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Abstract

Introduction

Impaired wound healing has been widely reported in diabetes. Linoleic acid (LA) acceler-

ates the skin wound healing process in non-diabetic rats. However, LA has not been tested

in diabetic animals.

Objectives

We investigated whether oral administration of pure LA improves wound healing in strepto-

zotocin-induced diabetic rats.

Methods

Dorsal wounds were induced in streptozotocin-induced type-1 diabetic rats treated or not with

LA (0.22 g/kg b.w.) for 10 days. Wound closure was daily assessed for two weeks. Wound tis-

sues were collected at specific time-points and used to measure fatty acid composition, and

contents of cytokines, growth factors and eicosanoids. Histological and qPCR analyses were

employed to examine the dynamics of cell migration during the healing process.

Results

LA reduced the wound area 14 days after wound induction. LA also increased the concen-

trations of cytokine-induced neutrophil chemotaxis (CINC-2αβ), tumor necrosis factor-α
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(TNF-α) and leukotriene B4 (LTB4), and reduced the expression of macrophage chemoat-

tractant protein-1 (MCP-1) and macrophage inflammatory protein-1 (MIP-1). These results

together with the histological analysis, which showed accumulation of leukocytes in the

wound early in the healing process, indicate that LA brought forward the inflammatory

phase and improved wound healing in diabetic rats. Angiogenesis was induced by LA

through elevation in tissue content of key mediators of this process: vascular-endothelial

growth factor (VEGF) and angiopoietin-2 (ANGPT-2).

Conclusions

Oral administration of LA hastened wound closure in diabetic rats by improving the inflam-

matory phase and angiogenesis.

Introduction

Wound healing is a physiological and essential process that must initiate as soon as tissue dam-
age occurs. It is divided into 4 phases: 1) the formation of a clot, to stop the bleeding; 2) the
inflammatory phase, with the recruitment of immune cells and release of inflammatorymedia-
tors; 3) the proliferative phase, with formation of granulation tissue, that plays an important
role in new vessel formation; 4) the remodeling phase, when the spatial reorganization of colla-
gen fibers and re-epithelization occur. Various cell types including neutrophils, macrophages,
fibroblasts, endothelial cells and keratinocytes, and a great number of mediators (e.g. cytokines,
lipid derivedmolecules, growth factors) orchestrate the wound healing phases. Alterations in
duration or intensity of the inflammatory phase modify the onset of the next phase and hence
impair the wound healing process [1, 2].
Types 1 and 2 diabetes exhibit different etiologies, however, both are associated with hyper-

glycemia and impairment in wound healing through mechanisms involving exacerbation and
chronification of the inflammatory response [2–4]. Hard-to-heal wounds are a well-known
diabetic complication [5]; 25% of diabetic patients had experienced a non-healing ulcer and
28% of them underwent amputation related to poor wound healing [5]. Chronic wounds have
an imbalanced production of pro- and anti-inflammatorymediators such as TNF-α, IL-1β,
VEGF and IL-10 [6–8], hindering proper healing. The sustained expression of pro-inflamma-
tory cytokines and chemokines are associated with increased numbers of neutrophils in late
wound tissues and impairment in tissue repair in db/dbmice [4]. The recruitment of macro-
phages is also impaired and there is a predominance of M1 pro-inflammatorymacrophage
subtype in the harmed area. The permanence of M1 macrophages in wound tissue increases
the production of inflammatorymediators and blocks inflammation resolution. As a conse-
quence, the progression to angiogenesis not occurs [3, 9].
Angiogenesis is defined as the formation of new vessels from preexisting vessels [10]. It

plays a critical role in wound healing, since it reestablishes the supply of oxygen and nutrients
to damaged area as well as promotes the migration of cells that will build up the tissue. Angio-
genesis is up regulated by growth factors such as VEGF and ANGPT-2, that will promote the
genesis of new vessels by acting on endothelial cells [11]. On the other hand, it is down regu-
lated by angiostatin and TGF-β (tumor growth factor-β) that, not only, reduce the synthesis of
pro-angiogenic factors but also antagonize some of their effects [12]. Then, both inflammation
and angiogenesis play pivotal roles in injured tissue repair. These two processes are impaired in
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diabetes, resulting in delayed wound healing. Compounds that reestablish inflammation and
angiogenesis and then normalize the wound healing process are of great importance for dia-
betic patients.
Skin wounds are popularly treated with natural compounds such as nut oils in developping

