle, and they are onto because after any turn, every cubicle is filled.

• Disjoint cycle decomposition. Two cycles are disjoint if they do not per-
mute any of the same cubies. Since each face move will permute a maxi-
mum of 8 cubies, some moves will be disjoint, moving completely seperate
cubies. This then also means that two disjoint moves, M1 and M2, when
composed together are commutative, so M1 ∗M2 = M2 ∗M1.

• Homomorphisms- a homomorphism from G to H is a map φ : G→ H such
that φ(a ∗ b) = φ(a) ∗ ?(b),∀a, b ∈ G. One example of a homomorphism in
our cubes is the turn, M on the front face, f, and the back face, b. Then
M(f) ? M(b) = M(f ∗ b)

• The kernel of a homomorphism is the preimage of a move, so φ(M) = the
permutation of the cube before the move M was applied.

There is some vocabulary that is necessary for speaking of the cube and its
properties. First, a cubie is one of the 26 blocks of a Rubik’s Cube. Then there
is a cubicle, which refers to where a cubie is situated on the cube. It is the space
in which a cubie is located. A move of a face takes cubies and transfers them
to different cubicles.

The faces of the Rubik’s cube are denoted as R, L, U, D, B for right, left, up,
down, and back, respectively, similarly to the face moves. Now when speaking
about a specific edge cubie, it is noted in two parts, the first being which face
the side is on, followed by B, D U R, for what edge of that face the cubie is on.
The cubie noted as FR is on the front face, on the right edge. Corner cubies are
denoted in three parts, the first being the face they are on, second being either
U, D, B, F, to indicate which slice the cubie is on, and finally either L, or R, to
indicate which corner of the slice the cubie is on.

5

The number of valid configurations is determined by four things. Those
things are:

• positions of corner cubies

• positions of edge cubies

• orientations of corner cubies

• orientations of edge cubies

The positions of corner cubies can be described as an element of S8, which
is a permutation of the 8 cubies. The positioning of the edge cubies can be
describes as an element of S12 as there are 12 edge cubies. We must create a
way of keeping track of how a cubie’s orientation changes after a permutation.
I will use the technique Janet Chen uses in her paper, Group Theory and the
Rubik’s Cube [1]. Each corner cubie has three possible orientations, and they
can be numbered 0,1, and 2. The solved state has every corner face labeled 0
either on the U or D face. Then, each cubie is labeled clockwise with 1, followed
by a 2. On the Down Face, this looks like:

2 1

1 0 0 2

2 0 0 1

1 2

Each corner cubicle is also labeled with a number 1-8. Therefore we now
have a notation to identify where a cubie begins in the solved state, and where
it ends up after a permutation is applied to the cube. This notation will be
written as (x1, x2, x3,, x8) with xi denoting the number of the cubie (0, 1,
or 2) that is in the ith cubicle. In this way, the elements xi are elements of Z/3Z.

We will now look at what it looks like, with this way of tracking the cube’s
permutations, when the move R is applied to the cube. The cubicle numbers
on this face are

2 0

1 0 2 1

2 0 1 0

1 2

The labeling of the corner cubies on the right face looks like

6

2 3

7 8

Then the cubie faces in the cubicles are labeled as

0 0

2 1 2 1

1 2 1 2

0 0

After rotating the Right Face by 90 degrees, the cubies are labeled

1 2

0 2 1 0

0 1 2 0

2 1

The cubies on the left face are unmoved by R, so x1 = 0, x4 = 0, x5 = 0,and
x6 = 0. Now, we can see from our diagrams that x2 = 1, x3 = 2, x7 = 2, and
x8 = 1. We can think of each xi as counting the number of clockwise twists
the cubie i is away from having its 0 face on the numbered face of the cubicle.
So,x = (0, 1, 2, 0, 0, 0, 2, 1). Each xi is an element of Z/3Z , and x is an element
of (Z/3Z)8 . It is also important to note that

∑
xi = 6 = 0mod3.

We can do something similar with the edge pieces, by labeling the cubicles
1-12 and labeling the edges of each cubie 0,1. Our edge cubies will be denoted
as yi, where 1 ≤ i ≤ 12. So a configuration y = (y1, y2, ..., y12) is an element
τ ∈ (Z/2Z)12.

Therefore, any configuration of the Rubik’s cube can be described as (σ, τ, x, y).

Theorrem 11.1 A configuration (σ, τ, x, y) is valid iff
∑
xi = 0(mod3),

∑
yi =

0(mod2), and sign of σ is equal to the sign of τ .

We will follow Janet Chen’s proof of this theorem.
In order to prove this theorem, we will show that if (σ, τ, x, y) is valid, then
sgnσ = sgnτ ,

∑
xi = 0(mod3), and

∑
yi = 0(mod2). In the process, we will

prove some other, more general facts that will be useful.
Recall that G acts on the set of configurations of the Rubik’s Cube. The

valid congurations form a single orbit of this action. So, it makes sense that

7

statements we make about valid congurations can be generalized to other orbits.
Lemma 11.2. If (σ, τ, x, y) and (σ′, τ ′, x′, y′) are in the same orbit, then (sgnσ)(sgnτ) =
(sgnσ′)(sgnτ ′).
Proof. It suffices to show that, if (σ′, τ ′, x′, y′) = (σ, τ, x, y)·M where M is one of
the 6 basic moves, then (sgnσ)(sgnτ) = (sgnσ′)(sgnτ ′). σ′ = σφcorner(M) and
τ ′ = τφedge(M). Therefore, (sgnσ′)(sgnτ ′) = (sgnσ)(sgnφcorner(M))(sgnτ)(sgnφedge(M)).
If M is one of the 6 basic moves, then φcorner(M) and φedge(M) are both 4-
cycles, so they both have sign 1. Thus, (sgnσ′)(sgnτ ′) = (sgnσ)(sgnτ).
Corollary 11.3. If (σ, τ, x, y) is a valid conguration, then sgnσ = sgnτ . Proof.
This is a direct consequence of Lemma 11.2 since any valid conguration is in
the orbit of the start conguration (1,1,0,0).

Lemma 11.4. If (σ′, τ ′, x′, y′) is in the same orbit as (σ, τ, x, y)), then
∑
x′i

∑
xi(mod3).

and
∑
y′i =

∑
yi(mod2)

Proof. In light of Proposition 10.12, it suffices to show that, if (σ′, τ ′, x′, y′)
=(σ, τ, x, y)Ṁ where M is one of the 6 basic moves, then

∑
x′i

∑
xi(mod3). and∑

y′i =
∑
yi(mod2). Here is a table showing what x0 and y0 are if (0,0,x0,y0)

= (,,x,y)·M and M is one of the 6 basic moves. In each case, it is easy to check∑
x′i

∑
xi(mod3). and

∑
y′i =

∑
yi(mod2)

M x’ and y’
D (x1, x2, x3, x4, x8, x5, x6, x7)

(y1, y2, y3, y4, y5, y6, y7, y8, y10, y11, y12, y9)
U (x2, x3, x4, x1, x5, x6, x7, x8)

