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Abstract
We propose a method of optimally controlling the tradeoff of speed and fidelity
of state transfer through a noisy quantum channel (spin-chain). This process is
treated as qubit state-transfer through a fermionic bath. We show that dynamical
modulation of the boundary-qubits levels can ensure state transfer with the best
tradeoff of speed and fidelity. This is achievable by dynamically optimizing the
transmission spectrum of the channel. The resulting optimal control is robust
against both static and fluctuating noise in the channelʼs spin–spin couplings. It
may also facilitate transfer in the presence of diagonal disorder (on site energy
noise) in the channel.

Keywords: quantum state transfer, quantum control, spin dynamics, decoherence

One dimensional (1D) chains of spin-1

2
systems with nearest-neighbor couplings, nicknamed

spin chains, constitute a paradigmatic quantum many-body system of the Ising type [1]. As
such, spin chains are well suited for studying the transition from quantum to classical transport
and from mobility to localization of excitations as a function of disorder and temperature [2]. In
the context of quantum information (QI), spin chains are envisioned to form reliable quantum
channels for QI transmission between nodes (or blocks) [3, 4]. Contenders for the realization of
high-fidelity QI transmission are spin chains comprised of superconducting qubits [5, 6], cold
atoms [7–10], nuclear spins in liquid- or solid-state NMR [11–18], quantum dots [19], ion traps
[20, 21] and nitrogen-vacancy centers in diamond [22–25].
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The distribution of coupling strengths between the spins that form the quantum channel,
determines the state transfer-fidelities [3, 26–30]. Perfect state-transfer (PST) channels can be
obtained by precisely engineering each of those couplings [27–34]. Such engineering is
however highly challenging at present, being an unfeasible task for long channels that possess a
large number of control parameters and are increasingly sensitive to imperfections as the
number of spins grows [34–37]. A much simpler control may involve only the boundary (source
and target) qubits that are connected via the channel. Recently, it has been shown that if the
boundary qubits are weakly-coupled to a uniform (homogeneous) channel (i.e., one with
identical couplings), quantum states can be transmitted with arbitrarily high fidelity at the
expense of increasing the transfer time [36, 38–44]. Yet such slowdown of the transfer may be
detrimental because of omnipresent decoherence.

To overcome this problem, we here propose a hitherto unexplored approach for optimizing
the tradeoff between fidelity and speed of state-transfer in quantum channels. This approach
employs temporal modulation of the couplings between the boundary qubits and the rest of the
channel. This kind of control has been considered before for a different purpose, namely to
implement an effective optimal encoding of the state to be transferred [45]. Instead, we treat this
modulation as dynamical control of the boundary system which is coupled to a fermionic bath
that is treated as a source of noise. The goal of our modulation is to realize an optimal spectral
filter [46–54] that blocks transfer via those channel eigenmodes that are responsible for noise-
induced leakage of the QI [55]. We show that under optimal modulation, the fidelity and the
speed of transfer can be improved by several orders of magnitude, and the fastest possible
transfer is achievable (for a given fidelity).

Our approach allows to reduce the complexity of a large system to that of a simple and
small open system where it is possible to apply well developed tools of quantum control to
optimize state transfer with few universal control requirements on the source and target qubits.
In this picture, the complexity of the channel is simply embodied by correlation functions in
such a way that we obtain a universal, simple, analytical expression for the optimal modulation.
While in this article we optimize the tradeoff between speed and fidelity so as to avoid
decoherence as much as possible, this description [46–55] allows one to actively suppress
decoherence and dissipation in a simple manner, since it may be viewed as a generalization of
dynamical decoupling protocols [56–59]. In what follows, we explicitly deal with a spin-chain
quantum channel, but point out that our control may be applicable to a broad variety of other
quantum channels.

1. Quantum channel and state transfer fidelity

1.1. Hamiltonian and boundary control

We consider a chain of +N 2 spin-1

2
particles with XX interactions between nearest neighbors,

which is a candidate for a variety of state-transfer protocols [3–34]. The Hamiltonian is given by

= + ( )H H H t , (1)0 bc
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where H0 and Hbc stand for the chain and boundary-coupling Hamiltonians, respectively, σ ( )
i
x y

are the appropriate Pauli matrices and Ji are the corresponding exchange-interaction couplings.