countries. Although this provides the basis for the pharmaceutical formulations of healing
ointments, little is known about how these products act on the wound healing process. We pre-
viously reported that oral administration of pure linoleic acid (LA), an abundant fatty acid of
nut oils, improves the wound healing process in non-diabetic animals [13]. LA (18:2, ω-6) is an
essential fatty acid widely present in the western diet. LA constitutes 40% of the fatty acids in
the human skin and plays an important role for its function.However, there is no consense
about the effects of LA on inflammatory response yet. We reported that oral administration of
LA has pro- and anti-inflammatory effects in non-diabetic rats. LA increased the influx of
inflammatory cells into the injured tissue, changed neutrophil [14] and macrophage [15] fatty
acid composition, and reduced the production of cytokines and reactive oxygen species (ROS).
The information above led us to investigate the effects of oral administration of LA on skin

repair in diabetic rats. The key steps of wound healing, inflammation and angiogenesis, were
assessed.We hypothesized that LAmay hasten wound healing by acting on inflammatory
response and angiogenesis. To test this hypothesis the experiments were performed in vivo in
streptozotocin-induceddiabetic rats orally suplemented with pure LA.

Materials and methods

Animals

Male Wistar rats (from the Institute of Biomedical Sciences, Sao Paulo University, Brazil) were
maintained at 23°C under a light: dark cycle of 12:12 h and received food (Nuvital, Curitiba,
Brazil, containing 22% of protein, 4,5% of fat, 40,8% of carbohydrate and 8% of fiber) and
water ad libitum. Linoleic acid constitutes 40% of the fatty acids in the chow. The complete
fatty acid composition of chow was previously published [14]. The Animal Care Committee of
the Institute of Biomedical Sciences approved the experimental procedure of this study (Proto-
col number: 86).

Induction of diabetes mellitus

Type I diabetesmellitus was induced by streptozotocin injection as previously reported [16].
This drug destroys pancreatic beta cells resulting in a marked reduction in insulin release and
consequently hyperglycemia. Diabetes was confirmed three days after induction by blood glu-
cose concentrations above 250 mg/dL as determined by the Accu-Check Active glucometer
(Roche,Mannheim, Germany). After ten days, diabetic animals were divided into two groups:
untreated diabetic (D) and diabetic that received oral LA supplementation (DLA) (Fig 1).

Administration of LA

Oral administration of pure LA (Sigma-AldrichCo, St Louis, MO, USA) was initiated ten days
after diabetes induction and maintained daily during the experimental period.Unesterified LA,
at a dose of 0.22 g/kg b.w, was administered by gavage. The total calories associated with LA
dose are low (1.98 cal/day) and so, we used water administration as control [14]. The D group
received water (same LA volume). Considering the chow FA composition [14] and the food
intake (g/day) of the animals (data not shown), the LA dose used in the present study repre-
sents an increase of 7% in the total ingestion of LA compared with the chow diet.
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Skin wound induction

After five days of LA administration, the animals were anesthetizedwith xilazine (7 mg/kg b.
w.) and ketamine (14 mg/kg b.w.) and an area of 10 mm2 in dorsal region skin was shaved and
removed by surgery. Animals were killed by overdose of the anesthetics xilazine (21 mg/kg b.
w.) and ketamine (42 mg/kg b.w.), 1, 3, 7 or 14 days after the surgery.

Determination of wound tissue fatty acid composition

The fatty acid composition of the wounds was determined by gas chromatography (GC) as pre-
viously described [17]. Results of individual fatty acids are expressed as percentage of total fatty
acids.

Skin wound closure assessment

Animals were anesthetizedwith isoflurane. The wounds were daily photographed using a Sony
cyber shot camera (model DSC-S950S 10 mP; 4 x Optical zoom) by the same examiner, as pre-
viously described [13]. Wound closure was defined as a reduction of wound area and results
are expressed as percentage of the original wound area.

