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Abstract 
 With the recent detection of gravitational waves from the Laser Interferometer 
Gravitational-Wave Observatory, or LIGO, a new realm of gravitational astrophysics has 
been opened.  As the process of observing gravitational wave signals is still in its infancy, 
there is a need to provide gravitational astronomers with observable signatures in the 
electromagnetic spectrum.  Hence, we explore the impact of solar mass black holes on the 
morphology of globular clusters.  It has long been thought that due to high kick velocities
from compact object gravitational interaction, Galactic age Globular Clusters are unable 
to retain black holes.  Recent simulations, however, suggest that a significant population 
of black holes can be retained (Sippel & Hurley 2012, Rodriguez et al. 2016).  We 
present the results from Fokker-Planck simulations of a time evolving Globular Cluster 
with an initial mass of 2.5x106 M .  By exploring two different methods of IMF 
construction evolved mass function and pure power-law we are able to consistently 
determine their radial, density profiles with the introduction of 12 M  black holes.  
Because of the efficiency of the Fokker-Planck code, we are able to explore parameter 
space as we observe how the globular cluster changes over initial mass functions with 
0.1%, 1%, and 10% black holes retention rates from initial black hole formation and 
discover a significant impact on the cluster morphology between once the black hole 
population is on the order of 100.  Moreover, we observe the segregation of black holes 
from the rest of the stellar members of the cluster and the influence of 3 body binary 
heating on the core of the segregated black hole sub-cluster.  As we only address the 
initial ejection of black holes, and not their escape from the cluster over time, our future 
work will account for 3 body binary kicks that cause them to escape. 
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1. Introduction 

Globular clusters are dense pockets of stars and compact objects, close to the age of 
Milky Way, that form from molecular clouds of gas.  Because the initial mass of a star 
can vary, they can develop at different rates.  Thus, at any point in time, a cluster can 
contain various kinds of objects, from early age main sequence stars to compact objects: 
white dwarfs, neutrons stars, or black holes. 

Because the stars for a homogeneous cluster have identical origins, these clusters act 
as excellent laboratories for examining its differing characteristics, such as stellar 
evolution, kinematics, and mass segregation.  More focused on the individual life cycle of 
a star, stellar evolution aims to examine the development of a star, over time.  The 
kinematics of a cluster serve as a measure of the motion of its objects.  And, in certain 
cases, mass segregation can occur as the more massive objects congregate to the center of 
the cluster and less massive ones disperse to larger radii.   

As the stellar population of globular clusters can range from thousands to millions of 
stars, they often behave similar to a cloud of self-gravitating particles.  Likewise, due to 
its similarity to a gas, the cluster will obey the equipartition of energy.  The equipartition 
of energy is defined as the equal sharing of energy to each member of an entire system.  
Consequently, for a cluster of stars and compact objects, the cluster will experience mass 
segregation.  When introduced into a globular cluster, the black holes form a cluster of 
their own, held up by 3 body binary heating, as the remainder of the cluster continues to 
evolve independently.  In certain cases, globular clusters can experience core collapse.  
Core collapse describes the luminosity versus radius profile of a cluster.  In the case of a 
core collapsed globular cluster, there exists such a high density of luminous objects that it 
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exhibits a power-law behavior.  To begin our simulations, we expect that each cluster 
member of the cluster has equal velocity, a typical result of violent relaxation (Binney & 
Tremaine 1987).  However, the velocity equipartition then quickly transitions to energy 
equipartition (Inagaki & Saslaw 1985; Murphy & Cohn 1988). 

Before the age of space based telescopes, atmospheric turbulence severely inhibited 
resolving the inner core of globular clusters, thereby leaving little accurate information 
regarding the mass distribution of the cluster.  The Hubble Space Telescope has been an 
invaluable resource regarding globular cluster kinematics, morphology, and stellar 
content because of its high resolving power.  By resolving the nucleus of the cluster, 
astronomers are provided with extremely detailed information regarding the cluster
initial mass function (Murphy et al. 2011).  The initial mass function describes the 
breakdown of each mass bin, by total percentage of the total cluster mass.  This IMF is 
even well defined for core collapsed globular clusters.  Because of the mass segregation 
of the stellar objects, the innermost region of the cluster is dominated by compact objects, 
thereby allowing us to constrain the upper end of the IMF.  An effective mode to 
examining these distributions is through dynamical modeling of the cluster (Murphy et al. 
2011).  