1.2. Mapping to a few-body open-quantum system

The magnetization-conserving Hamiltonian H can be mapped onto a non-interacting fermionic
Hamiltonian [60] that has the particle-conserving form
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where σ= σ σ∑ −π − + −

c ej
i

j
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2

j
i i4 0

1

create a fermion at site j and σ σ σ= ±± ix y. The Hamiltonian H0 can

be diagonalized as ω= ∑ =
†H b b

k

N
k k k0 1

, where ω= ∑†
=

†b j ck j

N
k j1

populates a single-particle

fermionic eigenstate ωk of energy ωk, and =j 0 .. 01 0 .. 0j denote the single-excitation

subspace. Under the assumption of mirror symmetry of the couplings with respect to the source
and target qubits = −J Ji N i, the energies ωk are not degenerate, ω ω< +k k 1, and the eigenvectors
have a definite parity that alternates as ωk increases [28]. This property implies that

ω ω〈 ∣ 〉 = − 〈 − + ∣ 〉−( )j N j1 1k

k

k

1
and allows us to rewrite the boundary-coupling Hamiltonian as

∑ ∑α ω α ω= + − +†

=
+

†

=

−( ) ( ) ( ) ( )H t t J c b t J c N b1 1 h.c. (4)
N

k
k k N N

N

k

k

k kbc 0 0
1

1
1

1

For an odd N, there exists a single non-degenerate, zero-energy fermionic mode in the

quantum channel, labelled by = = +k z N 1

2
[25, 39, 44]. As a consequence, the two boundary

qubits (0 and +N 1) are resonantly coupled to this mode. Therefore, we consider these three
resonant fermionic modes as the ‘system’ S and reinterpret the other fermionic modes as a
‘bath’ B. In this picture, the system–bath SB interaction is off-resonant. Then, we rewrite the
total Hamiltonian as

= + +( ) ( )H H t H H t , (5)S B SB

where

∑ ω= = ˜ +
≠ =

†
+( ) ( )H b b H t s t J b, h.c., (6)

k z k

N

k k k z zB
, 1

S

∑ ∑= ˜ + ˜ ++
∈

−
∈

( ) ( ) ( )H t s t J b s t J b h.c., (7)
k k

k k
k k

k kSB

odd even

with α= ±±
†

+
†( )( ) ( )s t t c cN0 1 , ω˜ =J J 1k k1 , = { }k N1, 3 ,.., ,odd provided ≠k zodd , and

= −{ }k N2, 4 ,.., 1even .
The form (5) is amenable to the application of optimal dynamical control of the

multipartite system [46, 47, 61–64]: such control would be a generalization of the single-qubit
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dynamical control by modulation of the qubit levels [48–54]. To this end, we rewrite
equation (7) in the interaction picture as a sum of tensor products between system Sj and bath Bj

operators (see appendix A)

∑= ⊗
=

†

( ) ( ) ( )H t S t B t . (8)I

j
j jSB

1

4

From this form one can derive the system density matrix of the system, ρ ( )tS
, in the interaction

picture, under the assumption of weak system–bath interaction, to second order in HSB, as
[46, 48]

⎡⎣ ⎤⎦∑ρ ρ ν ν ρ= − ˆ ˆ +
′=

′ ′( ) ( ) ( ) ( )t t R t0 , 0 h.c., (9)
S S

i i
i i i i S

, 1

6

,

where

∫ ∫∑ Φ Ω Ω= ′ ′′ ′ − ′′ ′ ′′*
′
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′

′ ′ ′( ) ( ) ( ) ( )R t
t

t t t t t t
1

d d , (10)i i
j j

t t

j j j i j i,
, 1

4

0 0
, , ,

with Φ τ τ ρ=′ ′{ }( ) ( ) ( ) ( )B BTr 0 0j j B j j B, denoting the correlation functions of bath operators and

Ω ( )tj i, being a rotation-matrix in a chosen basis of operators ν̂i used to represent the evolving

system operators, Ω ν= ∑ ˆ=( ) ( )S t tj i j i i1

6
, (appendix A). The solution (9) will be used to calculate

and optimize the state-transfer fidelity in what follows.

1.3. Fidelity derivation

We are interested in transferring a qubit state ψ
0

initially stored on the 0 qubit to the +N 1

qubit . Here ψ
0

is an arbitrary normalized superposition of the spin-down 00 and spin-up 10

(single-spin) states. To assess the state transfer over time T, we calculate the averaged fidelity

= + ++ +( )F T
( ) ( )f T f T

6 3

1

2
N N0, 1

2
0, 1 [3], which is the state-transfer fidelity averaged over all possible

input states ψ
0
. In the interaction picture, ψ ρ ψ= ∣ 〈 ∣ ∣ ∣+ ( ) ( )f T T

N S S S0, 1
where

ψ = ⊗ +1 0 0S z N S0 1 and ψ ψ⊗S B is the initial state of +S B.