Eicosanoid measurements in wound tissue

The concentrations of leukotriene B4 (LTB4) and 15 (S) hydroxyeicosatetraenoic acid (15(S)-
HETE) were measured in scar tissue homogenates using ELISA kits according to manufac-
turer's instructions (Cayman Chemical, Ann Arbor, MI, USA).

Histological examination of the wound tissue

Wound lesions with adjacent normal skin were removed, fixed in Bouin for 24 h at room tem-
perature, processed and embedded in Paraplast1. Seven μm sections were stained with hema-
toxilin/eosin to evaluate the general morphology of the wound.

Fig 1. Experimental protocol.

doi:10.1371/journal.pone.0165115.g001
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Morphometric analysis of blood vessels

Digital photomicrographs were obtained using a Leitz Aristoplan optical microscope (Leica)
with a 20x objective and a Nikon (DS-Ril) camera. The NIS-Elements software was employed
for image capturing. Only the dermal wound region, just below the crust, was photographed
(2–5 pictures per animal, 3–4 animals per group). The Image J public software (NIH, Bethesda,
US) was used for morphometric analysis using the grid plugin. A grid of 130 points was used in
each photograph and the number of points observed in the interior of small blood vessels was
counted and expressed as percentage of the total points, representing the area occupied by
vessels.

Cytokine contents in wound tissue

Wound lesions removed at 1, 3 and 7 days after lesion induction were wrapped up in alumin-
ium paper, dropped into dry ice and kept frozen (-80°C). CINC-2αβ, IL-1β, TNF-α, IL-6 and
VEGFwere assessed by ELISA as previously described [13] using the Duo Set kit (R&D System,
Minneapolis, MN, USA) and normalized by protein concentration as measured by the Brad-
ford method [18].

Real-time polymerase chain reaction

Total RNA was extracted (RNAeasy Mini Kit, Qiagen, Venlo, Netherlands) from wound tissue
and reverse-transcribedusing the High-Capacity cDNA Reverse Transcription kit (Applied
Biosystems, Foster City, CA, USA). Reactions were performed using SYBR-Green PCRmaster
mix (Invitrogen, Carlsbad, CA, USA) in a Rotor Gene Q (Qiagen, Germantown, Maryland,
MD, USA). mRNA expression was normalized by the D values in unwounded skin. The
sequences of the primers used are described in the S1 Table.

Measurement of NF-KB and AP-1 activation in wound tissue

Wound tissue removed at 1 and 24h after lesion was processed as previously described [13, 19].
The blots were analyzed by scanner densitometry (Image Master 1D, Amersham Biosciences)
and results expressed as arbitrary units in relation to diabetic animals.

Statistical Analysis

Comparisons between groups were performed using Student’s t test. In some experiments
(cytokines, skin fatty acid composition and mRNA expression), two-way analysis of variance
(ANOVA) and Bonferroni post-test were used. The significancewas set at p<0.05.

Results

All streptozotocin-induceddiabetic animals used in this study had blood glucose levels close to
400 mg/dL. None other plasma measurement (e.g. ketone bodies) was considered for this pur-
pose as also reported by others [16, 20, 21]. The diabetes protocol used was established consid-
ering the animals lost around 10% of their body weight and they would not survive for longer
periodwithout insulin administration. The diabetic rats were not treated with insulin due to its
direct effects on the wound healing process [20]. The combination of high glycemia, intense
weight loss and general catabolic state could compromise the interpretation of results obtained
in a condition of prolonged diabetes state. Ten days after streptozotocin-induceddiabetes, a
full-thickness biopsy was performed and wound closure was assessed over time. The diabetic
condition protocol used did delay wound healing as indicated by the analysis of wound closure
in control (non-diabetic) and diabetic (non-treated) rats.
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Pure LA was orally administered to diabetic rats daily for 5 days prior to the full-thickness
biopsy and then until wound closure (Fig 1). The dose (0.22 g/kg/day) of LA and the duration
of the administration did not induce any change in the nutritional status of the animals (data
not shown). The amount of LA given is unlikely to have increased plasma ketone body levels.
In fact, the dose of LA given represents an increase of 7% in the total ingestion of LA compared
with the chow diet.