 Historically, stellar mass black holes are not incorporated into the mass function 
for multiple reasons.  Possible birth kicks could eject them from the cluster (Dhawan et 
al. 2007).  Likewise, according to the equipartition of energy, the more massive black 
holes would congregat center and quickly segregate from the rest of the 
cluster (Spitzer 1969; Watters et al. 2000).  Furthermore, this central cluster could form 
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multiple binaries which could undergo three body interactions, causing them to eject 
from the cluster (Kulkarni et al. 1993; Sigurdsson & Hernquist 1993). 

 However, recent findings consistent with both Monte Carlo and Fokker-Planck 
methods suggest that as many as one-thousand 12 M  black holes should be initially 
present in certain clusters (Rodriguez et al. 2016).  Moreover, more observations in X-ray 
wavelengths continue to justify the presence of black holes within Galactic globular 
clusters (Strader et al. 2012).  According to certain models, these black holes can range 
anywhere from a few solar masses to tens of solar masses, such as in M22 (Strader et al. 
2012).   

For a single population globular cluster, black holes form from massive stars.  At 
the end of their time on the asymptotic giant branch, or AGB, they begin to fuse iron in 
their cores.  Both the fusion and fission of iron is an endothermic process.  Thus, the 
moment this fusion begins, the hydrostatic equilibrium of the stars are compromised.  
The higher pressure outside of the core forces the star to collapse on itself.  The immense 
pressure causes the core to compress to the point where thermal pressure becomes 
insignificant, and the degenerate matter is held up according the Pauli Exclusion 
Principle.    

 

 
releasing a neutrino shock wave outwards.  Although not every neutrino interacts with the 
matter of the star, those formed are on the order of 1042, thereby causing an enormous 
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interaction with the stellar envelope.  For stars massive enough, a collapsed core remains 
whose potential well is so deep, not even light can escape.  Hence, a black hole is formed.

 Consistent with the previous findings, as the mass difference between black holes 
and stellar neighbors increases, the more they decouple from the remaining stellar 
remnants of the cluster (Morscher et al. 2014).  Moreover, after varying black hole initial 
retention from 0.1%, to 1%, to 10%, we notice little impact on the radial profile of the 
cluster from the black holes between 0.1% and 1% retention.  A noticeable impact in the 
radial density plot of the stars is apparent once the black hole population is on the order 
of 100.  These findings are consistent with the conclusions drawn from radial, luminosity 
profiles of certain clusters, such as M15, that claim there are very few black holes 
present, when a mass power-law profile exists (Murphy et al. 2015). 
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2. Methods 
There are many methods to modeling systems with high numbers of elements each 

with its own advantages.  The two main types of modeling can focus on each element 
specifically or examine the system as a whole.  The N-body method directly follows each 
element, individually, to track the evolution of the system.  After the initial conditions are 
applied, the system will evolve forward slightly and then recalculate each element.  The 
N-body method then repeatedly iterates, using small steps, until the evolution is 
complete.  This method is effective at cataloging the trajectory of each star in the cluster.  
The drawback to N-body is that it requires vast amounts of computing power.  In order to 
properly calculate the position of a single star, the code must consider its interaction with 
every other element in the cluster.  Thus, with every new star introduced, the number of 
interactions grows nearly proportional to the square of the number of stars.  In order to 
minimize computing time, scientists often turn to methods that consider the cluster as a 
whole.   

 Methods that consider distributions, instead of single particles, rely on statistics.  
In lieu of tracking individual bodies, statistical methods will observe how distributions of 
bodies evolve over time.  Globular cluster numerical analysts often utilize two specific 
statistical methods: Monte Carlo simulations and the Fokker-Planck method.  Monte 
Carlo simulations repeatedly draw random inputs in order to calculate a probability 
distribution of results.  The Fokker-Planck method by contrast employs a differential 
equations to outline the evolution of stars within the cluster.  The Fokker-Planck method 
can run quicker, compared to Monte Carlo simulations and is quicker than the N-body 
method by 100,000 (Heggie 2016). 
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 We chose to utilize the Fokker-Planck model to examine our globular cluster.  It 
is an improved version from the one utilized in Murphy et al. (1990).  The equation 
behaves as follows: 

 

where  represents the energy-space number density of the ith mass group.  The 
energy term represents the total orbital energy of the orbiting compact objects and stars, 
combined.   represents the energy-space flux for the mass groups defined by 

 

where fi represents the velocity-space distribution.  DEEij and DEij represent the flux 
coefficients and HEi is the three-body binary heating coefficient dependent on stars of 
permitted energy E.   