(y1, y2, y3, y4, y5, y6, y7, y8, y10, y11, y12, y9)
R (x1, x7 + 1, x2 + 2, x4, x5, x6, x8 + 2, x3 + 1)

(y1, y7, y3, y4, y5, y2, y10, y8, y9, y6, y11, y12)
L (x4 + 2, x2, x3, x5 + 1, x6 + 2, x1 + 1, x7, x8)

(y1, y2, y3, y5, y12, y6, y7, y4, y9, y10, y11, y8)
F (x6 + 1, x1 + 2, x3, x4, x5, x7 + 2, x2 + 1, x8)

(y1, y2, y8 + 1, y4, y5, y6, y3 + 1, y11 + 1, y9, y10, y7 + 1, y12)
B (x1, x2, x8 + 1, x3 + 2, x4 + 1, x6, x7, x5 + 2)

(y6 + 1, y2, y3, y4, y1 + 1, y9 + 1, y7, y8, y5 + 1, y10, y11, y12)

As an example, we’ll see how to nd x0 when M is the move R. The cubicles
of the right hand face look like this:

U U U

F R R R B
F R R R B
F R R R B

D D D

The cubicles are labeled like this:

8

2 3

7 8

Therefore, if the Rubik’s cube is in the configuration σ, τ, x, y), the cubies
on the right face are labeled like this:

x2 x3
x2 + 2 x2 + 1 x3 + 2 x3 + 1

x7 + 1 x7 + 2 x8 + 1 x8 + 2

x8 + 2 x3 + 1

Thus, x′ = (x1, x7+1, x2+2, x4, x5, x6, x8+2, x3+1). So,
∑
x′i =

∑
xi + 6(mod3).

Corollary 11.5. If (σ, τ, x, y) is a valid conguration, then
∑
xi = 0(mod3)and

∑
yi =

0(mod2).

Proof. This is a direct consequence of Lemma 11.4 since any valid congura-
tion is in the orbit of the start conguration (1,1,0,0). Thus, we have proved
one directon of Theorem 11.1. Now, we will prove the converse. Suppose
sgnσ = sgnτ,

∑
xi = 0(mod3)and

∑
yi = 0(mod2). We want to show that

there is a series of moves which, when applied to (σ, τ, x, y), gives the start
conguration; that is, if the Rubik’s cube is in the conguration (σ, τ, x, y), it can
be solved. The idea of the proof is basically to write down the steps required to
solve the Rubik’s cube. Thus, we will prove these four facts:

• If (σ, τ, x, y) is a conguration such that sgnσ = sgnτ,
∑
xi = 0(mod3) and∑

yi = 0(mod2), then there is a move M ∈ G such that (σ, τ, x, y) ·M
has the form (1, τ ′, x′, y′) with sgnτ ′ = 1,

∑
xi = 0(mod3)and

∑
yi =

0(mod2). That is, we can put all the corner cubies in the right positions.

• If (σ, τ, x, y) is a conguration with sgnτ = 1,
∑
xi = 0(mod3)and

∑
yi =

0(mod2), then there is a move M ∈ G such that (1, τ ′, x′, y′) ·M has the
form (1, τ ′, 0, y′) with sgnτ ′ = 1 and

∑
y′i = 0(mod2). That is, we can

put all the corner cubies in the right orientations (and positions).

• If (1, τ, 0, y) is a conguration with sgnτ = 1 and
∑
yi = 0(mod2), then

there is a move M ∈ G such that (1, τ, 0, y) ·M has the form (1,1,0,y’)
with

∑
y′i = 0(mod2). That is, we can put all the edge cubies in the right

positions (without disturbing the corner cubies).

• If (1,1,0,y) is a conguration with
∑
yi = 0(mod2), then there is a move

M ∈ G such that (1, 1, 0, y) ·M = (1, 1, 0, 0). That is, we can solve the
cube!

9

Before proving these, let’s point out a useful fact. Suppose that (σ, τ, x, y)
satises sgnσ = sgnτ,

∑
xi0(mod3), and

∑
yi0(mod2). Then, Lemma 11.2 and

11.4 show that, for any (σ′, τ ′, x′, y′) in the same orbit as (σ, τ, x, y), sgnσ′ =
sgnτ ′,

∑
x′i0(mod3), and

∑
y′i0(mod2). Thus, for example, in the rst statement

above, if we can prove that there is a moveM ∈ G such that (σ, τ, x, y)·M has the
form (1, τ ′, x′, y′), it is automatic that sgnτ ′ = 1,

∑
x′i0(mod3), and

∑
y′i0(mod2).

Therefore, to nishthe proof of Theorem 11.1, it suffices to prove the following
four propositions.

Proposition 11.6. If (σ, τ, x, y) is a conguration such that sgnσ = sgnτ ,∑
xi0(mod3), and

∑
yi0(mod2), then the orbit of (σ, τ, x, y) contains some congu-

ration of the form (1, τ ′, x′, y′).

Proposition 11.7. If (1, τ, x, y) is a conguration with sgnτ = 1,
∑
xi0(mod3),

and
∑
yi0(mod2), then the orbit of (1, τ, x, y) contains some conguration of the

form (1, τ ′, 0, y′).

Proposition 11.8. If (1, τ, 0, y) is a conguration with sgnτ = 1 and
∑
yi0(mod2),

then the orbit of (1, τ, 0, y) contains some conguration of the form (1, 1, 0, y).

Proposition 11.9. If (1, 1, 0, y) is a conguration with
∑
yi0(mod2), then the

orbit of (1, 1, 0, y) contains the start conguration (1, 1, 0, 0). We will prove these
in order. So, we want to rst show that we can put all the corner cubies in the
right positions.

We will prove these in order. So, we want to rst show that we can put all
the corner cubies in the right positions.

Lemma 11.10. The homomorphism φcorner : G → S8 is onto. Proof. S8 is
generated by the set S of 2-cycles in S8. It suces to show that S ⊂ imφcorner.
After all, if S ⊂ imφcorner, then S8 = 〈S〉 ⊂ imφcorner. imφcorner is a group,
so 〈φcorner〉 = imφcorner.

So, we want to show that every 2-cycle in S8 is in the image of φcorner. One
such move that switches just 2 corner cubies, and leaves the other corner cubies
fixed is M0 = ([D,R]F)3, which has disjoint cycle decomposition (dbr urb)(dr
uf)(br rf)(df lf). Then, φcorner(M0) = (dbrurb). So, we at least know that (dbr
urb) lies in the image of φcorner.

Let C1 and C2 be any pair of corner cubies. There exists a move MinG
which sends dbr to C1 and urb to C2. Let σ = φcorner(M). Then, σ(dbr) = C1

and σ(urb) = C2. Since φcorner is a homomorphism,
φcorner(M−1M0M) = φcorner(M)−1φcorner(M0)φcorner(M)
= σ−1(dbrurb)σ
= (σ(dbr)σ(urb))
= (C1C2)
Therefore, (C1C2) ∈ imφcorner, which nishes the proof.