Oral administration of LA changed skin fatty acid composition and

modulated eicosanoid production in wound tissue

We previously reported that the same treatment protocol increases the proportion of LA in
neutrophils [14] and macrophages [15]. LA increased eicosadienoic (EDA) percentages on
unwounded skin. On the 7th day, LA elevated the adrenic acid (AdA) percentages in wound tis-
sue (Fig 2A).
The concentrations of LTB4 and 15(S)-HETE, two eicosanoids derived from AA, which can

be generated from LA (Fig 2B) were measured. Concentrations of both eicosanoids were
increased in the wound tissue one-day post-wounding and were reduced after 3 and 7 days (15
(S)-HETE) or 14 days (LTB4) in the DLA group (Fig 2C).

LA improved skin repair in diabetic rats

Fourteen days post-wounding, the original wound area was reduced by over 95% in the control
group being fully closed by day 18 (Fig 3A). In comparison, wound closure was much slower in
diabetic animals. At the 7th day after wound induction, diabetic animals had a larger wound
area (p = 0.002) than the control group (D: 56 ± 2% vs. C: 34 ± 3%, mean ± SEM of 5–9 animals
per group) (Fig 3A). The delay in wound healing remained in diabetic animals and wounds
were not fully healed up to 18 days after induction.
Administration of LA hastened wound closure in diabetic rats (Fig 3B), an effect that was

independent of any change in glycemia (Fig 3C). The wound area was reduced in the DLA
group from the 14th to the 18th day post-wounding in relation to D animals (Fig 3B). In order
to verify if the effect on wound closure was specific for LA, we performed the same analysis in
diabetic rats treated with pure oleic acid (OA), a monounsaturated 18-carbon chain fatty acid
(S1 Fig). In contrast to the effect of LA, OA caused a delay in the wound closure of diabetic rats
(DOA group) when compared to D animals but did not modify glycemia (S1 Fig). Taking
together, these results suggest that the improvement in wound healing is specific for LA
treatment.

LA induced inflammatory cell migration and increased formation of new

vessels in wound tissue

Histological analysis of wounds from diabetic rats exhibited inflammation in the dermis on the
first day and intense neutrophil influx into the tissue from the 3rd until to the 14th day post-
wounding (Fig 4A). A few vessels were observed in wounds of diabetic rats (Fig 4A).
Wounds were more inflamed in DLA group than in D animals on the first day after wound-

ing. Significant edema and high number of neutrophils were found in the crust (Fig 4A). On
the 3rd day, neutrophils were abundant at the surface of the wound but in lower number than
in the D group. There were more newly formed vessels from the 3rd day until the 14th day after
wounding in the DLA group in relation to D animals (Fig 4B and 4C).
To explain the increase in vessel number observed in the DLA group, we measuredmRNA

expression of tissue factors that regulate angiogenesis. Although there was no difference in

Linoleic Acid Improves Wound Repair in Diabetic Rats

PLOS ONE | DOI:10.1371/journal.pone.0165115 October 20, 2016 6 / 19



Linoleic Acid Improves Wound Repair in Diabetic Rats

PLOS ONE | DOI:10.1371/journal.pone.0165115 October 20, 2016 7 / 19



TGF-β expression, the concentration of VEGF was elevated in DLA rats (Fig 4D), 7 days after
wound induction. Considering this effect on VEGF, we analysed the expression of other pro-
angiogênic factors at the 7th day after tissue injury and observed that DLA increasedANGPT-2
mRNA expression but did not alter eNOS (endothelial nitric oxide synthase) expression (Fig
4E). These effects of LA were in agreement with the presence of new vessels observed in the his-
tological analysis (Fig 4A, 4B and 4C). Thus, LA inducedmigration of inflammatory cells and
increased the formation of new vessels in wound tissue.