 The aforementioned equations describe the dynamical evolution of the stars in the 
globular cluster.  As we introduce stellar evolution, the distribution increases in 
complexity, by allowing for mass lost from each mass group.  The concentration of stellar 
material with higher atomic numbers, or metallicity, is set to one one-hundredth the Solar 
value.  Because the metallicity of a star has a significant effect on the radiation pressure 
exhibited, it has definite influence on stellar evolution. 

 The energy space of the cluster is divided into 100 discrete bins.  As the Fokker-
Planck is a statistical approach, the trajectories of the objects are independent of 
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direction.  Thus, we can reduce the most general equation to a one-dimensional form, 
thereby expediting the calculations. 

 The initial parameters of the Fokker-Planck method are set by the Initial Mass 
Function or IMF of the cluster.  This IMF is separated into 20 mass bins ranging from 
12 M  to 0.14 M .  Each of the 20 mass groups are segmented according to distributions 
of orbital energy.  The IMF follows a three piece broken power-law outlined by Murphy 
et al. (2011) that is a best fit to the globular cluster M15.  Similar to Murphy et al. (2011), 
we assume a neutron star retention rate of ten percent.  Moreover, because it is poorly 
constrained, our present models assume a black hole retention rate of 0.1%,1%, and 10%.  
As opposed to simply considering the dynamic evolution of each compact object, we also
allow stellar evolution to occur.  Thus, as the stars evolve off of the main sequence, and 
begin to increase in radius, their mass is eventually lost, whether it is due to planetary 
nebula formation, or supernova.  In relation to the simulation, the lost mass is subtracted 
from each mass group as the model evolves, and the remnant masses are drawn from 
Hurley et al. (2000).   

 The timescale of the entire evolution of the cluster is comparable to the average 
lifetime of a main sequence star.  As the Fokker-Planck method numerically solves over 
the entirety of the cluster age, the iterative step size must be adjusted depending on the 
stage of stellar evolution.  Typically, a solar-like star will spend approximately 10 billion 
years on the main sequence.  By contrast, its lifetime on the giant branch, or GB, and 
AGB are at least one order of magnitude less.  Moreover, the GB and AGB portion of a 

composition.  Because of the combination of short timescales and rapid stellar evolution, 
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the Fokker-Planck model incorporates an adaptive step size that will slow the code during 
rapid changes.  Likewise, the code will increase the step size in periods of relatively slow 
stellar evolution to optimize run time and allow us to explore parameter space. 
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3. Results 

In order to develop consistent results, we employ two different methods when 
developing our IMF.  The first outlined is by evolved mass function.  We generalize the  
work of Hurley et al. (2000) to incorporate black hole retention fractions.  The second 
method is by mode of pure power-law.  The power-law index was chosen to create a 
stable environment for the cluster to develop and kinematically evolve. 

At certain points in the simulation we would obtain a numerical divergence.  This is 
due to the construction of the energy and radial grid, which are subdivided into 100 and 
115 bins, respectively.  Post core collapse, the globular cluster will expand in size.  As 
the cluster boundary grows to larger radii, it is lost off of the radial grid.  Thus, once 
sufficient mass is lost, the Fokker-Planck recalculation steps can diverge.  In all of the 
following cases, however, our cluster successfully reached core collapse before any 
numerical divergence occured. 
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3.1 Evolved Mass Function 

Building on the work of Hurley et al. (2000), we create an evolved mass function in 
order to compare the performance of the pure power-law method.  We incorporate black 
hole retention fractions, as well, to identify the three limiting cases when generating the 
IMF.    We begin by displaying the central density plot, versus time, where the central 
density is in units of solar masses per cubic parsec and the time is a generalized code 
time.  We then will examine the radial, density profile of the cluster at its initial state and 
at its maximum collapse.  For the evolved mass function, we incorporate 21 mass groups, 
six of which are plotted: black holes, neutron stars, white dwarfs, red giants, and two 
masses of main sequence stars. 