10

Proof of Proposition 11.6. By Lemma 11.10, there exists a move M ∈ G such
that φcorner(M) = σ−1. (σ, τ, x, y) ·M = (1, τ ′, x′, y′) for some τ ′ ∈ S12, x′ ∈
(Z/3Z)8, and y′ ∈ (Z/2Z)12.
Next, we will prove Proposition 11.7. The basic idea for orienting all of the
corner cubies correctly was to use moves which change the orientations of just
2 cubies. First, we must show that such moves exist.
Lemma 11.11. If C1 and C2 are any two corner cubies, there is a move M ∈ G
which changes the orientations (but not positions) of C1 and C2 and which does
not affect the other corner cubies at all. Moreover, there is such a move M
which rotates C1 clockwise and rotates C2 counterclockwise.

Proof. As in the proof of Lemma 11.10, the point is to rst nd a single move
M ′ which changes the orientations of 2 cubies and then conjugate M ′ to nd
other moves that change the orientations of 2 cubies.

One possibility is M ′ = (DR−1)3(D−1R)3, which has disjoint cycle decom-
position (dfr rdf frd)(drb rbd bdr)(df dr fr ur br db dl). Then, φcorner(M ′) = 1
and ψcorner(M ′) = (dbr rdb brd)(drf rfd fdr). So, if C1 = dbr and C2 = drf,
the lemma is true.

Now, we will conjugate this move. There exists M ∈ G which sends dbr to
C1 and drf to C2. Let M ′ = M1M ′M . We see that M ′ changes the orientations
of C1 and C2 and does not affect the other corner cubies. Specically, M ′ rotates
C1 clockwise and rotates C2 counterclockwise.

Proof of Proposition 11.7. Suppose that the Rubik’s cube is in a congura-
tion where at least two corner cubies C1 and C2 have the wrong orientation. By
Lemma 11.11, there is a move which rotates C1 clockwise, rotates C2 counter-
clockwise, and does not affect the other corner cubies. By applying this move
once or twice, we can ensure that C1 has the correct orientation. Since this
move does not aect any corner cubies besides C1 and C2, the Rubik’s cube now
has one fewer corner cubie with an incorrect orientation. Doing this repeatedly,
we end up with a conguration (1, τ ′, x′, y′) where there is at most one corner
cubie with the incorrect orientation. That is, at least 7 of the x′i are 0. By
Lemma 11.4,

∑
x′i

∑
xi0(mod3), soitmustbethecasethatthelastx′i is also 0, so

the conguration of the Rubik’s cube is (1, τ ′, 0, y′).

Next, we want to prove Proposition 11.9; that is, we want to x the positions of
the edge cubies. The idea of the proof is very similar to the one we used to prove
Proposition 11.7. Recall that, in that case, we rst proved that φcorner : G→ S8

is onto. In this case, we only want to use moves that don’t aect the corner
cubies, since we have already done a lot of work to get the corner cubies in the
right positions and orientations. Therefore, instead of looking directly at φedge,
we will look at the restriction of edge to kerψcorner.

Lemma 11.12. The image of φedge|kerψcorner : kerψcorner → S12 contains

11

A12.
Proof: A12 is generated by the set of 3-cycles in A12. By the same argument
as in the proof of Lemma 11.10, it suces to show that every 3-cycle is in the
image of φedge|kerψcorner. As in the proof of Lemma 11.10, the strategy is to
use conjugates of a single move to prove this.
One move that does not affect any corner cubies but cycles 3 edge cubies is
M0 = LR1U2L1RB2, which has disjoint cycle decomposition (ub uf db). Then,
M0 ∈ kerψcorner, and φedge(M0) = (ub uf db). If C1, C2, and C3 are any 3
corner cubies, there is a move M of the Rubik’s cube which sends ub to C1,
uf to C2, and db to C3. Then, M ′ = M1M0M has disjoint cycle decompo-
sition (C1C2C3), so M ′ ∈ kerψcorner and φedge(M

′) = (C1C2C3). Therefore,
(C1C2C3) ∈ imφedge|kerψcorner, which completes the proof.

Remark 11.13. In fact, the image of φedge|kerψcorner : kerψcorner → S12 is
exactly A12, which you can prove using Corollary 11.3.
Now, Proposition 11.8 follows directly from Lemma 11.12. (The proof is exactly
the same idea as the proof of Proposition 11.6.)
Finally, we must prove Proposition 11.9. This is quite similar to Proposition
11.7; rst, we need an analog of Lemma 11.11.
Lemma 11.14. If C1 and C2 are any two edge cubies, there is a move M ∈ G
which changes the orientations (but not positions) of C1 and C2 and which does
not affect the other cubies at all.

Proof. One move that switches the orientations of 2 edge cubies without
affecting other cubies is
(LR1FLR1DLR1BLR1ULR1F 1LR1D1LR1B1LR1U1

(this move is described more easily as (MRU)4(MRU1)4). Call this move M0;
it has disjoint cycle decomposition (fu uf)(bu ub). G acts transitively on the set
of ordered triples (C1, C2, C3) where C1, C2, and C3 are different edge cubies. In
particular, if C1 and C2 are any two different edge cubies, there exists M ∈ G
sending uf to C1 and ub to C2. MM0M

1 changes the orientations of C1 and C2

and does not affect the other cubies at all.
Now, the argument we used to prove Proposition 11.7 proves Proposition 11.9
as well. This completes the proof of Theorem 11.1.

Remark 11.15. Earlier, we calculated that there were 519,024,039,293,878,272,000!
possible congurations of the Rubik’s cube; now, Theorem 11.1 tells us that only
1 12 of those are valid. This means the total number of solvable positions for
the original cube is 519,024,039,293,878,272,000

12 = 43, 252, 003, 274, 489, 856, 000.
Which is a lot of configurations!

Group Structuring in the Bi-colored Cubes

The Green and Yellow cube is a physical representation of the Klein 4 group.
This group is the unique non-cyclic group of order four. It has three elements of
degree two, along with the fourth element which is the identity. It is produced

12

when we combine the cyclic group of order two of rotating the cube 180◦ around
the z axis, with the cyclic group of order two of rotating the cube 180◦ around
the y axis, and then flipping the cube around the z axis 90◦ (Can you argue
that this element is also of order two because of the symmetry the cube has?).

The Red and Blue cube is a physical representation of the S3 group. This
is the set of permutations of a group of three. We have an element of order
3 which is produced when the cube is turned 120◦ along a diagonal. We also
have an element order 2 which is made by flipping the cube along this diagonal.
These two elements are not commutative, and so therefore are not abelian. This
is why we get the group S3, which has 6 elements.

Counting Arguments

Green and Yellow Cube

We began counting the possible states of the Green and Yellow cube by first
thinking as if we had dismantled the cube, and are thinking of the ways we could
reconstruct it again. We started by determining the number of placements the
corner cubies could take. Since there are 8 corner cubies, and since four of the
corners have two yellow sides with one green side, and the other four cubies
have two green sides with one yellow side, once the placement is decided for one
group of cubies, the placement of the other four does not matter. In this way,
we count the placement of the corner cubies as 8!

4!4! = 70

We then must account for the orientations of the corner cubies. Since each
of the eight corner pieces can be oriented in three distinct ways within each
placement, we count the orientation of the corner pieces as 38 = 6561.