Fig 2. Fatty acid composition and eicosanoids production during wound healing. (a) Fatty acid composition in wound tissue

from diabetic rats (D) and diabetic rats treated with linoleic acid (DLA). Results are presented as mean ± SD. D (3 rats) and DLA (7

rats). (*) Indicates significant differences between D and DLA rats (p<0.001). (b) Scheme showing LA metabolism and generation

of eicosanoids. (c) LTB4 and HETE-15 (S) concentrations in wound tissues from diabetic rats (D) and diabetic rats treated with

linoleic acid (DLA). Results are presented as mean ± SD. D (3 rats) and DLA (5 rats). (*) Indicates significant differences between D

and DLA rats (LTB4 1d –p = 0.002; LTB4 14d –p = 0.02; HETE-15 (S) 1d –p = 0.03; HETE-15 (S) 3d –p = 0.001; HETE-15 (S) 7d –

p = 0.04).

doi:10.1371/journal.pone.0165115.g002

Fig 3. Time course of wound healing and glycemia. (a) Macroscopic and time course of wound closure in control (C) and diabetic rats (D). (*) Indicates

significant differences among C versus D (p = 0.006) (b) Macroscopic and time course of wound closure in diabetic (D) and diabetic rats treated with LA

(DLA) (*) Indicates significant differences between D and DLA (p = 0.02). Representative photos of the wound tissue obtained during the time-course of 18

days. Results are presented as mean ± SD. D (5 rats) and DLA (9 rats). (c) Glycemia of rats during the wound healing process: (D) diabetic; (DLA) diabetic

rats treated with LA. Dashed line indicates the mean of glycemia in control rats.

doi:10.1371/journal.pone.0165115.g003
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LA affected both the early and the late cell recruitment

In order to evaluate the kinetics of inflammatory cell migration into wound tissues, mRNA
expression of neutrophil (myeloperoxidase—MPO) and macrophage (F4/80) markers were
measured during the wound healing process. MPO activity and chemokine concentrations
were also measured at different time points in the wound tissue. LA increasedMPOmRNA
expression and activity one hour after wound induction. This was followed by elevation in
CINC-2αβ, an important neutrophil chemoattractant agent (Fig 5). The increase in MPO
mRNA expression persisted until the 1st day after wound induction.
After neutrophils, the next cell population that migrates into an injured area is macrophage.

LA did not change F4/80 (macrophage marker) expression during the inflammatory phase of
wound healing (Fig 6A). However, LA diminished it at 7th day. This result was followed by
reduction in the contents of chemoattractant cytokines (MIP-1 and MCP-1) and of iNOS

Fig 4. Histological analysis and angiogenic growth factors expression in wound tissue. (a) Samples were isolated from diabetic rats

(D) and diabetic rats treated with linoleic acid (DLA) at the 1st, 3rd, 7th and 14th days after wounding. (b) Representative new vessel

formation in wound tissue from the D and DLA groups. Samples were collected on the 7th day after wounding. (c) Vessels quantification.

Results are presented as mean ± SD. D (4 rats) and DLA (5 rats). (*) Indicates significant difference between D and DLA (p = 0.0001). (d)

TGF-βmRNA expression and VEGF concentration in wound tissues from diabetic rats (D) and diabetic rats treated with linoleic acid (DLA).

Results are presented as mean ± SD. D (9 rats) and DLA (4 rats). (*) Indicates significant difference between D and DLA (VEGF–p<0.01).

(e) eNOS and ANGPT-2 mRNA expression in wound tissues from diabetic rats (D) and diabetic rats treated with linoleic acid (DLA). Results

are presented as mean ± SD. D (9 rats) and DLA (4 rats). (*) Indicates significant difference between D and DLA (ANGPT-2 –p = 0.01). V:

vessel. DE: derm. Objective 10X.

doi:10.1371/journal.pone.0165115.g004

Fig 5. Myeloperoxidase and CINC-2αβ contents. Myeloperoxidase (MPO) activity (1 hour), mRNA expression (1 h, 1, 3

and 7 days) and CINC-2αβ concentration (1 h) in wound tissue. Results are presented as mean ± SD. D (6 rats) and DLA (6

rats). (*) Indicates significant differences between D and DLA rats (MPO activity–p = 0.02; mRNA expression 1h 0.006;

mRNA 1 day–p = 0.03; CINC-2αβ –p = 0.04).