In the ideal regime of an isolated three-level system, PST occurs when the accumulated
phase due to the modulation control

∫ϕ α= ˜( ) ( )T J t td (11)z

T

0

satisfies ϕ = π( )T
2
. Obviously, this condition does not strictly hold when the system–bath

interaction is accounted for, yet it is still adequate within the second-order approximation in HSB

used in equation (9). In this approximation, + ( )f T
N0, 1

takes the form

ζ= −+ ( ) ( )f T T1 , (12)
N0, 1
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where

R ∫ ∫ ∑ζ Ω Ω Φ= ′ ′ − ′
±

± ± ±( ) ( ) ( ) ( )T t t t t t td d . (13)
T t

0 0

Here, Φ = ∑ ˜ ω
± ∈

−( )t J e
k k k

t2 i

( )

k

odd even
are the bath-correlation functions, while

Ω α ϕ=+ ( )( ) ( ) ( )t t tcos 2 and Ω α=− ( ) ( )t t are the corresponding dynamical-control

functions (appendices A and B). In the calculations we considered ψ = 0B B. However, in the
weak-coupling regime the transfer fidelity remains the same for a completely unpolarized state
[44, 65] or any other initial state [25] of the bath.

In the energy domain, equation (13) has the convolutionless form [48–54]

∫ ∑ζ ω ω ω=
−∞

∞

±
± ±( ) ( ) ( )T F Gd , (14)T ,

where the Fourier-transforms

∫ ∫ω
π

Φ ω
π

Ω= =ω ω
±
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∞

± ± ±( ) ( ) ( ) ( )G t t F t t
1

2
d e ,

1
2

d e (15)t
T

T
ti

,
0

i 2

are the bath-correlation spectra, ω± ( )G , associated with odd(even) parity modes and the spectral

filter functions, ω± ( )FT , , which can be designed by the modulation control.

2. Optimization method

To ensure the best possible state-transfer fidelity, we use modulation as a tool to minimize the
infidelity ζ ( )T in (13)–(14) by rendering the overlap between the interacting bath- and filter-
spectrum functions as small as possible [46, 47].

2.1. Optimizing the modulation control for non-Markovian baths

The minimization of ζ ( )T in (13) can be done for a specific bath-correlation function of a given
channel which represents a non-Markovian bath. The Euler–Lagrange (E-L) equation for
minimizing ζ ( )T with the energy constraint

∫ α= ˜( ) ( )E T J t td (16)z

T
2

0

2

turns out to be

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ζ
ϕ

λ
ϕ

ζ
ϕ

λ
ϕ

∂
∂ ˙ − ∂

∂ ˙ − ∂
∂

− ∂
∂

=
t

E Ed
d

0, (17)

where λ is the Lagrange multiplier and ϕ α˙ = J̃z . The optimal modulation can be obtained by
solving the integro-differential equation
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The solution of equation (18) should satisfy the boundary conditions ϕ =( )0 0 and ϕ = π( )T
2

to ensure the required state transfer.
In general the bath-correlations have recurrences and time fluctuations due to mesoscopic

revivals in finite-length channels. Therefore, it is not trivial to solve equations (18)–(19)
analytically and they need to be solved numerically for each specific channel. We however are
interested in obtaining universal analytical solutions for state-transfer in the presence of non-
Markovian noise sources. To this end, we here discuss suitable criteria for optimizing the state
transfer in such cases.

We require the channel to be symmetric with respect to the source and target qubits and the
number of eigenvalues to be odd. These requirements allow for a central eigenvalue that is
invariant under noise on the couplings. This holds provided a gap exists between the central
eigenvalue and the adjacent ones, i.e. they are not strongly blurred (mixed) by the noise, so as
not to make them overlap. At the same time, we assume that the discreteness of the bath
spectrum of the quantum channel is smoothed out by the noise, since it tends to affect more
strongly the higher frequencies [34, 36, 37]. Then, if we consider the central eigenvalue as part
of the system, a common characteristic of ω± ( )G is to have a central gap (as exemplified in
figure 1(b).

Therefore, in order to minimize the overlap between ω± ( )G and ω± ( )FT , for general gapped
baths, and thereby the transfer infidelity in (14), we will design a narrow bandpass filter
centered on the gap.

We present a universal approach that allows us to obtain analytical solutions for a narrow
bandpass filter around ωz. Since ω− ( )G has a narrower gap than ω+ ( )G , we optimize the filter

ω− ( )FT , under the variational E-L method. We seek a narrow bandpass filter, whose form on
time-domain via Fourier-transform decays as slowly as possible, so as to filter out the higher
frequencies. This amounts to maximizing

∫ ∫τ ω ω α α τ= = +ωτ
−

−∞

∞

−
−( ) ( ) ( ) ( )F F t t te d d , (20)T T

T

, ,
i

0

subject to the variational E-L equation (17), upon replacing ζ by −FT , . Since there is no explicit

dependence on ϕ, the second term therein is null, λ− =ϕ
∂

∂ −( )F E 0T E, , yielding

α τ α τ λ α λ+ + − = + ϕ( ) ( ) ( )t t t , (21)E
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where λE is the Lagrange multiplier and λϕ is an integration constant chosen to satisfy the

boundary conditions obeyed by the accumulated phase (11).
Analytical solutions of (21) are obtainable for small τ, corresponding to the differential

equation

α λ α λ= − ˜ + ˜
ϕ( ) ( )t t , (22)E

..

with λ̃ = λ

τ

− −( )
E

2E
2 and λ̃ =ϕ

λ

τ
ϕ
2 . It has a general solution

α ω ω= + +( ) ( ) ( )t A t B t Csin cos . (23)v v

The unknown parameters are then optimized under chosen constraints, e.g. on the boundary
coupling, the transfer time, the energy, etc.