Now accounting for the edge pieces, we must start by counting the number
of ways we can place them on the cube. We have twelve edge pieces, two of them
being all yellow, two of them being all green, and the remaining eight having
one yellow side and one green side. We can count the number of placements of
these edge pieces by taking the number of possible orientations, 12! and divid-
ing by the orientations of each of the similar groups of pieces. And so we have
12!

8!2!2! = 2970 possible placements of the edge pieces.

Taking into consideration the orientation of these pieces, we must recognize
that four cubies, the two all yellow edge pieces and two all green edge pieces,
will not create a new cube state if they are flipped. This means we only need
to account for the edge pieces that when flipped, will create a new cube state.
Since each cubie can only be situated in two ways within a certain spot, we
have 28 = 256 orientations of the edge pieces. Combining all of the previous
arguments, we find that there are
8!·38·12!·28

4!·4!·8!·2!·2!·2 = 174, 596, 083, 200
possible constructions of the Green and Yellow Rubik’s Cube.

13

It must be noted that not all of the aforementioned constructed states will
be solvable. In the original Rubik’s Cube, one cannot reconstruct the cube
back into the solved state with the exemption of one piece being in the correct
position, but incorrect orientation. However, in the Green and Yellow cube, if
one edge piece is in the correct position but with the incorrect orientation, we
can make this cube solvable again by simply flipping the orientation of another
edge piece. This edge piece must be carefully chosen, and by choosing this piece
to be one of the all green or all yellow sides, we are able to make the cube
solvable, without actually changing the state of the cube, therefore, cube states
with all of the edge pieces in the correct positions and with one piece being in
the incorrect orientation, are solvable.

Another limitation the original cube has is that if the cube is solved with
the exemption of two edge pieces being swapped, two other edge pieces must be
swapped as well in order for the cube to be solvable. Applying this to the Green
and Yellow cube, if two edge pieces are swapped, with all of the rest of the cube
being solved, we can make this cube solvable by creatively choosing two other
edge pieces, namely the two all yellow pieces or the two all green pieces, to swap
with eachother to make the cube solvable. In this way, the Green and Yellow
cube will be solvable if only two edge pieces are swapped, where the original
Rubik’s Cube is not.

The original Rubik’s Cube is also not solvable if it is solved save for one
corner, while in its correct placement, has the wrong orientation. There must
be at least one other corner with the wrong orientation in order for the cube
to be solvable. Since we cannot subtly switch the orientation of a corner piece
as we could an edge piece, this counts for our total constructions being reduced
by a factor of three. This means our total number of solvable positions for the
Green and Yellow cube is 174,596,083,200

3 = 58, 198, 694, 400.

Red and Blue Cube

We approached counting the number of possible states the Red and Blue cube
could achieve in much the same way as we approached the Green and Yellow
cube. Starting by determining the number of placements the corner cubies can
take, we realize that of the 8 corner cubies, three of them have two red sides
with one blue side, three have two blue sides with one red side, and there is
one corner with all sides being blue and one corner with all red sides. We must
account for the placements of the three corners with two blue sides and one red
side, as well as the placement of the three corners with two red sides and one
blue side. In this way, we count the placement of the corner cubies as 8!

3!3! = 1120

We then must account for the orientations of the corner cubies. Since only
six of the eight corner pieces can be oriented in three distinct ways within each

14

placement, we count the orientation of the corner pieces as 36 = 729.

Now accounting for the edge pieces, we must start by counting the number
of ways we can place them on the cube. We have twelve edge pieces, six of
them having one blue side and one red side, three of them being all blue, and
the remaining three being all red. We can count the number of placements of
these edge pieces by taking the number of possible orientations, 12! and divid-
ing by the orientations of each of the similar groups of pieces. And so we have
12!

6!3!3! = 18, 480 possible placements of the edge pieces.

Taking into consideration the orientation of these pieces, we must recognize
that four cubies, the three all red edge pieces and three all blue edge pieces,
will not create a new cube state if they are flipped. This means we only need
to account for the edge pieces that when flipped, will create a new cube state.
Since each cubie can only be situated in two ways within a certain spot, we
have 26 = 64 orientations of the edge pieces. Combining all of the previous

arguments, we find that there are 8!·36·12!·26
3!·3!·6!·3!·3!·3 = 321, 889, 075, 200 possible con-

structions of the Red and Blue Rubik’s Cube.

It must be checked again to see if all of the cube states found will be solvable.
We must again check that if the cube that is reconstructed back into the solved
state with the exemption of one piece being in the correct position, but incor-
rect orientation, will be solvable. If one edge piece is in the correct position but
with the incorrect orientation, we can make this cube solvable again by simply
flipping the orientation of another edge piece. This edge piece, in the Red and
Blue cube can be carefully chosen to be one of the all red or all blue sides,
and thus we are able to make the cube solvable, without actually changing the
state of the cube, therefore, cube states with all of the edge pieces in the cor-
rect positions and with one piece being in the incorrect orientation, are solvable.

Again, if the original Rubik’s Cube is solved with the exemption of two edge
pieces being swapped, two other edge pieces must be swapped as well in order
for the cube to be solvable. Applying this to the Blue and Red cube, if two edge
pieces are swapped, with all of the rest of the cube being solved, we can make
this cube solvable by creatively choosing two other edge pieces, namely two of
the three all red pieces or two of the three all blue pieces, to swap with eachother
to make the cube solvable. In this way, the Red and Blue cube will be solv-
able if only two edge pieces are swapped, where the original Rubik’s Cube is not.

Finally, we must compare our Red and Blue Rubik’s Cube against the orig-
inal Rubik’s Cube in that it is not solvable if it is solved save for one corner,
while in its correct placement, has the wrong orientation. There must be at least
one other corner with the wrong orientation in order for the cube to be solvable.
Here, we can again intentionally choose the other corner to be switched as either
of the two corners where all three sides are of a single color. This again makes

15

our cube solvable without changing the cube state, which means that in any
way the Red and Blue Cube is taken apart and reconstructed, every resulting
cube state will be solvable.

Computing God’s Number

The original idea of the computer program created was to have it take a solved
cube, perform all eighteen permutations in the half-tern metric on that cube,
and save each resulting state to a file. We also wanted the program to be able
to compare states within the new file to previous ones in order to eliminate any
duplicates that would arise. Then, the program would take every newly occur-
ring state that is saved in this file, perform the eighteen moves on each of them,
save the resulting states, delete duplicated states and so on. Each new resulting
file would be considered a ”depth” with the solved state being depth zero, the
first file being depth 1, as each state within that file is exactly one move away
from the solved state, and so on. When finally a distance N file returns zero
states, we will know it is only possible to be N-1 moves away from the solved
state. As mentioned previously, the Original Rubik’s Cube has a depth of 20,
and finding the respective depths, and size of these depths of our cubes will help
in determining which is easier.

In order to transform our three dimensional cubes into something our pro-
gram could easily permute, we split the corner and edge cubies into separate
groups, and labeled each side of the cubies in each group from 0 to 23, and
created a sequence of 48 bits where each side of each cubie corresponded with
either a 0 or 1 in the sequence, where 0 and 1 each represented a color. When
the program receives a sequence, it permutes the bit sequence according to the
18 permutations, or moves allowed within the half-turn metric, and the resulting
sequences represent the resulting cube states.