doi:10.1371/journal.pone.0165115.g005
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Fig 6. Macrophages cell markers expression. (a) mRNA expression of F4/80 in wound tissue 1 hour and 1–7 days after wounding. Results are

presented as mean ± SD. D (5 rats) and DLA (10 rats). (b) mRNA expression of MIP-1, MCP-1 and iNOS in wound tissue from diabetic rats (D) and

diabetic rats treated with linoleic acid (DLA). Results are presented mean ± SD. D (5 animals) and DLA (9 animals). (*) Indicates significant differences

between D and DLA rats (p<0.001)

doi:10.1371/journal.pone.0165115.g006
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expression (Fig 6B) that is increased in activated macrophage [22]. So, LA treatment acceler-
ated the early migration of neutrophils through, at least in part, an increase in production of
chemoattractants or neutrophil responsiveness to them. LA also modifiedmigration of macro-
phages (later) and production of macrophage-related chemoattractants.

LA hastened the inflammatory phase

TNF-α concentration was raised in wounds on days 3 and 7 after lesion in the DLA group in
comparison to D rats (Fig 7). We did not observe any change in IL-6 or IL-1β levels between
the experimental groups (Fig 7). We also evaluated activation of NF-κB and AP-1 in the
wound tissue. No alteration was observed in NF-κB activation. However, LA inhibited AP-1
activation 1 and 24 hours after wound induction in diabetic animals (Fig 8).
Oral administration of LA hastened wound healing inflammation and angiogenesis steps in

diabetic rats by: 1) increasing inflammatory cell influx through chemoattractant agent (CINC-
2αβ) production and LTB4 generation; 2) regulation in gene expression (MIP, MCP and
iNOS), through AP-1 modulation; 3) induction of vessel formation via production of pro-
angiogenic factors (ANGPT-2 and VEGF).

Discussion

The animals herein used had a glycemia around 400 mg/dL (not affected by the treatment with
LA or wound process). Despite the short period of diabetes impaired in wound healing was
reported, in comparison to non-diabetic animals, which resembles the human condition. Oral
administration of LA to diabetic rats hastened the influx of neutrophils (early), reducedmacro-
phage (late) abundance, and modulated the production/release of cytokines (CINC-2αβ and
TNF-α), growth factors (VEGF) and eicosanoids (LTB4 and 15(S)-HETE) that drive the

Fig 7. Cytokines production during wound healing. CINC-2α, IL-6, IL-1β and TNF-α concentrations in wound tissue

from diabetic rats (D) and diabetic rats treated with linoleic acid (DLA). Results are presented mean ± SD. D (5 animals)

and DLA (6 animals). (*) Indicates significant differences between D and DLA rats (TNF-α 3d –p<0,05; TNF-α 7d –

p<0.01)

doi:10.1371/journal.pone.0165115.g007

Linoleic Acid Improves Wound Repair in Diabetic Rats

PLOS ONE | DOI:10.1371/journal.pone.0165115 October 20, 2016 12 / 19



healing process. These modifications in LA treated rats were associated with new vessel forma-
tion and improvement of the wound healing process.
In order to examine if the effects of LA on wound healing process were due to LA incorpo-

ration in the skin, we evaluated skin fatty acid composition by gas chromatography (GC).
Although no differences were observed in LA or AA incorporation, oral administration of LA
increased eicosadienoic (EDA– 20:2 ω-6) and adrenic acid (AdA—22:4ω-6) incorporation (Fig
2A). EDA is a product of LA elongation that also modifies the inflammatory response, how-
ever, in a less intense manner when compared to LA or AA [23]. AdA is an AA elongation
product, which can be metabolized to dihomo-eicosanoids or docosanoids [24, 25]. A reduc-
tion in AdA formation has been described in type 1-diabetes [26]. Importantly, AdA reduces
AAmetabolism and inhibits AA-derived eicosanoid formations [27]. In the present study, LA
increasedAdA incorporation and reduced 15(S)-HETE (Fig 2C).
15-HETE plays a key role in the early phase of wound healing since it controls clot forma-