The frequencies ωv that give a low and flat filter ω− ( )FT , outside a small range around

ω ω= = 0z are ω = π
v

n

T
, ϵn , since the components of α ( )t that oscillate with ωv then interfere

destructively. Only if =n 0, 1, 2 will the filter have a single central peak around ω = 0, and
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Figure 1. (a) Top: state transfer through a spin-channel with boundary-controlled
couplings. Bottom: boundary-controlled spin chain mapped to a non-interacting spinless
fermionic system (dashed rectangle) which couples to the bath fermionic-modes k (red
even k and blue odd k lines) with strengths α˜ ( )J tk . The two boundary spins 0 and +N 1
are resonantly coupled to the chain by the fermionic-mode z with a coupling strength

α˜ ( )J tz (green lines). (b) Bottom: interacting bath-spectrum ω± ( )G including noise
effects (grey color) bounded by the Wigner-semicircle (maximal-disorder) lineshape
(dashed contour) with a central gap around ωz. In the central gap, an optimal spectral-

filter ω± ( )FT , is shown (green color). Top: ω− ( )FT , generated by boundary-control α ( )tp :
p = 0 (black dotted), p = 1 (violet dashed), p = 2 (orange thin). The red vertical lines are
the nearest bath-spectrum eigenenergies. The inset is a zoom on the tails of the filter
spectrum that protects the state transfer against a general noisy bath with a central gap.



the contribution of larger frequencies will be suppressed, while the filter-overlap with the
central energy level will be maximized; for larger n, the central peak splits and additional peaks
appear at larger frequencies.

Therefore, the analytical expressions for the optimal solutions satisfying ϕ =( )0 0 and

ϕ = π( )T
2
are found to be

⎜ ⎟
⎛
⎝

⎞
⎠α α π=( )t t

T
sin , (24)p M

p

where =p 0, 1, 2,

α π= ˜c
J T2

(25)M p
z

and = = = =
π Γ

Γ

π
+

+ ( )( )
( )

c c c c1, , 2p 0 1 2 2

p

p

1

2

1

2

. Here p = 0 means static control, while p = 1, 2

stand for dynamical control. Note that T and α α= { }( )tmaxM p cannot be independently

chosen. If the transfer time is fixed, then the maximum amplitude depends on p, α α=M Mp
,

according to equation (25). Similarly, if the maximum amplitude is kept constant, then the
transfer time will depend on p, =T Tp, by equation (25).

The different solutions in equation (24) are sinc-like bandpass filter functions around 0 that
become narrower as T increases. For p = 0, which satisfies the minimal-energy condition

= π( )E T
Tmin 0 2

2

0
, the corresponding filter is the narrowest around 0, but it has many wiggles on the

filter tails (figure 1(b)) which overlap with bath-energies that hamper the transfer. In contrast,

the p = 1, 2 bandpass filters are wider (for the same T) and require more energy, = πE E1 8 min

2

and

=E E2
3

2 min respectively, but these filters are flatter and lower throughout the bath-energy
domain.

Hence, the bandpass filter width (i.e. full width at half maximum) and the overlap of its
tail-wiggles with bath-energies as a function of T, determine which modulations α ( )tp are

optimal, as shown in the inset of figure 1(b) ( ω+ ( )FT , filters out a similar spectral range). The
shorter T, the lower is p that yields the highest fidelity, because the central peak of the filter that
produces the dominant overlap with the bath spectrum is then the narrowest. However, as T
increases, larger p will give rise to higher fidelity, because now the tails of the filter make the
dominant contribution to the overlap. As shown in figure 2, the filter for p = 1, 2 can improve
the transfer fidelity by orders of magnitude in a noisy gapped bath bounded by the Wigner-
semicircle, which is representative of fully randomized channels [66] (appendix C).

2.2. Optimizing the modulation control for a markovian bath

We next consider the worst-case scenario of a Markovian bath, where the bath-correlation
functions Φ τ± ( ) vanish for τ > 0. This is the case when the gap is closed by a noise causing the
bath energy levels to fluctuate faster than the system dynamics. We note that, finding optimal
solutions for the noise spectrum of a Markovian bath is important for the case where the gap is
reduced or even lost in static cases.
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The infidelity function (13) that must be minimized when the correlation time τ = 0c , i.e.