The program also runs each new cube state through a series of symmetries.
One symmetry is color inversion. This is because if you are given two cubes
with the same orientations, but with the colors inverted, it would take the same
moves to solve both cubes. Our program counts each of these cube states as be-
ing the same. It also takes each cube through a series of symmetries associated
with it.

The first symmetries we check on the Red and Blue Cube are by rotating
the physical cube along a diagonal. This is done by rotating the cube on the
y-axis counter-clockwise 90◦, and then rotating the cube along the x-axis clock-
wise 90◦, this has an order of three. Then we look at flipping the orientation
of the red and blue colors, which is a 180◦ rotation on the y-axis, and then a
90◦ counter-clockwise rotation of the cube on the x-axis, which has order two.
We then must run through the diagonal rotations on these newly flipped cubes.
This accounts for six cube states. Now we note the inversion of each of these
cube states. Whichever of the 12 cube states’ bit strings is the smallest, the

16

program saves.

The Green and Yellow cube goes through different state checks. The first is
the symmetric 180◦ flip along the Z axis. Next, we check the cube state that
physically switches the colors, created by rotating the cube 180◦ around the y
axis, and then flipping the cube around the z axis 90◦. We perform this rotation
on the cube, as well as run the resulting cube through the symmetric fl ip.This
gives us four resulting states. Finally, we perform a color inversion on each of
these four cubes, and the program saves the smallest of the eight bit strings.

Results

The following table maps out how many new cube states the program found, and
at what depth the states were found. For example, there are only 4 cube states
that are one move away from the solved Yellow and Green Cube, and there are
48 new states that can be achieved with two permutations of the cube.

Depth YG Cube BR Cube

0 1 1
1 4 3
2 48 42
3 593 540
4 7,327 7,199
5 92,007 95,189
6 1,154,866 1,250,962
7 14,418,359 16,333,778
8 199,293,154 210,637,384
9 1,769,851,087 2,582,582,687
10 8,359,388,826 Not found yet

States Found 10,344,206,272

Taking into account the number of states we have found, along with the size
of the depths, it seems as though the Green and Yellow cube is the ”easier”
cube. With a wider tree and fewer positions to account for, we are assuming
that it will generally take fewer moves to solve than it will the red and blue
cube. The next step in our research will be to modify the optimal solution
solver that Herbert Kociemba created, to work on our cubes and determine
which cube states take the most moves to solve. This means that the Green
and Yellow cube is the more intermediate level of cube. Therefore, if someone
is not willing to tackle the complexities of the Origninal Rubik’s Cube, but still
wants a sufficient challenge, the Green and Yellow cube would sufficiently fit
that need.

17

Code

The following code is the file containing all of the functions called in the pro-
ceeding files.

unsigned long int bit_permute_step(unsigned long int x, unsigned long int m, int shift)

{

int t;

t = ((x >> shift) ^ x) & m;

x = (x ^ t) ^ (t << shift);

return x;

}

//The most significant 16 bits are zeros

//The next 24 significant bits represent the edge pieces

//The least 24 significant bits represent the corner pieces

unsigned long long int Front1(unsigned long long int cube)

{

unsigned long int x;

unsigned long long int newstate=0;

x=cube>>24;

x= (x & 0x00c333ff)

| ((x & 0x00000800) << 9)

| ((x & 0x00000400) << 11)

| ((x & 0x00080000)>> 5)

| ((x & 0x0000c000) >> 4)

| ((x & 0x00040000) >> 3)

| ((x & 0x00300000) >> 2);

newstate=x;

newstate=newstate<<24;

// info from x now resides in newstate

x=cube&0x00FFFFFF;

x = (x & 0x00e07e07)

| ((x & 0x00000020) << 13)

| ((x & 0x00000018) << 16)

18

| ((x & 0x00020000) >> 11)

| ((x & 0x00018000) >> 8)

| ((x & 0x00180180) >> 4)

| ((x & 0x00040040) >> 1);

newstate=newstate+x;

return newstate;

}

unsigned long long int Front2(unsigned long long int cube)

{

unsigned long int x;

unsigned long long int newstate=0;

x=cube>>24;

x = (x & 0x00c333ff)

| ((x & 0x00008000) << 5)

| ((x & 0x00004800) << 7)

| ((x & 0x00000400) << 9)

| ((x & 0x00080000) >> 9)

| ((x & 0x00240000) >> 7)

| ((x & 0x00100000) >> 5);

newstate=x;

newstate=newstate<<24;

// info from x now resides in newstate

x=cube&0x00FFFFFF;

x = (x & 0x00e07e07)

| ((x & 0x000001f8) << 12)

| ((x & 0x001f8000) >> 12);

newstate=newstate+x;

return newstate;

}

19

unsigned long long int Front3(unsigned long long int cube)

{

unsigned long int x;

unsigned long long int newstate=0;

x=cube>>24;

x = (x & 0x00c333ff)

| ((x & 0x00000800) << 9)

| ((x & 0x00000400) << 11)

| ((x & 0x00080000) >> 5)

| ((x & 0x0000c000) >> 4)

| ((x & 0x00040000) >> 3)

| ((x & 0x00300000) >> 2);

newstate=x;

newstate=newstate<<24;

x=cube&0x00FFFFFF;

x = (x & 0x00e07e07)

| ((x & 0x00020020) << 1)

| ((x & 0x00018018) << 4)

| ((x & 0x00000180) << 8)

| ((x & 0x00000040) << 11)

| ((x & 0x00180000) >> 16)

| ((x & 0x00040000) >> 13);

newstate=newstate+x;

return newstate;

}

unsigned long long int Right1(unsigned long long int cube)

{

unsigned long int x;

unsigned long long int newstate=0;

x=cube>>24; //x has edge info

20

x = (x & 0x00fcc0ff)

| ((x & 0x00000f00) << 2)

| ((x & 0x00002000) << 3)

| ((x & 0x00001000) << 5)

| ((x & 0x00020000) >> 9)

| ((x & 0x00010000) >> 7);;

//x now has the permuted edge info

newstate=x;

newstate=newstate<<24;

// info from x now resides in newstate

x=cube&0x00FFFFFF;

// x now has info from x

x = (x & 0x001c7e38)

| ((x & 0x00000100) << 7)

| ((x & 0x000000c0) << 10)

| ((x & 0x00c10000) >> 16)

| ((x & 0x00020000) >> 15)

| ((x & 0x00008000) >> 14)

| ((x & 0x00200000) >> 13)

| ((x & 0x00000002) << 20)

| ((x & 0x00000004) << 21)

| ((x & 0x00000001) << 22);

// x now has permuted corner info

newstate=newstate+x;

// newstate now has corner info from x

return newstate;

}

unsigned long long int Right2(unsigned long long int cube)

{

unsigned long int x;

unsigned long long int newstate=0;

x=cube>>24; //x has edge info

x = (x & 0x00fcc0ff)

21

| ((x & 0x00000300) << 4)

| ((x & 0x00000800) << 5)

| ((x & 0x00000400) << 7)

| ((x & 0x00020000) >> 7)

| ((x & 0x00010000) >> 5)

| ((x & 0x00003000) >> 4);

newstate=x;

newstate=newstate<<24;