tion through platelet aggregation and thrombin production [28]. Long standing release of
15-HETE is positively associated with wound tissue infiltration of neutrophils and macro-
phages [29]. The presence of 15-HETE in the latter phase of wound healing reflects a persistent
influx of inflammatory cells into the tissue and consequently wound chronification.
Fatty acids can generate a wide range of bioactivemolecules named oxylipins [30]. Oxyli-

pins are products formed by PUFA oxidation and the most well known class is the AA-derived
eicosanoids [30]. However, they can also be derived from LA such as 13 hydroxyoctadecadie-
noic acid (13-HODE) and 9,10-cis epoxide of linoleic acid (9,10 EpOME). Considering that
HODE and EpOME oxilipins can modulate inflammatory responses, a limitation of the present
study is the fact we did not measure these molecules during the wound healing process.

Fig 8. Transcription factors activation. NF-KB and AP-1 activation in wound tissues from diabetic rats (D) and diabetic rats

treated with linoleic acid (DLA). Results are presented as mean ± SD. D (5 animals) and DLA (8 animals). (*) Indicates

significant difference between D and DLA rats (AP-1 1 h–p = 0.02; AP-1 24hs–p = 0.001)

doi:10.1371/journal.pone.0165115.g008
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Diabetesmellitus is associated with chronic inflammation and poor wound healing [31].
The inflammatory phase of wound healing in diabetes exhibits accumulation and persistence
of primed inflammatory cells in the lesion area [32], resulting in exacerbated production of
pro-inflammatorymediators that cause surrounding tissue damage and impairs wound resolu-
tion [3, 31, 33].
During inflammation, leukocyte recruitment cascade, a sequential adhesive interaction

between leukocytes and endothelial cells, takes place [34]. LA administration induced neutro-
phil infiltration in the first hours after wounding that returned to basal values 3 days latter. The
possible mechanisms involved in LA-induced cell migration are: increased adhesion molecule
expression in leukocytes [14] and endothelium [35] and release of chemoattractants such as
MCP, LTB4 and CINC-2αβ [36]. The earlier expression of CINC-2αβ induced by LA, also
reported in the present study (Fig 5), is associated with an increase in neutrophil influx into
damaged tissue and with acceleration of colonic wound healing [37]. Once in the injured area,
neutrophils phagocyte dead cells and microorganisms and produce cytokines that attract mac-
rophages to wounded site.
Macrophages modify their phenotype in response to the wound environment. Due to their

plasticity, different states of polarization were described for these cells, in whichM1 (pro-
inflammatory) and M2 (pro-resolution) are the extremes [38]. In a short time wound healing,
the switch of M1 to M2 macrophages hastens the resolution of inflammation enabling the pro-
gression to the proliferative phase [39]. On the other hand, in chronic wounds, the persistence
of M1 macrophages in the tissue exacerbates the inflammatory response and blocks the pro-
gression to wound resolution [3].
Considering the importance of macrophages on wound healing, we investigated if LA could

influence their recruitment to the wound area. Although we did not analyze M1/M2markers,
we found that LA diminished the expression of a globalmacrophage marker (F4/80) and
reduced the productionmacrophage derived chemokines (MCP-1 and MIP-1) in the late
inflammatory phase (7 days). MCP-1 is a chemokine produced by several cell types including
keratinocytes, endothelial cells and resident macrophages, which induces migration of inflam-
matory cells to injured tissue. Maximum expression of MCP-1 occurs 1–2 days after wounding
and declines progressively until to the 7th day of the wound healing process in control condi-
tions [40].
We have previously demonstrated that LA induces transient AP-1 activation in skin of non-

diabetic rat [13], favoring the recruitment and activation of inflammatory cells. The effect was
not found herein in diabetic rat. LA reduced AP-1 activation at 1 and 24 hours after wounding.
Neub et al. [41] stated that reduction in AP-1 activity is needed to restore normal wound heal-
ing and prolonged AP-1 activation is described in chronic wounds [42]. The modulation of
AP-1 activation in skin is shared by other fatty acids such as docosahexaenoic acid (DHA) and
by eicosanoids such as 13-hydroxyoctadecadienoic acid (13-HODE) and 15-hydroxyeicosatrie-
noic acid (15-HETrE) [43]. These reports together indicate that LAmodulates recruitment of
cells through inhibition of AP-1 activity and consequent reduction on chemokine production.
After recruitment, leukocytes produce a range of inflammatorymediators such as cytokines,