Φ τ δ τ= ∑ ˜
± ∈( ) ( )J

k k k

2

( )odd even
, is

R ∫ζ
ϕ

Φ ϕ Φ=
˙

˜
++ −( )( )( ) ( ) ( ) ( ) ( )T t

t

J
td 0 cos 2 0 . (26)

T

z
0

2

2
2

The E-L equation under energy constraint (17), is now

ϕ Φ ϕ Φ λ ϕ Φ ϕ

ϕ

¨ + − ˜ − ˙

× =

+ − +( )( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

t t J t t

t

0 cos 2 0 2 2 0 cos 2

sin 2 0. (27)

z
2 2 2

This equation has a non-trivial analytical solution and the modulation that minimizes ζ ( )T is
given by the following transcendental equation

∫

∫

ϕ Φ Φ Φ λ ϕ

Φ ϕ Φ λ ϕ

+ + − ˜

− + − ˜ =

ϕ

ϕ

+ + −

+ −( )

( )

( )

( ) ( ) ( )

( ) ( )

T J

t J

cos 2 2 0 0 2 0 2 d

2 0 cos 2 0 d 0. (28)

( )

( )

t

z

T

z

0

2

0

2 2

The infidelity for this optimal modulation almost coincides with the one obtained for static
control (α α== ( )tp M0 from equation (24)), i.e.

⎛
⎝⎜

⎞
⎠⎟

π π π
α

− ≈ − =( )F T
N

JT

N

JT
T

N

J
1

6 2
1

16 2
,

2
, (29)

M

2 2

and they only differ by about 0.1%. This optimal modulation can be phenomenologically
approximated by
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Figure 2. Infidelity − ( )F T1 as a function of transfer time T under optimal control

α ( )tp : p = 0 (black dotted), p = 1 (violet dashed), p = 2 (orange thin), when the noise or

bath-correlation spectrum ω( )G is bounded by the Wigner-semicircle with a central gap
around ωz (appendix C).



⎜ ⎟
⎛
⎝

⎞
⎠α α π≈ + ∼ ∼ ∼( )t a b

t

T
q

b

a
asin , 3.5,

1
3

, 0.84, (30)M
q

assuming no constraints (λ = 0). An example of the performance of this solution is discussed
below and shown in figure 5.

3. Optimal control of transfer in a homogeneous spin-chain channel

Consider a uniform (homogeneous) spin-chain channel, i.e. ≡J Ji in equation (1), whose

energy eigenvalues are ω = π
+( )J2 cosk

k

N 1
[38]. In figure 3, we show the performance of the

general optimal solutions (24) for this specific channel as a function of αM and T.

The approach based on equation (13) strictly holds in the weak-coupling regime α ≪( )1M

[46–50, 53, 54]. In this regime (marked with arrows in figure 3(b), we found that the transfer

time is ≈ π
αT cp p

N

J2 M
, and the infidelity decreases by reducing αM according to a power law, aside

from the oscillations due to the discrete nature of the bath-spectrum (see appendix C). The filter
tails are sinc-like functions, so that when a zero of the filter matches a bath-energy eigenvalue,
the infidelity exhibits a dip. Aside from oscillations, the best tradeoff between speed and fidelity
within this regime is given by the optimal modulation with p = 2 (for the system described in
figure 3(a)).

However, this approach can also be extended to strong-couplings αM , since it becomes
compatible with the weak-coupling regime under the optimal filtering process that increases the
state fidelity in the interaction picture [51, 62, 63]. The bandpass filter width increases as T
decreases; consequently, in the strong-coupling regime α ∼( )1M the filter may now overlap the
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Figure 3. Transfer infidelity − ( )F T1 for a modulated boundary-controlled coupling

α α= π( )( )t sinp M
p t

T
as a function of (a) the transfer time T, (b) the maximum value of

the boundary-coupling αM: p = 0 (empty circles), p = 1 (filled squares), p = 2 control
(empty diamonds). The quantum channel is a homogeneous spin-chain with

+ =N 2 31 spins and J = 1.



bath energies closest to ωz, but still block the higher bath energies, which are the most
detrimental for the state transfer [34, 36, 37]. Then, the participation of the closest bath energies
yields a transfer time ≈T cp p

N

J2
. There is a clear minimal infidelity value at the point that we

denote as αM
opt

p
which depends on p (figure 3(b)); thus extending the previous static-control

(p = 0) results, where an optimal αM
opt

0
was found [26, 36, 67, 68]. The infidelity dip corresponds

to a better filtering-out (suppression) of the higher energies, retaining only those that correspond
to an almost equidistant spectrum of ωk around ωz, which allow for coherent transfer [36, 37].