// info from x now resides in newstate

x=cube&0x00FFFFFF;

// x now has info from x

x = (x & 0x001c7e38)

| ((x & 0x00000004) << 5)

| ((x & 0x00038001) << 6)

| ((x & 0x00000002) << 7)

| ((x & 0x00000100) >> 7)

| ((x & 0x00e00040) >> 6)

| ((x & 0x00000080) >> 5);

// x now has permuted corner info

newstate=newstate+x;

// newstate now has corner info from x

return newstate;

}

unsigned long long int Right3(unsigned long long int cube)

{

unsigned long int x;

unsigned long long int newstate=0;

x=cube>>24;

x = (x & 0x00fcc0ff)

| ((x & 0x00000200) << 7)

| ((x & 0x00000100) << 9)

| ((x & 0x00020000) >> 5)

| ((x & 0x00010000) >> 3)

| ((x & 0x00003c00) >> 2);

22

newstate=x;

newstate=newstate<<24;

// info from x now resides in newstate

x=cube&0x00FFFFFF;

x = (x & 0x001c7e38)

| ((x & 0x00400000) >> 22)

| ((x & 0x00800000) >> 21)

| ((x & 0x00200000) >> 20)

| ((x & 0x00000100) << 13)

| ((x & 0x00000002) << 14)

| ((x & 0x00000004) << 15)

| ((x & 0x000000c1) << 16)

| ((x & 0x00030000) >> 10)

| ((x & 0x00008000) >> 7);

newstate=newstate+x;

return newstate;

}

unsigned long long int Left1(unsigned long long int cube)

{

unsigned long int x;

unsigned long long int newstate=0;

x=cube>>24;

x = (x & 0x0033ffcc)

| ((x & 0x000c0000) << 4)

| ((x & 0x00c00000) >> 18)

| ((x & 0x00000003) << 18)

| ((x & 0x00000030) >> 4);

newstate=x;

newstate=newstate<<24;

// info from x now resides in newstate

x=cube&0x00FFFFFF;

23

x = (x & 0x00e381c7)

| ((x & 0x00000c20) << 8)

| ((x & 0x00000008) << 9)

| ((x & 0x00000010) << 10)

| ((x & 0x00000200) << 11)

| ((x & 0x00100000) >> 17)

| ((x & 0x000c0000) >> 14)

| ((x & 0x00004000) >> 4)

| ((x & 0x00001000) >> 3)

| ((x & 0x00002000) >> 2);

newstate=newstate+x;

return newstate;

}

unsigned long long int Left2(unsigned long long int cube)

{

unsigned long int x;

unsigned long long int newstate=0;

x=cube>>24;

x = (x & 0x0033ffcc)

| ((x & 0x00c00000) >> 22)

| ((x & 0x00000030) << 14)

| ((x & 0x000c0000) >> 14)

| ((x & 0x00000003) << 22);

newstate=x;

newstate=newstate<<24;

// info from x now resides in newstate

x=cube&0x00FFFFFF;

x = (x & 0x00e381c7)

| ((x & 0x00004000) << 4)

| ((x & 0x00002038) << 6)

| ((x & 0x00001000) << 8)

| ((x & 0x00100000) >> 8)

| ((x & 0x00080e00) >> 6)

| ((x & 0x00040000) >> 4);

24

newstate=newstate+x;

return newstate;

}

unsigned long long int Left3(unsigned long long int cube)

{

unsigned long int x;

unsigned long long int newstate=0;

x=cube>>24;

x = (x & 0x0033ffcc)

| ((x & 0x00000003) << 4)

| ((x & 0x000c0000) >> 18)

| ((x & 0x00000030) << 18)

| ((x & 0x00c00000) >> 4);

newstate=x;

newstate=newstate<<24;

// info from x now resides in newstate

x=cube&0x00FFFFFF;

x = (x & 0x00e381c7)

| ((x & 0x00000800) << 2)

| ((x & 0x00000200) << 3)

| ((x & 0x00000400) << 4)

| ((x & 0x00000030) << 14)

| ((x & 0x00000008) << 17)

| ((x & 0x00100000) >> 11)

| ((x & 0x00004000) >> 10)

| ((x & 0x00001000) >> 9)

| ((x & 0x000c2000) >> 8);

newstate=newstate+x;

return newstate;

}

25

unsigned long long int Up1(unsigned long long int cube)

{

unsigned long int x;

unsigned long long int newstate=0;

x=cube>>24;

x = (x & 0x00ff0ff0)

| ((x & 0x00002002) << 1)

| ((x & 0x00001001) << 3)

| ((x & 0x0000000c) << 10)

| ((x & 0x0000c000) >> 14);

newstate=x;

newstate=newstate<<24;

// info from x now resides in newstate

x=cube&0x00FFFFFF;

x = (x & 0x00e071f8)

| ((x & 0x00038000) << 3)

| ((x & 0x00000004) << 14)

| ((x & 0x00000001) << 15)

| ((x & 0x00000002) << 16)

| ((x & 0x00000800) >> 10)

| ((x & 0x001c0200) >> 9)

| ((x & 0x00000400) >> 8);

newstate=newstate+x;

return newstate;

}

unsigned long long int Up2(unsigned long long int cube)

{

unsigned long int x;

unsigned long long int newstate=0;

x=cube>>24;

x = (x & 0x00ff0ff0)

| ((x & 0x0000000a) << 11)

| ((x & 0x00000005) << 13)

26

| ((x & 0x0000a000) >> 13)

| ((x & 0x00005000) >> 11);

newstate=x;

newstate=newstate<<24;

// info from x now resides in newstate

x=cube&0x00FFFFFF;

x = (x & 0x00e071f8)

| ((x & 0x00000e00) << 6)

| ((x & 0x00100000) >> 19)

| ((x & 0x00040000) >> 18)

| ((x & 0x00080000) >> 17)

| ((x & 0x00000004) << 17)

| ((x & 0x00000001) << 18)

| ((x & 0x00000002) << 19)

| ((x & 0x00038000) >> 6);

newstate=newstate+x;

return newstate;

}

unsigned long long int Up3(unsigned long long int cube)

{

unsigned long int x;

unsigned long long int newstate=0;

x=cube>>24;

x = (x & 0x00ff0ff0)

| ((x & 0x00000003) << 14)

| ((x & 0x00003000) >> 10)

| ((x & 0x00008008) >> 3)

| ((x & 0x00004004) >> 1);

newstate=x;

newstate=newstate<<24;

// info from x now resides in newstate

x=cube&0x00FFFFFF;

27

x = (x & 0x00e071f8)

| ((x & 0x00000004) << 8)

| ((x & 0x00000e01) << 9)

| ((x & 0x00000002) << 10)

| ((x & 0x00020000) >> 16)

| ((x & 0x00008000) >> 15)

| ((x & 0x00010000) >> 14)

| ((x & 0x001c0000) >> 3);

newstate=newstate+x;

return newstate;

}

unsigned long long int Down1(unsigned long long int cube)