ROS, and growth factors to resolve inflammation. IL-6, IL-1β and TNF-α play a very important
role in this process. IL-6 promotes the migratory response of epithelial cells [44] and wound
remodeling [45]. IL-6 deficient mice exhibit impaired angiogenesis, macrophage infiltration
and re-epithelization, resulting in delayed wound healing [46]. IL-1β inhibits type I collagen
production and upregulates metalloproteinase-1, which degrades collagen fibers [47]. Collagen
is the main component of the extracellularmatrix and plays an important role in the wound
healing remodeling [48]. The reduction in type I collagen induces premature collagen synthesis
and poor healing.
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TNF-α is an important regulator of cell migration. Naaldijk et al. [49] reported that the
presence of TNF-α in the medium increases migration of mesenchymal stem cells in a trans-
well assay. The migratory cell response plays a critical role in the proliferative phase of wound
healing. TNF-α also induces angiogenesis in vivo [50] and in vitro [51] through increased
VEGF production. Increased TNF-α and VEGF production in diabetic animals treated with
LA explains the augmented number of new vessels and improved healing. Increased VEGF lev-
els and number of new vessels formed support the proposition that LA induces angiogenesis.
Angiogenesis is necessary to deliver immune cells, nutrients and oxygen and to remove

debris from the damaged tissue. Impairment in formation of new blood vessels retards the
healing process and induces ulceration [52]. There is a wide range of growth factors that regu-
late angiogenesis [52–54]. Diabetes per se leads to increased TGF-β expression during tissue
repair. High levels of TGF-β increase extracellularmatrix deposition that impairs the vasculari-
zation process [55, 56]. Geng et al. [55] reported that there is an inverse correlation between
TGF-β expression and VEGF concentration in colon tumors. TGF-β reduces VEGF stability by
inducing ubiquitination and degradation of this growth factor, with no effect on VEGFmRNA
levels [55].
Growth factors and cytokines released during inflammation are involved in the abluminal

sprouting and formation of new vessels from an existing vessel [57–59]. Nishioka et al. [60]
described that in vivo administration of LA induces angiogenesis through angiostatin suppres-
sion. Angiostatin is a proteolytic fragment of plasminogen and suppresses angiogenesis by
inhibiting endothelial cell proliferation and migration and by inducing endothelial cell apopto-
sis [61]. In the present study, we did not detect angiostatin mRNA expression seven days after
the wound in any group (data not shown). However, LA increasedVEGF production and
expression of ANGPT-2. This latter protein is induced by growth factors such as VEGF after
endothelial cell [11] and/or fibroblast/myofibroblast [62] activation. The presence of ANGPT-
2 primes endothelial cells to respond to inflammatory cytokines, resulting in expression of
adhesionmolecules and transmigration of inflammatory cells [11]. LA increased the produc-
tion of pro-angiogenic factors, which might be associated with elevation in vascularization.
These effects of LA are in agreement with the presence of new vessels observed in the histologi-
cal analysis (Fig 4A, 4B and 4C).
In summary, oral administration of LA to diabetic animals brought forward the inflamma-

tory response and induced angiogenesis. The pro-healing effects of LA hasted the healing pro-
cess in diabetic rats.
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S1 Fig. Time course of wound closure in diabetic (D) and diabetic treated with oleic acid
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ferences in relation to D (10d –p = 0.04; 16d –p = 0.03; 18d –p = 0.03). Glycemia of rats during
the wound healing process: (D) diabetic; (DOA) diabetic rats treated with OA. Dashed line
indicates the mean of glycemia in control rats.
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