Bin Stellar Mass (M ) Mass Fraction Type Progenitor Mass (M )1 12.0 0.002 Black hole 50.0-22.0 2 1.44 0.010 Neutron Star 6.43-22.0 
3 1.21 0.068 White Dwarf 4.00-6.43 
4 0.95 0.133 White Dwarf 2.00-4.00 
5 0.70 0.183 White Dwarf 1.00-2.00 
6 0.57 0.063 White Dwarf 0.82-1.00 
7 0.82 0.004 Red Giant  
8 0.80 0.021 Main Sequence  
9 0.73 0.067 Main Sequence  

10 0.62 0.096 Main Sequence  
11 0.52 0.062 Main Sequence  
12 0.44 0.042 Main Sequence  
13 0.38 0.032 Main Sequence  
14 0.32 0.032 Main Sequence  
15 0.28 0.031 Main Sequence  
16 0.24 0.031 Main Sequence  
17 0.20 0.030 Main Sequence  
18 0.17 0.030 Main Sequence  
19 0.15 0.028 Main Sequence  
20 0.13 0.021 Main Sequence  
21 0.11 0.015 Main Sequence  

Table 1 Initial mass function. (Evolved Mass Function) {1% initial retention 410 black holes 
present} Note, for the 0.1% and 10% initial retention case, the black hole mass fraction will vary by one 
order of magnitude. 
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3.1.1 0.1% Black Hole Retention 

 

 

 

Our initial central density versus time plot is consistent with our later stellar 
evolution models in Section 3.2.  Both occur close to the code time of 100, and have 
peaks within the same order of magnitude.  The canonical core bounce is present as well.

With the introduction of the evolved mass function, neutron stars begin with a 
greater central density, as compared to the pure power-law case of stellar evolution.  
Likewise, the black holes, initially, occupy the lowest densities.  For the core collapse 
case, we notice similar density peaks just under 109 solar masses per cubic parsec.  
Furthermore, as in the 0.1% power case, the core radius of the black holes marks the 
point of decline, with respect to density, for the remaining mass groups. 

Figure 1 Central density versus time. (Evolved Mass Function) 
{0.1% initial retention 41 black holes present} 
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Figure 2 Radial density plot of the cluster before collapse [top] and at maximum collapse [bottom] (evolved mass function)  
{0.1% initial retention 41 black holes present} 
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3.1.2 1% Black Hole Retention 

 

 

 

 

 

 

 

 

 

The evolved mass function central density versus time plot once again reaches a 
less dense collapse point.  The beginning of the bounce can be seen near the maximum 
point of the graph, but due to instabilities in our numerical model soon after diverged.  
Thus, we plot all consistent points before the numerical divergence. 

As expected the initial, central black hole density increases.  Likewise, the initial 
densities of the remaining mass groups remain unchanged.  The same mass segregation is 
beginning to form, as in the pure power-law, stellar evolution, case. Binary heating stays 
consistent as well.  Moreover the larger black hole core radius, near 0.1 parsecs is 
indicative of the increasing relaxation time of the cluster. 

Figure 3 Central density versus time (evolved mass function)     
{1% initial retention 410 black holes present} 

Figure 17 Radial density profile at core collapse (evolved mass function). 
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Figure 4 Radial density plot of the cluster before collapse [top] and at maximum collapse [bottom] (evolved mass function) 
{1% initial retention 410 black holes present} 
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3.1.3 10% Black Hole Retention 

 

 

 

 

 

 

 

 

 

 

As the black hole population has reached 4100, for the evolved mass function, the 
cluster has overcome the binary heating, forcing the cluster to collapse deeper and faster, 
by nearly one order of magnitude.  This is due to the sub-cluster of black holes 
completely segregating from its stellar neighbors.  Moreover, we notice how the power-
law slope of the luminous stars has disappeared, compared to the lower retention 
percentages, in accordance with the predictions of Murphy et al. (2011). 

 

Figure 5 Central density versus time (evolved mass function)       
{10% initial retention 4100 black holes present} 
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Figure 6 Radial density plot of the cluster before collapse [top] and at maximum collapse [bottom] (evolved mass function) 
{10% initial retention 4100 black holes present} 
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3.2 Pure Power-law 

Our next models create a mass function with a constant power-law index of x=1.2, 
where x=1.35 is the Salpeter index.  With the pure power-law method, we have the option 
of developing a self-generating IMF with or without stellar evolution.  Thus, we consider 
both cases to see how the cluster without stellar evolution closer to a cloud of self-
gravitating interacting and with accounting for the kicks and mass transfer 
from exploding stars can change over time.  For the pure power-law, we incorporate 20 
mass groups, with the same six mass groups plotted, as before: black holes, neutron stars, 
white dwarfs, red giants, and two masses of main sequence stars. 