{

unsigned long int x;

unsigned long long int newstate=0;

x=cube>>24;

x = (x & 0x000ffc3f)

| ((x & 0x00000080) << 15)

| ((x & 0x00000040) << 17)

| ((x & 0x00300000) >> 12)

| ((x & 0x00800000) >> 3)

| ((x & 0x00000300) >> 2)

| ((x & 0x00400000) >> 1);

newstate=x;

newstate=newstate<<24;

// info from x now resides in newstate

x=cube&0x00FFFFFF;

x = (x & 0x001f8e07)

| ((x & 0x00000038) << 3)

| ((x & 0x000001c0) << 15)

| ((x & 0x00804000) >> 11)

| ((x & 0x00402000) >> 9)

| ((x & 0x00201000) >> 7);

28

newstate=newstate+x;

return newstate;

}

unsigned long long int Down2(unsigned long long int cube)

{

unsigned long int x;

unsigned long long int newstate=0;

x=cube>>24;

x = (x & 0x000ffc3f)

| ((x & 0x00000200) << 13)

| ((x & 0x000000c0) << 14)

| ((x & 0x00000100) << 15)

| ((x & 0x00800000) >> 15)

| ((x & 0x00300000) >> 14)

| ((x & 0x00400000) >> 13);

newstate=x;

newstate=newstate<<24;

// info from x now resides in newstate

x=cube&0x00FFFFFF;

x = (x & 0x001f8e07)

| ((x & 0x00000100) << 4)

| ((x & 0x00000080) << 6)

| ((x & 0x00000040) << 8)

| ((x & 0x00e00000) >> 18)

| ((x & 0x00000038) << 18)

| ((x & 0x00004000) >> 8)

| ((x & 0x00002000) >> 6)

| ((x & 0x00001000) >> 4);

newstate=newstate+x;

return newstate;

}

29

unsigned long long int Down3(unsigned long long int cube)

{

unsigned long int x;

unsigned long long int newstate=0;

x=cube>>24;

x = (x & 0x000ffc3f)

| ((x & 0x00200000) << 1)

| ((x & 0x000000c0) << 2)

| ((x & 0x00100000) << 3)

| ((x & 0x00000300) << 12)

| ((x & 0x00800000) >> 17)

| ((x & 0x00400000) >> 15);

newstate=x;

newstate=newstate<<24;

// info from x now resides in newstate

x=cube&0x00FFFFFF;

x = (x & 0x001f8e07)

| ((x & 0x00004020) << 7)

| ((x & 0x00002010) << 9)

| ((x & 0x00001008) << 11)

| ((x & 0x00e00000) >> 15)

| ((x & 0x000001c0) >> 3);

newstate=newstate+x;

return newstate;

}

unsigned long long int Back1(unsigned long long int cube)

{

unsigned long int x;

unsigned long long int newstate=0;

x=cube>>24;

x = (x & 0x00fcff03)

| ((x & 0x0000003c) << 2)

| ((x & 0x000000c0) << 10)

| ((x & 0x00030000) >> 14);

30

newstate=x;

newstate=newstate<<24;

// info from x now resides in newstate

x=cube&0x00FFFFFF;

x = (x & 0x00bfebfd)

| ((x & 0x00000400) << 2)

| ((x & 0x00000002) << 9)

| ((x & 0x00001000) << 10)

| ((x & 0x00400000) >> 21);

x=x&0x00FFFFFF;

x = (x & 0x00dfddfb)

| ((x & 0x00000200) << 4)

| ((x & 0x00000004) << 7)

| ((x & 0x00002000) << 8)

| ((x & 0x00200000) >> 19);

x=x&0x00FFFFFF;

/*

x = (x & 0x007fb7fe)

| ((x & 0x00000800) << 3)

| rol(x & 0x00804000, 9)

| ((x & 0x00000001) << 11);

*/

x = bit_permute_step(x, 0x00400400, 1); // Butterfly, stage 0

x = bit_permute_step(x, 0x00000044, 8); // Butterfly, stage 3

x = bit_permute_step(x, 0x00000040, 16); // Butterfly, stage 4

x = bit_permute_step(x, 0x00000004, 4); // Butterfly, stage 2

x = bit_permute_step(x, 0x00000001, 2); // Butterfly, stage 1

x = bit_permute_step(x, 0x00000044, 8); // Butterfly, stage 3

x = bit_permute_step(x, 0x00400400, 1); // Butterfly, stage 0

x=x&0x00FFFFFF;

/*

x = (x & 0x001f81f8)

| ((x & 0x00000400) << 2)

31

| ((x & 0x00000800) << 3)

| ((x & 0x00000200) << 4)

| ((x & 0x00000004) << 7)

| ((x & 0x00002000) << 8)

| rol(x & 0x00804002, 9)

| ((x & 0x00001000) << 10)

| rol(x & 0x00400001, 11)

| ((x & 0x00200000) >> 19);

*/

newstate=newstate+x;

return newstate;

}

unsigned long long int Back2(unsigned long long int cube)

{

unsigned long int x;

unsigned long long int newstate=0;

x=cube>>24;

x = (x & 0x00fcff03)

| ((x & 0x0000000c) << 4)

| ((x & 0x00000030) << 12)

| ((x & 0x00030000) >> 12)

| ((x & 0x000000c0) >> 4);

newstate=x;

newstate=newstate<<24;

// info from x now resides in newstate

x=cube&0x00FFFFFF;

x = (x & 0x001f81f8)

| ((x & 0x00000006) << 11)

| ((x & 0x00000e00) << 12)

| ((x & 0x00000001) << 14)

| ((x & 0x00004000) >> 14)

| ((x & 0x00e00000) >> 12)

| ((x & 0x00003000) >> 11);

32

newstate=newstate+x;

return newstate;

}

unsigned long long int Back3(unsigned long long int cube)

{

unsigned long int x;

unsigned long long int newstate=0;

x=cube>>24;

x = (x & 0x00fcff03)

| ((x & 0x0000000c) << 14)

| ((x & 0x00030000) >> 10)

| ((x & 0x000000f0) >> 2);

newstate=x;

newstate=newstate<<24;

// info from x now resides in newstate

x=cube&0x00FFFFFF;

/*

x = (x & 0x001f81f8)

| ((x & 0x00000004) << 19)

| rol(x & 0x00000802, 21)

| ((x & 0x00400000) >> 10)

| rol(x & 0x00800401, 23)

| ((x & 0x00200000) >> 8)

| ((x & 0x00000200) >> 7)

| ((x & 0x00002000) >> 4)

| ((x & 0x00004000) >> 3)

| ((x & 0x00001000) >> 2);

*/

x = bit_permute_step(x, 0x000000e0, 16);

x = bit_permute_step(x, 0x0000006a, 8);

x = bit_permute_step(x, 0x00000200, 2);

x = bit_permute_step(x, 0x00000445, 1);

x = bit_permute_step(x, 0x00001203, 2);

x = bit_permute_step(x, 0x0000040a, 4);

x = bit_permute_step(x, 0x0000004a, 8);

33

x = bit_permute_step(x, 0x000000e0, 16);

x=x&0x00FFFFFF;

newstate=newstate+x;

return newstate;