Figure 3(b) shows that by fixing αM , the dynamical control (p = 1, 2) of the boundary-
couplings reduces the transfer infidelity by orders of magnitude only at the expense of slowing

down the transfer time Tp at most by a factor of 2, ≈ ⩽ 2
T

T

c

c
p p

0 0
. If the constraint on αM can be

relaxed, i.e. more energy can be used, the advantages of dynamical control can be even more
appreciated for both infidelity decrease and transfer-time reduction by orders of magnitude, as
shown in figure 3(a). Hence, our main result is that the speed-fidelity tradeoff can be drastically
improved under optimal dynamical control.
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Figure 4. Transfer infidelity for a modulated boundary-controlled coupling α ( )tp as a
function of the perturbation strength εJ of the noisy homogeneous channel, averaged
over Nav noise realizations for (a) static and fluctuating noisy channels α = 0.6M

opt

0
,

α = 0.7M
opt

2
and =N 10av

3. In static noisy channels, the infidelity obtained under static
control p = 0 (empty circles) is shown to be strongly reduced when dynamical p = 2
control is applied (empty squares). A fluctuating noisy channel is less damaging; in the
Markovian limit, where the correlation time of the noise fluctuations τ → 0c (p = 0,
green solid circles), the infidelity converges to its unperturbed value. The homogeneous
channel has + =N 2 31 spins and J = 1. (b) Same plot for fluctuating noise, ranging
between static and Markovian noise for α = 0.1M0

, T = 88 and =N 200av . Here τc is the
correlation time of the noise fluctuations (see text). Faster fluctuations reduce the noise
effect and thereby the fidelity decay. The inset shows the scaling of the infidelity, where
the effective noise strength is scaled with μ τ= 2 c (all curves overlap). The scaled
noise strength depends on the noise correlation time τc.



4. Robustness against different noises

We now explicitly consider the effects of optimal control on noise affecting the coupling
strengths, also called off-diagonal noise, causing: Δ→ + = …( )J J J t i N, 1, ,i i i i with Δi being

a uniformly distributed random variable in the interval ε ε−[ ],J J . Here ε > 0J characterizes the
noise or disorder strength. When Δi is time-independent, it is called static noise, as was

considered in other state-transfer protocols [34, 36, 69, 70]. When Δ ( )ti is time-dependent, we
call it fluctuating noise [71]. These kinds of noises will affect the bath energy levels, while the
central energy ωz remains invariant [34, 37]. In the following we analyse the performance of the
control solutions obtained in section 2 for these types of noise and later on, in section 4.4 we
discuss briefly the effects of other sources of noise.

4.1. Static noise

Static control on the boundary-couplings can suppress static noise [34, 36] but here we show
that dynamical boundary-control makes the channel even more robust, because it filters out the
bath-energies that damage the transfer. To illustrate this point, we compare the effect of
modulations α ( )tp with α α=M M

opt

p
for p = 0 and 2 in the strong-coupling regime (figure 4(a)).

There is an evident advantage of dynamical control with p = 2 compared to static control

(p = 0), at the expense of increasing the transfer time by only a factor of 2, ≈ 2T

T
2

0
. In the weak-

coupling regime, if we choose αM such that the transfer fidelity is similar for p = 0 and p = 2,
then both cases are similarly robust under static disorder, but the modulated case p = 2 is an
order of magnitude faster. Remarkably, because of disorder-induced localization [72–75],
regardless of how small is αM , the averaged fidelity under static noise cannot be improved
beyond the bound

ε ε− ¯ ∝ ≪( )F N1 , 1 . (31)J J
2

4.2. Markovian noise

The worst scenario for quantum state transfer is the absence of an energy gap around ωz. This

case corresponds to Markovian noise characterized by Δ Δ τ δ τ+ ∝( ) ( ) ( )t ti i , where the

brackets denote the noise ensemble average, or equivalent to a bath correlation-function that
vanishes at τ > 0. In this case there is an analytical solution for the optimal modulation given
by equation (28), although the infidelity achieved by it almost coincides with the one obtained
by the static (p = 0) optimal control (figure 5). Counterintuitively, arbitrarily high fidelities can

be achieved for such noise by decreasing α ( )tmax and thereby slowing down the transfer.

This comes about because in a Markovian bath, the very fast coupling fluctuations suppress the
disorder-localization effects that hamper the transfer fidelity as we show below for a typical
case.
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4.3. Non-Markovian noise

We now consider a non-Markovian noise of the form Δ+ ( )J J ti i i , where Δ Δ τ= ( )[ ]( )t ti i c ,

where the integer part τ =[ ]t nc defines a noise Δ ( )ni that randomly varies between the interval

ε ε−[ ],J J at time-intervals of τc during the transfer. We observe a convergence of the transfer
fidelity to its value without noise as the noise correlation time τc decreases (figure 4(b)).
Consequently the fidelity can be substantially improved by reducing αM . The effective noise

strength scales down as τc
1 2 (figure 4(b), inset). By contrast to the Markovian limit τ → 0c ,

dynamical control can strongly reduce the infidelity in the non-Markovian regime that lies
between the static and Markovian limits and whose bath-spectrum is gapped.