3.2.1 0.1% Black Hole Retention  

When a black hole is formed from its parent supernova, a certain percentage are 
kicked from the cluster as the magnitude of their kinetic energy is greater than the 
magnitude of their gravitational potential energy, within the cluster.  Thus, they are no 
longer gravitationally bound and can escape.  As this percentage is poorly constrained, 
we begin exploring parameter space with a black hole retention rate of 0.1%.  Figure 7 
quantitatively displays the central density as a function of time. 

 Both models were run for differing amounts of time because of the heating and 
mass transfer that stellar evolution provides.  Observe, in both cases, the core bounce that 
occurs as a result of the cluster overshooting hydrostatic equilibrium forcing it to  
slightly re-expand.  Likewise, observe the role that the stellar evolution plays as a factor 
to not only delay the initial core bounce, but cause a deeper collapse as well, by two 
orders of magnitude. 
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Figure 7 Central density versus time plot.  No stellar evolution present. [Left]  Stellar evolution present 
[Right] {0.1% initial retention-3 black holes present} 

Figure 8 Radial, density plot of the initial cluster [Left] and at 1 billion years [Right]        
{0.1% initial retention-3 black holes present} 

Figure 9 Radial, density plot at maximum collapse without stellar evolution [Left] and with stellar 
evolution [Right] {0.1% initial retention-3 black holes present} 
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Above displays the initial conditions of the cluster.  As both cases, with stellar 
evolution and without, are derived from the same IMF, they are identical, thus we only 
plot one in Figure 8.  As a point of clarity, although the initial retention percentages are 
equivalent for the evolved mass function, and pure power-law, they have different 
populations of black holes.  This effect is a product of pure power-law construction of the 
IMF.  As the index of x=1.2 preferentially favors less massive stars, compared to the 
evolved mass function, a smaller population of black holes will be present in the 
following models.   

To the right of the initial cluster displays the evolution of the cluster at 1 billion 
years.  The code utilized tracks time in years only for the stellar evolution case.  Observe 
how the black hole group begins to segregate from the rest of the cluster.  Moreover, as 
only 1 billion years is less than the relaxation time of the cluster, we observe the core 
radius of the black hole group near a radius of half a parsec. 

 Figure 9 depicts the cluster at maximum core collapse.  The role of stellar 
evolution is apparent by increasing the density of the upper five, labeled mass groups by 
nearly two orders of magnitude.  Moreover, at maximum collapse, the core radius of the 
black holes marks the point at which the remaining mass groups become less dense.    
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3.2.2 1% Black Hole Retention 

With a retention rate increased by one order of magnitude, the mass fraction of 
the black hole group increases ten-fold.  Hence, the increase in mass of the black hole 
group correspondingly decreases the mass of each of the remaining 19 mass groups.  
Hence we expect the black holes to have more of an influence on the cluster evolution. 

 As with the 0.1% case, stellar evolution drives the cluster into a deeper collapse. 
Interestingly, with the increase in black hole retention, the cluster collapses at the same 
time step as in the 0.1% case.  Yet, with regards to maximum central density, the 1% case 
behaves differently.  The maximum central density is slightly less when stellar evolution 
is present.  More dramatically, for the stellar evolution case, the clust
central density is less by nearly two orders of magnitude.  Physically, our models can be 
justified; as the amount of black holes increase, the central potential becomes 
increasingly negative, thereby creating a more tightly bound cluster.  Hence, it is not 
subject to as extreme of a core bounce. 

Compared to the 0.1% case, we observe an order of magnitude increase in the 
black hole maximum density.  As the remaining mass groups contain the majority of the 
cluster mass, they only slightly decrease, to account for the black hole group increase.   