}

unsigned long long int Symmetry(unsigned long long int cube)

{

unsigned long int x;

unsigned long long int newstate=0;

x=cube>>24; //x has edge info

x = ((x & 0x0000000c) << 4)

| ((x & 0x00008000) << 5)

| ((x & 0x00004802) << 7)

| ((x & 0x00002401) << 9)

| ((x & 0x00001000) << 11)

| ((x & 0x00000030) << 12)

| ((x & 0x00030000) >> 12)

| ((x & 0x00800000) >> 11)

| ((x & 0x00480200) >> 9)

| ((x & 0x00240100) >> 7)

| ((x & 0x00100000) >> 5)

| ((x & 0x000000c0) >> 4);

newstate=x;

newstate=newstate<<24;

// info from x now resides in newstate

x=cube&0x00FFFFFF;

// x now has info from x

x = ((x & 0x00000006) << 11)

| ((x & 0x00000ff8) << 12)

| ((x & 0x00000001) << 14)

| ((x & 0x00004000) >> 14)

| ((x & 0x00ff8000) >> 12)

| ((x & 0x00003000) >> 11);

34

// x now has permuted corner info

newstate=newstate+x;

// newstate now has corner info from x

//std::cout << std::hex << newstate << "\n";

return newstate;

}

unsigned long long int Invert(unsigned long long int cube)

{

cube=~cube&0x00FFFFFFFFFFFF;

return cube;

}

unsigned long long int Smallest(unsigned long long int cube)

{

unsigned long long int temp2, temp3, temp4, smallest;

temp2 = Symmetry(cube);

//std::cout << std::hex << temp2 << std::endl;

temp3= Invert(cube);

//std::cout << std::hex << temp3 << std::endl;

temp4=Symmetry(temp3);

//std::cout << std::hex << temp4 << std::endl;

if (cube<temp2)

{

smallest = cube;

}

else

{

smallest = temp2;

}

if (smallest > temp3)

{

smallest = temp3;

}

if (smallest > temp4)

{

smallest = temp4;

35

}

return smallest;

}

The following program contains the permutations and symmetries for all 18
moves of the Red and Blue Cube.

#include <iostream>

#include <cstdlib>

#include <ctime>

#include <fstream>

#include <bitset>

#include <iomanip>

#include <set>

#include "rubiksfunctions.h"

using namespace std;

int main ()

{

unsigned long long int rbsolved=0x16FD09978395;

unsigned long long int gysolved=0x9E9D229B29B4;

unsigned long long int emptycube=0;

unsigned long long int onecube=0xFFFFFFFFFFFF;

unsigned long long int temp1;

unsigned long long int temp2;

unsigned long long int temp3;

unsigned long long int temp;

ofstream outputFile;

outputFile.open("/../../../data/tlpieper/RBDistance10.txt");

temp3 = 0;

std::ifstream inFile("/../../../data/tlpieper/RBD9.txt");

while(!inFile.eof())

{

inFile >> temp;

outputFile << RBSmallest(Up1(temp)) << endl;

outputFile << RBSmallest(Up2(temp)) << endl;

outputFile << RBSmallest(Up3(temp)) << endl;

36

outputFile << RBSmallest(Down1(temp)) << endl;

outputFile << RBSmallest(Down2(temp)) << endl;

outputFile << RBSmallest(Down3(temp)) << endl;

outputFile << RBSmallest(Right1(temp)) << endl;

outputFile << RBSmallest(Right2(temp)) << endl;

outputFile << RBSmallest(Right3(temp)) << endl;

outputFile << RBSmallest(Left1(temp)) << endl;

outputFile << RBSmallest(Left2(temp)) << endl;

outputFile << RBSmallest(Left3(temp)) << endl;

outputFile << RBSmallest(Front1(temp)) << endl;

outputFile << RBSmallest(Front2(temp)) << endl;

outputFile << RBSmallest(Front3(temp)) << endl;

outputFile << RBSmallest(Back1(temp)) << endl;

outputFile << RBSmallest(Back2(temp)) << endl;

outputFile << RBSmallest(Back3(temp)) << endl;

temp3++;

}

cout << temp3 << endl;

return 0;

}

The following code contains all of the 18 permutations of the Green and Yellow
Cube.

#include <iostream>

#include <cstdlib>

#include <fstream>

#include <ctime>

#include <bitset>

#include <iomanip>

#include <set>

#include <string>

#include "rubiksfunctions.h"

using namespace std;

int main ()

{

unsigned long long int rbsolved=0x16FD09978395;

unsigned long long int gysolved=0x9E9D229B29B4;

unsigned long long int emptycube=0;

unsigned long long int onecube=0xFFFFFFFFFFFF;

unsigned long long int temp1;

unsigned long long int temp2;

unsigned long long int temp3;

37

ofstream outputFile;

outputFile.open("/../../../data/tlpieper/GYDistance10.txt");

temp3 = 0;

std::ifstream inFile("/../../../data/tlpieper/GYD9.txt");

while(!inFile.eof())

{

inFile >> temp1;

temp2= GYSmallest(Down1(temp1));

{outputFile << temp2 << endl;}

temp2= GYSmallest(Down2(temp1));

{outputFile << temp2 << endl;}

temp2= GYSmallest(Down3(temp1));

{outputFile << temp2 << endl;}

temp2= GYSmallest(Up3(temp1));

{outputFile << temp2 << endl;}

temp2= GYSmallest(Up2(temp1));

{outputFile << temp2 << endl;}

temp2= GYSmallest(Up1(temp1));

{outputFile << temp2 << endl;}

temp2= GYSmallest(Right1(temp1));

{outputFile << temp2 << endl;}

temp2= GYSmallest(Right2(temp1));

{outputFile << temp2 << endl;}

temp2= GYSmallest(Right3(temp1));

{outputFile << temp2 << endl;}

temp2= GYSmallest(Left3(temp1));

{outputFile << temp2 << endl;}

temp2= GYSmallest(Left2(temp1));

{outputFile << temp2 << endl;}

temp2= GYSmallest(Left1(temp1));

{outputFile << temp2 << endl;}

temp2= GYSmallest(Back1(temp1));

{outputFile << temp2 << endl;}

temp2= GYSmallest(Back2(temp1));

{outputFile << temp2 << endl;}

temp2= GYSmallest(Back3(temp1));

{outputFile << temp2 << endl;}

temp2= GYSmallest(Front3(temp1));

{outputFile << temp2 << endl;}

temp2= GYSmallest(Front2(temp1));

{outputFile << temp2 << endl;}

temp2= GYSmallest(Front1(temp1));

{outputFile << temp2 << endl;}

temp3++;

}

38

cout << temp3 << endl;

return 0;

}

39

Bibliography

[1] Chen, Janet, Group Theory and the Rubik’s Cube. Available at
http://www.math.harvard.edu/ jjchen/docs
/Group%20Theory%20and%20the%20Rubik’s%20Cube.pdf.

[2] Rokicki, Tomas, God’s Number is 20,. Available at http://www.cube20.org

40

	Complexities of Bi-Colored Rubik's Cubes
	Recommended Citation

	tmp.1516114086.pdf.JqHz_