4.4. Other sources of noise

Timing errors: in addition to resilience to noise affecting the spin–spin couplings, there is
another important characteristic of the transfer robustness, namely, the length of the time
window in which high fidelity is obtained. The fidelity F(t) under optimal dynamical control

=( )p 1, 2 , yields a wider time-window around T where the fidelity remains high compared

with its static =( )p 0 counterpart. This allows more time for determining the transferred state or
using it for further processing. Consequently, the robustness against timing imperfections
[29, 34] is increased under optimal dynamical control.

On-site energy noise: this kind of noise, alias diagonal-noise, can be either static or
fluctuating. The static one can give rise to the emergence of quasi-degenerate central states.
Then, the dynamical control approach introduced in this work is still capable of isolating the
‘system’ defined here (section 1) from the remaining ‘bath’ levels. It may happen that the spin
network is not symmetric with respect to the source and target spins, and then the effective
couplings of the source and target qubits with the central level will not be symmetric.
This asymmetry can be effectively eliminated by boundary control. On the other hand, a
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Figure 5. Transfer infidelity as a function of the transfer time T for the optimal control
solution in the case of a Markovian bath (equation (28)) and without modulation (p = 0).

+ =N 2 31, =J JN1 . The corresponding boundary-couplings for T = 860 are shown in
the inset.



fluctuating diagonal-noise that may produce a fluctuation of the central energy level is here
fought by optimizing the tradeoff between speed and fidelity as detailed above. Additional
dynamical control of only the source and target spins can be applied to avoid these decoherence
effects, by the mapping to an effective three-level system, as a variant of dynamical decoupling
[56–59].

5. Conclusions

We have proposed a general, optimal dynamical control of the tradeoff between the speed and
fidelity of qubit-state transfer through the central-energy global mode of a quantum channel in
the presence of either static or fluctuating noise. Dynamical boundary-control has been used to
design an optimal spectral filter realizable by universal, simple, modulation shapes. The
resulting transfer infidelity and/or transfer time can be reduced by orders of magnitude, while
their robustness against noise on the spin–spin couplings is maintained or even improved.
Transfer-speed maximization is particularly important in our strive to reduce the random phase
accumulated during the transfer when energy fluctuations (diagonal noise) affect the spins [76].
We have shown that, counterintuitively, static noise is more detrimental than fluctuating
noise on the spin–spin couplings. This general approach is applicable to quantum channels
that can be mapped to Hamiltonians quadratic in bosonic or fermionic operators
[12, 15, 16, 44, 77]. We note that our control is complementary to the recently suggested
control aimed at balancing possible asymmetric detunings of the boundary qubits from the
channel resonance [76, 77].
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Appendix A. The Hamiltonian in the interaction picture

The system–bath Hamiltonian (equation (7) of the main text) splits into a sum of symmetric and
antisymmetric system operators that are coupled to odd- and even-bath modes:

= ∑ ˜ ⊗ ˜
=

†( )H t S B ,
j j jSB 1

4 where α˜ = + − +( )( ) ( )S t c c( ) N1 3 0 1 , ˜ = ˜ †
S S( ) ( )2 4 1 3 , ˜ = ∑ ˜

∈B J b( ) k k k k1 3 ( )odd even

and ˜ = ˜ †
B B( ) ( )2 4 1 3 . In the interaction picture ( )H tSB becomes

∑= ⊗
=

†( ) ( ) ( )H t S t B t , (A.1)I

j
j jSB

1

4
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where

= ˜ =

= ˜ =

∫† − ′ ′

† −

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

t U t S t U t U t

B t U t B U t U t

S , e ,

, e ; (A.2)

( )
j j

t H t

j j
H t

S S S
i d

B B B
i

t

S

B

0

and the evolution operators are

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∑

ϕ

ϕ

ϕ
ϕ

= +
+

+ + +

+
−

+ + +

+ − + + +

= +ω

= ≠

−

( )

( )

( ) ( )

( )

( )

( )

( )
( )

( )

( )
( )

( )

U t
t

N N

t
N N

t z z
t

z N z

U t k k

0 0
cos 2 1

2
0 0 1 1

cos 2 1

2
0 1 1 0

cos 2 i
sin 2

2
0 1 h.c. ,

e 0 0 , (A.3)
k k z

N
t

S SS

B
1,

i
BB

k

where the states = +0 0 0 0z NS 0 1 S and = …0 0 0NB 1 B refer to the zero-excitation states in

the system (S) and bath (B) respectively. Therefore, the bath operators are

= ∑ ˜ =ω
∈

− †( ) ( ) ( )B t J k B t B te 0 ,( ) ( ) ( )k k k
t

B1 3
2 i

2 4 1 3( )

k

odd even
.