 As expected, the increase in black hole population of the cluster increases the 
maximum density of the black hole group.  Moreover, this increase in maximum density 
is indicative of a more pronounced mass segregation.  As with the initial parameters of 
the cluster, we notice little change to the maximum density of the remaining mass groups, 
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Figure 10 Central density versus time plot.  No stellar evolution present. [Left]  Stellar evolution present 
[Right] {1% initial retention-30 black holes present} 

Figure 11 Radial, density plot of the initial cluster [Left] and at 1 billion years [right]                           
{1% initial retention-30 black holes present} 

Figure 12 Radial, density plot at maximum collapse without stellar evolution [Left] and with stellar 
evolution [right] {1% initial retention-30 black holes present} 
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as well.  We expect both the mass segregation and the remaining mass group influence to 
increase as the black holes represent even more of the cluster mass fraction. 

As is consistent with the 0.1% case, the stellar evolution of the cluster drives a 
more extreme mass segregation displayed by the steeper density versus radius slope
compared to the non-stellar evolution case.  The maximum central density for both 
models is lower by nearly an order of magnitude for both cases.  Although there is a 
higher population of black holes compared the 0.1% model, the role of black hole binary 
heating increases as their population increases.   

Similar to the collision of gas particles in a pressurized environment, binary 
heating occurs as compact object binaries interact with a third, incoming compact object.  
After a three-body interaction, the lightest of the three objects will often be ejected.  A 
portion of the gravitational potential energy of the original binary will be transferred to 
the kinetic energy of the lightest one, thereby ejecting it to larger cluster radii; thus 
resisting cluster collapse. 
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3.2.3 10% Black Hole Retention 

Consistent with our predictions, the increase in black hole population to 10% 
further binds the cluster.  In both cases, the maximum central density decreases, 
compared to lower black hole percentages.  Likewise, the presence of a core bounce is 
still present, as is consistent through the 0.1%, 1%, and 10% cases. 

At one billion years, with a more significant black hole population, the cluster 
segregation is furthered.  Notably, after examining each of the black hole percentage 
models, the densities of the remaining mass groups remains relatively unchanged.  
Moreover, this clearly displays the role of black holes on globular cluster morphology.  
The larger the mass discrepancy between the black holes and stellar neighbors, the more 
the cusp of the stellar cluster is inhibited.  Analogous to the 1 billion year model, binary 
heating has a significant impact on the cluster density for the 10% retention case, thereby 
causing a less dense core.  Comparing the morphology of the maximum core collapse 
plot to the initial parameters, one can see a flatter initial slope between one one-
thousandth and one one-hundredth of a parsec.  By contrast, the 1% and 0.1% maximum 
core collapse plots are much steeper and have deviated from their initial radial density 
plots because their relaxation times are ~3 and 10 times less, respectively.   
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Figure 13 Central density versus time plot.  No stellar evolution present. [Left]  Stellar evolution present 
[Right] {10% initial retention-300 black holes present} 

Figure 14 Radial, density plot of the initial cluster [Left] and at 1 billion years [right]                           
{1% initial retention-300 black holes present} 

Figure 15 Radial, density plot at maximum collapse without stellar evolution [Left] and with stellar 
evolution [right] {10% initial retention-300 black holes present} 
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4. Conclusions 

By employing two different methods of constructing initial mass functions, we have 
developed consistent results regarding cluster dynamics.  By introducing 12 solar mass 
black holes into a cluster of 2.5 million solar masses, we have reaffirmed a variety of 
phenomena that occur with compact object dynamics and have theoretical predictions for 
the behavior of clusters that contain black holes.  By inspecting the central density plots 
versus time, we have observed the typical core bounce that is seen with clusters of 
compact objects.  By increasing the black hole retention fraction, for both the power-law 
and evolved mass function, it is apparent that binary heating dominates over the increased 
central potential, for black hole populations on the order of 100.  Likewise, when 
introducing black holes into a dense stellar environment, as the black hole masses are 
nearly one order of magnitude greater than the next lowest mass group, they segregate 
from the stellar members of the cluster.  Moreover, when the black hole population is on 
the order of 100, their gravitational interactions dominate, thereby inhibiting the cusp of 
the stellar cluster to develop.  Hence, as gravitational astronomers continue the search for
sources of emission from coalescing black holes, they will want to target clusters whose 
black hole population are on the order 100 or greater. These clusters will offer luminosity 
profiles that do not contain an observable power-law, thereby acting as reliable 
observational targets.  Moving forward, as opposed to initially ejecting black holes and 
retaining a certain percentage, we plan to develop time evolving black hole loss 
mechanisms, in order to more accurately account for 3 body binary ejections. 
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