We define a basis of operators ν̂i to describe the rotating system operators ( )S tj via a

rotation-matrix Ω ( )tj i, . They are given by

ν ν ν
ν ν ν
ν ν ν

ˆ = ∣ 〉 〈 ∣ + 〈 + ∣ ˆ = ˆ
ˆ = ∣ 〉 〈 ∣ ˆ = ˆ
ˆ = ∣ 〉 〈 ∣ − 〈 + ∣ ˆ = ˆ

†

†

†

N

z

N

0 ( 0 1 ) ,

0 ,

0 ( 0 1 ) , (A.4)

1 S 2 1

3 S 4 3

5 S 6 5

such that Ω ν= ∑ ˆ=( ) ( )S t t .j i j i i1

6
, Given that ϕ ϕ ν ϕ= ˙ ˆ −( ) ( )S t t t(cos ( 2 ( ) ) i 2 sin ( 21 1

ν̂t( ) ) )3 , ϕ ν= ˙ ˆ = †( ) ( ) ( ) ( )S t t S t S t, ( ) ( )3 5 2 4 1 3 the rotation-matrix vectors are

Ω ϕ ϕ ϕ

Ω ϕ ϕ ϕ

Ω ϕ

Ω ϕ

= ˙ −

= ˙

= ˙

= ˙

( )
( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

t t t t

t t t t

t t

t t

cos 2 , 0, i 2 sin 2 , 0, 0, 0

0, cos 2 , 0, i 2 sin 2 , 0, 0

0, 0, 0, 0, 1, 0

0, 0, 0, 0, 0, 1 . (A.5)

i

i

i

i

1,

2,

3,

4,

Appendix B. The fidelity in the interaction picture

Here we derive equations (12)-(13) from equation (9) of the main text. Considering
ψ ψ= = ⊗100 ... 0 0SB S B with ψ = +1 0 0z NS 0 1 S as the initial state, the fidelity is
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reduced to

ψ ρ ψ ζ= = −+ ( ) ( ) ( )f T T T1 (B.1)
N0, 1 S S S

where ζ Γ= ∑ =′ ′ ′( ) ( )T T R T
i i i i i i, 1

6
, , , with

⎡⎣ ⎤⎦Γ ψ ν ν ψ ψ ψ δ δ δ δ δ δ δ δ= ˆ ˆ = + + +′ ′ ′ ′ ′ ′, (B.2)i i S i i S i i i i i i i i, SS ,2 1, ,2 5, ,6 1, ,6 5,

and

∫ ∫ Φ Ω Ω Φ Ω Ω= ′ − ′ ′ + − ′ ′′ ′ ′( )( ) ( ) ( ) ( ) ( ) ( ) ( )R T
T

t t t t t t t t t t
1

d d . (B.3)i i

T t

i i i i,
0 0

2,1 2, 1, 4,3 4, 3,

Here ν̂ ′i and Ωj i, are as defined in equations (A.4)–(A.5), while the correlation functions

are

∑ ∑Φ δ δ δ δ− = ˜ + ˜′ ω ω
′

∈

− − ′
′

∈

− − ′
′( )t t J Je e . (B.4)( ) ( )

j j
k k

k
t t

j j
k k

k
t t

j j,

2 i
,2 1,

2 i
,4 3,

k k

odd even

This leads to the infidelity ζ ( )T of equation (13).

Appendix C. Considerations for a specific non-Markovian bath: the uniform spin-channel

Consider a uniform (homogeneous) spin-chain channel, i.e. ≡J Ji in equation (1), whose

energy eigenvalues are ω = π
+( )J2 cosk

k

N 1
. In the weak-coupling regime where α ≪ 1M , the

coupling strength in the interaction Hbc, ˜ =
+

J Jz N

2

1
and ˜ = ˜ π

+( )J J sink z
k

N 1
, are always much

smaller than the nearest eigenvalue gap ω ω− ∼±z z
J

N1
2 [38, 39, 44]. The correlation function of

the bath is

⎜ ⎟⎛
⎝

⎞
⎠∑Φ τ π=

+ +
π τ

±
∈

− +( )( )
N

J
k

N

2
1

sin
1

e (C.1)
( )k k

J k
N

2

i2 cos
1

odd even

and has recurrences and time fluctuations due to mesoscopic revivals, while at short times t, it

behaves as a Bessel function Φ = α
τ( ) ( )t Jt2( )J

J

2
1

0
2

. The latter correlation function represents the

limiting case of an infinite channel and it gives a continuous bath-spectrum that becomes a
semicircle. In the case of a finite channel, ω( )G will be discrete but modulated by the semicircle
with a central gap. If disorder is considered, the position of the spectrum lines fluctuates from
channel to channel but they are essentially modulated by the semicircle with a central gap as
was considered in the figure 1(b) of the main text, where

ω ω Θ ω ω Θ ω ω ω
ω

= − − − + =±
+( )( ) ( ) ( )G J

1
2

4 1 ,
3

4
. (C.2)l l l

z2 2 1

This is the Wigner-distribution for fully randomized channels [66] with a central gap.
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